Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) i = 0 sum_before = 0 sum_after = 0 count = 0 while i < n: sum_after = sum_before + a[i] if sum_after * sum_before > 0 or sum_after == 0: if sum_after < 0: a[i] = a[i] - sum_after + 1 elif sum_after > 0: a[i] = a[i] - sum_after - 1 elif sum_before < 0: a[i] += 1 else: a[i] -= 1 count += abs(sum_after) + 1 sum_after = sum_before + a[i] i += 1 sum_before = sum_after #print(a) print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 10; int a[maxn]; int main() { int n; long long sum; scanf("%d", &n); scanf("%d", &a[0]); sum = a[0]; long long cnt = 0; for (int i = 1; i < n; i++) { scanf("%d", &a[i]); if (sum > 0) { int t = sum + a[i]; if (t < 0) sum = t; else { int b = abs(t + 1); cnt += b; sum = -1; a[i] -= b; } } else if (sum < 0) { int t = sum + a[i]; if (t > 0) sum = t; else { int b = abs(1 - t); cnt += b; sum = 1; a[i] += b; } } } printf("%lld\n", cnt); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; vector<long long> v(n); for (__typeof(n) i = (0) - ((0) > (n)); i != (n) - ((0) > (n)); i += 1 - 2 * ((0) > (n))) cin >> v[i]; long long res1 = 0, res2 = 0, res3, res4; long long som = v[0]; if (som >= 0) { for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n)); i += 1 - 2 * ((1) > (n))) { som = som + v[i]; if (i % 2 == 1) if (som < 0) continue; else { res1 += som + 1; som = -1; } else if (som > 0) continue; else { res1 += 1 - som; som = 1; } } res2 = v[0] + 1; som = -1; for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n)); i += 1 - 2 * ((1) > (n))) { som = som + v[i]; if (i % 2 == 0) if (som < 0) continue; else { res2 += som + 1; som = -1; } else if (som > 0) continue; else { res2 += 1 - som; som = 1; } } } else { for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n)); i += 1 - 2 * ((1) > (n))) { som = som + v[i]; if (i % 2 == 0) if (som < 0) continue; else { res1 += som + 1; som = -1; } else if (som > 0) continue; else { res1 += 1 - som; som = 1; } } res2 = 1 - v[0]; som = 1; for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n)); i += 1 - 2 * ((1) > (n))) { som = som + v[i]; if (i % 2 == 1) if (som < 0) continue; else { res2 += som + 1; som = -1; } else if (som > 0) continue; else { res2 += 1 - som; som = 1; } } } cout << min(res1, res2); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
package main import ( "fmt" "math" ) func main() { var n int64 fmt.Scan(&n) var counter1, counter2 int64 = 0, 0 var total1, total2 int64 = 0, 0 var a int64 for i := 0; i < int(n); i++ { fmt.Scan(&a) total1 += a total2 += a if i%2 == 0 { if total1 <= 0 { counter1 += int64(math.Abs(float64(total1))) + 1 total1 = 1 } } else { if total1 >= 0 { counter1 += int64(math.Abs(float64(total1))) + 1 } } if i%2 == 0 { if total2 >= 0 { counter2 += int64(math.Abs(float64(total2))) + 1 total2 = -1 } } else { if total2 <= 0 { counter2 += int64(math.Abs(float64(total2))) + 1 total2 = 1 } } } if counter1 < counter2 { fmt.Println(counter1) } else { fmt.Println(counter2) } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } long long c1 = 0, s1 = 0; long long c2 = 0, s2 = 0; for (int i = 0; i < n; i++) { s1 += a[i]; s2 += a[i]; if (i % 2 == 0) { if (s1 <= 0) { c1 += 1 - s1; s1 = 1; } if (s2 >= 0) { c2 += s2 + 1; s2 = -1; } } else { if (s1 >= 0) { c1 += s1 + 1; s1 = -1; } if (s2 <= 0) { c2 += 1 - s2; s2 = 1; } } } printf("%d\n", min(c1, c2)); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 1 << 29; inline int two(int n) { return 1 << n; } inline int test(int n, int b) { return (n >> b) & 1; } inline void set_bit(int &n, int b) { n |= two(b); } inline void unset_bit(int &n, int b) { n &= ~two(b); } const long long mod = 1e9 + 7; const int N = 1e6 + 9; long long a[N]; vector<long long> v[N]; long long modexp(long long a, long long n) { long long r = 1; while (n) { if (n & 1) r = (r * a) % mod; a = (a * a) % mod; n >>= 1; } return r; } bool cmp(const pair<double, long long> &a, const pair<double, int> &b) { if (a.first == b.first) { return a.second < b.second; } else return a.first > b.first; } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); long long n, k = 0; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } long long sum = a[0], ans = 0; if (sum >= 0) { k = 1; } for (int i = 1; i < n; i++) { sum += a[i]; if (k == 1) { if (sum >= 0) { ans += sum + 1; sum = -1; } } else { if (sum <= 0) { ans += (-1 * sum) + 1; sum = 1; } } if (k == 0) k = 1; else k = 0; } long long kk = 1; long long su = a[0], an = 0; if (su >= 0) { kk = 0; } for (int i = 1; i < n; i++) { su += a[i]; if (kk == 1) { if (su >= 0) { an += su + 1; su = -1; } } else { if (su <= 0) { an += (-1 * su) + 1; su = 1; } } if (kk == 0) kk = 1; else kk = 0; } cout << min(ans, an) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 1 << 30; const long long LINF = 1LL << 50; const int NIL = -1; const int MAX = 10000; const int mod = 1000000007; const double pi = 3.141592653589; int f(int x, vector<int> a) { int sum = 0, cost = 0; for (int i = 0; i < a.size(); i++) { sum += a[i]; if (i % 2 == x) { if (sum <= 0) { cost += 1 - sum; sum = 1; } } else { if (sum >= 0) { cost += 1 + sum; sum = -1; } } } return cost; } int main() { int N; cin >> N; vector<int> a(N); for (int i = 0; i < N; i++) cin >> a[i]; cout << min(f(0, a), f(1, a)) << '\n'; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); int sum = 0, prev = 0; bool flg = true; for (auto i = 0; i < n; i++) { cin >> a[i]; } int ans = INT_MAX, count, tmp; for (auto i = 0; i < 2; i++) { bool plus = (i % 2 == 0); sum = 0; count = 0; for (auto j = 0; j < n; j++) { if ((plus and sum + a[j] > 0) or (not plus and sum + a[j] < 0)) tmp = a[j]; else { if (plus) tmp = 1 - sum; else tmp = -1 - sum; count += abs(tmp - a[j]); } sum += tmp; plus = not plus; } if (ans > count) ans = count; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long modpow(long long x, long long y, long long m = (long long)(1000000007)) { long long res = 1; while (y) { if (y % 2) { res *= x; res %= m; } x = x * x % (long long)(1000000007); y /= 2; } return res; } bool prime(long long x) { for (long long i = 2; i <= sqrt(x); i++) { if (!(x % i)) { return false; } } return true; } double kyori(pair<long long, long long> f, pair<long long, long long> s) { double ans = 0; double t = fabs(f.first - s.first); double y = fabs(f.second - s.second); ans = sqrt(t * t + y * y); return ans; } long long gcd(long long x, long long y) { if (y == 0) { return x; } return gcd(y, x % y); } long long n, m, a[100004], wa, ans; signed main() { cin >> n; for (long long i = 0; i < n; i++) { cin >> a[i]; } wa = a[0]; for (long long i = 1; i < n; i++) { if (wa < 0) { if (abs(wa) < a[i]) { } else { ans += abs(wa) + 1 - a[i]; a[i] = 0 - wa + 1; } } else { if (a[i] < 0) { if (abs(a[i]) > wa) { } else { ans += 0 - wa - 1 - a[i]; a[i] = 0 - wa - 1; } } else { ans += a[i] - (0 - wa - 1); a[i] = 0 - wa - 1; } } wa += a[i]; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N=int(input()) a=input().split() ma=list(map(int,a)) A1=ma[0] if ma[0]>0: NEXT=-1-ma[0] elif ma[0]<0: NEXT=1-ma[0] ans=0 ans1=0 for k in range(1,N): if ma[0] > 0: if k%2 ==0: if NEXT<=ma[k]: NEXT=NEXT-ma[k]-2 else: ans+=abs(ma[k]-NEXT) NEXT=-2 elif k%2 ==1: if NEXT>=ma[k]: NEXT=NEXT-ma[k]+2 else: ans+=abs(ma[k]-NEXT) NEXT=2 elif ma[0]<0: if k%2 ==1: if NEXT<=ma[k]: NEXT=NEXT-ma[k]-2 else: ans+=abs(ma[k]-NEXT) NEXT=-2 elif k%2 ==0: if NEXT>=ma[k]: NEXT=NEXT-ma[k]+2 else: ans+=abs(ma[k]-NEXT) NEXT=2 for k in range(1,N): if ma[0] < 0: if k%2 ==0: if NEXT<=ma[k]: NEXT=NEXT-ma[k]-2 else: ans1+=abs(ma[k]-NEXT) NEXT=-2 elif k%2 ==1: if NEXT>=ma[k]: NEXT=NEXT-ma[k]+2 else: ans1+=abs(ma[k]-NEXT) NEXT=2 elif ma[0]>0: if k%2 ==1: if NEXT<=ma[k]: NEXT=NEXT-ma[k]-2 else: ans1+=abs(ma[k]-NEXT) NEXT=-2 elif k%2 ==0: if NEXT>=ma[k]: NEXT=NEXT-ma[k]+2 else: ans1+=abs(ma[k]-NEXT) NEXT=2 print(min(ans1,ans))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N=int(input()) s=list(map(int,input().split())) if s[0]<0: t=1 elif s[0]>0: t=-1 ss=s[0] w=0 for i in range(N-1): if t==1: if ss+s[i+1]>=t: ss=ss+s[i+1] pass else: w+=t-ss-s[i+1] ss=1 t=-1 elif t==-1: if ss+s[i+1]<=t: ss=ss+s[i+1] pass else: w+=ss+s[i+1]-t ss=-1 t=1 print(w)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) ans = 0 sum_a = a[0] if sum_a > 0: for i in range(1,n): sum_a += a[i] if i%2 == 1 and sum_a >= 0: ans += sum_a + 1 sum_a = -1 #いや違くね? elif i%2 == 0 and sum_a <= 0: ans += -sum_a + 1 sum_a = 1 else: for i in range(1,n): sum_a += a[i] if i%2 == 0 and sum_a >= 0: ans += sum_a + 1 sum_a = -1 #いや違くね? elif i%2 == 1 and sum_a <= 0: ans += -sum_a + 1 sum_a = 1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int ddx[8] = {0, 1, 1, 1, 0, -1, -1, -1}; const int ddy[8] = {1, 1, 0, -1, -1, -1, 0, 1}; const int dx[4] = {0, 1, 0, -1}; const int dy[4] = {1, 0, -1, 0}; static const int NIL = -1; int n; void printArray(int array[], int n) { for (int i = (0); i < (n); ++i) { if (i) cout << " "; cout << array[i]; } cout << endl; } int sequence(int* a, bool sign) { int sum = a[0], cnt = 0; for (int i = (1); i < (n); ++i) { if (sign) { sum += a[i]; if (sum > 0) { int rem = abs(-1 - sum); cnt += rem; sum = -1; } sign = false; } else { sum += a[i]; if (sum < 0) { int rem = abs(1 - sum); cnt += rem; sum = 1; } sign = true; } } if (sum == 0) cnt++; return cnt; } int main(int argc, char const* argv[]) { cin.tie(0); ios::sync_with_stdio(false); cin >> n; int a[n]; for (int i = (0); i < (n); ++i) cin >> a[i]; int pos = sequence(a, true); int neg = sequence(a, false); cout << min(pos, neg) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; bool debug = false; int main() { int n; long long a[100005]; long long cnt = 0; cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; cnt = 0; long long sum = a[0] + a[1]; if (sum <= 0) { cnt += abs(sum) + 1; sum = 1; } bool plus = true; for (int i = 2; i < n; i++) { sum += a[i]; if (debug) cout << "sum:" << sum << endl; if (plus) { if (sum >= 0) { cnt += sum + 1; sum = -1; } plus = false; } else { if (sum <= 0) { cnt += abs(sum) + 1; sum = 1; } plus = true; } } if (sum == 0) cnt += 1; long long tmp = cnt; cnt = 0; sum = a[0] + a[1]; if (sum >= 0) { cnt += sum + 1; sum = -1; } plus = false; for (int i = 2; i < n; i++) { sum += a[i]; if (debug) cout << "sum:" << sum << endl; if (plus) { if (sum >= 0) { cnt += sum + 1; sum = -1; } plus = false; } else { if (sum <= 0) { cnt += abs(sum) + 1; sum = 1; } plus = true; } } if (sum == 0) cnt += 1; if (tmp < cnt) cout << tmp << endl; else cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int operation(vector<int> a) { int opeCount = 0; int preSum = 0; int sum = 0; int i = 0; while (i < a.size()) { if (i == 0) { if (a[i] == 0) { if (a[i + 1] >= 0) { a[i] = a[i] - 1; opeCount++; } else { a[i] = a[i] + 1; opeCount++; } } preSum = a[i]; i++; } else { sum = preSum + a[i]; if (sum == 0) { if (preSum > 0) { a[i] = a[i] - 1; opeCount++; } else { a[i] = a[i] + 1; opeCount++; } } else { if (sum > 0 && preSum > 0) { a[i] = a[i] - 1; opeCount++; } else if (sum < 0 && preSum < 0) { a[i] = a[i] + 1; opeCount++; } else { preSum = sum; i++; } } } } return opeCount; } int main() { int n, ai; cin >> n; vector<int> a; for (int i = 0; i < n; ++i) { cin >> ai; a.push_back(ai); } int result = operation(a); cout << result << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } int main() { int n; cin >> n; vector<int> a(n); for (int i = (0); i < (n); ++i) cin >> a[i]; ll sum = a[0]; ll ans = 0; for (int i = (1); i < (n); ++i) { sum += a[i]; if (sum * (sum - a[i]) < 0) ; else { if (sum == 0) { if (sum - a[i] < 0) { sum = 1; ans++; } else { ans++; sum = -1; } } else if (sum > 0) { ans += sum + 1; sum = -1; } else { ans += -sum + 1; sum = 1; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; scanf("%d", &n); vector<long long> a; for (int i = 0; i < n; i++) { long long an; scanf("%lld", &an); a.push_back(an); } if (a[0] != 0) { long long op_count = 0; long long now_sum = 0; long long adding = a[0] > 0 ? -1 : 1; for (int i = 0; i < n; i++) { now_sum += a[i]; adding *= -1; if (now_sum == 0) { a[i] += adding; now_sum += adding; op_count++; continue; } if (adding > 0) { const long long last = 1 - now_sum; if (last > 1) { a[i] += last; now_sum += last; op_count += abs(last); } } else { const long long last = -1 - now_sum; if (last < -1) { a[i] += last; now_sum += last; op_count += abs(last); } } } printf("%lld\n", op_count); } else { int n_copy = n; vector<int> a_copy; copy(a.begin(), a.end(), a_copy.begin()); long long final_op_count = INT_MAX; for (int a0 = -1; a0 >= 1; a0 += 2) { a[0] = a0; n = n_copy; copy(a_copy.begin(), a_copy.end(), a.begin()); long long op_count = 0; long long now_sum = 0; long long adding = a[0] > 0 ? -1 : 1; for (int i = 0; i < n; i++) { now_sum += a[i]; adding *= -1; if (now_sum == 0) { a[i] += adding; now_sum += adding; op_count++; continue; } if (adding > 0) { const long long last = 1 - now_sum; if (last > 1) { a[i] += last; now_sum += last; op_count += abs(last); } } else { const long long last = -1 - now_sum; if (last < -1) { a[i] += last; now_sum += last; op_count += abs(last); } } } if (op_count < final_op_count) { final_op_count = op_count; } } printf("%lld\n", final_op_count); } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> #define INF 1<<50 #define leading zero str.erase(0, min(str.find_first_not_of('0'), str.size()-1)); using namespace __gnu_pbds; using namespace std; typedef long long ll; typedef pair<int, int> pii; typedef tree<ll, null_type, less<ll>, rb_tree_tag, tree_order_statistics_node_update> ordered_set; string text="abcdefghijklmnopqrstuvwxyz"; const int maxn=1e6+7; // .--------------. // | Try First One| // '--------------' // | .--------------. // | | | // V V | // .--------------. | // | AC. |<---. | // '--------------' | | // (True)| |(False) | | // .--------' | | | // | V | | // | .--------------. | | // | | Try Again |----' | // | '--------------' | // | | // | .--------------. | // '->| Try Next One |-------' // '--------------' ll bin_pow(ll a,ll b,ll m) { ll res=1; a%=m; while(b>0) { if(b&1) res=res*a%m; b>>=1; a=a*a%m; } return res; } bool miller_rabin(ll d,ll n) { ll a=2+rand()%(n-4); ll x=bin_pow(a,d,n); if(x==1 || x==n-1) return true; while(d!=n-1) { x=(x*x)%n; d*=2; if(x==1) return false; if(x==n-1) return true; } return false; } bool prime(ll n,ll k) { if(n==1 || n==4) return false; if(n<=3) return true; ll d=n-1; while(d%2==0) d/=2; for(int i=0; i<k; i++) { if(!miller_rabin(d,n)) return false; } return true; } int n; string s; ll ans = 0; void solve(ll x,ll y){ if(x==n+1){ ans += y; return; } ll cur = 0; for(ll i=x;i<=n;i++){ cur = (10*cur) + (s[i]-'0'); solve(i+1,y+cur); } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); ll n; cin>>n; ll a[n+2]; for(int i=0;i<n;i++)cin>>a[i]; ll sum=0; ll cnt=0; ll ans=INF; for(int i=0;i<n;i++){ sum+=a[i]; if(i%2==0){ if(sum<=0){ cnt+=abs(sum)+1; sum=1; } } else{ if(sum>=0){ cnt+=abs(sum)+1; sum=-1; } } } ans=min(cnt,ans); sum=0; cnt=0; for(int i=0;i<n;i++){ sum+=a[i]; if(i%2==0){ if(sum>=0){ cnt+=abs(sum)+1; sum=-1; } } else{ if(sum<=0){ cnt+=abs(sum)+1; sum=1; } } } cout<<min(ans,cnt)<<endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; using unsi = unsigned; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using pii = pair<int, int>; using db = double; using plex = complex<double>; using vs = vector<string>; template <class T> inline bool amax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool amin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } struct aaa { aaa() { cin.tie(0); ios::sync_with_stdio(0); cout << fixed << setprecision(20); }; } aaaaaaa; const int INF = 1001001001; const ll LINF = 1001001001001001001ll; const int MOD = 1e9 + 7; const db EPS = 1e-9; const int dx[] = {1, 1, 0, -1, -1, -1, 0, 1}, dy[] = {0, 1, 1, 1, 0, -1, -1, -1}; signed main() { long long n; cin >> n; long long odd{}; long long ans{}; long long even{}; vector<long long> a(n); for (auto i = 0; i != n; ++i) { cin >> a.at(i); } if (a[0] < 0) { for (auto i = 0; odd < n; ++i) { odd = 2 * i + 1; while (a[odd] <= 0 && odd < n) { ++a[odd]; ++ans; } } for (auto i = 1; even < n; ++i) { even = 2 * i; while (a[even] >= 0 && even < n) { --a[even]; ++ans; } } } else if (a[0] >= 0) { if (a[0] == 0) { ++a[0]; ++ans; } for (auto i = 0; odd < n; ++i) { odd = 2 * i + 1; while (a[odd] >= 0 && odd < n) { --a[odd]; ++ans; } } for (auto i = 1; even < n; ++i) { even = 2 * i; while (a[even] <= 0 && even < n) { ++a[even]; ++ans; } } } cout << ans; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; int sum = 0; int total = 0; cin >> n; vector<int> vect; bool positive = false; while (n--) { int a; cin >> a; vect.push_back(a); } if (vect[0] + vect[1] == 0) { if (vect.size() > 2) { vect[1] += (vect[2] > 0 ? -1 : +1); total++; } else { cout << "1" << endl; } } sum = vect[0] + vect[1]; if (sum < 0) positive = false; else positive = true; for (int i = 2; i < vect.size(); i++) { sum += vect[i]; if (positive) { if (sum >= 0) { total += abs(sum) + 1; sum = -1; } positive = false; } else if (!positive) { if (sum <= 0) { total += abs(sum) + 1; sum = 1; } positive = true; } } cout << total << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { long long n; cin >> n; bool lastPalus = true; long long a[n]; long long even = 0; for (long long i = 0; i < n; i++) { cin >> a[i]; even += i % 2 == 0 ? a[i] : -1 * a[i]; } long long sum = 0; long long ans = 0; for (long long i = 0; i < n; i++) { if (sum == 0) { if (a[i] == 0) { sum += even < 0 ? -1 : 1; ans++; } else { sum += a[i]; } } else if (sum > 0) { if (sum + a[i] >= 0) { ans += abs(sum + a[i]) + 1; sum = -1; } else { sum += a[i]; } } else { if (sum + a[i] <= 0) { ans += abs(sum + a[i]) + 1; sum = 1; } else { sum += a[i]; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; int a[100000]; for (long long i = 0; i < n; i++) cin >> a[i]; int ans = 1 << 30; int sum[100001] = {}; for (long long p = 0; p < 2; p++) { int cnt = 0; for (long long i = 0; i < n; i++) { int border = 1 + (p + i) % 2 * -2; sum[i + 1] = sum[i] + a[i]; if (border == 1 && sum[i + 1] >= border) continue; if (border == -1 && sum[i + 1] <= border) continue; cnt += abs(border - sum[i + 1]); sum[i + 1] = border; } ans = min(ans, cnt); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const int MOD = 1e9 + 7; const int iINF = 2147483647 / 2; const long long int llINF = 9223372036854775807 / 2; using namespace std; using ll = long long int; using vl = vector<ll>; using vvl = vector<vector<ll>>; using vvvl = vector<vector<vector<ll>>>; bool paircomp(const pair<ll, ll> &a, const pair<ll, ll> &b) { if (a.first == b.first) return a.second < b.second; return a.first < b.first; } ll POW(ll n, ll m) { if (m == 0) { return 1; } else if (m % 2 == 0) { ll tmp = POW(n, m / 2); return (tmp * tmp); } else { return (n * POW(n, m - 1)); } } int dx[4] = {1, 0, -1, 0}; int dy[4] = {0, 1, 0, -1}; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); ll N; cin >> N; vl A(N); for (ll i = 0; i < (N); i++) cin >> A[i]; ll now = A[0]; ll ans = 0; for (ll i = (1); i < (N); i++) { ll next = now + A[i]; if (now * next < 0) { now = next; } else if (now > 0 && next > 0) { ans += next + 1; next = -1; now = next; } else { ans += 1 - next; next = 1; now = next; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; cin >> n; vector<int> A(n), B(n); for (int i = 0; i < n; i++) { int a; cin >> a; A[i] = a; B[i] = a; } long long ans1 = 0, ans2 = 0; long long sum = 0; for (int i = 0; i < n; i++) { sum += A[i]; if (i % 2 == 0) { if (sum <= 0) { A[i] += 1 - sum; ans1 += 1 - sum; sum = 1; } } else { if (sum >= 0) { A[i] += sum + 1; ans1 += sum + 1; sum = -1; } } } sum = 0; for (int i = 0; i < n; i++) { sum += B[i]; if (i % 2 == 1) { if (sum <= 0) { B[i] += 1 - sum; ans2 += 1 - sum; sum = 1; } } else { if (sum > 0) { B[i] += sum + 1; ans2 += sum + 1; sum = -1; } } } if (ans1 < ans2) cout << ans1 << endl; else cout << ans2 << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long a[100001]; int main() { int N; cin >> N; for (int i = 0; i < N; i++) { cin >> a[i]; } for (int i = 1; i < N; i++) { a[i] += a[i - 1]; } long long add = 0, res1 = 0, res2 = 0; for (int i = 0; i < N; i++) { if (i % 2 == 0) { if (a[i] + add > 0) { res1 += abs(a[i] + add + 1); add -= (a[i] + add + 1); } else if (a[i] + add == 0) { add--; res1++; } } else { if (a[i] + add < 0) { res1 += abs(-a[i] + add + 1); add += (-a[i] + add + 1); } else if (a[i] + add == 0) { add++; res1++; } } } cout << res1 << endl; add = 0; for (int i = 0; i < N; i++) { if (i % 2 == 1) { if (a[i] + add > 0) { res2 += abs(a[i] + add + 1); add -= (a[i] + add + 1); } else if (a[i] == 0) { add--; res2++; } } else { if (a[i] + add < 0) { res2 += abs(-a[i] + add + 1); add += (-a[i] + add + 1); } else if (a[i] == 0) { add++; res2++; } } } cout << min(res1, res2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int, input().split())) cntA, sumA = 0, 0 for i in range(N): sumA += A[i] if i % 2 == 0: if sumA <= 0: cntA += abs(sumA) + 1 sumA += abs(sumA) + 1 else: if sumA >= 0: cntA += abs(sumA) + 1 sumA -= abs(sumA) + 1 cntB, sumB = 0, 0 for i in range(N): sumB += A[i] if i % 2 != 0: if sumB >= 0: cntB += abs(sumB) + 1 sumB += abs(sumB) + 1 else: if sumB >= 0: cntB += abs(sumB) + 1 sumB -= abs(sumB) + 1 print(min(cntA, cntB))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys n = int(input()) a = [int(n) for n in input().split()] sum = [0]*n sum[0] = a[0] ans = 0 for i in range(1,n): sum[i] = sum[i-1] while((sum[i]+a[i])*sum[i-1] >= 0): if(sum[i-1] > 0): ans+=sum[i-1] + a[i]+1 a[i]-=sum[i-1] + a[i]+1 else: ans+=1 - sum[i-1] - a[i] a[i]+=1 - sum[i-1] - a[i] # print(a) sum[i] += a[i] print(ans) # print(a) # print(sum)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, a, s = 0, count1 = 0, count2 = 0, i, news; cin >> n; vector<long long> as(n); for (int i = 0; i < n; i++) { cin >> a; s += a; as[i] = s; } i = 0; s = 0; while (i < n) { news = as[i] + s; if (news > -1) { s -= news + 1; count1 += news + 1; } if (++i >= n) break; news = as[i] + s; if (news < 1) { s += 1 - news; count1 += 1 - news; } i++; } i = 0; s = 0; while (i < n) { news = as[i] + s; if (news < 1) { s += 1 - news; count2 += 1 - news; } if (++i >= n) break; news = as[i] + s; if (news > -1) { s -= news + 1; count2 += news + 1; } i++; } cout << (count1 < count2 ? count1 : count2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) c = 0 i = 0 k = 1 sum = a[0] while a[i] == 0: i += 1 if a[i] > 0: if i % 2 == 1: a[0] = 1 c = 1 else: a[0] = -1 c = 1 else: if i % 2 == 1: a[0] = -1 c = 1 else: a[0] = 1 c = 1 i = 1 if a[0] > 0: while i < n: if i == 2*k-1: sum = sum + a[2*k-1] if sum >= 0: c = c + sum + 1 sum = -1 else: pass i += 1 else: sum = sum + a[2*k] if sum <= 0: c = c - sum + 1 sum = 1 else: pass i += 1 k += 1 print(c) elif a[0] < 0: while i < n: if i == 2*k-1: sum = sum + a[2*k-1] if sum <= 0: c = c - sum + 1 sum = 1 else: pass i += 1 else: sum = sum + a[2*k] while sum >= 0: c = c + sum + 1 sum = -1 else: pass i += 1 k += 1 print(c)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; class ParseError {}; template <typename T> class Zip { vector<T> d; bool flag; void init() { sort(d.begin(), d.end()); d.erase(unique(d.begin(), d.end()), d.end()); flag = false; } public: Zip() { flag = false; } void add(T x) { d.push_back(x); flag = true; } long long getNum(T x) { if (flag) init(); return lower_bound(d.begin(), d.end(), x) - d.begin(); } long long size() { if (flag) init(); return (long long)d.size(); } }; long long N, M, K, a, b, c, d, e, H, W, L, T; long long x, y, z; long long A[2000004] = {}; long long B[2000004] = {}; long long C[2000004] = {}; long long D[1000006] = {}; long long E[1000006] = {}; bool f; string S[200000]; string SS; set<long long> sll; pair<long long, long long> bufpl; vector<long long> vl[200005]; vector<long long> vll; vector<long long> v; vector<pair<long long, long long>> vpl; vector<string> vs; set<long long> llset; set<string> Sset; multiset<long long> llmset; queue<long long> ql; multiset<pair<long long, long long>> plmset; typedef struct ST { long long first; long long second; long long cost; bool operator<(const ST& another) const { return cost < another.cost; }; bool operator>(const ST& another) const { return cost > another.cost; }; } ST; priority_queue<ST, vector<ST>, greater<ST>> qst; long long modinv(long long aa, long long mm) { long long bb = mm, uu = 1, vv = 0; while (bb) { long long tt = aa / bb; aa -= tt * bb; swap(aa, bb); uu -= tt * vv; swap(uu, vv); } uu %= mm; if (uu < 0) uu += mm; return uu; } long long zettai(long long aa) { if (aa < 0) { aa *= -1; } return aa; } float zettai(float aa) { if (aa < 0) { aa *= -1; } return aa; } class UnionFind { public: vector<long long> pairent; vector<long long> depth; vector<long long> size; UnionFind(long long Amount) : pairent(Amount, 1), depth(Amount, 1), size(Amount, 1) { for (long long i = 0; i < Amount; i++) { pairent[i] = i; } } long long FindPairent(long long x) { if (pairent[x] == x) return x; else return pairent[x] = FindPairent(pairent[x]); } long long Merge(long long x, long long y) { x = FindPairent(x); y = FindPairent(y); if (x != y) { if (depth[x] > depth[y]) { pairent[y] = pairent[x]; return size[x] += size[y]; } else { pairent[x] = pairent[y]; if (depth[x] == depth[y]) { depth[y]++; } return size[y] += size[x]; } } else { return -1; } } bool IsSame(long long x, long long y) { if (FindPairent(x) == FindPairent(y)) return true; else return false; } long long GetSize(long long x) { x = FindPairent(x); return size[x]; } }; struct Edge { long long a, b, cost; bool operator<(const Edge& other) const { return cost < other.cost; } }; struct Graph { long long n; vector<Edge> es; }; class Kruskal { Graph origin_G; Graph MST; long long total_cost = 0; public: void Solve() { UnionFind uf = UnionFind(MST.n); for (long long i = 0; i < origin_G.es.size(); i++) { long long a = origin_G.es[i].a; long long b = origin_G.es[i].b; long long cost = origin_G.es[i].cost; if (!uf.IsSame(a, b)) { uf.Merge(a, b); MST.es.push_back(origin_G.es[i]); total_cost += cost; } } } Kruskal(Graph graph) { origin_G = graph; MST = graph; MST.es.clear(); sort(origin_G.es.begin(), origin_G.es.end()); } long long GetMinCost() { return total_cost; } }; long long RepeatSquaring(long long N, long long P, long long M) { if (P == 0) return 1; if (P % 2 == 0) { long long t = RepeatSquaring(N, P / 2, M) % M; return t * t % M; } return N * RepeatSquaring(N, P - 1, M) % M; } long long GCD(long long a, long long b) { if (a % b == 0) return b; else return GCD(b, a % b); } long long Min(long long a, long long b) { if (a < b) return a; else return b; } long long Max(long long a, long long b) { if (a > b) return a; else return b; } long long Sum(long long a, long long b) { return a + b; } template <typename T> class SegmentTree { long long n; vector<T> node; function<T(T, T)> fun, fun2; bool customChange; T outValue, initValue; public: void init(long long num, function<T(T, T)> resultFunction, T init, T out, function<T(T, T)> changeFunction = NULL) { fun = resultFunction; fun2 = changeFunction; customChange = changeFunction != NULL; n = 1; while (n < num) n *= 2; node.resize(2 * n - 1); fill(node.begin(), node.end(), init); outValue = out; initValue = init; } void valueChange(long long num, T value) { num += n - 1; if (customChange) node[num] = fun2(value, node[num]); else node[num] = value; while (num > 0) num = (num - 1) / 2, node[num] = fun(node[num * 2 + 1], node[num * 2 + 2]); } T rangeQuery(long long a, long long b, long long l = 0, long long r = -1, long long k = 0) { if (r == -1) r = n; if (a <= l && r <= b) return node[k]; if (b <= l || r <= a) return outValue; long long mid = (l + r) / 2; return fun(rangeQuery(a, b, l, mid, 2 * k + 1), rangeQuery(a, b, mid, r, 2 * k + 2)); } }; class Combination { vector<long long> factorial; vector<long long> factorial_inv; long long mod; long long max_n; public: void Init(long long init_max_n, long long init_mod) { max_n = init_max_n; mod = init_mod; factorial.resize(max_n + 1); factorial[0] = 1; for (long long i = 1; i < factorial.size(); i++) { factorial[i] = factorial[i - 1] * i; factorial[i] %= mod; } factorial_inv.resize(max_n + 1); factorial_inv[0] = 1; for (long long i = 1; i < factorial_inv.size(); i++) { factorial_inv[i] = factorial_inv[i - 1] * modinv(i, mod); factorial_inv[i] %= mod; } } long long GetComb(long long n, long long k) { long long comb = factorial[n]; comb *= factorial_inv[k]; comb %= mod; comb *= factorial_inv[n - k]; comb %= mod; return comb; } long long GetH(long long n, long long k) { long long comb = factorial[n + k - 1]; comb *= factorial_inv[n]; comb %= mod; comb *= factorial_inv[k - 1]; comb %= mod; return comb; } }; class Tree { long long node_N; vector<long long> node; vector<vector<pair<long long, long long>>> pass; long long diameter = -1; vector<long long> dist_Diamieter[2]; pair<long long, long long> maxDist_Num; public: void Init(long long node_Num) { node_N = node_Num; node.resize(node_N + 1); pass.resize(node_N + 1); dist_Diamieter[0].resize(node_N + 1); for (long long i = 0; i < node_N + 1; i++) dist_Diamieter[0][i] = -1; dist_Diamieter[1].resize(node_N + 1); for (long long i = 0; i < node_N + 1; i++) dist_Diamieter[1][i] = -1; } void AddEdge(long long a, long long b, long long dist) { bufpl.first = b; bufpl.second = dist; pass[a].push_back(bufpl); bufpl.first = a; pass[b].push_back(bufpl); } void DFS(long long step, long long now, long long dist) { dist_Diamieter[step][now] = dist; if (dist_Diamieter[step][now] > maxDist_Num.first) { maxDist_Num.first = dist_Diamieter[step][now]; maxDist_Num.second = now; } for (long long i = 0; i < pass[now].size(); i++) { long long next_node = pass[now][i].first; if (dist_Diamieter[step][next_node] == -1) { DFS(step, next_node, dist + pass[now][i].second); } } } long long GetDiameter(long long min_node_num) { if (diameter >= 0) return diameter; else { maxDist_Num.first = -1; maxDist_Num.second = -1; DFS(0, min_node_num, 0ll); long long step2_start = maxDist_Num.second; maxDist_Num.first = -1; maxDist_Num.second = -1; DFS(1, step2_start, 0ll); diameter = maxDist_Num.first; return diameter; } } long long GetDistFromMinNode(long long num) { return dist_Diamieter[0][num]; } }; void Nibu(long long node, long long co) { C[node] = co % 2; D[co % 2]++; for (long long i = 0; i < vl[node].size(); i++) { long long next = vl[node][i]; if (C[next] == -1) { Nibu(next, co + 1); } } } int main() { cin >> N; for (long long i = 0; i < N; i++) { cin >> A[i]; if (i == 0) B[i] = A[i]; else B[i] = B[i - 1] + A[i]; } long long ruiseki = 0; long long ans = 0; long long ans2 = 0; if (B[0] == 0) { for (long long i = 0; i < N; i++) C[i] = B[i]; B[0] = -1; C[0] = 1; for (long long i = 1; i < N; i++) { if (C[i - 1] + ruiseki < 0) { if (C[i] + ruiseki <= 0) { ans2 += 1 - (C[i] + ruiseki); ruiseki += 1 - (C[i] + ruiseki); } } else { if (C[i] + ruiseki >= 0) { ans2 += (C[i] + ruiseki) - (-1); ruiseki -= (C[i] + ruiseki) - (-1); } } } } else ans2 = 8223372036854775807ll; ruiseki = 0; for (long long i = 1; i < N; i++) { if (B[i - 1] + ruiseki < 0) { if (B[i] + ruiseki <= 0) { ans += 1 - (B[i] + ruiseki); ruiseki += 1 - (B[i] + ruiseki); } } else { if (B[i] + ruiseki >= 0) { ans += (B[i] + ruiseki) - (-1); ruiseki -= (B[i] + ruiseki) - (-1); } } } cout << min(ans, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int count1 = 0; int count2 = 0; vector<long long> a(n); for (int i = 0; i < n; i++) cin >> a[i]; long long sum = 0; if (a[0] >= 0) { for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 1) { while (sum >= 0) { sum--; count1++; } } else { while (sum <= 0) { sum++; count1++; } } } } else { for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0) { while (sum >= 0) { sum--; count1++; } } else { while (sum <= 0) { sum++; count1++; } } } } if (a[0] >= 0) { while (a[0] >= 0) { a[0]--; count2++; } } else { while (a[0] <= 0) { a[0]++; count2++; } } sum = 0; if (a[0] >= 0) { for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 1) { while (sum >= 0) { sum--; count2++; } } else { while (sum <= 0) { sum++; count2++; } } } } else { for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0) { while (sum >= 0) { sum--; count2++; } } else { while (sum <= 0) { sum++; count2++; } } } } if (count1 >= count2) cout << count2 << endl; else cout << count1 << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long int a[n], b[n], s[n], a0; for (int i = 0; i < n; i++) { cin >> a[i]; b[i] = a[i]; } s[0] = a[0]; a0 = a[0]; long long int ans1 = 0, ans2 = 0, tmp; for (int i = 0; i < n; i++) { if (i != 0) { s[i] = s[i - 1] + a[i]; } tmp = s[i]; if (i % 2 == 0) { if (tmp <= 0) { a[i] += abs(tmp) + 1; s[i] += abs(tmp) + 1; ans1 += abs(tmp) + 1; } } else { if (tmp >= 0) { a[i] -= abs(tmp) + 1; s[i] -= abs(tmp) + 1; ans1 += abs(tmp) + 1; } } } s[0] = a0; for (int i = 0; i < n; i++) { if (i != 0) { s[i] = s[i - 1] + b[i]; } for (int i = 0; i < n; i++) { cout << s[i] << " "; } tmp = s[i]; if (i % 2 != 0) { if (tmp <= 0) { b[i] += abs(tmp) + 1; s[i] += abs(tmp) + 1; ans2 += abs(tmp) + 1; } } else { if (tmp >= 0) { b[i] -= abs(tmp) + 1; s[i] -= abs(tmp) + 1; ans2 += abs(tmp) + 1; } } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list([int(i) for i in input().split()]) sum_a = [] count = 0 sum_a.append(a[0]) if len(a) != 1: if sum_a[0] == 0: count += 1 if a[1] > 0: sum_a[0] = -1 else: sum_a[0] = 1 else: if sum_a[0] == 0: count += 1 for i in range(1,n): sum_a.append(sum_a[i-1] + a[i]) if sum_a[i] == 0: if sum_a[i-1] < 0: sum_a[i] += 1 count += 1 else: sum_a[i] -= 1 count += 1 elif sum_a[i-1] * sum_a[i] > 0: if sum_a[i] > 0: sum_a[i] = -1 count += 1 + abs(sum_a[i-1]+a[i]) else: sum_a[i] = 1 count += 1 + abs(sum_a[i-1]+a[i]) print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); int[] a = new int[n]; int[] s = new int[n]; int sum = 0; int count1 = 0,count2 = 0; for(int i=0;i<n;i++){ a[i] = scanner.nextInt(); } for(int i=0;i<n;i++){ if(i % 2 == 0 && sum + a[i] <= 0){ count1 += Math.abs(sum + a[i] - 1); sum = 1; }else if(i % 2 == 1 && sum + a[i] >= 0){ count1 += sum + a[i] + 1; sum = -1; }else{ sum += a[i]; } } sum = 0; for(int i=0;i<n;i++){ if(i % 2 == 1 && sum + a[i] <= 0){ count2 += Math.abs(sum + a[i] -1); sum = 1; }else if(i % 2 == 0 && sum + a[i] >= 0){ count2 += sum + a[i] + 1; sum = -1; }else{ sum += a[i]; } } System.out.println(Math.min(count1,count2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int calc(int flag, const int a[], int n) { int cost = 0; long sum = 0; for (int i = 0; i < n; ++i) { sum += a[i]; if ((sum * flag) <= 0) { cost += abs(flag - sum); sum += flag - sum; } flag = -flag; } return cost; } int main(int argc, char *argv[]) { int n; std::cin >> n; int a[1 << 20]; for (int i = 0; i < n; ++i) { std::cin >> a[i]; } std::cout << std::min(calc(1, a, n), calc(-1, a, n)) << std::endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) count_1 = 0 count_2 = 0 for i in range(len(a)): if i == 0: count_1 += abs(1 - a[i]) elif i % 2 == 1: count_1 += abs(-2 - a[i]) elif i % 2 == 0: count_1 += abs(2 - a[i]) for i in range(len(a)): if i == 0: count_2 += abs(-1 - a[i]) elif i % 2 == 1: count_2 += abs(2 - a[i]) elif i % 2 == 0: count_2 += abs(-2 - a[i]) print(count_1 if count_1 < count_2 else count_2)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } long long sum = a.at(0); long long op_1 = 0; bool flag = sum > 0 ? 1 : 0; for (int j = 1; j < n; j++) { if (flag) { sum += a.at(j); if (sum >= 0) { op_1 += (sum + 1); sum = -1; } flag = 0; } else { sum += a.at(j); if (sum <= 0) { op_1 += (-1 * sum + 1); sum = 1; } flag = 1; } } sum = a.at(0); long long op_2 = 0; if (sum > 0) { sum = -1; op_2 += (sum + 1); } else { sum = 1; op_2 += (sum * -1 + 1); } for (int j = 1; j < n; j++) { if (flag) { sum += a.at(j); if (sum >= 0) { op_2 += sum + 1; sum = -1; } flag = 0; } else { sum += a.at(j); if (sum <= 0) { op_2 += -1 * sum + 1; sum = 1; } flag = 1; } } cout << (op_1 > op_2 ? op_2 : op_1) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int TAM = 100003; long long arr[TAM], acum[TAM], n; int main() { scanf("%lld", &n); for (int i = 0; i < n; i++) { scanf("%lld", &arr[i]); acum[i] = arr[i]; if (i) acum[i] += acum[i - 1]; } long long del = 0, ca = 0, cb = 0; for (int i = 0; i < n; i++) { if (i % 2) { if (acum[i] + del >= 0) { ca += (acum[i] + del + 1); del -= (acum[i] + del + 1); } } else { if (acum[i] + del <= 0) { ca += (-(acum[i] + del) + 1); del += (-(acum[i] + del) + 1); } } } del = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0) { if (acum[i] + del >= 0) { cb += (acum[i] + del + 1); del -= (acum[i] + del + 1); } } else { if (acum[i] + del <= 0) { cb += (-(acum[i] + del) + 1); del += (-(acum[i] + del) + 1); } } } ca = min(ca, cb); printf("%d\n", ca); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(i) for i in input().split()] s = [0]*n s[0] = a[0] count = 0 for i in range(1,n): s[i] = s[i-1] + a[i] if s[i] * s[i-1] > 0: tmp = (-s[i]) + (-s[i]//abs(s[i])) s[i] += tmp count += abs(tmp) if s[i] == 0: tmp = -s[i-1]//abs(s[i-1]) s[i] += tmp count += abs(tmp) print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; long long ans = 0, sum = 0; bool flag = true; scanf("%d", &n); scanf("%lld", &ans); if (ans < 0) flag = false; for (int i = 1; i < n; i++) { long long x; scanf("%lld", &x); ans += x; if (flag) { if (ans >= 0) { sum += ans + 1; ans = -1; } flag = false; } else { if (ans <= 0) { sum += abs(ans) + 1; ans = 1; } flag = true; } } printf("%lld\n", sum); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; vector<long long int> v; int solve(int first_pon) { int pon = first_pon, sum = 0, result = 0; for (int i = 0; (i) < (n); i++) { sum += v[i]; if (pon > 0 && sum >= 0) { result += sum + 1; sum = -1; } else if (pon < 0 && sum <= 0) { result += (-sum) + 1; sum = 1; } if (sum > 0) { pon = 1; } else { pon = -1; } } return result; } int main() { cin >> n; v = vector<long long int>(n); for (int i = 0; (i) < (n); i++) { cin >> v[i]; } cout << min(solve(1), solve(-1)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> List(n); for (int i = 0; i < n; i++) { cin >> List.at(i); } int cnt = 0; long long Sign = 0; for (int i = 0; i < n; i++) { if (i == 0) { if (List.at(i) >= 0) { Sign = List.at(i); } else if (List.at(i) < 0) { Sign = List.at(i); } continue; } if (Sign >= 0) { if (Sign + List.at(i) >= 0) { cnt += abs(Sign + List.at(i)) + 1; Sign = -1; } else { Sign += List.at(i); } continue; } if (Sign < 0) { if (List.at(i) + Sign <= 0) { cnt += abs(Sign + List.at(i)) + 1; Sign = 1; } else { Sign += List.at(i); } continue; } } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; class Program { static string InputPattern = "InputX"; static List<string> GetInputList() { var WillReturn = new List<string>(); if (InputPattern == "Input1") { WillReturn.Add("4"); WillReturn.Add("1 -3 1 0"); //4 } else if (InputPattern == "Input2") { WillReturn.Add("5"); WillReturn.Add("3 -6 4 -5 7"); //0 } else if (InputPattern == "Input3") { WillReturn.Add("6"); WillReturn.Add("-1 4 3 2 -5 4"); //8 } else { string wkStr; while ((wkStr = Console.ReadLine()) != null) WillReturn.Add(wkStr); } return WillReturn; } static void Main() { List<string> InputList = GetInputList(); int[] AArr = InputList[1].Split(' ').Select(X => int.Parse(X)).ToArray(); if (AArr[0] == 0) { AArr[0] = 1; long Cost1 = Solve(AArr); AArr[0] = -1; long Cost2 = Solve(AArr); Console.WriteLine(Math.Min(Cost1, Cost2)); } else { Console.WriteLine(Solve(AArr)); } } static long Solve(int[] pArr) { long Cost = 0; long RunSum = pArr[0]; for (int I = 1; I <= pArr.GetUpperBound(0); I++) { if (RunSum < 0) { RunSum += pArr[I]; if (RunSum > 0) continue; Cost += Math.Abs(RunSum) + 1; RunSum = 1; } else if (RunSum > 0) { RunSum += pArr[I]; if (RunSum < 0) continue; Cost += Math.Abs(RunSum) + 1; RunSum = -1; } } return Cost; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const int N = 1e5 + 10; using namespace std; int mod = 1e9 + 7; int num[N], num2[N]; long long sum[N], sum2[N]; int main() { int n; while (~scanf("%d", &n)) { long long ans = 0, ans2 = 0; for (int i = 1; i <= n; i++) { scanf("%d", num + i); num2[i] = num[i]; sum[i] = sum[i - 1] + num[i]; sum2[i] = sum2[i - 1] + num2[i]; } if (num[1] == 0) { ans += 1; num[1] = 1; sum[1]++; } if (num2[1] == 0) { ans2 += 1; num2[1] = -1; sum2[1]--; } for (int i = 2; i <= n; i++) { sum[i] = sum[i - 1] + num[i]; int a = sum[i - 1] < 0; int b = sum[i] < 0; if (sum[i] == 0) { if (sum[i - 1] < 0) num[i]++; else num[i]--; sum[i] = sum[i - 1] + num[i]; ans++; } else if (!(a ^ b)) { if (sum[i] < 0) { num[i] -= sum[i]; num[i]++; ans -= sum[i]; sum[i] = sum[i - 1] + num[i]; ans++; } else if (sum[i] > 0) { num[i] -= sum[i]; num[i]--; ans += sum[i]; ans++; sum[i] = num[i] + sum[i - 1]; } } } for (int i = 2; i <= n; i++) { sum2[i] = sum2[i - 1] + num2[i]; int a = sum2[i - 1] < 0; int b = sum2[i] < 0; if (sum2[i] == 0) { if (sum2[i - 1] < 0) num2[i]++; else num2[i]--; sum2[i] = sum2[i - 1] + num2[i]; ans2++; } else if (!(a ^ b)) { if (sum2[i] < 0) { num2[i] -= sum2[i]; num2[i]++; ans2 -= sum2[i]; sum2[i] = sum2[i - 1] + num2[i]; ans2++; } else if (sum2[i] > 0) { num2[i] -= sum2[i]; num2[i]--; ans2 += sum2[i]; ans2++; sum2[i] = num2[i] + sum2[i - 1]; } } } printf("%lld\n", min(ans, ans2)); } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long int N, count = 0; cin >> N; vector<long int> A(N); for (int i = 0; i < N; i++) cin >> A[i]; long int su = A[0]; bool plus = A[0] > 0; for (int i = 1; i < N; i++) { plus = !plus; su += A[i]; if (plus) { if (su <= 0) { count += abs(su) + 1; su = 1; } } else { if (su >= 0) { count += abs(su) + 1; su = -1; } } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const int N = 1e6 + 5; const int mod = 1e9 + 7; using namespace std; int n, a[N], sum[N], ans1, ans2; template <typename T> inline T read() { T x = 0, w = 1; char c = getchar(); while (c < '0' || c > '9') { if (c == '-') w = -1; c = getchar(); } while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * w; } int mabs(int x) { return x < 0 ? -x : x; } int main() { n = read<int>(); for (int i = 1; i <= n; i++) a[i] = read<int>(); for (int sum = 0, i = 1; i <= n; i++) { if (i & 1) { if (sum + a[i] > 0) { sum += a[i]; continue; } ans1 += mabs(sum + a[i]) + 1, sum = 1; } else { if (sum + a[i] < 0) { sum += a[i]; continue; } ans1 += mabs(sum + a[i]) + 1, sum = -1; } } for (int sum = 0, i = 1; i <= n; i++) { if (!