Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N, i, sum, count; cin >> N; vector<int> input(N); for (i = 0; i < N; i++) { cin >> input.at(i); } sum = 0; count = 0; sum = input.at(0); if (input.at(0) >= 0) { for (i = 1; i < N; i++) { if (i % 2 == 1) { sum += input.at(i); if (sum >= 0) { while (sum >= 0) { sum--; count++; } } } if (i % 2 == 0) { sum += input.at(i); if (sum < 0) { while (sum <= 0) { sum++; count++; } } } } } if (input.at(0) < 0) { for (i = 1; i < N; i++) { if (i % 2 == 1) { sum += input.at(i); if (sum <= 0) { while (sum <= 0) { sum++; count++; } } } if (i % 2 == 0) { sum += input.at(i); if (sum >= 0) { while (sum >= 0) { sum--; count++; } } } } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long a[100005]; void solver() { long long cnt = 0; long long sum = a[0]; for (int i = 1; i <= n; ++i) { if (sum > 0) { if (sum + a[i] >= 0) { cnt += abs(sum - a[i]) + 1; sum = -1; } else { sum = sum + a[i]; } } else if (sum < 0) { if (sum + a[i] <= 0) { cnt += abs(sum + a[i]) + 1; sum = 1; } else { sum = sum + a[i]; } } } cout << cnt << endl; } int main() { cin >> n; for (int i = 0; i < n; ++i) { cin >> a[i]; } solver(); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; long long chk, ans = 0; scanf("%d", &n); vector<int> a(n); for (auto& e : a) scanf("%d", &e); chk = a[0]; if (chk > 0) { for (int i = 1; i < n; i++) { if (i % 2) { chk += a[i]; if (chk >= 0) { ans += chk + 1; chk = -1; } } else { chk += a[i]; if (chk <= 0) { ans += abs(chk) + 1; chk = 1; } } } } else { for (int i = 1; i < n; i++) { if (i % 2) { chk += a[i]; if (chk <= 0) { ans += abs(chk) + 1; chk = 1; } } else { chk += a[i]; if (chk >= 0) { ans += chk + 1; chk = -1; } } } } printf("%lld\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) L = [0 for _ in range(n)] L[0] = a[0] for i in range(1, n): L[i] = L[i-1] + a[i] delay = 0 all_over = 0 sign = (a[0] > 0) - (a[0] < 0) for i in range(1, n): L[i] += delay if L[i] <= 0 and sign == -1: delay += 1 - L[i] all_over += 1 - L[i] L[i] = 1 elif L[i] >= 0 and sign == 1: delay -= L[i] + 1 all_over += L[i] + 1 L[i] = -1 sign *= -1 print(all_over)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long a[n]; for (int i = 0; i < n; i++) cin >> a[i]; int t; if (a[0] >= 0) t = 1; else t = -1; int sum = a[0]; int ans = 0; for (int i = 1; i < n; i++) { int sum2 = sum + a[i]; if (sum > 0 && sum2 > 0) { ans += sum2 + 1; sum = -1; } else if (sum < 0 && sum2 < 0) { ans += -sum2 + 1; sum = 1; } else if (sum2 == 0) { ans++; if (sum < 0) sum = 1; else sum = -1; } else sum = sum2; } cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } long long ans = 0; if (a[0] == 0) { a[0] = 1; long long total = a[0]; long long temp; long long ans1 = 0; ans1++; for (int i = 1; i < n; i++) { temp = a[i]; if (total > 0) { if (total + a[i] >= 0) { a[i] = -(total + 1); } total += a[i]; ans1 += abs(a[i] - temp); a[i] = temp; } else if (total < 0) { if (total + a[i] <= 0) { a[i] = (-total + 1); } total += a[i]; ans1 += abs(a[i] - temp); a[i] = temp; } } a[0] = -1; total = a[0]; temp; long long ans2 = 0; ans2++; for (int i = 1; i < n; i++) { temp = a[i]; if (total > 0) { if (total + a[i] >= 0) { a[i] = -(total + 1); } total += a[i]; ans2 += abs(a[i] - temp); a[i] = temp; } else if (total < 0) { if (total + a[i] <= 0) { a[i] = (-total + 1); } total += a[i]; ans2 += abs(a[i] - temp); a[i] = temp; } total += a[i]; } ans = min(ans1, ans2); } else { long long total = a[0]; long long temp; for (int i = 1; i < n; i++) { temp = a[i]; if (total > 0) { if (total + a[i] >= 0) { a[i] = -(total + 1); } ans += abs(a[i] - temp); } else if (total < 0) { if (total + a[i] <= 0) { a[i] = (-total + 1); } ans += abs(a[i] - temp); } total += a[i]; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long INF = (1LL << 62); long long N; vector<long long> A, W; long long S[100002] = {INF * (-1)}; long long dp[100002] = {0}; void calcDP(int n) { if (n == 1) { if (W[1] != 0) { dp[1] = 0; } else { dp[1] = 1; if (W[2] <= 0) { W[1] = 1; } else { W[1] = -1; } S[1] = W[1]; } return; } else { S[n] = S[n - 1] + W[n]; if (S[n - 1] * S[n] < 0) { dp[n] = dp[n - 1]; } else { dp[n] = dp[n - 1] + abs(0 - S[n - 1] - W[n]) + 1; W[n] = 0 - S[n - 1] - (abs(S[n - 1]) / S[n - 1]); S[n] = S[n - 1] + W[n]; } return; } } int main(int argc, char* argv[]) { cin.tie(0); ios::sync_with_stdio(false); cin >> N; W.push_back(0); S[0] = 0; for (int i = 1; i <= N; i++) { long long a; cin >> a; A.push_back(a); W.push_back(a); if (i == 1) { S[1] = a; } else { S[i] = S[i - 1] + a; } } for (int i = 1; i <= N; i++) { calcDP(i); } printf("%lld\n", dp[N]); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.IOException; import java.util.StringTokenizer; public class Main { public static void main(String[] args) { try { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); StringTokenizer str = new StringTokenizer(br.readLine(), " "); long[] A = new long[n]; for(int i = 0; i < n ; i++) { A[i] = Integer.parseInt(str.nextToken()); } int c1 = func(A,1,n); int c2 = func(A,-1,n); System.out.println(Math.min(c1,c2)); } catch (IOException e) { System.out.println("error"); } } static int func(long[] A,int flg,int n){ long sum = 0; int c = 0; for(int i = 0; i < n; i++){ sum += A[i]; if(flg == 1){ //次は負 if(sum >= 0){ c += (sum + 1); sum = -1; } flg = -1; } else{ //次は正 if(sum <= 0){ c += 1+ (-sum); sum = 1; } flg = 1; } } return c; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, ansa = 0, ansb = 0, suma = 0, sumb = 0; cin >> n; for (int i = 0; i < (n); i++) { int c; cin >> c; if (i % 2 == 0) { if (suma + c <= 0) { ansa += 1 - c - suma; suma = 1; } if (sumb + c >= 0) { ansb += sumb + c + 1; sumb = -1; } } else { if (suma + c >= 0) { ansa += suma + c + 1; suma = -1; } if (sumb + c <= 0) { ansb += 1 - c - sumb; sumb = 1; } } } cout << min(ansa, ansb) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using P = pair<int, int>; bool is_diff(ll a, ll b) { if ((a > 0 && b < 0) || (a < 0 && b > 0)) return true; else return false; } ll f(vector<ll> a, ll a0, ll n) { ll ans = 0; ll total = a0; for (ll i = 0; i < n - 1; i++) { ll next_total = total + a[i + 1]; if (next_total == 0) { if (total > 0) next_total = -1; else next_total = 1; ans++; } else { if (is_diff(total, next_total)) total = next_total; else { if (next_total > 0) { total = -1; ans += next_total + 1; } else { total = 1; ans += (-next_total) + 1; } } } } return ans; } int main() { ll n; cin >> n; vector<ll> a(n); for (ll i = 0; i < n; i++) cin >> a[i]; ll ans; if (a[0] != 0) ans = f(a, a[0], n); else ans = min(f(a, 1, n) + 1, f(a, -1, n) + 1); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; } template <class T> inline string toString(T x) { ostringstream sout; sout << x; return sout.str(); } template <class T> inline T sqr(T x) { return x * x; } const double EPS = 1e-10; const double PI = acos(-1.0); const long long INF = 1000000007; template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } int main(void) { int N; cin >> N; vector<long long> a(N); for (int i = (0); i < (N); ++i) cin >> a[i]; vector<long long> s(N); s[0] = a[0]; for (int i = (0); i < (N - 1); ++i) s[i + 1] = s[i] + a[i + 1]; long long offset = 0, ans = 0; for (int i = (0); i < (N - 1); ++i) { if ((s[i] + offset) * (s[i + 1] + offset) >= 0) { ans += abs(s[i + 1] + offset) + 1; if (s[i] + offset > 0) offset -= s[i + 1] + offset + 1; else offset += -(s[i + 1] + offset - 1); } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using ll = long long; using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; vector<ll> v(n, 0); for (int i = (int)(0); i < (int)(n); i++) cin >> v[i]; vector<int> p1(n + 1, 1), p2(n + 1, 1); for (int i = (int)(0); i < (int)(n + 1); i++) { if (i % 2 == 0) p1[i] *= -1; } for (int i = (int)(0); i < (int)(n + 1); i++) { if (i % 2 == 1) p2[i] *= -1; } priority_queue<int, vector<int>, greater<int> > pq; vector<ll> sum_until(n + 1, 0); int cnt; cnt = 0; for (int i = 1; i <= n; i++) { sum_until[i] = sum_until[i - 1] + v[i - 1]; if (sum_until[i] * p1[i] < 0) { int plus = abs(sum_until[i]); cerr << "(" "i" "," "plus * p1[i]" "):(" << i << "," << plus * p1[i] << ")" << endl; cerr << "sum_until[i]" ":" << sum_until[i] << endl; sum_until[i] += plus * p1[i] + p1[i]; cerr << "sum_until[i]" ":" << sum_until[i] << endl; cnt += abs(plus * p1[i]) + 1; } } cerr << "cnt" ":" << cnt << endl; pq.push(cnt); p1 = p2; cnt = 0; for (int i = 1; i <= n; i++) { cerr << "i" ":" << i << endl; sum_until[i] = sum_until[i - 1] + v[i - 1]; if (sum_until[i] * p1[i] < 0) { int plus = abs(sum_until[i]); cerr << "(" "i" "," "plus * p1[i]" "):(" << i << "," << plus * p1[i] << ")" << endl; cerr << "sum_until[i]" ":" << sum_until[i] << endl; sum_until[i] += plus * p1[i] + p1[i]; cerr << "sum_until[i]" ":" << sum_until[i] << endl; cnt += abs(plus * p1[i]) + 1; } else if (sum_until[i] == 0) { sum_until[i] = p1[i]; cnt += 1; } } pq.push(cnt); cerr << "cnt" ":" << cnt << endl; cout << pq.top() << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Main main = new Main(); main.run(); } public void run() { Scanner sc = new Scanner(System.in); int n= sc.nextInt(); int sum[]=new int[n]; sum[0]=sc.nextInt(); boolean evenPlus = true; if(sum[0]<0) evenPlus=false; int ans = 0; for(int i=1; i<n; i++) { int a = sc.nextInt(); if(i%2==0) { if(evenPlus) { if(sum[i-1]+a <= 0) { ans += Math.abs(sum[i-1]+a)+1; sum[i]=1; } else { sum[i]=sum[i-1]+a; } } else { if(sum[i-1]+a >= 0) { ans += Math.abs(sum[i-1]+a)+1; sum[i]=-1; } else { sum[i]=sum[i-1]+a; } } } else { if(!evenPlus) { if(sum[i-1]+a <= 0) { ans += Math.abs(sum[i-1]+a)+1; sum[i]=1; } else { sum[i]=sum[i-1]+a; } } else { if(sum[i-1]+a >= 0) { ans += Math.abs(sum[i-1]+a)+1; sum[i]=-1; } else { sum[i]=sum[i-1]+a; } } } } System.out.println(ans); sc.close(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> vec; int a; for (int i = 0; i < n; i++) { cin >> a; vec.emplace_back(a); } int ans = 0; int wa = vec[0]; for (int i = 1; i < n; i++) { if (vec[i - 1] > 0) { while (wa + vec[i] >= 0) { ans++; vec[i]--; } wa += vec[i]; } if (vec[i - 1] < 0) { while (wa + vec[i] <= 0) { ans++; vec[i]++; } wa += vec[i]; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python2
# -*- coding: utf-8 -*- n = input() a = map(int, raw_input().split()) b = a asum = [0]*len(a) bsum = [0]*len(a) asum[0] = a[0] bsum[0] = b[0] cnt_a = 0 cnt_b = 0 if(a[0]==0): asum[0] = 1 cnt_a = 1 bsum[0] = -1 cnt_b = 1 for i in range(len(a)-1): asum[i+1] = a[i+1] + asum[i] if(i%2==0 and asum[i+1]>=0): cnt_a += asum[i+1]+1 asum[i+1] = -1 elif(i%2==1 and asum[i+1]<=0): cnt_a += (-1)*asum[i+1]+1 asum[i+1] = 1 for i in range(len(b)-1): bsum[i+1] = b[i+1] + bsum[i] if(i%2==0 and bsum[i+1]<=0): cnt_b += (-1)*bsum[i+1]+1 bsum[i+1] = 1 elif(i%2==1 and bsum[i+1]>=0): cnt_b += bsum[i+1]+1 bsum[i+1] = -1 print(min(cnt_a,cnt_b))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = [int(i) for i in input().split()] ff = -1 for i in range(n): if A[i] != 0: ff = i break if A[0] != 0: ans = 0 S = A[0] f = A[0]//abs(A[0]) else: if ff == -1: ans = 1 S[0] = 1 f = 1 else: if ff % 2 == 0: ans = 1 S[0] = 1 f = 1 else: ans = 1 S[0] = -1 f = -1 for a in A[1:]: S += a if S == 0: ans += 1 S = -f else: if S/abs(S) != f*(-1): ans += abs(S)+1 S = -f f *= -1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } long long total = a[0], ans = 0, ans1 = 0, ans2 = 0; bool flg1 = false, flg2 = false; if (total <= 0) { ans += abs(total - 1); total = 1; } for (int i = 1; i < n; i++) { if (total < 0) { flg1 = false; } else { flg1 = true; } if (flg1) { total += a[i]; if (total >= 0) { ans1 += total + 1; total = -1; } } else { total += a[i]; if (total <= 0) { ans1 += abs(total - 1); total = 1; } } } total = a[0]; if (total >= 0) { ans += abs(total + 1); total = -1; } for (int i = 1; i < n; i++) { if (total < 0) { flg1 = false; } else { flg1 = true; } if (flg1) { total += a[i]; if (total >= 0) { ans2 += total + 1; total = -1; } } else { total += a[i]; if (total <= 0) { ans2 += abs(total - 1); total = 1; } } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n=gets.chomp.to_i a=gets.split.map(&:to_i) a.map!{|e| -e} if a[0]<0 s, m=a[0], 0 (1...n).each do |i| s+=a[i] if i%2==0 if s<=0 m+=(-s+1) s=1 end else if s>=0 m+=s+1 s=-1 end end end s, m2=-1, a[0]+1 (1...n).each do |i| s+=a[i] if i%2==0 if s>=0 m2+=s+1 s=-1 end else if s<=0 m2+=(-s+1) s=1 end end end puts [m, m2].min
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) seq = [int(x) for x in input().split()] a_sum = seq[0] op = 0 for a in seq[1:]: tmp = a_sum + a if tmp * a_sum < 0: a_sum = tmp elif a_sum < 0: while a_sum * (a_sum + a) >= 0: a += 1 op += 1 a_sum += a elif a_sum > 0: while a_sum * (a_sum + a) >= 0: a -= 1 op += 1 a_sum += a print(op)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void sum(int* N, int* S, int n); void add(int* S, int n, int del, int k); int main() { int *N, *S; int count_eve = 0, count_odd = 0, n; int j = 0, k = 0; cin >> n; N = new int[n]; S = new int[n]; for (int i = 0; i < n; i++) { cin >> N[i]; } sum(N, S, n); int del1 = 0, del2 = 0; while (j != n) { if (j % 2 == 0 && S[j] + del1 <= 0) { count_eve += abs(S[j] + del1) + 1; del1 += abs(S[j]) + 1; } else if (j % 2 == 1 && S[j] + del1 >= 0) { count_eve += abs(S[j + del1]) + 1; del1 += -abs(S[j] + del1) - 1; } j++; } sum(N, S, n); while (k != n) { if (k % 2 == 0 && S[k] + del2 >= 0) { count_odd += abs(S[k] + del2) + 1; del2 += -abs(S[k] + del2) - 1; } else if (k % 2 == 1 && S[k] + del2 <= 0) { count_odd += abs(S[k] + del2) + 1; del2 += abs(S[k] + del2) + 1; } k++; } cout << min(count_eve, count_odd) << endl; delete[] N; delete[] S; return 0; } void sum(int* N, int* S, int n) { S[0] = N[0]; for (int i = 1; i < n; i++) S[i] = S[i - 1] + N[i]; } void add(int* S, int n, int del, int k) { for (int i = k; i < n + 1; i++) S[i] += del; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } long long sum1 = a.at(0); long long sum2 = a.at(0); long long op1 = 0; long long op2 = 0; if (sum1 < 0) { sum1 = 1; op1 += -1 * a.at(0) + 1; } if (sum2 > 0) { sum2 = -1; op2 += a.at(0) + 1; } for (int j = 1; j < n; j++) { if (sum1 > 0) { sum1 += a.at(j); if (sum1 >= 0) { op1 += (sum1 + 1); sum1 = -1; } } else { sum1 += a.at(j); if (sum1 <= 0) { op1 += (-1 * sum1 + 1); sum1 = 1; } } if (sum2 > 0) { sum2 += a.at(j); if (sum2 >= 0) { op2 += (sum2 + 1); sum2 = -1; } } else { sum2 += a.at(j); if (sum2 <= 0) { op2 += (-1 * sum2 + 1); sum2 = 1; } } } cout << (op1 > op2 ? op2 : op1) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys input = sys.stdin.readline n = int(input()) a_list = list(map(int, input().split())) cnt = 0 a_sum = a_list[0] if a_sum > 0: flag = 1 elif a_sum == 0: flag = 1 cnt += 1 else: flag = -1 for a in a_list[1:]: a_sum += a if flag == 1: if a_sum >= 0: cnt += a_sum+1 a_sum = -1 flag = -1 else: if a_sum <= 0: cnt += abs(a_sum)+1 a_sum = 1 flag = 1 print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import sequtils, strutils, algorithm, math, future, sets, tables, hashes, intsets let read = iterator : string {.closure.} = (while true : (for s in stdin.readLine.split : yield s)) var n = read().parseint a = newseqwith(n, read().parseint) acm1 = newseqwith(n + 1, 0) acm2 = newseqwith(n + 1, 0) cur = 0 ans1 = 0 ans2 = 0 for i in 0 ..< n: acm1[i + 1] = acm1[i] + a[i] acm2[i + 1] = acm2[i] + a[i] if acm1[1] == 0: ans1 = 1 acm1[1] = 1 cur = 1 for i in 2 .. n: if acm1[i - 1] + cur < 0 and acm1[i] + cur <= 0: ans1 += abs(1 - acm1[i] + cur) cur += abs(1 - acm1[i]) acm1[i] = 1 elif acm1[i - 1] + cur > 0 and acm1[i] + cur >= 0: ans1 += abs(-1 - acm1[i] + cur) cur -= abs(-1 - acm1[i]) acm1[i] = -1 if acm2[1] == 0: ans2 = 1 acm2[1] = -1 cur = -1 else: if acm2[1] + cur > 0: ans2 += abs(-1 - acm2[1]) cur -= abs(-1 - acm2[1]) acm2[1] = -1 else: ans2 += abs(1 - acm2[1]) cur += abs(1 - acm2[1]) acm1[1] = 1 for i in 2 .. n: if acm2[i - 1] + cur < 0 and acm2[i] + cur <= 0: ans2 += abs(1 - acm2[i] + cur) cur += abs(1 - acm2[i]) acm2[i] = 1 elif acm2[i - 1] + cur > 0 and acm2[i] + cur >= 0: ans2 += abs(-1 - acm2[i] + cur) cur -= abs(-1 - acm2[i]) acm2[i] = -1 echo min(ans1, ans2)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; int a[100010]; int main() { int n; while (scanf("%d", &n) != EOF) { long long sum = 0; for (int i = 0; i < n; i++) { scanf("%d", &a[i]); } int tmp = -1; for (int i = 0; i < n; i++) { if (a[i] != 0) { tmp = i; break; } } if (tmp != 0 && a[tmp] > 0) { if (tmp % 2) a[0] = -1; else a[0] = 1; sum++; } else if (tmp != 0 && a[tmp] < 0) { if (tmp % 2) a[0] = 1; else a[0] = -1; sum++; } long long oo = a[0], flag; if (a[0] > 0) flag = 1; else if (a[0] < 0) flag = -1; for (int i = 1; i < n; i++) { oo += a[i]; if (flag == 1) { if (oo >= 0) { sum += oo + 1; oo = -1; } flag = -1; } else if (flag == -1) { if (oo <= 0) { sum += 0 - oo + 1; oo = 1; } flag = 1; } } printf("%lld\n", sum); } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(int argc, const char* argv[]) { long long n, x; long long cnt; vector<long long> v, sum; cin >> n; for (int i = 0; i < n; i++) { cin >> x; v.push_back(x); sum.push_back(0); } sum[0] = v[0]; cnt = 0; for (int i = 1; i < n; i++) { sum[i] = sum[i - 1] + v[i]; if (sum[i - 1] >= 0 && sum[i] >= 0) { cnt += sum[i - 1] + 1 + v[i]; v[i] = sum[i - 1] * (-1) - 1; sum[i] = -1; } else if (sum[i - 1] < 0 && sum[i] < 0) { cnt += sum[i - 1] * (-1) + 1 - v[i]; v[i] = sum[i - 1] * (-1) + 1; sum[i] = 1; } else if (sum[i] == 0 && sum[i - 1] > 0) { cnt++; v[i]--; sum[i] = -1; } else if (sum[i] == 0 && sum[i - 1] < 0) { cnt++; v[i]++; sum[i] = 1; } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> vector; long long temp; for (int i = 0; i < n; i++) { cin >> temp; vector.push_back(temp); } long long answer = 0; long long sum = 0; for (int i = 0; i < n; i++) { if (sum == 0) sum += vector[0]; else if (sum < 0) { if (sum + vector[i] >= 0) { sum += vector[i]; } else { answer += abs((-1) * sum + 1 - vector[i]); sum = 1; } } else { if (sum + vector[i] <= 0) { sum += vector[i]; } else { answer += abs((-1) * sum - 1 - vector[i]); sum = -1; } } } cout << answer << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAX = 100005; int main() { int n, tmp; long long ans1{0}; long long ans2{0}; cin >> n; long long A[MAX], B[MAX]; long long cum_sum = 0; for (int i = 0; i < n; i++) { cin >> tmp; cum_sum += tmp; A[i] = cum_sum; B[i] = cum_sum; } tmp = 0; if (A[0] <= 0) { tmp = -A[0] + 1; ans1 += tmp; for (int i = 0; i < n; i++) { A[i] += tmp; } } for (int i = 0; i < n - 1; i++) { if (A[i] > 0) { if (A[i + 1] >= 0) { tmp = (A[i + 1] + 1); ans1 += tmp; for (int j = i + 1; j < n; j++) A[j] -= tmp; } } else if (A[i] < 0) { if (A[i + 1] <= 0) { tmp = (-A[i + 1] + 1); ans1 += tmp; for (int j = i + 1; j < n; j++) A[j] += tmp; } } } tmp = 0; if (B[0] >= 0) { tmp = B[0] + 1; ans2 += tmp; for (int i = 0; i < n; i++) { A[i] -= tmp; } } for (int i = 0; i < n - 1; i++) { if (B[i] > 0) { if (B[i + 1] >= 0) { tmp = (B[i + 1] + 1); ans2 += tmp; for (int j = i + 1; j < n; j++) B[j] -= tmp; } } else if (B[i] < 0) { if (B[i + 1] <= 0) { tmp = (-B[i + 1] + 1); ans2 += tmp; for (int j = i + 1; j < n; j++) B[j] += tmp; } } } long long ans = (ans1 > ans2 ? ans2 : ans1); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } long long sumi = a.at(0), val1 = 0; long long val2 = val1; for (int i = 1; i < n; i++) { if (i % 2 == 1) { if (sumi + a.at(i) < 0) sumi += a.at(i); else { val1 += (sumi + a.at(i) + 1); sumi = -1; } } else { if (sumi + a.at(i) > 0) sumi += a.at(i); else { val1 += (abs(sumi + a.at(i)) + 1); sumi = 1; } } } for (int i = 1; i < n; i++) { if (i % 2 == 1) { if (sumi + a.at(i) > 0) sumi += a.at(i); else { val2 += (abs(sumi + a.at(i)) + 1); sumi = 1; } } else { if (sumi + a.at(i) < 0) sumi += a.at(i); else { val2 += (sumi + a.at(i) + 1); sumi = -1; } } } cout << min(val1, val2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = list(map(int,input().split())) cur = A[0] ans = 0 for a in A[1:]: if cur > 0: if a + cur >= 0: ans += abs(-1 - (a + cur)) cur = -1 else: cur = a + cur elif cur < 0: if a + cur <= 0: ans += abs(1 - (a + cur)) cur = 1 else: cur = a + cur print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void answer1() { cin.tie(0); ios_base::sync_with_stdio(false); int n; cin >> n; vector<int> a(n); for (int& a_i : a) { cin >> a_i; } long long count = 0; long long sum = 0; long long count2 = 0; long long sum2 = 0; bool is_positive = a.at(0) > 0; for (int i = 0; i < a.size(); i++) { sum += a.at(i); sum2 += a.at(i); if (is_positive) { if (sum <= 0) { long long diff = 1 - sum; count += diff; sum += diff; } if (sum2 >= 0) { long long diff = 1 + sum2; count2 += diff; sum2 -= diff; } } else { if (sum >= 0) { long long diff = 1 + sum; count += diff; sum -= diff; } if (sum2 <= 0) { long long diff = 1 - sum2; count2 += diff; sum2 += diff; } } is_positive = !is_positive; } cout << min(count, count2) << endl; } void answer2() { cin.tie(0); ios_base::sync_with_stdio(false); int n; cin >> n; vector<int> a(n); for (int& a_i : a) { cin >> a_i; } long long count = 0; long long sum = 0; long long count2 = 0; long long sum2 = 0; for (int i = 0; i < a.size(); i++) { sum += a.at(i); sum2 += a.at(i); if (i % 2 == 0) { if (sum <= 0) { long long diff = 1 - sum; count += diff; sum = 1; } if (sum >= 0) { long long diff = 1 + sum; count += diff; sum = -1; } } else { if (sum >= 0) { long long diff = 1 + sum; count += diff; sum = -1; } if (sum <= 0) { long long diff = 1 - sum; count += diff; sum = 1; } } } cout << min(count, count2) << endl; } int main() { answer2(); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import copy n = int(input()) a = list(map(int, input().split())) def judge_pm(a,b): if a*b<0: return True else: return False a1 = copy.deepcopy(a) tmp_sum = a1[0] operate_num1 = 0 for i in range(1, n): if judge_pm(tmp_sum, tmp_sum+a1[i]): pass elif tmp_sum<0: tmp_operate_num = - tmp_sum + 1 - a1[i] operate_num1 += tmp_operate_num a1[i] += tmp_operate_num else: tmp_operate_num = tmp_sum + 1 + a1[i] operate_num1 += tmp_operate_num a1[i] -= tmp_operate_num tmp_sum += a1[i] a2 = copy.deepcopy(a) operate_num2 = 0 if a2[0]<0: operate_num2 += 1 - a2[0] a2[0] += operate_num2 else: operate_num2 += a2[0] + 1 a2[0] -= operate_num2 tmp_sum = a2[0] for i in range(1, n): if judge_pm(tmp_sum, tmp_sum+a2[i]): pass elif tmp_sum<0: tmp_operate_num = - tmp_sum + 1 - a2[i] operate_num2 += tmp_operate_num a2[i] += tmp_operate_num else: tmp_operate_num = tmp_sum + 1 + a2[i] operate_num2 += tmp_operate_num a2[i] -= tmp_operate_num tmp_sum += a2[i] print(min(operate_num1, operate_num2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int inf = 999999999; const double pi = acos(-1); int a[100005] = {}; int main() { int n, ans = 0, wa = 0; cin >> n; for (int i = (0); i < (int)(n); i++) cin >> a[i]; wa = a[0]; for (int i = (1); i < (int)(n); i++) { if (wa >= 0) { int tes = wa + a[i]; if (tes < 0) { wa = tes; } else { ans += -(-1 - tes); wa = -1; } } else { int tes = wa + a[i]; if (tes > 0) { wa = tes; } else { ans += 1 - tes; wa = 1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> void cout_vec(const vector<T> &vec) { for (auto itr : vec) cout << itr << ' '; cout << endl; } const long long mod = 1e9 + 7; const long long inf = 1e15; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; vector<int> a(n); int cnt1 = 0, cnt2 = 0, sum1 = 0, sum2 = 0; for (long long i = 0; i < n; i++) { cin >> a[i]; sum1 += a[i], sum2 += a[i]; if (i % 2) { if (sum1 <= 0) { cnt1 += 1 - sum1; sum1 = 1; } if (sum2 >= 0) { cnt2 += abs(sum2 + 1); sum2 = -1; } } else { if (sum2 <= 0) { cnt2 += 1 - sum2; sum2 = 1; } if (sum1 >= 0) { cnt1 += abs(sum1 + 1); sum1 = -1; } } } cout << min(cnt1, cnt2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
a = int(input()) b = list(map(int, input().split())) num = 0 k = b[0] + b[1] if k == 0: if b[0] >= 0: k -= 1 else: k += 1 num += 1 for i in range(a-2): if k > 0: k += b[i+2] if k > -1: num += k +1 k = -1 else: k += b[i+2] if k < 1: num += -k + 1 k = 1 print(num)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def culc(a, plus, ans): sum = a[0] for i in range(1, len(a)): plus = not(plus) sum += a[i] if plus: if sum <= 0: ans += abs(sum) + 1 sum = 1 else: if sum >= 0: ans += abs(sum) + 1 sum = -1 return ans n = int(input()) a = list(map(int, input().split())) plus = None ans = 0 if a[0] == 0: ans += 1 a[0] = 1 plus = True elif a[0] > 0: plus = True else: plus = False ans1 = culc(a, plus, ans) a[0] = a[0] // abs(a[0]) * -1 ans2 = abs(a[0]) + 1 ans2 = culc(a, not(plus), abs(a[0]) + 1 - ans) print(min(ans1, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<long long int> A(N); for (int i = 0; i < N; i++) cin >> A[i]; vector<long long int> B(N); B[0] = A[0]; for (int i = 1; i < N; i++) B[i] = B[i - 1] + A[i]; int ans = 0; int base = 0; for (int i = 1; i < N; i++) { if ((B[i] + base) * (B[i - 1] + base) > 0) { if (B[i] + base > 0) { if (B[i] + base > B[i - 1] + base) { ans += abs(B[i - 1] + base) + 1; base -= abs(B[i - 1] + base) + 1; } else { ans += abs(B[i] + base) + 1; base -= abs(B[i] + base) + 1; } continue; } else if (B[i] + base < 0) { if (B[i] + base < B[i - 1] + base) { ans += abs(B[i - 1] + base) + 1; base += abs(B[i - 1] + base) + 1; } else { ans += abs(B[i] + base) + 1; base += abs(B[i] + base) + 1; } continue; } } if (B[i - 1] + base == 0) { if (B[i] + base > 0) { ans += 1; base -= 1; continue; } else if (B[i] + base < 0) { ans += 1; base += 1; continue; } } if (i == N - 1 && B[i] + base == 0) ans++; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
