Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long a[100010]; long long delta, ans1, ans2; long long sum1, sum2; int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) { scanf("%lld", &a[i]); } delta = 0LL; ans1 = 0LL; sum1 = a[1]; if (sum1 == 0) { delta = 1LL; ans1 = 1LL; sum1 = 1; } for (int i = 2; i <= n; i++) { sum2 = sum1 + a[i]; if (sum1 < 0 && sum2 <= 0) { delta += 1 - sum2; ans1 += 1 - sum2; sum2 = 1; } else if (sum1 > 0 && sum2 >= 0) { delta += -1 - sum2; ans1 += sum2 + 1; sum2 = -1; } sum1 = sum2; } delta = 0LL; ans2 = 0LL; if (a[1] < 0) { delta = 1 - a[1]; ans2 = 1 - a[1]; sum1 = 1; } else { delta = -1 - a[1]; ans2 = a[1] + 1; sum1 = -1; } for (int i = 2; i <= n; i++) { sum2 = sum1 + a[i]; if (sum1 < 0 && sum2 <= 0) { delta += 1 - sum2; ans2 += 1 - sum2; } else if (sum1 > 0 && sum2 >= 0) { delta += -1 - sum2; ans2 += sum2 + 1; } sum1 = sum2; } printf("%lld\n", min(ans1, ans2)); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# -*- coding: utf-8 -*- """ Created on Sat Sep 8 15:51:53 2018 @author: maezawa """ n = int(input()) a = list(map(int, input().split())) sa = 0 cnt = 0 for i in range(0,n-1): sa += a[i] na = -sa//abs(sa)*(abs(sa)+1) if abs(a[i+1]) > abs(na) and a[i+1]*na > 0: continue else: cnt += abs(na-a[i+1]) a[i+1] = na print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# # abc059 c # import sys from io import StringIO import unittest class TestClass(unittest.TestCase): def assertIO(self, input, output): stdout, stdin = sys.stdout, sys.stdin sys.stdout, sys.stdin = StringIO(), StringIO(input) resolve() sys.stdout.seek(0) out = sys.stdout.read()[:-1] sys.stdout, sys.stdin = stdout, stdin self.assertEqual(out, output) def test_入力例_1(self): input = """4 1 -3 1 0""" output = """4""" self.assertIO(input, output) def test_入力例_2(self): input = """5 3 -6 4 -5 7""" output = """0""" self.assertIO(input, output) def test_入力例_3(self): input = """6 -1 4 3 2 -5 4""" output = """8""" self.assertIO(input, output) def resolve(): N = int(input()) A = list(map(int, input().split())) ans = 0 s = 0 f = 0 for a in A: if f == 1 and s+a >= 0: ans += abs(s+a) + 1 s = -1 elif f == -1 and s+a <= 0: ans += abs(s+a) + 1 s = 1 else: s += a f = s // abs(s) print(ans) if __name__ == "__main__": # unittest.main() resolve()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def solve(asum, a, ans): for i in range(1, n): # print(asum) asumplus = asum + a[i] if asumplus == 0 and asum > 0: asumplus -= 1 ans += 1 elif asumplus == 0 and asum < 0: asumplus -= 1 ans += 1 elif asumplus > 0 and asum > 0: ans += asumplus + 1 asumplus = -1 elif asumplus < 0 and asum < 0: ans += -asumplus + 1 asumplus = 1 asum = asumplus return ans n = int(input()) a = list(map(int,input().split())) asum = a[0] if asum != 0: ans = solve(asum,a,0) else: ans = min(solve(1,a,1),solve(-1,a,1)) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int c[123456]; int solve(int n, int id) { int a; int sum = 0; int res = 0; for (int i = 0; i < n; ++i) { if (id % 2 == 0) { if (sum + c[i] <= 0) { res += abs(sum + c[i] - 1); sum = 1; } else sum += c[i]; } else { if (sum + c[i] >= 0) { res += abs(sum + c[i] - (-1)); sum = -1; } else sum += c[i]; } id++; } return res; } int main() { int n; cin >> n; for (int i = 0; i < n; ++i) { cin >> c[i]; } int res = solve(n, 1); res = min(res, solve(n, 2)); cout << res << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> long long int n; long long int count(long long int a0) { long long int a, i, S[2] = {}, C[2] = {}; S[0] = a0; S[1] = a0; for (i = 1; i < n; i++) { scanf("%lld", &a); S[0] += a; S[1] += a; if (i % 2 == 0) { if (S[0] >= 0) { C[0] += S[0] + 1; S[0] = -1; } if (S[1] <= 0) { C[1] += -1 * S[1] + 1; S[1] = 1; } } else { if (S[0] <= 0) { C[0] += -1 * S[0] + 1; S[0] = 1; } if (S[1] >= 0) { C[1] += S[1] + 1; S[1] = -1; } } } if (C[0] < C[1]) return C[0]; else return C[1]; } int main() { long long int a0; scanf("%lld %lld", &n, &a0); printf("%lld\n", count(a0)); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = INT_MAX; const long long INFL = LLONG_MAX; const long double pi = acos(-1); int dx[] = {1, -1, 0, 0}; int dy[] = {0, 0, 1, -1}; long long xx(vector<long long> &v) { long long s = 0; long long ans = 0; int n = int((v).size()); for (int i = 0; i < n; i++) { if (!i) s = v[0]; else { if (s > 0) { if (s + v[i] < 0) { s += v[i]; continue; } long long x, y; x = max(s + v[i] + 1, (long long)0); ans += x; if (x != 0) s = -1; } else { if (s + v[i] > 0) { s += v[i]; continue; } long long x, y; x = max(1 - (s + v[i]), (long long)0); ans += x; if (x != 0) s = 1; } } } return ans; } int main() { ios_base::sync_with_stdio(0); cout.precision(15); cout << fixed; cout.tie(0); cin.tie(0); int n; cin >> n; vector<long long> v(n); for (int(i) = 0; (i) < (n); (i)++) cin >> v[i]; if (n == 1) { if (v[0] != 0) cout << 0 << '\n'; else cout << 1 << '\n'; return 0; } long long ans = INFL; if (v[0] == 0) { v[0] += 1; ans = min(ans, xx(v) + 1); v[0] = -1; ans = min(ans, xx(v) + 1); } else if (v[0] > 0) { ans = min(ans, xx(v)); v[0] = -1; ans = min(ans, xx(v) + v[0] + 1); } else { ans = min(ans, xx(v)); v[0] = 1; ans = min(ans, xx(v) + 1 - v[0]); } cout << ans << '\n'; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<long long int> A(N); vector<long long int> V(N); long long int t = 0LL; for (int i = 0; i < N; i++) { cin >> A[i]; t += A[i]; V[i] = t; } long long int l = 0LL, r = 0LL; for (int i = 0; i < N - 1; i++) { if (i % 2 == 0) { if (V[i] > 0) { continue; } else { l += 1 - V[i]; V[i] = 1; V[i + 1] = V[i] + A[i + 1]; } } else { if (V[i] < 0) { continue; } else { l += V[i] + 1; V[i] = -1; V[i + 1] = V[i] + A[i + 1]; } } } for (int i = 0; i < N - 1; i++) { if (i % 2 == 0) { if (V[i] < 0) { continue; } else { r += V[i] + 1; V[i] = -1; V[i + 1] = V[i] + A[i + 1]; } } else { if (V[i] > 0) { continue; } else { l += 1 - V[i]; V[i] = 1; V[i + 1] = V[i] + A[i + 1]; } } } cout << min(l, r); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long zero = 0; int N; cin >> N; vector<int> sum(N,0); int now; cin >> now; sum[0] = now; for (int i=1; i<N; i++) { cin >> now; sum[i] = sum[i-1] + now; } long change = 0; long ansp = 0; int i = 0; while (i<N) { ansp += max(1-(sum[i]+change),zero); change += max(1-(sum[i]+change),zero); i++; if (i==N) { break; } ansp += max((sum[i]+change)+1,zero); change -= max((sum[i]+change)+1,zero); i++; } change = 0; long ansm = 0; i = 0; while (i<N) { ansm += max((sum[i]+change)+1,zero); change -= max((sum[i]+change)+1,zero); i++; if (i==N) { break; } ansm += max(1-(sum[i]+change),zero); change += max(1-(sum[i]+change),zero) i++; } cout << min(ansp,ansm) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { new Main().execute(); } public void execute() { Scanner sc = new Scanner(System.in); final int n = sc.nextInt(); int ops = 0; int[] sums = new int[n]; for (int i = 0; i < n; i++) { int ai = sc.nextInt(); sums[i] = (i == 0) ? ai : sums[i - 1] + ai; if (sums[i] == 0) { ops++; sums[i] = (sums[i - 1] > 0) ? -1 : 1; } else if (i > 0 && sums[i - 1] * sums[i] > 0) { if (sums[i] > 0) { ops += sums[i] + 1; sums[i] = -1; } else if (sums[i] < 0) { ops += 1 - sums[i]; sums[i] = 1; } } } System.out.println(ops); sc.close(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { ios::sync_with_stdio(false); std::cin.tie(nullptr); ll n; cin >> n; vector<ll> a(n); for (ll i = 0; i < n; i++) cin >> a[i]; ll sumodd = 0; ll sumeven = 0; ll ans = 0; for (ll i = 0; i < n; i++) { if (i % 2 == 0) { sumodd += abs(a[i]); if (sumodd <= sumeven) { ans += sumeven - sumodd + 1; sumodd += sumeven - sumodd + 1; } } if (i % 2 != 0) { sumeven += abs(a[i]); if (sumeven <= sumodd) { ans += sumodd - sumeven + 1; sumeven += sumodd - sumeven + 1; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
from numpy import sign n = int(input()) A = [i for i in map(int,input().split())] x = 0 ans = 0 if A[0] == 0: A[0] = -1 * sign(A[1]) ans += 1 flag = 0 for i in A: x += i if flag == 0: flag = 1 continue if x == 0: x += 1 * sign(i) ans += 1 if sign(x) == sign(x-i): diff = abs(x - (x-i)) x += -1*sign(x)*(diff + 1) ans += diff + 1 if x == 0: x += 1 * sign(i) ans += 1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n,ans; cin>>n; vector<int>a(n); for(int i=0;i<n;i++){ cin>>a.at(i); } for(int i=0;i<n-1;i++){ int p=0; for(int j=i+1;j>=0;j--)p+=a.at(j); while(a.at(i)*a.at(i+1)<0||p=0){ if(a.at(i)>0){ a.at(i+1)--; ans++; continue; } if(a.at(i)<0){ a.at(i+1)++; ans++; continue; } } } cout<<ans<<endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import copy N=int(input()) l=list(map(int, input().split())) #リスト入力 cp = copy.copy(l) #c=0 for k in range(N-1): if sum(l[:k+1])==0: #c=c+1 if l[k+1]>0: l[k+1]=l[k+1]+1 else: l[k+1]=l[k+1]-1 if sum(l[:k])*sum(l[:k+1])>0: if sum(l[:k+1])>0: l[k]=l[k]-(sum(l[:k+1])-(-1)) #c=c+abs(sum(l[:k+1])-(-1)) else: l[k]=l[k]+(1-sum(l[:k+1])) #c=c+abs(1-sum(l[:k+1])) if sum(l)==0: c=c+1 l[-1]=l[-1]+1 print(sum([abs(l[n]-cp[n]) for n in range(N)]))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[100000]; for (int i = 0; i < (int)(n); i++) cin >> a[i]; bool zeroFlag = false; long long costA = 0, costB = 0; int sum = 0, prev = 0; if (a[0] == 