Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long N, i, sum, count;
cin >> N;
vector<long> input(N);
for (i = 0; i < N; i++) {
cin >> input.at(i);
}
sum = 0;
count = 0;
sum = input.at(0);
if (input.at(0) >= 0) {
for (i = 1; i < N; i++) {
if (i % 2 == 1) {
sum += input.at(i);
if (sum >= 0) {
while (sum >= 0) {
sum--;
count++;
}
}
}
if (i % 2 == 0) {
sum += input.at(i);
if (sum < 0) {
while (sum <= 0) {
sum++;
count++;
}
}
}
}
}
if (input.at(0) < 0) {
for (i = 1; i < N; i++) {
if (i % 2 == 1) {
sum += input.at(i);
if (sum <= 0) {
while (sum <= 0) {
sum++;
count++;
}
}
}
if (i % 2 == 0) {
sum += input.at(i);
if (sum >= 0) {
while (sum >= 0) {
sum--;
count++;
}
}
}
}
}
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <stdio.h>
#include<math.h>
int main(void) {
// your code goes here
long int a[100000];
long int n,count= 0,count1=0;
scanf("%d",&n);
int i;
for(i = 0;i<n;i++)
{
scanf("%ld",&a[i]);
};
long int new = a[0]+a[1];
if(new==0)
{
new = -1;
count++;}
int pos;
if(new <0||new == 0)
pos= 0;
else if(new>0)
pos = 1;
for(i = 2;i<n;i++)
{
new = a[i]+new;
// printf("%d",new);
pos = !pos;
if(new>0&& pos==0)
{count+=abs(new)+1;
new= -1;}
else if(new<0 && pos )
{count+=abs(new)+1;
new = 1;
}
else if(new ==0)
{
count++;
if(pos==0)
new = -1;
else
new = 1;
}
}
count1+=abs(a[0]+a[1])+1;
if(a[0]+a[1]<0 ||a[0]+a[1]==0)
{new = 1;
pos = 1;}
else if(a[0]+a[1]>0)
{
new = -1;
pos = 0;
}
for(i = 2;i<n;i++)
{
new = a[i]+new;
// printf("%d",new);
if(new>0&& pos==0)
{count1+=abs(new)+1;
new= -1;}
else if(new<0 && pos )
{count1+=abs(new)+1;
new = 1;
}
else if(new ==0)
{
count1++;
if(pos==0)
new = -1;
else
new = 1;
}
pos =!pos;
}
printf("%ld",count<count1?count:count1);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
*A, = map(int,input().split())
ans1 = 0
S = A[0]
if S <= 0:
S = 1
ans1 = -S+1
for a in A[1:]:
S1 = S+a
if S1*S >= 0:
ans1 += abs(S1)+1
S1 = -S//abs(S)
S = S1
ans2 = 0
S = A[0]
if S >= 0:
S = -1
ans1 = -S+1
for a in A[1:]:
S1 = S+a
if S1*S >= 0:
ans2 += abs(S1)+1
S1 = -S//abs(S)
S = S1
print(min(ans1,ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # -*- coding: utf-8 -*-
N = int(input())
aN = list(map(int, input().split()))
sum1 = aN[0]
cnt = 0
if aN[0] > 0:
sei = True
elif aN[0] < 0:
sei = False
else:
print("和が0なので、これはないはず")
for i in range(1,N):
sum1 += aN[i]
if sei:
if sum1 >= 0:
tmp = abs(sum1) +1
cnt += tmp
sum1 -= tmp
sei = False
else:
if sum1 <= 0:
tmp = abs(sum1) +1
cnt += tmp
sum1 += tmp
sei = True
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> data(N);
for (int i = 0; i < N; i++) cin >> data[i];
int count = 0;
long int ans = data[0];
int saisyo;
while (ans <= 0) {
ans++;
count++;
}
for (int i = 1; i < N; i++) {
ans += data[i];
if (i % 2 == 0) {
while (ans <= 0) {
ans++;
count++;
}
} else {
while (ans >= 0) {
ans--;
count++;
}
}
}
saisyo = count;
count = 0;
ans = data[0];
while (ans >= 0) {
ans--;
count++;
}
for (int i = 1; i < N; i++) {
ans += data[i];
if (i % 2 != 0) {
while (ans <= 0) {
ans++;
count++;
}
} else {
while (ans >= 0) {
ans--;
count++;
}
}
}
saisyo = min(saisyo, count);
cout << saisyo << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MAXN = 100 * 1000 + 10;
int main() {
long long n, f = 0, z = 0, s = 0, sum = 0;
cin >> n;
long long b[n];
for (long long i = 0; i < n; i++) {
cin >> b[i];
if (i % 2 == 0) {
f += b[i];
} else {
z += b[i];
}
}
if (f > z) {
if (b[0] <= 0) {
s += -1 * b[0] + 1;
b[0] = 1;
}
} else {
if (b[0] >= 0) {
s += b[0] + 1;
b[0] = -1;
}
}
for (long long i = 0; i < n - 1; i++) {
sum += b[i];
if (sum < 0 && sum + b[i + 1] < 0) {
s += -1 * (sum + b[i + 1]) + 1;
b[i + 1] += -1 * (sum + b[i + 1]) + 1;
} else if (sum > 0 && sum + b[i + 1] >= 0) {
s += sum + b[i + 1] + 1;
b[i + 1] -= sum + b[i + 1] + 1;
} else if (sum + b[i + 1] == 0) {
if (sum < 0) {
b[i + 1] += 1;
} else {
b[i + 1] -= 1;
}
s++;
}
}
cout << s;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using static Assistant.Input;
using static Assistant.Debug;
using System.Linq;
using Assistant;
namespace ABC059C
{
class Program
{
static void Main(string[] args)
{
var n = RInt;
var a = RInts;
long ans = 0;
if (a[0] != 0)
{
ans = Math.Min(cand(a[0], a), cand(-a[0], a));
}
else
{
ans = Math.Min(cand(1, a), cand(-1, a)) + 1;
}
Console.WriteLine(ans);
}
static long cand(long sum, int[] a)
{
long ret = 0;
for (int i = 1; i < a.Length; i++)
{
if (sum < 0)
{
sum += a[i];
if (sum < 1)
{
ret += 1 - sum;
sum = 1;
}
}
else if (sum > 0)
{
sum += a[i];
if (sum > -1)
{
ret += sum + 1;
sum = -1;
}
}
}
return ret;
}
}
}
namespace Assistant
{
static class Input
{
static List<string> line = new List<string>();
static int index = 0;
static String RNext()
{
if (line.Count <= index) line.AddRange(Console.ReadLine().Split());
return line[index++];
}
public static int RInt => int.Parse(RNext());
public static long RLong => long.Parse(RNext());
public static int[] RInts => Console.ReadLine().Split().Select(int.Parse).ToArray();
public static long[] RLongs => Console.ReadLine().Split().Select(long.Parse).ToArray();
public static string RString => RNext();
//以下未テスト
public static int[] RIntsC(int c) => Enumerable.Repeat(0, c).Select(x => int.Parse(RNext())).ToArray();
public static long[] RLongsC(int c) => Enumerable.Repeat(0, c).Select(x => long.Parse(RNext())).ToArray();
public static char[][] RMap(int h) => Enumerable.Repeat(0, h).Select(x => Console.ReadLine().ToCharArray()).ToArray();
}
public struct Mlong
{
long _v;
const long mod = 1000000007;
public Mlong(long n = 0) : this() { _v = n >= mod ? n % mod : n; }
public static implicit operator Mlong(long _x) => new Mlong(_x);
public static implicit operator long(Mlong _x) => _x._v;
public static Mlong operator +(Mlong m1, Mlong m2) { long m = m1._v + m2._v; return m >= mod ? m - mod : m; }
public static Mlong operator -(Mlong m1, Mlong m2) { long m = m1._v - m2._v; return m >= 0 ? m : m + mod; }
public static Mlong operator *(Mlong m1, Mlong m2) => m1._v * m2._v % mod;
public static Mlong operator /(Mlong m1, Mlong m2) => m1._v * ModPow(m2._v, mod - 2) % mod;
public static long ModPow(long a, long n)
{
if (n == 0) return 1;
else if (n % 2 == 1) return a * ModPow(a, n - 1) % mod;
else return ModPow(a * a % mod, n / 2);
}
static Mlong[] fac, finv, inv;
public static void nCkInit(int max)
{
fac = new Mlong[max]; finv = new Mlong[max]; inv = new Mlong[max];
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for (int i = 2; i < max; i++)
{
fac[i] = fac[i - 1] * i;
inv[i] = mod - inv[mod % i] * (mod / i);
finv[i] = finv[i - 1] * inv[i];
}
}
public static Mlong nCk(int n, int k)
{
if (n < k) return 0;
if (n < 0 || k < 0) return 0;
return fac[n] * finv[k] * finv[n - k];
}
}
static class Debug
{
static public void Draw2D<T>(T[,] map, int mode = 1)
{
#if DEBUG
int W = map.GetLength(0);
int H = map.GetLength(1);
string[,] map2 = new string[W + 1, H + 1];
for (int i = 0; i < W + 1; i++)
{
for (int j = 0; j < H + 1; j++)
{
if (i == 0 && j == 0) map2[i, j] = 0.ToString();
else if (i == 0) map2[i, j] = (j - 1).ToString();
else if (j == 0) map2[i, j] = (i - 1).ToString();
else map2[i, j] = map[i - 1, j - 1].ToString();
}
}
for (int i = 0; i < W + 1; i++)
{
for (int j = 0; j < H + 1; j++)
{
if (mode == 0) Console.Write(map2[i, j].Last());
if (mode == 1) Console.Write(map2[i, j] + " ");
}
Console.WriteLine();
}
Console.WriteLine();
#endif
}
public static void Draw1D<T>(T[] array, int mode = 0)
{
#if DEBUG
Console.WriteLine(string.Join(" ", array));
#endif
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
use std::io::{BufWriter, Write};
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes
.by_ref()
.map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr, ) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, [graph1; $len:expr]) => {{
let mut g = vec![vec![]; $len];
let ab = read_value!($next, [(usize1, usize1)]);
for (a, b) in ab {
g[a].push(b);
g[b].push(a);
}
g
}};
($next:expr, ( $($t:tt),* )) => {
( $(read_value!($next, $t)),* )
};
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, chars) => {
read_value!($next, String).chars().collect::<Vec<char>>()
};
($next:expr, usize1) => (read_value!($next, usize) - 1);
($next:expr, [ $t:tt ]) => {{
let len = read_value!($next, usize);
read_value!($next, [$t; len])
}};
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
#[allow(unused)]
macro_rules! debug {
($($format:tt)*) => (write!(std::io::stderr(), $($format)*).unwrap());
}
#[allow(unused)]
macro_rules! debugln {
($($format:tt)*) => (writeln!(std::io::stderr(), $($format)*).unwrap());
}
/*
mod mod_int {
use std::ops::*;
pub trait Mod: Copy { fn m() -> i64; }
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }
impl<M: Mod> ModInt<M> {
// x >= 0
pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }
fn new_internal(x: i64) -> Self {
ModInt { x: x, phantom: ::std::marker::PhantomData }
}
pub fn pow(self, mut e: i64) -> Self {
debug_assert!(e >= 0);
let mut sum = ModInt::new_internal(1);
let mut cur = self;
while e > 0 {
if e % 2 != 0 { sum *= cur; }
cur *= cur;
e /= 2;
}
sum
}
#[allow(dead_code)]
pub fn inv(self) -> Self { self.pow(M::m() - 2) }
}
impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {
type Output = Self;
fn add(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x + other.x;
if sum >= M::m() { sum -= M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {
type Output = Self;
fn sub(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x - other.x;
if sum < 0 { sum += M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {
type Output = Self;
fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }
}
impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {
fn add_assign(&mut self, other: T) { *self = *self + other; }
}
impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {
fn sub_assign(&mut self, other: T) { *self = *self - other; }
}
impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {
fn mul_assign(&mut self, other: T) { *self = *self * other; }
}
impl<M: Mod> Neg for ModInt<M> {
type Output = Self;
fn neg(self) -> Self { ModInt::new(0) - self }
}
impl<M> ::std::fmt::Display for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
self.x.fmt(f)
}
}
impl<M: Mod> ::std::fmt::Debug for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
let (mut a, mut b, _) = red(self.x, M::m());
if b < 0 {
a = -a;
b = -b;
}
write!(f, "{}/{}", a, b)
}
}
impl<M: Mod> From<i64> for ModInt<M> {
fn from(x: i64) -> Self { Self::new(x) }
}
// Finds the simplest fraction x/y congruent to r mod p.
// The return value (x, y, z) satisfies x = y * r + z * p.
fn red(r: i64, p: i64) -> (i64, i64, i64) {
if r.abs() <= 10000 {
return (r, 1, 0);
}
let mut nxt_r = p % r;
let mut q = p / r;
if 2 * nxt_r >= r {
nxt_r -= r;
q += 1;
}
if 2 * nxt_r <= -r {
nxt_r += r;
q -= 1;
}
let (x, z, y) = red(nxt_r, r);
(x, y - q * z, z)
}
} // mod mod_int
macro_rules! define_mod {
($struct_name: ident, $modulo: expr) => {
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct $struct_name {}
impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }
}
}
const MOD: i64 = 1_000_000_007;
define_mod!(P, MOD);
type ModInt = mod_int::ModInt<P>;
//n^p mod m
fn repeat_square(n: i64, p: i64, m: i64) -> i64 {
if p == 0 {
1
} else if p == 1 {
n % m
} else if p % 2 == 0 {
repeat_square(n, p / 2, m).pow(2) % m
} else {
(n * repeat_square(n, p - 1, m)) % m
}
}
fn ncr_mod(n: i64, r: i64, m: i64) -> i64 {
let mut denominator = n;
let mut numerator = 1;
for i in 1..r {
denominator = (denominator * (n - i)) % m;
numerator = (numerator * (i + 1)) % m;
}
(denominator * repeat_square(numerator, m - 2, m)) % m
}
*/
fn solve() {
let out = std::io::stdout();
let mut out = BufWriter::new(out.lock());
macro_rules! puts {
($($format:tt)*) => (let _ = write!(out,$($format)*););
}
input! {
n: usize,
a: [i32; n],
}
let mut cnt_odd = 0;
let mut cnt_even = 0;
let mut cum_1 = vec![0; n];
let mut cum_2 = vec![0; n];
//cum_1[even] < 0,cum_2[odd] < 0
if a[0] >= 0 {
cnt_even = a[0].abs() + 1;
cum_1[0] = a[0];
cum_2[0] += -cnt_even;
} else {
cnt_odd = a[0].abs() + 1;
cum_1[0] += cnt_odd;
cum_2[0] = a[0];
}
//+ - + -
for i in 1..n {
cum_1[i] = cum_1[i-1] + a[i];
if i % 2 != 0 {
if cum_1[i] >= 0 {
cnt_odd += cum_1[i].abs() + 1;
cum_1[i] = -1;
}
} else {
if cum_1[i] <= 0 {
cnt_odd += cum_1[i].abs() + 1;
cum_1[i] = 1;
}
}
}
//- + - +
for i in 1..n {
cum_2[i] = cum_2[i-1] + a[i];
if i % 2 == 0 {
if cum_2[i] >= 0 {
cnt_even += cum_2[i].abs() + 1;
cum_2[i] = -1;
}
} else {
if cum_2[i] <= 0 {
cnt_even += cum_2[i].abs() + 1;
cum_2[i] = 1;
}
}
}
puts!("{}\n",min(cnt_odd, cnt_even));
}
fn main() {
// In order to avoid potential stack overflow, spawn a new thread.
