Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N); for (int i = (0); i < (N); ++i) { cin >> a.at(i); } int ans = 0; int S = a.at(0); int start = 0; while (start < N && a.at(start) == 0) { start++; } if (start != 0) { ans = start * 2 - 1; if (start < N) { if (a.at(start) > 0) { S = -1 + a.at(start); if (!S) { ans++; S = 1; } } else { S = 1 + a.at(start); if (!S) { ans++; S = -1; } } } } for (int i = (start + 1); i < (N); ++i) { if (S > 0) { S += a.at(i); if (S >= 0) { ans += (S + 1); S = -1; } } else { S += a.at(i); if (S <= 0) { ans += (-S + 1); S = 1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; long long a[100010]; long long sum[100010] = {0}; cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; int ans = 0; if (a[0] >= 0) { for (int i = 0; i < n; i++) { int j = i; while (j >= 0) { sum[i] += a[j]; j--; } if (i % 2 == 0) { if (sum[i] <= 0) { while (sum[i] <= 0) { sum[i]++; a[i]++; ans++; } } } else { if (sum[i] >= 0) { while (sum[i] >= 0) { sum[i]--; a[i]--; ans++; } } } } if (sum[n - 1] == 0) ans++; } else { for (int i = 0; i < n; i++) { int j = i; while (j >= 0) { sum[i] += a[j]; j--; } if (i % 2 == 0) { if (sum[i] >= 0) { while (sum[i] >= 0) { sum[i]--; a[i]--; ans++; } } } else { if (sum[i] <= 0) { while (sum[i] <= 0) { sum[i]++; a[i]++; ans++; } } } } if (sum[n - 1] == 0) ans++; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } int main() { int n; cin >> n; vector<int> a(n); for (int i = (0); i < (n); ++i) cin >> a[i]; ll sum = a[0]; ll ans = 0; for (int i = (1); i < (n); ++i) { sum += a[i]; if (sum * (sum - a[i]) < 0) ; else { if (sum >= 0) { ans += sum + 1; sum = -1; } else { ans += -sum + 1; sum = 1; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long dptemp[100010]; long long s1[100010], dp[100010]; long long mi = 0x3f3f3f3f, n, a, sum, pri1, pri2, all; scanf("%lld", &n); dp[0] = 0; for (a = 1; a <= n; a++) { scanf("%lld", &s1[a]); dp[a] = s1[a] + dp[a - 1]; dptemp[a] = dp[a]; } sum = 0; all = 0; if (dp[1] == 0) { dp[1]++; sum++; all = 1; for (a = 2; a <= n; a++) { dp[a] = (dp[a - 1] + s1[a]); if (dp[a - 1] > 0) { if (dp[a] >= 0) { sum -= (dp[a] + 1); all += (dp[a] + 1); dp[a] = -1; } } else { if (dp[a] <= 0) { sum += (-dp[a] + 1); all += (-dp[a] + 1); dp[a] = 1; } } } if (all < mi) mi = all; for (a = 1; a <= n; a++) dp[a] = dptemp[a]; dp[1]--; sum--; all = 1; for (a = 2; a <= n; a++) { dp[a] = (dp[a - 1] + s1[a]); if (dp[a - 1] > 0) { if (dp[a] > 0) { sum -= (dp[a] + 1); all += (dp[a] + 1); dp[a] = -1; } } else { if (dp[a] <= 0) { sum += (-dp[a] + 1); all += (-dp[a] + 1); dp[a] = 1; } } } if (all < mi) mi = all; } else if (dp[1] > 0) { sum = 0; all = 0; for (a = 1; a <= n; a++) dp[a] = dptemp[a]; for (a = 2; a <= n; a++) { dp[a] = (dp[a - 1] + s1[a]); if (dp[a - 1] > 0) { if (dp[a] >= 0) { sum -= (dp[a] + 1); all += (dp[a] + 1); dp[a] = -1; } } else { if (dp[a] <= 0) { sum += (-dp[a] + 1); all += (-dp[a] + 1); dp[a] = 1; } } } if (all < mi) mi = all; } else { sum = 0; all = 0; for (a = 2; a <= n; a++) { dp[a] = (dp[a - 1] + s1[a]); if (dp[a - 1] > 0) { if (dp[a] > 0) { sum -= (dp[a] + 1); all += (dp[a] + 1); dp[a] = -1; } } else { if (dp[a] <= 0) { sum += (-dp[a] + 1); all += (-dp[a] + 1); dp[a] = 1; } } } if (all < mi) mi = all; } printf("%lld\n", mi); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; cin >> n; vector<long long int> a(n); for (int i = 0; i < (n); i++) { cin >> a[i]; } long long int oddcount = 0, evencount = 0; long long int oddsum = 0, evensum = 0; bool odd = true, even = false; for (int i = 0; i < (n); i++) { oddsum += a[i]; evensum += a[i]; if (odd && oddsum <= 0) { oddcount += 1 - oddsum; oddsum = 1; } if (even && oddsum >= 0) { oddcount += 1 + oddsum; oddsum = -1; } if (even && evensum <= 0) { evencount += 1 - evensum; evensum = 1; } if (odd && evensum >= 0) { evencount += 1 + evensum; evensum = -1; } odd = !odd; even = !even; } assert(false); cout << fmin(oddcount, evencount) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i arr = gets.chomp.split(" ").map(&:to_i) $count = [0,0] def check(i,arr,t) if i > arr.size - 1 arr[t] += 1 $count += 1 return end if arr[i] > 0 arr[t] -= 1 $count += 1 elsif arr[i] < 0 arr[t] += 1 $count += 1 else check(i+1,arr,t) end end flg = true 2.times do |j| tmp_arr = Marshal.load(Marshal.dump(arr)) sum = tmp_arr[0] + tmp_arr[1] if sum == 0 if flg tmp_arr[1] -= 1 else tmp_arr[1] += 1 end $count[j] += 1 end if flg if sum > 0 tmp_arr[1] -= sum+1 $count[j] += sum+1 end else if sum < 0 tmp_arr[1] += sum+1 $count[j] += sum+1 end end sum = tmp_arr[0] + tmp_arr[1] (2...tmp_arr.size).each do |i| diff = sum + tmp_arr[i] # puts %(sum : #{sum}) # puts %(diff : #{diff}) if sum > 0 if diff > 0 tmp_arr[i] -= diff.abs+1 $count[j] += diff.abs+1 elsif diff == 0 tmp_arr[i] -= 1 $count[j] += 1 end else if diff < 0 tmp_arr[i] += diff.abs+1 $count[j] += diff.abs+1 elsif diff == 0 tmp_arr[i] += 1 $count[j] += 1 end end sum += tmp_arr[i] # p tmp_arr end flg = false end #p $count #p arr puts $count.min
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int n, option; ll ch[2]; int main() { cin.sync_with_stdio(0); cin.tie(0); cin >> n; vector<ll> a(n); for (auto& i : a) cin >> i; for (int i = 0; i < n; ++i) { if (a[i] >= 0) ch[i % 2] += a[i] + 1; } option = (ch[0] >= ch[1]); ll cur = 0, ans = 0; for (int i = 0; i < n; ++i) { cur += a[i]; if (i % 2 == option && cur >= 0) { ans += cur + 1; cur = -1; } else if (i % 2 != option && cur <= 0) { ans += -1ll * (cur - 1); cur = 1; } } cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main() { size_t N; std::cin >> N; std::vector<int> A(N); for (size_t n = 0; n < N; ++n) { std::cin >> A[n]; } int64_t a = 0; int64_t c = A[0]; for (size_t n = 1; n < N; ++n) { if (c < 0) { if (c + A[n] <= 0) { a += -(c + A[n]) + 1; c = 1; } else { c = c + A[n]; } } else { if (c + A[n] >= 0) { a += c + A[n] + 1; c = -1; } else { c = c + A[n]; } } } std::cout << a << std::endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long INF = (1LL << 62); long long N; vector<long long> A, W; long long S[100002] = {INF * (-1)}; long long dp[100002] = {0}; int sign = 0; int b; void calcDP(int n) { if (n == 1) { if (sign == 1) { if (W[1] > 0) { dp[1] = 0; } else { dp[1] = abs(1 - W[1]); W[1] = 1; } } else if (sign == -1) { if (W[1] < 0) { dp[1] = 0; } else { dp[1] = abs(-1 - W[1]); W[1] = -1; } } S[1] = W[1]; return; } else { S[n] = S[n - 1] + W[n]; if ((S[n - 1] < 0 && S[n] > 0) || (S[n - 1] > 0 && S[n] < 0)) { dp[n] = dp[n - 1]; } else { if (S[n - 1] > 0) { dp[n] = dp[n - 1] + abs(-1 - S[n - 1] - W[n]); W[n] = -1 - S[n - 1]; } else { dp[n] = dp[n - 1] + abs(1 - S[n - 1] - W[n]); W[n] = 1 - S[n - 1]; } S[n] = S[n - 1] + W[n]; } return; } } int main(int argc, char* argv[]) { cin.tie(0); ios::sync_with_stdio(false); cin >> N; W.push_back(0); S[0] = 0; long long m = 0; b = 1; for (int i = 1; i <= N; i++) { long long a; cin >> a; A.push_back(a); W.push_back(a); if (i == 1) { S[1] = a; } else { S[i] = S[i - 1] + a; } if (abs(a) > m) { m = abs(a); b = i; } } if ((b % 2) == 1) { sign = abs(W[b]) / W[b]; } else { sign = (abs(W[b]) / W[b]) * (-1); } for (int i = 1; i <= N; i++) { calcDP(i); } printf("%lld\n", dp[N]); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, i, c1 = 0, c2 = 0; cin >> n; int a[n], s[2]; for (i = 0; i < n; i++) { cin >> a[i]; } s[0] = a[0], s[1] = 0; for (; s[0] > -1; c1++) s[0]--; for (i = 1; i < n; i++) { s[1] = s[0] + a[i]; if ((s[0] < 0 && s[1] <= 0) || (s[0] > 0 && s[1] >= 0)) { if (s[0] < 0) for (; s[1] < 1;) s[1]++, c1++; else for (; s[1] > -1;) s[1]--, c1++; } s[0] = s[1]; } cout << endl; s[0] = a[0], s[1] = 0; for (; s[0] < 1; c2++) s[0]++; for (i = 1; i < n; i++) { s[1] = s[0] + a[i]; if ((s[0] < 0 && s[1] <= 0) || (s[0] > 0 && s[1] >= 0)) { if (s[0] < 0) for (; s[1] < 1;) s[1]++, c2++; else for (; s[1] > -1;) s[1]--, c2++; } s[0] = s[1]; } cout << min(c1, c2); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const int dx[8] = {1, 1, 0, -1, -1, -1, 0, 1}; const int dy[8] = {0, 1, 1, 1, 0, -1, -1, -1}; using namespace std; int main() { int n; cin >> n; long long a[n]; long long sums[n]; cin >> a[0]; sums[0] = a[0]; for (int i = 1; i < n; ++i) { cin >> a[i]; sums[i] = sums[i - 1] + a[i]; } long long cnt = 0; long long v = 0; long long diff; for (int i = 1; i < n; i++) { sums[i] += v; if (sums[i - 1] * sums[i] >= 0) { if (sums[i - 1] < 0) { diff = 1 - sums[i]; } else { diff = -1 - sums[i]; } sums[i] += diff; v += diff; cnt += abs(diff); } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# encoding:utf-8 import copy import random import bisect #bisect_left これで二部探索の大小検索が行える import fractions #最小公倍数などはこっち import math mod = 10**9+7 n = int(input()) a = [int(i) for i in input().split()] if a[0] > 0: status_pos = True else: status_pos = False tmp = 0 ans = 0 for i in range(n): tmp += a[i] if tmp == 0: ans += 1 if status_pos: tmp = -1 else: tmp = 1 elif status_pos and tmp < 0: ans += 1+abs(tmp) tmp = 1 elif status_pos == False and tmp > 0: ans += 1+abs(tmp) tmp = -1 status_pos = not(status_pos) print(ans) # ans2 = abs(a[0])+1 # if a[0] > 0: # a[0] = -1 # else: # a[0] = 1 # # tmp = a[0] # if a[0] > 0: # status_pos = True # else: # status_pos = False # for i in range(1,n): # tmp += a[i] # if status_pos and tmp <= 0: # ans2 += 1-tmp # tmp = 1 # elif status_pos == False and tmp >= 0: # ans2 += 1+tmp # tmp = -1 # status_pos = not(status_pos) # # print(min(ans,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> long long int n; long long int count(long long int a0) { long long int a, i, S[2] = {}, C[2] = {}; S[0] = a0; S[1] = a0; for (i = 1; i < n; i++) { scanf("%lld", &a); S[0] += a; S[1] += a; if (i % 2 == 1) { if (S[0] <= 0) { C[0] += -1 * S[0] + 1; S[0] = 1; } if (S[1] >= 0) { C[1] += S[1] + 1; S[1] = -1; } } else { if (S[0] >= 0) { C[0] += S[0] + 1; S[0] = -1; } if (S[1] <= 0) { C[1] += -1 * S[1] + 1; S[1] = 1; } } } if (C[0] < C[1]) return C[0]; else return C[1]; } int main() { long long int a0; scanf("%lld %lld", &n, &a0); printf("%lld\n", count(a0)); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def