object Main { def main(args: Array[String]): Unit = { solve2 } def solve2(): Unit = { val sc = new java.util.Scanner(System.in) val n = sc.nextInt val a = new Array[Int](n) for(i <- 0 until n){ a(i) = sc.nextInt } var sum = 0L var opeCount1 = 0L // 正、負、正、負(偶数インデックスが正)とする for (i <- 0 until n) { sum = sum + a(i) if (i % 2 == 0) { if (sum <= 0) { opeCount1 += -sum + 1 sum = 1 } } else { if (sum > 0) { opeCount1 += sum + 1 sum = -1 } } } sum = 0L var opeCount2 = 0L // 負、正、負、正(奇数インデックスが正)とする for (i <- 0 until n) { sum = sum + a(i) if (i % 2 != 0) { if (sum <= 0) { opeCount2 += -sum + 1 sum = 1 } } else { if (sum > 0) { opeCount2 += sum + 1 sum = -1 } } } println(math.min(opeCount1, opeCount2)) } def solve(): Unit = { val sc = new java.util.Scanner(System.in) val n = sc.nextInt val a = new Array[Int](n) for(i <- 0 until n){ a(i) = sc.nextInt } var prevSum = a(0) var opeCount = 0 for (i <- 1 until n) { val currSum = prevSum + a(i) if (prevSum < 0 && currSum < 0) { opeCount += math.abs(currSum) + 1 prevSum = 1 } else if (prevSum > 0 && currSum > 0) { opeCount += math.abs(currSum) + 1 prevSum = -1 } else { if (currSum == 0) { opeCount += 1 if (prevSum < 0) { prevSum = 1 } else { prevSum = -1 } } else { prevSum = prevSum + a(i) } } } println(opeCount) } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } int main() { int n; cin >> n; vector<ll> a(n); for (int i = (0); i < (n); ++i) cin >> a[i]; ll sum = a[0]; ll ans = 0; for (int i = (1); i < (n); ++i) { sum += a[i]; if (sum * (sum - a[i]) < 0) ; else { if (sum == 0) { if (sum - a[i] < 0) { sum = 1; ans++; } else { ans++; sum = -1; } } else if (sum > 0) { ans += sum + 1; sum = -1; } else { ans += -sum + 1; sum = 1; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; class Main { int n; int[] a; public static void main(String[] args) { Scanner sc = new Scanner(System.in); Main m = new Main(sc); m.solve(); sc.close(); } Main(Scanner sc) { n = sc.nextInt(); a = new int[n]; for(int i=0;i<n;i++){ a[i] = sc.nextInt(); } } void solve() { long cnt1 = (a[0]>0)?0:(Math.abs(a[0])+1); int sign = 1; long sum = (a[0]>0)?a[0]:1; for(int i=1;i<n;i++){ sum += a[i]; if(sum*sign>=0){ cnt1 += Math.abs(sum) + 1; sum = -sign; } sign *= -1; } System.out.println(cnt1); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; int sum = 0, ans1 = 0, ans2 = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0) { if (sum <= 0) { ans1 += 1 - sum; sum = 1; } } else { if (sum >= 0) { ans1 += 1 + sum; sum = -1; } } } sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 != 0) { if (sum <= 0) { ans2 += 1 - sum; sum = 1; } } else { if (sum >= 0) { ans2 += 1 + sum; sum = -1; } } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const int INF = 1e9; const int MOD = 1e9 + 7; using LL = long long; const LL LINF = 1e18; using namespace std; class Edge { public: int from, to, value; Edge(int a, int b, int c) { from = a; to = b; value = c; } Edge(int a, int b) { from = a; to = b; } }; int main() { int(N); cin >> (N); vector<int> vec; for (int a = 0; a < (N); ++a) { int(b); cin >> (b); vec.push_back(b); } int ans1 = 0, ans2 = 0, n1 = 0, n2 = 0; for (int a = 0; a < N; a++) { n1 += vec.at(a); n2 += vec.at(a); if (a % 2 == 0) { if (n1 >= 0) { ans1 += abs(n1 - (-1)); n1 -= abs(n1 - (-1)); } if (n2 <= 0) { ans2 += abs(n2 - 1); n2 += abs(n2 - 1); } } else { if (n2 >= 0) { ans2 += abs(n2 - (-1)); n2 -= abs(n2 - (-1)); } if (n1 <= 0) { ans1 += abs(n1 - 1); n1 += abs(n1 - 1); } } } cout << (min(ans1, ans2)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; ++i) cin >> a.at(i); long long cnt = 0, cnt2 = 0, sum = a.at(0); if (a.at(0) >= 0) for (int i = 1; i < n; i++) { if (i % 2 == 1) { while (a.at(i) >= 0 || sum + a.at(i) >= 0) { cnt++; a.at(i)--; } sum += a.at(i); } else { while (a.at(i) < 0 || sum + a.at(i) <= 0) { cnt++; a.at(i)++; } sum += a.at(i); } } else { for (int i = 1; i < n; i++) { if (i % 2 == 1) { while (a.at(i) < 0 || sum + a.at(i) <= 0) { cnt++; a.at(i)++; } sum += a.at(i); } else { while (a.at(i) >= 0 || sum + a.at(i) >= 0) { cnt++; a.at(i)--; } sum += a.at(i); } } } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys import copy import math from _bisect import * from collections import * from operator import itemgetter from math import factorial """ from fractions import gcd def lcm(x, y): return (x * y) // gcd(x, y) """ stdin = sys.stdin ni = lambda: int(ns()) na = lambda: list(map(int, stdin.readline().split())) ns = lambda: stdin.readline() n = ni() li = na() ans = [0, 0] s = li[0] for j in range(2): code = j for i in range(n - 1): code = 1 - code if code: if s + li[i + 1] > 0: s += li[i + 1] else: ans[j] += abs(s * (-1) + 1 - li[i + 1]) s = 1 else: if s + li[i + 1] < 0: s += li[i + 1] else: ans[j] += abs(s * (-1) - 1 - li[i + 1]) s = -1 print(min(ans))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 10; int a[maxn]; int main() { int n; long long sum; scanf("%d", &n); for (int i = 0; i < n; i++) scanf("%d", &a[i]); sum = a[0]; long long cnt = 0; if (sum == 0) { int i = 1; while (a[i] == 0 && i < n) i++; if (i == n) { cnt = (n - 1) * 2 + 1; printf("%lld\n", cnt); return 0; } if (a[i] > 0 && i & 1 == 1) { sum = -1; cnt++; } else if (a[i] > 0 && i & 1 == 0) { sum = 1; cnt++; } else if (a[i] < 0 && i & 1 == 1) { sum = 1; cnt++; } else if (a[i] < 0 && i & 1 == 0) { sum = -1; cnt++; } } for (int i = 1; i < n; i++) { if (sum > 0) { long long t = sum + a[i]; if (t < 0) sum = t; else { long long b = abs(t + 1); cnt += b; sum = -1; } } else if (sum < 0) { long long t = sum + a[i]; if (t > 0) sum = t; else { long long b = abs(1 - t); cnt += b; sum = 1; } } } printf("%lld\n", cnt); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; const ll mod = LLONG_MAX; int a[100010]; int rui[100010]; int n; int main() { cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; rui[0] = a[0]; for (int i = 1; i < n; i++) { rui[i] += a[i] + rui[i - 1]; } int temp = 0; int ans = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0 && rui[i] + temp == 0) { temp--; ans++; continue; } if (i % 2 == 1 && rui[i] + temp == 0) { temp++; ans++; continue; } if (i % 2 == 0 && rui[i] + temp < 0) { ans += abs(1 - (rui[i] + temp)); temp += 1 - (rui[i] + temp); } if (i % 2 == 1 && rui[i] + temp > 0) { ans += abs(-(1 + rui[i] + temp)); temp += -(1 + rui[i] + temp); } } if (ans < 0) ans = 1e9; temp = 0; int ans2 = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0 && rui[i] + temp == 0) { temp++; ans2++; continue; } if (i % 2 == 1 && rui[i] + temp == 0) { temp--; ans2++; continue; } if (i % 2 == 0 && rui[i] + temp > 0) { ans2 += abs(-(1 + rui[i] + temp)); temp += -(1 + rui[i] + temp); } if (i % 2 == 1 && rui[i] + temp < 0) { ans2 += abs(1 - (rui[i] + temp)); temp += 1 - (rui[i] + temp); } } if (ans2 < 0) ans2 = 1e9; cout << min(ans, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { /** * @param args */ public static void main(String[] args) { // TODO 自動生成されたメソッド・スタブ Scanner scan = new Scanner(System.in); int N = Integer.parseInt(scan.nextLine()); String[] str = scan.nextLine().split(" "); int[] tmp = new int[str.length]; int sum = 0; int cnt = 0; for(int i = 0; i < str.length; i++){ tmp[i] = Integer.parseInt(str[i]); } sum = tmp[0]; for(int i = 1; i < tmp.length; i++){ if(sum >= 0){ if(sum + tmp[i] >= 0){ cnt = cnt + Math.abs(sum + tmp[i]) + 1; sum = -1; }else{ sum += tmp[i]; } }else if(sum < 0){ if(sum + tmp[i] <= 0){ cnt = cnt + Math.abs(sum + tmp[i]) + 1; sum = 1; }else{ sum += tmp[i]; } } } System.out.println(cnt); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) l=list(map(int,input().split())) c,f=0,l[0]/abs(l[0]) s=l[0] for i in range(1,n,1): t=s+l[i] if s*t>0: s=-1*f c+=abs(t-s+1) else: f=-1*f s=s+l[i] print(int(c))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) cnt1,cnt2,sm1,sm2=0,0,0,0 for i in a:#+ sm1+=i if a.index(i)%2 ==0: if sm1<1: cnt1+=1-sm1 sm1=1 else: if sm1>-1: cnt1+=1+sm1 sm1=-1 for i in a:#- sm2=i if a.index(i)%2 ==0: if sm2>-1: cnt2+=1+sm2 sm2=-1 else: if sm2<1: cnt2+=1-sm2 sm2=1 print(min(cnt1,cnt2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int f(const vector<int>& data, int n, int fst) { vector<int> a = data; int s = 0, ret = 0, k; for (int i = 0; i < n; i++) { k = (s + a[i]) * fst; if (k <= 0 && i & 1) { ret += (1 - k); a[i] += (1 - k) * fst; } if (k >= 0 && !