0) { a[0] = 1; costA += 1; zeroFlag = true; } for (int i = 0; i < (int)(n); i++) { prev = sum; sum += a[i]; if (i == 0) continue; if ((prev * sum) < 0) continue; if (prev < 0) { costA += abs(sum - 1); sum = 1; } else { costA += abs(sum + 1); sum = -1; } } if (zeroFlag) { a[0] = -1; costB += 1; } else { int a0 = a[0]; a[0] = -1 * a[0] / abs(a[0]); costB += (abs(a0) + 1); } sum = 0; prev = 0; for (int i = 0; i < (int)(n); i++) { prev = sum; sum += a[i]; if (i == 0) continue; if ((prev * sum) < 0) continue; if (prev < 0) { costB += abs(sum - 1); sum = 1; } else { costB += abs(sum + 1); sum = -1; } } cout << min(costA, costB) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = input().split() a = [int(i) for i in a] out = 0 s = a[0] for i in range(1, n): is_plus = s > 0 s += a[i] if s == 0: out += 1 s = -1 if is_plus else 1 continue if (s > 0) != is_plus: continue if s > 0: out += s + 1 s = -1 else: out += 1 - s s = 1 print(out)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; int main() { int n; cin >> n; long long a[120000]; for (int i = 0; i < (n); i++) cin >> a[i]; long long total = 0; long long total2 = 0; long long count1 = 0; long long count2 = 0; for (int i = 0; i < (n - 2) / 2; i++) { total += a[2 * i]; total2 += a[2 * i]; if (total >= 0) { count1 += (abs(total) + 1); total = -1; } if (total2 <= 0) { count2 += (abs(total2) + 1); total2 = 1; } total += a[2 * i + 1]; total2 += a[2 * i + 1]; if (total <= 0) { count1 += (abs(total) + 1); total = 1; } if (total2 >= 0) { count2 += (abs(total2) + 1); total2 = -1; } } cout << min(count1, count2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<long long> A(N); for (int i = 0; i < N; i++) { cin >> A[i]; } vector<long long> S1(N); vector<long long> S2(N); S1[0] = A[0]; S2[0] = A[0]; int cnt1 = 0; int cnt2 = 0; for (int i = 0; i < N; i++) { if (i) { S1[i] = S1[i - 1] + A[i]; S2[i] = S2[i - 1] + A[i]; } if (!(i % 2)) { if (S1[i] < 0) { cnt1 += 1 - S1[i]; S1[i] = 1; } if (S2[i] > 0) { cnt2 += S2[i] + 1; S2[i] = -1; } } else { if (S1[i] > 0) { cnt1 += S1[i] + 1; S1[i] = -1; } if (S2[i] < 0) { cnt2 += 1 - S2[i]; S2[i] = 1; } } } cout << min(cnt1, cnt2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; // ABC 6-C // http://abc006.contest.atcoder.jp/tasks/abc006_3 public class Main { public static void main (String[] args) throws java.lang.Exception { Scanner in = new Scanner(System.in); int n = in.nextInt(); int[] nums = new int[n]; for (int i = 0; i < n; i++) { nums[i] = in.nextInt(); } int answer = 0; if (nums[0] == 0) { answer = solve(nums, 0, 0); } else { answer = solve(nums, nums[0], 1); } System.out.println(answer); // // long sum = 0; // long answer = 0; // // for (int i = 0; i < n; i++) { // int a = in.nextInt(); // // if (sum < 0 && sum + a < 0) { // answer += 1 + Math.abs(sum + a); // sum = 1; // } else if (sum > 0 && sum + a > 0) { // answer += 1 + sum + a; // sum = -1; // } else if (sum + a == 0) { // answer++; // if (sum < 0) { // sum = 1; // } else { // sum = -1; // } // } else { // sum += a; // } // } // System.out.println(answer); } public static long solve(int[] nums, long sum, int index) { if (index == nums.length) { return 0; } if (sum < 0 && sum + nums[index] < 0) { return 1 + Math.abs(sum + nums[index]) + solve(nums, 1, index + 1); } else if (sum > 0 && sum + nums[index] > 0) { return 1 + sum + nums[index] + solve(nums, -1, index + 1); } else if (sum + nums[index] == 0) { return 1 + Math.min(solve(nums, 1, index + 1), solve(nums, -1, index + 1)); } else { return solve(nums, sum + nums[index], index + 1); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; const double EPS = 1e-9; const int INF = 1 << 29; int a[100054]; int main() { int n; cin >> n; for (int i = 1; i <= n; ++i) cin >> a[i]; int ans = 0; int sum = a[1]; for (int i = 2; i <= n; ++i) { if (sum < 0) { int num = 1 - sum; if (a[i] < num) ans += num - a[i], a[i] = num; } else { int num = -1 - sum; if (a[i] > num) ans += a[i] - num, a[i] = num; } sum += a[i]; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) a =list(map(int,input().split())) a1=[0]*N a2=[0]*N s1 =a[0] s2 =a[0] #正の数から始まるパターン c1 = 0 if s1 ==0: s1 = 1 c1 = 1 elif s1 <0: a1[0]=1 c1 = -s1+1 for i in range(1,N): if s1*(s1+a[i])>=0 and s1>0: a1[i] = -s1-1 c1 += abs(a[i]-a1[i]) elif s1*(s1+a[i])>=0 and s1<0: a1[i] = -s1+1 c1 += abs(a1[i]-a[i]) else: a1[i]=a[i] s1 = s1+a1[i] #負の数から始まるパターン c2=0 if s2 ==0: s2 = 1 c2 =1 elif s2 >0: a2[0]=-1 c2 = s2+1 for i in range(1,N): if s2*(s2+a[i])>=0 and s2>0: a2[i] = -(s2+1) c2 +=abs(a[i]-a2[i]) elif s2*(s2+a[i])>=0 and s2<0: a2[i] = -s2+1 c2 +=abs(a2[i]-a[i]) else: a2[i]=a[i] s2 = s2+a2[i] print(min(c1,c2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> static int solve(const std::vector<int>& va, int initSum, int initCnt = 0) { int sum = initSum; int cnt = initCnt; for (std::remove_reference<decltype(va)>::type::size_type i = 1; i < va.size(); i++) { auto nextSum = sum + va[i]; if (nextSum >= 0 && sum > 0) { cnt += nextSum + 1; sum = -1; } else if (nextSum <= 0 && sum < 0) { cnt += -nextSum + 1; sum = 1; } else { sum = nextSum; } } return cnt; } int main() { std::cin.tie(nullptr); std::ios::sync_with_stdio(false); int n; std::cin >> n; std::vector<int> va(n); for (auto&& e : va) { std::cin >> e; } std::cout << std::min(solve(va, va[0]), solve(va, va[0] > 0 ? -1 : 1, std::abs(va[0]) + 1)) << std::endl; return EXIT_SUCCESS; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int getsign(long long int n) { if (n > 0) { return 1; } if (n < 0) { return -1; } return -1; } long long int count(int sign0, long long a[], int n) { long long int sum = 0; long long int sign = sign0; long long int count = 0; for (int i = 0; i < n; ++i) { sum += a[i]; if (getsign(sum) != sign) { count += abs(sign - sum); sum = sign; } sign = (sign * -1); } return count; } int main() { int n; cin >> n; long long a[n]; for (int i = 0; i < n; ++i) { cin >> a[i]; } cout << min(count(1, a, n), count(-1, a, n)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
p :: Int -> Int -> [Int] -> Int p n x (y:[]) | x + y >= 0 = n+x+y+1 | otherwise = n p n x (y:ys) | x + y >= 0 = m (n+x+y+1) (-1) ys | otherwise = m n (x+y) ys m :: Int -> Int -> [Int] -> Int m n x (y:[]) | x + y <= 0 = n-(x+y)+1 | otherwise = n m n x (y:ys) | x + y <= 0 = p (n-(x+y)+1) 1 ys | otherwise = p n (x+y) ys solve :: Int -> [Int] -> Int solve n (x:xs) = min (m n x xs) (p n x xs) main = getContents >>= print . solve 0 . map read . words . last . lines
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int a[100000]; long getTotal(int n, int dir) { long total{0}, sum{0}; for (int i{0}; i < n; ++i) { sum += a[i]; if (dir > 0 && sum <= 0) { total += -sum + 1; sum = 1; } else if (dir < 0 && sum >= 0) { total += sum + 1; sum = -1; } dir *= -1; } return total; } int main() { int n; scanf("%d", &n); for (int i{0}; i < n; ++i) scanf("%d", &a[i]); long try1 = getTotal(n, 1); long try2 = getTotal(n, -1); printf("%d\n", ((try1) < (try2) ? (try1) : (try2))); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def check1(a): sum = 0 ans = 0 for i in range(len(a)): if(i % 2 == 0): sum += a[i] if(sum >= 0): a[i] += -abs(sum)-1 sum += -abs(sum)-1 ans += abs(sum)+1 else: sum += a[i] if(sum <= 0): a[i] += abs(sum)+1 sum += abs(sum)+1 ans += abs(sum)+1 return ans def check2(a): sum = 0 ans = 0 for i in range(len(a)): if(i % 2 == 0): sum += a[i] if(sum <= 0): a[i] += abs(sum)+1 sum += abs(sum)+1 ans += abs(sum)+1 else: sum += a[i] if(sum >= 0): a[i] += -abs(sum)-1 sum += -abs(sum)-1 ans += abs(sum)+1 return ans n = input() b = input().split() a = [int(b[i]) for i in range(len(b))] a2 = list(a) ans1 = check1(a) ans2 = check2(a2) print(ans1) if(ans1<ans2) else print(ans2)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long a[100004]; int main() { scanf("%d", &n); for (int i = (1); i <= (int)(n); ++i) scanf("%lld", &a[i]); long long ans = 0; if (!a[1]) ++ans; for (int i = (2); i <= (int)(n); ++i) { if (a[i - 1] > 0) { if (a[i] + a[i - 1] < 0) { a[i] += a[i - 1]; continue; } ans += abs(a[i] + 1 + a[i - 1]); a[i] = -a[i] - 1; } else { if (a[i] + a[i - 1] > 0) { a[i] += a[i - 1]; continue; } ans += abs(a[i] - 1 + a[i - 1]); a[i] = 1 - a[i]; } } printf("%lld\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) s = a[0] ans = 0 for e in a[1:]: if s == 0: s = 1 ans += 1 if (s+e)*s >= 0: if s+e < 0: ans += 1-(s+e) s = 1 else: ans += 1+(s+e) s = -1 else: s += e print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