main(): N = int(input()) A = [int(i) for i in input().split()] ans1 = 0 S1 = [0] * N S1[0] = A[0] for i in range(1, N): S1[i] = S1[i-1] + A[i] if S1[i]*S1[i-1] < 0: continue if S1[i-1] > 0: S1[i] = -1 ans1 += abs((-1) - (S1[i-1]+A[i])) else: S1[i] = 1 ans1 += abs(1 - (S1[i-1]+A[i])) S2 = [0] * N ans2 = 0 if A[0] > 0: S2[0] = -1 ans2 += abs((-1) - A[0]) else: S2[0] = 1 ans2 += abs(1 - A[0]) for i in range(1, N): S2[i] = S2[i-1] + A[i] if S2[i]*S2[i-1] < 0: continue if S2[i-1] > 0: S2[i] = -1 ans2 += abs((-1) - (S2[i-1]+A[i])) else: S2[i] = 1 ans2 += abs(1 - (S2[i-1]+A[i])) print(min(ans1, ans2)) if __name__ == '__main__': main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) s = 0 sign = a[0]//abs(a[0]) ans = 0 for i in range(n): s += a[i] if s == 0: s = sign ans += 1 elif s//abs(s) == sign: pass else: ans += abs(sign-s) s = sign sign *= -1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n1=int(input()) l1=list(map(int,input().split())) total=l1[0] Num=0 for j in range(1,n1): if total ==0: total=total+1 Num=Num+1 pretotal=total total=total+l1[j] while (pretotal*total>0) or (total ==0): if pretotal<=0: Num=Num+1 total=total+1 elif pretotal>0: total=total-1 Num=Num+1 print(Num)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main { public static void main(String[] args) { Scanner no=new Scanner(System.in); int n=no.nextInt(); int arr[]=new int[n]; // int sum1[]=new int[n]; for(int i=0;i<n;i++){ arr[i]=no.nextInt(); /* if(i==0){ sum1[i]=arr[i]; } else{ sum1[i]=sum1[i]+sum1[i-1]; }*/ } int sum=0; int count=0; if(arr[0]>0){ sum=arr[0]; for(int i=1;i<n;i++){ if(i%2==1&&sum+arr[i]>=0){ int t=arr[i]; arr[i]=(sum+1)*-1; count=count+Math.abs((t-arr[i])); // sum=sum+arr[i]; } else if(i%2==0&&sum+arr[i]<=0){ int t=arr[i]; arr[i]=(Math.abs(sum)+1); count=count+Math.abs((Math.abs(t)-arr[i])); //sum=sum+arr[i]; } /*else if(sum+arr[i]==0){ count++; }*/ sum=sum+arr[i]; } } else if(arr[0]<0){ sum=arr[0]; for(int i=1;i<n;i++){ if(i%2==1&&sum+arr[i]<=0){ int t=arr[i]; arr[i]=(Math.abs(sum)+1); count=count+Math.abs((Math.abs(t)-arr[i])); // sum=sum+arr[i]; // System.out.println(count); } else if(i%2==0&&sum+arr[i]>=0){ int t=arr[i]; arr[i]=(sum+1)*-1; count=count+Math.abs((t-arr[i])); //System.out.println(count); //sum=sum+arr[i]; } /* else if(sum+arr[i]==0){ count++; }*/ sum=sum+arr[i]; } } System.out.println(count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const int N = 1e5 + 10; using namespace std; int mod = 1e9 + 7; int num[N], num2[N]; long long sum[N], sum2[N]; int main() { int n; while (~scanf("%d", &n)) { long long ans = 0, ans2 = 0; for (int i = 1; i <= n; i++) { scanf("%d", num + i); num2[i] = num[i]; sum[i] = sum[i - 1] + num[i]; sum2[i] = sum2[i - 1] + num[2]; } if (num[1] == 0) { ans += 1; num[1] = 1; sum[1]++; } if (num2[1] == 0) { ans2 += 1; num2[1] = -1; sum2[1]--; } for (int i = 2; i <= n; i++) { sum[i] = sum[i - 1] + num[i]; int a = sum[i - 1] < 0; int b = sum[i] < 0; if (sum[i] == 0) { if (sum[i - 1] < 0) num[i]++; else num[i]--; sum[i] = sum[i - 1] + num[i]; ans++; } else if (!(a ^ b)) { if (sum[i] < 0) { num[i] -= sum[i]; num[i]++; ans -= sum[i]; sum[i] = sum[i - 1] + num[i]; ans++; } else if (sum[i] > 0) { num[i] -= sum[i]; num[i]--; ans += sum[i]; ans++; sum[i] = num[i] + sum[i - 1]; } } } for (int i = 2; i <= n; i++) { sum2[i] = sum2[i - 1] + num2[i]; int a = sum2[i - 1] < 0; int b = sum2[i] < 0; if (sum2[i] == 0) { if (sum2[i - 1] < 0) num2[i]++; else num2[i]--; sum2[i] = sum2[i - 1] + num2[i]; ans2++; } else if (~a ^ b) { if (sum2[i] < 0) { num2[i] -= sum2[i]; num2[i]++; ans2 -= sum2[i]; sum2[i] = sum2[i - 1] + num2[i]; ans2++; } else if (sum2[i] > 0) { num2[i] -= sum2[i]; num2[i]--; ans2 += sum2[i]; ans2++; sum2[i] = num2[i] + sum2[i - 1]; } } } printf("%lld\n", min(ans, ans2)); } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) li = list(map(int,input().split())) ans = 0 cnt = 0 s = 0 for i in range(n): if i == 0: ans += li[i] if ans > 0: s = 1 else: s = -1 else: ans += li[i] if ans <= 0 and s == -1: cnt += abs(ans) + 1 ans = 1 if ans >= 0 and s == 1: cnt += abs(ans) + 1 ans = -1 s *= -1 print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long solve(long long *a, int n) { long long count = 0; long long calc = 0; int state, pstate; if (a[0] < 0) state = -1; if (a[0] > 0) state = 1; for (int i = 1; i < n; i++) { pstate = state; int tmp = a[i] + calc; if (tmp < 0) state = -1; if (tmp == 0) state = 0; if (tmp > 0) state = 1; if (pstate == state) { if (state == -1) { count += 1 - tmp; calc += 1 - tmp; state = 1; } else if (state == 1) { count += tmp + 1; calc += -1 - tmp; state = -1; } } if (state == 0) { if (pstate == -1) { count += 1; calc += 1; state = 1; } else if (pstate == 1) { count += 1; calc += -1; state = -1; } } cout << a[i] + calc << endl; } return count; } int main() { int n; long long ans; long long *a; cin >> n; a = new long long[n]; for (int i = 0; i < n; i++) cin >> a[i]; for (int i = 1; i < n; i++) a[i] = a[i - 1] + a[i]; if (a[0] == 0) { long long bs, cs; long long *b = new long long[n]; long long *c = new long long[n]; for (int i = 0; i < n; i++) b[i] = a[i] + 1; for (int i = 0; i < n; i++) c[i] = a[i] - 1; bs = solve(b, n) + 1; cs = solve(c, n) + 1; ans = bs < cs ? bs : cs; } else ans = solve(a, n); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); long n; cin >> n; long long a; long long sum = 0; long long ans = 0; long long x; bool isPlus = true; long i; cin >> a; sum += a; if (a < 0) isPlus = false; for (i = 1; i < n; i++) { cin >> a; if (isPlus) { if (sum + a < 0) { sum += a; } else { x = abs(sum - a) + 1; if (a < 0) ans += x; else ans += (a + a + x); sum -= (a + x); } } else { if (0 < sum + a) { sum += a; } else { x = ((sum + a) < 0 ? (sum + a) * -1 : (sum + a)) + 1; ans += x; sum += (a + x); } } cerr << "x = " << x << endl; cerr << sum << endl; isPlus = !isPlus; } if (sum == 0) { if (a < 0) ans--; else ans++; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a= (list(map(int,input().split()))) sm1=sm2=0 cnt1=cnt2=0 for i ,num in enumerate(a,1): sm1+=num if sm1<1 and i%2!=0: cnt1+=1-sm1 sm=1 elif sm1>-1 and i%2==0: cnt1+=1+sm1 sm=-1 sm2+=num if sm2<1 and i%2==0: cnt2+=1-sm2 sm=1 elif sm2>-1 and i%2==1: cnt2+=1+sm2 sm2=-1 print(min(cnt1,cnt2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n1=int(input()) l1=list(map(int,input().split())) total=l1[0] Num=0 for j in range(1,n1): pretotal=total total=total+l1[j] if pretotal ==0: total=total+(total)/abs(total) Num=Num+1 while (pretotal*total>0) or (total ==0): if total==0: Num=Num+1 if pretotal<0: total=1 else: total=-1 elif pretotal<0: Num=Num-total+1 total=+1 elif pretotal>0: Num=Num+total+1 total=-1 print(Num)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; int sum = 0, ans1 = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0 && sum <= 0) { ans1 += 1 - sum; sum = 1; } if (i % 2 == 1 && sum >= 0) { ans1 += 1 + sum; sum = -1; } } sum = 0; int ans2 = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 1 && sum <= 0) { ans2 += 1 - sum; sum = 1; } if (i % 2 == 0 && sum >= 0) { ans2 += 1 + sum; sum = -1; } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N); for (int i = 0; i < N; i++) cin >> a[i]; if (a[0] < 0) for (int i = 0; i < N; i++) a[i] *= -1; long long ans = 0, sum = 0, idx = 0; if (a[0] == 0) { a[0] = 1; ans += 1; } sum = a[0]; for (int i = 1; i < N; i++) { if (i % 2 == 0) { sum += a[i]; if (sum <= 0) { ans += 1 - sum; sum = 1; } } else { sum += a[i]; if (sum >= 0) { ans += sum + 1; sum = -1; } } } printf("%lld\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { bool ch = false; int N; long long ans = 0, a, count = 0; cin >> N; cin >> a; ans += a; if (ans > 0) ch = true; else ch = false; for (int i = 1; i < N; i++) { cin >> a; if (ch) { if (ans >= -a) { count += ans + a + 1; ans = -1; } else ans += a; ch = false; } else { if (ans <= -a) { count += -ans - a + 1; ans = 1; } else ans += a; ch = true; } } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A2 = list(map(int,input().split())) #print(A) def getSign(a): if a < 0: return -1 elif a == 0: return 0 else: return 1 counts = [] for j in range(2): A = list(A2) count = 0 sumN = A[0] beforeSign = getSign(A[0]) if j == 0: add = -A[j] - getSign(A[j]) A[j] += add count += abs(add) for i in range(1,N): sumN += A[i] #print("be",i,sumN,A[i],count) if 0 <= beforeSign * sumN: add = -sumN - beforeSign A[i] += add sumN += add count += abs(add) beforeSign = getSign(sumN) #print("af",i,sumN,A[i],count) counts.append(count) print(min(counts))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long N; cin >> N; long a[100001]; for (long i = 0; i < N; i++) { cin >> a[i]; } long total = a[0]; long ops = 0; if (total == 0) { ops++; if (a[1] > 0) { total = -1; } else { total = 1; } } for (long i = 1; i < N; i++) { if (total > 0 && (total + a[i]) >= 0) { ops += a[i] + total + 1; total = -1; } else if (total < 0 && (total + a[i]) <= 0) { ops += -(a[i] + total) + 1; total = 1; } else { total += a[i]; } } printf("%d\n", ops); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <iostream> #include <string> #include <vector> #include <numeric> #include <queue> #include <unordered_map> #include <algorithm> #include <cmath> #include <iomanip> #include <sstream> #include <stack> #include <map> #include <set> #include <ios> #include <cctype> #include <cstdio> #include <functional> #include <cassert> #define REP(i,a) for(int i = 0;i < (a);++i) #define FOR(i,a,b) for(int i = (a);i < (b); ++i) #define FORR(i,a,b) for(int i = (a) - 1;i >=(b);--i) #define ALL(obj) (obj).begin(),(obj).end() #define SIZE(obj) (int)(obj).sizeT() #define YESNO(cond,yes,no){cout <<((cond)?