(i & 1)) { ret += (k + 1); a[i] -= (k + 1) * fst; } s += a[i]; } return ret; } int main() { long long n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { scanf("%d", &a[i]); } cout << min(f(a, n, 1), f(a, n, -1)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { vector<int> v; long long int res = 0; int sign = 0; int n, t; long long int sum = 0; cin >> n; for (int i = 0; i < n; i++) { cin >> t; v.push_back(t); } if (v[0] > 0) { sign = 0; } else { sign = 1; } sum += v[0]; for (int i = 1; i < v.size(); i++) { sum += v[i]; if (sign == 0) { if (sum > 0) { res += (sum + 1); sum -= (sum + 1); } else if (sum == 0) { res += 1; sum -= 1; } } else { if (sum < 0) { res += ((-1 * sum) + 1); sum += ((-1 * sum) + 1); } else if (sum == 0) { res += 1; sum += 1; } } sign = 1 - sign; } cout << res << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) import sys sum=0 cnt=0 # 奇数+ for i in range(n): z=sum+a[i] if i%2==0: if z<0: sum=z else: sum=-1 cnt+=(z+1) else: if z>0: sum=z else: sum=1 cnt+=(1-z) cnt_sbst=cnt # 奇数- for i in range(n): z=sum+a[i] if i%2==1: if z<0: sum=z else: sum=-1 cnt+=(z+1) else: if z>0: sum=z else: sum=1 cnt+=(1-z) cnt_plus=cnt ans=min(cnt_plus,cnt_sbst) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) a =list(map(int,input().split())) s =a[0] c = 0 if s ==0: s = 1 c = 1 for i in range(1,N): if s*(s+a[i])>=0 and s>0: c = c+abs(s+a[i])+1 a[i] = a[i]-(abs(s+a[i])+1) elif s*(s+a[i])>=0 and s<0: c = c+abs(s+a[i])+1 a[i] = a[i]+abs(s+a[i])+1 s = s+a[i] print(c)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { int n; cin >> n; ll sum = 0; cin >> sum; ll ans = 0; for (int i = 0; i < n - 1; ++i) { int a; cin >> a; sum += a; if (sum == 0) { cout << "Debug" << endl; ll need = sum - a > 0 ? -1 : 1; sum += need; ans += abs(need); } else if (((sum - a > 0) == (sum > 0)) or ((sum - a < 0) == (sum < 0))) { ll need = sum > 0 ? -(sum + 1) : -(sum - 1); sum += need; ans += abs(need); } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
N = gets.to_i a = gets.split.map(&:to_i) first = a.shift count = 0 if first < 0 first = first * (-1) a.map! do |i| i * (-1) end end if first == 0 first = 1 count += 1 end b = [] sum = first a.each do |ai| b << ai sum += ai if b.size.odd? if sum > -1 difference = sum - (-1) count += difference.abs b[-1] -= difference end else if sum < 1 difference = sum - (+1) count += difference.abs b[-1] -= difference end sum = sum - ai + b[-1] end #p "diff = #{difference}" #p "b = #{b}" end p count
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<iostream> using namespace std; long int abs(long int a){ if(a<0)return -a; else return a; } bool isDifAbs(long int a,long int b){ if(a*b<0)return true; return false; } int main(){ int n; long int sum,tmp,ttmp,ans=0; cin >> n; cin >> sum; for(int i=1;i<n;i++){ cin >> tmp; if(!isDifAbs(sum,sum+tmp)){ ttmp=tmp; if(sum<0)tmp=abs(tmp)+1; else if(sum>0)tmp=-(abs(tmp)+1); ans+=abs(tmp-ttmp); } else if(sum+tmp==0){ if(sum<0)tmp++; if(sum>0)tmp--; ans++; } sum+=tmp; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# https://qiita.com/_-_-_-_-_/items/34f933adc7be875e61d0 # abcde s=input() s='abcde' # abcde s=list(input()) s=['a', 'b', 'c', 'd', 'e'] # 5(1つだけ) a=int(input()) a=5 # 1 2 | x,y = map(int,input().split())| x=1,y=2 # 1 2 3 4 5 ... n   li = input().split() li=['1','2','3',...,'n'] # 1 2 3 4 5 ... n   li = list(map(int,input().split())) li=[1,2,3,4,5,...,n] # FFFTFTTFF   li = input().split('T') li=['FFF', 'F', '', 'FF'] # INPUT # 3 # hoge # foo # bar # ANSWER # n=int(input()) # string_list=[input() for i in range(n)] import collections def inpl(): return list(map(int, input().split())) #### START n = int(input()) a = list(map(int,input().split())) ans = 1e16 for s in [1, -1]: res, csum = 0, 0 for a_i in a: csum += a_i if csum * s < 0: res += abs(csum-s) csum = s s *= -1 ans = min(ans, res) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; signed main() { long long n; cin >> n; vector<long long>(a)((n)); for (long long i = 0; i < (n); ++i) { cin >> a[i]; } long long x = 0, b = 0, t = 0; for (long long i = 0; i < (n); ++i) { t += a[i]; if (i % 2 == 0) { if (t >= 0) { x += t + 1; t = -1; } } else { if (t <= 0) { x += abs(t + 1); t = 1; } } } t = 0; for (long long i = 0; i < (n); ++i) { t += a[i]; if (i % 2 == 0) { if (t <= 0) { b += t + 1; t = -1; } } else { if (t >= 0) { b += abs(t + 1); t = 1; } } } long long ans = min(x, b); cout << ans; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = [int(_) for _ in input().split()] def counter(dp): count = 0 for i in range(1, N): is_positive = 2 * (dp > 0) - 1 dp += A[i] if dp * is_positive >= 0: count += abs(dp)+1 dp = -is_positive return count print(min(1+abs(A[0])+counter(-1), 1+abs(A[0])+counter(1), counter(A[0])))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = list(map(int, input().split())) a = A[0] ans = 0 for i in range(1,n): b = A[i] if a> 0: if a + b >= 0: ans += abs(-1-a-b) a = -1 else: a += b elif a < 0: if a+b <= 0: ans += abs(1-a-b) a = 1 else: a += b print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; signed main() { long long n; cin >> n; long long a[n + 1]; a[0] = 0; long long cnta = 0; long long cntb = 0; long long sum = 0; for (long long i = 0; i < n; i++) { cin >> a[i + 1]; a[i + 1] += a[i]; } for (long long i = 1; i < n + 1; i++) { if (i % 2 == 0) { if (0 <= (a[i] + sum)) { cnta += (a[i] + sum + 1); sum -= (a[i] + sum + 1); } } else { if ((a[i] + sum) <= 0) { cnta += (1 - (a[i] + sum)); sum += (1 - (a[i] - sum)); } } } sum = 0; for (long long i = 1; i < n + 1; i++) { if (i % 2 == 1) { if (0 <= (a[i] + sum)) { cntb += (a[i] + sum + 1); sum -= (a[i] + sum + 1); } } else { if ((a[i] + sum) <= 0) { cntb += (1 - (a[i] + sum)); sum += (1 - (a[i] - sum)); } } } cout << min(cnta, cntb) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using vi = vector<int>; using vvi = vector<vi>; using vl = vector<ll>; using P = pair<int, int>; using PL = pair<ll, ll>; using vp = vector<P>; const int INF = 1 << 30, MOD = 1000000007; const ll LINF = 1ll << 60; struct ostdmy { template <class T> ostdmy& operator<<(const T& t) { return *this; } }; ostdmy cer_; template <class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } template <class T> bool chmin(T& a, const T& b) { if (a > b) { a = b; return 1; } return 0; } template <class T> ostream& operator<<(ostream& o, const vector<T>& v) { for (const T& i : v) o << i << ' '; return o; } template <class T> istream& operator>>(istream& i, vector<T>& v) { for (T& j : v) i >> j; return i; } template <class T, class U> ostream& operator<<(ostream& o, const pair<T, U>& p) { return o << p.first << ' ' << p.second; } template <class T, class U> istream& operator>>(istream& i, pair<T, U>& p) { return i >> p.first >> p.second; } template <class T> ostream& operator<<(ostream& o, const set<T>& v) { for (const T& i : v) o << i << ' '; return o; } int sign(int a) { if (a < 0) return -1; if (a > 0) return 1; return 0; } int main() { cin.tie(0); ios::sync_with_stdio(0); int n; cin >> n; vl a(n); cin >> a; ll ans = 0; ll bef = a[0]; if (bef == 0) { bef = -sign(a[1]); ans++; } for (int i = 1, i_l = (n); i < i_l; ++i) { if (bef + a[i] == 0 || sign(bef) == sign(bef + a[i])) { ans += abs(a[i] + bef + sign(bef)); bef = -sign(bef); } else { bef += a[i]; } } cout << ans << '\n'; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