let stack_size = 104_857_600; // 100 MB
let thd = std::thread::Builder::new().stack_size(stack_size);
thd.spawn(|| solve()).unwrap().join().unwrap();
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | """ABC059 C Sequence diff:
"""
N=int(input())
A=list(map(int,input().split()))
Acop = A.copy()
cum = [0]*N
cum[0] = A[0]
for i in range(1, N):
cum[i] = cum[i-1] + A[i]
cumcop = cum.copy()
# + - + - ...
start = N
for i in range(N):
if i % 2 == 0:
if cum[i] <= 0:
start = i
break
else:
if cum[i] >= 0:
start = i
break
if start == N:
print(0)
exit()
ans1 = 0
for i in range(start, N):
cum[i] = cum[i-1] + A[i]
if i % 2 == 0:
if cum[i] <= 0:
ans1 += abs(cum[i]) + 1
A[i] += abs(cum[i]) + 1
cum[i] = 1
else:
if cum[i] >= 0:
ans1 += abs(cum[i]) + 1
A[i] -= abs(cum[i]) + 1
cum[i] = -1
# cum[i] = cum[i-1] + A[i]
# - + - +
A = Acop.copy()
cum = cumcop.copy()
start = N
for i in range(N):
if i % 2 == 1:
if cum[i] <= 0:
start = i
break
else:
if cum[i] >= 0:
start = i
break
if start == N:
print(0)
exit()
ans2 = 0
for i in range(start, N):
cum[i] = cum[i-1] + A[i]
if i % 2 == 1:
if cum[i] <= 0:
ans2 += abs(cum[i]) + 1
A[i] += abs(cum[i]) + 1
cum[i] = 1
else:
if cum[i] >= 0:
ans2 += abs(cum[i]) + 1
A[i] -= abs(cum[i]) + 1
cum[i] = -1
# cum[i] = cum[i-1] + A[i]
print(min(ans1, ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def c(ints):
for i in range(len(ints)):
if ints[i] != 0:
sig = 1 if ints[i] > 0 else -1
sig_ = -sig
total = ints[i]
total_ = -sig
mov = i
mov_ = abs(total) + 1
if i > 0:
mov += 1
mov_ += 1
j = i
break
if i == len(ints) - 1:
return i + 1
for i_ in ints[j+1:]:
tmp = total + i_
tmp_ = total_ + i_
if tmp == 0:
mov +=1
tmp = -sig
elif sig * tmp > 0:
mov += abs(tmp) + 1
tmp = -sig
if tmp_ == 0:
mov_ +=1
tmp_ = -sig_
elif sig_ * tmp_ > 0:
mov_ += abs(tmp_) + 1
tmp_ = -sig_
sig *= -1
total = tmp
sig_ *= -1
total_ = tmp_
print(mov, mov_)
return min(mov, mov_)
_ = input()
inp = input()
inp = inp.split(' ')
inp = [int(i_) for i_ in inp]
print(c(inp)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = (int)(0); i < (int)(n); i++) cin >> a[i];
int ans = 0;
int sum = a[0];
for (int i = (int)(0); i < (int)(n - 1); i++) {
if (sum < 0) {
if (a[i + 1] <= abs(sum)) {
ans += abs(sum) - a[i + 1] + 1;
a[i + 1] += abs(sum) - a[i + 1] + 1;
}
sum += a[i + 1];
} else if (sum > 0) {
if (a[i + 1] >= -sum) {
ans += a[i + 1] + sum + 1;
a[i + 1] -= a[i + 1] + sum + 1;
}
sum += a[i + 1];
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | import scala.io.{StdIn => in}
object Main extends App {
val n = in.readInt
val a = in.readLine.split(" ").map(_.toLong)
def solve(isEven: Boolean) = {
val even_odd = if(isEven) 0 else 1
a./:((0L, 0L, 0)) { (acc, e) =>
val (count, sum, i) = acc
val v = sum + e
if(i % 2 == even_odd) {
if(v > 0) (count, v, i+1)
else (count + v.abs + 1L, 1, i+1)
}
else {
if(v < 0) (count, v, i+1)
else (count + v.abs + 1L, -1, i+1)
}
}._1
}
val ans = solve(true) min solve(false)
println(ans)
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n], sum[n];
cin >> a[0];
sum[0] = a[0];
int ans = 0;
for (int i = 1; i < n; i++) cin >> a[i];
if (sum[0] > 0) {
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + a[i];
if (i & 1) {
if (sum[i] >= 0) {
ans += sum[i] + 1;
sum[i] = -1;
}
} else {
if (sum[i] <= 0) {
ans += 1 - sum[i];
sum[i] = 1;
}
}
}
} else if (sum[0] < 0) {
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + a[i];
if (i & 1) {
if (sum[i] <= 0) {
ans += 1 - sum[i];
sum[i] = 1;
}
} else {
if (sum[i] >= 0) {
ans += sum[i] + 1;
sum[i] = -1;
}
}
}
} else {
int ans2 = 1, ans3 = 1;
sum[0] = 1;
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + a[i];
if (i & 1) {
if (sum[i] >= 0) {
ans2 += sum[i] + 1;
sum[i] = -1;
}
} else {
if (sum[i] <= 0) {
ans2 += 1 - sum[i];
sum[i] = 1;
}
}
}
sum[0] = -1;
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + a[i];
if (i & 1) {
if (sum[i] <= 0) {
ans3 += 1 - sum[i];
sum[i] = 1;
}
} else {
if (sum[i] >= 0) {
ans3 += sum[i] + 1;
sum[i] = -1;
}
}
}
ans = min(ans2, ans3);
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
count = 0
sum_i = a[0]
if a[0] != 0:
for i in range(1, n):
if sum_i < 0:
sum_i += a[i]
if sum_i <= 0:
count += 1 - sum_i
sum_i = 1
elif sum_i > 0:
sum_i += a[i]
if sum_i >= 0:
count += sum_i + 1
sum_i = -1
else:
sum_i = 1
pos_count = 0
for i in range(1, n):
if sum_i < 0:
sum_i += a[i]
if sum_i <= 0:
pos_count += 1 - sum_i
sum_i = 1
elif sum_i > 0:
sum_i += a[i]
if sum_i >= 0:
pos_count += sum_i + 1
sum_i = -1
sum_i = -1
neg_count = 0
for i in range(1, n):
if sum_i < 0:
sum_i += a[i]
if sum_i <= 0:
neg_count += 1 - sum_i
sum_i = 1
elif sum_i > 0:
sum_i += a[i]
if sum_i >= 0:
neg_count += sum_i + 1
sum_i = -1
if neg_count < pos_count:
count = neg_count
else:
count = pos_count
print(count)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | parseInt(x) = parse(Int, x)
function main()
n = readline() |> parseInt
a = map(parseInt, split(readline()))
b = Array{Int}(n)
b[1] = a[1]
k = 0
for i in 2:n
b[i] = a[i]+b[i-1]
if b[i]*b[i-1] >= 0
if b[i-1] < 0
k += abs(b[i]-1)
b[i] = 1
else
k += abs(b[i]+1)
b[i] = -1
end
end
end
c = Array{Int}(n)
l = 0
if a[1] > 0
c[1] = -1
l += abs(a[1]+1)
else
c[1] = 1
l += abs(a[1]-1)
end
for i in 2:n
c[i] = a[i]+c[i-1]
if c[i]*c[i-1] >= 0
if c[i-1] < 0
l += abs(c[i]-1)
c[i] = 1
else
l += abs(c[i]+1)
c[i] = -1
end
end
end
print(min(k,l))
end
main() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int N, A[100000];
int main() {
cin >> N;
for (int i = 0; i < N; i++) {
cin >> A[i];
}
int sum = A[0], cnt = 0;
if (sum < 0) {
cnt += 1 - sum;
sum = 1;
}
for (int i = 1; i < N; i++) {
sum += A[i];
if (i % 2 == 1) {
if (sum >= 0) {
cnt += sum + 1;
sum = -1;
}
} else {
if (sum <= 0) {
cnt += 1 - sum;
sum = 1;
}
}
}
int sum2 = A[0], cnt2 = 0;
if (sum2 > 0) {
cnt2 += sum2 + 1;
sum2 = -1;
}
for (int i = 1; i < N; i++) {
sum2 += A[i];
if (i % 2 == 1) {
if (sum2 <= 0) {
cnt2 += 1 - sum2;
sum2 = 1;
}
} else {
if (sum2 >= 0) {
cnt2 += sum2 + 1;
sum2 = -1;
}
}
}
cout << min(cnt, cnt2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | #!usr/bin/env python3
from collections import defaultdict
from collections import deque
from heapq import heappush, heappop
import sys
import math
import bisect
import random
import itertools
sys.setrecursionlimit(10**5)
stdin = sys.stdin
bisect_left = bisect.bisect_left
bisect_right = bisect.bisect_right
def LI(): return list(map(int, stdin.readline().split()))
def LF(): return list(map(float, stdin.readline().split()))
def LI_(): return list(map(lambda x: int(x)-1, stdin.readline().split()))
def II(): return int(stdin.readline())
def IF(): return float(stdin.readline())
def LS(): return list(map(list, stdin.readline().split()))
def S(): return list(stdin.readline().rstrip())
def IR(n): return [II() for _ in range(n)]
def LIR(n): return [LI() for _ in range(n)]
def FR(n): return [IF() for _ in range(n)]
def LFR(n): return [LI() for _ in range(n)]
def LIR_(n): return [LI_() for _ in range(n)]
def SR(n): return [S() for _ in range(n)]
def LSR(n): return [LS() for _ in range(n)]
mod = 1000000007
inf = float('INF')
#A
def A():
a = input().split()
a = list(map(lambda x: x.capitalize(), a))
a,b,c = a
print(a[0]+b[0]+c[0])
return
#B
def B():
a = II()
b = II()
if a > b:
print("GREATER")
if a < b:
print("LESS")
if a == b:
print("EQUAL")
return
#C
def C():
II()
a = LI()
def f(suma, b):
for i in a[1:]:
if suma * (suma + i) < 0:
suma = suma + i
continue
b = b + (abs(suma + i) + 1)
suma = (-1 * (suma > 0)) or 1
return b
if a[0] == 0:
ans = min(f(1, 1), f(-1, 1))
else:
ans = min(f(a[0], 0), f(-a[0], 2 * abs(a[0])))
print(ans)
return
#D
def D():
s = S()
for i in range(len(s) - 1):
if s[i] == s[i+1]:
print(i + 1, i + 2)
return
for i in range(len(s) - 2):
if s[i] == s[i + 2]:
print(i + 1, i + 3)
return
print(-1, -1)
return
#Solve
if __name__ == '__main__':
C()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def count_loop(n, old_state, a_list, flag):
count = 0
for i in range(1, int(n)):
num_state = old_state + int(a_list[i])
if flag == 1:
if num_state == 0:
count += 1
old_state = -1
flag = -1
elif num_state > 0:
count += num_state + 1
old_state = -1
flag = -1
else:
old_state = num_state
flag = -1
elif flag == -1:
if num_state == 0:
count += 1
old_state = 1
flag = 1
elif num_state < 0:
count += abs(num_state) + 1
old_state = 1
flag = 1
else:
old_state = num_state
flag = 1
else:
if num_state == 0:
count += 1
flag = 0
elif num_state > 0:
old_state = num_state
flag = 1
else:
old_state = num_state
flag = -1
return count
if __name__ == "__main__":
n = input()
a = input()
a_list = a.split(" ")
old_state = int(a_list[0])
count = 0
c1 = count_loop(n,old_state,a_list,1)
c2 = count_loop(n,old_state,a_list,-1)
c3 = count_loop(n,old_state,a_list,0)+1
if c1 <= c2 and c1 <= c3:
print(c1)
elif c2 < c1 and c2 < c3:
print(c2)
else:
print(c3)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int first_pos = 0;
int sum1 = 0;
for (int i = 0; i < n; i++) {
sum1 += a[i];
if (i % 2 == 0) {
if (sum1 <= 0) {
first_pos += -sum1 + 1;
sum1 = 1;
}
} else {
if (sum1 >= 0) {
first_pos += sum1 + 1;
sum1 = -1;
}
}
}
int first_neg = 0;
int sum2 = 0;
for (int i = 0; i < n; i++) {
sum2 += a[i];
if (i % 2 == 0) {
if (sum2 >= 0) {
first_neg += sum2 + 1;
sum2 = -1;
}
} else {
if (sum2 <= 0) {
first_neg += -sum2 + 1;
sum2 = 1;
}
}
}
cout << min(first_pos, first_neg) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
const ll mod = LLONG_MAX;
int a[100010];
int rui[100010];
int n;
int main() {
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i];
rui[0] = a[0];
for (int i = 1; i < n; i++) {
rui[i] += a[i] + rui[i - 1];
}
int temp = 0;
int ans = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0 && rui[i] + temp == 0) {
temp++;
ans++;
continue;
}
if (i % 2 == 1 && rui[i] + temp == 0) {
temp--;
ans++;
continue;
}
if (i % 2 == 0 && rui[i] + temp < 0) {
ans += abs(1 - (rui[i] + temp));
temp += 1 - (rui[i] + temp);
}
if (i % 2 == 1 && rui[i] + temp > 0) {
ans += abs(-(1 + rui[i] + temp));
temp += -(1 + rui[i] + temp);
}
}
if (ans < 0) ans = 1e9;
temp = 0;
int ans2 = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0 && rui[i] + temp == 0) {
temp--;
ans2++;
continue;
}
if (i % 2 == 1 && rui[i] + temp == 0) {
temp++;
ans2++;
continue;
}
if (i % 2 == 0 && rui[i] + temp > 0) {
ans2 += abs(-(1 + rui[i] + temp));
temp += -(1 + rui[i] + temp);
}
if (i % 2 == 1 && rui[i] + temp < 0) {
ans2 += abs(1 - (rui[i] + temp));
temp += 1 - (rui[i] + temp);
}
}
if (ans2 < 0) ans2 = 1e9;
cout << min(ans, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
//long long
using ll = long long;
// pair<int, int>
using PII = pair<int, int>;
//最大値、mod
const int MOD = 1000000007;
const int mod = 1000000007;
const int INF = 1000000000;
const long long LINF = 1e18;
const int MAX = 510000;
//出力系
#define print(x) cout << x << endl
#define prints(x) cout << fixed << setprecision(20) << x << endl
#define printc(x) cout << setw(2) << setfill('0') << x << endl;
#define yes cout << "Yes" << endl
#define YES cout << "YES" << endl
#define no cout << "No" << endl
#define NO cout << "NO" << endl
//配列入力
vector<long long>vecin(ll n){
vector<long long>res(n);
for(int i = 0; i < n; i++) cin >> res[i];
return res;
}
// begin() end()
#define all(x) (x).begin(),(x).end()
//for
#define REP(i,n) for(int i=0, i##_len=(n); i<i##_len; ++i)
#define rrep(i,a,b) for(int i=(a);i>(b);i--)
#define rep(i,a,b) for(int i=(a);i<(b);i++)
//最大公約数
ll gcd(ll x, ll y) { return y ? gcd(y,x%y) : x;}
// 最小公倍数
unsigned lcm(unsigned a, unsigned b){
return a / gcd(a, b) * b;
}
// a = max(a, b), a = min(a, b)
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }
// num ^ pow(mod取る)
ll pow_mod(ll num, ll pow, ll mod) {
ll prod = 1;
num %= mod;
while (pow > 0) {
if (pow & 1) prod = prod * num % mod;
num = num * num % mod;
pow >>= 1;
}
return prod;
}
// 二項係数(MODとる、1 ≦ k ≦ n ≦ 10^7 程度)
// COMinit()
// COM(x, y)
// とコンビで使う
// テーブルを作る前処理
long long fac[MAX], finv[MAX], inv[MAX];
void COMinit() {
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for (int i = 2; i < MAX; i++){
fac[i] = fac[i - 1] * i % MOD;
inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;
finv[i] = finv[i - 1] * inv[i] % MOD;
}
}
// 二項係数計算
long long COM(int n, int k){
if (n < k) return 0;
if (n < 0 || k < 0) return 0;
return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}
//重みつきUnionFInd