N=gets.to_i list=gets.split(" ").map(&:to_i) sum = 0 res = 0 if(list[0] == 0) then temp = 0 N-1.times{ |i| temp += list[i+1] if(temp > 0) res += 1 list[0] = 1 break elsif(temp < 0) res +=1 list[0] = -1 break end } res+=1 list[0]=1 end N.times{|i| before_sum = sum sum += list[i] if (sum*before_sum> 0) then if(sum > 0) then res += (sum+1) sum = -1 else res += (-sum+1) sum = 1 end elsif sum*before_sum==0 then if(before_sum < 0 )then res += 1 sum = 1 elsif(before_sum > 0) then sum = -1 res += 1 end end } puts(res)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) l = len(a) ans = 0 summary = a[0] for i in range(1, l): if(summary* (summary+ a[i])>= 0): if(summary > 0): ans+= a[i]+ summary+ 1 a[i] = -summary- 1 summary= -1 else: ans+= -summary+ 1- a[i] a[i] = -summary+ 1 summary= 1 else: summary+= a[i] print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#![allow(non_snake_case)] #![allow(dead_code)] #![allow(unused_macros)] #![allow(unused_imports)] use std::str::FromStr; use std::io::*; use std::collections::*; use std::cmp::*; struct Scanner<I: Iterator<Item = char>> { iter: std::iter::Peekable<I>, } macro_rules! exit { () => {{ exit!(0) }}; ($code:expr) => {{ if cfg!(local) { writeln!(std::io::stderr(), "===== Terminated =====") .expect("failed printing to stderr"); } std::process::exit($code); }} } impl<I: Iterator<Item = char>> Scanner<I> { pub fn new(iter: I) -> Scanner<I> { Scanner { iter: iter.peekable(), } } pub fn safe_get_token(&mut self) -> Option<String> { let token = self.iter .by_ref() .skip_while(|c| c.is_whitespace()) .take_while(|c| !c.is_whitespace()) .collect::<String>(); if token.is_empty() { None } else { Some(token) } } pub fn token(&mut self) -> String { self.safe_get_token().unwrap_or_else(|| exit!()) } pub fn get<T: FromStr>(&mut self) -> T { self.token().parse::<T>().unwrap_or_else(|_| exit!()) } pub fn vec<T: FromStr>(&mut self, len: usize) -> Vec<T> { (0..len).map(|_| self.get()).collect() } pub fn mat<T: FromStr>(&mut self, row: usize, col: usize) -> Vec<Vec<T>> { (0..row).map(|_| self.vec(col)).collect() } pub fn char(&mut self) -> char { self.iter.next().unwrap_or_else(|| exit!()) } pub fn chars(&mut self) -> Vec<char> { self.get::<String>().chars().collect() } pub fn mat_chars(&mut self, row: usize) -> Vec<Vec<char>> { (0..row).map(|_| self.chars()).collect() } pub fn line(&mut self) -> String { if self.peek().is_some() { self.iter .by_ref() .take_while(|&c| !(c == '\n' || c == '\r')) .collect::<String>() } else { exit!(); } } pub fn peek(&mut self) -> Option<&char> { self.iter.peek() } } fn main() { let cin = stdin(); let cin = cin.lock(); let mut sc = Scanner::new(cin.bytes().map(|c| c.unwrap() as char)); let n: usize = sc.get(); let a: Vec<i64> = sc.vec(n); let mut p = 0; let mut ans1 = 0; for i in 0..n { let mut s = p + a[i]; if i == 0 && s > 0 { ans1 += s.abs()+1; s += -s - 1; } else if s == 0 { s += if p > 0 { 1 } else { -1 }; ans1 += 1; } else if s * p > 0 { ans1 += s.abs()+1; s += if s > 0 { -s - 1 } else { s + 1 }; } p = s; } let mut p = 0; let mut ans2 = 0; for i in 0..n { let mut s = p + a[i]; if i == 0 && s < 0 { ans1 += s.abs()+1; s += s + 1; } else if s == 0 { s += if p > 0 { 1 } else { -1 }; ans2 += 1; } else if s * p > 0 { ans2 += s.abs()+1; s += if s > 0 { -s - 1 } else { s + 1 }; } p = s; } println!("{}", min(ans1, ans2)); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# coding: utf-8 # hello worldと表示する import sys import numpy input = sys.stdin.readline sys.setrecursionlimit(10**7) from collections import Counter, deque from collections import defaultdict from itertools import combinations, permutations, accumulate, groupby, product from bisect import bisect_left,bisect_right from heapq import heapify, heappop, heappush from math import floor, ceil,pi,factorial from operator import itemgetter from copy import deepcopy def I(): return int(input()) def MI(): return map(int, input().split()) def LI(): return list(map(int, input().split())) def LI2(): return [int(input()) for i in range(n)] def MXI(): return [[LI()]for i in range(n)] def SI(): return input().rstrip() def printns(x): print('\n'.join(x)) def printni(x): print('\n'.join(list(map(str,x)))) inf = 10**17 mod = 10**9 + 7 n=I() seq=LI() if seq[0]>0: pm=-1 sm=seq[0] count=0 for i in range(n-1): sm=sm+seq[i+1] if pm>0: if sm<=0: count+=1-sm sm=1 pm=-1 else: if sm>=0: count+=1+sm sm=-1 pm=1 print(count) elif seq[0]<0: pm=1 sm=seq[0] count=0 for i in range(n-1): sm=sm+seq[i+1] if pm>0: if sm<=0: count+=1-sm sm=1 pm=-1 else: if sm>=0: count+=1+sm sm=-1 pm=1 print(count) else: pm=-1 sm=1 count=1 for i in range(n-1): sm=sm+seq[i+1] if pm>0: if sm<=0: count+=1-sm sm=1 pm=-1 else: if sm>=0: count+=1+sm sm=-1 pm=1 count1=count pm=1 sm=-1 count=1 for i in range(n-1): sm=sm+seq[i+1] if pm>0: if sm<=0: count+=1-sm sm=1 pm=-1 else: if sm>=0: count+=1+sm sm=-1 pm=1 count2=count print(min(count1,count2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int co[100000]; int sum_u, sum_d; long long ch_u, ch_d; int n; int main() { cin.tie(0); ios::sync_with_stdio(false); cin >> n; for (int i = 0; i < n; i++) { cin >> co[i]; } if (co[0] > 0) { sum_u = -1; ch_u = co[0] + 1; sum_d = co[0]; ch_d = 0; } else if (co[0] < 0) { sum_u = co[0]; ch_u = 0; sum_d = 1; ch_d = 1 - co[0]; } else { sum_u = -1; ch_u = 1; sum_d = 1; ch_d = 1; } for (int i = 1; i < n; i++) { sum_d += co[i]; sum_u += co[i]; if (i % 2 == 1 && sum_u >= 0) { ch_u += sum_u + 1; sum_u = -1; } else if (i % 2 == 0 && sum_u <= 0) { ch_u += 1 - sum_u; sum_u = 1; } if (i % 2 == 1 && sum_d <= 0) { ch_d += 1 - sum_d; sum_d = 1; } else if (i % 2 == 0 && sum_d >= 0) { ch_d += sum_d + 1; sum_d = -1; } } if (ch_d >= ch_u) cout << ch_u << "\n"; else { cout << ch_d << "\n"; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct Setup { Setup() { cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); } } SETUP; template <class T> bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } const long long INF = 1LL << 60; signed main() { long long n; cin >> n; vector<long long> v(n); for (auto& a : v) { cin >> a; } vector<long long> acc(n + 1); acc[0] = 0; long long ans = 0; for (long long i = 0; i < n; i++) { acc[i + 1] = acc[i] + v[i]; if (acc[i] < 0 && acc[i + 1] < 0) { ans += abs(1 - acc[i + 1]); acc[i + 1] = 1; } else if (acc[i] > 0 && acc[i + 1] > 0) { ans += abs(-1 - acc[i + 1]); acc[i + 1] = -1; } else if (acc[i + 1] == 0) { if (acc[i] <= 0) { ans++; acc[i + 1]++; } else if (acc[i] > 0) { ans++; acc[i + 1]--; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N, ans = 0; cin >> N; int sum = 0; for (int i = 0; i < N; i++) { int a; cin >> a; int nowsum = a + sum; if (i == 0) sum += a; else { if ((nowsum < 0) != (sum < 0)) { if (nowsum == 0) { if (nowsum < 0) nowsum--; else nowsum++; ans++; } } else { if (nowsum < 0) { for (;;) { if (nowsum > 0) break; nowsum++; ans++; } } else { for (;;) { if (nowsum < 0) break; nowsum--; ans++; } } } sum = nowsum; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import qualified Data.ByteString.Char8 as C import Data.List main = C.interact $ put . sol . get get = unfoldr (C.readInt . C.dropWhile (==' ')) . last . C.lines put = C.pack . show sol = min <$> g (-1) <*> g 1 g a = fst . foldl' f (-1,a) f (c,s) b | s*s'<0 = (c,s') | s>0 = (c+1+abs s',-1) | s<0 = (c+1+abs s',1) where s' = s+b
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int,input().split())) ans = 0 s = A[0] if s > 0: flag = 1 elif s < 0: flag = -1 elif A[1] < 0: s = 1 flag = 1 ans += 1 else: s = -1 flag = -1 ans += 1 for i in range(1,N): s += A[i] if flag == 1 and s >= 0: ans += s + 1 s = -1 elif flag == -1 and s <= 0: ans += 1 - s s = 1 flag *= -1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; #define rep(i,n) for( int i = 0; i < n; i++ ) #define dump(x) cerr << #x << " = " << (x) << endl; #define INF 1000000000000000000 int main(void) { int n; cin >> n; int a[n]; rep(i, n) cin >> a[i]; int sum[n] = {a[0]}; for( int i = 1; i < n; i++){ sum[i] = sum[i-1] + a[i]; } int cost1 = 0; int sign = 1; int delta; for( int i = 0; i < n; i++){ if( sum[i]*sign >= 0){ delta = sum[i]+sign; cost1 += abs(delta); for( int j = i; j < n; j++){ sum[j] -= delta; } } sign = -sign; } sum[0] = a[0]; for( int i = 1; i < n; i++){ sum[i] = sum[i-1] + a[i]; } int cost2 = 0; sign = -1; for( int i = 0; i < n; i++){ if( sum[i]*sign >= 0){ delta = sum[i]+sign; cost2 += abs(delta); for( int j = i; j < n; j++){ sum[j] -= delta; } } sign = -sign; } cout << min(cost1,cost2); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long MOD = 1e9 + 7; const long long INF = 1e18; signed main() { cin.tie(nullptr); ios::sync_with_stdio(false); long long n, ans1 = 0, ans2 = 0, sum1 = 0, sum2 = 0; cin >> n; vector<long long> a(n); for (long long i = 0; i < n; i++) { cin >> a[i]; } sum1 = a[0]; if (sum1 == 0) { sum1 = (a[1] > 0 ? -1 : 1); ans1++; } for (long long i = 1; i < n; i++) { if (sum1 + a[i] == 0) { ans1++; sum1 = (a[i] > 0 ? 1 : -1); } else if (sum1 > 0 && sum1 + a[i] < 0) { sum1 += a[i]; } else if (sum1 < 0 && sum1 + a[i] > 0) { sum1 += a[i]; } else if (sum1 > 0 && a[i] + sum1 > 0) { ans1 += sum1 + a[i] + 1; sum1 = -1; } else { ans1 += -a[i] - sum1 + 1; sum1 = 1; } } a[0] *= -1; if (sum2 == 0) { sum2 = (a[1] > 0 ? -1 : 1); ans2++; } for (long long i = 1; i < n; i++) { if (sum2 + a[i] == 0) { ans2++; sum2 = (a[i] > 0 ? 