Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { int n; long int a[100000] = {0}, b[100001] = {0}, fugo, ans = 0; scanf("%d", &n); for (int i = 0; i < n; i++) { scanf("%ld", &a[i]); } if (a[0] < 0) fugo = 0; else fugo = 1; for (int i = 1; i <= n; i++) { b[i] = b[i - 1] + a[i - 1]; if (i % 2 == fugo) { if (b[i] <= 0) ans += 1 - b[i], b[i] += ans; } else { if (b[i] >= 0) ans += b[i] + 1, b[i] -= ans; } } printf("%d\n", ans); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N); for (int i = 0; i < N; i++) cin >> a.at(i); bool fla = false; for (int i = 0; i < N; i++) { if (a.at(i) != 0) { if ((a.at(i) > 0) && (i % 2 == 0)) fla = true; else if (i % 2 == 1) fla = true; break; } } int64_t t = 0LL, res = 0LL; for (int i = 0; i < N; i++) { int b = a.at(i); if (fla) { if (t + b <= 0) { b = t * -1 + 1; res += b - a.at(i); } } else { if (t + b >= 0) { b = t * -1 - 1; res += abs(b - a.at(i)); } } t += b; fla = !fla; } cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
#!/usr/bin/env python3 #ABC59 C n = int(input()) a = list(map(int,input().split())) ans1 = 0 s1 = a[0] if s1 < 0: ans1 += abs(s1) + 1 for i in range(1,n): if i % 2 == 0: if s1 + a[i] > 0: s1 += a[i] else: ans1 += abs(s1 + a[i]) + 1 s1 = 1 else: if s1 + a[i] < 0: s1 += a[i] else: ans1 += abs(s1 + a[i]) + 1 s1 = -1 ans2 = 0 s2 = a[0] if s2 > 0: ans2 += abs(s2) + 1 for i in range(1,n): if i % 2 == 0: if s2 + a[i] < 0: s2 += a[i] else: ans2 += abs(s2 + a[i]) + 1 s2 = -1 else: if s2 + a[i] > 0: s2 += a[i] else: ans2 += abs(s2 + a[i]) + 1 s2 = 1 print(min(ans1,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) prv_total =0 cnt = 0 if a[0] == 0: if a[1]>= 0: a[0] = -1 else: a[0] = -1 cnt += 1 for i in range(n-1): total = prv_total + a[i] nxt_total = total+a[i+1] if total > 0 and nxt_total >= 0: a[i+1] -= nxt_total+1 cnt += nxt_total+1 nxt_total -= nxt_total+1 elif total < 0 and nxt_total <=0: a[i+1] += abs(nxt_total)+1 cnt += abs(nxt_total)+1 nxt_total += abs(nxt_total)+1 prv_total = total total = prv_total + a[-1] if total == 0: cnt += 1 print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; template <class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template <class T> bool chmin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } int dy[] = {0, 0, 1, -1}; int dx[] = {1, -1, 0, 0}; int main() { ll n; cin >> n; vector<ll> a(n); (i, a, b) for (ll(i) = a; (i) < (b); ++(i))(i, 0, n) cin >> a[i]; vector<ll> sum(n); sum[0] = a[0]; (i, a, b) for (ll(i) = a; (i) < (b); ++(i))(i, 0, n - 1) sum[i + 1] = sum[i] + a[i + 1]; ll c = 0; ll d = 0; if (sum[0] == 0) { (i, a, b) for (ll(i) = a; (i) < (b); ++(i))(i, 1, n) { if (sum[i] == 0 and i != n - 1) continue; c = 1; d = (sum[i] < 0 ? 1 : -1); break; } } (i, a, b) for (ll(i) = a; (i) < (b); ++(i))(i, 0, n - 1) { if ((d + sum[i]) * (d + sum[i + 1]) < 0) continue; c += abs(d + sum[i + 1]) + 1; if (d + sum[i + 1] >= 0) d -= d + sum[i + 1] + 1; else d += abs(d + sum[i + 1]) + 1; } cout << c << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) count = 0 for i in range(1,n): if a[0]>0: if i%2==1 and sum(a[0:i+1])>=0: count += abs(sum(a[0:i+1])+1) a[i] = -(sum(a[0:i])+1) elif i%2==0 and sum(a[0:i+1])<=0: count += abs(sum(a[0:i+1])-1) a[i] = a[i]+abs(sum(a[0:i+1])-1) else: if i%2==1 and sum(a[0:i+1])<=0: count += abs(sum(a[0:i+1])-1) a[i] = a[i]+abs(sum(a[0:i+1])-1) elif i%2==0 and sum(a[0:i+1])>=0: count += abs(sum(a[0:i+1])+1) a[i] = -(sum(a[0:i])+1) print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i input = gets.chomp.split(" ").map { |n| n.to_i } if input[0] == 0 input[0] += 1 end total = input[0] cost = 0 flag = input[0] > 0 ? true : false for i in 1..n-1 total += input[i] if flag == true if total > 0 #p total cost += (total.abs) +1 total = -1 elsif total == 0 cost += 1 total = -1 end flag = false else if total < 0 #p total cost += (total.abs) +1 total = 1 elsif total == 0 cost += 1 total = 1 end flag = true end end puts cost
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int a[100000]; int getTotal(int n, int dir) { int total{0}, sum{0}; for (int i{0}; i < n; ++i) { sum += a[i]; if (dir > 0 && sum <= 0) { total += -sum + 1; sum = 1; } else if (dir < 0 && sum >= 0) { total += sum + 1; sum = -1; } dir *= -1; } return total; } int main() { int n; cin >> n; for (int i{0}; i < n; ++i) cin >> a[i]; int try1 = getTotal(n, 1); int try2 = getTotal(n, -1); cout << ((try1) < (try2) ? (try1) : (try2)) << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<iostream> #include<string> #include<algorithm> #include<vector> #include<iomanip> #include<math.h> #include<complex> #include<queue> #include<deque> #include<stack> #include<map> #include<set> #include<bitset> #include<functional> #include<assert.h> #include<numeric> using namespace std; #define REP(i,m,n) for(int i=(int)(m) ; i < (int) (n) ; ++i ) #define rep(i,n) REP(i,0,n) #define pint pair<int,int> #define pll pair<ll,ll> using ll = long long; const int inf=1e9+7; const ll longinf=1LL<<60 ; const ll mod=1e9+7 ; int main(){ int n; cin >> n; int a[n]; rep(i,n)cin >> a[i]; int sum[n]={},sum2[n]={}; int temp=0,temp2=0; rep(i,n){ if(i==0){ sum[i]=a[i]; if(a[i]<=0){ temp+=-a[i]+1; sum[i]=1; } } else{ sum[i]=a[i]+sum[i-1]; if(sum[i]*sum[i-1]>=0){ if(i%2==0){ temp+=-sum[i]+1; sum[i]=1; }else{ temp+=sum[i]+1; sum[i]=-1; } } } } rep(i,n){ if(i==0){ sum2[i]=a[i]; if(sum2[i]>=0){ temp2+=a[i]+1; sum2[i]=-1; } } else{ sum2[i]=a[i]+sum2[i-1]; if(sum2[i]*sum2[i-1]>=0){ if(i%2==0){ temp2+=sum2[i]+1; sum2[i]=-1; }else{ temp2+=-sum2[i]+1; sum[i]=1; } } } } // cout << temp << ' ' << temp2 << endl; cout << min(temp,temp2) << endl; return 0;}