(i & 1)) { if (sum + a[i] > 0) { sum += a[i]; continue; } ans2 += mabs(sum + a[i]) + 1, sum = 1; } else { if (sum + a[i] < 0) { sum += a[i]; continue; } ans2 += mabs(sum + a[i]) + 1, sum = -1; } } printf("%d\n", min(ans1, ans2)); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int read() { int x = 0, f = 1; char ch = getchar(); while (ch < '0' || ch > '9') { if (ch == '-') f = -1; ch = getchar(); } while (ch >= '0' && ch <= '9') { x = x * 10 + ch - 48; ch = getchar(); } return x * f; } const int N = 1e5 + 11, mod = 1e9 + 7; long long ans1, ans2, sum; int n; int a[N]; int main() { n = read(); for (int i = 1; i <= n; i++) a[i] = read(); for (int i = 1; i <= n; i++) { sum = sum + a[i]; if (i % 2 == 1) if (sum <= 0) { ans1 = ans1 + abs(1 - sum); sum = 1; } else { } else if (sum >= 0) { ans1 = ans1 + abs(-1 - sum); sum = -1; } } sum = 0; for (int i = 1; i <= n; i++) { sum = sum + a[i]; if (i % 2 == 0) if (sum <= 0) { ans2 = ans2 + abs(1 - sum); sum = 1; } else { } else if (sum >= 0) { ans2 = ans2 + abs(-1 - sum); sum = -1; } } printf("%lld\n", min(ans1, ans2)); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; long long chk1, chk2, ans1 = 0, ans2 = 0; scanf("%d", &n); vector<int> a(n); for (auto& e : a) scanf("%d", &e); chk1 = a[0]; chk2 = a[0]; for (int i = 1; i < n; i++) { if (i % 2) { chk1 += a[i]; chk2 += a[i]; if (chk1 >= 0) { ans1 += chk1 + 1; chk1 = -1; } if (chk2 <= 0) { ans2 += -1 * chk2 + 1; chk2 = 1; } } else { chk1 += a[i]; chk2 += a[i]; if (chk1 <= 0) { ans1 += -1 * chk1 + 1; chk1 = 1; } if (chk2 >= 0) { ans2 += chk2 + 1; chk2 = -1; } } } if (ans1 >= 0 && ans2 >= 0) printf("%lld\n", min(ans1, ans2)); else if (ans1 >= 0) printf("%lld\n", ans1); else if (ans2 >= 0) printf("%lld\n", ans2); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int read() { int k = 0, f = 1; char ch = getchar(); while (ch < '0' || ch > '9') { if (ch == '-') f = -1; ch = getchar(); } while (ch >= '0' && ch <= '9') { k = k * 10 + ch - '0'; ch = getchar(); } return k * f; } int n, a[100010], s[100010]; int main() { n = read(); for (int i = 1; i <= n; i++) a[i] = read(); int ans = 1e9, sum = 0; for (int i = 1; i <= n; i++) { s[i] = s[i - 1] + a[i]; if (i & 1) { if (s[i] >= 0) sum += abs(-1 - s[i]), s[i] = -1; } else { if (s[i] <= 0) sum += abs(1 - s[i]), s[i] = 1; } } ans = sum; sum = 0; for (int i = 1; i <= n; i++) { s[i] = s[i - 1] + a[i]; if (i & 1) { if (s[i] <= 0) sum += abs(1 - s[i]), s[i] = 1; } else { if (s[i] >= 0) sum += abs(-1 - s[i]), s[i] = -1; } } ans = min(ans, sum); printf("%d", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; bool posi(long long x) { return x > 0; } int main() { int N; cin >> N; vector<long long> a(N); for (auto &i : a) cin >> i; long long ans = 0, tmp = 0; long long sum = a[0]; for (int i = 1; i < N; i++) { if (!(posi(sum) ^ posi(sum + a[i]))) { tmp += abs(sum + a[i]) + 1; sum = (sum > 0) ? -1 : 1; } else sum += a[i]; } ans = tmp; tmp = abs(a[0]) + 1; sum = (a[0] > 0) ? -1 : 1; for (int i = 1; i < N; i++) { if (!(posi(sum) ^ posi(sum + a[i]))) { tmp += abs(sum + a[i]) + 1; sum = (sum > 0) ? -1 : 1; } else sum += a[i]; } ans = min(ans, tmp); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, a[100000]; int main(void) { cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; int sum1 = 0, res1 = 0; for (int i = 0; i < n; i++) { sum1 += a[i]; if (i % 2 == 0) { if (sum1 <= 0) { res1 += 1 - sum1; sum1 = 1; } } else { if (sum1 >= 0) { res1 += 1 + sum1; sum1 = -1; } } } int sum2 = 0, res2 = 0; for (int i = 0; i < n; i++) { sum2 += a[i]; if (i % 2 == 0) { if (sum2 >= 0) { res2 += 1 + sum2; sum2 = -1; } } else { if (sum2 <= 0) { res2 += 1 - sum2; sum2 = 1; } } } cout << (res1 < res2 ? res1 : res2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; int count = 0; vector<int> a(100000); cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } vector<int> sum(100000); if (a[0] == 0) { if (a[1] > 0) { a[0]--; count++; } else { a[0]++; count++; } } sum[0] = a[0]; for (int i = 1; i < n; i++) { sum[i] = sum[i - 1] + a[i]; if (sum[i] == 0) { if (sum[i - 1] < 0) { sum[i]++; count++; } else { sum[i]--; count++; } } if (sum[i] * sum[i - 1] > 0) { if (sum[i - 1] < 0) { while (sum[i] * sum[i - 1] >= 0) { sum[i]++; count++; } } else { while (sum[i] * sum[i - 1] >= 0) { sum[i]--; count++; } } } } cout << count; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); vector<int> a1(n); vector<int> a2(n); vector<long long> sum1(n); vector<long long> sum2(n); for (int i = 0; i < n; i++) { cin >> a[i]; } a1 = a; a2 = a; int ans1 = 0; int ans2 = 0; for (int i = 0; i < n; i++) { if (i == 0) sum1[i] = a1[i]; else sum1[i] = sum1[i - 1] + a1[i]; if (i % 2 == 0 && sum1[i] <= 0) { a1[i] += (1 - sum1[i]); ans1 += (1 - sum1[i]); sum1[i] += (1 - sum1[i]); if (sum1[i] == 0) { a1[i]++; sum1[i]++; ans1++; } } else if (i % 2 == 1 && sum1[i] >= 0) { a1[i] -= (sum1[i] + 1); ans1 += (sum1[i] + 1); sum1[i] -= (1 + sum1[i]); if (sum1[i] == 0) { a1[i]--; sum1[i]--; ans1++; } } } for (int i = 0; i < n; i++) { if (i == 0) sum2[i] = a2[i]; else sum2[i] = sum2[i - 1] + a2[i]; if (i % 2 == 0 && sum2[i] >= 0) { a2[i] -= (1 + sum2[i]); ans2 += (sum2[i] + 1); sum2[i] -= (1 + sum2[i]); if (sum2[i] == 0) { a2[i]--; sum2[i]--; ans2++; } } else if (i % 2 == 1 && sum2[i] <= 0) { a2[i] += (1 - sum2[i]); ans2 += (1 - sum2[i]); sum2[i] += (1 - sum2[i]); if (sum2[i] == 0) { a2[i]++; sum2[i]++; ans2++; } } } if (sum2[n - 1] == 0) ans2++; if (ans1 >= ans2) cout << ans2 << endl; else cout << ans1 << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
solve [] v acc = acc solve as v acc | v == 0 = if head as < 0 -- aiに連続な0はないとした then solve as 1 (1 + acc) else solve as (-1) (1 + acc) | v < 0 = let w = v + (head as) in if w <= 0 then solve (tail as) 1 (1 - w + acc) else solve (tail as) w acc | v > 0 = let w = v + (head as) in if w >= 0 then solve (tail as) (-1) (1 + w + acc) else solve (tail as) w acc main = do n <- read <$> getLine :: IO Int l <- getLine let as = fmap read (words l) :: [Int] in putStrLn (show (solve (tail as) (head as) 0))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; long long sum; cin >> sum; if (sum == 0) { long long delta1 = 1; sum = 1; long long ar[N]; for (int i = 1; i < N; ++i) { cin >> ar[i]; long long temp = ar[i]; if (sum > 0 && sum + temp >= 0) { delta1 += sum + temp + 1; sum = -1; } else if (sum < 0 && sum + temp <= 0) { delta1 += 1 - (sum + temp); sum = 1; } else { sum += temp; } } long long delta2 = 1; sum = -1; for (int i = 1; i < N; ++i) { long long temp = ar[i]; if (sum > 0 && sum + temp >= 0) { sum = -1; delta2 += sum + temp + 1; } else if (sum < 0 && sum + temp <= 0) { sum = 1; delta2 += 1 - (sum + temp); } else { sum += temp; } } if (delta1 < delta2) cout << delta1; else cout << delta2; } else { long long delta = 0; for (int i = 1; i < N; ++i) { int temp; cin >> temp; if (sum > 0 && sum + temp >= 0) { delta += sum + temp + 1; sum = -1; } else if (sum < 0 && sum + temp <= 0) { delta += 1 - (sum + temp); sum = 1; } else { sum += temp; } } cout << delta; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int dx[4] = {-1, 0, 1, 0}; int dy[4] = {0, 1, 0, -1}; const int INF = 100000000; const long long LINF = 1000000000000000000; const int MOD = (int)1e9 + 7; using pii = std::pair<int, int>; int main(void) { cin.tie(0); ios::sync_with_stdio(false); int n, sum = 0, a, ans1 = 0, ans2 = 0, sum1 = 0, sum2 = 0; cin >> n; for (int i = 0; i < n; ++i) { cin >> a; sum1 += a; sum2 += a; if (i % 2 == 0) { if (sum1 <= 0) ans1 += 1 - sum1, sum1 = 1; if (sum2 >= 0) ans2 += 1 + sum2, sum2 = -1; } else { if (sum1 >= 0) ans1 += 1 + sum1, sum1 = -1; if (sum2 <= 0) ans2 += 1 - sum2, sum2 = 1; } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main { private static Scanner sc = new Scanner(System.in); public static void main(String[] args) { int n = sc.nextInt(); long sum = sc.nextLong(); long ret = 0; long tmp = 0; for (int i = 1;i < n;i++) { long a = sc.nextInt(); tmp = sum; sum += a; if (tmp*sum<0) continue; long l = Math.abs(sum)+1; if (sum>=0) { sum -= l; } else { sum += l; } ret += l; } System.out.println(ret); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; static const long long maxLL = (long long)1 << 62; long long a[100001] = {}; long long s[100001] = {}; int main() { long long n; cin >> n; for (long long i = 1; i <= n; i++) { cin >> a[i]; } long long cnt = 0; for (long long i = 1; i <= n; i++) { s[i] = s[i - 1] + a[i]; if (i > 1) { if (s[i] == 0) { s[i] = s[i - 1] * -1; cnt++; } if (i > 1 && s[i - 1] * s[i] > 0) { cnt += abs(s[i]) + 1; if (s[i] > 0) s[i] -= cnt; else if (s[i] < 0) s[i] += cnt; } } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main() { int n, sign, ans = 0; long long a[100000], sum = 0; scanf("%d", &n); for (int i = 0; i < n; i++) { scanf("%lld", &a[i]); if (i == 0) { if (a[i] >= 0) sign = 1; if (a[i] < 0) sign = -1; } sum += a[i]; if ((i % 2 == 0 && sign == 1) || (i % 2 == 1 && sign == -1)) { if (sum <= 0) { ans += sum * (-1) + 1; sum = 1; } } if ((i % 2 == 1 && sign == 1) || (i % 2 == 0 && sign == -1)) { if (sum >= 0) { ans += sum + 1; sum = -1; } } } printf("%d\n", ans); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main(void) { double num[10 * 10 * 10 * 10 * 10]; int i, n, ssign; double sum = 0; double count = 0; scanf("%d", &n); for (i = 0; i < n; i++) { scanf("%lf", &num[i]); } if (num[0] == 0) { num[0]++; count++; } for (i = 1; i < n; i++) { sum += num[i - 1]; while (1) { if (fabs(sum) > fabs(num[i])) { if (sum < 0) { num[i]++; count++; } else if (sum > 0) { num[i]--; count++; } } else if (fabs(sum) == fabs(num[i])) { if (sum < 0) { num[i]++; count++; } else { num[i]--; count++; } } else if (sum > 0 && num[i] > 0 && fabs(sum) < fabs(num[i])) { num[i]--; count++; } else if (sum < 0 && num[i] < 0 && fabs(sum) < fabs(num[i])) { num[i]++; count++; } else break; } } for (i = 0; i < n; i++) { sum += num[i]; if (sum == 0.0) { if ((sum - num[i]) > 0) num[i]--; else num[i]++; count++; } } printf("%f\n", count); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; import java.io.