template<class Abel> struct GUnionFind {
vector<int> par;
vector<int> rank;
vector<Abel> diff_weight;
GUnionFind(int n = 1, Abel SUM_UNITY = 0) {
init(n, SUM_UNITY);
}
void init(int n = 1, Abel SUM_UNITY = 0) {
par.resize(n); rank.resize(n); diff_weight.resize(n);
for (int i = 0; i < n; ++i) par[i] = i, rank[i] = 0, diff_weight[i] = SUM_UNITY;
}
int root(int x) {
if (par[x] == x) {
return x;
}
else {
int r = root(par[x]);
diff_weight[x] += diff_weight[par[x]];
return par[x] = r;
}
}
Abel weight(int x) {
root(x);
return diff_weight[x];
}
bool issame(int x, int y) {
return root(x) == root(y);
}
bool merge(int x, int y, Abel w) {
w += weight(x); w -= weight(y);
x = root(x); y = root(y);
if (x == y) return false;
if (rank[x] < rank[y]) swap(x, y), w = -w;
if (rank[x] == rank[y]) ++rank[x];
par[y] = x;
diff_weight[y] = w;
return true;
}
Abel diff(int x, int y) {
return weight(y) - weight(x);
}
};
// UnionFind
struct UnionFind {
vector<int> par;
vector<int> rank;
vector<ll> Size;
UnionFind(int n = 1) {
init(n);
}
void init(int n = 1) {
par.resize(n + 1); rank.resize(n + 1); Size.resize(n + 1);
for (int i = 0; i <= n; ++i) par[i] = i, rank[i] = 0, Size[i] = 1;
}
int root(int x) {
if (par[x] == x) {
return x;
}
else {
int r = root(par[x]);
return par[x] = r;
}
}
bool issame(int x, int y) {
return root(x) == root(y);
}
bool merge(int x, int y) {
x = root(x); y = root(y);
if (x == y) return false;
if (rank[x] < rank[y]) swap(x, y);
if (rank[x] == rank[y]) ++rank[x];
par[y] = x;
Size[x] += Size[y];
return true;
}
ll size(int x){
return Size[root(x)];
}
};
//modint構造体
struct Mint {
int val;
Mint inv() const{
int tmp,a=val,b=mod,x=1,y=0;
while(b)tmp=a/b,a-=tmp*b,swap(a,b),x-=tmp*y,swap(x,y);
return Mint(x);
}
public:
Mint():val(0){}
Mint(ll x){if((val=x%mod)<0)val+=mod;}
Mint pow(ll t){Mint res=1,b=*this; while(t){if(t&1)res*=b;b*=b;t>>=1;}return res;}
Mint& operator+=(const Mint& x){if((val+=x.val)>=mod)val-=mod;return *this;}
Mint& operator-=(const Mint& x){if((val+=mod-x.val)>=mod)val-=mod; return *this;}
Mint& operator*=(const Mint& x){val=(ll)val*x.val%mod; return *this;}
Mint& operator/=(const Mint& x){return *this*=x.inv();}
bool operator==(const Mint& x) const{return val==x.val;}
bool operator!=(const Mint& x) const{return val!=x.val;}
bool operator<(const Mint& x) const{return val<x.val;}
bool operator<=(const Mint& x) const{return val<=x.val;}
bool operator>(const Mint& x) const{return val>x.val;}
bool operator>=(const Mint& x) const{return val>=x.val;}
Mint operator+(const Mint& x) const{return Mint(*this)+=x;}
Mint operator-(const Mint& x) const{return Mint(*this)-=x;}
Mint operator*(const Mint& x) const{return Mint(*this)*=x;}
Mint operator/(const Mint& x) const{return Mint(*this)/=x;}
};
struct factorial {
vector<Mint> Fact, Finv;
public:
//factorial fact(10000010);
//fact.nCr(a, b)
//「fact」の部分は自由に名前変更可能
factorial(int maxx){
Fact.resize(maxx+1),Finv.resize(maxx+1); Fact[0]=Mint(1); rep(i,0,maxx)Fact[i+1]=Fact[i]*(i+1);
Finv[maxx]=Mint(1)/Fact[maxx]; rrep(i,maxx,0)Finv[i-1]=Finv[i]*i;
}
Mint fact(int n,bool inv=0){if(inv)return Finv[n];else return Fact[n];}
Mint nPr(int n,int r){if(n<0||n<r||r<0)return Mint(0);else return Fact[n]*Finv[n-r];}
Mint nCr(int n,int r){if(n<0||n<r||r<0)return Mint(0);else return Fact[n]*Finv[r]*Finv[n-r];}
};
//他のnCr使えない場合試す
Mint com2(int n, int a) {
Mint x = 1, y = 1;
REP(i, a) {
x *= n - i;
y *= i + 1;
}
return x / y;
}
// 1 * 2 * 3 .... * n (mod)
ll modfact(ll n) {
if (n <= 1) return 1;
return (n * modfact(n - 1)) % MOD;
}
// kが角度だった場合:cos(k * (PI / 180));
//const double PI = acos(-1);のまま使うと円周率(M_PIもあるよ)
const double PI = acos(-1);
// 多次元 vector 生成 例: auto dp = make_vec<long long>(N+1, 5, 5, 5);
template<class T>
vector<T> make_vec(size_t a){
return vector<T>(a);
}
template<class T, class... Ts>
auto make_vec(size_t a, Ts... ts){
return vector<decltype(make_vec<T>(ts...))>(a, make_vec<T>(ts...));
}
//素因数分解
vector<pair<long long, int>>factorize(long long n){
vector<pair<long long, int>> res;
for(long long i = 2; i * i <= n; ++i){
if(n % i) continue;
res.emplace_back(i, 0);
while(n % i == 0){
n /= i;
res.back().second++;
}
}
if(n != 1) res.emplace_back(n, 1);
return res;
}
// 素数判定
bool primejudge(long long a){
if(a <= 1) return false;
for(long long i = 2; i * i <= a; i++){
if(a % i == 0) return false;
}
return true;
}
int dy[4] = {0, 1, 0, -1}, dx[4] = {1, 0, -1, 0};
vector<int>graph[1000];
ll v(string s){
string ss;
REP(i, s.length()){
if(s[i] != '.') ss += s[i];
}
ll res = stoll(ss);
return res;
}
int main() {
int n;
cin >> n;
vector<int>a(n);
REP(i, n)cin >> a[i];
// +-
int aa = 0;
int now = 0;
REP(i, n){
now += a[i];
if(i % 2 == 0 && now <= 0) aa += -now + 1, now = 1;
if(i % 2 == 1 && now >= 0) aa += now + 1, now = -1;
}
//-+
int b = 0;
now = 0;
REP(i, n){
now += a[i];
if(i % 2 == 0 && now >= 0) b += now + 1, now = -1;
if(i % 2 == 1 && now <= 0) b += -now + 1, now = 1;
}
cout << min(aa, b) << endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T1, typename T2>
inline void chmin(T1 &a, T2 b) {
if (a > b) a = b;
}
template <typename T1, typename T2>
inline void chmax(T1 &a, T2 b) {
if (a < b) a = b;
}
signed main() {
int n;
cin >> n;
long long ans = 0;
long long sum = 0;
bool fl = 0;
for (int i = 0; i < (n); i++) {
long long a;
cin >> a;
if (i == 0) {
if (a == 0) {
fl = 1;
break;
}
sum += a;
continue;
}
if (0 < sum) {
if (0 < sum + a) {
ans += sum + a + 1;
sum = -1;
} else if (sum + a == 0) {
ans++;
sum = -1;
} else {
sum += a;
}
} else {
if (0 > sum + a) {
ans += abs(sum + a) + 1;
sum = 1;
} else if (sum + a == 0) {
ans++;
sum = 1;
} else {
sum += a;
}
}
}
if (fl) {
long long sum1 = 1, sum2 = -1;
ans++;
int ans2 = 1;
for (int i = 0; i < (n - 1); i++) {
long long a;
cin >> a;
if (0 < sum1) {
if (0 < sum1 + a) {
ans += sum1 + a + 1;
sum1 = -1;
} else if (sum1 + a == 0) {
ans++;
sum1 = -1;
} else {
sum1 += a;
}
} else {
if (0 > sum1 + a) {
ans += abs(sum1 + a) + 1;
sum1 = 1;
} else if (sum1 + a == 0) {
ans++;
sum1 = 1;
} else {
sum1 += a;
}
}
if (0 < sum2) {
if (0 < sum2 + a) {
ans2 += sum2 + a + 1;
sum2 = -1;
} else if (sum2 + a == 0) {
ans2++;
sum2 = -1;
} else {
sum2 += a;
}
} else {
if (0 > sum2 + a) {
ans2 += abs(sum2 + a) + 1;
sum2 = 1;
} else if (sum2 + a == 0) {
ans2++;
sum2 = 1;
} else {
sum2 += a;
}
}
}
chmin(ans, ans2);
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(i) for i in input().split()]
s0 = a[0]
count=0
if a[0]==0:
if a[1]>0:s0-=1
else:s0+=1
count+=1
for i in range(1,n):
s1 = s0+a[i]
if s0*s1>=0:
if s1>0:
a[i]-=(abs(s1)+1)
count+=(abs(s1)+1)
elif s1<0:
a[i]+=(abs(s1)+1)
count+=(abs(s1)+1)
elif s1==0:
if s0>0:
a[i]-=1
count+=1
elif s0<0:
a[i]+=1
count+=1
s0 += a[i]
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n, a;
long long sum = 0, ans = 0;
int s;
cin >> n;
cin >> sum;
if (sum > 0)
s = 1;
else
s = -1;
for (int i = 1; i < n; i++) {
cin >> a;
sum += a;
if (sum * s > 0) {
ans += abs(sum) + 1;
sum = -s;
}
if (sum > 0)
s = 1;
else
s = -1;
}
if (sum == 0) ans++;
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, ans1 = 0, ans2 = 0, sum1 = 0, sum2 = 0;
cin >> n;
vector<int> a(n), s(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
s.at(0) = a.at(0);
for (int i = 1; i <= n - 1; i++) {
s.at(i) = a.at(i) + s.at(i - 1);
}
for (int i = 0; i < n; i++) {
if (i % 2 == 0 && s.at(i) + sum1 <= 0) {
sum2 += 1 - s.at(i) - sum1;
ans1 += abs(1 - s.at(i) - sum1);
} else if (i % 2 == 1 && s.at(i) + sum1 >= 0) {
sum2 -= s.at(i) + sum1 + 1;
ans1 += abs(s.at(i) + sum1 + 1);
}
sum1 = sum2;
}
sum1 = 0, sum2 = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 1 && s.at(i) + sum1 <= 0) {
sum2 += 1 - s.at(i) - sum1;
ans2 += abs(1 - s.at(i) - sum1);
} else if (i % 2 == 0 && s.at(i) + sum1 >= 0) {
sum2 -= s.at(i) + sum1 + 1;
ans2 += abs(s.at(i) + sum1 + 1);
}
sum1 = sum2;
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = [int(i) for i in input().split()]
ff = -1
for i in range(n):
if A[i] > 0:
ff = i
break
elif A[i] < 0:
ff = i+1
break
if A[0] != 0:
ans = 0
S = A[0]
f = A[0]//abs(A[0])
else:
if ff == -1:
ans = 1
S = 1
f = 1
else:
if ff % 2 == 0:
ans = 1
S = 1
f = 1
else:
ans = 1
S = -1
f = -1
for a in A[1:]:
S += a
if S == 0:
ans += 1
S = -f
else:
if S/abs(S) != f*(-1):
ans += abs(S)+1
S = -f
f *= -1
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const int MGN = 8;
const int ARY_SZ_MAX = 10000000;
using namespace std;
using ll = long long;
using ull = unsigned long long;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vb = vector<bool>;
using vvb = vector<vb>;
using vvvb = vector<vvb>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vd = vector<double>;
using vs = vector<string>;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using psi = pair<string, int>;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int N;
cin >> N;
vl A(N);
for (int i = int(0); i < int(N); ++i) cin >> A[i];
vl s(N);
A.push_back(0);
s.push_back(0);
ll ans = (INT_MAX / 2);
ll cost = 0;
s[0] = A[0];
for (int i = int(1); i < int(N + 1); ++i) {
if (i % 2 == 0 && s[i - 1] <= 0) {
cost += abs(s[i - 1]) + 1;
s[i - 1] = 1;
} else if (i % 2 == 1 && s[i - 1] >= 0) {
cost += abs(s[i - 1]) + 1;
s[i - 1] = -1;
}
s[i] = s[i - 1] + A[i];
}
ans = min(ans, cost);
cost = 0;
s[0] = A[0];
for (int i = int(1); i < int(N + 1); ++i) {
if (i % 2 == 0 && s[i - 1] >= 0) {
cost += abs(s[i - 1]) + 1;
s[i - 1] = -1;
} else if (i % 2 == 1 && s[i - 1] <= 0) {
cost += abs(s[i - 1]) + 1;
s[i - 1] = 1;
}
s[i] = s[i - 1] + A[i];
}
ans = min(ans, cost);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MOD = (int)1e9 + 7;
const int INF = 100100100;
const double PI = 3.14159265358979323846;
int main() {
int n, a[100001] = {0};
int res = 0;
long long sum = 0;
cin >> n;
for (int i = 0; i < (n); ++i) cin >> a[i];
sum = a[0];
if (sum == 0) {
if (a[1] >= 0) {
sum--;
} else if (a[1] < 0) {
sum++;
}
res++;
}
for (int i = (1); i < (n); ++i) {
long long newSum = sum + a[i];
long long prod = newSum * sum;
if (prod < 0) {
sum = newSum;
} else if (prod >= 0) {
sum = -sum / abs(sum);
res += abs(sum - newSum);
}
}
cout << res << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const int INF = 2147483647;
const long long int MOD = 1000000007;
using namespace std;
int main() {
int n;
cin >> n;
vector<long long int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long int ans = (a[0] == 0) ? 1 : 0;
long long int ans2 = ans;
if (a[0] < 0) {
ans += abs(a[0]) + 1;
}
bool minus = true;
long long int total = a[0] == 0 ? 1 : a[0];
for (int i = 1; i < n; i++) {
if (minus) {
if (a[i] + total >= 0) {
ans += a[i] + total + 1;
total = -1;
} else {
total += a[i];
}
} else {
if (a[i] + total <= 0) {
ans += abs(a[i] + total) + 1;
total = 1;
} else {
total += a[i];
}
}
minus = !minus;
}
cout << endl;
if (a[0] > 0) {
ans2 += abs(a[0]) + 1;
}
minus = false;
total = (a[0] == 0) ? -1 : a[0];
for (int i = 1; i < n; i++) {
if (minus) {
if (a[i] + total >= 0) {
ans2 += a[i] + total + 1;
total = -1;
} else {
total += a[i];
}
} else {
if (a[i] + total <= 0) {
ans2 += abs(a[i] + total) + 1;
total = 1;
} else {
total += a[i];
}
}
minus = !minus;
}
cout << min(ans, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return 1;
}
return 0;
}
const long long LLINF = 1LL << 60;
int main(void) {
ios::sync_with_stdio(false);
cin.tie(0);
long long int i, n;
long long int sum = 0, ans = 0, minans;
cin >> n;
vector<long long int> v(n, 0), w(n, 0);
for (i = 0; i < n; i++) {
cin >> v[i];
}
sum = v[0];
w[0] = v[0];
for (i = 1; i < n; i++) {
if ((sum < 0 && sum + v[i] > 0) || (sum > 0 && sum + v[i] < 0)) {
w[i] = v[i];
sum += w[i];
continue;
}
if (sum < 0) {
ans += abs(-1 * sum + 1 - v[i]);
w[i] = -1 * sum + 1;
sum += w[i];
if (sum == 0) {
w[i]++;
sum++;
}
} else {
ans += abs(-1 * sum - 1 - v[i]);
w[i] = -1 * sum - 1;
sum += w[i];
if (sum == 0) {
w[i]--;
sum--;
}
}
}
minans = ans;
ans = 0;
w.clear();
sum = -1 * v[0];
w[0] = -1 * v[0];
for (i = 1; i < n; i++) {
if ((sum < 0 && sum + v[i] > 0) || (sum > 0 && sum + v[i] < 0)) {
w[i] = v[i];
sum += w[i];
continue;
}
if (sum < 0) {
ans += abs(-1 * sum + 1 - v[i]);
w[i] = -1 * sum + 1;
sum += w[i];
if (sum == 0) {
w[i]++;
sum++;
}
} else {
ans += abs(-1 * sum - 1 - v[i]);
w[i] = -1 * sum - 1;
sum += w[i];
if (sum == 0) {
w[i]--;
sum--;
}
}
}
minans = min(ans, minans);
cout << minans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 1e9;
const int MOD = 1e9 + 7;