1 : -1); } else if (sum2 > 0 && sum2 + a[i] < 0) { sum2 += a[i]; } else if (sum2 < 0 && sum2 + a[i] > 0) { sum2 += a[i]; } else if (sum2 > 0 && a[i] + sum2 > 0) { ans2 += sum2 + a[i] + 1; sum2 = -1; } else { ans2 += -a[i] - sum2 + 1; sum2 = 1; } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = int(input()) a = list(map(int,input().split())) #print (a) sum = 0 count = 0 p = 0 for i in range(n): sum += a[i] if i>0: p = a[i] if (sum - a[i]) > 0: if sum >= 0: a[i] = -(sum-a[i])-1 count += np.abs(p-a[i]) sum = -1 else: if sum <= 0: a[i] = -(sum-a[i])+1 count += np.abs(p-a[i]) sum = 1 #print (sum) print (count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; vector<long long> A(n), sum(n); for (long long i = (0); i < (long long)(n); i++) cin >> A[i]; long long cnt1 = 0; if (A[0] > 0) { sum[0] = A[0]; } else { sum[0] = 1; cnt1 += abs(1 - A[0]); } for (long long i = (1); i < (long long)(n); i++) { if (sum[i - 1] > 0) { if (sum[i - 1] + A[i] < 0) { sum[i] = sum[i - 1] + A[i]; } else { sum[i] = -1; cnt1 += abs(sum[i - 1] + A[i] - (-1)); } } else { if (sum[i - 1] + A[i] > 0) { sum[i] = sum[i - 1] + A[i]; } else { sum[i] = 1; cnt1 += abs(1 - (sum[i - 1] + A[i])); } } } long long cnt2 = 0; if (A[0] < 0) { sum[0] = A[0]; } else { sum[0] = 1; cnt2 += abs(A[0] - (-1)); } for (long long i = (1); i < (long long)(n); i++) { if (sum[i - 1] > 0) { if (sum[i - 1] + A[i] < 0) { sum[i] = sum[i - 1] + A[i]; } else { sum[i] = -1; cnt2 += abs(sum[i - 1] + A[i] - (-1)); } } else { if (sum[i - 1] + A[i] > 0) { sum[i] = sum[i - 1] + A[i]; } else { sum[i] = 1; cnt2 += abs(1 - (sum[i - 1] + A[i])); } } } long long cnt3 = 0; if (A[n - 1] > 0) { sum[n - 1] = A[n - 1]; } else { sum[n - 1] = 1; cnt3 += abs(1 - A[n - 1]); } for (long long i = n - 2; i >= 0; i--) { if (sum[i + 1] > 0) { if (sum[i + 1] + A[i] < 0) { sum[i] = sum[i + 1] + A[i]; } else { sum[i] = -1; cnt3 += abs(sum[i + 1] + A[i] - (-1)); } } else { if (sum[i + 1] + A[i] > 0) { sum[i] = sum[i + 1] + A[i]; } else { sum[i] = 1; cnt3 += abs(1 - (sum[i + 1] + A[i])); } } } long long cnt4 = 0; if (A[n - 1] < 0) { sum[n - 1] = A[n - 1]; } else { sum[n - 1] = -1; cnt4 += abs(A[n - 1] - (-1)); } for (long long i = n - 2; i >= 0; i--) { if (sum[i + 1] > 0) { if (sum[i + 1] + A[i] < 0) { sum[i] = sum[i + 1] + A[i]; } else { sum[i] = -1; cnt4 += abs(sum[i + 1] + A[i] - (-1)); } } else { if (sum[i + 1] + A[i] > 0) { sum[i] = sum[i + 1] + A[i]; } else { sum[i] = 1; cnt4 += abs(1 - (sum[i + 1] + A[i])); } } } cout << min(cnt1, cnt2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int mpow(int base, int exp); void ipgraph(int m); void dfs(int u, int par); const int mod = 1000000007; const int N = 3e5, M = N; vector<int> g[N]; int a[N]; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int i, n, k, j; cin >> n; for (i = 0; i < n; i++) cin >> a[i]; long long ans = 0; if (a[0] == 0) ans = 1, a[0] = 1; if (a[1] > 0) a[0] = -1; long long pre = a[0], to; for (i = 1; 1 < n ? i < n : i > n; 1 < n ? i += 1 : i -= 1) { to = pre + a[i]; long long need = abs(pre) + 1; if (pre > 0) need = -need; if (to == 0 or (pre > 0 and to > 0) or (pre < 0 and to < 0)) { pre += need; ans += abs(need - a[i]); } else pre = to; } cout << ans << endl; return 0; } int mpow(int base, int exp) { base %= mod; int result = 1; while (exp > 0) { if (exp & 1) result = ((long long)result * base) % mod; base = ((long long)base * base) % mod; exp >>= 1; } return result; } void ipgraph(int m) { int i, u, v; for (i = 0; i < m; i++) { cin >> u >> v; u++, v++; g[u - 1].push_back(v - 1); g[v - 1].push_back(u - 1); } } void dfs(int u, int par) { for (int v : g[u]) { if (v == par) continue; dfs(v, u); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } int main() { ios::sync_with_stdio(false); cin.tie(0); long long n; cin >> n; long long a[n]; for (int i = 0; i < n; ++i) { cin >> a[i]; } long long cnt = a[0]; long long ans = 0ll; long long p = -1ll; if (a[0] < 0ll) p = 1ll; for (int i = 1; i < n; ++i) { cnt += a[i]; if (cnt * p <= 0ll) { long long g = cnt * -1ll + p; ans += (g * p); cnt = cnt + g; } p *= -1ll; } cout << (ans) << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 1e10; int main() { long long n; cin >> n; vector<long long> a(n); for (long long i = 0; i < n; i++) cin >> a[i]; vector<long long> b = a; long long ans1 = 0; long long ans2 = 0; if (a[0] <= 0) { ans1 += 1 - a[0]; a[0] = 1; } for (long long i = 1; i < n; i++) { a[i] += a[i - 1]; if (a[i - 1] < 0 && a[i] <= 0) { ans1 += 1 - a[i]; a[i] = 1; } if (a[i - 1] > 0 && a[i] >= 0) { ans1 += a[i] + 1; a[i] = -1; } } if (b[0] >= 0) { ans2 += a[0] + 1; b[0] = -1; } for (long long i = 1; i < n; i++) { b[i] += b[i - 1]; if (b[i - 1] < 0 && b[i] <= 0) { ans2 += 1 - b[i]; b[i] = 1; } if (b[i - 1] > 0 && b[i] >= 0) { ans2 += b[i] + 1; b[i] = -1; } } long long ans = min(ans1, ans2); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
from itertools import accumulate n = int(input()) a = [int(i) for i in input().split()] ans = 0 da = 0 if a[0] == 0: ans += 1 if a[1] >= 0: a[0] = -1 da += -1 else: a[0] = 1 da += 1 b = list(accumulate(a)) for i, (x, y) in enumerate(zip(b[:-1], b[1:])): if (x+da)*(y+da) < 0: continue else: y += da ans += abs(y)+1 if y>=0: da += -1-y else: da += 1-y print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 0x7fffffff; const int maxn = 1e5 + 10; int a[maxn]; int n; long long cal() { long long t = a[0], ans = 0; for (int i = 1; i < n; ++i) { if (t < 0) { t += a[i]; if (t <= 0) { ans += 1 - t; t = 1; } continue; } t += a[i]; if (t >= 0) { ans += t + 1; t = -1; } } return ans; } int main() { scanf("%d", &n); for (int i = 0; i < (n); ++i) { scanf("%d", &a[i]); } long long ans = 0, ans1, ans2; if (a[0] == 0) { a[0] = 1; ans1 = cal(); a[0] = -1; ans2 = cal(); ans = min(ans1, ans2) + 1; } else { ans = cal(); } printf("%lld\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using vi = vector<int>; using vvi = vector<vi>; using vll = vector<ll>; using pii = pair<int, int>; using tiii = tuple<int, int, int>; const ll mod = 1e9 + 7; const int INF = (1 << 30) - 1; const ll INFLL = (1LL << 62) - 1; const int dx[4] = {1, 0, -1, 0}; const int dy[4] = {0, 1, 0, -1}; template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline int sgn(T n) { if (n > 0) return 1; else if (n < 0) return -1; else return 0; } ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; } ll lcm(ll a, ll b) { return a / gcd(a, b) * b; } int main() { int n; cin >> n; vector<ll> a(n); for (int i = (0); i < ((n)); ++i) cin >> a[i]; ll ans = INFLL; ll s = 0; ll cnt = 0; for (int i = (0); i < ((n)); ++i) { s += a[i]; if (i % 2 == 0 && s <= 0) { cnt += -s + 1; s += -s + 1; } else if (i % 2 != 0 && s >= 0) { cnt += s + 1; s -= s + 1; } cout << "s" << " = " << (s) << endl; ; cout << "cnt" << " = " << (cnt) << endl; ; } ans = min(ans, cnt); s = 0; cnt = 0; for (int i = (0); i < ((n)); ++i) { s += a[i]; if (i % 2 == 0 && s >= 0) { cnt += s + 1; s -= s + 1; } else if (i % 2 != 0 && s <= 0) { cnt += -s + 1; s += -s + 1; } } ans = min(ans, cnt); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = int(input()) a = list(map(int, input().split())) c1 = 0 sum = a[0] for i in range(1, n): if not (np.sign(sum) != np.sign(sum + a[i]) and sum + a[i] != 0): if sum > 0: c1 += a[i] + sum + 1 sum = -1 else: c1 += -a[i] - sum + 1 sum = 1 else: sum += a[i] c2 = abs(a[0]) + 1 sum = - a[0] for i in range(1, n): if not (np.sign(sum) != np.sign(sum + a[i]) and sum + a[i] != 0): if sum > 0: c2 += a[i] + sum + 1 sum = -1 else: c2 += -a[i] - sum + 1 sum = 1 else: sum += a[i] print(min(c1, c2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int, input().split())) ans = 0 previous_sum = A[0] # total to i - 1 for i in range(1, N): # if prev_sum is plus and A[i] is more minus than prev_sum, no action. # if prev_sum is plus and minus of A[i] is larger than or equal to prev_sum. if previous_sum > 0 and previous_sum + A[i] >= 0: # the number that need to be subtracted to meet the requirements. require_subtraction = previous_sum + A[i] + 1 # the number of wastes in meeting the requirement. distance_from_ideal = previous_sum - 1 # restration to an ideal list. A[i - 1] -= distance_from_ideal previous_sum -= distance_from_ideal ans += distance_from_ideal # adjustment for the manupilation of the previous values. require_subtraction -= distance_from_ideal # correcting the current number. A[i] -= require_subtraction ans += require_subtraction # if prev_sum is minus and A[i] is more plus than prev_sum, no action. # if prev_sum is minus and minus of A[i] is more smaller than or equal to prev_sum. elif previous_sum < 0 and previous_sum + A[i] <= 0: # the number that need to be added to meet the requirements. require_addition = -(previous_sum + A[i] - 1) # the number of wastes in meeting the requirement. distance_from_ideal = -1 - previous_sum # restration to an ideal list. A[i - 1] += distance_from_ideal previous_sum += distance_from_ideal ans += distance_from_ideal # adjustment for the manupilation of the previous values. require_addition -= distance_from_ideal # correcting the current number. A[i] += require_addition ans += require_addition previous_sum += A[i] print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.*; import java.util.