*; import java.math.BigInteger; public class Main { private static final int mod =(int)1e9+7; public static void main(String[] args) throws Exception { Scanner sc=new Scanner(System.in); PrintWriter out=new PrintWriter(System.out); int n=sc.nextInt(); long a[]=new long[n]; for(int i=0;i<n;i++) { a[i]=sc.nextLong(); } long sum=a[0]; long operations=0; if(a.length==1) { if(a[0]!=0) { System.out.println(0); }else { System.out.println(1); } }else { if(sum==0) { int f=0; for(int i=2;i<n;i+=2) { if(a[i]>0) { f=1; break; } } if(f==1) sum++; else sum--; operations++; } for(int i=1;i<n;i++) { if(sum>0) { if(sum+a[i]<0) { sum+=a[i]; }else { if(sum+a[i]==0) { sum+=a[i]-1; operations++; }else { long req=(long)-1-1l*sum; sum=-1; operations+=(-1l*req+a[i]); } } }else { if(sum+a[i]>0) { sum+=a[i]; }else { if(sum+a[i]==0) { sum+=a[i]+1; operations++; }else { long req=(long)1+-1l*sum; sum=1; operations+=(req-a[i]); } } } } System.out.println(operations); } } static boolean vis[]=new boolean[10001]; static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } // Function to find gcd of array of // numbers static int f(int arr[], int n) { int result = n; int max=-1; int ans=0; for (int element: arr){ if(vis[element]==false) result = gcd(n, element); if(result>max) { max=result; ans=element; } } return ans; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) c = 0 i = 1 k = 1 sum = a[0] while a[i] == 0: i += 1 if a[i] > 0: if i % 2 == 1: a[0] = 1 c = 1 else: a[0] = -1 c = 1 else: if i % 2 == 1: a[0] = -1 c = 1 else: a[0] = 1 c = 1 i = 1 if a[0] > 0: while i < n: if i == 2*k-1: sum = sum + a[2*k-1] if sum >= 0: c = c + sum + 1 sum = -1 else: pass i += 1 else: sum = sum + a[2*k] if sum <= 0: c = c - sum + 1 sum = 1 else: pass i += 1 k += 1 print(c) elif a[0] < 0: while i < n: if i == 2*k-1: sum = sum + a[2*k-1] if sum <= 0: c = c - sum + 1 sum = 1 else: pass i += 1 else: sum = sum + a[2*k] while sum >= 0: c = c + sum + 1 sum = -1 else: pass i += 1 k += 1 print(c)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INTMAX = 2147483647; const int64_t LLMAX = 9223372036854775807; const int MOD = 1000000007; template <class T> inline bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } inline void swap(int64_t& a, int64_t& b) { a ^= b; b ^= a; a ^= b; } inline void swap(int& a, int& b) { a ^= b; b ^= a; a ^= b; } vector<int> a; int main() { int n; int64_t ans = 0, tmp, s; cin >> n; a.resize(n); for (int i{0}; i < (int)(n); i++) cin >> a[i]; s = a[0]; tmp = 0; if (s < 0) { tmp += (1 - s); s = 1; } for (int i{1}; i < (int)(n); i++) { if (!(s + a[i]) || (s ^ (s + a[i])) >= 0) { if (s > 0) { tmp += 1LL + s + a[i]; s = -1; } else { tmp += 1LL - (s + a[i]); s = 1; } } else s += a[i]; } ans = tmp; s = a[0]; tmp = 0; if (s > 0) { tmp += 1LL + s; s = -1; } for (int i{1}; i < (int)(n); i++) { if (!(s + a[i]) || (s ^ (s + a[i])) >= 0) { if (s > 0) { tmp += 1LL + s + a[i]; s = -1; } else { tmp += 1LL - (s + a[i]); s = 1; } } else s += a[i]; } chmin(ans, tmp); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(false); int n; cin >> n; int a[100010]; for (int i = 0; i < n; ++i) cin >> a[i]; int cur1 = 0; int cur2 = 0; int ans1 = 0; int ans2 = 0; for (int i = 0; i < n; ++i) { cur1 += a[i]; if (i % 2 == 0) { if (cur1 <= 0) { ans1 = ans1 - cur1 + 1; cur1 = 1; } } if (i % 2 == 1) { if (cur1 >= 0) { ans1 = ans1 + cur1 + 1; cur1 = -1; } } } for (int i = 0; i < n; ++i) { cur2 += a[i]; if (i % 2 == 1) { if (cur2 <= 0) { ans2 = ans2 - cur2 + 1; cur2 = 1; } } if (i % 2 == 0) { if (cur2 >= 0) { ans2 = ans2 + cur2 + 1; cur2 = -1; } } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; using pii = pair<int, int>; using pll = pair<ll, ll>; const int MOD = 1000000007; const int mod = 1000000007; const int INF = 1000000000; const long long LINF = 1e18; const int MAX = 510000; bool code(long long int n) { if (n < 0) return 1; else if (n > 0) return 0; } int main() { int n; long long int sum = 0; long long int ans = 0; long long int ans2 = 0; cin >> n; vector<long long int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } sum = a.at(0); if (sum != 0) { for (int i = 1; i < n; i++) { if (sum + a.at(i) == 0) { ans++; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else if (code(sum + a.at(i)) == code(sum)) { ans += abs(sum + a.at(i)) + 1; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else { sum = a.at(i) + sum; } } cout << ans << endl; return 0; } else if (sum == 0) { sum = -1; ans = 1; for (int i = 1; i < n; i++) { if (sum + a.at(i) == 0) { ans++; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else if (code(sum + a.at(i)) == code(sum)) { ans += abs(sum + a.at(i)) + 1; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else { sum = a.at(i) + sum; } } sum = 1; ans2 = 1; for (int i = 1; i < n; i++) { if (sum + a.at(i) == 0) { ans2++; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else if (code(sum + a.at(i)) == code(sum)) { ans2 += abs(sum + a.at(i)) + 1; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else { sum = a.at(i) + sum; } } cout << min(ans, ans2) << endl; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main() { int n; scanf("%d", &n); long long a[n]; for (int i = 0; i < n; i++) { scanf("%lld", &a[i]); } long long mans = 0, pans = 0; long long msub[n], psub[n]; if (a[0] == 0) { pans = 1; mans = 1; psub[0] = 1; msub[0] = -1; } if (a[0] > 0) { psub[0] = a[0]; msub[0] = -1; mans = a[0] + 1; } else { psub[0] = 1; msub[0] = a[0]; pans = a[0] + 1; } int i; for (i = 1; i < n; i++) { if (i % 2 == 1 && psub[i - 1] + a[i] >= 0) { pans += (psub[i - 1] + a[i] + 1); psub[i] = -1; } else if (i % 2 == 0 && psub[i - 1] + a[i] <= 0) { pans += (1 - (psub[i - 1] + a[i])); psub[i] = 1; } else { psub[i] = (psub[i - 1] + a[i]); } if (i % 2 == 1 && msub[i - 1] + a[i] <= 0) { mans += (1 - (msub[i - 1] + a[i])); msub[i] = 1; } else if (i % 2 == 0 && msub[i - 1] + a[i] >= 0) { mans += (msub[i - 1] + a[i] + 1); msub[i] = -1; } else { msub[i] = (msub[i - 1] + a[i]); } } printf("%lld", mans < pans ? mans : pans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long calc(vector<int> a, int pattern) { long long count = 0; long long sa; long long bi = 0; for (int(i) = 0; (i) < (a.size()); (i)++) { if ((pattern == 1 && a[i] + bi > 0) || (pattern == -1 && a[i] + bi < 0)) { pattern *= -1; continue; } sa = a[i] + bi - pattern; bi -= sa; count += llabs(sa); pattern *= -1; } return count; } int main() { int n; cin >> n; vector<int> a(n); for (int(i) = 0; (i) < (n); (i)++) cin >> a[i]; for (int(i) = 1; (i) < (n); (i)++) a[i] += a[i - 1]; long long mi = min(calc(a, 1), calc(a, -1)); cout << mi << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
def sign(i) return 1 if i.positive? || i == 0 -1 end n = gets.chomp.to_i a = gets.chomp.split.map { |item| item.to_i } b = [] b[0] = a[0] count = 0 if a[0] == 0 case sign(a[1]) when 1 a[0] = -1 count += 1 when 0 a[0] = 1 count += 1 end end (n-1).times do |i| b[i+1] = b[i] + a[i+1] if b[i+1] == 0 if b[i] > 0 a[i+1] -= 1 count += 1 else a[i+1] += 1 count += 1 end elsif sign(b[i]) == sign(b[i+1]) if b[i].positive? count += (a[i+1] - (-b[i] - 1)).abs a[i+1] = -b[i] - 1 b[i+1] = b[i] + a[i+1] else count += (a[i+1] - (-b[i] + 1)).abs a[i+1] = -b[i] + 1 b[i+1] = b[i] + a[i+1] end end end puts count
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; unsigned int check(int sum, int ans, vector<int> T, int N, bool pre_pm) { for (int i = 1; i < N; i++) { if (pre_pm) { sum += T.at(i); while (0 <= sum) { sum--; ans++; } pre_pm = false; } else { sum += T.at(i); while (sum <= 0) { sum++; ans++; } pre_pm = true; } } return ans; } int main() { int N; vector<int> T; cin >> N; for (int i = 0; i < N; i++) { int tmp; cin >> tmp; T.push_back(tmp); } unsigned int ans = 0; int sum = 0; bool pre_pm; sum = T.at(0); if (0 <= sum) { pre_pm = true; unsigned int tmp1 = check(sum, ans, T, N, pre_pm); pre_pm = false; unsigned int tmp2 = check(-1, 1 + sum, T, N, pre_pm); cout << min(tmp1, tmp2) << endl; } else { pre_pm = false; unsigned int tmp1 = check(sum, ans, T, N, pre_pm); pre_pm = true; unsigned int tmp2 = check(1, 1 + sum, T, N, pre_pm); cout << min(tmp1, tmp2) << endl; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; long long a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } long long sum = 0; long long res1 = 0; long long res2 = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0) { if (sum + a[i] > 0) { sum += a[i]; } else { res1 = res1 + 1 - (sum + a[i]); sum = 1; } } else { if (sum + a[i] < 0) { sum += a[i]; } else { res1 = res1 + (sum + a[i]) + 1; sum = -1; } } } for (int i = 0; i < n; i++) { if (i % 2 == 0) { if (sum + a[i] < 0) { sum += a[i]; } else { res2 = res2 + 1 + sum + a[i]; sum = -1; } } else { if (sum + a[i] > 0) { sum += a[i]; } else { res2 = res2 + 1 - sum - a[i]; sum = 1; } } } cout << min(res1, res2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main(void) { long long n, now = 0, ans[2] = {}; bool flag; scanf("%ld", &n); long long a[n]; for (int i = 0; i < n; i++) { scanf("%ld", &a[i]); } for (int j = 0; j < 2; j++) { if (j == 0) { flag = true; } else { flag = false; } now = a[0]; for (int i = 1; i < n; i++) { now += a[i]; if (flag) { if (now >= 0) { ans[j] += (-1 - now) * (-1); now = -1; } flag = false; } else { if (now <= 0) { ans[j] += 1 - now; now = 1; } flag = true; } } } if (ans[0] > ans[1]) { printf("%ld", ans[1]); } else { printf("%ld", ans[0]); } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { int n, a[100000]; int i; int sum = 0, check = 0, count = 0; scanf("%d", &n); for (i = 0; i < n; i++) { scanf("%d", &a[i]); } for (i = 0; i < n; i++) { sum += a[i]; switch (check) { case 1: if (sum >= 0) { count += sum + 1; sum = -1; } break; case -1: if (sum <= 0) { count += 1 - sum; sum = -1; } break; default: break; } if (sum > 0) { check = 1; } else { check = -1; } } printf("%d", count); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long int> a(n); for (int i = 0; i < (n); ++i) cin >> a[i]; long long int ans = 0; long long int old_sum = a[0], sum; for (int i = 1; i < n; ++i) { sum = old_sum + a[i]; if (sum == 0) { ans++; if (old_sum >= 0) { sum--; } else { sum++; } } if ((old_sum >= 0) && (sum >= 0)) { ans += (sum + 1); sum = -1; } else if ((old_sum < 0) && (sum < 0)) { ans += abs(sum - 1); sum = 1; } old_sum = sum; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 1e9, MOD = 1e9 + 7; const long long LINF = 1e18; long long int n, cnt = 0, ans = 0, a[10000000], b[10000000], c, cmp, cmpp = 0, m, h, w, x, y, sum = 0, pos; int dy[] = {1, 0, -1, 0}; int dx[] = {0, 1, 0, -1}; string alph("abcdefghijklmnopqrstuvwxyz"), s; bool fl = true; int main(void) { cin.tie(0); ios::sync_with_stdio(false); cin >> n; for (long long int(i) = 0; (i) < (int)(n); (i)++) { cin >> a[i]; b[i] = a[i]; } for (long long int(i) = 0; (i) < (int)(n); (i)++) { sum += b[i]; if (i % 2 == 0) { if (sum <= 0) { cmp += sum * -1 + 1; sum = 1; } } else { if (sum >= 0) { cmp += sum + 1; sum = -1; } } } sum = 0; for (long long int(i) = 0; (i) < (int)(n); (i)++) { sum += a[i]; if (i % 2 != 0) { if (sum <= 0) { cmpp += sum * -1 + 1; sum = -1; } } else { if (sum >= 0) { cmpp += sum + 1; sum = 1; } } } ans = min(cmpp, cmp); cout << (ans) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main{ public static void main(String[] args){ Scanner scan = new Scanner(System.in); int n = scan.nextInt(); int[] a_ = new int[n]; for(int i = 0; i < n; i++){ a_[i] = scan.nextInt(); } int count = 0; int[] sum_ = new int[n]; //i % 2 == 1 : sum_[i] <= -1 if(a_[0] > 0){ sum_[0] = a_[0]; for(int i = 1; i < n;){ sum_[i] = sum_[i-1] + a_[i]; if(i % 2 != 0){ if(sum_[i] < 0){ //OK i++; }else{ if(sum_[i-1] > 1){ a_[i-1]--; i--; }else{ a_[i]--; } count++; } }else{ if(sum_[i] > 0){ //OK i++; }else{ if(sum_[i-1] < -1){ a_[i-1]++; i--; }else{ a_[i]++; } count++; } }if(count == 10)break; } }else{ sum_[0] = a_[0]; for(int i = 1; i < n;){ sum_[i] = sum_[i-1] + a_[i]; if(i % 2 != 0){ if(sum_[i] > 0){ //OK i++; }else{ if(sum_[i-1] < -1){ a_[i-1]++; i--; }else{ a_[i]++; } count++; } }else{ if(sum_[i] < 0){ //OK i++; }else{ if(sum_[i-1] > 1){ a_[i-1]--; i--; }else{ a_[i]--; } count++; } } } } System.out.println(count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long calcSum(int i, long long na[]) { long long sum = 0; for (int j = 0; j <= i; j++) { sum += na[j]; } return sum; } long long check(int n, int s, long long a[]) { long long cnt = 0; long long na[n]; for (int i = 0; i < n; i++) { na[i] = a[i]; long long sum = calcSum(i, na); if (s == 0) { if (i % 2 == 0 && sum <= 0) { long long dx = 1 - sum; na[i] += dx; cnt += abs(dx); } else if (i % 2 != 0 && sum >= 0) { long long dx = -1 - sum; na[i] += dx; cnt += abs(dx); } } if (s == 1) { if (i % 2 != 0 && sum <= 0) { long long dx = 1 - sum; na[i] += dx; cnt += abs(dx); } else if (i % 2 == 0 && sum >= 0) { long long dx = -1 - sum; na[i] += dx; cnt += abs(dx); } } } return cnt; } int main() { int n; cin >> n; long long a[100000]; for (int i = 0; i < n; i++) cin >> a[i]; cout << min(check(n, 0, a), check(n, 1, a)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) a = list(map(int, input().split())) res = [] for start in [1, -1]: ans = 0 _a = [a[0]] prev_sign = start for i in range(1, N): c = a[i] if c >= 0 and prev_sign > 0: ans += abs(c - (-1)) c = -1 elif c <= 0 and prev_sign < 0: ans += abs(c - 1) c = 1 if c > 0: prev_sign = 1 else: prev_sign = -1 _a.append(c) __a = [_a[0]] acm_sum = _a[0] for i in range(1, N): c = _a[i] if abs(acm_sum) >= abs(c): if c < 0: c = -1*(abs(acm_sum)+1) else: c = abs(acm_sum)+1 acm_sum += c ans += abs(c - _a[i]) __a.append(c) res.append(ans) print(min(res))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
input() a = list(map(int, input().split())) s = a[0] ret = 0 k = 1 if a[0] > 0 else -1 ret2 = k * a[0] + 1 p = -k for i in a[1:]: if s * (s+i) < 0: s = s+i else: t = s + i k = 1 if t > 0 else -1 ret += k * t + 1 s = -k if p * (p+i) < 0: p = p+i else: t = p + i k = 1 if t > 0 else -1 ret2 += k * t + 1 p = -k print(min(ret, ret2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; int A[100000]; cin >> n; for (int i = 0; i < n; i++) { cin >> A[i]; } int sum = 0; int counter = 0; for (int i = 0; i < n; i++) { sum += A[i]; if (i % 2 == 0) { if (sum <= 0) { int diff = 1 - sum; sum += diff; counter += diff; } } else { if (sum >= 0) { int diff = sum + 1; sum -= diff; counter += diff; } } } int counterNeg = 0; sum = 0; for (int i = 0; i < n; i++) { sum += A[i]; if (i % 2 == 0) { if (sum >= 0) { int diff = sum + 1; sum -= diff; counterNeg += diff; } } else { if (sum <= 0) { int diff = 1 - sum; sum += diff; counterNeg += diff; } } } int ans = counter > counterNeg ? counterNeg : counter; cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; void _IOS() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin.sync_with_stdio(0); } int sx, sy, tx, ty; struct threeElements { int _1st, _2nd, _3rd; }; vector<vector<int>> adj(10); long long v[200009]; int n; int solve(int x) { int ans = 0, sum = x; for (int i = 2; i <= n; i++) { int u = v[i] + sum; if (sum < 0) { if (u <= 0) { ans += abs(u) + 1; u = 1; } } else { if (u >= 0) { ans += u + 1; u = -1; } } sum = u; } return ans; } int main() { _IOS(); cin >> n; for (int i = 1; i <= n; i++) { int x; cin >> x; v[i] = x; } if (v[1] == 0) { cout << min(solve(1), solve(-1)) + 1; } else { long long ans2, ans1 = solve(v[1]); if (v[1] > 0) { ans2 = solve(-1) + v[1] + 1; } else { ans2 = solve(1) + abs(v[1]) + 1; } cout << min(ans1, ans2); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, flag = 0; cin >> n; vector<long long int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } long long int ans = 0, sum = a[0]; if (sum > 0) { flag = 1; } else if (sum < 0) { flag = 0; } else if (sum == 0 && a[1] > 0) { sum = -1; ans++; flag = 0; } else if (sum == 0 && a[1] < 0) { sum++; ans++; flag = 1; } else if (sum == 0) { sum++; ans++; flag = 1; } for (int i = 1; i < n; i++) { sum += a[i]; if ((flag == 1 && sum < 0) || (flag == 0 && sum > 0)) { flag = 1 - flag; continue; } else if (sum == 0) { if (i + 1 == n) { ans++; } else if (a[i + 1] > 0) { sum = -1; ans++; flag = 0; } else if (a[i + 1] < 0) { sum = 1; ans++; flag = 1; } } else { ans += (1 + abs(sum)); if (sum > 0) { sum = -1; flag = 0; } else { sum = 1; flag = 1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; constexpr int MOD = 1000000007; using long long = long long; template <class T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } void print(const std::vector<int> &v) { std::for_each(v.begin(), v.end(), [](int x) { std::cout << x << " "; }); std::cout << std::endl; } int main() { int n; cin >> n; vector<long long> a(n); for (long long i = 0; i < (long long)n; i++) { cin >> a[i]; } long long res = (1ll << 60); long long ans = 0LL; long long s = 0LL; for (int i = 0; i < n; i++) { s += a[i]; if (i % 2 == 1) { if (s >= 0) { ans += s + 1; s = -1; } } else { if (s <= 0) { ans += -s + 1; s = 1; } } } res = min(res, ans); ans = 0; for (int i = 0; i < n; i++) { s += a[i]; if (i % 2 == 0) { if (s >= 0) { ans += s + 1; s = -1; } } else { if (s <= 0) { ans += -s + 1; s = 1; } } } res = min(res, ans); cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T> ostream& operator<<(ostream& out, const vector<T>& v) { out << "["; size_t last = v.size() - 1; for (size_t i = 0; i < v.size(); ++i) { out << v[i]; if (i != last) out << ","; } out << "]"; return out; } const int MAXN = 1e5 + 1; int n; long long a[MAXN]; long long s[MAXN], e[MAXN], o[MAXN]; void solve() { cin >> n; cin >> a[0]; s[0] = e[0] = o[0] = a[0]; for (int i = 1; i < n; ++i) { cin >> a[i]; s[i] = s[i - 1] + a[i]; } long long even = 0, odd = 0; if (s[0] < 0) { e[0] = 1; even += abs(s[0]) + 1; } else if (s[0] > 0) { o[0] = -1; odd += abs(s[0]) + 1; } else { e[0] = 1; o[0] = -1; even = odd = 1; } for (int i = 1; i < n; ++i) { e[i] = e[i - 1] + a[i]; o[i] = o[i - 1] + a[i]; if (i % 2 == 0 && e[i] <= 0) { even += abs(e[i]) + 1; e[i] = 1; } else if (i % 2 != 0 && e[i] >= 0) { even += abs(e[i]) + 1; e[i] = -1; } else if (i % 2 != 0 && o[i] <= 0) { odd += abs(o[i]) + 1; o[i] = 1; } else if (i % 2 == 0 && o[i] >= 0) { odd += abs(o[i]) + 1; o[i] = -1; } } cout << min(even, odd) << endl; } int main() { solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long MOD = 1e9 + 7; const long long INF = 1e18; signed main() { cin.tie(nullptr); ios::sync_with_stdio(false); long long n, ans1 = 0, ans2 = 0, sum1 = 0, sum2 = 0; cin >> n; vector<long long> a(n); for (long long i = 0; i < n; i++) { cin >> a[i]; } sum1 = a[0]; if (sum1 == 0) { sum1 = (a[1] > 0 ? -1 : 1); ans1++; } for (long long i = 1; i < n; i++) { if (sum1 + a[i] == 0) { ans1++; } else if (sum1 > 0 && sum1 + a[i] < 0) { sum1 += a[i]; } else if (sum1 < 0 && sum1 + a[i] > 0) { sum1 += a[i]; } else if (sum1 > 0 && a[i] + sum1 > 0) { ans1 += sum1 + a[i] + 1; sum1 = -1; } else { ans1 += -a[i] - sum1 + 1; sum1 = 1; } } a[0] *= -1; if (sum2 == 0) { sum2 = (a[1] > 0 ? -1 : 1); ans2++; } for (long long i = 1; i < n; i++) { if (sum2 + a[i] == 0) { ans2++; } else if (sum2 > 0 && sum2 + a[i] < 0) { sum2 += a[i]; } else if (sum2 < 0 && sum2 + a[i] > 0) { sum2 += a[i]; } else if (sum2 > 0 && a[i] + sum2 > 0) { ans2 += sum2 + a[i] + 1; sum2 = -1; } else { ans2 += -a[i] - sum2 + 1; sum2 = 1; } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