signed main() {
int n;
cin >> n;
long long a[n];
for (int i = 0; i < (n); i++) {
cin >> a[i];
}
long long ans = 0, now = a[0], pre = a[0];
for (int i = 1; i < n; i++) {
now += a[i];
if (pre * now >= 0) {
if (now < 0) {
ans += 1 - now;
now = 1;
} else if (now > 0) {
ans += now + 1;
now = -1;
} else if (now == 0) {
ans++;
if (pre < 0) {
now = 1;
} else {
now = -1;
}
}
}
pre = now;
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n;
cin >> n;
long long int a[n], sum = 0, count = 0;
for (int i = 0; i < n; i++) cin >> a[i];
for (int i = 0; i < n; i++) {
sum += a[i];
if (sum == 0) {
if (a[i + 1] > 0) {
a[i]--;
count++;
} else if (a[i + 1] < 0) {
a[i]++;
count++;
} else if (a[i + 1] == 0) {
a[i]++;
a[i + 1] -= 2;
count += 3;
}
continue;
} else if (sum > 0) {
if (sum + a[i + 1] > 0) {
count += sum + a[i + 1] + 1;
a[i + 1] -= sum + a[i + 1] + 1;
continue;
}
} else if (sum < 0) {
if (sum + a[i + 1] < 0) {
count += abs(sum + a[i + 1] + 1);
a[i + 1] += abs(sum + a[i + 1] + 1);
}
}
}
cout << count;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
list_a = list(map(int, input().split()))
sum_a = list_a[0]
count_t = 0
for one_a in list_a[1:]:
if sum_a > 0:
if sum_a + one_a < 0:
sum_a += one_a
else:
count_t += abs(sum_a) + one_a + 1
sum_a = -1
else:
if sum_a + one_a > 0:
sum_a += one_a
else:
count_t += abs(sum_a) - one_a + 1
sum_a = 1
sum_a = list_a[0]
count_f = 0
for one_a in list_a[1:]:
if sum_a > 0:
if sum_a + one_a < 0:
sum_a += one_a
else:
count_f += abs(sum_a) + one_a + 1
sum_a = -1
else:
if sum_a + one_a > 0:
sum_a += one_a
else:
count_f += abs(sum_a) - one_a + 1
sum_a = 1
print(min(count_t, count_f)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 0x7fffffff;
const int maxn = 1e5 + 10;
int a[maxn];
int n;
long long cal() {
long long t = a[0], ans = 0;
for (int i = 1; i < n; ++i) {
if (t < 0) {
t += a[i];
if (t <= 0) {
ans += 1 - t;
t = 1;
}
continue;
}
t += a[i];
if (t >= 0) {
ans += t + 1;
t = -1;
}
}
return ans;
}
int main() {
scanf("%d", &n);
for (int i = 0; i < (n); ++i) {
scanf("%d", &a[i]);
}
long long ans1 = 0, ans2 = 0, ans = 0;
int t = a[0];
if (t == 0) {
a[0] = 1;
++ans1;
ans1 = cal();
a[0] = -1;
++ans2;
ans2 = cal();
ans = min(ans1, ans2);
} else {
ans = cal();
}
printf("%lld\n", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = input()
a = [int(i) for i in input.split()]
X = 0
ans = 0
for i in a:
X += i
if X > 0:
b = -1 - X
ans += b - a[i+1]
else:
b = 1 - X
ans += b - a[i+1]
print (ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
int d[100005];
int main(void) {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &d[i]);
int ans1 = 0, sum = 0;
for (int i = 1; i <= n; i++) {
if (i % 2 == 0) {
int a = 0;
if (sum + d[i] >= 0) {
a = abs(sum + d[i] - (-1));
ans1 += a;
sum = -1;
} else
sum += d[i];
} else {
int a = 0;
if (sum + d[i] <= 0) {
a = abs(sum + d[i] - 1);
ans1 += a;
sum = 1;
} else
sum += d[i];
}
}
int ans2 = 0;
sum = 0;
for (int i = 1; i <= n; i++) {
if (i % 2 == 0) {
int a = 0;
if (sum + d[i] <= 0) {
a = abs(sum + d[i] - (1));
ans2 += a;
sum = 1;
} else
sum += d[i];
} else {
int a = 0;
if (sum + d[i] >= 0) {
a = abs(sum + d[i] - (-1));
ans2 += a;
sum = -1;
} else
sum += d[i];
}
}
printf("%d\n", min(ans1, ans2));
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = 1e18;
signed main() {
long long n;
cin >> n;
vector<long long> a(n);
for (long long i = 0; i < n; i++) cin >> a[i];
long long ans = INF;
long long sum = 0, cnt = 0;
for (long long i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0) {
if (sum <= 0) {
cnt += abs(sum) + 1;
sum = 1;
}
} else {
if (sum > 0) {
cnt += abs(sum) + 1;
sum = -1;
}
}
}
ans = min(ans, cnt);
sum = 0;
cnt = 0;
for (long long i = 0; i < n; i++) {
sum += a[i];
if (i % 2) {
if (sum <= 0) {
cnt += abs(sum) + 1;
sum = 1;
}
} else {
if (sum > 0) {
cnt += abs(sum) + 1;
sum = -1;
}
}
}
ans = min(ans, cnt);
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
input=sys.stdin.readline
def main():
N = int(input())
A = list(map(int, input().split()))
tmp = A.copy()
mi = 10**9
for j in range(2):
A = tmp.copy()
s = 0
n = 0
if j == 0: # 偶数番目までの和が正 ⇒ A[0] を負にする
if A[0] > 0:
n += abs(A[0] +1)
A[0] = -1
else: # 奇数番目までの和が正 ⇒ A[0] を正にする
if A[0] < 0:
n += abs(A[0] -1)
A[0] = 1
s = A[0]
for i in range(1,N):
if s * (s+A[i]) >= 0:
if s < 0:
n += abs(-s+1 -A[i])
A[i] = -s+1
else:
n += abs(-s-1 -A[i])
A[i] = -s-1
s += A[i]
mi = min(mi, n)
print(mi)
if __name__ == '__main__':
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long a[1000005] = {};
long long calc(long long *, long long);
long long get_sign(long long);
int main() {
long long n, ans;
cin >> n;
for (long long i = 0; i < n; i++) {
cin >> a[i];
}
ans = calc(a, n);
cout << ans << endl;
return 0;
}
long long calc(long long *a, long long n) {
long long cnt = 0;
long long sign = 0;
long long tmp;
if (a[0] > 0) {
sign = 1;
}
tmp = a[0];
for (long long i = 0; i < n - 1; i++) {
tmp = tmp + a[i + 1];
if (sign == 1) {
if (tmp >= 0) {
cnt += tmp + 1;
tmp = -1;
}
} else {
if (tmp <= 0) {
cnt += (-1 * tmp) + 1;
tmp = 1;
}
}
sign = get_sign(tmp);
}
return cnt;
}
long long get_sign(long long tmp) {
if (tmp < 0)
return 0;
else
return 1;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using ll = long long;
using namespace std;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n;
cin >> n;
vector<ll> v(n, 0ll);
for (int i = (int)(0); i < (int)(n); i++) cin >> v[i];
vector<ll> memo(n + 1, 0ll);
priority_queue<ll, vector<ll>, greater<ll> > pq;
memo[0] = -1;
memo[1] = v[0];
ll cnt = 0;
for (int i = 1; i <= n; i++) {
memo[i] = memo[i - 1] + v[i - 1];
if (not(memo[i - 1] * memo[i] < 0)) {
if (memo[i] < 0) {
int plus = memo[i] * (-1) + 1;
memo[i] += plus;
cnt += plus;
} else if (memo[i] > 0) {
int plus = memo[i] * -1 - 1;
memo[i] += plus;
cnt -= plus;
} else {
if (memo[i - 1] < 0) {
memo[i]++;
cnt++;
} else {
memo[i]--;
cnt++;
}
}
}
}
fill(memo.begin(), memo.end(), 0ll);
memo[0] = 1;
memo[1] = v[0];
pq.push(cnt);
cnt = 0;
for (int i = 2; i <= n; i++) {
memo[i] = memo[i - 1] + v[i - 1];
if (not(memo[i - 1] * memo[i] < 0)) {
if (memo[i] < 0) {
int plus = memo[i] * (-1) + 1;
memo[i] += plus;
cnt += plus;
} else if (memo[i] > 0) {
int plus = memo[i] * -1 - 1;
memo[i] += plus;
cnt -= plus;
} else {
if (memo[i - 1] < 0) {
memo[i]++;
cnt++;
} else {
memo[i]--;
cnt++;
}
}
}
}
pq.push(cnt);
cout << pq.top() << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long INF = (1LL << 62);
long long N;
vector<long long> A, W;
long long S[100002] = {INF * (-1)};
long long dp[100002] = {0};
void calcDP(int n) {
if (n == 1) {
if (W[1] != 0) {
dp[1] = 0;
} else {
dp[1] = 1;
if (W[2] <= 0) {
W[1] = 1;
} else {
W[1] = -1;
}
S[1] = W[1];
}
return;
} else if (n == 2) {
calcDP(1);
if (W[1] > 0 && W[1] + W[2] < 0) {
dp[2] = dp[1];
} else if (W[1] > 0 && W[1] + W[2] >= 0) {
dp[2] = dp[1] + abs(W[2] - (-1 - W[1]));
W[2] = -1 - W[1];
S[2] = S[1] + W[2];
} else if (W[1] < 0 && W[1] + W[2] > 0) {
dp[2] = dp[1];
} else if (W[1] < 0 && W[1] + W[2] <= 0) {
dp[2] = dp[1] + abs(W[2] - (1 - W[1]));
W[2] = 1 - W[1];
S[2] = S[1] + W[2];
}
} else {
S[n] = S[n - 1] + W[n];
if ((S[n - 1] < 0 && S[n] > 0) || (S[n - 1] > 0 && S[n] < 0)) {
dp[n] = dp[n - 1];
} else {
long long dpa = -1, dpb = -1, dpc = -1;
long long d, w, s;
if (S[n - 2] > 0) {
w = -1 - S[n - 2];
s = S[n - 2] + w;
dpb = dp[n - 1] + abs(w - W[n - 1]) + abs(1 - s - W[n]);
} else {
w = 1 - S[n - 2];
s = S[n - 2] + w;
dpb = dp[n - 1] + abs(w - W[n - 1]) + abs(-1 - s - W[n]);
}
if (S[n - 1] > 0) {
dpc = dp[n - 1] + abs(-1 - S[n - 1] - W[n]);
} else {
dpc = dp[n - 1] + abs(1 - S[n - 1] - W[n]);
}
if (dpc <= dpb) {
dp[n] = dpc;
if (S[n - 1] > 0) {
W[n] = -1 - S[n - 1];
} else {
W[n] = 1 - S[n - 1];
}
} else {
dp[n] = dpb;
W[n - 1] = w;
S[n - 1] = S[n - 2] + W[n - 1];
W[n] = 0 - S[n - 1] - (abs(S[n - 1]) / S[n - 1]);
}
S[n] = S[n - 1] + W[n];
}
return;
}
}
int main(int argc, char* argv[]) {
cin.tie(0);
ios::sync_with_stdio(false);
cin >> N;
W.push_back(0);
S[0] = 0;
for (int i = 1; i <= N; i++) {
long long a;
cin >> a;
A.push_back(a);
W.push_back(a);
if (i == 1) {
S[1] = a;
} else {
S[i] = S[i - 1] + a;
}
}
for (int i = 1; i <= N; i++) {
calcDP(i);
}
printf("%lld\n", dp[N]);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; ++i) cin >> a[i];
bool positive;
if (a[0] > 0)
positive = true;
else
positive = false;
int total, cnt = 0;
for (int i = 1; i < n; ++i) {
total = accumulate(a.begin(), a.begin() + i, 0) + a[i];
if (positive && total >= 0) {
a[i] -= (total + 1);
cnt += (total + 1);
positive = false;
} else if (!positive && total <= 0) {
a[i] += (abs(total) + 1);
cnt += (abs(total) + 1);
positive = true;
} else
positive = !positive;
cout << a[i] << endl;
}
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n;
cin >> n;
vector<long long> vec(n);
vector<long long> part(n + 1);
part[0] = 0;
for (int i = 0; i < n; i++) {
cin >> vec[i];
part[i + 1] = part[i] + vec[i];
}
long long ans = 0;
bool isPlus = part[1] > 0 ? true : false;
for (int i = 2; i < n + 1; i++) {
int num = abs(part[i]);
if (isPlus) {
if (part[i] > 0) {
ans += num;
for (int j = i; j < n + 1; j++) part[j] -= num;
}
if (part[i] == 0) {
ans++;
for (int j = i; j < n + 1; j++) part[j]--;
}
isPlus = false;
} else {
if (part[i] < 0) {
ans += num;
for (int j = i; j < n + 1; j++) part[j] += num;
}
if (part[i] == 0) {
ans++;
for (int j = i; j < n + 1; j++) part[j]++;
}
isPlus = true;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | fun main() {
val n = readLine()!!.toInt()
val a = readLine()!!.split(" ").map { it.toLong() }
var answer = 0L
var total = a[0]
for (i in 1 until n) {
val tmp = total
total = total + a[i]
if (total == 0L) {
if (tmp > 0) {
answer += 1
total = -1
} else if (tmp < 0) {
answer += 1
total = 1
}
}
if (tmp > 0 && total > 0) {
answer += (total + 1)
total = -1
} else if (tmp < 0 && total < 0) {
answer += (-total + 1)
total = 1
}
println(total)
}
println("answer $answer")
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, num[100003];
long long sum[100003], ans;
int main() {
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> num[i];
}
sum[1] = num[1];
for (int i = 2; i <= n; i++) {
if (sum[i - 1] > 0) {
if (num[i] + sum[i - 1] < 0) {
sum[i] = sum[i - 1] + num[i];
continue;
} else {
sum[i] = -1;
ans += abs(sum[i] - (num[i] + sum[i - 1]));
}
} else {
if (num[i] + sum[i - 1] > 0) {
sum[i] = num[i] + sum[i - 1];
continue;
} else {
sum[i] = 1;
ans += abs(sum[i] - (num[i] + sum[i - 1]));
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
#define fs first
#define sc second
#define pb push_back
#define mp make_pair
#define eb emplace_back
#define ALL(A) A.begin(),A.end()
#define RALL(A) A.rbegin(),A.rend()
typedef long long ll;
typedef pair<ll,ll> P;
const ll mod=1000000007;
const ll LINF=1LL<<60;
const int INF=1<<30;
int main(){
ll n,l;
cin >> n;
vector<ll> a(n);
cin >> a[0];
for(ll i = 1; i < n; i++) {
cin >> l;
a[i] = a[i - 1] + l;
}
ll tmp = 0;
ll count = 0;
for(ll i = 0; i < n - 1; i++) {
if (i == 0 && a[i] != 1){
count+=abs(a[i]-1);
tmp-=a[i]-1;
}
if ((a[i] + tmp)* (a[i + 1] + tmp) >= 0){//和の符号が前後で同じ時
if ((a[i+1] + tmp) <= 0){
count += abs(a[i+1] + tmp - 1);
tmp -= (a[i+1] + tmp - 1);
}
else{
count += abs(a[i] + tmp + 1);
tmp -= (a[i] + tmp + 1);
}
}
if (a[n - 1] +tmp == 0){
count++;
}
ll ans=count;
count =0;
ll tmp2=0;
for(ll i = 0; i < n - 1; i++) {
if (i == 0 && a[i] != -1){
count+=abs(a[i]+1);
tmp2-=a[i]+1;
}
if ((a[i] + tmp2)* (a[i + 1] + tmp2) >= 0){//和の符号が前後で同じ時
if ((a[i+1] + tmp2) <= 0){
count += abs(a[i+1] + tmp2- 1);
tmp2 -= (a[i+1] + tmp2 - 1);
}
else{
count += abs(a[i] + tmp2+ 1);
tmp2 -= (a[i] + tmp2+ 1);
}
}
// cout << a[i] + tmp << endl;
}
// cout << a[n - 1] << endl;
if (a[n - 1] +tmp2 == 0){
count++;
}
cout << min(ans,count)<< endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int check(int sum, int ans, vector<int> T, int N, bool pre_pm) {
for (int i = 1; i < N; i++) {
if (pre_pm) {
sum += T.at(i);
while (0 <= sum) {
sum--;
ans++;
}
pre_pm = false;
} else {
sum += T.at(i);
while (sum <= 0) {
sum++;
ans++;
}
pre_pm = true;
}
}
return ans;
}
int main() {
int N;
vector<int> T;
cin >> N;
for (int i = 0; i < N; i++) {
int tmp;
cin >> tmp;
T.push_back(tmp);
}
int ans = 0;
int sum = 0;
bool pre_pm;
sum = T.at(0);
if (0 <= sum) {
pre_pm = true;
int tmp1 = check(sum, ans, T, N, pre_pm);
pre_pm = false;
int tmp2 = check(-1, -1 - sum, T, N, pre_pm);