(yes):(no))<<endl; } #define SORT(list) sort(ALL((list))); #define RSORT(list) sort((list).rbegin(),(list).rend()) #define ASSERT(cond,mes) assert(cond && mes) using namespace std; using ll = long long; constexpr int MOD = 1'000'000'007; constexpr int INF = 1'050'000'000; template<typename T> T round_up(const T& a, const T& b) { return (a + (b - 1)) / b; } template <typename T1, typename T2> istream& operator>>(istream& is, pair<T1, T2>& p) { is >> p.first >> p.second; return is; } template <typename T1, typename T2> ostream& operator<<(ostream& os, pair<T1, T2>& p) { os << p.first << p.second; return os; } template <typename T> istream& operator>>(istream& is, vector<T>& v) { REP(i, (int)v.size())is >> v[i]; return is; } template <typename T> ostream& operator<<(ostream& os, vector<T>& v) { REP(i, (int)v.size())os << v[i] << endl; return os; } template <typename T> T clamp(T& n, T a, T b) { if (n < a)n = a; if (n > b)n = b; return n; } template <typename T> static T GCD(T u, T v) { T r; while (v != 0) { r = u % v; u = v; v = r; } return u; } template <typename T> static T LCM(T u, T v) { return u / GCD(u, v) * v; } template <typename T> static int sign(T t) { if (t > 0)return 1; else if (t < 0)return -1; else return 0; } int main() { cin.tie(0); ios::sync_with_stdio(false); std::cout << fixed << setprecision(20); int N; cin >> N; vector<int>A(N); cin >> A; int cnt = 0; int sum = A[0]; FOR(i, 1, N) { int next = sum + A[i]; if (sign(next) == 0 || sign(next) == sign(sum)) { cnt += abs(next) + 1; next = -sign(sum); } sum = next; } sum = -sign(A[0]); int cnt2 = A[0] + 1; FOR(i, 1, N) { int next = sum + A[i]; if (sign(next) == 0 || sign(next) == sign(sum)) { cnt2 += abs(next) + 1; next = -sign(sum); } sum = next; } cout << min(cnt, cnt2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; long long int sum = 0, in, ans = 0; cin >> n >> sum; for (int i = 1; i < n; i++) { cin >> in; if (sum * in < 0) { sum += in; continue; } ans += abs(sum) + abs(in) + 1; if (sum < 0) { sum = 1; } else { sum = -1; } } if (sum == 0) ans++; cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) if n == 1: print(0) cnt = 0 sum = [0]*n sum[0] = a[0] for i in range(1,n): sum[i] = sum[i-1]+a[i] if sum[i]*sum[i-1]<0: continue elif sum[i-1]*a[i]<0: cnt += abs(sum[i-1])-abs(a[i])+1 sum[i] = -(sum[i-1]//abs(sum[i-1])) else: cnt += abs(sum[i-1])+abs(a[i])+1 sum[i] = -(sum[i-1]//abs(sum[i-1])) print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { int N; cin >> N; vector<ll> A(N); for (int i = 0; i < N; i++) cin >> A[i]; ll ret = 0; ll sum = A[0]; for (int i = 1; i < N; i++) { ll after = sum + A[i]; if (after * sum < 0) { sum = after; } else { ret += abs(after) + 1; if (sum > 0) sum = -1; else sum = 1; } } cout << ret << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) #マイナススタート now = 0 count = 0 for i,j in enumerate(a): now += j if i%2 == 0: if now >= 0: count += abs(now)+1 now = -1 else: if now < 0: count += abs(now)+1 now = 1 #プラススタート now = 0 count2 = 0 for i,j in enumerate(a): now += j if i%2 == 0: if now < 0: count2 += abs(now)+1 now = 1 else: if now >= 0: count2 += abs(now)+1 now = -1 print(min(count,count2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { @SuppressWarnings("resource") public static void main(String args[]) { Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); int a[]=new int[n]; for(int i=0;i<n;i++) { a[i]=scanner.nextInt(); } int r[]=new int[n]; r[0]=a[0]; int cnt1=0; if(r[0]>=0) { cnt1+=Math.abs(-1-r[0]); r[0]=-1; } for(int i=1;i<n;i++) { r[i]=r[i-1]+a[i]; if(i%2==1&&r[i]<=0) { cnt1+=Math.abs(1-r[i-1]-a[i]); r[i]=1; } if(i%2==0&&r[i]>=0) { cnt1+=Math.abs(-1-r[i-1]-a[i]); r[i]=-1; } } r=new int[n]; r[0]=a[0]; int cnt2=0; if(r[0]<=0) { cnt2+=Math.abs(1-r[0]); r[0]=1; } for(int i=1;i<n;i++) { r[i]=r[i-1]+a[i]; if(i%2==1&&r[i]>=0) { cnt2+=Math.abs(-1-r[i-1]-a[i]); r[i]=-1; } if(i%2==0&&r[i]<=0) { cnt2+=Math.abs(1-r[i-1]-a[i]); r[i]=1; } } System.out.println(Math.min(cnt1, cnt2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { long long int n; cin >> n; vector<long long int> a; for (int i = 0; i < (n); i++) { cin >> a[i]; } long long int oddcount = 0, evencount = 0; long long int oddsum = 0, evensum = 0; bool oddplus = true, evenplus = false; for (int i = 0; i < (n); i++) { oddsum += a[i]; evensum += a[i]; if (oddplus && oddsum <= 0) { oddcount += 1 - oddsum; oddsum = 1; } else if (!oddplus && oddsum >= 0) { oddcount += 1 + oddsum; oddsum = -1; } if (evenplus && evensum <= 0) { evencount += 1 - evensum; evensum = 1; } else if (!evenplus && evensum >= 0) { evencount += 1 + evensum; evensum = -1; } oddplus = !oddplus; evenplus = !evenplus; } cout << fmin(oddcount, evencount) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 1e9; const long long LINF = 1e18; const double EPS = 1e-9; const double PI = M_PI; const int dx[4] = {1, 0, -1, 0}; const int dy[4] = {0, 1, 0, -1}; long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } long long lcm(long long a, long long b) { return a / gcd(a, b) * b; } void yes() { cout << "Yes" << endl; } void no() { cout << "No" << endl; } int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; vector<long long> a(n); for (long long(i) = 0; (i) < (long long)(n); i++) { cin >> a[i]; } vector<long long> sum(n); sum[0] = a[0]; long long ans = 0; if (sum[0] == 0) { ans++; } for (long long(i) = 1; (i) < (long long)n; i++) { if (sum[i - 1] == 0 && a[i] == 0) { ans += 2; } sum[i] = sum[i - 1] + a[i]; if (sum[i] * sum[i - 1] < 0) { continue; } else if (sum[i] * sum[i - 1] > 0) { if (sum[i] > 0 && sum[i - 1] > 0) { ans += sum[i] + 1; sum[i] = -1; } else { ans += -sum[i] + 1; sum[i] = 1; } } else { ans++; if (sum[i - 1] > 0) { sum[i] = -1; } else { sum[i] = 1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys input = sys.stdin.readline N = int(input()) a = list(map(int, input().split())) ans1, ans2 = 0, 0 f = 0 f += a[0] if f <= 0: f = 1 ans1 += 1 - a[0] for i in range(1, N): if f * (f + a[i]) < 0: f += a[i] continue ans1 += abs(f + a[i]) + 1 if f > 0: f = -1 else: f = 1 f = 0 f += a[0] if f >= 0: f = -1 ans2 += 1 - a[i] for i in range(1, N): if f * (f + a[i]) < 0: f += a[i] continue ans2 += abs(f + a[i]) + 1 if f > 0: f = -1 else: f = 1 print(min(ans1, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("-O3") using namespace std; void _main(); int main() { cin.tie(0); ios::sync_with_stdio(false); _main(); } const int inf = INT_MAX / 2; const long long infl = 1LL << 60; template <class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template <class T> bool chmin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } enum PosiNega { POSITIVE = 0, NEGATIVE = 1 }; int solve(int N, int *a, PosiNega odd_posinega) { int ans = 0; int sum = 0; PosiNega posi_nega = odd_posinega; for (int i = 0; i < N; i++) { if (POSITIVE == posi_nega) { sum += a[i]; if (0 >= sum) { ans += 1 - sum; sum = 1; } posi_nega = NEGATIVE; } else { sum += a[i]; if (0 <= sum) { ans += 1 + sum; sum = -1; } posi_nega = POSITIVE; } } return ans; } void _main() { int N; cin >> N; int a[N]; for (int i = 0; i < N; i++) cin >> a[i]; int candidate1 = solve(N, a, POSITIVE); int candidate2 = solve(N, a, NEGATIVE); int ans = (candidate1 < candidate2) ? candidate1 : candidate2; cout << ans << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
object Main { def main(args: Array[String]): Unit = { solve } def solve(): Unit = { val sc = new java.util.Scanner(System.in) val n = sc.nextInt sc.nextLine val a = sc.nextLine.split(" ").map(_.toInt).toList var prevSum = a(0) var opeCount = 0 for (i <- 1 until n) { val currSum = prevSum + a(i) if (prevSum < 0 && currSum < 0) { opeCount += math.abs(currSum) + 1 prevSum = 1 } else if (prevSum > 0 && currSum > 0) { opeCount += math.abs(currSum) + 1 prevSum = -1 } else { if (currSum == 0) { opeCount += 1 if (prevSum < 0) { prevSum = 1 } else { prevSum = -1 } } else { prevSum = prevSum + a(i) } } } println(opeCount) } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 10; long long s[maxn]; long long ans[maxn]; int main() { int n, j; cin >> n; long long sum = 0; for (int i = 1; i <= n; i++) { cin >> s[i]; } if (s[0]) { for (int i = 1; i < n; i++) { ans[i] = ans[i - 1] + s[i]; if (ans[i] > 0) { if (s[i + 1] >= 0) { sum += (s[i + 1] + ans[i] + 1); s[i + 1] = -(ans[i] + 1); } else { if (abs(s[i + 1]) > ans[i]) { } else { sum += (s[i + 1] + ans[i] + 1); s[i + 1] = -(ans[i] + 1); } } } else if (ans[i] < 0) { if (s[i + 1] > 0) { if (abs(ans[i]) < s[i + 1]) { } else { sum += (1 - ans[i] - s[i + 1]); s[i + 1] = -ans[i] + 1; } } else { sum += (1 - ans[i] - s[i + 1]); s[i + 1] = -ans[i] + 1; } } } cout << sum << endl; } else if (!s[0]) { sum = 0; long long anss = 0; ans[1] = 1; s[2] = -2; sum += 3; for (int i = 2; i < n; i++) { ans[i] = ans[i - 1] + s[i]; if (ans[i] > 0) { if (s[i + 1] >= 0) { sum += (s[i + 1] + ans[i] + 1); s[i + 1] = -(ans[i] + 1); } else { if (abs(s[i + 1]) > ans[i]) { } else { sum += (s[i + 1] + ans[i] + 1); s[i + 1] = -(ans[i] + 1); } } } else if (ans[i] < 0) { if (s[i + 1] > 0) { if (abs(ans[i]) < s[i + 1]) { } else { sum += (1 - ans[i] - s[i + 1]); s[i + 1] = -ans[i] + 1; } } else { sum += (1 - ans[i] - s[i + 1]); s[i + 1] = -ans[i] + 1; } } } ans[1] = -1; s[2] = 2; anss += 3; for (int i = 2; i < n; i++) { ans[i] = ans[i - 1] + s[i]; if (ans[i] > 0) { if (s[i + 1] >= 0) { anss += (s[i + 1] + ans[i] + 1); s[i + 1] = -(ans[i] + 1); } else { if (abs(s[i + 1]) > ans[i]) { } else { anss += (s[i + 1] + ans[i] + 1); s[i + 1] = -(ans[i] + 1); } } } else if (ans[i] < 0) { if (s[i + 1] > 0) { if (abs(ans[i]) < s[i + 1]) { } else { anss += (1 - ans[i] - s[i + 1]); s[i + 1] = -ans[i] + 1; } } else { anss += (1 - ans[i] - s[i + 1]); s[i + 1] = -ans[i] + 1; } } } cout << min(anss, sum) << endl; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<bits/stdc++.h> using namespace std; #define rep(i,n) for(int i=0;i<n;i++) #define REP(i,s,n) for(int i=(s);i<=(n);i++) #define repr(i,n) for(int i=n-1;i>=0;i--) #define REPR(i,s,n) for(int i=(s);i>=(n);i--) #define all(a) (a).begin(),(a).end() #define rall(a) (a).rbegin(),(a).rend() #define Eunique(v) v.erase(unique(all(v)),v.end()) #define Eback(s) s.erase(s.end()-1,s.end()) #define rev(v) reverse(all(v)) #define minvec(v) *min_element(all(v)) #define maxvec(v) *max_element(all(v)) #define sumvec(v) accumulate(all(v),0) #define mapmax(v) v.rbegin()->first #define mapmin(v) v.begin()->first #define pb push_back #define pf push_front #define mod 1000000007 #define m_p make_pair #define DOUBLE fixed << setprecision(15) #define OK puts("OK") #define OK1 puts("OK1") #define OK2 puts("OK2") #define SIZE(s) (int)s.size() #define INF ((1LL<<62)-(1LL<<31)) #define zero(x,n) setw(x) << setfill('0') << n typedef long long ll; typedef vector<int> vi; typedef vector<long long> vll; typedef vector<double> vd; typedef vector<char> vc; typedef vector<string> vs; typedef vector<vi> vvi; typedef vector<vll> vvll; typedef pair<ll,ll> pll; typedef pair<int,int> pii; typedef vector<pair<int,int>> vpii; typedef vector<pair<ll,ll>> vpll; const double pi = acos(-1.0); template<class A, class B> ostream& operator<<(ostream& ost, const pair<A, B>&p) { ost << "{" << p.first << ", " << p.second << "} "; return ost; } template<class T> ostream& operator<<(ostream& ost, const vector<T>&v) { ost << "{"; for (int i = 0; i<(int)v.size(); i++) { if (i)ost << " "; ost << v[i]; } ost << "} \n"; return ost; } template<class A, class B> ostream& operator<<(ostream& ost, const map<A, B>&v) { ost << "{"; for (auto p:v) { ost << "{" << p.first << ", " << p.second << "} "; } ost << "} "; return ost; } template<class T> inline bool chmax(T& a, T b){if(a<b){a=b;return true;} return false;} template<class T> inline bool chmin(T& a, T b){if(a>b){a=b;return true;} return false;} ll gcd(ll x, ll y) {return __gcd(x,y);} ll lcm(ll x, ll y) {return x/__gcd(x,y)*y;} int main() { ll n,sum1=0,sum2=0; cin >> n; vll a(n); rep(i,n) cin >> a[i]; vll b=a; for(ll i=0;i<n;i++){ if(i%2){ if(a[i]>=0){ sum1+=a[i]+1; a[i]-=a[i]+1; } } else{ if(a[i]<=0){ sum1+=1-a[i]; a[i]+=1-a[i]; } } if(n!=n-1) a[i+1]+=a[i]; } for(ll i=0;i<n;i++){ if(i%2==0){ if(b[i]>=0){ sum2+=b[i]+1; b[i]-=b[i]+1; } } else{ if(b[i]<=0){ sum2+=1-b[i]; b[i]+=1-b[i]; } } if(n!=n-1) b[i+1]+=b[i]; } cout << min(sum1,sum2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long INF = 1e12; vector<long long> v; vector<long long> sum; int n; long long add(long long idx, long long minus_max, long long plus_min, long long flag) { if (idx == 0) { if (minus_max >= 0) return minus_max + 1; else if (plus_min <= 0) return -plus_min + 1; return 0; } else if (flag == 0) { long long change = max(0LL, sum[idx - 1] - (plus_min - 2)); if (idx == n - 1) { return change + add(idx - 1, sum[idx - 1], plus_min + change, 1LL); } return change + add(idx - 1, max(sum[idx - 1], minus_max + change), plus_min + change, 1LL); } else { long long change = max(0LL, (minus_max + 2) - sum[idx - 1]); if (idx == n - 1) { return change + add(idx - 1, minus_max - change, sum[idx - 1], 0LL); } return change + add(idx - 1, minus_max - change, min(sum[idx - 1], plus_min - change), 0LL); } } int main(void) { cin >> n; v.resize(n); sum.resize(n); for (int i = 0; i < (n); i++) cin >> v[i]; for (int i = 0; i < (n); i++) { if (i == 0) sum[i] = v[i]; else sum[i] = v[i] + sum[i - 1]; } long long ans = INF; ans = min(ans, add(n - 1, sum[n - 1], sum[n - 1], 0LL)); ans = min(ans, add(n - 1, sum[n - 1], sum[n - 1], 1LL)); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = int(input()) a = np.array(list(map(int, input().split()))) ans = 0 sum_list1 = np.zeros(n) to_minus1 = np.zeros(n) to_plus1 = np.zeros(n) s = 0 for i in range(n): s += a[i] sum_list1[i] += s to_minus1[i] = sum_list1[i] + 1 to_plus1[i] = sum_list1[i] - 1 def check(sum_list, to_minus, to_plus, t, ans): for i in range(n): if (i+t) % 2 == 0: if to_minus[i] <= 0: continue else: hiku = to_minus[i] to_minus[i::] -= hiku to_plus[i::] -= hiku ans += abs(hiku) else: if to_plus[i] >= 0: continue else: tasu = abs(to_plus[i]) to_minus[i::] += tasu to_plus[i::] += tasu ans += abs(tasu) return ans t = np.copy(to_minus1) u = np.copy(to_plus1) ans1 = check(sum_list1, to_minus1, to_plus1, 0, 0) ans2 = check(sum_list1, t, u, 1, 0) print(int(min(ans1, ans2)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1}; const int MAX_N = int(1e5); long long n, a[MAX_N], dp[MAX_N]; void solve() { long long sum_diff = 0, ans = 0; for (long long i = 0; i < (long long)(n - 1); i++) { long long diff = 0; dp[i + 1] += sum_diff; if (dp[i] * dp[i + 1] > 0) { if (dp[i + 1] > 0) { diff = -1 - dp[i + 1]; sum_diff += diff; dp[i + 1] = -1; } else { diff = 1 - dp[i + 1]; sum_diff += diff; dp[i + 1] = 1; } } if (dp[i + 1] == 0) { if (dp[i] > 0) { sum_diff++, diff = 1; dp[i + 1] = 1; } else { sum_diff--, diff = -1; dp[i + 1] = -1; } } ans += abs(diff); } cout << ans << endl; } int main() { cin >> n; for (long long i = 0; i < (long long)(n); i++) { cin >> a[i]; if (i == 0) dp[0] = a[0]; else dp[i] = dp[i - 1] + a[i]; } solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; if (scanf("%d", &n) < 1) return 0; int tmp; int sm = 0; int cnt = 0; for (int i = 0; i < n; i++) { if (scanf("%d", &tmp) < 1) return 0; if ((0 <= sm + tmp) && (0 < sm)) { cnt = cnt + (1 + sm + tmp); sm = -1; } else if ((sm + tmp <= 0) && (sm < 0)) { cnt = cnt + (1 - sm - tmp); sm = 1; } else sm = sm + tmp; } printf("%d\n", cnt); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; vector<long long> inp; long long cnt(bool oddPos) { long long ret = 0; long long sum = 0; bool odd = true; for (long long i : inp) { sum += i; if ((sum <= 0) == (odd == oddPos)) { ret += (abs(sum) + 1); sum = (odd == oddPos) ? 1 : -1; } odd = !odd; } return ret; } int main() { long long n; cin >> n; for (long long i = 0; i < n; i++) { long long buf; cin >> buf; inp.push_back(buf); } cout << min(cnt(false), cnt(true)) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; cin >> n; long long a[n]; for (int(i) = 0; (i) < (n); (i)++) cin >> a[i]; long long ans1 = 0, ans2 = 0, ans3 = 0, ans4 = 0; long long now = a[0]; for (int(i) = 0; (i) < (n - 1); (i)++) { if (i == 0 && now == 0) { now = -1; ans1 += 1; } if ((now + a[i + 1]) * now < 0) { now += a[i + 1]; continue; } else { if (now < 0) { ans1 += (1 - now) - a[i + 1]; now = 1; } else { ans1 += a[i + 1] + (now + 1); now = -1; } } } now = a[0]; for (int(i) = 0; (i) < (n - 1); (i)++) { if (i == 0 && now == 0) { now = 1; ans2 += 1; } if ((now + a[i + 1]) * now < 0) { now += a[i + 1]; continue; } else { if (now < 0) { ans2 += (1 - now) - a[i + 1]; now = 1; } else { ans2 += a[i + 1] + (now + 1); now = -1; } } } now = a[0]; for (int(i) = 0; (i) < (n - 1); (i)++) { if (i == 0 && now >= 0) { now = -1; ans3 += 1 + now; } if ((now + a[i + 1]) * now < 0) { now += a[i + 1]; continue; } else { if (now < 0) { ans3 += (1 - now) - a[i + 1]; now = 1; } else { ans3 += a[i + 1] + (now + 1); now = -1; } } } now = a[0]; for (int(i) = 0; (i) < (n - 1); (i)++) { if (i == 0 && now <= 0) { now = 1; ans4 += 1 - now; } if ((now + a[i + 1]) * now < 0) { now += a[i + 1]; continue; } else { if (now < 0) { ans4 += (1 - now) - a[i + 1]; now = 1; } else { ans4 += a[i + 1] + (now + 1); now = -1; } } } cout << min(min(ans1, ans2), min(ans3, ans4)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Pradyumn Agrawal coderbond007 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastReader in = new FastReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, FastReader in, PrintWriter out) { int n = in.nextInt(); int[] a = in.nextIntArray(n); long[] sum = new long[n]; long ret = 0; for (int i = 0; i < n; i++) { sum[i] += a[i]; if (i == 0) { if (sum[i] == 0) { if (i + 1 < n) { if (a[i + 1] > 0) { a[i]--; sum[i]--; ret++; } else { a[i]++; sum[i]++; ret++; } } } } else { sum[i] += sum[i - 1]; if (sum[i] > 0 && sum[i - 1] > 0) { ret += sum[i] + 1; sum[i] = -1; } else if (sum[i] < 0 && sum[i - 1] < 0) { ret += -sum[i] + 1; sum[i] = 1; } else if (sum[i] == 0) { if (sum[i - 1] > 0) { ret++; sum[i]--; } else { sum[i]++; ret++; } } } } out.println(ret); } } static class FastReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int pnumChars; private FastReader.SpaceCharFilter filter; public FastReader(InputStream stream) { this.stream = stream; } public int read() { if (pnumChars == -1) { throw new InputMismatchException(); } if (curChar >= pnumChars) { curChar = 0; try { pnumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (pnumChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c == ',') { c = read(); } if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int[] array = new int[n]; for (int i = 0; i < n; i++) { array[i] = nextInt(); } return array; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; cin >> n; vector<long long> a(n); cin >> a[0]; for (int i = 1; i < n; i++) { cin >> a[i]; a[i] += a[i - 1]; } long long ans1 = 0, def1 = 0; if (a[0] == 0) { ans1++; def1++; } for (int i = 1; i < n; i++) { if (i % 2 == 0 && a[i] + def1 <= 0) { ans1 += 1 - (a[i] + def1); def1 += 1 - (a[i] + def1); } else if (i % 2 == 1 && a[i] + def1 >= 0) { ans1 += a[i] + def1 + 1; def1 -= a[i] + def1 + 1; } } long long ans2 = 0, def2 = 0; if (a[0] == 0) { ans2++; def2--; } for (int i = 1; i < n; i++) { if (i % 2 == 1 && a[i] + def2 <= 0) { ans2 += 1 - (a[i] + def2); def2 += 1 - (a[i] + def2); } else if (i % 2 == 0 && a[i] + def2 >= 0) { ans2 += a[i] + def2 + 1; def2 -= a[i] + def2 + 1; } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = int(input()) a = list(map(int,input().split())) arr = np.array(a) # 奇数がプラス、偶数がマイナス cost1 = 0 cum = arr.cumsum() for i in range(n): tmp = abs(cum[i]) + 1 if i%2==1 and cum[i]<=0: cost1 += tmp ; cum[i:] += tmp if i%2==0 and cum[i]>=0: cost1 += tmp ; cum[i:] -= tmp # 奇数がマイナス、偶数がプラス cost2 = 0 cum = arr.cumsum() for i in range(n): tmp = abs(cum[i]) + 1 if i%2==1 and cum[i]>=0: cost2 += tmp ; cum[i:] -= tmp if i%2==0 and cum[i]<=0: cost2 += tmp ; cum[i:] += tmp ans = min(cost1, cost2) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; constexpr long long MOD = 1e9 + 7; long long dx[8] = {1, 0, -1, 0, 1, 1, -1, -1}; long long dy[8] = {0, 1, 0, -1, 1, -1, 1, -1}; long long A, B, C, D, E, F, G, H, N, M, L, K, P, Q, R, W, X, Y, Z; string S, T; long long ans = 0; template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (T &x : vec) is >> x; return is; } signed main() { cin >> N; vector<long long> a(N); cin >> a; for (long long i = 0; i < (long long)(N - 1); i++) { a[i + 1] = a[i] + a[i + 1]; } if (a[0] < 0) { for (long long i = 0; i < (long long)(N); i++) a[i] *= -1; }; long long base = 0; if (a[0] == 0) base++; for (long long i = 0; i < (long long)(N); i++) { if (i == 0) continue; if (i & 1) { long long tmp = (a[i] + base) - (-1); if (tmp > 0) { ans += tmp; base -= tmp; } } else { long long tmp = 1 - (a[i] + base); if (tmp > 0) { ans += tmp; base += tmp; } } } long long hoge = ans; ans = 0; for (long long i = 0; i < (long long)(N); i++) a[i] *= -1; ; base = 1 - a[0]; for (long long i = 0; i < (long long)(N); i++) { if (i == 0) continue; if (i & 1) { long long tmp = (a[i] + base) - (-1); if (tmp > 0) { ans += tmp; base -= tmp; } } else { long long tmp = 1 - (a[i] + base); if (tmp > 0) { ans += tmp; base += tmp; } } }; ans = min((long long)hoge, ans); cout << ans << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python2