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# coding: utf-8 # Here your code N = int(input()) a = [int(i) for i in input().split()] result_1 = 0 before_sum = a[0] if a[0] <= 0: before_sum = 1 result_1 += 1 + abs(a[0]) after_sum = before_sum for i in range(1,N): before_sum = after_sum after_sum = before_sum + a[i] if i % 2 == 0: if after_sum <= 0: result_1 += 1 + abs(after_sum) after_sum = 1 else: if after_sum >= 0: result_1 += 1 + abs(after_sum) after_sum = -1 result_2 = 0 before_sum = a[0] if a[0] >= 0: before_sum = -1 result_2 += 1 + abs(a[0]) after_sum = before_sum for i in range(1,N): before_sum = after_sum after_sum = before_sum + a[i] if i % 2 == 1: if after_sum >= 0: result_2 += 1 + abs(after_sum) after_sum = -1 else: if after_sum <= 0: result_2 += 1 + abs(after_sum) after_sum = 1 print(min(result_1,result_2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N); for (auto &i : a) cin >> i; int64_t sum = 0; int64_t cnt = 0; int sign = a.at(0) / abs(a.at(0)); for (int i = 0; i < N; i++) { sum += a.at(i); if (sign * sum <= 0) { cnt += abs(sum) + 1; sum = sign; } cout << sum << endl; sign *= -1; } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
'use strict' let input = require("fs").readFileSync("/dev/stdin", "utf8"); let Nums = input.split('\n'); let amount = Nums[0]*1; let arr = Nums[1].split(" ").map(x => x*1); // 最初がプラスかどうかの判定 let isFirstPlus = arr[0] > 0? true: false; let sum = 0; let ans = 0; // とりあえず偶数で奇数がプラスの時に正常動作するものを書く for(let i = 0; i < amount; i++){ sum += arr[i]; if((sum > 0) != isFirstPlus){ // 不備の時の処理(+1なのは0からどちらかに1つ増やしたいから) ans += Math.abs(sum) + 1; // 場合わけでsumを1か-1に戻す処理 if(sum >= 0){ sum = -1; } else { sum = 1; } } else if(sum == 0) { ans += 1; if(isFirstPlus){ sum = 1; }else { sum = -1; } } // 偶奇で判定を逆転する isFirstPlus = !isFirstPlus; } if(sum == 0){ ans += 1; } console.log(ans);
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using vi = vector<int>; using vs = vector<string>; using vll = vector<long long int>; const int MOD = 1e9 + 7; int main() { int n; cin >> n; vll a(n + 1); for (int i = 0; i < n; i++) cin >> a[i]; vll sum(n + 1); sum[0] = a[0]; long long int even = 0; long long int odd = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0) { if (sum[i] <= 0) { even += 1 - sum[i]; sum[i] = 1; } } else if (i % 2 == 1) { if (sum[i] >= 0) { even += 1 + sum[i]; sum[i] = -1; } } sum[i + 1] = sum[i] + a[i + 1]; } vll summ(n + 1); summ[0] = a[0]; for (int i = 0; i < n; i++) { if (i % 2 == 0) { if (summ[i] >= 0) { odd += 1 + summ[i]; summ[i] = -1; } } else if (i % 2 == 1) { if (summ[i] <= 0) { odd += 1 - summ[i]; summ[i] = 1; } } summ[i + 1] = sum[i + 1] + a[i + 1]; } long long int ans = min(odd, even); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) b = a #1 = plus cp = 0 cm = 0 sumscp = 0 sumscm = 0 for i in range(len(a)): if i % 2 == 0: while sumscp + a[i] < 1: a[i] = a[i] + 1 cp = cp + 1 sumscp = sumscp + a[i] else: while sumscp + a[i] > -1: a[i] = a[i] - 1 cp = cp + 1 sumscp = sumscp + a[i] for i in range(len(b)): if i % 2 == 0: while sumscm + b[i] > -1: b[i] = b[i] - 1 cm = cm + 1 sumscm = sumscm + b[i] else: while sumscm + a[i] < 1: b[i] = b[i] + 1 cm = cm + 1 sumscm = sumscm + b[i] print(min(cp,cm))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long sum = a[0]; long long cnt1 = 0, cnt2 = 0; for (int i = 1; i < n; i++) { long long nsum = sum + a[i]; if (sum > 0 && nsum < 0 || sum < 0 && nsum > 0) { sum = nsum; continue; } sum = (sum > 0 ? -1 : 1); cnt1 += (nsum == 0 ? 1 : abs(nsum) + 1); } for (int i = 1; i < n; i++) { long long nsum = sum + a[i]; if (sum > 0 && nsum < 0 || sum < 0 && nsum > 0) { sum = nsum; continue; } sum = (sum < 0 ? -1 : 1); cnt2 += (nsum == 0 ? 1 : abs(nsum) + 1); } cout << min(cnt1, cnt2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; #define forx(i,a,b) for(int i=(a);i<(b);i++) #define rep(j,n) for(int j=0;j<(n);j++) typedef long long ll; int main() { int n,ansa=0,ansb=0,suma=0,sumb=0; cin>>n; rep(i,n){ int a,b; cin>>b; a=b; if(i%2==0){ if(suma+a<=0){ ansa=1-a-suma a=1-suma; } if(sumb+b>=0){ ansb=sumb+b+1; b=-1-sumb; } } else{ if(suma+a>=0){ ansa=suma+a+1; a=-1-suma; } if(sumb+b<=0){ ansb=1-b-sumb; b=1-sumb; } } suma+=a; sumb+=b; } cout<<min(ansa,ansb)<<endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int change_num(long p[], int N) { int res = 0; long sum = p[0]; for (int i = 1; i < N; i++) { if (sum * (sum + p[i]) < 0) { sum += p[i]; continue; } if (sum > 0 && sum + p[i] >= 0) { sum += p[i]; while (sum >= 0) { res++; sum--; } continue; } if (sum < 0 && sum + p[i] <= 0) { sum += p[i]; while (sum <= 0) { res++; sum++; } continue; } } return res; } int main() { int N; cin >> N; long a[N]; for (int i = 0; i < N; i++) cin >> a[i]; int ans = 0; long sum = a[0]; if (a[0] == 0) { int