tmp2 += (sum + 1);
cout << min(tmp1, tmp2) << endl;
} else {
pre_pm = false;
int tmp1 = check(sum, ans, T, N, pre_pm);
pre_pm = true;
int tmp2 = check(1, 1 + sum, T, N, pre_pm);
tmp2 += (sum + 1);
cout << min(tmp1, tmp2) << endl;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def main():
N = int(input())
A = [int(i) for i in input().split()]
ans1 = 0
S = [0] * N
S[0] = A[0]
for i in range(1, N):
S[i] = S[i-1] + A[i]
if S[i]*S[i-1] < 0:
continue
if S[i-1] > 0:
S[i] = -1
ans1 += abs((-1) - (S[i-1]+A[i]))
else:
S[i] = 1
ans1 += abs(1 - (S[i-1]+A[i]))
S2 = [0] * N
ans2 = 0
if A[0] > 0:
S2[0] = -1
ans2 += abs((-1) - A[0]) + A[0]
else:
S2[0] = 1
ans2 += abs(1 - A[0]) + A[0]
for i in range(1, N):
S2[i] = S2[i-1] + A[i]
if S2[i]*S2[i-1] < 0:
continue
if S2[i-1] > 0:
S2[i] = -1
ans2 += abs((-1) - (S2[i-1]+A[i]))
else:
S2[i] = 1
ans2 += abs(1 - (S2[i-1]+A[i]))
print(min(ans1, ans2))
if __name__ == '__main__':
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int d[n];
for (int i = 0; i < n; i++) {
cin >> d[i];
}
long long count = 0;
long long sum = d[0];
int f = 0;
if (d[0] > 0) {
f = -1;
}
if (d[0] < 0) {
f = 1;
}
for (int i = 1; i < n; i++) {
sum += d[i];
if (sum == 0) {
if (f == 1) {
count++;
f = -1;
sum = 1;
continue;
}
if (f == -1) {
count++;
f = 1;
sum = -1;
continue;
}
}
if (sum > 0) {
if (f == 1) {
f = -1;
continue;
}
if (f == -1) {
count += sum + 1;
sum = -1;
f = 1;
continue;
}
}
if (sum < 0) {
if (f == -1) {
f = 1;
continue;
}
if (f == 1) {
count += 1 - sum;
sum = 1;
f = -1;
continue;
}
}
}
long long ccount = 0;
long long ssum;
int ff = 0;
if (d[0] > 0) {
ff = 1;
ccount = 1 + d[0];
ssum = -1;
}
if (d[0] < 0) {
ff = -1;
ccount = 1 - d[0];
ssum = 1;
}
for (int i = 1; i < n; i++) {
sum += d[i];
if (ssum == 0) {
if (ff == 1) {
ccount++;
ff = -1;
ssum = 1;
continue;
}
if (ff == -1) {
ccount++;
ff = 1;
ssum = -1;
continue;
}
}
if (ssum > 0) {
if (f == 1) {
ff = -1;
continue;
}
if (ff == -1) {
ccount += sum + 1;
ssum = -1;
ff = 1;
continue;
}
}
if (ssum < 0) {
if (ff == -1) {
ff = 1;
continue;
}
if (ff == 1) {
ccount += 1 - sum;
ssum = 1;
ff = -1;
continue;
}
}
}
cout << min(count, ccount) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<long long> L(N);
for (int i = 0; i < N; i++) {
cin >> L.at(i);
}
long long v = 0, res = 0, le = 0;
bool change_flag = true;
for (int i = 0; i < N; i++) {
if (i == 0) {
v = L.at(i);
} else {
if (v > 0 && v + L.at(i) >= 0) {
le = -1 - v - L.at(i);
L.at(i) -= abs(le);
v += L.at(i);
res += abs(le);
le = 0;
} else if (v < 0 && v + L.at(i) <= 0) {
le = 1 + v + L.at(i);
L.at(i) += abs(le);
v += L.at(i);
res += abs(le);
le = 0;
} else {
v += L.at(i);
}
}
}
cout << res << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
signed main() {
long long n;
cin >> n;
vector<long long> a(n);
for (long long i = 0; i < (long long)n; ++i) cin >> a[i];
long long ans = 0;
long long sum = 0;
for (long long i = 0; i < (long long)n; ++i) {
if (sum < 0 and sum + a[i] <= 0) {
ans += abs(a[i] - (1 - sum));
a[i] = 1 - sum;
} else if (sum > 0 and sum + a[i] >= 0) {
ans += abs(a[i] - (-sum - 1));
a[i] = -sum - 1;
}
sum += a[i];
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # -*- coding: utf-8 -*-
n = int(input().strip())
A_list = list(map(int, input().rstrip().split()))
#-----
S=A_list[0]
cnt=0
for i in range(1,n):
S_pre = S
S += A_list[i]
if S == 0:
S += 1*(S_pre < 0) + (-1)*(S_pre > 0)
cnt += 1
elif S * S_pre > 0:
diff = abs(S) + 1
S += diff * (1*(S_pre < 0) + (-1)*(S_pre > 0))
cnt += diff
print(cnt)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
class Main {
int n;
int[] a;
long cnt1;
long cnt2;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
Main m = new Main(sc);
m.solve();
sc.close();
}
Main(Scanner sc) {
n = sc.nextInt();
a = new int[n];
for(int i=0;i<n;i++){
a[i] = sc.nextInt();
}
}
void solve() {
Thread t1 = new Thread(()->{calc_run1((a[0]>0)?0:(Math.abs(a[0])+1),1,(a[0]>0)?a[0]:1);});
t1.start();
Thread t2 = new Thread(()->{calc_run2((a[0]<0)?0:(Math.abs(a[0])+1),-1,(a[0]<0)?a[0]:-1);});
t2.start();
try {
t1.join();
t2.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Math.min(cnt1, cnt2));
}
void calc_run1(long cnt,int sign,long sum){
for(int i=1;i<n;i++){
sum += a[i];
if(sum*sign>=0){
cnt += Math.abs(sum) + 1;
sum = -sign;
}
sign *= -1;
}
cnt1 = cnt;
System.out.println(cnt);
}
void calc_run2(long cnt,int sign,long sum){
for(int i=1;i<n;i++){
sum += a[i];
if(sum*sign>=0){
cnt += Math.abs(sum) + 1;
sum = -sign;
}
sign *= -1;
}
cnt2 = cnt;
System.out.println(cnt);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
def input():
return sys.stdin.readline().strip()
sys.setrecursionlimit(20000000)
def main():
N = int(input())
A = list(map(int, input().split()))
S = A[0]
cnt = 0
for i in range(1, N):
s = S + A[i]
if s == 0:
if S < 0:
cnt += 1
S = 1
else:
cnt += 1
S = -1
else:
if S * s > 0:
if S < 0:
cnt += abs(s) + 1
S = 1
else:
cnt += s + 1
S = -1
else:
S = s
print(cnt)
if __name__ == "__main__":
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
const long long LINF = 0x3f3f3f3f3f3f3f3fLL;
const double EPS = 1e-8;
const int MOD = 1000000007;
const int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
bool diff(long long a, long long b) {
if (a < 0 && b > 0) return true;
if (a > 0 && b < 0) return true;
return false;
}
int main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
int n;
cin >> n;
vector<int> a(n);
for (int i = (0); i < (n); ++i) cin >> a[i];
long long ans = (a[0] == 0 ? 1 : 0), sum = (a[0] == 0 ? 1 : a[0]);
for (int i = (1); i < (n); ++i) {
if (diff(sum + a[i], sum)) {
sum += a[i];
} else {
long long need = (sum > 0 ? -1 : 1);
long long now = need - sum;
ans += abs(now - a[i]);
sum = need;
}
}
long long tmp = abs(a[0]) + 1;
sum = (a[0] > 0 ? -1 : 1);
for (int i = (1); i < (n); ++i) {
if (diff(sum + a[i], sum)) {
sum += a[i];
} else {
long long need = (sum > 0 ? -1 : 1);
long long now = need - sum;
tmp += abs(now - a[i]);
sum = need;
}
}
cout << min(ans, tmp) << '\n';
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
void __print(int x) { cerr << x; }
void __print(long x) { cerr << x; }
void __print(long long x) { cerr << x; }
void __print(unsigned x) { cerr << x; }
void __print(unsigned long x) { cerr << x; }
void __print(unsigned long long x) { cerr << x; }
void __print(float x) { cerr << x; }
void __print(double x) { cerr << x; }
void __print(long double x) { cerr << x; }
void __print(char x) { cerr << '\'' << x << '\''; }
void __print(const char *x) { cerr << '\"' << x << '\"'; }
void __print(const string &x) { cerr << '\"' << x << '\"'; }
void __print(bool x) { cerr << (x ? "true" : "false"); }
template <typename T, typename V>
void __print(const pair<T, V> &x) {
cerr << '{';
__print(x.first);
cerr << ',';
__print(x.second);
cerr << '}';
}
template <typename T>
void __print(const T &x) {
int f = 0;
cerr << '{';
for (auto &i : x) cerr << (f++ ? "," : ""), __print(i);
cerr << "}";
}
void _print() { cerr << "]\n"; }
template <typename T, typename... V>
void _print(T t, V... v) {
__print(t);
if (sizeof...(v)) cerr << ", ";
_print(v...);
}
void c_p_c() {}
void parray(int a[], int n) {
for (int i = 0; i < n; i++) {
cout << a[i] << " ";
}
cout << "\n";
}
int main() {
long long i, n, m, k, c = 0, sum = 0;
c_p_c();
long long no;
cin >> n;
int pre;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
sum = a[0];
if (a[0] < 0)
pre = 0;
else
pre = 1;
int ans = 0;
for (int i = 1; i < n; ++i) {
if (pre == 0) {
sum += a[i];
if (sum <= 0) {
ans += 1 - (sum);
sum = 1;
}
pre = 1;
} else {
sum += a[i];
if (sum >= 0) {
ans += sum + 1;
sum = -1;
}
pre = 0;
}
}
cout << ans << "\n";
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
long long n, i, j, sw, sw2, count = 0, add = 0, adda = 0;
cin >> n;
vector<long long> a(n);
for (i = 0; i < n; i++) {
cin >> a[i];
adda += a[i];
}
if (a[0] > 0)
sw = 1;
else
sw = -1;
add += a[0];
if ((adda > 0 && n % 2 == 1) || (adda < 0 && n % 2 == 0)) {
} else {
if (a[0] < 0) {
while (a[0] != 1) {
add++;
a[0]++;
count++;
}
} else {
while (a[0] != -1) {
add--;
a[0]--;
count++;
}
}
}
for (i = 1; i < n; i++) {
add += a[i];
if (sw == 1) {
if (add < 0) {
} else {
while (add != -1) {
a[i]--;
add--;
count++;
}
}
} else {
if (add > 0) {
} else {
while (add != 1) {
a[i]++;
add++;
count++;
}
}
}
if (a[i] > 0)
sw = 1;
else
sw = -1;
}
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
int *a;
int ans = 0;
cin >> n;
a = new int[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int sum = 0;
int opr1 = 0, opr2 = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 1 && sum <= 0) {
int add = abs(sum) + 1;
sum = 1;
opr1 += add;
} else if (i % 2 == 0 && sum >= 0) {
int add = abs(sum) + 1;
sum = -1;
opr1 += add;
}
}
sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0 && sum <= 0) {
int add = abs(sum) + 1;
sum = 1;
opr2 += add;
} else if (i % 2 == 1 && sum >= 0) {
int add = abs(sum) + 1;
sum = -1;
opr2 += add;
}
}
cout << opr1 << " " << opr2 << endl;
ans = min(opr1, opr2);
cout << ans << endl;
delete (a);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int main() {
size_t N;
std::cin >> N;
std::vector<int64_t> A(N);
for (size_t n = 0; n < N; ++n) {
std::cin >> A[n];
}
int64_t a[2] = {0, 0};
for (size_t i = 0; i < 2; ++i) {
int64_t c = 0;
if (i == 0) {
a[i] = 0;
c = A[0];
} else {
a[i] = abs(A[0]) + 1;
c = (A[0] < 0) ? 1 : -1;
}
for (size_t n = 1; n < N; ++n) {
if ((c < 0) == (c + A[n] <= 0)) {
a[i] += abs(c + A[n]) + 1;
c = (c < 0) ? 1 : -1;
} else {
c += A[n];
}
}
}
std::cout << std::min(a[0], a[1]) << std::endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | import java.util.*
fun main(args: Array<String>) {
val sc = Scanner(System.`in`)
val n = sc.nextInt()
val a = (0 until n).map { sc.next().toLong() }
println(problem059c(n, a))
}
fun problem059c(n: Int, a: List<Long>): Long {
val count1 = compute(n, a)
val a = a.toMutableList()
var a0 = a[0]
var count = 0L
if (a0 > 0) {
val tmp = a0 + 1
a[0] = a0 - tmp
count += tmp
} else {
val tmp = a0 - 1
a[0] = a0 - tmp
count -= tmp
}
val count2 = compute(n, a) + count
return Math.min(count1, count2)
}
fun compute(n: Int, a: List<Long>): Long {
val a = a.toMutableList()
var count = 0L
var sum = 0L
for (i in 0 until n) {
val ai = a[i]
sum = sum + ai
if (sum == 0L) {
break
}
if (i >= n - 1) {
continue
}
val sum2 = sum + a[i + 1]
if (sum * sum2 < 0) {
continue
} else {
if (sum > 0) {
val tmp = sum2 + 1
a[i + 1] = sum2 - tmp
count += tmp
} else {
val tmp = sum2 - 1
a[i + 1] = sum2 - tmp
count -= tmp
}
}
}
return count
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
n = int(input())
a = [int(n) for n in input().split()]
sum = [0]*n
sum[0] = a[0]
ans = 0
for i in range(1,n):
sum[i] = sum[i-1]
while((sum[i]+a[i])*sum[i-1] >= 0):
if(sum[i-1] > 0):
a[i]-=1
ans+=1
else:
a[i]+=1
ans+=1
# print(a)
sum[i] += a[i]
print(ans)
# print(a)
# print(sum)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | package main
import (
"bufio"
"fmt"
"os"
"strconv"
)
func getScanner(fp *os.File) *bufio.Scanner {
scanner := bufio.NewScanner(fp)
scanner.Split(bufio.ScanWords)
scanner.Buffer(make([]byte, 500001), 500000)
return scanner
}
func getNextString(scanner *bufio.Scanner) string {
scanner.Scan()
return scanner.Text()
}
func getNextInt(scanner *bufio.Scanner) int {
i, _ := strconv.Atoi(getNextString(scanner))
return i
}
func getNextInt64(scanner *bufio.Scanner) int64 {
i, _ := strconv.ParseInt(getNextString(scanner), 10, 64)
return i
}
func main() {
fp := os.Stdin
if len(os.Args) > 1 {
fp, _ = os.Open(os.Args[1])
}
scanner := getScanner(fp)
writer := bufio.NewWriter(os.Stdout)
n := getNextInt(scanner)
aa := make([]int64, n)
for i := 0; i < n; i++ {
aa[i] = getNextInt64(scanner)
}
var sum, ans int64
sum = 0
for i := 0; i < n; i++ {
if sum == 0 {
sum = aa[i]
continue
}
if sum < 0 {
if sum+aa[i] > 0 {
sum += aa[i]
continue
}
ans += 1 - (sum + aa[i])
sum = 1
continue
}
if sum+aa[i] < 0 {
sum += aa[i]
continue
}
ans += 1 + (sum + aa[i])
sum = -1
}
fmt.Fprintln(writer, ans)
writer.Flush()
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
if a[0] != 0:
b = [a[0]]
else:
su += 1
if b[1] > 0:
b = [-1]
else:
b = [1]
su = 0
for i in range(n-1):
b.append(b[-1]+a[1+i])
if b[-1] * b[-2] > 0:
su += abs(b[-1]) + 1
if b[-2] > 0:
b[-1] = -1
else:
b[-1] = 1
else:
if b[-1] == 0:
su += 1
if b[-2] > 0:
b[-1] = -1
else:
b[-1] = 1