n = int(raw_input()) A = map(int, raw_input().split()) ps = A[0] op = 0 if ps == 0 and A[1] >= 0: ps = -1 op += 1 elif ps == 0 and A[1] < 0: ps = 1 op += 1 for i in range(1, n): if ps <= 0 and ps + A[i] <= 0: op += abs(1-(ps+A[i])) ps = 1 elif ps >= 0 and ps + A[i] >= 0: op += abs(-1 - (ps+A[i])) ps = -1 else: ps = ps + A[i] print op
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; int a[100000]; void solve() { int tmp1 = 0, tmp2 = 0; int sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0) { if (sum <= 0) { tmp1 += -sum + 1; sum = 1; } } else { if (sum >= 0) { tmp1 += sum + 1; sum = -1; } } } sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 1) { if (sum <= 0) { tmp2 += -sum + 1; sum = 1; } } else { if (sum >= 0) { tmp2 += sum + 1; sum = -1; } } } int ans = min(tmp1, tmp2); cout << ans << endl; } int main() { cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; solve(); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) b = [int(x) for x in input().split()] a = list() temp = 0 count1 = 0 count2 = 0 a = b.copy() if a[0] == 0: a[0] = 1 count1 = 1 sum = a[0] for i in range(1, n): if abs(a[i]) <= abs(sum) or a[i] * sum >= 0: if sum > 0: temp = -1 * abs(sum) - 1 count1 += abs(temp - a[i]) else: temp = abs(sum) + 1 count1 += abs(temp - a[i]) a[i] = temp sum += a[i] a = b.copy() count2 = abs(a[0]) + 1 if a[0] >= 0: a[0] = -1 else: a[0] = 1 sum = a[0] for i in range(1, n): if abs(a[i]) <= abs(sum) or a[i] * sum >= 0: count2 += abs(sum - a[i]) + 1 if sum > 0: temp = -1 * abs(sum) - 1 count2 += abs(temp - a[i]) else: temp = abs(sum) + 1 count2 += abs(temp - a[i]) a[i] = temp sum += a[i] print(min(count1, count2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<signed long long> a(n); for (int i = 0; i < n; ++i) { cin >> a[i]; } signed long long ans = 0; if (a[0] == 0) { if (a[1] <= 0) { ++ans; a[0] = 1; } else { ++ans; a[0] = -1; } } if (a[0] > 0) { signed long long sum = a[0]; for (int i = 1; i < n; ++i) { if (i % 2 == 1) { if (sum + a[i] < 0) { sum += a[i]; } else { ans += sum + a[i] + 1; sum = -1; } } else { if (sum + a[i] > 0) { sum += a[i]; } else { ans += abs(sum + a[i] - 1); sum = 1; } } } } else { signed long long sum = a[0]; for (int i = 1; i < n; ++i) { if (i % 2 == 1) { if (sum + a[i] > 0) { sum += a[i]; } else { ans += abs(sum + a[i] - 1); sum = 1; } } else { if (sum + a[i] < 0) { sum += a[i]; } else { ans += sum + a[i] + 1; sum = -1; } } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = int(input()) a = list(map(int,input().split())) b = list(a) sum = 0 p = 0 cnt_g=0 cnt_k=0 if a[0]<0: for i in range(n): sum += a[i] if i>0: p = a[i] if (sum - a[i]) > 0: if sum >= 0: a[i] = -(sum-a[i])-1 cnt_g += np.abs(p-a[i]) sum = -1 else: if sum <= 0: a[i] = -(sum-a[i])+1 cnt_g += np.abs(p-a[i]) sum = 1 sum = 0 cnt_k = -b[0]+1 sum = 1 for i in range(1,n): sum += b[i] p = b[i] if (sum - b[i]) > 0: if sum >= 0: b[i] = -(sum-b[i])-1 cnt_k += np.abs(p-b[i]) sum = -1 else: if sum <= 0: b[i] = -(sum-b[i])+1 cnt_k += np.abs(p-b[i]) sum = 1 else: cnt_g = a[0]+1 sum = -1 for i in range(1,n): sum += a[i] p = a[i] if (sum - a[i]) > 0: if sum >= 0: a[i] = -(sum-a[i])-1 cnt_g += np.abs(p-a[i]) sum = -1 else: if sum <= 0: a[i] = -(sum-a[i])+1 cnt_g += np.abs(p-a[i]) sum = 1 sum = 0 for i in range(n): sum += b[i] if i>0: p = b[i] if (sum - b[i]) > 0: if sum >= 0: b[i] = -(sum-b[i])-1 cnt_k += np.abs(p-b[i]) sum = -1 else: if sum <= 0: b[i] = -(sum-b[i])+1 cnt_k += np.abs(p-b[i]) sum = 1 if cnt_k<cnt_g: print (cnt_k) else : print (cnt_g)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; bool cmp(pair<long long, long long> a, pair<long long, long long> b) { if (a.first == b.first) return a.second < b.second; else return a.first < b.first; } long long exp(long long a, long long b) { long long ans = 1; while (b != 0) { if (b % 2 == 1) ans = ans * a; a = a * a; b /= 2; } return ans; } long long arr[(long long)(1e5 + 5)]; long long tmp[(long long)(1e5 + 5)]; int main() { ios_base::sync_with_stdio; cin.tie(NULL); long long n; cin >> n; for (long long i = (long long)0; i < (long long)n; i++) { cin >> arr[i]; tmp[i] = arr[i]; } long long ans = 0; long long ans2 = 0; if (arr[0] == 0) { ans++; arr[0] = 1; } long long sum = arr[0]; for (long long i = (long long)1; i < (long long)n; i++) { if (sum + arr[i] == 0) { long long s1 = abs(sum) / sum; if (s1 == 1) { ans += 1; arr[i] += -1; } else { ans += 1; arr[i] += 1; } } long long s1 = abs(sum) / sum; long long s2 = abs(sum + arr[i]) / (sum + arr[i]); if (s1 == s2) { if (s1 == 1) { ans += abs(-1 - sum - arr[i]); arr[i] += -1 - sum - arr[i]; } else { ans += 1 - sum - arr[i]; arr[i] += (1 - sum - arr[i]); } } sum += arr[i]; } for (long long i = (long long)0; i < (long long)n; i++) { arr[i] = tmp[i]; } if (arr[0] == 0) { ans2++; arr[0] = -1; } sum = arr[0]; for (long long i = (long long)1; i < (long long)n; i++) { if (sum + arr[i] == 0) { long long s1 = abs(sum) / sum; if (s1 == 1) { ans2 += 1; arr[i] += -1; } else { ans2 += 1; arr[i] += 1; } } long long s1 = abs(sum) / sum; long long s2 = abs(sum + arr[i]) / (sum + arr[i]); if (s1 == s2) { if (s1 == 1) { ans2 += abs(-1 - sum - arr[i]); arr[i] += -1 - sum - arr[i]; } else { ans2 += 1 - sum - arr[i]; arr[i] += (1 - sum - arr[i]); } } sum += arr[i]; } cout << min(ans2, ans) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys input = sys.stdin.readline def main(): n = int(input()) a_list = list(map(int, input().split())) a_sum = a_list[0] if a_list[0] > 0: sign = "plus" else: sign = "minus" ans1 = 0 for i in range(1, n): if sign == "plus": sign = "minus" if a_sum + a_list[i] == 0: ans1 += 1 a_sum = -1 elif a_sum + a_list[i] > 0: ans1 += a_sum + 1 + a_list[i] a_sum = -1 else: a_sum += a_list[i] elif sign == "minus": sign = "plus" if a_sum + a_list[i] == 0: ans1 += 1 a_sum = 1 elif a_sum + a_list[i] < 0: ans1 += -1 * a_sum + 1 + -1 * a_list[i] a_sum = 1 else: a_sum += a_list[i] ans2 = 0 for i in range(0, n): if sign == "plus": sign = "minus" if a_sum + a_list[i] == 0: ans2 += 1 a_sum = -1 elif a_sum + a_list[i] > 0: ans2 += a_sum + 1 + a_list[i] a_sum = -1 else: a_sum += a_list[i] elif sign == "minus": sign = "plus" if a_sum + a_list[i] == 0: ans2 += 1 a_sum = 1 elif a_sum + a_list[i] < 0: ans2 += -1 * a_sum + 1 + -1 * a_list[i] a_sum = 1 else: a_sum += a_list[i] print(min(ans1, ans2)) if __name__ == '__main__': main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def sign(number): if number < 0: return -1 elif number > 0: return 1 else: return 0 n = int(input()) a = list(map(int, input().split())) csum_lst = [0 for i in range(n)] csum_lst[0] = a[0] cnt = 0 for i in range(1, n): if a[i] == 0: new_a = -(csum_lst[i - 1] + 1 * sign(csum_lst[i - 1])) cnt += abs(new_a - a[i]) a[i] = new_a elif sign(csum_lst[i-1]) == sign(a[i]) or abs(csum_lst[i-1]) >= abs(a[i]): new_a = -(csum_lst[i-1]+1*sign(csum_lst[i-1])) cnt += abs(new_a-a[i]) a[i] = new_a csum_lst[i] = csum_lst[i-1] + a[i] print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def main(): n, *a = map(int, open(0).read().split()) def chk(a, t): ans = 0 x = 0 for i in a: x += i if t and x < 1: ans += 1 - x x = 1 elif t and x > -1: ans += x + 1 x = -1 t = not t return ans print(min(chk(a, True), chk(a, False))) if __name__ == '__main__': main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int calc(bool firstPositive, const int a[], int n) { bool positive = firstPositive; int cost = 0; long sum = 0; for (int i = 0; i < n; ++i) { int v = a[i]; bool sumpos = (sum + v) >= 0; if (sumpos != positive) { cost += abs(sum + a[i]) + 1; v = -(sum + v) + (positive ? -1 : 1); } if ((sum + v) == 0) { v += sumpos ? -1 : 1; ++cost; } sum += v; positive = !positive; } return cost; } int main(int argc, char *argv[]) { int n; std::cin >> n; int a[1 << 20]; for (int i = 0; i < n; ++i) { std::cin >> a[i]; } std::cout << std::min(calc(true, a, n), calc(false, a, n)) << std::endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; unsigned long long func(vector<long long int>& s, vector<int>& hugo, long long int k) { unsigned long long int ret = 0; for (int i = 1; i < n; i++) { if (s[i] == k) { if (hugo[i - 1] == 0) { hugo[i] = 1; ret++; k++; } else { hugo[i] = 0; ret++; k--; } } else if (s[i] > k) { if (hugo[i - 1] == 0) { hugo[i] = 1; ret += s[i] - k + 1; k += s[i] - k + 1; } else { hugo[i] = 0; } } else { if (hugo[i - 1] == 0) { hugo[i] = 1; } else { hugo[i] = 0; ret += k - s[i] + 1; k -= k - s[i] + 1; } } } return ret; } void solve() { cin >> n; vector<long long int> v(n), sum(n), sum2(n); for (int i = 0; i < n; i++) { cin >> v[i]; if (i == 0) sum[i] = v[i]; else sum[i] = sum[i - 1] + v[i]; } vector<int> hugo(n); sum2 = sum; unsigned long long int ans; if (sum[0] == 0) { vector<int> hugo2(n); hugo[0] = 0; ans = min(func(sum, hugo, -1), func(sum2, hugo2, 1)); } else if (sum[0] > 0) { hugo[0] = 0; ans = func(sum, hugo, 0); } else { hugo[0] = 1; ans = func(sum, hugo, 0); } cout << ans << endl; return; } int main() { solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n,a=int(input()),list(map(int,input().split()));ans=0 if a[0]==0: bol=True for i in range(1,n): if a[i-1]!=a[i]: bol=False if a[i]>0:a[0]=(1if i%2==0else-1) else:a[0]=(1if i%2!