*; public class Main{ static int n; static long[] a; static long count; static long sum; public static void main(String[] args) throws IOException{ MyReader r = new MyReader(); n = r.i(); a = r.ll(); sum = a[0]; count = 0; if(a[0] == 0){ count = 1; sum = 1; solve(); long temp = count; count = 1; sum = -1; solve(); count = Math.min(count, temp); } else solve(); println(count); } static void solve(){ for(int i = 1; i < n; i++){ if(sum < 0){ if(a[i]+sum <= 0){ count += -(a[i]+sum)+1; sum = 1; } else sum = a[i]+sum; } else{ if(a[i]+sum>=0){ count += a[i]+sum+1; sum = -1; } else sum = a[i]+sum; } } } static void print(Object o){ System.out.print(o.toString()); } static void println(Object o){ System.out.println(o.toString()); } static int Int(String s){ return Integer.parseInt(s); } static long Long(String s){ return Long.parseLong(s); } static class MyReader extends BufferedReader{ MyReader(){ super(new InputStreamReader(System.in)); } String s() throws IOException{ return readLine(); } String[] ss() throws IOException{ return s().split(" "); } int i() throws IOException{ return Int(s()); } int[] ii() throws IOException{ String[] ss = ss(); int size = ss.length; int[] ii = new int[size]; for(int j = 0; j < size; j++) ii[j] = Integer.parseInt(ss[j]); return ii; } long l() throws IOException{ return Long(s()); } long[] ll() throws IOException{ String[] ss = ss(); int size = ss.length; long[] ll = new long[size]; for(int j = 0; j < size; j++) ll[j] = Long.parseLong(ss[j]); return ll; } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 1e9; const long long MOD = 1e9 + 7; int main() { long long n; cin >> n; vector<long long> a(n); for (long long i = 0; i < n; ++i) { cin >> a[i]; } vector<long long> sum(n); sum[0] = a[0]; for (long long i = 1; i < n; i++) { sum[i] += sum[i - 1] + a[i]; } long long even_sum = 0; long long odd_sum = 0; for (long long i = 0; i < n; ++i) { if (i % 2 == 0 && sum[i] >= 0) { even_sum += 1 + sum[i]; } if (i % 2 == 1 && sum[i] <= 0) { even_sum += 1 - sum[i]; } } for (long long i = 0; i < n; ++i) { if (i % 2 == 0 && sum[i] <= 0) { odd_sum += 1 - sum[i]; } if (i % 2 == 1 && sum[i] >= 0) { odd_sum += 1 + sum[i]; } } cout << min(odd_sum, even_sum) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import math N = int(input()) a = [int(i) for i in input().split()] num = 0 i = 0 if a[0] == 0: while a[i] == 0: i += 1 if i % 2 == 0: a[0] = math.copysign(1, a[i]) else: a[0] = math.copysign(1, -a[i]) num += 1 old = a[0] sam = a[0] for n in range(2): num = 0 if n != 0: sam = -a[0] - int(math.copysign(1, a[0])) old = sam for i in range(1, len(a)): sam += a[i] sam_sign = int(math.copysign(1, sam)) old_sign = int(math.copysign(1, old)) if sam_sign == old_sign or sam == 0: num += abs(sam) + 1 a[i] = a[i] + (-old_sign)*(abs(sam)+1) old += a[i] sam = old if n == 0: num2 = num print(min(num,num2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long int a[n], sum = 0, cnt = 0, cnt1 = 0; for (int i = 0; i < n; i++) cin >> a[i]; sum = a[0]; if (sum < 0) { cnt += abs(-1 - sum); sum = -1; } else { cnt += abs(sum - 1); sum = 1; } for (int i = 1; i < n; i++) { if ((sum >= 0 && sum + a[i] >= 0) || (sum <= 0 && sum + a[i] <= 0)) { if (sum < 0) { long long int k = sum + a[i]; cnt += abs(k - 1); sum = 1; } else { long long int k = sum + a[i]; cnt += abs(k + 1); sum = -1; } } else sum += a[i]; } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; vector<int> v(1e5); long long solve_pos(int n) { long long sum = v[0]; long long ans = 0; if (sum < 0) sum = 1, ans = abs(v[0]) + 1; for (int i = 1; i < n; i++) { if (sum < 0 && sum + v[i] > 0) sum += v[i]; else if (sum > 0 && sum + v[i] < 0) sum += v[i]; else if (sum < 0 && sum + v[i] <= 0) ans += abs(sum + v[i]) + 1, sum = 1; else if (sum > 0 && sum + v[i] >= 0) ans += abs(sum + v[i]) + 1, sum = -1; } return ans; } long long solve_neg(int n) { long long sum = v[0]; long long ans = 0; if (sum > 0) sum = -1, ans = abs(v[0]) + 1; for (int i = 1; i < n; i++) { if (sum < 0 && sum + v[i] > 0) sum += v[i]; else if (sum > 0 && sum + v[i] < 0) sum += v[i]; else if (sum < 0 && sum + v[i] <= 0) ans += abs(sum + v[i]) + 1, sum = 1; else if (sum > 0 && sum + v[i] >= 0) ans += abs(sum + v[i]) + 1, sum = -1; } return ans; } int main() { int n; cin >> n; for (int i = 0; i < n; i++) cin >> v[i]; long long ans = solve_pos(n); ans = min(ans, solve_neg(n)); cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
def min_op ary, prev_sum, op_cnt return op_cnt if ary.empty? sum = prev_sum + ary[0] diff = 0 if prev_sum < 0 diff = -sum + 1 if sum <= 0 else # prev_sum > 0 diff = -sum - 1 if sum >= 0 end min_op(ary[1..-1], sum + diff, op_cnt + diff.abs) end N = gets.to_i ary = gets.split.map(&:to_i) cnt = 0 if ary[0] == 0 # プラスにするケース cnt1 = min_op(ary[1..-1], 1, 1) # マイナスにするケース cnt2 = min_op(ary[1..-1], -1, 1) # プラスとマイナスで操作数の小さいほうを採用 cnt = [cnt1, cnt2].min else cnt = min_op(ary[1..-1], ary[0], 0) end puts cnt
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) s=[0]*n s[0]=a[0] cnt=0 for i in range(1,n): s[i]=a[i]+s[i-1] num=0 if s[i]<0 and s[i-1]<0: num+=1-s[i] cnt+=num a[i]+=num s[i]=s[i-1]+a[i] elif 0<s[i] and 0<s[i-1]: num+=(-1-s[i]) cnt+=abs(num) a[i]+=num s[i]=s[i-1]+a[i] if s[i]==0: if s[i-1]<0: s[i]+=1 cnt+=1 elif 0<s[i-1]: s[i]-=1 cnt+=1 print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) ans=0 if a[0]==0: a[0]+=1 ans+=1 t=a[0] if a[0]>0: for i in range(1,n): t+=a[i] if i%2==1: if t>=0: ans+=abs(t+1) t=-1 else: if t<=0: ans+=abs(t-1) t=1 else: for i in range(1,n): t+=a[i] if i%2==1: if t<=0: ans+=abs(t-1) t=1 else: if t>=0: ans+=abs(t+1) t=-1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N), S(N + 7); for (int i = 0; i < N; i++) { cin >> a[i]; } int ans = 0; S[0] = a[0]; if (S[0] == 0) { for (int i = 0; i < N; i++) { if (a[i] > 0) { if (i % 2 == 0) { S[0] = 1; ans++; break; } else { S[0] = -1; ans++; break; } } else if (a[i] < 0) { if (i % 2 == 0) { S[0] = -1; ans++; break; } else { S[0] = 1; ans++; break; } } else if (i == N - 1 && a[i] == 0) { ans = (2 * N) - 1; cout << ans << endl; return 0; } } } for (int i = 1; i < N; i++) { S[i] = S[i - 1] + a[i]; } for (int i = 1; i < N; i++) { if (S[i - 1] > 0 && S[i] >= 0) { ans += abs(S[i]) + 1; S[i] = -1; if (i != N - 1) { S[i + 1] = S[i] + a[i + 1]; } } else if (S[i - 1] < 0 && S[i] <= 0) { ans += abs(S[i]) + 1; S[i] = 1; if (i != N - 1) { S[i + 1] = S[i] + a[i + 1]; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int solve(vector<int> vec) { long long int n = vec.size(); long long int sum = vec[0]; int ans = 0; for (long long int i = 1; i < n; i++) { if (sum > 0) { if (sum + vec[i] >= 0) { ans += 1 + (sum + vec[i]); sum = -1; } else { sum += vec[i]; } } else if (sum < 0) { if (sum + vec[i] <= 0) { ans += 1 - (sum + vec[i]); sum = 1; } else { sum += vec[i]; } } } return ans; } int main() { int n, Ans; cin >> n; vector<int> as; for (int i = 0; i < n; i++) { int t; cin >> t; as.push_back(t); } vector<int> as1 = as; as1[0] = 1; vector<int> as2 = as; as2[0] = -1; Ans = min(solve(as), min(solve(as1) + abs(1 - as[0]), solve(as2) + abs(-1 - as[0]))); cout << Ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys input = sys.stdin.readline N = int(input()) a = list(map(int, input().split())) res = -max(0, ~a[0]) sm = 1 if a[0] > 1: sm = a[0] for i in range(1, N): if sm > 0: res += max(-1, a[i] + sm) + 1 sm = min(-1, sm + a[i]) else: res += -min(1, sm + a[i]) + 1 sm = max(1, sm + a[i]) #print(res, sm) res2 = max(0, a[0] + 1) sm = -1 if a[0] < -1: sm = a[0] for i in range(1, N): if sm > 0: res2 += max(-1, a[i] + sm) + 1 sm = min(-1, sm + a[i]) else: res2 += -min(1, sm + a[i]) + 1 sm = max(1, sm + a[i]) print(min(res, res2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; double mod = 1e9 + 7; char alphabet[26] = {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'}; int cnt(ll n) { int c = 0; while (true) { if (n < 1) break; n = n / 10; c++; } return c; } int main() { ll N = 0, answer = 0, sum1 = 0, sum2 = 0, tmp = 0; int cnt1 = 0, cnt2 = 0; cin >> N; int *a = new int[N]; for (int i = 0; i < (int)N; ++i) cin >> a[i]; sum1 += a[0]; sum2 += a[0]; for (int i = 1; i < (int)N; ++i) { sum1 += a[i]; sum2 += a[i]; if (i % 2 == 0) { if (sum1 >= 0) { cnt1 += abs(sum1) - 1; sum1 -= abs(sum1) + 1; } if (sum2 <= 0) { cnt2 += abs(sum2) + 1; sum2 += abs(sum2) + 1; } } else { if (sum1 <= 0) { cnt1 += abs(sum1) + 1; sum1 += abs(sum1) + 1; } if (sum2 >= 0) { cnt2 += abs(sum2) - 1; sum2 -= abs(sum2) + 1; } } } cout << min(cnt1, cnt2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T> using vec = vector<T>; using i32 = int_fast32_t; using i64 = int_fast64_t; using u32 = uint_fast32_t; using u64 = uint_fast64_t; using ll = long long; using ld = long double; using vi = vec<int_fast32_t>; using vl = vec<int_fast64_t>; using vld = vec<ld>; using vii = vec<vi>; using PII = pair<int_fast32_t, int_fast32_t>; template <class T> using maxheap = std::priority_queue<T>; template <class T> using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>; template <class T, class U> inline bool chmax(T &a, const U &b) { if (a < b) { a = b; return 1; } return 0; } template <class T, class U> inline bool chmin(T &a, const U &b) { if (a > b) { a = b; return 1; } return 0; } const ld Pi = std::acos(-1.0L); constexpr ll infll = (1LL << 62) - 1; constexpr int inf = (1 << 30) - 1; const int mod = 1000000007; signed main() { int START_TIME = clock(); cin.tie(nullptr); ios::sync_with_stdio(false); i32 n; cin >> n; vi a(n); for (int_fast32_t i = 0; i < ((int_fast32_t)(n)); i++) cin >> a[i]; i32 ans = 0, sum = a[0]; for (i32 i = 1; i < n; ++i) { sum += a[i]; if (i & 1) { if (sum > 0) continue; ans += 1 - sum; sum = 1; } else { if (sum < 0) continue; ans += sum + 1; sum = -1; } } i32 ans2 = 0, sum2 = a[0]; for (i32 i = 1; i < n; ++i) { sum2 += a[i]; if (!