gets seq = gets.split.map(&:to_i) def foo(seq) cnt = 0 sum = seq.shift seq.each{|a| if sum < 0 if sum + a > 0 sum += a else cnt += 1 - (sum + a) sum = 1 end else if sum + a < 0 sum += a else cnt += 1 + (sum + a) sum = -1 end end p [a, sum, cnt] } return cnt end zero_cnt = 0 while seq.shift == 0 zero_cnt += 1 end p (zero_cnt * 2) - 1 + foo(seq)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) ans = 0 for i in range(n): if i == 0: if a[i] == 0: f = "+" a[i] = 1 elif a[0] > 0: f = "+" elif a[0] < 0: f = "-" else: o = sum(a[:i]) if f == "+": if a[i] + o > 0: c = -1 - o ans += abs(c - a[i]) a[i] = c f = "-" else: if a[i] + o == 0: a[i] -= 1 ans += 1 f = "-" elif f == "-": if a[i] + o < 0: c = 1 - o ans += abs(c - a[i]) a[i] = c f = "+" else: if a[i] + o == 0: a[i] += 1 ans += 1 f = "+" #print(a) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<long long> L(N); for (int i = 0; i < N; i++) { cin >> L.at(i); } long long v = 0, res = 0, le = 0; bool change_flag = true; for (int i = 0; i < N; i++) { if (i == 0) { v = L.at(i); } else { if (v > 0 && v + L.at(i) >= 0) { while (true) { if (v + L.at(i) < 0) { v += L.at(i); le = 0; break; } else { le = -1 - v - L.at(i); L.at(i) -= abs(le); res += abs(le); } } } else if (v < 0 && v + L.at(i) <= 0) { while (true) { if (v + L.at(i) > 0) { v += L.at(i); le = 0; break; } else { le = 1 + v + L.at(i); L.at(i) += abs(le); res += abs(le); } } } else { v += L.at(i); } } } cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; int top = a[0], cnt = (a[0] == 0 ? 1 : 0); bool sign = (top >= 0 ? true : false); for (int i = 1; i < n; i++) { if (sign && top + a[i] < 0) { top += a[i]; sign = false; } else if (!sign && top + a[i] > 0) { top += a[i]; sign = true; } else if (top + a[i] == 0) { cnt++; if (sign) { top = -1; sign = false; } else { top = 1; sign = false; } } else { if (sign) { cnt += (top + a[i]) + 1; top = -1; sign = false; } else { cnt += 1 - (top + a[i]); top = 1; sign = true; } } } int t = cnt; top = a[0], cnt = a[0] + 1; sign = (top <= 0 ? true : false); for (int i = 1; i < n; i++) { if (sign && top + a[i] < 0) { top += a[i]; sign = false; } else if (!sign && top + a[i] > 0) { top += a[i]; sign = true; } else if (top + a[i] == 0) { cnt++; if (sign) { top = -1; sign = false; } else { top = 1; sign = false; } } else { if (sign) { cnt += (top + a[i]) + 1; top = -1; sign = false; } else { cnt += 1 - (top + a[i]); top = 1; sign = true; } } } cnt = min(cnt, t); cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
fun main() { val n = readLine()!!.toInt() val a = readLine()!!.split(" ").map { it.toLong() } var answer = 0L var total = a[0] for (i in 1 until n) { val tmp = total total = total + a[i] if (total == 0L) { if (tmp > 0) { answer += 1 total = -1 } else if (tmp < 0) { answer += 1 total = 1 } } if (tmp > 0 && total > 0) { answer += (total + 1) total = -1 } else if (tmp < 0 && total < 0) { answer += (-total + 1) total = 1 } } println("answer $answer") }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def culc(a, plus, ans): sum = a[0] for i in range(1, len(a)): plus = not(plus) sum += a[i] if plus: if sum <= 0: ans += abs(sum) + 1 sum = 1 else: if sum >= 0: ans += abs(sum) + 1 sum = -1 return ans n = int(input()) a = list(map(int, input().split())) plus = None ans = 0 if a[0] == 0: ans += 1 a[0] = 1 plus = True elif a[0] > 0: plus = True else: plus = False ans1 = culc(a, plus, ans) a[0] = a[0] // abs(a[0]) * -1 ans2 = culc(a, not(plus), abs(a[0]) + 1 - ans) print(min(ans1, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int, input().split())) sum_now=a[0] sum_before=-a[0] count_1=0 count_2=0 for i in range(n): while sum_now*sum_before>=0: if sum_before==0: sum_now=-a[1]/abs(a[1]) count_1+=1 else: count_1+=abs(int(sum_now))+1 sum_now=-sum_before/abs(sum_before) if i!=n-1: sum_before=sum_now sum_now=sum_now+a[i+1] sum_now=a[0] sum_before=-a[0] if sum_before==0: sum_now=a[1]/abs(a[1]) count_2+=1 else: count_2+=abs(int(sum_now))+1 sum_now=-sum_now/abs(sum_now) for i in range(n): while sum_now*sum_before>=0: if sum_before==0: sum_now=a[1]/abs(a[1]) count_2+=1 else: count_2+=abs(int(sum_now))+1 sum_now=-sum_before/abs(sum_before) if i!=n-1: sum_before=sum_now sum_now=sum_now+a[i+1] print(min(count_1, count_2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# -*- coding: utf-8 -*- n = int(input()) an = list(map(int, input().split())) sum = an[0] ans = 0 for i in range(1,n): if sum * (sum + an[i]) < 0: sum += an[i] else: if sum > 0: ans += abs(sum + an[i] + 1) sum = -1 else: ans += abs(sum + an[i] - 1) sum = 1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> A(N); for (int i = 0; i < N; i++) cin >> A.at(i); bool flag; bool flag2 = false; for (int i = 0; i < N; i++) { if (A.at(i) > 0) { flag = true; break; } else if (A.at(i) < 0) { flag = false; break; } } int ans = 0; int total = A.at(0); for (int i = 0; i < N - 1; i++) { int count = 0; if (flag) { if (total + A.at(i + 1) >= 0) { count = -1 - total - A.at(i + 1); ans += abs(count); A.at(i + 1) = A.at(i + 1) + count; } total += A.at(i + 1); flag = false; } else if (!flag) { if (total + A.at(i + 1) <= 0) { count = 1 - total - A.at(i + 1); ans += abs(count); A.at(i + 1) = A.at(i + 1) + count; } total += A.at(i + 1); flag = true; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def c(ints): for i in range(len(ints)): if ints[i] != 0: sig = 1 if ints[i] > 0 else -1 sig_ = -sig total = ints[i] total_ = -sig mov = i mov_ = abs(total) + 1 + i if i > 0: mov += 1 + i - 1 mov_ += 2 + i - 1 j = i break if i == len(ints) - 1: return i * 2 + 1 for i_ in ints[j+1:]: tmp = total + i_ tmp_ = total_ + i_ if tmp == 0: mov +=1 tmp = -sig elif sig * tmp > 0: mov += abs(tmp) + 1 tmp = -sig if tmp_ == 0: mov_ +=1 tmp_ = -sig_ elif sig_ * tmp_ > 0: mov_ += abs(tmp_) + 1 tmp_ = -sig_ sig *= -1 total = tmp sig_ *= -1 total_ = tmp_ print(mov, mov_) return min(mov, mov_) _ = input() inp = input() inp = inp.split(' ') inp = [int(i_) for i_ in inp] print(c(inp))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { unsigned long long n; cin >> n; vector<long long> a(n); for (unsigned long long i = 0; i < n; ++i) cin >> a[i]; size_t op = 0; long long sum = a[0]; for (unsigned long long i = 1; i < n; ++i) { if (sum > 0) { sum += a[i]; while (sum >= 0) { ++op; --sum; } } else { sum += a[i]; while (sum <= 0) { ++op; ++sum; } } } cout << op << endl; return EXIT_SUCCESS; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
#! /Library/Frameworks/Python.framework/Versions/3.7/bin/python3 # a[0] == 0 のケース、要検証 n = int(input()) a = list(map(int, input().split())) count_p = 0 # 操作回数(正) count_m = 0 # 操作回数(負) s = 0 # 現時点の和 def counter(a, s): if s * (s + a) < 0: return 0 else: if s < 0: return 1 - (s + a) else: return -1 - (s + a) # a[0]を+にする場合 if a[0] <= 0: count_p = 1 - a[0] s = 1 else: s = a[0] for i in range(n-1): tmp = counter(a[i + 1], s) s = s + a[i+1]+tmp count_p = count_p + abs(tmp) # a[0]を-にする場合 if a[0] >= 0: count_m = 1 - a[0] s = -1 else: s = a[0] for i in range(n-1): tmp = counter(a[i + 1], s) s = s + a[i+1]+tmp count_m = count_m + abs(tmp) print(str(min(count_p, count_m)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; long long ans = 0; long long now; cin >> now; if (now == 0) { now++; ans++; } for (long long(i) = (0); (i) < (n - 1); ++i) { long long tmp; cin >> tmp; if (now > 0) { now += tmp; if (now >= 0) { ans += now + 1LL; now = -1; } } else { now += tmp; if (now <= 0) { ans -= (now - 1LL); now = 1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n, i, j, sum, res, sumprev; cin >> n; sum = res = 0; long long arr[n]; for (i = 0; i < n; i++) cin >> arr[i]; sum = res = 0; sumprev = 0; for (i = 0; i < n; i++) { sum += arr[i]; if ((sum == 0) && (sumprev > 0)) { arr[i]--; sum--; res++; } else if ((sum == 0) && (sumprev < 0)) { arr[i]++; sum++; res++; } else if ((sumprev > 0) && (sum > 0)) { long long d = sum - 0; arr[i] = arr[i] - d - 1; sum = sum - d - 1; res = res + d + 1; } else if ((sumprev < 0) && (sum < 0)) { long long d = 0 - sum; arr[i]++; sum = sum + d + 1; res = res + d + 1; } sumprev = sum; } cout << res; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long n; cin >> n; int i; long a[n], su, cnt, cnt2; su = 0; cnt = 0; for (i = 0; i < n; i++) { cin >> a[i]; } for (i = 0; i < n; i++) { su += a[i]; if (a[0] >= 0) { if (i % 2 == 0) { if (su <= 0) { cnt += 1 - su; su = 1; } } else { if (su >= 0) { cnt += su + 1; su = -1; } } } else { if (i % 2 == 0) { if (su >= 0) { cnt += su + 1; su = -1; } } else { if (su <= 0) { cnt += 1 - su; su = -1; } } } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 1LL << 60; struct edge { long long to, cost; }; vector<vector<edge> > edges; vector<long long> dist; bool bellman_ford(int n, int s) { dist = vector<long long>(n, INF); dist[s] = 0; for (int i = 0; i < n; i++) { for (int v = 0; v < n; v++) { for (int k = 0; k < edges[v].size(); k++) { edge e = edges[v][k]; if (dist[e.to] > dist[v] + e.cost) { dist[e.to] = dist[v] + e.cost; if (i == n - 1 && e.to == n - 1) { return false; } } } } } return false; } int main(int argc, const char* argv[]) { long long N, M, a, b, c; cin >> N >> M; edges = vector<vector<edge> >(N, vector<edge>()); for (int i = 0; i < M; i++) { cin >> a >> b >> c; a--, b--; edges[a].push_back((edge){b, -c}); } if (bellman_ford(N, 0)) { cout << "inf" << endl; } else { cout << -dist[N - 1] << endl; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) now_s = 0 ans = 0 for i in range(n): pre_s = now_s now_s = pre_s + a[i] if pre_s < 0: if now_s <= 0: if abs(pre_s) < abs(now_s): ans += abs(pre_s) + 1 now_s = a[i] + 1 else: ans += abs(now_s) + 1 now_s = 1 elif pre_s > 0: if now_s >= 0: if abs(pre_s) < abs(now_s): ans += abs(pre_s) + 1 now_s = a[i] - 1 else: ans += abs(now_s) + 1 now_s = -1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (auto&& x : a) cin >> x; long long ans1 = 0, ans2 = 0, sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0 && sum >= 0) { ans1 = sum + 1; sum = -1; } else if (i % 2 == 1 && sum <= 0) { ans1 += -sum + 1; sum = 1; } } sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 1 && sum >= 0) { ans2 = sum + 1; sum = -1; } else if (i % 2 == 0 && sum <= 0) { ans2 += -sum + 1; sum = 1; } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = list(map(int,input().split())) ans = 0 x = 0 S = [] S.append(A[0]) for i in range(1,n): x = A[i] + S[i - 1] if S[i - 1] > 0: if x >= 0: x = - x - 1 ans += abs(x) S.append(-1) else: S.append(x) elif S[i - 1] < 0: if x <= 0: x = -x + 1 ans += abs(x) S.append(1) else: S.append(x) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { int N; cin >> N; ll d = 0; vector<ll> a(N); for (int i = 0; i < N; i++) cin >> a.at(i); ll sum = a.at(0); for (int i = 1; i < N; i++) { if (sum * (sum + a.at(i)) >= 0) { if (sum > 0) { d += abs(a.at(i) - (-1 - sum)); a.at(i) = -1 - sum; } else { d += abs(a.at(i) - (1 - sum)); a.at(i) = 1 - sum; } } sum += a.at(i); } cout << d << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, ansa = 0, ansb = 0, sum = 0; cin >> n; bool plus = true; for (int i = 0; i < (n); i++) { int a; cin >> a; while (plus && sum + a <= 0) { a++; ansa++; } while (!plus && sum + a >= 0) { a--; ansa++; } sum += a; plus = !plus; } plus = false; sum = 0; for (int i = 0; i < (n); i++) { int a; cin >> a; while (plus && sum + a >= 0) { a++; ansb++; } while (!plus && sum + a <= 0) { a--; ansb++; } sum += a; plus = !plus; } cout << min(ansa, ansb) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int count = 0; int a1; cin >> a1; int sum = a1; if (a1 >= 0) { for (int i = 0; i < n - 1; i++) { int a; cin >> a; sum += a; if (i % 2 == 0) { while (sum >= 0) { sum--; count++; } } else { while (sum <= 0) { sum++; count++; } } } } else { for (int i = 0; i < n - 1; i++) { int a; cin >> a; sum += a; if (i % 2 == 1) { while (sum >= 0) { sum--; count++; } } else { while (sum <= 0) { sum++; count++; } } } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# 必要になったら結果が1か-1になるまで加えたり引いたりする方針 # 実装がちょっと無駄に考える 符号変わったりするとか先頭が0の場合とか n = int(input()) arr = list(map(int, input().split())) tmp = arr[0] def f(arr, tmp): count = 0 for i in range(1, n): if tmp + arr[i] < 0 < tmp: # 加えたら符号が+から-になる場合 tmp += arr[i] elif tmp < 0 < tmp + arr[i]: # 加えたら符号が-から+になる場合 tmp += arr[i] elif 0 <= tmp + arr[i] <= tmp or 0 <= tmp <= tmp + arr[i]: # 加えても+から-にはならず+のまま count += abs(-1 - tmp - arr[i]) tmp = -1 elif tmp + arr[i] <= tmp <= 0 or tmp <= tmp + arr[i] <= 0: # 加えても-から+にはならず-のまま count += abs(1 - tmp - arr[i]) tmp = 1 else: # runtime errorの出し方がわからんのでTLEを狙う(おい while True: if 1 == 0: break return count if tmp == 0: if arr[1] != 0: print(min(f(arr, 1), f(arr, -1)) + 1) else: # もうこんなんうまくやる方法なんて思いつかんわ b = [] ni = -2 o = 0 for i, a in enumerate(arr): if a == 0: if i == 0: b.append(1) o += 1 elif i == 1: b.append(ni) o += 2 else: ni *= -1 b.append(ni) o += 2 else: break b_r = list(map(lambda x: x * -1, b)) arr_a = b + arr[len(b) :] arr_b = b_r + arr[len(b_r) :] print(min(f(arr_a, 1), f(arr_b, -1)) + o) else: print(f(arr, tmp))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; namespace AtCoder { class Program { static void Main(string[] args) { //[summary]C - Green Bin int n = int.Parse(Console.ReadLine()); var a = ReadLine(); //必要な操作の回数 long count = 0; if (a[0] == 0) { if (a[1] >= 0) { a[0] = -1; } else { a[0] = 1; } count++; } long sum = a[0]; long next = 0; for (int i = 1; i < n; i++) { next = sum + a[i]; if ((sum > 0 && next < 0) | (sum < 0 && next > 0)) { //何もしない } else if (sum > 0) { count += 1 + Math.Abs(next); next = -1; } else { count += 1 + Math.Abs(next); next = 1; } sum = next; } Console.WriteLine(count); } static List<int> ReadLine() { var line = Console.ReadLine(); var array = line.Split(' '); return array.Select(x => int.Parse(x)).ToList(); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long num_operate(long n, long sum, long* a) { long j; for (long i = 1; i < n; i++) { if (sum * (sum + a[i]) < 0) sum += a[i]; else { j += abs(sum + a[i]) + 1; if (sum < 0) sum = 1; else sum = -1; } } return j; } int main() { cin.tie(0); ios::sync_with_stdio(false); long n; cin >> n; vector<long> a(n); for (long i = 0; i < n; i++) cin >> a[i]; long sum = a[0]; long cnt1 = num_operate(n, 1, &a.front()) + 1; long cnt2 = num_operate(n, -1, &a.front()) + 1; cout << min(cnt1, cnt2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; long a[110000], s[110000]; cin >> n; for (int(i) = (0); (i) < (n); (i)++) cin >> a[i]; long t = 0; for (int(i) = (0); (i) < (n); (i)++) { t += a[i]; s[i] = t; } long cnt = 0; int diff_acm = 0; int diff; if (s[0] == 0) { s[0] = 1; diff_acm = 1; } for (int(i) = (1); (i) < (n); (i)++) { s[i] += diff_acm; if (s[i - 1] < 0 && s[i] <= 0) { diff = 1 - s[i]; s[i] = 1; cnt += diff; diff_acm += diff; } else if (s[i - 1] > 0 && s[i] >= 0) { diff = s[i] + 1; s[i] = -1; cnt += diff; diff_acm -= diff; } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using namespace std; long long a[100006]; int main() { long long n; cin >> n; for (int(i) = 0; (i) < (n); (i)++) cin >> a[i]; long long count = 0; long long wa = 0; for (int(i) = 0; (i) < (n); (i)++) { if (wa > 0 && wa + a[i] >= 0) { count += wa + a[i] + 1; wa = -1; continue; } if (wa < 0 && wa + a[i] <= 0) { count += -(wa + a[i]) + 1; wa = 1; continue; } wa += a[i]; } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int, input().split())) sm=A[0] cnt=0 if A[0]>=0: for i in range(1,N): sm+=A[i] if i%2==1: if sm>=0: cnt+=sm+1 sm=-1 else: if sm<=0: cnt+=sm*-1+1 sm=1 elif A[0]<0: for i in range(1,N): sm+=A[i] if i%2==1: if sm<=0: cnt+=sm*-1+1 sm=1 else: if sm>=0: cnt+=sm+1 sm=-1 print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n, i, j, ans = 0, sum = 0, flag; cin >> n; vector<long long> a(n); for (i = 0; i < n; i++) { cin >> a[i]; } sum += a[0]; if (sum == 0) { ans++; for (i = 0; i < n; i++) { if (a[i] != 0) { if (i % 2 == 0) { sum = 1; } else { sum = -1; } break; } } } for (i = 1; i < n; i++) { if (sum > 0) { flag = 1; } else { flag = 0; } if (flag == 1) { sum += a[i]; if (sum >= 0) { ans += (sum + 1); sum = -1; } } else { sum += a[i]; if (sum <= 0) { ans += 1 - sum; sum = 1; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; int A[100010]; cin >> n; for (int i = 0; i < n; i++) { cin >> A[i]; } int sum = 0; int counter = 0; for (int i = 0; i < n; i++) { sum += A[i]; if (i % 2 == 0) { if (sum <= 0) { int diff = 1 - sum; sum += diff; counter += diff; } } else { if (sum >= 0) { int diff = sum + 1; sum -= diff; counter += diff; } } } int counterNeg = 0; sum = 0; for (int i = 0; i < n; i++) { sum += A[i]; if (i % 2 == 0) { if (sum >= 0) { int diff = sum + 1; sum -= diff; counterNeg += diff; } } else { if (sum <= 0) { int diff = 1 - sum; sum += diff; counterNeg += diff; } } } int ans = counter > counterNeg ? counterNeg : counter; cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n, x = 0, a[100001], ans = 0; cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; if (a[0] == 0) { ans += 1; for (int i = 1; a[i] == 0; ++i) { x = i + 1; ans += 2; } if (abs(a[x]) == 1) { ans++; if (a[x] > 0) a[x]++; else a[x]--; } } long long sum1 = a[x], sum2 = a[x]; for (int i = x + 1; i < n; i++) { sum2 += a[i]; if (sum2 >= 0 && sum1 > 0) { ans += abs(sum2) + 1; sum2 = sum2 - abs(sum2) - 1; } if (sum2 <= 0 && sum1 < 0) { ans += abs(sum2) + 1; sum2 = sum2 + abs(sum2) + 