=0else-1) ans+=1;break if bol:print(n*2-1);exit() b=[a[0]];m=("+"if a[0]<0else"-") for i in range(1,n): while b[-1]*(b[-1]+a[i])>=0: ans+=1 a[i]+=eval(m+"1") b.append(b[-1]+a[i]) m=("+"if b[i]<0else"-") print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; vector<long long int> v; int solve(int first_pon) { long long int pon = first_pon, sum = 0, result = 0; for (int i = 0; (i) < (n); i++) { sum += v[i]; if (pon > 0 && sum >= 0) { result += sum + 1; sum = -1; } else if (pon < 0 && sum <= 0) { result += (-sum) + 1; sum = 1; } if (sum > 0) { pon = 1; } else { pon = -1; } } return result; } int main() { cin >> n; v = vector<long long int>(n); for (int i = 0; (i) < (n); i++) { cin >> v[i]; } cout << (long long int)min(solve(1), solve(-1)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int keta(int num){ int ans= 0 ; int rem; for (int i = 4; i >= 0 ; i--){ rem = pow(10,i); ans += (num / rem); num = num % rem; } return ans; } int main() { int n; cin >> n; vector<int64_t> ar(n); for(int i = 0; i < n; i++){ cin >> ar[i]; } int ans1, ans2 = 0; int cum = 0; //偶数が正の場合 for(int i = 0; i < n; i++){ int next = cum + ar[i]; if(i % 2 == 0){ if(next <= 0){ ans1 += abs(next - 1); cum = 1; }else{ cum = next; } }else{ if(next >= 0){ ans1 += abs(next + 1); cum = -1; }else{ cum = next; } } //偶数が負の場合 for(int i = 0; i < n; i++){ int next = cum + ar[i]; if(i % 2 == 0){ if(next >= 0){ ans2 += abs(next + 1); cum = -1; }else{ cum = next; } }else{ if(next <= 0){ ans2 += abs(next - 1); cum = 1; }else{ cum = next; } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<bits/stdc++.h> #define FF ios_base::sync_with_stdio(0);cin.tie(0) #define binary(value, size) cout << bitset<size>(value) << '\n' #define PI acos(-1.0) //3.1416(180 degree to radian) #define PIby2 asin(1) //(3.1416/2) for angle(90 degree to radian) #define eps 1e-67 #define pf printf #define sf scanf #define sz size() #define rr read #define ww write #define clr(arr) memset((arr),0,(sizeof(arr))) #define rep(i,a,b) for(long long int i=a;i<b;i++) #define repb(i,a,b) for(long long int i=a;i>=b;i--) #define repa(i,a,b,c) for(long long int i=a;i<b;i=i+c) #define reps(i,a,b,c) for(long long int i=a;i>b;i=i-c) #define asort(a) sort(a.begin(),a.end()) #define asort2(a,comp) sort(a.begin(),a.end(),comp) #define arev(a) reverse(a.begin(),a.end()) #define all(v) (v).begin(),(v).end() #define all2(v,a,b) (v).begin()+a,(v).end()-b #define F first #define S second #define pb push_back #define eb emplace_back #define pbb pop_back #define mp make_pair #define mt make_tuple #define BS(v,x) binary_search(v.begin(),v.end(),x) //return true /false #define LB(v,x) lower_bound(v.begin(),v.end(),x) //found and that value and not found than greater value pos #define UB(v,x) upper_bound(v.begin(),v.end(),x) //found and greater value pos && not found also greater pos #define convertlower(c) towlower(c) #define root(x) sqrt(x) #define power(a,n) pow(a,n) #define tu(c) towupper(c) #define sq(a) ((a)*(a)) #define cube(a) ((a)*(a)*(a)) #define mx 1000 #define MX 100000 #define mod 1000000007 #define INF 2000000000 #define N 10000000 #define Ceil(n) (long long int)ceil(n) #define Floor(n) (long long int)floor(n) #define deb(x) std::cout << #x << " = " << x << std::endl; #define out(ans) cout<<ans<<endl #define outs(ans) cout<<ans<<" "<<endl using namespace std; typedef string str; typedef long long int ll; typedef double lf; typedef long double llf; typedef unsigned long long int ull; typedef vector<int> vi; typedef vector<ll> vll; typedef pair<int,int> pi; typedef pair<ll,ll> pll; typedef vector<pll> vpll; typedef char ch; typedef map<ll,ll> mpl; int main() { ll tc; cin>>n; vll v; rep(i,0,n) { ll d; cin>>d; v.pb(d); } ll sign=1,sum=0,ans1=0,ans2=0; rep(i,0,n) { sum+=v[i]; if(sign*sum<=0) ans1+=labs(sign-sum),sum=sign; sign*=-1; } sign=-1,sum=0; rep(i,0,n) { sum+=v[i]; if(sign*sum<=0) ans2+=labs(sign-sum),sum=sign; sign*=-1; } cout<<min(ans1,ans2)<<endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAX_N = 300000; const unsigned long long mod = 1000000000 + 7; int main() { long long N; cin >> N; vector<long long> A(N); for (int i = 0; i < (int)N; ++i) { cin >> A[i]; } if (A[0] == 0) { long long S = 1; long long S_pre = 1; long long resA = 1; for (int i = 1; i < N; i++) { S += A[i]; if (S * S_pre >= 0) { if (S_pre > 0) { resA += (S + 1); S = -1; } else { resA += (1 - S); S = 1; } } S_pre = S; } S = -1; S_pre = -1; long long resB = 1; for (int i = 1; i < N; i++) { S += A[i]; if (S * S_pre >= 0) { if (S_pre > 0) { resB += (S + 1); S = -1; } else { resB += (1 - S); S = 1; } } S_pre = S; } long long res = min(resA, resB); cout << res << endl; } else { long long S = A[0]; long long S_pre = A[0]; long long res = 0; for (int i = 1; i < N; i++) { S += A[i]; if (S * S_pre >= 0) { if (S_pre > 0) { res += (S + 1); S = -1; } else { res += (1 - S); S = 1; } } S_pre = S; } cout << res << endl; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long int a[n], c = 0, d, sa[n], p = 0, k = 0; for (int i = 0; i < n; i++) { cin >> a[i]; k += a[i]; } c = a[0]; for (int i = 1; i < n; i++) { d = c + a[i]; if (c > 0) { while (d >= 0) { if (c != 1) { c--; continue; } else { d--; p++; } } } else if (c < 0) { while (d <= 0) { if (c != -1) { c++; continue; } else { d++; p++; } } } else if (c == 0) { if (k < 1) c--; else c++; } c = d; } cout << p << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int sum; int input; cin >> sum; int ans = 0; int reigai = 0; int ans1, ans2, sum1, sum2; if (sum == 0) { ans1 = 1; ans2 = 1; sum1 = 1; sum2 = -1; reigai = 1; } for (int i = 1; i < n; ++i) { cin >> input; if (sum * (sum + input) >= 0) { ans += abs(sum + input) + 1; if (sum < 0) sum = 1; else sum = -1; } else sum += input; if (reigai == 1) { if (sum1 * (sum1 + input) >= 0) { ans1 += abs(sum1 + input) + 1; if (sum1 < 0) sum1 = 1; else sum1 = -1; } else sum1 += input; if (sum2 * (sum2 + input) >= 0) { ans2 += abs(sum2 + input) + 1; if (sum2 < 0) sum2 = 1; else sum2 = -1; } else sum2 += input; } } if (reigai == 0) cout << ans << endl; else cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int, input().split())) cnt =0 sum_tmp=a[0] def check(a,i,cnt,sum_tmp): sum1=sum_tmp sum2 = sum_tmp+a[i] if sum1<0 and sum2 <=0: cnt += abs(sum2)+1 sum_tmp =1 elif sum1>0 and sum2 >=0: cnt += abs(sum2)+1 sum_tmp=-1 else: sum_tmp=sum2 return cnt,sum_tmp for i in range(1,n): cnt,sum_tmp=check(a,i,cnt,sum_tmp) print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
# main n = gets.to_i ary = gets.split(' ').map(&:to_i) sum = ary[0] cnt = 0 if ary[0] == 0 if ary[1] > 0 sum = -1 else sum = 1 end cnt = 1 end (1...n).each{ |i| if sum < 0 sum += ary[i] if sum <= 0 cnt += 1-sum sum = 1 end else sum += ary[i] if sum >= 0 cnt += sum+1 # sum-(-1) sum = -1 end end } puts cnt
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[100001]; for (int i = 0; i < n; ++i) cin >> a[i]; int cnt1 = 0; int cnt2 = 0; int sum = 0; for (int i = 0; i < n; ++i) { sum += a[i]; if (i % 2 == 0) { while (sum <= 0) { sum++; cnt1++; } } else { while (sum >= 0) { sum--; cnt1++; } } } sum = 0; for (int i = 0; i < n; ++i) { sum += a[i]; if (i % 2 == 1) { while (sum <= 0) { sum++; cnt2++; } } else { while (sum >= 0) { sum--; cnt2++; } } } cout << min(cnt1, cnt2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(x) for x in input().split()] ans = n * 1000000000 s = a[0] cnt = 0 for i in range(1,n): ns = s + a[i] if s * ns < 0: s = ns continue else: cnt += abs(ns)+1 s = -1 if ns > 0 else 1 ans = min(ans, cnt) s = -1 if a[0] > 0 else 1 cnt = abs(a[0])+1 for i in range(1,n): ns = s + a[i] if s * ns < 0: s = ns continue else: cnt += abs(ns)+1 s = -1 if ns > 0 else 1 ans = min(ans, cnt) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAX = 1e5 + 111; int n; int a[MAX]; long long calc(int id, long long sum) { long long ans = 0; for (int i = id; i < n; ++i) { long long cur = sum + a[i]; if (sum < 0 && cur > 0) { sum = cur; continue; } if (sum > 0 && cur < 0) { sum = cur; continue; } if (cur == 0) { if (sum < 0) cur = 1; else cur = -1; sum = cur; ans++; continue; } if (sum < 0) { ans += 1 - cur; cur = 1; } else { ans += cur + 1; cur = -1; } sum = cur; } return ans; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> n; int id = -1; for (int i = 0; i < n; ++i) { cin >> a[i]; if (a[i] != 0 && id == -1) id = i; } if (id == -1) { cout << 1 + (n - 1) * 2; return 0; } if (id != 0) { long long ans1 = calc(id, -1); long long ans2 = calc(id, 1); cout << min(ans1, ans2) + 1 + 2 * (id - 1); } else { long long ans1 = calc(1, a[0]); cout << ans1; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const int MGN = 8; const int ARY_SZ_MAX = 10000000; using namespace std; using ll = long long; using ull = unsigned long long; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vl = vector<ll>; using vvl = vector<vl>; using vd = vector<double>; using vs = vector<string>; using pii = pair<int, int>; using pll = pair<ll, ll>; using psi = pair<string, int>; int main() { cin.tie(0); ios::sync_with_stdio(false); int N; cin >> N; vl A(N); for (int i = int(0); i < int(N); ++i) cin >> A[i]; vl s(N); int ans = (INT_MAX / 2); int cost = 0; s[0] = A[0]; for (int i = int(1); i < int(N); ++i) { if (i % 2 == 0 && s[i - 1] <= 0) { cost += abs(s[i - 1]) + 1; s[i - 1] = 1; } else if (i % 2 == 1 && s[i - 1] >= 0) { cost += abs(s[i - 1]) + 1; s[i - 1] = -1; } s[i] = s[i - 1] + A[i]; } if (N % 2 == 0 && s[N - 1] <= 0) { cost += abs(s[N - 1]) + 1; s[N - 1] = 1; } else if (N % 2 == 1 && s[N - 1] >= 0) { cost += abs(s[N - 1]) + 1; s[N - 1] = -1; } ans = min(ans, cost); cost = 0; s[0] = A[0]; for (int i = int(1); i < int(N); ++i) { if (i % 2 == 0 && s[i - 1] >= 0) { cost += abs(s[i - 1]) + 1; s[i - 1] = -1; } else if (i % 2 == 1 && s[i - 1] <= 0) { cost += abs(s[i - 1]) + 1; s[i - 1] = 1; } s[i] = s[i - 1] + A[i]; } if (N % 2 == 0 && s[N - 1] >= 0) { cost += abs(s[N - 1]) + 1; s[N - 1] = -1; } else if (N % 2 == 1 && s[N - 1] <= 0) { cost += abs(s[N - 1]) + 1; s[N - 1] = 1; } ans = min(ans, cost); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n=gets.chomp.to_i a=gets.split.map(&:to_i) a.map!{|e| -e} if a[0]<0 s, m=a[0], 0 (1...n).each do |i| s+=a[i] if i%2==0 if s<=0 m+=(-s+1) s=1 end else if s>=0 m+=s+1 s=-1 end end end s, m2=-1, a[0]+1 (1...n).each do |i| s+=a[i] if i%2==0 if s>=0 m2+=s+1 s=1 end else if s<=0 m2+=(-s+1) s=-1 end end end puts [m, m2].min