(i & 1)) { if (sum2 > 0) continue; ans2 += 1 - sum2; sum2 = 1; } else { if (sum2 < 0) continue; ans2 += sum2 + 1; sum2 = -1; } } cout << min(ans, ans2) << '\n'; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) i = 0 sum_before = 0 sum_after = 0 count = 0 while i < n: sum_after = sum_before + a[i] if sum_after * sum_before > 0 or sum_after == 0: if sum_after < 0: a[i] += abs(sum_after) + 1 elif sum_after > 0: a[i] -= abs(sum_after) + 1 elif sum_before < 0: a[i] += 1 else: a[i] -= 1 count += abs(sum_after) + 1 sum_after = sum_before + a[i] i += 1 sum_before = sum_after print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int count1 = 0; int count2 = 0; vector<long long> a(n); for (int i = 0; i < n; i++) cin >> a[i]; long long sum = a[0]; if (a[0] >= 0) { for (int i = 1; i < n; i++) { sum += a[i]; if (i % 2 == 1) { while (sum >= 0) { sum--; count1++; } } else { while (sum <= 0) { sum++; count1++; } } } } else { for (int i = 1; i < n; i++) { sum += a[i]; if (i % 2 == 0) { while (sum >= 0) { sum--; count1++; } } else { while (sum <= 0) { sum++; count1++; } } } } if (a[0] >= 0) { while (a[0] >= 0) { a[0]--; count2++; } } else { while (a[0] <= 0) { a[0]++; count2++; } } sum = a[0]; if (a[0] >= 0) { for (int i = 1; i < n; i++) { sum += a[i]; if (i % 2 == 1) { while (sum >= 0) { sum--; count2++; } } else { while (sum <= 0) { sum++; count2++; } } } } else { for (int i = 1; i < n; i++) { sum += a[i]; if (i % 2 == 0) { while (sum >= 0) { sum--; count2++; } } else { while (sum <= 0) { sum++; count2++; } } } } if (count1 >= count2) cout << count2 << endl; else cout << count1 << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) if a[0] >= 0: flag = 1 else: flag = -1 ans = 0 dp = [0 for i in range(n)] dp[0] = a[0] for i in range(1, n): dp[i] = dp[i - 1] + a[i] if dp[i] == 0: dp[i] = flag * -1 ans += 1 elif flag == 1 and dp[i] > 0: ans += abs(-1 - dp[i]) dp[i] = -1 elif flag == -1 and dp[i] < 0: ans += (1 - dp[i]) dp[i] = 1 flag *= -1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using ll = long long; using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; vector<ll> v(n, 0); for (int i = (int)(0); i < (int)(n); i++) cin >> v[i]; vector<int> p1(n + 1, 1), p2(n + 1, 1); for (int i = (int)(0); i < (int)(n + 1); i++) { if (i % 2 == 0) p1[i] *= -1; } for (int i = (int)(0); i < (int)(n + 1); i++) { if (i % 2 == 1) p2[i] *= -1; } priority_queue<int, vector<int>, greater<int> > pq; vector<ll> sum_until(n + 1, 0); int cnt; cnt = 0; for (int i = 1; i <= n; i++) { sum_until[i] = sum_until[i - 1] + v[i - 1]; if (sum_until[i] * p1[i] < 0) { int plus = abs(sum_until[i]); cerr << "(" "i" "," "plus * p1[i]" "):(" << i << "," << plus * p1[i] << ")" << endl; cerr << "sum_until[i]" ":" << sum_until[i] << endl; sum_until[i] += plus * p1[i] + p1[i]; cerr << "sum_until[i]" ":" << sum_until[i] << endl; cnt += abs(plus * p1[i]) + 1; } else if (sum_until[i] == 0) { sum_until[i] = p1[i]; cnt += 1; } } cerr << "sum_until" ":[ "; for (auto macro_vi : sum_until) { cerr << macro_vi << " "; } cerr << "]" << endl; cerr << "cnt" ":" << cnt << endl; pq.push(cnt); p1 = p2; cnt = 0; for (int i = 1; i <= n; i++) { cerr << "i" ":" << i << endl; sum_until[i] = sum_until[i - 1] + v[i - 1]; if (sum_until[i] * p1[i] < 0) { int plus = abs(sum_until[i]); cerr << "(" "i" "," "plus * p1[i]" "):(" << i << "," << plus * p1[i] << ")" << endl; cerr << "sum_until[i]" ":" << sum_until[i] << endl; sum_until[i] += plus * p1[i] + p1[i]; cerr << "sum_until[i]" ":" << sum_until[i] << endl; cnt += abs(plus * p1[i]) + 1; } else if (sum_until[i] == 0) { sum_until[i] = p1[i]; cnt += 1; } } pq.push(cnt); cerr << "cnt" ":" << cnt << endl; cerr << "sum_until" ":[ "; for (auto macro_vi : sum_until) { cerr << macro_vi << " "; } cerr << "]" << endl; cout << pq.top() << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a.at(i); int count = 0, keep = 0; for (int i = 0; i < n; i++) { keep += a.at(i); if (i % 2 == 0) { if (keep <= 0) { count += 1 - keep; keep = 1; } } else { if (keep >= 0) { count += keep + 1; keep = -1; } } } int count2 = 0; keep = 0; for (int i = 0; i < n; i++) { keep += a.at(i); if (i % 2 == 0) { if (keep >= 0) { count2 += keep + 1; keep = -1; } } else { if (keep <= 0) { count2 += 1 - keep; keep = 1; } } } cout << min(count, count2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int ans(int n, int *, int change); int main() { int n, A; int a[110000], s[110000]; cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; s[0] = a[0]; for (int i = 1; i < n; i++) s[i] = s[i - 1] + a[i]; int pAns, nAns; pAns = ans(n, s, 1); nAns = ans(n, s, -1); printf("%d\n", min(pAns, nAns)); } int ans(int n, int *s, int change) { int Ans = 0; int b[110000]; for (int i = 0; i < n; i++) b[i] = s[i]; for (int i = 0; i < n; i++) { switch (change) { case -1: while (b[i] > -1) { for (int j = i; j < n; j++) --b[j]; ++Ans; } change *= -1; break; case 1: while (b[i] < 1) { for (int j = i; j < n; j++) ++b[j]; ++Ans; } change *= -1; break; } } return Ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) sm = a[0] def f(sm): ret = 0 for e in a[1:]: if sm * (sm + e) < 0: sm += e continue else: if sm > 0: a_mx = -sm - 1 ret += e - a_mx sm += a_mx else: a_mn = -sm + 1 ret += a_mn - e sm += a_mn return ret if sm > 0: ans = min(f(sm), f(-1) + sm + 1) elif sm < 0: ans = min(f(sm), f(1) + sm + 1) else: ans = min(f(1), f(-1)) + 1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long int; const ll INF = (1LL << 32); const ll MOD = (ll)1e9 + 7; const double EPS = 1e-9; ll dx[8] = {1, 0, -1, 0, 1, -1, -1, 1}; ll dy[8] = {0, 1, 0, -1, 1, 1, -1, -1}; signed main() { ios::sync_with_stdio(false); ll n; cin >> n; vector<ll> a; for (ll i = 0; i < n; i++) { ll x; cin >> x; a.push_back(x); } ll sum = a[0]; ll ans = 0; for (ll i = (1); i < (n); i++) { if (sum > 0 and (sum + a[i]) > 0) { while (sum + a[i] != -1) { a[i]--; ans++; } } else if (sum < 0 and (sum + a[i]) < 0) { while (sum + a[i] != 1) { a[i]++; ans++; } } sum += a[i]; } if (sum == 0) ans++; cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = int(input()) L = np.array([int(i) for i in input().split()]) if L[0] < 0: L = -L count = 0 s = L[0] if L[0] == 0: if L[1] > 0: L[0] = -1 else: L[0] = 1 count += 1 for i in range(n//2 -1): s = s + L[2*i+1] if s >= 0: subt = s + 1 count += subt s = s - count s = s + L[2*i+2] if s <= 0: subt = s - 1 count -= subt s = s + count if n%2 == 0: s = s + L[-1] if s >= 0: subt = s + 1 count += subt print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 1e9 + 7, MOD = 1e9 + 7; const long long LINF = 1e18; const int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1}; int main() { int n; cin >> n; int a[n], Sum1[n], Sum2[n]; for (int i = 0; i < n; i++) { cin >> a[i]; Sum1[i] = Sum2[i] = a[i]; if (i) { Sum1[i] = Sum1[i - 1] + Sum1[i]; Sum2[i] = Sum1[i]; } } int sum1 = 0; int sum2 = 0; int tmp1 = 0, tmp2 = 0; for (int i = 0; i < n; i++) { Sum1[i] += tmp1; Sum2[i] += tmp2; if (i % 2 == 0) { if (Sum1[i] >= 0) { sum1 += 1 + Sum1[i]; tmp1 += -1 - Sum1[i]; } if (Sum2[i] <= 0) { sum2 += 1 + (-1 * Sum2[i]); tmp2 += 1 - Sum2[i]; } } else { if (Sum1[i] <= 0) { sum1 += 1 + (-1 * Sum1[i]); tmp1 += 1 - Sum1[i]; } if (Sum2[i] >= 0) { sum2 += 1 + Sum2[i]; tmp2 += 1 - Sum2[i]; } } } cout << min(sum1, sum2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int, input().split())) def solve(A): res = 0 pre_a = A[0] for a in A[1:]: a += pre_a if a * pre_a < 0: pre_a = a continue diff = - a + (-1)**(pre_a > 0) res += abs(diff) pre_a = a + diff return res if A[0] != 0: ans = solve(A) else: A[0] = 1 ans = solve(A) + 1 A[0] = -1 ans = min(ans, solve(A) + 1) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; const int INF = 1e9; int main() { int N; cin >> N; vector<int> A(N); int a = 0, b = 0, sum = 0; for (int(i) = 0; (i) < (N); ++(i)) cin >> A[i]; for (int(i) = 0; (i) < (N); ++(i)) { sum += A[i]; if (i % 2 == 0 && sum <= 0) a -= (sum - 1), sum = 1; else if (i % 2 && sum >= 0) a += (sum + 1), sum = -1; } sum = 0; for (int(i) = 0; (i) < (N); ++(i)) { sum += A[i]; if (i % 2 && sum <= 0) b -= (sum - 1), sum = 1; else if (i % 2 == 0 && sum >= 0) b += (sum + 1), sum = -1; } cout << (a > b ? b : a) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long MOD = 1e9 + 7; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; ++i) cin >> a[i]; long long sum = a[0]; long long ans = 0; for (int i = 0; i < n - 1; ++i) { if (sum < 0) { if (a[i + 1] + sum > 0) sum += a[i + 1]; else { ans += (1 - (a[i + 1] + sum)); sum = 1; } } else { if (sum == 0) { ans++; sum += 1; } if (a[i + 1] + sum < 0) sum += a[i + 1]; else { ans += abs(-1 - (a[i + 1] + sum)); sum = -1; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, odd = 0, even = 0, temp = 0; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a.at(i); for (int i = 0; i < n; i++) { temp += a.at(i); if ((i % 2 == 0 && temp < 0) || (i % 2 == 1 && temp > 0)) continue; if (i % 2) { odd += 1 - temp; temp = 1; } else { odd += temp + 1; temp = -1; } } temp = 0; for (int i = 0; i < n; i++) { temp += a.at(i); if ((i % 2 == 0 && temp > 0) || (i % 2 == 1 && temp < 0)) continue; if (i % 2) { even += temp + 1; temp = -1; } else { even += 1 - temp; temp = 1; } } cout << min(odd, even) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import Control.Monad import Data.List main = readLn >>= main' where main' n = getLine >>= print . solve n . fmap read . words solve :: Int -> [Int] -> Int solve c (x : xs) | x /= 0 = fst $ foldl' ff (0, x) xs | null zs = zeroCount c | otherwise = fst $ foldl' ff (zeroCount $ length ys, negate z `div` abs z) zs where ff (acc, s) n | s * next < 0 = (acc, next) | s * next > 0 = (acc + abs next + 1 , negate s `div` abs s) | otherwise = (acc + 1, negate s `div` abs s) where next = s + n (ys, zs) = span (== 0) xs z = head zs zeroCount = pred . (2 *)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> inline bool amax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool amin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } struct aaa { aaa() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } aaaaaaa; const int INF = 1001001001; const long long LINF = 1001001001001001001ll; const int MOD = 1e9 + 7; const double EPS = 1e-9; const int dx[] = {1, 1, 0, -1, -1, -1, 0, 1}, dy[] = {0, 1, 1, 1, 0, -1, -1, -1}; signed main() { int n; cin >> n; vector<int> a(n); for (int i = 0, i_len = n; i < i_len; ++i) { cin >> a.at(i); } int cnt{}; int cnt2{}; int sum = 0; for (int i = 0, i_len = n; i < i_len; ++i) { sum += a.at(i); if (i % 2 != 0) { if (sum <= 0) { cnt += abs(1 - sum); sum = 1; } } else { if (sum >= 0) { cnt += abs(sum + 1); sum = -1; } } } sum = 0; for (auto i = 0; i != n; ++i) { sum += a.at(i); if (i % 2 == 0) { if (sum <= 0) { cnt2 += abs(1 - sum); sum = 1; } } else { if (sum >= 0) { cnt2 += abs(sum + 1); sum = -1; } } } cout << min(cnt, cnt2); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) # +, -, +, -, ... sum = 0 count = 0 for i in range(n): sum += a[i] if i % 2 == 0: if sum <= 0: sum = 1 count += abs(sum) + 1 else: if sum >= 0: sum = -1 count += abs(sum) + 1 # -, +, -, +, ... sum2 = 0 count2 = 0 for i in range(n): sum2 += a[i] if i % 2 == 0: if sum2 >= 0: sum2 = -1 count2 += abs(sum2) + 1 else: if sum2 <= 0: sum2 = 1 count2 += abs(sum2) + 1 print(min(count, count2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
def sign(i) return 1 if i.positive? || i == 0 -1 end def sequence(n, a) b = [ a[0] ] count = 0 (n-1).times do |i| b[i+1] = b[i] + a[i+1] if b[i+1] == 0 if b[i] > 0 a[i+1] -= 1 count += 1 else a[i+1] += 1 count += 1 end elsif sign(b[i]) == sign(b[i+1]) if b[i].positive? count += (a[i+1] - (-b[i] - 1)).abs a[i+1] = -b[i] - 1 b[i+1] = b[i] + a[i+1] else count += (a[i+1] - (-b[i] + 1)).abs a[i+1] = -b[i] + 1 b[i+1] = b[i] + a[i+1] end end end count end n = gets.chomp.to_i a = gets.chomp.split.map { |item| item.to_i } a2 = a pn_count = 0 if a[0] > 0 a2[0] = [ a[0] - a[0] - 1 ] np_count = a[0].abs + 1 elsif a[0] < 0 a2[0] = [ a[0] - a[0] + 1 ] np_count = a[0].abs + 1 else a[0] = 1 pn_count = 1 a2[0] = -1 np_count = 1 end pn_count = sequence(n, a) np_count += sequence(n, a2) puts pn_count < np_count ? pn_count : np_count
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) arr = [int(x) for x in input().split()] def exec(sign): a = [x for x in arr] res = 0 if a[0] == 0: a[0] -= sign res += 1 x = 0 for i in range(n-1): x += a[i] tmp = sign - (x + a[i+1]) if sign < 0: tmp = min(tmp, 0) else: tmp = max(tmp, 0) res += abs(tmp) a[i+1] += tmp sign *= (-1) return res print(min(exec(1), exec(-1)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N, a[100000]; cin >> N; for (int i = 0; i < N; ++i) cin >> a[i]; int counter = 0; long long sum = 0; if (a[0] >= 0) { for (int i = 0; i < N; ++i) { sum += a[i]; if (i % 2 == 0) { while (sum <= 0) { ++sum; ++counter; } } else { while (sum >= 0) { --sum; ++counter; } } } } else { for (int i = 0; i < N; ++i) { sum += a[i]; if (i % 2 == 0) { while (sum >= 0) { --sum; ++counter; } } else { while (sum <= 0) { ++sum; ++counter; } } } } cout << counter << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(i) for i in input().split()] ls1 = [1] + [-2 if i%2 == 0 else 2 for i in range(n-1)] ls2 = [-1] + [2 if i%2 == 0 else -2 for i in range(n-1)] ans1, ans2 = 0,0 for x, y in zip(a, ls1): ans1 += abs(x-y) for x, y in zip(a, ls2): ans2 += abs(x-y) print(min(ans1, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, total = 0, ans = 0; cin >> n; int t; cin >> t; total = t; if (t > 0) { for (int i = 1; i < n; i++) { cin >> t; total += t; if (i % 2 == 1) { if (total > 0) { ans += total + 1; total = -1; } } else { if (total < 0) { ans += -(total) + 1; total = 1; } } } } else { for (int i = 1; i < n; i++) { cin >> t; total += t; if (i % 2 == 1) { if (total < 0) { ans += -(total) + 1; total = 1; } } else { if (total > 0) { ans += total + 1; total = -1; } } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Pradyumn Agrawal coderbond007 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastReader in = new FastReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, FastReader in, PrintWriter out) { int n = in.nextInt(); int[] a = in.nextIntArray(n); long[] sum = new long[n]; long ret = 0; boolean flag = true; for (int i = 0; i < n; i++) { sum[i] += a[i]; if (i != 0) { sum[i] += sum[i - 1]; if (sum[i] * sum[i - 1] >= 0) { flag = false; } } } if (flag) { out.println(0); return; } Arrays.fill(sum, 0); for (int i = 0; i < n; i++) { sum[i] += a[i]; if (i != 0) sum[i] += sum[i - 1]; if (sum[i] == 0) { if (i - 1 >= 0) { if (sum[i - 1] > 0) { sum[i] = -1; ret++; } else if (sum[i - 1] < 0) { sum[i] = 1; ret++; } } } else { if (sum[i] > 0) { if (i - 1 >= 0 && sum[i - 1] > 0) { ret += sum[i] + 1; sum[i] = -1; } } else if (sum[i] < 0) { if (i - 1 >= 0 && sum[i - 1] < 0) { ret += -sum[i] + 1; sum[i] = 1; } } } } out.println(ret); } } static class FastReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int pnumChars; private FastReader.SpaceCharFilter filter; public FastReader(InputStream stream) { this.stream = stream; } public int read() { if (pnumChars == -1) { throw new InputMismatchException(); } if (curChar >= pnumChars) { curChar = 0; try { pnumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (pnumChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c == ',') { c = read(); } if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int[] array = new int[n]; for (int i = 0; i < n; i++) { array[i] = nextInt(); } return array; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) lista=list(map(int,input().split())) updown="" goukei=0 count=0 if lista[0]<0: updown="up" else: updown="down" goukei=goukei+lista[0] print(goukei,count,updown) for i in range(1,n): if updown=="down": if lista[i]+goukei<0: goukei+=lista[i] updown="up" print(goukei,count,updown) elif lista[i]+goukei>0: count=count+abs(lista[i]+goukei)+1 goukei=-1 down="up" print(goukei,count,updown) elif updown=="up": if lista[i]+goukei>0: goukei+=lista[i] updown="down" print(goukei,count,updown) elif lista[i]+goukei<0: count=count+abs(lista[i]+goukei)+1 goukei=1 updown="down" print(goukei,count,updown) print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python2
# -*- coding:utf-8 -*- n = int(raw_input()) numlist = (raw_input()).split(' ') sumlist = [int(numlist[0])] count = 0 for i in range(1, n): sumlist.append(sumlist[i-1] + int(numlist[i])) while (True): if (sumlist[i-1] > 0 and sumlist[i] > 0): #i-1,i番目までのsumがともに正 #numlist[i] = int(numlist[i]) - 1 sumlist[i] -= 1 count += 1 elif (sumlist[i-1] < 0 and sumlist[i] < 0): #i-1,i番目までのsumがともに負 #numlist[i] = int(numlist[i]) + 1 sumlist[i] += 1 count += 1 elif (sumlist[i] == 0): #i番目までのsum=0 if (sumlist[i-1] > 0): #numlist[i] = int(numlist[i]) - 1 sumlist[i] -= 1 if (sumlist[i-1] < 0): #numlist[i] = int(numlist[i]) + 1 sumlist[i] += 1 count += 1 else: break print count
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, i, j, count, sum, x, bsum, s; vector<int> a; cin >> n; a.resize(n); cin >> a[0]; for (i = 1; i < n; i++) { cin >> a[i]; } count = 0; sum = 0; for (int i = 0; i < n - 1; i++) { bsum = sum; sum += a[i]; if (sum * (sum + a[i + 1]) >= 0) { x = abs(sum + a[i + 1]) + 1; s = abs(sum); if (a[i] * a[i + 1] < 0) { if (s - 1 > x) { a[i] = a[i] > 0 ? a[i] - x : a[i] + x; sum = bsum + a[i]; } else { a[i] = a[i] > 0 ? a[i] - (s - 1) : a[i] + (s - 1); sum = bsum + a[i]; s = x - (s - 1); a[i + 1] = a[i + 1] > 0 ? a[i + 1] + s : a[i + 1] - s; } } else { a[i + 1] = a[i + 1] > 0 ? -s - 1 : s + 1; } count += x; } } cout << count; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) s = 0 cnt = 0 for i in range(n): s += a[i] if i % 2 == 0: if s <= 0: cnt += abs(s) + 1 s = 1 else: if s >= 0: cnt += abs(s) + 1 s -= 1 ans1 = cnt s = 0 cnt = 0 for i in range(n): s += a[i] if i % 2 != 0: if s <= 0: cnt += abs(s) + 1 s = 1 else: if s >= 0: cnt += abs(s) + 1 s = -1 ans2 = cnt print(min(ans1, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> an(n); for (int i = 0; i < n; ++i) { cin >> an[i]; } int cnt_min = INT_MAX; for (int j = 0; j < 2; ++j) { int sign = j == 0 ? -1 : 1; int accum = an[0]; int cnt = 0; if (accum * sign <= 0) { auto x = sign - accum; accum += x; cnt += abs(x); } for (int i = 1; i < n; ++i) { auto new_accum = accum + an[i]; if (new_accum * accum >= 0) { int x = -sign - new_accum; new_accum += x; cnt += abs(x); an[i] += x; } int new_sign = new_accum > 0 ? 