print(su)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long int> a(n);
for (int i = 0; i < (n); ++i) cin >> a[i];
long long int x = a[0];
long long int ans = 0, res;
if (x < 0) {
ans += x + 1;
x = 1;
}
if (x == 0) {
ans++;
x++;
}
for (int i = 1; i < n; ++i) {
if (x > 0 && x + a[i] > 0) {
ans += x + a[i] + 1;
x = -1;
} else if (x < 0 && x + a[i] < 0) {
ans += abs(x + a[i]) + 1;
x = 1;
} else {
if (x > 0) {
x = x + a[i];
ans += (x == 0);
x -= (x == 0);
} else {
x = x + a[i];
ans += (x == 0);
x += (x == 0);
}
}
}
res = ans;
x = a[0];
ans = 0;
if (x > 0) {
ans += x + 1;
x = -1;
}
if (x == 0) {
ans++;
x--;
}
for (int i = 1; i < n; ++i) {
if (x > 0 && x + a[i] > 0) {
ans += x + a[i] + 1;
x = -1;
} else if (x < 0 && x + a[i] < 0) {
ans += abs(x + a[i]) + 1;
x = 1;
} else {
if (x > 0) {
x = x + a[i];
ans += (x == 0);
x -= (x == 0);
} else {
x = x + a[i];
ans += (x == 0);
x += (x == 0);
}
}
}
(res = min(res, ans));
cout << res << endl;
;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | a = int(input())
b = list(map(int, input().split()))
num = 0
k = b[0] + b[1]
if k == 0:
if b[0] >= 0:
k = -1
else:
k = 1
num += 1
for i in range(a-2):
if k == 1:
k += b[i+2]
while k > -1:
k -= 1
num += 1
else:
k += b[i+2]
while k < 1:
k += 1
num += 1
print(num) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
sum=0
cnt=0
# 奇数+
for i in range(n):
sum+=a[i]
if i%2==0:
if sum>=0:
cnt+=(sum+1)
sum=-1
else:
if sum<=0:
cnt+=(1-sum)
sum=1
cnt_sbst=cnt
# 奇数-
cnt=0
sum=0
for i in range(n):
z+=a[i]
if i%2==1:
if sum>=0:
cnt+=(sum+1)
sum=-1
else:
if sum<=0:
cnt+=(1-sum)
sum=1
cnt_plus=cnt
ans=min(cnt_plus,cnt_sbst)
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | open Batteries
let () =
let n = Scanf.scanf "%d " (fun a -> a) in
let a_lst = Array.to_list @@ Array.init n (fun _ -> Scanf.scanf "%d " (fun a -> a)) in
let rec aux sum sign cnt l =
match l with
| [] -> cnt
| hd :: tl -> match sign with
| `Plus ->
if sum + hd <= 0 then
let t = -(sum-1) in
let c = t - hd in
aux (sum+hd+c) `Minus (cnt+c) tl else
aux (sum+hd) `Minus cnt tl
| `Minus ->
if sum + hd >= 0 then
let t = (sum+1) in
let c = t + hd in
aux (sum+hd-c) `Plus (cnt+c) tl else
aux (sum+hd) `Plus cnt tl
in
Printf.printf "%d\n" @@
aux 0 (if List.hd a_lst > 0 then `Plus else `Minus) 0 a_lst
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int main(void) {
int n;
std::cin >> n;
std::vector<long long int> a(n);
for (int i = 0; i < n; i++) {
std::cin >> a[i];
}
long long int count = 0;
signed long long sum = a[0];
for (int i = 1; i < n; i++) {
if (sum >= 0) {
sum += a[i];
if (sum >= 0) {
count += sum + 1;
sum = -1;
}
} else {
sum += a[i];
if (sum <= 0) {
count += -sum + 1;
sum = 1;
}
}
}
std::cout << count << std::endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Arrays;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
long[] s1 = new long[n];
for (int i = 0; i < n; i++) {
a[i] = sc.nextInt();
}
long sum1 = 0;
s1[0] = a[0];
// - + - + となる場合
while (s1[0] >= 0) {
s1[0]--;
sum1++;
}
for (int i = 1; i < n; i++) {
s1[i] = s1[i-1] + a[i];
// iが奇数の場合は正にする
if (i % 2 != 0) {
if (s1[i-1]*s1[i] >= 0) {
sum1 = sum1 + 1 - s1[i];
s1[i] = 1;
}
}
// iが偶数の場合は負にする
else {
if (s1[i-1]*s1[i] >= 0) {
sum1 = sum1 + 1 + s1[i];
s1[i] = -1;
}
}
}
Arrays.fill(s1, 0);
long sum2 = 0;
s1[0] = a[0];
// + - + - となる場合
while (s1[0] <= 0) {
s1[0]++;
sum2++;
}
for (int i = 1; i < n; i++) {
s1[i] = s1[i-1] + a[i];
// iが奇数の場合は負にする
if (i % 2 != 0) {
if (s1[i-1]*s1[i] >= 0) {
sum2 = sum2 + 1 + s1[i];
s1[i] = -1;
}
}
// iが偶数の場合は正にする
else {
if (s1[i-1]*s1[i] >= 0) {
sum2 = sum2 + 1 - s1[i];
s1[i] = 1;
}
}
}
System.out.println(Math.min(sum1, sum2));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long seq(int a, vector<int> b) {
long long count = 0;
if (0 <= b[0] * a) {
if (b[0] == 0) {
b[0] = a;
count++;
}
long long s = b[0];
for (int i = 1; i < b.size(); i++) {
int k = (1 - 2 * (i % 2)) * a;
s += b[i];
if (s * k <= 0) {
count += 1 - k * s;
s = k;
}
}
}
return count;
}
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
if (a.at(0) == 0)
cout << min(seq(1, a), seq(-1, a)) << endl;
else if (a.at(0) > 0)
cout << seq(1, a) << endl;
else
cout << seq(-1, a) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
public class Main {
private static final int MOD = (int)Math.pow(10, 9);
public static void main(String[] args) {
FastReader sc = new FastReader();
int n = sc.nextInt();
int[] nums = new int[n];
for (int i = 0; i < nums.length; i++) {
nums[i] = sc.nextInt();
}
long firstDigitPostive = 0;
long prefixSum = 0;
for (int i = 0; i < nums.length; i++) {
prefixSum += nums[i];
if (i % 2 == 0) {
// odd is postive
if (prefixSum == 0) {
prefixSum--;
firstDigitPostive++;
} else if (prefixSum < 0) {
firstDigitPostive += (1 - prefixSum);
prefixSum += 1 - prefixSum;
}
} else {
// even is negative
if (prefixSum == 0) {
prefixSum++;
} else if (prefixSum > 0) {
firstDigitPostive += (1 + prefixSum);
prefixSum -= (prefixSum + 1) ;
}
}
}
prefixSum = 0;
long firstDigitNegative = 0;
for (int i = 0; i < nums.length; i++) {
prefixSum += nums[i];
if (i % 2 == 0) {
// odd is negative
if (prefixSum == 0) {
prefixSum++;
} else if (prefixSum > 0) {
firstDigitNegative += (1 + prefixSum);
prefixSum -= (prefixSum + 1) ;
}
} else {
// even is postive
if (prefixSum == 0) {
prefixSum--;
firstDigitNegative++;
} else if (prefixSum < 0) {
firstDigitNegative += (1 - prefixSum);
prefixSum += 1 - prefixSum;
}
}
}
System.out.println(Math.min(firstDigitPostive, firstDigitNegative));
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try{
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
long n;
cin >> n;
vector<long> a(n);
for (long i = 0; i < n; i++) cin >> a[i];
long sum = a[0];
long j = 0;
for (long i = 1; i < n; i++) {
if (sum * (sum + a[i]) < 0)
sum += a[i];
else {
j += abs(sum + a[i]) + 1;
if (sum < 0)
sum = 1;
else if (sum > 0)
sum = -1;
}
}
cout << j << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n;
cin >> n;
vector<long long> v(n);
for (__typeof(n) i = (0) - ((0) > (n)); i != (n) - ((0) > (n));
i += 1 - 2 * ((0) > (n)))
cin >> v[i];
long long res1 = 0, res2 = 0;
long long som = v[0];
if (som > 0) {
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 1)
if (som < 0)
continue;
else {
res1 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res1 += 1 - som;
som = 1;
}
}
res2 = v[0] + 1;
som = -1;
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 0)
if (som < 0)
continue;
else {
res2 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res2 += 1 - som;
som = 1;
}
}
} else {
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 0)
if (som < 0)
continue;
else {
res1 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res1 += 1 - som;
som = 1;
}
}
res2 = 1 - v[0];
som = 1;
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 1)
if (som < 0)
continue;
else {
res2 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res2 += 1 - som;
som = 1;
}
}
}
cout << min(res1, res2);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main{
public static void main(String args[]){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long[] a = new long[n];
long[] s1 = new long[n];
long[] s2 = new long[n];
for(int i = 0; i < n; i++){
a[i] = sc.nextLong();
if(i == 0){
s1[0] = a[0];
s2[0] = a[0];
} else {
s1[i] = s1[i-1]+a[i];
s2[i] = s2[i-1]+a[i];
}
}
sc.close();
long cnt1 = 0;
long cnt2 = 0;
for(int i = 0; i < n; i++){
if(i%2 == 0){
if(s1[i] <= 0){
long diff = 1-s1[i];
cnt1 += diff;
for(int j = i; j < n; j++){
s1[j] += diff;
}
}
} else {
if(s1[i] >= 0){
long diff = s1[i] + 1;
cnt1 += diff;
for(int j = i; j < n; j++){
s1[j] -= diff;
}
}
}
}
for(int i = 0; i < n; i++){
if(i%2 == 0){
if(s2[i] >= 0){
long diff = s2[i]+1;
cnt2 += diff;
for(int j = i; j < n; j++){
s2[j] -= diff;
}
}
} else {
if(s2[i] <= 0){
long diff = 1-s2[i];
cnt2 += diff;
for(int j = i; j < n; j++){
s2[j] += diff;
}
}
}
}
System.out.println(Math.min(cnt1, cnt2));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long s = a[0];
long long cnt = 0;
if (s == 0) {
if (a[1] > 0) {
s = -1;
cnt++;
} else {
s = 1;
cnt++;
}
}
for (int i = 1; i < n; i++) {
if (s > 0) {
if (s + a[i] < 0)
s += a[i];
else {
cnt += abs(s + a[i]) + 1;
s = -1;
}
} else {
if (s + a[i] > 0)
s += a[i];
else {
cnt += abs(s + a[i]) + 1;
s = 1;
}
}
}
long long cnt2 = 0;
s = a[0];
if (s == 0) {
if (a[1] > 0) {
s = -1;
cnt2++;
} else {
s = 1;
cnt2++;
}
} else if (s > 0) {
cnt2 += s + 1;
s = -1;
} else {
cnt2 += abs(s) + 1;
s = 1;
}
for (int i = 1; i < n; i++) {
if (s > 0) {
if (s + a[i] < 0)
s += a[i];
else {
cnt2 += abs(s + a[i]) + 1;
s = -1;
}
} else {
if (s + a[i] > 0)
s += a[i];
else {
cnt2 += abs(s + a[i]) + 1;
s = 1;
}
}
}
cout << (cnt < cnt2 ? cnt : cnt2);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int[] a=new int[n];
for(int i=0;i<n;i++) {
a[i]=sc.nextInt();
}
//偶数を正とする
int counter=0;
int sum=0;
for(int i=0;i<n;i++) {
sum+=a[i];
if(i%2==0 && sum<=0) {
//-aだったら+1の操作をa回で0になり
//正にするならそこからさらに+1
counter+=Math.abs(sum)+1;
sum=1;
}else if(i%2==1 && sum>=0){
//+aだったらa回の-1と1回の-1でマイナス
counter+=sum+1;
sum=-1;
}
}
int counter1=0;
int sum1=0;
//奇数を正
for(int i=0;i<n;i++) {
sum1+=a[i];
if(i%2==0 && sum1>=0) {
//+aだったらa回の-1と1回の-1でマイナス
counter1+=sum1+1;
sum1=-1;
}else if(i%2==1 && sum1<=0){
//-aだったら+1の操作をa回で0になり
//正にするならそこからさらに+1
counter1+=Math.abs(sum1)+1;
sum1=1;
}
}
System.out.println(Math.max(counter,counter1));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String args[]){
Scanner scanner = new Scanner(System.in);
int count = 0;
int l[] = new int[scanner.nextInt()];
for (int i = 0;i < l.length;++i){
l[i] = Integer.valueOf(scanner.next());
}
for (int i = 0;i < l.length;++i){
int p = 0;
int q = 0;
for (int j = 0;j <= i;++j){
if(j != i) {
p += l[j];
}
q += l[j];
}
if(q == 0||(q < 0&&p < 0)||(q > 0&&p > 0)){
int c = 1 + ((p > 0) ? 1 : -1) * q;
count += c;
l[i] += ((p > 0) ? -1 : 1) * c;
}
}
System.out.println(count);
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.File;
import java.io.IOException;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Deque;
import java.util.List;
import java.util.Scanner;
public class Main {
//ABC059
public static void main(String[] args) throws IOException {
//File file = new File("input.txt");
//Scanner in = new Scanner(file);
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] a = new int[n];
int[] sum = new int[n];
int ans = 0;
for(int i = 0; i < n; i++){
a[i] = in.nextInt();
if(i == 0) sum[0] = a[0];
else sum[i] = sum[i-1] + a[i];
}
/*
for(int i = 0; i < n; i++) System.out.print(sum[i] + " ");
System.out.println();
System.out.println();
*/
int diff = 0;
for(int i = 1; i < n; i++){
sum[i] += diff;
/*
System.out.print(i + ":");
for(int j = 0; j < n; j++) System.out.print(sum[j] + " ");
System.out.println();
*/
if(sum[i-1] < 0 && sum[i] <= 0){
int d = - sum[i] + 1;
sum[i] += d;
diff += d;
ans += Math.abs(d);
}else if(sum[i-1] > 0 && sum[i] >= 0){
int d = - sum[i] - 1;
sum[i] += d;
diff += d;
ans += Math.abs(d);
}
}
/*
System.out.println();
for(int i = 0; i < n; i++) System.out.print(sum[i] + " ");
System.out.println();
*/
System.out.println(ans);
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
#define ll long long // long long省略
#define pb push_back // push_back省略
#define mp make_pair // make_pair省略
#define fi first // first省略
#define se second // second省略
#define itn int // int誤字保険
#define count cout // cout誤字保険
#define vecotr vector // vector誤字保険
#define ednl endl // endl誤字保険
#define opt() cin.tie(0); ios::sync_with_stdio(false) // 入出力速度改善
#define rep(i,l,r) for(ll i=(l);i<(r);i++) // 範囲[l, r)で刻み1のfor文(順方向)
#define repp(i,l,r,k) for(ll i=(l);i<(r);i+=(k)) // 範囲[l, r)で刻みkのfor文(順方向)
#define rrep(i,l,r) for(ll i=(r-1);i>=(l);i--) // 範囲[l, r)で刻み1のfor文(逆方向)
#define rrepp(i,l,r,k) for(ll i=(r-1);i>=(l);i-=(k)) // 範囲[l, r)で刻みkのfor文(逆方向)
#define all(x) (x).begin(), (x).end() // vectorのポインタ位置指定用
#define max(p,q)((p)>(q)?(p):(q)) // max拡張
#define min(p,q)((p)<(q)?(p):(q)) // min拡張
#define bit(n,m)(((n)>>(m))&1) // 変数nのm番目のbitを取り出す
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }
int dy[]={0, 1, 0, -1}; // 4方向近傍
int dx[]={1, 0, -1, 0}; // 4方向近傍
#define INF ((1LL<<62)-(1LL<<31))
//#define MOD 998244353
#define MOD 1000000007
#define invp(a,p) pom(a,p-2,p)
////////////////////////////////////////////////////////////////////////////////////////
int main(){
ll n; cin >> n;
ll a[n]; rep(i,0,n) cin >> a[i];
//1. 累積和に0がないか?