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void solve() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } int ans1 = (a[0] > 0) ? 0 : -a[0] + 1; int sum = (a[0] > 0) ? a[0] : 1; for (int i = 1; i < n; i++) { if (sum * (sum + a[i]) < 0) { sum += a[i]; } else { ans1 += abs(sum + a[i]) + 1; sum = (sum > 0) ? -1 : 1; } } int ans2 = (a[0] < 0) ? 0 : -a[0] + 1; sum = (a[0] < 0) ? a[0] : -1; for (int i = 1; i < n; i++) { if (sum * (sum + a[i]) < 0) { sum += a[i]; } else { ans2 += abs(sum + a[i]) + 1; sum = (sum > 0) ? -1 : 1; } } cout << min(ans1, ans2) << endl; return; } int main(int argc, char const* argv[]) { solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long counter = 0; int a[100100], b[100100]; bool hugou = true; for (int i = 0; i < n; i++) { cin >> a[i]; } b[0] = a[0]; if (b[0] == 0) { counter++; b[0]++; hugou = true; } if (b[0] < 0) { hugou = false; } if (hugou) { for (int i = 1; i < n; i++) { b[i] = b[i - 1] + a[i]; if (i % 2 == 0) { if (b[i] < 1) { counter += 1 - b[i]; b[i] = 1; } } else { if (b[i] > -1) { counter += b[i] - (-1); b[i] = -1; } } } } else { for (int i = 1; i < n; i++) { b[i] = b[i - 1] + a[i]; if (i % 2 == 0) { if (b[i] > -1) { counter += b[i] - (-1); b[i] = -1; } } else { if (b[i] < 1) { counter += 1 - b[i]; b[i] = 1; } } } } cout << counter << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n + 1); for (int i = 1; i <= n; i++) cin >> a[i]; vector<int> a1; a1 = a; int sum1 = 0, ans1 = 0; for (int i = 1; i <= n; i++) { sum1 += a1[i]; if (i == 1 && sum1 <= 0) { int plus = 1 - sum1; sum1 += plus; ans1 += plus; continue; } if (i % 2 == 0 && sum1 >= 0) { int minus = 1 + sum1; sum1 -= minus; ans1 += minus; } else if (i % 2 == 1 && sum1 <= 0) { int plus = 1 - sum1; sum1 += plus; ans1 += plus; } } vector<int> a2; a2 = a; int sum2 = 0, ans2 = 0; for (int i = 1; i <= n; i++) { sum2 += a2[i]; if (i == 1 && sum2 >= 0) { int minus = 1 + sum2; sum2 -= minus; ans2 += minus; continue; } if (i % 2 == 0 && sum2 <= 0) { int plus = 1 - sum2; sum2 += plus; ans2 += plus; } else if (i % 2 == 1 && sum2 >= 0) { int minus = 1 + sum2; sum2 -= minus; ans2 += minus; } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; import java.util.Arrays; public class Main{ static int n; static int[] a; static final boolean DEBUG = false; public static void main(String[] args){ Scanner sc = new Scanner(System.in); n = sc.nextInt(); a = new int[n]; for(int i = 0; i < n; i++){ a[i] = sc.nextInt(); } int count = 0, count2 = 0; int sum = a[0]; int sum2 = a[0] < 0 ? 1 : -1; count2 = Math.abs(sum2 - a[0]); for(int i = 1; i < n; i++){ int val = a[i], val2 = a[i]; if(!((sum > 0 && sum + a[i] < 0) || (sum < 0 && sum + a[i] > 0))){ val = -sum + ((sum < 0) ? 1 : -1); count += Math.abs(val - a[i]); } if(!((sum2 > 0 && sum2 + a[i] < 0) || (sum2 < 0 && sum2 + a[i] > 0))){ val2 = -sum2 + ((sum2 < 0) ? 1 : -1); count2 += Math.abs(val2 - a[i]); } sum += val; sum2 += val2; } if(DEBUG){ System.out.println(Arrays.toString(a)); } System.out.println(Math.min(count, count2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); int[] a=new int[n]; for(int i=0;i<n;i++)a[i]=sc.nextInt(); int sum=0; int count=0; for(int i=0;i<n-1;i++){ sum+=a[i]; if(sum>0){ if(sum+a[i+1]>=0){ count+=sum+a[i+1]+1; a[i+1]-=sum+a[i+1]+1; } }else if(sum<0){ if(sum+a[i+1]<=0){ count+=sum+a[i+1]+1; a[i+1]+=sum+a[i+1]+1; } } } System.out.println(count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { ios::sync_with_stdio(false); std::cin.tie(nullptr); ll n; cin >> n; vector<ll> a(n); for (ll i = 0; i < n; i++) cin >> a[i]; ll sumeven = 0, sumodd = 0; for (ll i = 0; i < n; i++) { if (i % 2 == 0) sumodd += a[i]; else sumeven += a[i]; } cout << (abs(sumeven) < abs(sumodd) ? 0 : abs(abs(sumeven) - abs(sumodd)) + 1) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; const long long LINF = 1LL << 60; const int INF = 1 << 30; int main() { long long n, l; cin >> n; vector<long long> a(n); cin >> a[0]; for (long long i = 1; i < n; i++) { cin >> l; a[i] = a[i - 1] + l; } long long tmp = 0; long long count = 0; for (long long i = 1; i < n; i++) { if ((a[i] + tmp) * (a[i - 1] + tmp) >= 0) { if ((a[i] + tmp) <= 0) { count += abs(a[i] + tmp - 1); tmp -= (a[i] + tmp - 1); } else { count += abs(a[i] + tmp + 1); tmp -= (a[i] + tmp + 1); } } } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import qualified Data.ByteString.Char8 as C import Data.List main = C.interact $ put . sol . get get = unfoldr (C.readInt . C.dropWhile (==' ')) . last . C.lines put = C.pack . show sol (a:as) | a==0 = 2 + sol as | otherwise = fst $ foldl' f (0,a) as f (c,s) b | s*s'<0 = (c,s') | s>0 = (c+1+abs s',-1) | s<0 = (c+1+abs s',1) where s' = s+b
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) sum=[0,]*n sum[0]=a[0] zoubun=0 cnt=0 for i in range(1,n): sum[i]=sum[i-1]+a[i] if(sum[i]*sum[i-1]>=0): cnt+=abs(sum[i])+1 if sum[i]>=0: sum[i]=-1 else: sum[i]=1 print(sum) print(str(cnt))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main { static long ans; public static void main(String[] args) { Scanner sc = new Scanner(System.in); int N = sc.nextInt(); int [] num = new int [N]; long sum = 0; ans=0; for(int i=0; i<N; i++){ num[i] = sc.nextInt(); sum+=num[i]; if(i!=0)sum=function(i,num,sum); } long tmp = ans; ans = Math.abs(num[0])+1; if(num[0]>0){ sum = -1; }else{ sum = 1; } for(int i=1; i<N; i++){ sum+=num[i]; sum=function(i,num,sum); } ans = Math.min(tmp,ans); System.out.println(ans); } static long function(int i, int[]num, long sum){ int a = sign((sum-num[i])); int b = sign(sum); int t = a*b; if(t==0){ ans++; if(a>0){ return -1; }else{ return 1; } }else if(t<0){ return sum; }else{ ans+=(Math.abs(sum)+1); if(sum>0){ return -1; }else{ return 1; } } } static int sign(long A){ if(A>0){ return 1; }else if(A<0){ return -1; }else{ return 0; } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) ans = 0 key = a[0] if key == 0: flag = 1 a[0] = 1 ans += 1 elif a[0] > 0: flag = 1 else: flag = -1 dp = [0 for i in range(n)] dp[0] = a[0] for i in range(1, n): dp[i] = dp[i - 1] + a[i] if dp[i] == 0: dp[i] = flag * -1 ans += 1 elif flag == 1 and dp[i] > 0: ans += abs(-1 - dp[i]) dp[i] = -1 elif flag == -1 and dp[i] < 0: ans += abs(1 - dp[i]) dp[i] = 1 flag *= -1 ans1 = ans ans = 0 if key == 0: flag = -1 a[0] = -1 ans += 1 elif a[0] > 0: flag = 1 else: flag = -1 dp = [0 for i in range(n)] dp[0] = a[0] for i in range(1, n): dp[i] = dp[i - 1] + a[i] if dp[i] == 0: dp[i] = flag * -1 ans += 1 elif flag == 1 and dp[i] > 0: ans += abs(-1 - dp[i]) dp[i] = -1 elif flag == -1 and dp[i] < 0: ans += abs(1 - dp[i]) dp[i] = 1 flag *= -1 print(min(ans1, ans))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 1001001001; const long long LINF = 1001001001001001001; const long long D4[] = {0, 1, 0, -1, 0}; const long long D8[] = {0, 1, 1, 0, -1, -1, 1, -1, 0}; template <class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template <class T> bool chmin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } template <class T> using pq = priority_queue<T, vector<T>, greater<T>>; void solve(); int main() { cin.tie(0); ios::sync_with_stdio(0); solve(); } void solve() { long long n; cin >> n; vector<long long> a(n); for (long long i = 0; i < (n); ++i) cin >> a[i]; vector<long long> ans(2), sum = {a[0], a[0]}; for (long long i = (1); i < (n); ++i) for (long long j = 0; j < (2); ++j) { sum[j] += a[i]; if ((i + j) % 2) { if (sum[j] < 1) { ans[j] += 1 - sum[j]; sum[j] = 1; } } else { if (sum[j] > -1) { ans[j] += sum[j] + 1; sum[j] = -1; } } } cout << min(ans[0], ans[1]) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = input() a_s = [int(x) for x in input().split()] sum_i = 0 num = 0 for a in a_s: new_sum_i = sum_i + a # print(f"a:{a}, tmp_sum_i:{new_sum_i}") if (new_sum_i == 0): new_sum_i = 1 if sum_i == 0 else np.sign(sum_i)*(-1) adjusted_a = new_sum_i - sum_i num += abs(max(adjusted_a, a) - min(adjusted_a, a)) sum_i = new_sum_i elif new_sum_i * sum_i > 0: new_sum_i = np.sign(new_sum_i)*-1 adjusted_a = new_sum_i - sum_i num += abs(max(adjusted_a, a) - min(adjusted_a, a)) sum_i = new_sum_i else: sum_i = new_sum_i # print(f"a:{a}, new_sum_i:{sum_i}, num:{num}") # print() print(num)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> data(N); for (int i = 0; i < N; i++) cin >> data[i]; int count = 0; int ans = data[0]; int saisyo; for (int i = 1; i < N; i++) { ans += data[i]; if (i % 2 == 0) { while (ans <= 0) { ans++; count++; } } else { while (ans >= 0) { ans--; count++; } } } saisyo = count; count = 0; ans = data[0]; for (int i = 1; i < N; i++) { ans += data[i]; if (i % 2 != 0) { while (ans <= 0) { ans++; count++; } } else { while (ans >= 0) { ans--; count++; } } } saisyo = min(saisyo, count); cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) A = [j for j in a] cnt1 = 0 cnt2 = 0 S = 0 if a[0] > 0: for i in range(n-1): S += a[i] if a[i] > 0: if S + a[i+1] >= 0: cnt1 += a[i+1] + S + 1 if a[i+1] + S + 1 > 0 else -(a[i+1] + S + 1) a[i+1] = -1-S elif a[i] < 0: if S + a[i+1] <= 0: cnt1 += a[i+1] + S - 1 if a[i+1] + S - 1 > 0 else -(a[i+1] + S - 1) a[i+1] = 1-S A[0] = -1 cnt2 = a[0] + 1 for i in range(n-1): S += A[i] if A[i] > 0: if S + A[i+1] >= 0: cnt2 += A[i+1] + S + 1 if A[i+1] + S + 1 > 0 else -(A[i+1] + S + 1) A[i+1] = -1-S elif A[i] < 0: if S + A[i+1] <= 0: cnt2 += a[i+1] + S - 1 if a[i+1] + S - 1 > 0 else -(a[i+1] + S - 1) A[i+1] = 1-S elif a[0] < 0: for i in range(n-1): S += a[i] if a[i] > 0: if S + a[i+1] >= 0: cnt1 += a[i+1] + S + 1 if a[i+1] + S + 1 > 0 else -(a[i+1] + S + 1) a[i+1] = -1-S elif a[i] < 0: if S + a[i+1] <= 0: cnt1 += a[i+1] + S - 1 if a[i+1] + S - 1 > 0 else -(a[i+1] + S - 1) a[i+1] = 1-S A[0] = 1 cnt2 = -a[0] + 1 for i in range(n-1): S += A[i] if A[i] > 0: if S + A[i+1] >= 0: cnt2 += A[i+1] + S + 1 if A[i+1] + S + 1 > 0 else -(A[i+1] + S + 1) A[i+1] = -1-S elif A[i] < 0: if S + A[i+1] <= 0: cnt2 += a[i+1] + S - 1 if a[i+1] + S - 1 > 0 else -(a[i+1] + S - 1) A[i+1] = 1-S else: a[0] = 1 cnt1 = 1 for i in range(n-1): S += a[i] if a[i] > 0: if S + a[i+1] >= 0: cnt1 += a[i+1] + S + 1 if a[i+1] + S + 1 > 0 else -(a[i+1] + S + 1) a[i+1] = -1-S elif a[i] < 0: if S + a[i+1] <= 0: cnt1 += a[i+1] + S - 1 if a[i+1] + S - 1 > 0 else -(a[i+1] + S - 1) a[i+1] = 1-S A[0] = -1 cnt2 = 1 for i in range(n-1): S += A[i] if A[i] > 0: if S + A[i+1] >= 0: cnt2 += A[i+1] + S + 1 if A[i+1] + S + 1 > 0 else -(A[i+1] + S + 1) A[i+1] = -1-S elif A[i] < 0: if S + A[i+1] <= 0: cnt2 += a[i+1] + S - 1 if a[i+1] + S - 1 > 0 else -(a[i+1] + S - 1) A[i+1] = 1-S cnt = cnt2 if cnt1 >= cnt2 else cnt1 print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long store[100007]; int main() { long long n; cin >> n; for (long long i = 1; i <= n; i++) cin >> store[i]; long long cnt = 0; long long sum = store[1]; for (long long i = 2; i <= n; i++) { long long tmp = store[i] + sum; if (tmp) if ((tmp < 0 && sum > 0) || (tmp > 0 && sum < 0)) { sum = tmp; continue; } long long need; if (sum > 0) { need = -1 - sum, sum = -1; if (!need) need = -2 - sum, sum = -2; } else { need = abs(1 - sum), sum = 1; if (!need) need = abs(2 - sum), sum = 2; } cnt += abs(store[i] - need); } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a.at(i); int count = 0; int total = a.at(0); int sign0; if (a.at(0) > 0) sign0 = 1; else sign0 = -1; for (int i = 1; i < n; i++) { total += a.at(i); if (i % 2 == 1) { while (total * sign0 >= 0) { total -= sign0; count++; } } else { while (total * sign0 <= 0) { total += sign0; count++; } } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { uint n; cin >> n; vector<int> a(n, 0); vector<int> S(n, 0); for (size_t i = 0; i < a.size(); ++i) cin >> a[i]; int operation = 0; S[0] = a[0]; if (S[0] == 0) { size_t j = 0; while (j < a.size()) { if (a[j] != 0) break; ++j; } if (j == a.size()) { S[0] = 1; ++operation; } else if (j % 2 == 0) { S[0] = a[j] / abs(a[j]); ++operation; } else { S[0] = -a[j] / abs(a[j]); ++operation; } } for (size_t i = 1; i < a.size(); ++i) { S[i] = S[i - 1] + a[i]; if (S[i] == 0) { S[i] = -(S[i - 1] / abs(S[i - 1])); ++operation; } else { if (S[i - 1] * S[i] > 0) { operation = operation + abs(S[i]) + 1; S[i] = -(S[i] / abs(S[i])); } } } cout << operation << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
package main import ( "bufio" "errors" "fmt" "math" "os" "strconv" "strings" ) var sc = bufio.NewScanner(os.Stdin) // NextLine reads a line text from stdin, and then returns its string. func NextLine() string { sc.Scan() return sc.Text() } // NextIntsLine reads a line text, that consists of **ONLY INTEGERS DELIMITED BY SPACES**, from stdin. // And then returns intergers slice. func NextIntsLine() []int { ints := []int{} intsStr := NextLine() tmp := strings.Split(intsStr, " ") for _, s := range tmp { integer, _ := strconv.Atoi(s) ints = append(ints, integer) } return ints } func NextStringsLine() []string { strs := []string{} stringsStr := NextLine() tmp := strings.Split(stringsStr, " ") for _, s := range tmp { strs = append(strs, s) } return strs } // NextRunesLine reads a line text, that consists of **ONLY CHARACTERS ARRANGED CONTINUOUSLY**, from stdin. // Ant then returns runes slice. func NextRunesLine() []rune { return []rune(NextLine()) } // Max returns the max integer among input set. // This function needs at least 1 argument (no argument causes panic). func Max(integers ...int) int { m := integers[0] for i, integer := range integers { if i == 0 { continue } if m < integer { m = integer } } return m } // Min returns the min integer among input set. // This function needs at least 1 argument (no argument causes panic). func Min(integers ...int) int { m := integers[0] for i, integer := range integers { if i == 0 { continue } if m > integer { m = integer } } return m } // PowInt is integer version of math.Pow func PowInt(a, e int) int { if a < 0 || e < 0 { panic(errors.New("[argument error]: PowInt does not accept negative integers")) } fa := float64(a) fe := float64(e) fanswer := math.Pow(fa, fe) return int(fanswer) } // AbsInt is integer version of math.Abs func AbsInt(a int) int { fa := float64(a) fanswer := math.Abs(fa) return int(fanswer) } // DeleteElement returns a *NEW* slice, that have the same and minimum length and capacity. // DeleteElement makes a new slice by using easy slice literal. func DeleteElement(s []int, i int) []int { if i < 0 || len(s) <= i { panic(errors.New("[index error]")) } // appendのみの実装 n := make([]int, 0, len(s)-1) n = append(n, s[:i]...) n = append(n, s[i+1:]...) return n } // Concat returns a *NEW* slice, that have the same and minimum length and capacity. func Concat(s, t []rune) []rune { n := make([]rune, 0, len(s)+len(t)) n = append(n, s...) n = append(n, t...) return n } // sort package (snippets) //sort.Sort(sort.IntSlice(s)) //sort.Sort(sort.Reverse(sort.IntSlice(s))) //sort.Sort(sort.Float64Slice(s)) //sort.Sort(sort.StringSlice(s)) // copy function //a = []int{0, 1, 2} //b = make([]int, len(a)) //copy(b, a) var rdr = bufio.NewReaderSize(os.Stdin, 1000000) func readLine() string { buf := make([]byte, 0, 1000000) for { l, p, e := rdr.ReadLine() if e != nil { panic(e) } buf = append(buf, l...) if !p { break } } return string(buf) } /*******************************************************************/ var n int var A []int func main() { tmp := NextIntsLine() n = tmp[0] // A = NextIntsLine() A = make([]int, 0, 1000000) str := readLine() tmp2 := strings.Split(str, " ") for _, s := range tmp2 { integer, _ := strconv.Atoi(s) A = append(A, integer) } S := make([]int, len(A)) S[0] = A[0] for i := 1; i < len(A); i++ { sum := S[i-1] S[i] = sum + A[i] } // 最初を正とする場合と負とする場合の両方を試す answers := []int{} for _, firstSign := range []int{1, -1} { comp, answer := 0, 0 if (firstSign == 1 && S[0] <= 0) || (firstSign == -1 && S[0] >= 0) { comp = firstSign - S[0] answer = AbsInt(comp) } for i := 1; i < len(S); i++ { var befSign int if S[i-1]+comp < 0 { befSign = -1 } else { befSign = 1 } if (befSign == -1 && S[i]+comp > 0) || (befSign == 1 && S[i]+comp < 0) { continue } x := -befSign - (S[i] + comp) answer += AbsInt(x) comp += x } answers = append(answers, answer) } fmt.Println(Min(answers...)) }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main() { int n; std::cin >> n; int counter = 0; int seq = 0; scanf("%d ", &seq); int first_sum = seq; bool prevsign = first_sum >= 0 ? true : false; for (int i = 1; i < n; i++) { scanf("%d", &seq); if (i < n - 1) scanf(" "); if (!(prevsign ^ (first_sum + seq > 0 ? true : false)) || !(first_sum + seq)) { int nseq = (!prevsign ? 1 : -1) - first_sum; counter += (int)abs(nseq - seq); first_sum += nseq; } else first_sum += seq; prevsign = !prevsign; } std::cout << counter; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; class Main { int n; int[] a; public static void main(String[] args) { Scanner sc = new Scanner(System.in); Main m = new Main(sc); m.solve(); sc.close(); } Main(Scanner sc) { n = sc.nextInt(); a = new int[n]; for(int i=0;i<n;i++){ a[i] = sc.nextInt(); } } void solve() { int sign = (a[0]>0)?1:-1; int cnt = 0; int sum = a[0]; for(int i=1;i<n;i++){ sum += a[i]; if(sum*sign>=0){ cnt += Math.abs(sum) + 1; sum = -sign; } sign *= -1; } System.out.println(cnt); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { void run() { try (Scanner sc = new Scanner(System.in)) { int n = sc.nextInt(); int[] a = new int[n]; for(int i=0;i<n;i++) { a[i] = sc.nextInt(); } int sum1 = 0; int cnt1 = 0; // a[0] > 0 for(int i=0;i<n;i++) { sum1 += a[i]; if(i%2==0 && sum1 <= 0) { cnt1 += (1-sum1); sum1 = 1; }else if(i%2==1 && sum1 >= 0) { cnt1 += (1+sum1); sum1 = -1; } } int sum2 = 0; int cnt2 = 0; // a[0] < 0 for(int i=0;i<n;i++) { sum2 += a[i]; if(i%2==1 && sum2 <= 0) { cnt2 += (1-sum2); sum2 = 1; }else if(i%2==0 && sum2 >= 0) { cnt2 += (1+sum2); sum2 = -1; } } System.out.println(Math.min(cnt1, cnt2)); } } public static void main(String[] args) { new Main().run(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; long long a[100010]; int main() { int n; while (scanf("%d", &n) != EOF) { long long sum = 0; for (int i = 0; i < n; i++) { scanf("%lld", &a[i]); } int tmp = -1; int flagg = 0; for (int i = 0; i < n; i++) { if (a[i] != 0) { tmp = i; flagg = 1; break; } } if (!flagg) { printf("%d\n", (n - 1) * 2 + 1); continue; } if (tmp != 0 && a[tmp] > 0) { if (tmp % 2) a[0] = -1; else a[0] = 1; sum++; } else if (tmp != 0 && a[tmp] < 0) { if (tmp % 2) a[0] = 1; else a[0] = -1; sum++; } long long oo = a[0], flag; if (a[0] > 0) flag = 1; else if (a[0] < 0) flag = -1; for (int i = 1; i < n; i++) { oo += a[i]; if (flag == 1) { if (oo >= 0) { sum += oo + 1; oo = -1; } flag = -1; } else if (flag == -1) { if (oo <= 0) { sum += 0 - oo + 1; oo = 1; } flag = 1; } } printf("%lld\n", sum); } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import math """ e.g. N=3 a=[-1 1 1] -1 2 1 :1 -1 2 -2 :4 e.g. N=3 a=[0 0 -1] 1 0 -1 :1 1 -2 -1 :3 1 -2 2 :6 -1 0 -1 :1 -1 2 -1 :3 -1 2 -2 :4 e.g. N=3 a=[0 0 1] 1 0 1 :1 1 -2 1 :3 1 -2 2 :4 -1 0 1 :1 -1 2 1 :3 -1 2 -2 :6 e.g. N=4 a=[0 0 0 -1] 1 0 0 -1 :1 1 -2 0 -1 :3 1 -2 2 -1 :5 1 -2 2 -2 :6 -1 0 0 -1 :1 -1 2 0 -1 :3 -1 2 -2 -1 :5 -1 2 -2 2 :8 e.g. N=4 a=[0 0 0 1] 1 0 0 1 :1 1 -2 0 1 :3 1 -2 2 1 :5 1 -2 2 -2 :8 -1 0 0 1 :1 -1 2 0 1 :3 -1 2 -2 1 :5 -1 2 -2 2 :6 """ def main(): n = int(input()) a = list(map(int, input().split())) ans = 0 # 最初から0続きのとき、操作が少なくなるように同じ符号にする def sign(x): if x == 0: return 0 return int(math.copysign(1, x)) if a[0] == 0: for i in range(1, n): if a[i] != 0: sign_a = sign(a[i]) if i % 2 == 0: # odd: 1-indexed a[0] = sign_a else: a[0] = -sign_a ans += 1 break s = a[0] for i in range(1, n): s1 = s + a[i] sign_s = sign(s) sign_s1 = sign(s1) if s1 == 0 or sign_s == sign_s1: # 逆方向に変更 # new_s1 = -sign_s = s+a[i] + diff diff = -(sign_s + s + a[i]) a[i] += diff ans += abs(diff) s += a[i] #print(i, a, sep="\t") print(ans) if __name__ == '__main__': main()