1 : -1; accum = new_accum; assert(new_sign == -sign); sign = new_sign; } if (cnt < cnt_min) { cnt_min = cnt; } } cout << cnt_min << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import scala.io.StdIn import scala.annotation.tailrec object Main extends App { val n = StdIn.readInt val a = StdIn.readLine.split(" ").map(_.toInt) val ans1 = a.tail./:(a.head,0)((acc,i) => { val (bsum, bcnt) = acc val sum = bsum + i val cnt = if(bsum < 0 && sum < 0) 1 - sum else if(bsum >= 0 && sum >= 0) -1 - sum else if(sum == 0) if(bsum < 0) 1 else -1 else 0 println(sum + " " + cnt) (sum+cnt, bcnt+cnt.abs) })._2 val ans2 = a.tail./:(-a.head,a.head.abs+1)((acc,i) => { val (bsum, bcnt) = acc val sum = bsum + i val cnt = if(bsum < 0 && sum < 0) 1 - sum else if(bsum >= 0 && sum >= 0) -1 - sum else if(sum == 0) if(bsum < 0) 1 else -1 else 0 println(sum + " " + cnt) (sum+cnt, bcnt+cnt.abs) })._2 println(math.min(ans1,ans2)) }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<long long int> A(N); for (int i = 0; i < N; i++) cin >> A[i]; vector<long long int> B(N); B[0] = A[0]; for (int i = 1; i < N; i++) B[i] = B[i - 1] + A[i]; long long int ans = 0; long long int base = 0; for (int i = 1; i < N; i++) { if ((B[i] + base) * (B[i - 1] + base) > 0) { if (B[i] + base > 0) { ans += abs(B[i] + base) + 1; base -= abs(B[i] + base) + 1; continue; } else if (B[i] + base < 0) { ans += abs(B[i] + base) + 1; base += abs(B[i] + base) + 1; continue; } } if (B[i - 1] + base == 0) { if (B[i] + base > 0) { ans += 1; base -= 1; continue; } else if (B[i] + base < 0) { ans += 1; base += 1; continue; } } if (i == N - 1 && B[i] + base == 0) ans++; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } long long res = 0, cur = a[0]; for (int i = 1; i < n; i++) { int s_prev = cur / abs(cur); int s_cur = (cur + a[i] == 0 ? 0 : (cur + a[i]) / abs(cur + a[i])); if (s_prev == s_cur || s_cur == 0) { res += abs(cur + a[i]) + 1; cur = (s_prev == -1 ? 1 : -1); } else { cur += a[i]; } } cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; int sum1 = 0; int sum2 = 0; int op1 = 0; int op2 = 0; cin >> n; for (int i = 0; i < n; i++) { int tmp; cin >> tmp; sum1 += tmp; sum2 += tmp; if (i % 2) { if (sum1 >= 0) { op1 += sum1 + 1; sum1 = -1; } if (sum2 <= 0) { op2 += -sum2 + 1; sum2 = 1; } } else { if (sum1 <= 0) { op1 += -sum1 + 1; sum1 = 1; } if (sum2 >= 0) { op2 += sum2 + 1; sum2 = -1; } } } if (op1 < op2) cout << op1; else cout << op2; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int a[100000]; int n; int solve(int tmp, int cnt) { for (int i = 1; i < n; ++i) { int prev = tmp; tmp += a[i]; if (prev > 0 && tmp >= 0) { cnt += tmp + 1; tmp = -1; } else if (prev < 0 && tmp <= 0) { cnt += abs(tmp) + 1; tmp = 1; } } return cnt; } int main() { cin >> n; for (int i = 0; i < (n); ++i) cin >> a[i]; int ans; if (a[0] == 0) ans = min(solve(1, 1), solve(-1, 1)); else if (a[0] > 0) ans = min(solve(a[0], 0), solve(-1, a[0] + 1)); else ans = min(solve(a[0], 0), solve(1, -a[0] + 1)); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long calc(int MOD, vector<int> hairetu, int n) { int result = 0; int sum = 0; for (int i = 0; i <= n - 1; i++) { sum += hairetu[i]; if (i % 2 == MOD && sum <= 0) { result += (1 - sum); sum = 1; } else if (i % 2 != MOD && sum >= 0) { result += (sum + 1); sum = -1; } } return result; } int main() { int num; cin >> num; vector<int> hairetu(num); for (int i = 0; i < num; i++) { cin >> hairetu[i]; } cout << min(calc(0, hairetu, num), calc(1, hairetu, num)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n=int(input()) a=list(map(int,input().split())) r=[0] for i in range(n): r.append(r[i]+a[i]) r.pop(0) print(r) q=[r[i] for i in range(n)] pm=[1-2*(i%2) for i in range(n)] mp=[1-2*((i+1)%2) for i in range(n)] sum1,sum2=0,0 sousa1,sousa2=0,0 for i in range(n): if np.sign(r[i]) != pm[i]: sum1+=abs(pm[i]-r[i]) sousa1=pm[i]-r[i] for j in range(n-i-1): r[i+j+1]=r[i+j+1]+sousa1 for i in range(n): if np.sign(q[i]) != mp[i]: sum2+=abs(mp[i]-q[i]) sousa2=mp[i]-q[i] for j in range(n-i-1): q[i+j+1]=q[i+j+1]+sousa2 print(min(sum1,sum2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long ans = 0, c, n, count = 0, b = 0; cin >> n; for (int i = 0; i < n; i++) { cin >> c; if (i == 0) { count = c; if (c < 0) b = 1; } else { count += c; if (b == 0) { while (count >= 0) { ans++; count--; } b = 1; } else { while (count <= 0) { ans++; count++; } b = 0; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace std; using namespace __gnu_pbds; #define MOD 1000000007 # define INF (1 < <29) #define MODSET(d) if ((d) >= MOD) d %= MOD; #define MODNEGSET(d) if ((d) < 0) d = ((d % MOD) + MOD) % MOD; #define MODADDSET(d) if ((d) >= MOD) d -= MOD; #define MODADDWHILESET(d) while ((d) >= MOD) d -= MOD; //defines #define FILE_IO freopen("in.txt","r",stdin); freopen("out.txt","w",stdout); #define sc1(a,type) type a; cin>>a; #define sc2(a,b,type) type a,b; cin>>a>>b; #define sc3(a, b, c,type) type a,b,c; cin>>a>>b>>c; #define sc4(a, b, c, d,type) type a ,b,c,d; cin>>a>>b>>c>>d; #define nl cout<<"\n"; #define foreach(v, c) for(__typeof( (c).begin()) v = (c).begin(); v != (c).end(); ++v) #define revforeach(v, c) for(__typeof( (c).rbegin()) v = (c).rbegin(); v != (c).rend(); ++v) #define fastio ios_base::sync_with_stdio(0);cin.tie(0); #define re(i,b) for(int i=0;i<int(b);i++) #define re1(i,b) for(int i=1;i<=int(b);i++) #define all(c) c.begin(), c.end() #define rall(c) c.rbegin(),c.rend() #define mpresent(container, element) (container.find(element) != container.end()) //for map,set..etc (returns true/false value) #define vpresent(container, element) (find(all(container),element) != container.end()) //for vectors,strings,list,deque (returns true/false value) #define eb emplace_back #define mp make_pair #define fi first #define se second #define pb push_back #define pf push_front #define ins insert #define F first #define S second #define clr clear() #define sz(x) ((int)x.size()) #define dt distance #define test(t) int t; cin>>t; while(t--) #define csb(i) __builtin_popcount(i) #define csbll(i) __builtin_popcountll(i) #define clz(x) __builtin_clz(x) #define clzl(x) __builtin_clzl(x) #define cp(x) __builtin_parity(x) #define adv(v,num) advance(v,num)//used for lists and other structures that use iterators,when you can't access elements randomly ( iterator moves num positions) #define mod 1000000007 #define MAX_ARR 1000000 #define v2d(rowsize,colsize,type,name) vector<vector<type>> name(rowsize,vector<type>(colsize)); #define digits_in(i) (ll)log10(i)+1 // gives no of digits in a number #define sqr(x) (x)*(x) //does not apply for i==0 , add an excetion contition for n==0 ( cust return count 1 for that inseted of using this function) //typedef typedef string str; typedef long long ll; typedef unsigned long long ull; typedef vector<int> vi; typedef vector<ll> vll; typedef vector<str> vs; typedef vector<char> vc; typedef pair<int,int> pii; typedef pair<str,int> psi; typedef pair<int,str> pis; typedef vector<pii> vii; typedef map<int,int> mii; typedef map<ll,ll> mll; typedef map<str,int> msi; typedef map<char,int> mci; typedef map<int,str> mis; typedef unordered_map<int,int> umii; typedef unordered_map<str,int> umsi; typedef unordered_map<int,str> umis; typedef unordered_map<str,str> umss; typedef unordered_map<char,int> umci; typedef set<str> ss; typedef set<int> si; typedef unordered_set<str> uss; typedef unordered_set<int> usi; typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> pbds; // #ifndef ONLINE_JUDGE // #include "debug.h" // #else // #define debug(args...) // #endif int main(){fastio // #ifndef ONLINE_JUDGE // FILE_IO // #endif vll v; test(t){ int temp;cin>>temp; v.pb(temp); } ll ct=0; re(i,sz(v)-1){ // debug(v[i] ,v[i]+v[i+1]); if( (v[i]<0 && v[i]+v[i+1]<0) || (v[i]>0 && v[i]+v[i+1]>0 )|| v[i]+v[i+1]==0 ){ if(v[i]+v[i+1]==0) ct+=1; else ct+=llabs(v[i]+v[i+1])+1; v[i+1]= v[i]>0?-1:1; } else{ v[i+1]+=v[i]; } // debug(ct); } cout<<ct; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import copy n = int(input()) a = list(map(int,input().split())) b = copy.copy(a) #sum_a = [] #sum_b = [] ans_a = 0 ans_b = 0 for i in range(n): if i%2==0: if sum(a[:i+1])>0: #sum_a.append(sum(a[:i+1])) tmp = 0 else: tmp = abs(sum(a[:i+1]))+1 a[i] += tmp ans_a += tmp #sum_a.append(sum(a[:i+1])) else: if sum(a[:i+1])<0: #sum_a.append(sum(a[:i+1])) tmp = 0 else: tmp = abs(sum(a[:i+1]))+1 a[i] -= tmp ans_a += tmp #sum_a.append(sum(a[:i+1])) if i%2==1: if sum(b[:i+1])>0: #sum_b.append(sum(b[:i+1])) tmp = 0 else: tmp = abs(sum(b[:i+1]))+1 b[i] += tmp ans_b += tmp #sum_b.append(sum(b[:i+1])) else: if sum(b[:i+1])<0: #sum_b.append(sum(b[:i+1])) tmp = 0 else: tmp = abs(sum(b[:i+1]))+1 b[i] -= tmp ans_b += tmp #sum_b.append(sum(b[:i+1])) #print(a) #print(sum_a) print(min(ans_a,ans_b))