plus_ans; a[0] = 1; plus_ans = change_num(a, N) + 1; int minus_ans = 1; a[0] = -1; minus_ans = change_num(a, N) + 1; if (plus_ans < minus_ans) { ans = plus_ans; } else { ans = minus_ans; } } else { ans = change_num(a, N); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <cstdio> using namespace std; int main(){ long double n; scanf("%Lf", &n); long double a[n]; for (int i = 0; i < n; i++) scanf(" %Lf", &a[i]); int S = a[0]; int j = 0; for (int i = 1; i < n; i++){ if (S * (S+a[i]) < 0){ S += a[i]; } else { if (S < 0){ j += 1 - S - a[i]; S = 1; } else{ j += S + a[i] + 1; S = -1; } } } printf("%d\n", j); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# -*- coding:utf-8 -*- def solve(): N = int(input()) A = list(map(int, input().split())) ans = 0 """ (1) A = [0, 0, 0, 0, 0, 100, ...] みたいなときは A = [-1, 2, -2, 2, -2, 100, ...] にしたい (2) A = [0, 0, 0, 0, 100, ...] みたいなときは A = [1, -2, 2, -2, 100, ...] にしたい """ if A[0] == 0: hugou = 1 # 最後の符号(1:+, -1:-) for i in range(1, N): if A[i] == 0: continue if A[i] > 0: hugou = 1 break else: hugou = -1 break for j in range(i-1, 0, -1): if hugou == -1: A[j] = 2 else: A[j] = -2 hugou *= -1 ans += 2 if hugou > 0: A[0] = -1 else: A[0] = 1 ans += 1 # ruiseki[i] := i番目までの累積和 ruiseki = [0] * N ruiseki[0] = A[0] for i in range(1, N): i_sum = A[i] + ruiseki[i-1] if ruiseki[i-1] > 0: # ruiseki[i]をマイナス値にする必要がある if i_sum < 0: ruiseki[i] = i_sum else: diff = abs(i_sum - (-1)) ans += diff A[i] -= diff i_sum -= diff ruiseki[i] = i_sum elif ruiseki[i-1] < 0: # ruiseki[i]をプラス値にする必要がある if i_sum > 0: ruiseki[i] = i_sum else: diff = abs(i_sum - 1) ans += diff A[i] += diff i_sum += diff ruiseki[i] = i_sum print(ans) if __name__ == "__main__": solve()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
package main import ( "bufio" "fmt" "os" "strconv" ) func out(x ...interface{}) { // fmt.Println(x...) } var sc = bufio.NewScanner(os.Stdin) func getInt() int { sc.Scan() i, e := strconv.Atoi(sc.Text()) if e != nil { panic(e) } return i } func getString() string { sc.Scan() return sc.Text() } func sign(a int) int { if a > 0 { return 1 } else if a < 0 { return -1 } return 0 } func main() { sc.Split(bufio.ScanWords) n := getInt() a := make([]int, n) for i := 0; i < n; i++ { a[i] = getInt() } sum0 := 0 sum1 := a[0] ans := 0 for i := 1; i < n; i++ { sum0 += a[i-1] sum1 += a[i] s0 := sign(sum0) s1 := sign(sum1) out(a, "i", i, "sum", sum0, sum1, "sign", s0, s1, ans) if s1 == 0 { if s0 == -1 { a[i]++ sum1++ ans++ } else { a[i]-- sum1-- ans++ } out("same", ans) } if s0 == s1 { if s1 == -1 { ans += 1 - sum1 a[i] += 1 - sum1 sum1 = 1 } else { ans += 1 + sum1 a[i] -= 1 + sum1 sum1 = -1 } out("modify", a, "i", i, "sum", sum0, sum1, "ams", ans) } } fmt.Println(ans) }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) import sys sum=a[0] cnt=0 if a[0]==0: sum+=1 cnt+=1 for i in range(1,n): if sum<0: z=sum+a[i] if z>0: sum=z elif z<0: cnt+=(1-z) sum=1 else: if sum>0: sum=-1 cnt+=1 elif sum<0: sum=1 cnt+=1 elif sum>0: z=sum+a[i] if z>0: cnt+=(z+1) sum=-1 elif z<0: sum=z else: if sum>0: sum=-1 cnt+=1 elif sum<0: sum=1 cnt+=1 cnt_plus=cnt sum=-1 cnt=1 for i in range(1,n): if sum<0: z=sum+a[i] if z>0: sum=z elif z<0: cnt+=(1-z) sum=1 else: if sum>0: sum=-1 cnt+=1 elif sum<0: sum=1 cnt+=1 elif sum>0: z=sum+a[i] if z>=0: cnt+=(z+1) sum=-1 elif z<0: sum=z else: if sum>0: sum=-1 cnt+=1 elif sum<0: sum=1 cnt+=1 cnt_sbst=cnt print(min(cnt_plus,cnt_sbst)) sys.exit() for i in range(1,n): if sum<0: z=sum+a[i] if z>0: sum=z elif z<0: cnt+=(1-z) sum=1 else: if sum>0: sum=-1 cnt+=1 elif sum<0: sum=1 cnt+=1 elif sum>0: z=sum+a[i] if z>0: cnt+=(z+1) sum=-1 elif z<0: sum=z else: if sum>0: sum=-1 cnt+=1 elif sum<0: sum=1 cnt+=1 print(cnt) # 6 # 0 0 -1 3 5 0
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int minuss(int n, vector<int> a) { long long x = 0; long long sum = 0; long long counter = 0; while (x < n) { if (x % 2 == 0 && sum + a.at(x) >= 0) { long long olda = a.at(x); a.at(x) = -1 - sum; counter += abs(a.at(x) - olda); } if (x % 2 == 1 && sum + a.at(x) <= 0) { long long olda = a.at(x); a.at(x) = 1 - sum; counter += abs(a.at(x) - olda); } sum += a.at(x); x++; } return counter; } int pluss(int n, vector<int> a) { long long x = 0; long long sum = 0; long long counter = 0; while (x < n) { if (x % 2 == 0 && sum + a.at(x) <= 0) { long long olda = a.at(x); a.at(x) = 1 - sum; counter += abs(a.at(x) - olda); } if (x % 2 == 1 && sum + a.at(x) >= 0) { long long olda = a.at(x); a.at(x) = -1 - sum; counter += abs(a.at(x) - olda); } sum += a.at(x); x++; } return counter; } int main() { long long n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } cout << min(minuss(n, a), pluss(n, a)) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long int sum = 0, prev = 0; long long int ans = 0; for (int i = 0; i < n; i++) { long long int a; cin >> a; sum += a; if (prev > 0) { if (sum >= 0) { ans += abs(sum) + 1; sum = -1; } } else if (prev < 0) { if (sum <= 0) { ans += abs(sum) + 1; sum = 1; } } prev = sum; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) A=list(map(int,input().split())) ans=10**9 for t in range(2): a=0 s=0 for i in range(n): a+=A[i] if t and a<=0: s+=-a+1 a=1 t=0 elif not(t) and