#入力部 N = int(input()) a_list = list(map(int,input().split())) #偶数番目を正とする(0,2,4,…) #深いコピー import copy a_listg = copy.deepcopy(a_list) a_sumg = 0 xg = 0 for j in range(N): if j%2 != 0: if a_sumg + a_listg[j] > -1: temp = a_listg[j] a_listg[j] = -1 -a_sumg xg += abs(temp - a_listg[j]) else: if a_sumg + a_listg[j] < 1: temp = a_listg[j] a_listg[j] = 1 - a_sumg xg += abs(temp - a_listg[j]) a_sumg += a_listg[j] #奇数番目を正とする(0,2,4,…) #深いコピー import copy a_listk = copy.deepcopy(a_list) a_sumk = 0 xk = 0 for j in range(N): if j%2 == 0: if a_sumk + a_listk[j] > -1: temp = a_listk[j] a_listk[j] = -1 -a_sumg xk += abs(temp - a_listk[j]) else: if a_sumk + a_listk[j] < 1: temp = a_listk[j] a_listk[j] = 1 - a_sumg xk += abs(temp - a_listk[j]) a_sumk += a_listk[j] #2パターンの内小さい方を出力 print(min([xg,xk]))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; vector<long long> A(n), sum(n); for (long long i = (0); i < (long long)(n); i++) cin >> A[i]; long long cnt1 = 0; if (A[0] > 0) { sum[0] = A[0]; } else { sum[0] = 1; cnt1 += abs(1 - A[0]); } for (long long i = (1); i < (long long)(n); i++) { if (sum[i - 1] > 0) { if (sum[i - 1] + A[i] < 0) { sum[i] = sum[i - 1] + A[i]; } else { sum[i] = -1; cnt1 += abs(sum[i - 1] + A[i] - (-1)); } } else { if (sum[i - 1] + A[i] > 0) { sum[i] = sum[i - 1] + A[i]; } else { sum[i] = 1; cnt1 += abs(1 - (sum[i - 1] + A[i])); } } } long long cnt2 = 0; if (A[0] < 0) { sum[0] = A[0]; } else { sum[0] = 1; cnt2 += abs(A[0] - (-1)); } for (long long i = (1); i < (long long)(n); i++) { if (sum[i - 1] > 0) { if (sum[i - 1] + A[i] < 0) { sum[i] = sum[i - 1] + A[i]; } else { sum[i] = -1; cnt2 += abs(sum[i - 1] + A[i] - (-1)); } } else { if (sum[i - 1] + A[i] > 0) { sum[i] = sum[i - 1] + A[i]; } else { sum[i] = 1; cnt2 += abs(1 - (sum[i - 1] + A[i])); } } } long long cnt3 = 0; if (A[n - 1] > 0) { sum[n - 1] = A[n - 1]; } else { sum[n - 1] = 1; cnt3 += abs(1 - A[n - 1]); } for (long long i = n - 2; i >= 0; i--) { if (sum[i + 1] > 0) { if (sum[i + 1] + A[i] < 0) { sum[i] = sum[i + 1] + A[i]; } else { sum[i] = -1; cnt3 += abs(sum[i + 1] + A[i] - (-1)); } } else { if (sum[i + 1] + A[i] > 0) { sum[i] = sum[i + 1] + A[i]; } else { sum[i] = 1; cnt3 += abs(1 - (sum[i + 1] + A[i])); } } } long long cnt4 = 0; if (A[n - 1] < 0) { sum[n - 1] = A[n - 1]; } else { sum[n - 1] = -1; cnt4 += abs(A[n - 1] - (-1)); } for (long long i = n - 2; i >= 0; i--) { if (sum[i + 1] > 0) { if (sum[i + 1] + A[i] < 0) { sum[i] = sum[i + 1] + A[i]; } else { sum[i] = -1; cnt4 += abs(sum[i + 1] + A[i] - (-1)); } } else { if (sum[i + 1] + A[i] > 0) { sum[i] = sum[i + 1] + A[i]; } else { sum[i] = 1; cnt4 += abs(1 - (sum[i + 1] + A[i])); } } } cout << min(min(cnt1, cnt2), min(cnt3, cnt4)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int getsign(long long int n) { if (n > 0) { return 1; } if (n < 0) { return -1; } return -1; } int count(int sign0, long long a[], int n) { long long int sum = 0; long long int sign = sign0; long long int count = 0; for (int i = 0; i < n; ++i) { sum += a[i]; if (getsign(sum) != sign) { count += abs(sign - sum); sum = sign; } sign = (sign * -1); } return count; } int main() { int n; cin >> n; long long a[n]; for (int i = 0; i < n; ++i) { cin >> a[i]; } cout << min(count(1, a, n), count(-1, a, n)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Text; using System.Collections.Generic; using System.Linq; class Program { static List<long> rep; static void Main(string[] args){ //入力を受け取る var N = long.Parse(Console.ReadLine()); var A = Console.ReadLine().Split().Select(a => long.Parse(a)).ToArray(); var B = new long[N];  Array.Copy(A, B, A.Length); long ans = 0; long sum = A[0]; for(int i =1 ;i <N; i++){ if(sum > 0){ if(sum+A[i] >= 0){ var aim = sum*(-1)-1; ans += (long) Math.Abs(A[i]-aim); A[i] = aim; } }else{ if(sum+A[i] <= 0){ var aim = sum*(-1)+1; ans += (long) Math.Abs(A[i]-aim); A[i] = aim; } } sum += A[i]; } long ans2 = (long)Math.Abs(B[0])+1; long sum2 = 0; if(B[0] > 0){ sum2 = -1; }else{ sum2 = 1; } for(int i =1 ;i <N; i++){ if(sum2 > 0){ if(sum2+B[i] >= 0){ var aim = sum2*(-1)-1; ans2 += (long) Math.Abs(B[i]-aim); B[i] = aim; } }else{ // Console.WriteLine(B[i]); if(sum2+B[i] <= 0){ var aim = sum2*(-1)+1; ans2 += (long) Math.Abs(B[i]-aim); B[i] = aim; } } sum2 += B[i]; } if(ans2 < ans){ Console.WriteLine(ans2); }else{ Console.WriteLine(ans); }   } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys def solve(): readline = sys.stdin.buffer.readline mod = 10 ** 9 + 7 n = int(readline()) a = list(map(int, readline().split())) t = 0 cnt = 0 lt = -1 if a[0] > 0 else 1 for i in range(n): lt = lt if i == 0 else t t += a[i] if lt * t >= 0: if t > 0: cnt += abs(t + 1) t -= abs(t + 1) elif t < 0: cnt += abs(t - 1) t += abs(t - 1) else: if lt < 0: cnt += abs(t - 1) t += abs(t - 1) else: cnt += abs(t + 1) t += abs(t + 1) print(cnt) if __name__ == '__main__': solve()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 10E9; const long long MOD = 1000000007; const long double PI = 3.1415926; template <class T> T &chmin(T &a, const T &b) { return a = min(a, b); } template <class T> T &chmax(T &a, const T &b) { return a = max(a, b); } long long int n, m, k, ans = 0, sum = 0, cnt = 0; string s; int main() { long long int n; cin >> n; vector<long long int> acc(n); long long int x = 0; for (long long int i = (long long int)(0); i < (long long int)(n); i++) { cin >> acc[i]; acc[i] += x; x = acc[i]; } bool minus = true; long long int tmp = 0; for (long long int i = (long long int)(1); i < (long long int)(n); i++) { if ((minus && acc[i] + tmp >= 0) || (!minus && acc[i] + tmp <= 0)) { ans += llabs(acc[i] + tmp) + 1; if (!minus) tmp += (llabs(acc[i] + tmp) + 1); else tmp -= (llabs(acc[i] + tmp) + 1); } minus = !minus; } long long int ans1 = ans; ans = 0; minus = false; tmp = 0; for (long long int i = (long long int)(1); i < (long long int)(n); i++) { if ((minus && acc[i] + tmp >= 0) || (!minus && acc[i] + tmp <= 0)) { ans += llabs(acc[i] + tmp) + 1; if (!minus) tmp += (llabs(acc[i] + tmp) + 1); else tmp -= (llabs(acc[i] + tmp) + 1); } minus = !minus; } cout << min(ans, ans1) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long now; cin >> now; long long ans = 0; for (long long(i) = (0); (i) < (n - 1); ++i) { long long tmp; cin >> tmp; if (now > 0) { now += tmp; if (now >= 0) { ans += now + 1; now = -1; } } else { now += tmp; if (now < 0) { ans -= (now - 1); now = 1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; int C[200000]; int count = 0; cin >> N; for (int i = 0; i < N; i++) { cin >> C[i]; } int sum = C[0]; for (int i = 1; i < N; i++) { if (sum < 0) { sum += C[i]; while (sum <= 0) { sum++; count++; } continue; } if (sum > 0) { sum += C[i]; while (sum >= 0) { sum--; count++; } continue; } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <iostream> #include <vector> using namespace std; int main() { int N; cin >> N; vector<int> a(N); for (int i = 0; i < N; i++) { cin >> a[i]; } ll ans = 0; while (ans < N && a[ans] == 0) ans++; ll sum; if (ans == 0) sum = a[0]; else if (ans < N && a[ans + 1] > 0) sum = -1; else sum = 1; for (int i = ans + 1; i < N; i++) { //cout << sum << ' ' << (sum + a[i]) << endl; if (sum * (sum + a[i]) >= 0) { if (sum + a[i] >= 0) { // sum > 0, sum + a[i] >= 0 // sum + a[i] = -1になるように変える // sum + (-sum - 1) = -1 // a[i] -> -sum - 1 ans += abs(sum + a[i] + 1); //cout << "cost : " << abs(sum + a[i] + 1) << endl; a[i] = -sum - 1; } else { // sum < 0, sum + a[i] < 0 // sum + a[i] = 1 になるように変える // sum + (-sum + 1) = 1 // a[i] -> -sum + 1 ans += abs(sum + a[i] - 1); //cout << "cost : " << abs(sum + a[i] - 1) << endl; a[i] = -sum + 1; } } sum += a[i]; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main { public static void main(String[] args) { new Main().execute(); } public void execute() { Scanner sc = new Scanner(System.in); final int N = sc.nextInt(); long[] A = new long[N]; for (int i = 0; i < N; i++) { long ai = sc.nextLong(); A[i] = ai; } long cnt = 0; if (A[0] == 0) { if (A[1] > 0) { A[0] = -1; } else { A[0] = 1; } cnt++; } long sum = A[0]; for (int i = 1; i < N; i++) { if (sum > 0) { if (sum + A[i] >= 0) { cnt += sum + A[i] + 1; A[i] = -sum - 1; sum = -1; } else { sum = sum + A[i]; } } else {// sum <0 if (sum + A[i] <= 0) { cnt += (sum + A[i]) * -1 + 1; A[i] = -sum + 1; sum = 1; }else{ sum = sum + A[i]; } } } System.out.println(cnt); sc.close(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } int sum = a.at(0); int op = 0; for (int j = 1; j < n; j++) { if (sum > 0) { sum += a.at(j); while (sum >= 0) { op++; sum--; } } else { sum += a.at(j); while (sum <= 0) { op++; sum++; } } } cout << op << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import math N = int(input()) a = [int(i) for i in input().split()] num = 0 i = 0 if a[0] == 0: while a[i] == 0: i += 1 if i % 2 == 0: a[0] = math.copysign(1, a[i]) else: a[0] = math.copysign(1, -a[i]) num += 1 old = a[0] sam = a[0] for i in range(1, len(a)): sam += a[i] sam_sign = int(math.copysign(1, sam)) old_sign = int(math.copysign(1, old)) if sam_sign == old_sign or sam == 0: num += abs(sam) + 1 a[i] = a[i] + (-old_sign)*(abs(sam)+1) old += a[i] sam = old print(int(num))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { long long n; cin >> n; long long a[n]; for (long long i = 0; i < n; i++) cin >> a[i]; long long counter = 0; if (a[0] >= 0) { for (long long i = 1; i < n; i++) { long long total = a[0]; total += a[i]; if (i % 2 == 0 && total <= 0) { counter += abs(total - 1); a[i] += abs(total - 1); } else if (i % 2 != 0 && total >= 0) { counter += abs(total - (-1)); a[i] -= abs(total - (-1)); } } } else { for (long long i = 1; i < n; i++) { long long total = 0; for (long long j = 0; j <= i; j++) { total += a[j]; } if (i % 2 == 0 && total >= 0) { counter += abs(total - (-1)); a[i] -= abs(total - (-1)); } else if (i % 2 != 0 && total <= 0) { counter += abs(total - 1); a[i] += abs(total - 1); } } } cout << counter << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using pii = pair<int, int>; int main() { ll n, sum, result = 0; n; cin >> n; ll a[n]; for (ll i = 0; i < n; i++) { a[i]; cin >> a[i]; } sum = a[0]; if (sum == 0) { sum = 1; result = 1; } for (ll i = 1; i < n; i++) { if (sum > 0) { sum += a[i]; if (sum >= 0) { result += sum + 1; sum = -1; } } else { sum += a[i]; if (0 >= sum) { result += (sum - 1) * (-1); sum = 1; } } } result; cout << result << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#!/usr/bin/env ruby STDIN.gets.chomp.to_i array = STDIN.gets.chomp.split(' ').map(&:to_i) ans = 0 sum = 0 array.each_with_index do |a, i| if i == 0 if a == 0 sum = 1 ans = 1 else sum = a end next end if sum >= 0 if sum + a < 0 sum += a else ans += (-1 - (sum + a)).abs sum = -1 end else # sumがマイナス if sum + a > 0 sum += a else ans += (1 - (sum + a)).abs sum = 1 end end #puts "#{i}: sum = #{sum}, ans = #{ans}" end puts ans
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> std::vector<int> seq, sum; long compare(bool which) { bool is_plus = which; long ans = 0; long dif = 0; if (which && sum[0] <= 0) { dif += 1 - sum[0]; ans += dif; } else if (!which && sum[0] >= 0) { dif += -1 - sum[0]; ans += -dif; } for (int i = 1; i < sum.size(); i++) { long num = sum[i] + dif; if (is_plus && num >= 0) { long tmp = -1 - num; dif += tmp; ans += -tmp; } else if (!is_plus && num <= 0) { long tmp = 1 - num; dif += tmp; ans += tmp; } is_plus = !is_plus; } return ans; } int main() { int n; std::cin >> n; seq.resize(n); sum.resize(n); std::cin >> seq[0]; sum[0] = seq[0]; for (int i = 1; i < n; i++) { std::cin >> seq[i]; sum[i] = sum[i - 1] + seq[i]; } long plus = compare(true); long minus = compare(false); std::cout << (plus < minus ? plus : minus) << std::endl; }