// iで累積和が0になるなら、iから先に+1
//2. 累積和の符号が反転しない
// 反転するまで1を加える、1を引く
ll csum[n];
csum[0] = a[0];
rep(i,1,n){
csum[i] = csum[i-1] + a[i];
//cout << csum[i] << ednl;
}
//初手が0じゃない場合
if(csum[0] != 0){
ll p1 = 0, m1 = 0;
bool flag = (csum[0] > 0);
rep(i,1,n){
if((flag ? -1 : 1) * (csum[i] + p1 - m1) > 0){
flag = !flag;
continue;
}else{
if(flag){ //このステップでは負であるべき
m1 += csum[i] + p1 - m1 + 1;
}else{ //このステップでは生であるべき
p1 += -(csum[i] + p1 - m1) + 1;
}
flag = !flag;
}
}
ll res = p1 + m1;
if(csum[0] > 0){
p1 = 0; m1 = csum[0] + 1;
}else{
p1 = -csum[0] + 1; m1 = 0;
}
flag = !(csum[0] > 0);
rep(i,1,n){
if((flag ? -1 : 1) * (csum[i] + p1 - m1) > 0){
flag = !flag;
continue;
}else{
if(flag){ //このステップでは負であるべき
m1 += csum[i] + p1 - m1 + 1;
}else{ //このステップでは生であるべき
p1 += -(csum[i] + p1 - m1) + 1;
}
flag = !flag;
}
}
res = min(p1 + m1, res);
cout << res << ednl;
}else{
//初手が0の場合で決め打ちで+1した場合
ll p1 = 1, ll m1 = 0;
flag = true;
rep(i,1,n){
if((flag ? -1 : 1) * (csum[i] + p1 - m1) > 0){
flag = !flag;
continue;
}else{
if(flag){ //このステップでは負であるべき
m1 += csum[i] + p1 - m1 + 1;
}else{ //このステップでは生であるべき
p1 += -(csum[i] + p1 - m1) + 1;
}
flag = !flag;
}
}
ll res = p1+m1;
//初手が0の場合で決め打ちで-1した場合
p1 = 0, m1 = 1;
flag = false;
rep(i,1,n){
if((flag ? -1 : 1) * (csum[i] + p1 - m1) > 0){
flag = !flag;
continue;
}else{
if(flag){ //このステップでは負であるべき
m1 += csum[i] + p1 - m1 + 1;
}else{ //このステップでは生であるべき
p1 += -(csum[i] + p1 - m1) + 1;
}
flag = !flag;
}
}
res = min(res, p1+m1);
}
cout << res << ednl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<iostream>
#include<algorithm>
#include<math.h>
#include<string>
#include<tuple>
#include<vector>
#include<cstdlib>
#include<cstdint>
#include<stdio.h>
#include<cmath>
#include<limits>
#include<iomanip>
#include<ctime>
#include<climits>
#include<random>
#include<queue>
#include<map>
using namespace std;
template <class T> using V = vector<T>;
template<class T> inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template<class T> inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
const long long INF = 1LL << 60;
const double pi=acos(-1);
using ll = long long;
using db = long double;
using st = string;
using ch = char;
using vll = V<ll>;
using vpll =V<pair<ll,ll>>;
using vst = V<st>;
using vdb = V<db>;
using vch = V<ch>;
using graph = V<V<int>>;
using pq = priority_queue<ll>;
#define FOR(i,a,b) for(ll i=(a);i<(b);i++)
#define bgn begin()
#define en end()
#define SORT(a) sort((a).bgn,(a).en)
#define REV(a) reverse((a).bgn,(a).en)
#define fi first
#define se second
#define sz size()
#define gcd(a,b) __gcd(a,b)
#define pb(a) push_back(a);
#define ALL(a) (a).begin(),(a).end()
ll Sum(ll n) {
ll m=0;
while(n){
m+=n%10;
n/=10;
}
return m;
}
const int MAX = 510000;
// change
const int MOD = 1000000007;
long long fac[MAX], finv[MAX], inv[MAX];
void Comuse() {
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for (int i = 2; i < MAX; i++){
fac[i] = fac[i - 1] * i % MOD;
inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;
finv[i] = finv[i - 1] * inv[i] % MOD;
}
}
#define comuse Comuse()
ll combi(int n, int k){
if (n < k) return 0;
if (n < 0 || k < 0) return 0;
return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}
ll perm(int n,int k){
if(n < k) return 0;
if(n < 0 || k < 0) return 0;
return fac[n] * (finv[k] % MOD) % MOD;
}
ll modpow(ll a,ll n,ll mod){
ll ans=1;
while(n>0){
if(n&1){
ans=ans*a%mod;
}
a=a*a%mod;
n>>=1;
}
return ans;
}
ll modinv(ll a, ll mod) {
return modpow(a, mod - 2, mod);
}
ll modcombi(int n,int k,int mod){
ll ans=1;
for(ll i=n;i>n-k;i--){
ans*=i;
ans%=mod;
}
for(ll i=1;i<=k;i++){
ans*=modinv(i,mod);
ans%=mod;
}
return ans;
}
ll lcm(ll a,ll b){
ll n;
n=a/gcd(a,b)*b;
return n;
}
vll div(ll n){
vll ret;
for(ll i=1;i*i<=n;i++){
if(n%i==0){
ret.push_back(i);
if(i*i!=n){
ret.push_back(n/i);
}
}
}
SORT(ret);
return (ret);
}
vector<bool> isprime(MAX+100,true);
void primeuse(){
isprime[0]=false;
isprime[1]=false;
for(int i=2;i<MAX+50;i++){
int up=sqrt(i)+1;
for(int j=2;j<up;j++){
if(i%j==0){
isprime[i]=false;
}
}
}
}
void bf(ll n,string s){
for(ll i=0;i<n;i++){
cout<<s;
}
cout<<"\n";
}
void Solve();
const int MAX_N = 131072;
//segment tree
int NN;
int seg[MAX_N*2-1];
void seguse(){
for(int i=0;i<2*NN-1;i++){
seg[i]=INT_MAX;
}
}
signed main(){
cin.tie(0);
ios::sync_with_stdio(false);
cout<<setprecision(20)<<fixed;
Solve();
}
/****************************************\
| Thank you for viewing my code:) |
| Written by RedSpica a.k.a. RanseMirage |
| Twitter:@asakaakasaka |
\****************************************/
//segtreeの葉の先頭の添え字はN-1
void Solve(){
ll n;
cin>>n;
vll A(n);
vll B(n);
FOR(i,0,n){
cin>>A[i];
}
ll ans=0;
ll all=A[0];
bool can=true;
FOR(i,1,n){
if((all+A[i])*all>=0){
can=false;
break;
}
all+=A[i];
}
if(can){
cout<<"0\n";
return;
}
B[0]=A[0];
FOR(i,1,n){
B[i]=B[i-1]+A[i];
if(B[i]*B[i-1]<0){
continue;
}
ans+=abs(B[i])+1;
if(B[i-1]<0){
B[i]=1;
}
else{
B[i]=-1;
}
}
if(A[0]!=0){
cout<<ans<<"\n";
return;
}
B[0]=1;
ans=INF;
ll reans=1;
FOR(i,1,n){
B[i]=B[i-1]+A[i];
if(B[i]*B[i-1]<0){
continue;
}
ans+=abs(B[i])+1;
if(B[i-1]<0){
B[i]=1;
}
else{
B[i]=-1;
}
}
chmin(ans,reans);
B[0]=-1;
reans=1;
FOR(i,1,n){
B[i]=B[i-1]+A[i];
if(B[i]*B[i-1]<0){
continue;
}
ans+=abs(B[i])+1;
if(B[i-1]<0){
B[i]=1;
}
else{
B[i]=-1;
}
}
chmin(ans,reans);
cout<<ans<<"\n";
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main{
public static void main(String[] args) {
Scanner no=new Scanner(System.in);
int n=no.nextInt();
int arr[]=new int[n];
// int sum1[]=new int[n];
for(int i=0;i<n;i++){
arr[i]=no.nextInt();
/* if(i==0){
sum1[i]=arr[i];
}
else{
sum1[i]=sum1[i]+sum1[i-1];
}*/
}
int sum=0;
int count=0;
if(arr[0]==0){
if(arr[1]>=0){
arr[0]=-1;
}
else{
arr[0]=1;
}
}
if(arr[0]>0){
sum=arr[0];
for(int i=1;i<n;i++){
if(i%2==1&&sum+arr[i]>=0){
int t=arr[i];
arr[i]=(sum+1)*-1;
count=count+Math.abs((t-arr[i]));
// sum=sum+arr[i];
}
else if(i%2==0&&sum+arr[i]<=0){
int t=arr[i];
arr[i]=(Math.abs(sum)+1);
count=count+Math.abs((Math.abs(t)-arr[i]));
//sum=sum+arr[i];
}
/*else if(sum+arr[i]==0){
count++;
}*/
sum=sum+arr[i];
}
}
else if(arr[0]<0){
sum=arr[0];
for(int i=1;i<n;i++){
if(i%2==1&&sum+arr[i]<=0){
int t=arr[i];
arr[i]=(Math.abs(sum)+1);
count=count+Math.abs((Math.abs(t)-arr[i]));
// sum=sum+arr[i];
// System.out.println(count);
}
else if(i%2==0&&sum+arr[i]>=0){
int t=arr[i];
arr[i]=(sum+1)*-1;
count=count+Math.abs((t-arr[i]));
//System.out.println(count);
//sum=sum+arr[i];
}
/* else if(sum+arr[i]==0){
count++;
}*/
sum=sum+arr[i];
}
}
System.out.println(count);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #![allow(unused_mut)]
#![allow(non_snake_case)]
#![allow(unused_imports)]
use std::collections::HashSet;
use std::collections::HashMap;
use std::collections::BTreeSet;
use std::collections::VecDeque;
use std::cmp::{max, min};
use std::io::prelude::*;
fn input<T>() -> T
where T: std::str::FromStr {
let stdin = std::io::stdin();
let token: String = stdin
.lock()
.bytes()
.map(|c| c.unwrap() as char)
.skip_while(|c| c.is_whitespace())
.take_while(|c| !c.is_whitespace())
.collect();
token.parse().ok().unwrap()
}
fn main() {
let n: usize = input();
let mut a_s: Vec<i64> =
(0..n).map(|_| input()).collect();
let mut ans = std::i64::MIN;
for &s in [1, -1].iter() {
let mut sign = s;
let mut sum = 0;
let mut lans = 0;
for i in 0..n {
sum += a_s[i];
// 意図したモノでない
if sum * sign <= 0 {
lans += (sum - sign).abs();
sum = sign;
}
sign *= -1;
}
ans = min(ans, lans);
}
println!("{}", ans);
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys, os, math, bisect, itertools, collections, heapq, queue
# from scipy.sparse.csgraph import csgraph_from_dense, floyd_warshall
from decimal import Decimal
from collections import defaultdict, deque
# import fractions
sys.setrecursionlimit(10000000)
ii = lambda: int(sys.stdin.buffer.readline().rstrip())
il = lambda: list(map(int, sys.stdin.buffer.readline().split()))
fl = lambda: list(map(float, sys.stdin.buffer.readline().split()))
iln = lambda n: [int(sys.stdin.buffer.readline().rstrip()) for _ in range(n)]
iss = lambda: sys.stdin.buffer.readline().decode().rstrip()
sl = lambda: list(map(str, sys.stdin.buffer.readline().decode().split()))
isn = lambda n: [sys.stdin.buffer.readline().decode().rstrip() for _ in range(n)]
lcm = lambda x, y: (x * y) // math.gcd(x, y)
# lcm = lambda x, y: (x * y) // fractions.gcd(x, y)
MOD = 10 ** 9 + 7
MAX = float('inf')
def main():
if os.getenv("LOCAL"):
sys.stdin = open("input.txt", "r")
N = ii()
A = il()
r1 = 0
S = [0] * N
S[0] = A[0]
for n in range(1, N):
S[n] = S[n - 1] + A[n]
if n % 2 != 0 and S[n] >= 0:
r1 += S[n] + 1
S[n] = -1
elif n % 2 == 0 and S[n] <= 0:
r1 += abs(S[n]) + 1
S[n] = 1
r2 = 0
S = [0] * N
S[0] = A[0]
for n in range(1, N):
S[n] = S[n - 1] + A[n]
if n % 2 != 0 and S[n] <= 0:
r2 += abs(S[n]) + 1
S[n] = 1
elif n % 2 == 0 and S[n] >= 0:
r2 += S[n] + 1
S[n] = -1
print(min(r1, r2))
if __name__ == '__main__':
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n;
long long a[100000];
bool flag = true;
long long sum = 0;
long long ans = 0;
cin >> n;
for (int i = 0; i < (int)(n); i++) {
cin >> a[i];
}
if (a[0] > 0) {
flag = true;
} else if (a[0] < 0) {
flag = false;
} else {
if (a[1] >= 0) {
a[0] = -1;
flag = false;
ans += 1;
} else {
a[0] = 1;
flag = true;
ans += 1;
}
}
sum = a[0];
for (int i = (int)(1); i < (int)(n); i++) {
sum += a[i];
if (flag == true) {
if (sum >= 0) {
ans += sum + 1;
sum = -1;
}
}
if (flag == false) {
if (sum <= 0) {
ans += -sum + 1;
sum = 1;
}
}
if (sum > 0) {
flag = true;
} else {
flag = false;
}
}
cout << ans;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using ll = long long;
using namespace std;
struct aaa {
aaa() {
cin.tie(0);
ios::sync_with_stdio(0);
cout << fixed << setprecision(20);
};
} aaaaaaa;
int MOD = 1e9 + 7;
int gcd(int a, int b) { return b ? gcd(b, a % b) : a; }
int lcm(int a, int b) { return (a * b) / gcd(a, b); }
int dx[4] = {1, 0, -1, 0};
int dy[4] = {0, 1, 0, -1};
int N;
int main() {
cin >> N;
vector<int> a(N);
for (int i = 0; i < (N); ++i) cin >> a[i];
int ans = 0, sum = a[0];
for (int i = 1; i <= (N - 1); ++i) {
if ((sum + a[i]) * sum >= 0) {
int k = a[i];
a[i] = (abs(sum) + 1) * (sum / abs(sum)) * (-1);