a>=0: s+=a+1 a=-1 t=1 else: t=1-t ans=min(s,ans) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long linf = 1001002003004005006ll; const int inf = 1001001001; const int mod = 1000000007; int main() { ios::sync_with_stdio(false); cin.tie(0); int n; cin >> n; vector<int> a(n); for (int i = 0; i < (n); ++i) cin >> a[i]; long long tot = 0; long long res1 = 0; { for (int i = 0; i < (n); ++i) { if (i % 2 == 0) { if (tot + a[i] > 0) tot += a[i]; else { res1 += 1 - tot - a[i]; tot = 1; } } else { if (tot + a[i] < 0) tot += a[i]; else { res1 += 1 + tot + a[i]; tot = -1; } } } } tot = 0; long long res2 = 0; { for (int i = 0; i < (n); ++i) { if (i % 2 != 0) { if (tot + a[i] > 0) tot += a[i]; else { res2 += 1 - tot - a[i]; tot = 1; } } else { if (tot + a[i] < 0) tot += a[i]; else { res2 += 1 + tot + a[i]; tot = -1; } } } } int ans = min(res1, res2); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(ai) for ai in input().split()] count = 0 a_sum = 0 for i, ai in enumerate(a): if i == 0: a_sum = ai else: tmp_sum = a_sum + ai if tmp_sum < 0 and a_sum < 0: c = +1 - tmp_sum a_sum = 1 elif tmp_sum > 0 and a_sum > 0: c = -1 - tmp_sum a_sum = -1 elif tmp_sum == 0 and a_sum < 0: c = +1 a_sum = 1 elif tmp_sum == 0 and a_sum > 0: c = -1 a_sum = 1 else: c = 0 count += abs(c) a_sum = tmp_sum + c print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
public class Main { private static java.util.Scanner scanner = new java.util.Scanner(System.in); public static void main(String[] args) { int n = scanner.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = scanner.nextInt(); long m1 = 0, m2 = 0, s1 = 0, s2 = 0; for (int i = 0; i < n; i++) { s1 += a[i]; s2 += a[i]; if ((i & 1) == 0) { if (s1 <= 0) { m1 += Math.abs(s1) + 1; s1 = 1; } if (s2 >= 0) { m2 += Math.abs(s2) + 1; s2 = -1; } } else { if (s1 >= 0) { m1 += Math.abs(s1) + 1; s1 = 1; } if (s2 <= 0) { m2 += Math.abs(s2) + 1; s2 = -1; } } } System.out.println(Math.min(m1, m2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) ruisekiwa = [] tmp = 0 for x in a: tmp += x ruisekiwa.append(tmp) ans = cnt = 0 for x, y in zip(ruisekiwa, ruisekiwa[1:]): if (x == abs(x) and y != abs(y)) or (x != abs(x) and y == abs(y)): cnt += 1 else: ans += 1 if len(ruisekiwa) - 1 == cnt: print('0') else: print(ans*2)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int f(int isum, vector<int>& a, int n, int ans) { for (int i = 1; i < n; i++) { int temp = isum; isum += a[i]; if (temp > 0) { if (isum >= 0) { ans += (1 + isum); isum = -1; } } else if (temp < 0) { if (isum <= 0) { ans += (1 + abs(isum)); isum = 1; } } } return ans; } void solve() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } int p = 1; int ne = -1; int pans = 1; int nans = 1; if (a[0] > 0) { p = a[0]; nans = a[0] + 1; pans--; } else if (a[0] < 0) { ne = a[0]; nans--; pans = abs(a[0]) + 1; } cout << min(f(p, a, n, pans), f(ne, a, n, nans)); } int main() { ios::sync_with_stdio(false); cin.tie(0); solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int64_t d[n]; for (int i = 0; i < n; i++) { cin >> d[i]; } int64_t count = 0; int sum = d[0]; int f = 0; if (d[0] > 0) { f = -1; } if (d[0] < 0) { f = 1; } for (int i = 1; i < n; i++) { sum += d[i]; if (sum == 0) { if (f == 1) { count++; f = -1; sum = 1; continue; } if (f == -1) { count++; f = 1; sum = -1; continue; } } if (sum > 0) { if (f == 1) { f = -1; continue; } if (f == -1) { count += sum + 1; sum = -1; f = 1; continue; } } if (sum < 0) { if (f == -1) { f = 1; continue; } if (f == 1) { count += 1 - sum; sum = 1; f = -1; continue; } } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys # -*- coding: utf-8 -*- # 整数の入力 n=int(input()) a=list(map(int, input().split())) b=a[:] c=a[:] # 無変更チェック if a[0]!=0: S=int(a[0]) for i in range(1,n): if S<0 and S+a[i]<=0: break elif S>0 and S+a[i]>=0: break S+=a[i] if i==n-1: print(0) sys.exit() # a[0]を1に変えた場合の計算 counter_2=abs(b[0]-1) b[0]=1 S=b[0] for i in range(1,n): if S<0 and S+b[i]<=0: counter_2+=-S-b[i]+1 b[i]=-S+1 elif S>0 and S+b[i]>=0: counter_2+=S+b[i]+1 b[i]=-S-1 S+=b[i] # a[0]を-1に変えた場合の計算 counter_3=abs(c[0]+1) c[0]=-1 S=c[0] for i in range(1,n): if S<0 and S+c[i]<=0: counter_3+=-S-c[i]+1 c[i]=-S+1 elif S>0 and S+c[i]>=0: counter_3+=S+c[i]+1 c[i]=-S-1 S+=c[i] print(min(counter_2,counter_3))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import copy N=int(input()) l=list(map(int, input().split())) #リスト入力 cp = copy.copy(l) #c=0 for k in range(1,N): if sum(l[:k])==0: #c=c+1 if l[k]>0: l[k]=l[k]+1 else: l[k]=l[k]-1 if sum(l[:k])*sum(l[:k+1])>0: if sum(l[:k+1])>0: l[k]=l[k]-(sum(l[:k+1])-(-1)) #c=c+abs(sum(l[:k+1])-(-1)) else: l[k]=l[k]+(1-sum(l[:k+1])) #c=c+abs(1-sum(l[:k+1])) if sum(l)==0: c=c+1 l[-1]=l[-1]+1 #print(l) print(sum([abs(l[n]-cp[n]) for n in range(N)]))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) cusm = [a[0]] ans = 0 for i, ai in enumerate(a): if i == 0: continue if (cusm[-1] + ai) * cusm[-1] < 0: #符号が逆なら cusm.append(cusm[-1] + ai) elif cusm[-1] > 0: #操作の必要があって前が正なら ans += abs(-1 - (cusm[-1] + ai)) cusm.append(-1) else: #操作の必要があって前が負なら ans += abs(1 - (cusm[-1] + ai)) cusm.append(1) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(int argc, char *argv[]) { int i, n, sign; long long a, c = 0, t = 0; scanf("%d", &n); scanf("%lld", &t); sign = t > 0 ? -1 : 1; for (i = 1; i < n; i++) { scanf("%lld", &a); if (sign < 0) { if (t + a >= 0) { c += llabs(-1 - t - a); t = -1; } else { t += a; } } else { if (t + a <= 0) { c += llabs(1 - t - a); t = 1; } else { t += a; } } sign *= -1; } printf("%lld\n", c); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using i8 = int8_t; using u8 = uint8_t; using i16 = int16_t; using u16 = uint16_t; using i32 = int32_t; using u32 = uint32_t; using i64 = int64_t; using u64 = uint64_t; template <class T> using V = vector<T>; namespace tuple_utils { template <size_t...