1; } sum1 = sum2; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int dy[] = {0, 0, 1, -1}; int dx[] = {1, -1, 0, 0}; int ny, nx; using namespace std; long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } long long lcm(long long m, long long n) { if ((0 == m) || (0 == n)) return 0; return ((m / gcd(m, n)) * n); } long long llpow(long long x, long long y) { long long ans = 1; for (int i = 0, i_len = (y); i < i_len; ++i) ans *= x; return ans; } int ctoi(char c) { if (c >= '0' && c <= '9') { return c - '0'; } return 0; } class UnionFind { public: vector<long long> par; vector<long long> siz; UnionFind(long long sz_) : par(sz_), siz(sz_, 1LL) { for (long long i = 0; i < sz_; ++i) par[i] = i; } void init(long long sz_) { siz.assign(sz_, 1LL); par.resize(sz_); for (long long i = 0; i < sz_; ++i) par[i] = i; } long long root(long long x) { while (par[x] != x) { x = par[x] = par[par[x]]; } return x; } bool merge(long long x, long long y) { x = root(x); y = root(y); if (x == y) return false; if (siz[x] < siz[y]) swap(x, y); siz[x] += siz[y]; par[y] = x; return true; } bool issame(long long x, long long y) { return root(x) == root(y); } long long size(long long x) { return siz[root(x)]; } }; template <class T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0, i_len = (n); i < i_len; ++i) cin >> a[i]; int odd = 0, even = 0; bool flag = false; vector<int> total(n, 0); vector<int> res(total); total[0] = a[0], res[0] = a[0]; for (int i = 0, i_len = (n); i < i_len; ++i) { if (i != 0) total[i] += a[i] + total[i - 1]; if (i % 2 != 0) { if (total[i] == 0 or total[i] > 0) { even += abs(total[i] + 1); total[i] = -1; } } else { if (total[i] == 0 or total[i] < 0) { even += abs(total[i] - 1); total[i] = 1; } } } for (int i = 0, i_len = (n); i < i_len; ++i) { if (i != 0) res[i] += a[i] + res[i - 1]; if (i % 2 == 0) { if (res[i] == 0 or res[i] > 0) { odd += abs(res[i] + 1); res[i] = -1; } } else { if (res[i] == 0 or res[i] < 0) { odd += abs(res[i] - 1); res[i] = 1; } } } cout << min(odd, even) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long int n; cin >> n; long long int a[n]; for (int i = 0; i < n; ++i) { cin >> a[i]; } long long int count = 0; if (a[0] == 0) { for (int i = 0; i < n; ++i) { if (a[i] > 0) { a[0] = -1; ++count; break; } else if (a[i] < 0) { a[0] = 1; ++count; break; } } } long long int cal = a[0]; if (a[0] == 0) { count = 1 + 2 * (n - 1); } else { for (int i = 1; i < n; ++i) { if (cal + a[i] == 0) { if (cal < 0) { ++count; ++a[i]; cal = 1; } else { ++count; --a[i]; cal = -1; } } else if (cal < 0 && cal + a[i] < 0) { count += -(cal + a[i] - 1); a[i] += -(cal + a[i] - 1); } else if (cal > 0 && cal + a[i] > 0) { count += (cal + a[i] + 1); a[i] -= (cal + a[i] + 1); } cal += a[i]; } } cout << count << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; int a[100010]; long long sum[100010]; int main() { cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } int cnt1 = 0; sum[0] = a[0]; while (sum[0] <= 0) { sum[0]++; cnt1++; } for (int i = 1; i < n; i++) { sum[i] = sum[i - 1] + a[i]; if (i % 2 == 0) { while (sum[i] <= 0) { sum[i]++; cnt1++; } } else { while (sum[i] >= 0) { sum[i]--; cnt1++; } } } int cnt2 = 0; sum[0] = a[0]; while (sum[0] >= 0) { sum[0]--; cnt2++; } for (int i = 1; i < n; i++) { sum[i] = sum[i - 1] + a[i]; if (i % 2 == 1) { while (sum[i] <= 0) { sum[i]++; cnt2++; } } else { while (sum[i] >= 0) { sum[i]--; cnt2++; } } } int cnt = min(cnt1, cnt2); cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
from functools import lru_cache n = int(input()) s = list(map(int, input().split())) @lru_cache(maxsize=None) def cost(z): res = abs(z - s[0]) sum = 0 for j, y in enumerate(s): tmp = sum + y if j == 0: sum = tmp continue if sum * tmp >= 0: c = -1 if tmp > 0 else 1 x = c - tmp res += abs(x) sum = c else: sum = tmp return res ans1 = cost(s[0]) ans2 = cost(1) ans3 = cost(-1) print(min(ans1, ans2, ans3))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int ch_sign(int n) { if (n == 0) return 0; return (n > 0) - (n < 0); } int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; ++i) cin >> a[i]; int sign1 = (a[0] > 0) - (a[0] < 0), sign2 = (-1) * sign1; int s1 = 0, s2 = 0; int ans1 = 0, ans2 = 0; for (int i = 0; i < n; ++i) { s1 += a[i]; s2 += a[i]; sign1 *= -1; sign2 *= -1; if (ch_sign(s1) != sign1) { ans1 += abs(s1 - sign1); s1 = sign1; } if (ch_sign(s2) != sign2) { ans2 += abs(s2 - sign2); s2 = sign2; } } cout << ((ans1 < ans2) ? ans1 : ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int changeCount(long long int *, int, int); int main(void) { int n; if (scanf("%d\n", &n) < 1) { exit(1); } long long int *a; a = (long long int *)malloc(n * sizeof(long long int)); int i; for (i = 0; i < n - 1; i++) { if (scanf("%lld ", &a[i]) < 1) { exit(1); } } if (scanf("%lld", &a[n - 1]) < 1) { exit(1); } int evenchangeCount = changeCount(a, n, 0); int oddchangeCount = changeCount(a, n, 1); if (evenchangeCount <= oddchangeCount) { printf("%d", evenchangeCount); } else { printf("%d", oddchangeCount); } return 0; } int changeCount(long long int *a, int n, int oddPositive) { int temp_1 = 0; int temp_2 = 0; int changeCount = 0; int i; for (i = 0; i < n; i++) { temp_2 = temp_1 + a[i]; if (i % 2 == 1) { if (oddPositive == 1) { if (temp_2 <= 0) { changeCount += -temp_2 + 1; temp_2 = 1; } } else { if (temp_2 >= 0) { changeCount += temp_2 + 1; temp_2 = -1; } } } else { if (oddPositive == 0) { if (temp_2 <= 0) { changeCount += -temp_2 + 1; temp_2 = 1; } } else { if (temp_2 >= 0) { changeCount += temp_2 + 1; temp_2 = -1; } } } temp_1 = temp_2; } return changeCount; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
var read = require('readline').createInterface({ input: process.stdin, output: process.stdout }); var obj; var inLine = []; read.on('line', function(input){inLine.push(input);}); read.on('close', function(){ obj = init(inLine); myerr("-----start-----"); var start = new Date(); Main(); var end = new Date() - start; myerr("----- end -----"); myerr("time : " + (end) + "ms"); }); function nextInt(){return myconv(next(),1);} function nextStrArray(){return myconv(next(),2);} function nextIntArray(){return myconv(next(),4);} function nextCharArray(){return myconv(next(),6);} function next(){return obj.next();} function hasNext(){return obj.hasNext();} function init(input){ var returnObj = { list : input, index : 0, max : input.length, hasNext : function(){return (this.index < this.max);}, next : function(){if(!this.hasNext()){throw "ArrayIndexOutOfBoundsException これ以上ないよ";}else{var returnInput = this.list[this.index];this.index++;return returnInput;}} }; return returnObj; } function myout(s){console.log(s);} function myerr(s){console.error("debug:" + require("util").inspect(s,false,null));} //[no]要素の扱い。数値型 //不明値、異常時:引数そのまま返す 1:数値へ変換 //2:半角SPで分割 4:半角SPで分割し、数値配列へ //6:1文字で分割 7:1文字で分割し、数値配列へ //8:半角SPで結合 9:改行で結合 0:文字なしで結合 function myconv(i,no){try{switch(no){case 1:return parseInt(i);case 2:return i.split(" ");case 4:return i.split(" ").map(Number);case 6:return i.split("");case 7:return i.split("").map(Number);case 8:return i.join(" ");case 9:return i.join("\n");case 0:return i.join("");default:return i;}}catch(e){return i;}} function Main(){ var N = nextInt(); var list = nextIntArray(); var output = 0; var sum = new Array(N); if(list[0] == 0){ if(list[1] > 0){ sum[0] = -1; }else{ sum[0] = 1; } output++; }else{ sum[0] = list[0]; } for(var i = 1; i < N; i++){ sum[i] = sum[i - 1] + list[i]; if((sum[i - 1] < 0 && sum[i] > 0) || (sum[i - 1] > 0 && sum[i] < 0)){ }else{ if((sum[i - 1] > 0)){ output += sum[i] + 1; sum[i] = -1; }else{ output += Math.abs(sum[i]) + 1; sum[i] = 1; } } } myout(output) }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 1001001000; const int mINF = -1001001000; const long long LINF = 1010010010010010000; template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < (n); ++i) { cin >> a[i]; } long long ans = INF; int flip = 0; for (int si = 0; si < (2); ++si) { int f = flip; long long cnt = 0; long long sum = 0; for (int i = 0; i < (n); ++i) { if (!f && sum + a[i] > -1) { long long need = -1 - sum; cnt += a[i] - need; sum = -1; } else if (f && sum + a[i] < 1) { long long need = 1 - sum; cnt += need - a[i]; sum = 1; } else { sum = sum + a[i]; } f ^= 1; } ans = min(ans, cnt); flip ^= 1; } cout << ans << endl; return 0; }