ans += abs(k - a[i]);
}
sum += a[i];
}
cout << ans << '\n';
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
int A[100001];
cin >> n;
for (int i = 0; i < n; i++) {
cin >> A[i];
}
int sum = 0;
int counter = 0;
for (int i = 0; i < n; i++) {
sum += A[i];
if (i % 2 == 0) {
while (sum <= 0) {
sum++;
counter++;
}
} else {
while (sum >= 0) {
sum--;
counter++;
}
}
}
int counterNeg = 0;
sum = 0;
for (int i = 0; i < n; i++) {
sum += A[i];
if (i % 2 == 1) {
while (sum <= 0) {
sum++;
counterNeg++;
}
} else {
while (sum >= 0) {
sum--;
counterNeg++;
}
}
}
cout << min(counter, counterNeg) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
a = [int(i) for i in input().split()]
def pura(A):
ans = 0
check = 0
if A[0] <= 0:
ans += abs(1-A[0])
A[0] = 1
check += A[0]
for i in range(1, N):
if i % 2 != 0:
if check + A[i] >= 0:
ans += abs(A[i] + 1 + check)
A[i] = -1 + check
else:
if check + A[i] <= 0:
ans += abs(A[i] - (1 + check))
A[i] = 1 - check
check += A[i]
print(ans)
return ans
print(pura(a)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<long long> L(N);
for (int i = 0; i < N; i++) {
cin >> L.at(i);
}
long long v = 0, res = 0, le = 0;
bool change_flag = true;
for (int i = 0; i < N; i++) {
if (i == 0) {
v = L.at(i);
} else {
if (v > 0 && v + L.at(i) > 0) {
le = -1 - v - L.at(i);
L.at(i) += le;
v += L.at(i);
res += -le;
le = 0;
} else if (v > 0 && v + L.at(i) == 0) {
le = -1;
L.at(i) += le;
v += L.at(i);
res += -le;
le = 0;
} else if (v < 0 && v + L.at(i) < 0) {
le = 1 - v - L.at(i);
L.at(i) += le;
v += L.at(i);
res += le;
le = 0;
} else if (v < 0 && v + L.at(i) == 0) {
le = 1;
L.at(i) += le;
v += L.at(i);
res += le;
le = 0;
} else {
v += L.at(i);
}
}
}
cout << res << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, ans;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
for (int i = 0; i < n - 1; i++) {
int p = 0;
for (int j = i + 1; j >= 0; j--) p += a.at(j);
while (a.at(i) * a.at(i + 1) < 0 || p == 0) {
if (a.at(i) > 0) {
a.at(i + 1)--;
ans++;
continue;
}
if (a.at(i) < 0) {
a.at(i + 1)++;
ans++;
continue;
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = 1e9;
const long long MOD = 1e9 + 7;
int main() {
long long n;
cin >> n;
vector<long long> a(n);
for (long long i = 0; i < n; ++i) {
cin >> a[i];
}
vector<long long> sum(n);
long long ans = INF;
for (long long i = 0; i < 2; ++i) {
long long sum = 0;
long long cnt = 0;
for (long long j = 0; j < n; ++j) {
sum += a[j];
if (j % 2 == i && sum <= 0) {
cnt += 1 - sum;
sum = 1;
} else if (j % 2 == 1 - i && sum >= 0) {
cnt += 1 + sum;
sum = -1;
}
}
ans = min(ans, cnt);
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int64_t min(int64_t a, int64_t b) {
if (a > b) {
return b;
} else {
return a;
}
}
int64_t solve(vector<int> a) {
bool nextposi = (a.at(0) < 0);
int ans = 0;
int sum = a.at(0);
for (int i = 1; i < a.size(); i++) {
sum += a.at(i);
if (nextposi != (sum > 0)) {
if (nextposi == 1) {
ans += abs(sum - 1);
sum = 1;
} else {
ans += abs(sum + 1);
sum = -1;
}
}
nextposi = !nextposi;
}
return ans;
}
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
int ans = 0;
if (a.at(0) == 0) {
a.at(0) = 1;
ans = solve(a);
a.at(0) = -1;
ans = min(ans, solve(a)) + 1;
} else {
ans = solve(a);
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def count_loop(n, old_state, count, a_list, flag):
for i in range(1, int(n)):
num_state = old_state + int(a_list[i])
if flag == 1:
if num_state == 0:
count += 1
old_state = -1
flag = -1
elif num_state > 0:
count += num_state + 1
old_state = -1
flag = -1
else:
old_state = num_state
flag = -1
elif flag == -1:
if num_state == 0:
count += 1
old_state = 1
flag = 1
elif num_state < 0:
count += abs(num_state) + 1
old_state = 1
flag = 1
else:
old_state = num_state
flag = 1
return count
if __name__ == "__main__":
n = input()
a = input()
a_list = a.split(" ")
old_state = int(a_list[0])
count = 0
if old_state == 0:
count += 1
c1 = count_loop(n,old_state,count,a_list,1)
c2 = count_loop(n,old_state,count,a_list,-1)
if c1 <= c2:
print(c1)
else:
print(c2)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def main():
n = int(input())
A = list(map(int, input().split()))
res = 0
sums = []
for i in range(n):
if i == 0:
sums.append(sum(A[:i]) + A[i])
if A[i] == 0:
index = -1
for j in range(n):
if A[j] != 0:
index = A.index(A[j])
break
if index == -1:
res += 1
A[i] = 1
sums[i] = 1
elif (index % 2 and A[index] > 0) or (index % 2 == 0 and A[index] < 0):
A[i] = -1
sums[i] = -1
res += 1
else:
A[i] = 1
sums[i] = 1
res += 1
else:
sums.append(sums[i-1] + A[i])
if sums[i] == 0:
if sums[i-1] > 0:
A[i] -= 1
sums[i] = sums[i-1] + A[i]
res += 1
else:
A[i] += 1
sums[i] = sums[i-1] + A[i]
res += 1
elif (sums[i-1] > 0) and (sums[i] > 0):
res += A[i] - (-sums[i-1] - 1)
A[i] = -sums[i-1] - 1
sums[i] = sums[i-1] + A[i]
elif (sums[i-1] < 0) and (sums[i] < 0):
res += 1 - (sums[i-1] + A[i])
A[i] = abs(sums[i-1]) + 1
sums[i] = sums[i-1] + A[i]
print(res)
if __name__ == '__main__':
main() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
A=list(map(int,input().split()))
S=[A[0]]
for i in range(n-1):
S.append(S[-1]+A[i+1])
ans1=0
s1=0
a=-1
for i in range(n):
a=a*(-1)
if a==1:
ans1=ans1+max(0,1-(S[i]+s1))
s1=s1+max(0,1-(S[i]+s1))
else:
ans1=ans1-min(0,-1-(S[i]+s1))
s1=s1+min(0,1-(S[i]+s1))
ans2=0
a=1
s2=0
for i in range(n):
a=a*(-1)
if a==1:
ans2=ans2+max(0,1-(S[i]+s2))
s2=s2+max(0,1-(S[i]+s2))
else:
ans2=ans2-min(0,-1-(S[i]+s2))
s2=s2+min(0,-1-(S[i]+s2))
print(min(ans1,ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long n, no, ans;
int main() {
cin >> n;
int a;
for (int i = 0; i < n; i++) {
cin >> a;
if (i == 0) {
no = a;
} else {
if (no > 0) {
no += a;
if (no >= 0) {
ans += no + 1;
no = -1;
}
} else {
no += a;
if (no <= 0) {
ans += no * -1 + 1;
no = 1;
}
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
constexpr auto INF = 1000000000;
constexpr auto LLINF = 1LL << 62;
constexpr auto mod = 1000000007;
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return 1;
}
return 0;
}
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n;
cin >> n;
vector<int> a(n);
for (int(i) = (0); (i) < (n); (i)++) cin >> a[i];
int p = 0, m = 0, sum = 0;
for (int(i) = (0); (i) < (n); (i)++) {
sum += a[i];
if (i % 2) {
p += max(0, 1 + sum);
chmin(sum, -1);
} else {
p += max(0, 1 - sum);
chmax(sum, 1);
}
}
sum = 0;
for (int(i) = (0); (i) < (n); (i)++) {
sum += a[i];
if (i % 2) {
m += max(0, 1 - sum);
chmax(sum, 1);
} else {
m += max(0, 1 + sum);
chmin(sum, -1);
}
}
cout << min(p, m) << "\n";
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 1000000;
const long long mod = 1000000007;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (long long int i = 0; i < n; i++) cin >> a[i];
int a0_plus_sum = 0;
int a0_plus_count = 0;
int a0_minus_sum = 0;
int a0_minus_count = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 1) {
if (a0_plus_sum + a[i] < 0) {
a0_plus_sum += a[i];
} else {
a0_plus_count += 1 + (a0_plus_sum + a[i]);
a0_plus_sum = -1;
}
} else if (i % 2 == 0) {
if (a0_plus_sum + a[i] > 0) {
a0_plus_sum += a[i];
} else {
a0_plus_count += 1 - (a0_plus_sum + a[i]);
a0_plus_sum = 1;
}
}
}
for (int i = 0; i < n; i++) {
if (i % 2 == 1) {
if (a0_minus_sum + a[i] > 0) {
a0_minus_sum += a[i];
} else {
a0_minus_count += -(a0_minus_sum + a[i]) + 1;
a0_minus_sum = 1;
}
} else if (i % 2 == 0) {
if (a0_minus_sum + a[i] < 0) {
a0_minus_sum += a[i];
} else {
a0_minus_count += (a0_minus_sum + a[i]) + 1;
a0_minus_sum = -1;
}
}
}
std::cout << min(a0_minus_count, a0_plus_count) << std::endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
long long sum = a.at(0);
long long op = 0;
bool flag = sum > 0 ? 1 : 0;
for (int j = 1; j < n; j++) {
if (flag) {
sum += a.at(j);
while (sum >= 0) {
op++;
sum--;
}
flag = 0;
} else {
sum += a.at(j);
while (sum <= 0) {
op++;
sum++;
}
flag = 1;
}
}
cout << op << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def sgn(n):
if n>0:
return 1
elif n==0:
return 0
else:
return -1
class SegmentTree:
# 初期化処理
# f : SegmentTreeにのせるモノイド
# default : fに対する単位元
def __init__(self, size, f=lambda x,y : x+y, default=0):
self.size = 2**(size-1).bit_length() # 簡単のため要素数Nを2冪にする
self.default = default
self.dat = [default]*(self.size*2-1) # 要素を単位元で初期化
self.f = f
def update(self, i, x):
i += self.size-1
self.dat[i] = x
while i > 0:
i = (i-1) >> 1
self.dat[i] = self.f(self.dat[i*2+1], self.dat[i*2+2])
def query(self, l, r, k=0, L=0, R=None):
if R is None:
R = self.size
if R <= l or r <= L:
return self.default
if l <= L and R <= r:
return self.dat[k]
else:
lres = self.query(l, r, k*2+1, L, (L+R) >> 1)
rres = self.query(l, r, k*2+2, (L+R) >> 1, R)
return self.f(lres, rres)
n=int(input())
b=[int(i) for i in input().split()]
l = SegmentTree(size=n)
p0=0
for i in range(n):
l.update(i,b[i])
for i in range(n):
sg=(-1)**(i)
v=l.query(0,i+1)
#print(v,p0)
if sgn(v) != sg:
tmp= abs(v)+1
#print(f'{b[i]}---{tmp}--->{sg}')
p0 += tmp
l.update(i,b[i]+tmp*sg)
l = SegmentTree(size=n)
for i in range(n):
l.update(i,b[i])
p1=0
#print()
for i in range(n):
sg=(-1)**(i+1)
v=l.query(0,i+1)
#print(v,p1)
if sgn(v) != sg:
tmp= abs(v)+1
#print(f'{b[i]}---{tmp}--->{sg}')
p1 += tmp
l.update(i,b[i]+tmp*sg)
#print(l.query(0,i+1),p1)
print(min(p0,p1)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int check(vector<double> &sum, int n) {
for (int i = 0; i < n; i++) {
if (sum[i] == 0) return i;
if (i < n - 1 && sum[i] * sum[i + 1] > 0) return i + 1;
}
return 0;
}
void kasan(vector<double> &sum, int index, int pm, int n) {
if (pm == 0) {
for (int i = index; i < n; i++) sum[i]++;
}
if (pm == 1) {
for (int i = index; i < n; i++) sum[i]--;
}
for (int j = 0; j < n; j++) {
cout << sum[j] << endl;
}
cout << "" << endl;
}
int main() {
int n;
double a;
double sum = 0;
cin >> n;
vector<double> sums(n);
for (int i = 0; i < n; i++) {
cin >> a;
sum += a;
sums[i] = sum;
}
int count = 0;
while (check(sums, n) > 0) {
int j = check(sums, n);
if (sums[j - 1] > 0)
kasan(sums, j, 1, n);
else if (sums[j - 1] < 0)
kasan(sums, j, 0, n);
else if (sums[j] == 0) {
if (sums[j - 1] > 0)
kasan(sums, j, 1, n);
else if (sums[j - 1] < 0)
kasan(sums, j, 0, n);
}
count++;
}
cout << count << endl;
return 0;
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.