> struct seq {}; template <size_t N, size_t... Is> struct gen_seq : gen_seq<N - 1, N - 1, Is...> {}; template <size_t... Is> struct gen_seq<0, Is...> : seq<Is...> {}; template <class Tuple, size_t... Is> void read(istream &stream, Tuple &t, seq<Is...>) { static_cast<void>((int[]){0, (void(stream >> get<Is>(t)), 0)...}); } template <class Tuple, size_t... Is> void print(ostream &stream, Tuple const &t, seq<Is...>) { static_cast<void>( (int[]){0, (void(stream << (Is == 0 ? "" : ", ") << get<Is>(t)), 0)...}); } } // namespace tuple_utils template <class F, class S> istream &operator>>(istream &stream, pair<F, S> &pair) { stream >> pair.first; stream >> pair.second; return stream; } template <class... Args> istream &operator>>(istream &stream, tuple<Args...> &tuple) { tuple_utils::read(stream, tuple, tuple_utils::gen_seq<sizeof...(Args)>()); return stream; } template <class T> T read() { T t; cin >> t; return t; } template <class F, class S> pair<F, S> read() { pair<F, S> p; cin >> p; return p; } template <class T1, class T2, class T3, class... Args> tuple<T1, T2, T3, Args...> read() { tuple<T1, T2, T3, Args...> t; cin >> t; return t; } template <class T> V<T> read(const int length) { V<T> ts(length); for (auto &t : ts) { cin >> t; } return ts; } template <class F, class S> V<pair<F, S>> read(const int length) { V<pair<F, S>> ps(length); for (auto &p : ps) { cin >> p; } return ps; } template <class T1, class T2, class T3, class... Args> V<tuple<T1, T2, T3, Args...>> read(const int length) { V<tuple<T1, T2, T3, Args...>> ts(length); for (auto &t : ts) { cin >> t; } return ts; } namespace debug { template <class F, class S> ostream &operator<<(ostream &stream, const pair<F, S> &pair) { stream << "{" << pair.first << ", " << pair.second << "}"; return stream; } template <class... Args> ostream &operator<<(ostream &stream, const tuple<Args...> &tuple) { stream << "{"; tuple_utils::print(stream, tuple, tuple_utils::gen_seq<sizeof...(Args)>()); stream << "}"; return stream; } template <class T, class Alloc> ostream &operator<<(ostream &stream, const vector<T, Alloc> &vector) { stream << "["; for (auto i = 0; i < vector.size(); i++) { stream << vector[i]; if (i != vector.size() - 1) { stream << "," << ((i % 10 == 9) ? "\n " : "\t"); } } stream << "]"; return stream; } } // namespace debug void body() { auto n = read<i32>(); auto as = read<i64>(n); i64 total = 0; u64 retval = 0; for (auto &a : (as)) { if (total != 0 && total * (total + a) >= 0) { retval += abs(total + a) + 1; a -= (total + a); if (total > 0) { a -= 1; } else { a += 1; } } total += a; } cout << retval << endl; } int main() { ios_base::sync_with_stdio(false); body(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(i) for i in input().split()] ans = 0 tmp = a[0] if a[0] == 0: tmp = 1 ans += 1 for i in range(1,n): #print(tmp,ans) if tmp > 0: if tmp + a[i] >= 0: ans += tmp + a[i] + 1 tmp = -1 else: tmp += a[i] else: if tmp + a[i] <= 0: ans += abs(tmp + a[i]) + 1 tmp = 1 else: tmp += a[i] #print(ans) ans2 = 0 if a[0] > 0: ans2 += a[0]+1 tmp = -1 elif a[0] < 0: ans2 += -a[0]+1 else: tmp = 1 ans2 += 1 for i in range(1,n): #print(tmp,ans) if tmp > 0: if tmp + a[i] >= 0: ans2 += tmp + a[i] + 1 tmp = -1 else: tmp += a[i] else: if tmp + a[i] <= 0: ans2 += abs(tmp + a[i]) + 1 tmp = 1 else: tmp += a[i] print(min(ans,ans2)) exit() ans2 = 0 tmp = -a[0] ans2 += abs(a[0])*2 for i in range(1,n): #print(tmp,ans) if tmp > 0: if tmp + a[i] >= 0: ans2 += tmp + a[i] + 1 tmp = -1 else: tmp += a[i] else: if tmp + a[i] <= 0: ans2 += abs(tmp + a[i]) + 1 tmp = 1 else: tmp += a[i] print(min(ans,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n + 1]; for (int i = 0; i < n; i++) cin >> a[i]; int sum = a[0]; int c = sum > 0 ? -1 : 1; int ans = 0; for (int i = 1; i < n; i++) { sum += a[i]; if (sum * c < 1) { ans += c * (c - sum); sum = c; } c *= -1; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int sign(long long int num) { if (num == 0) { return 0; } else { return num / abs(num); } } int main() { int n; cin >> n; vector<long long int> list(n); for (int i = 0; i < n; i++) { cin >> list.at(i); } long long int count = 0, sum = 0; bool flag = true; for (int i = 0; i < n; i++) { if (flag) { sum = list.at(i); if (sum == 0) { if (i == 0) { count += 1; } else { count += 2; } } else { flag = false; if (i != 0) { sum = sign(sum) * (abs(sum) - 1); } } } else { long long int temp_sum = sum; sum += list.at(i); if (sign(sum) * sign(temp_sum) >= 0) { count += abs(sum) + 1; if (temp_sum > 0) { sum = -1; } else { sum = 1; } } } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(){ int n; cin >> n; int d[n]; for(int i=0;i<n;i++) { cin >> d[i]; } int count=0; int sum=d[0]; int f =0; if(d[0]>0){ f=-1; } if(d[0]<0){ f=1; } for(int i=1;i<n;i++){ sum+=d[i]; if(sum==0){ if(f==1){ count++; f=-1; sum=1; continue; } if(f==-1){ count++; f=1; sum=-1; continue; } } if(sum>0){ if(f==1){ f=-1; continue; } if(f==-1){ count+=sum+1; sum=-1; f=1; continue; } } if(sum<0){ if(f==-1){ f=1; continue; } if(f==1){ count+=1-sum; sum=1; f=-1; continue; } } } int ccount=0; int ssum; int ff =0; if(d[0]>0){ ff=1; ccount=1+d[0]; ssum=-1; } if(d[0]<0){ ff=-1; ccount=1-d[0]; ssum=1; } for(int i=1;i<n;i++){ ssum+=d[i]; if(ssum==0){ if(ff==1){ ccount++; ff=-1; ssum=1; continue; } if(ff==-1){ ccount++; ff=1; ssum=-1; continue; } } if(ssum>0){ if(ff==1){ ff=-1; continue; } if(ff==-1){ ccount+=ssum+1; ssum=-1; ff=1; continue; } } if(ssum<0){ if(ff==-1){ ff=1; continue; } if(ff==1){ ccount+=1-ssum; ssum=1; ff=-1; continue; } } } int s= min(count,ccount) cout << s << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) arr = list(map(int,input().split())) def S1(a,b): c,last,ans = 0,0,0 for t in range(N): c += 1 if c % 2 == a: while last+arr[t] <= 0: ans += 1 last += 1 elif c % 2 == b: while last +arr[t] >= 0: ans +=1 last -= 1 last += arr[t] return ans aa = S1(1,0) bb = S1(0,1) print(min(aa,bb))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) s = a[0] count = 0 total_delta = 0 delta = 0 if a[0] == 0: i = 0 while i < len(a): if a[i] != 0: break i += 1 if i == len(a): delta = 1 total_delta += delta count += 1 else: delta = -1 * (a[i] // abs(a[i])) * ((1, -1)[(i + 1) % 2]) total_delta += delta count += 1 for i in range(1, n): sign = (s + total_delta) // abs(s + total_delta) if (s + a[i] + total_delta) * sign > 0 : delta = (sign * -1) - (s + a[i] + total_delta) total_delta += delta count += abs(delta) elif (s + a[i] + total_delta) == 0: total_delta += sign * -1 count += 1 s += a[i] print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<iostream> #include<vector> #include<algorithm> #include<cstdio> #include<cstdlib> #include<string> #include<sstream> #include<cmath> #include<numeric> #include<map> #include<stack> #include<queue> using namespace std; int inf = 1e9; int main() { int n; cin >> n; vector<int> a(n); for(int i=0; i<n; i++) cin >> a[i]; int ans = inf; long long int tmp = 0; long long int cnt = 0; for(int i=0; i<n; i++){ tmp += a[i]; if( i % 2 == 0 && tmp <= 0 ){ cnt += (1 - tmp); tmp = 1; }else if( i % 2 == 1 && tmp >= 0 ){ cnt += (1 + tmp); tmp = -1; } } ans = min(ans, cnt); tmp = 0; cnt = 0; for(int i=0; i<n; i++){ tmp += a[i]; if( i % 2 == 1 && tmp <= 0 ){ cnt += (1 - tmp); tmp = 1; }else if( i % 2 == 0 && tmp >= 0 ){ cnt += (1 + tmp); tmp = -1; } } ans = min(ans, cnt); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import itertools def sign(num): if num < 0: return -1 elif num > 0: return 1 else: return 0 N = input() a_i = list(map(int, input().split())) signs = [-1,1] a_sum = 0 changes_1 = 0 for i, a in enumerate(a_i): a_sum += a if sign(a_sum) != signs[i%2]: changes += abs(a_sum) + 1 a_sum = signs[i%2] signs = [1,-1] a_sum = 0 changes_2 = 0 for i, a in enumerate(a_i): a_sum += a if sign(a_sum) != signs[i%2]: changes += abs(a_sum) + 1 a_sum = signs[i%2] print(min(changes_1,changes_2)) # # for i, sum_i in enumerate(a_sum): # if i == 0: # signs = [sign(sum_i), -sign(sum_i)] # elif sign(sum_i) != signs[i%2]: # a_sum[i:] = [num + (abs(sum_i) + 1) * signs[i%2] for num in a_sum[i:]] # changes += abs(sum_i) + 1 # # print(a_sum) # print(changes)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 7; const int mod = 1e9 + 7; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); int n; cin >> n; long long a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long s_i = a[0]; long long s_i_1; long long d = 0; long long c = 0; for (int i = 1; i < n; i++) { if (s_i == 0) { s_i += 1; c++; } s_i_1 = s_i + a[i]; if ((s_i_1 > 0 && s_i > 0) || (s_i < 0 && s_i_1 < 0)) { d = abs(s_i_1 - s_i); if (s_i > 0) { if (s_i_1 != 0) { s_i_1 -= d + 1; c += d + 1; } else { s_i_1 -= 1; d += 1; } } else { if (s_i_1 != 0) { s_i_1 += d + 1; c += d + 1; } else { s_i_1 += 1; c += 1; } } } s_i = s_i_1; } if (s_i == 0) { c += 1; } cout << c << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; ll ts = 1000000007; ll sum, sum2, ans, i; int main() { ios::sync_with_stdio(false); cin.tie(0); ll n; cin >> n; vector<ll> a(n); for (ll i = 0; i < n; i++) cin >> a[i]; bool can = false; ll ans = 0, sum = a[0], nextSum = a[0]; for (int i = 1; i < n; i++) { nextSum += a[i]; if (sum < 0 && nextSum < 0 || sum > 0 && nextSum > 0 || nextSum == 0) { ll N; if (nextSum >= 0) N = nextSum + 1; if (nextSum < 0) N = nextSum - 1; ans += abs(N); if (a[0] >= 0 && i % 2 == 1 || a[0] <= 0 && i % 2 == 0) nextSum = -1; else nextSum = 1; sum = nextSum; } else { sum = nextSum; } } cout << ans << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } assert(a[0] != 0); long long op = 0LL; long long sum = 0LL; sum = a[0]; for (int i = 1; i < n; i++) { if (!(sum * (sum + a[i]) < 0)) { long long tmp_a = sum < 0 ? abs(sum) + 1 : -1 * (abs(sum) + 1); op += abs(tmp_a - a[i]); sum = sum + tmp_a; } else { sum += a[i]; } } long long op_m = op; if (a[0] > 0) { sum = -1LL; op = a[0] + 1; } else { sum = 1LL; op = -1 * a[0] + 1; } for (int i = 1; i < n; i++) { if (!(sum * (sum + a[i]) < 0)) { long long tmp_a = sum < 0 ? abs(sum) + 1 : -1 * (abs(sum) + 1); op += abs(tmp_a - a[i]); sum = sum + tmp_a; } else { sum += a[i]; } } op = min(op, op_m); cout << op << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a; for (int i = 0; i < n; i++) { int num; cin >> num; a.push_back(num); } int sumPlus = 0, sumMinus = 0; int ansPlus = 0, ansMinus = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0) { if (sumPlus + a[i] <= 0) { ansPlus += abs(sumPlus + a[i]) + 1; sumPlus = 1; } else sumPlus += a[i]; if (sumMinus + a[i] >= 0) { ansMinus += abs(sumMinus + a[i]) + 1; sumMinus = -1; } else sumMinus += a[i]; } else { if (sumPlus >= 0 && sumPlus + a[i] >= 0) { ansPlus += abs(sumPlus + a[i]) + 1; sumPlus = -1; } else sumPlus += a[i]; if (sumMinus <= 0 && sumMinus + a[i] <= 0) { ansMinus += abs(sumMinus + a[i]) + 1; sumMinus = 1; } else sumMinus += a[i]; } } cout << min(ansPlus, ansMinus) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long MOD = (1e+9) + 7; const long long INF = 2e+9 + 10; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) cin >> a[i]; long long res = 0; if (a[0] == 0) { a[0]++; res++; } long long sum = a[0]; bool sign = sum > 0; for (int i = 1; i < n; i++) { sum += a[i]; if (sign && sum >= 0) { res += (sum + 1); sum -= (sum + 1); } else if (!sign && sum <= 0) { res += abs(sum) + 1; sum += abs(sum) + 1; } sign = sum > 0; } cout << res << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i A = gets.split.map(&:to_i) x = A[0] answer = 0 for i in 0..n-2 s = x + A[i+1] if x * s >= 0 if x > 0 answer = answer - s + 1 A[i+1] = A[i+1] - s + 1 else answer = answer + s + 1 A[i+1] = A[i+1] - s - 1 end end x = x + A[i+1] end puts answer
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np input() a = list(map(int, input().split())) value = a[0] sign = value >= 0 result = 0 for i in a[1:]: value += i diff = 0 if sign and value >= 0: diff = value + 1 elif not sign and value < 0: diff = value - 1 result += abs(diff) sign = not sign value -= diff if value == 0: diff += sign value += diff result += diff print(result)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int calc(bool firstPositive, int a[], int n) { bool positive = firstPositive; int cost = 0, sum = 0; for (int i = 0; i < n; ++i) { bool sumpos = (sum + a[i]) >= 0; if (sumpos != positive) { while (((sum + a[i]) >= 0) == sumpos) { a[i] += sumpos ? -1 : 1; ++cost; } } if ((sum + a[i]) == 0) { a[i] += sumpos ? -1 : 1; ++cost; } sum += a[i]; positive = !positive; } return cost; } int main(int argc, char *argv[]) { int n; std::cin >> n; int a[1 << 11], b[1 << 11]; for (int i = 0; i < n; ++i) { std::cin >> a[i]; b[i] = a[i]; } std::cout << std::min(calc(true, a, n), calc(false, b, n)) << std::endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) scanf("%d", &a[i]); long long sum = a[0]; long long ans = 0; for (int i = 1; i < n; i++) { if (sum + a[i] == 0) { ans++; if (sum > 0) sum = -1; else sum = 1; } else { if (sum > 0 && sum + a[i] > 0) { sum += a[i]; ans += -(-1 - sum); sum = -1; } else if (sum < 0 && sum + a[i] < 0) { sum += a[i]; ans += 1 - sum; sum = 1; } else { sum += a[i]; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { // TODO 自動生成されたメソッド・スタブ Scanner scan = new Scanner(System.in); int n = scan.nextInt(); int[]a =new int[n]; int[]sig = new int[n]; int[]acopy = new int[n]; for(int i=0;i<n;i++){ a[i]=scan.nextInt(); acopy[i]=a[i]; /* if(i==0){ siga[i]=a[i]; }else{ siga[i]=siga[i-1]+a[i]; }*/ } //第一項目が正の場合と負の場合 //a[0]が0の場合を考える long cnt=0; if(a[0]==0){ a[0]++; cnt++; } sig[0]=a[0]; for(int i=1;i<n;i++){ sig[i]=sig[i-1]+a[i]; //積が0なら符号が異なるように+-1 if(sig[i]*sig[i-1]==0){ if(sig[i-1]>0){ a[i]--; cnt++; }else{ a[i]++; cnt++; } sig[i]=sig[i-1]+a[i]; } //積が負なら条件を満たしているのでok else if(sig[i]*sig[i-1]<0){ } //積が正なら負になるまで変える else{ if(sig[i-1]>0){ a[i]-=(sig[i]+1); cnt+=sig[i]+1; }else{ a[i]+=-sig[i]+1; cnt+=-sig[i]+1; } sig[i]=sig[i-1]+a[i]; } } long cnt2=0; if(acopy[0]==0){ acopy[0]--; cnt2++; }else if(acopy[0]>0){ cnt2 +=acopy[0]+1; acopy[0]=-1; }else{ cnt2+=-acopy[0]+1; acopy[0]=1; } sig[0]=acopy[0]; for(int i=1;i<n;i++){ sig[i]=sig[i-1]+acopy[i]; //積が0なら符号が異なるように+-1 if(sig[i]*sig[i-1]==0){ if(sig[i-1]>0){ acopy[i]--; cnt2++; }else{ acopy[i]++; cnt2++; } sig[i]=sig[i-1]+acopy[i]; } //積が負なら条件を満たしているのでok else if(sig[i]*sig[i-1]<0){ } //積が正なら負になるまで変える else{ if(sig[i-1]>0){ acopy[i]-=(sig[i]+1); cnt2+=sig[i]+1; }else{ acopy[i]+=-sig[i]+1; cnt2+=-sig[i]+1; } sig[i]=sig[i-1]+acopy[i]; } } System.out.println(Math.min(cnt, cnt2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, ans = 0, d = 0; cin >> n; int a[n], sum[n]; cin >> a[0]; sum[0] = a[0]; for (int i = 1; i < n; i++) { cin >> a[i]; sum[i] = sum[i - 1] + a[i]; } for (int i = 1; i < n; i++) { if ((sum[i - 1] + d) * (sum[i] + d) >= 0) { ans += abs(sum[i] + d) + 1; if (sum[i - 1] + d < 0) d -= sum[i] + d - 1; else d -= sum[i] + d + 1; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { long long n; cin >> n; long long a[n]; long long even = 0; for (long long i = 0; i < n; i++) { cin >> a[i]; even += i % 2 == 0 ? abs(a[i]) : -1 * abs(a[i]); } long long sum = 0; long long ans = 0; for (long long i = 0; i < n; i++) { if (sum == 0) { if (a[i] == 0) { sum += even < 0 ? -1 : 1; ans++; } else { sum += a[i]; } } else if (sum > 0) { if (sum + a[i] >= 0) { ans += abs(sum + a[i]) + 1; sum = -1; } else { sum += a[i]; } } else { if (sum + a[i] <= 0) { ans += abs(sum + a[i]) + 1; sum = 1; } else { sum += a[i]; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; int func(vector<long long> a, int fugo) { long long ans = 0; long long offset = 0; for (int i = 0; i < n; i++) { if (i % 2 == fugo) { if (a[i] <= offset) { ans += offset - (a[i] - 1); offset = a[i] - 1; } } else { if (a[i] >= offset) { ans += (a[i] + 1) - offset; offset = a[i] + 1; } } } return ans; } int main() { cin >> n; vector<long long> a; int sum_tmp = 0; for (int i = 0; i < n; i++) { int tmp; cin >> tmp; sum_tmp += tmp; a.push_back(sum_tmp); } int ans = min(func(a, 0), func(a, 1)); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; long long l1[n + 1]; long long x = 0, s = 0; for (int i = 1; i <= n; i++) { cin >> l1[i]; x += l1[i]; if (i == 1 && l1[i] == 0 && l1[i + 1] <= 0) x++, s++, l1[i] = 1; else if (i == 1 && l1[i] == 0 && l1[i + 1] > 0) x--, s++, l1[i] = -1; if (i >= 2) { if (x - l1[i] <= 0 && x <= 0) { s += abs((-x + l1[i] + 1) - l1[i]); l1[i] = l1[i] - x + 1; x = 1; } else if (x - l1[i] >= 0 && x >= 0) { s += abs(-(x - l1[i] + 1) - l1[i]); l1[i] = -(x - l1[i] + 1); x = -1; } } } cout << s << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; } inline long long toLongLong(string s) { long long v; istringstream sin(s); sin >> v; return v; } template <class T> inline string toString(T x) { ostringstream sout; sout << x; return sout.str(); } inline vector<char> toVC(string s) { vector<char> data(s.begin(), s.end()); return data; } template <typename List> void SPRIT(const std::string &s, const std::string &delim, List &result) { result.clear(); string::size_type pos = 0; while (pos != string::npos) { string::size_type p = s.find(delim, pos); if (p == string::npos) { result.push_back(s.substr(pos)); break; } else { result.push_back(s.substr(pos, p - pos)); } pos = p + delim.size(); } } string TRIM(const string &str, const char *trimCharacterList = " \t\v\r\n") { string result; string::size_type left = str.find_first_not_of(trimCharacterList); if (left != string::npos) { string::size_type right = str.find_last_not_of(trimCharacterList); result = str.substr(left, right - left + 1); } return result; } template <typename T> bool VECTOR_EXISTS(vector<T> vec, T data) { auto itr = std::find(vec.begin(), vec.end(), data); size_t index = distance(vec.begin(), itr); if (index != vec.size()) { return true; } else { return 0; } } double ceil_n(double dIn, int nLen) { double dOut; dOut = dIn * pow(10.0, nLen); dOut = (double)(int)(dOut + 0.9); return dOut * pow(10.0, -nLen); } double floor_n(double dIn, int nLen) { double dOut; dOut = dIn * pow(10.0, nLen); dOut = (double)(int)(dOut); return dOut * pow(10.0, -nLen); } double round_n(double dIn, int nLen) { double dOut; dOut = dIn * pow(10.0, nLen); dOut = (double)(int)(dOut + 0.5); return dOut * pow(10.0, -nLen); } int take_a_n(int num, int n) { string str = toString(num); return str[str.length() - n] - '0'; } int strbase_2to10(const std::string &s) { int out = 0; for (int i = 0, size = s.size(); i < size; ++i) { out *= 2; out += ((int)s[i] == 49) ? 1 : 0; } return out; } int strbase_10to2(const std::string &s) { int binary = toInt(s); int out = 0; for (int i = 0; binary > 0; i++) { out = out + (binary % 2) * pow(static_cast<int>(10), i); binary = binary / 2; } return out; } int strbase_16to10(const std::string &s) { int out = stoi(s, 0, 16); return out; } int intbase_2to10(int in) { string str = toString(in); return strbase_2to10(str); } int intbase_10to2(int in) { string str = toString(in); return strbase_10to2(str); } int intbase_16to10(int in) { string str = toString(in); return strbase_16to10(str); } string intbase_10to16(unsigned int val, bool lower = true) { if (!val) return std::string("0"); std::string str; const char hc = lower ? 'a' : 'A'; while (val != 0) { int d = val & 15; if (d < 10) str.insert(str.begin(), d + '0'); else str.insert(str.begin(), d - 10 + hc); val >>= 4; } return str; } long long bitcount64(long long bits) { bits = (bits & 0x5555555555555555) + (bits >> 1 & 0x5555555555555555); bits = (bits & 0x3333333333333333) + (bits >> 2 & 0x3333333333333333); bits = (bits & 0x0f0f0f0f0f0f0f0f) + (bits >> 4 & 0x0f0f0f0f0f0f0f0f); bits = (bits & 0x00ff00ff00ff00ff) + (bits >> 8 & 0x00ff00ff00ff00ff); bits = (bits & 0x0000ffff0000ffff) + (bits >> 16 & 0x0000ffff0000ffff); return (bits & 0x00000000ffffffff) + (bits >> 32 & 0x00000000ffffffff); } const double EPS = 1e-10; const double PI = acos(-1.0); template <typename T> inline bool BETWEEN(const T aim, const T min, const T max) { if (min <= aim && aim <= max) { return true; } else { return false; } } template <class T> inline T SQR(const T x) { return x * x; } template <class T1, class T2> inline T1 POW(const T1 x, const T2 y) { if (!y) return 1; else if ((y & 1) == 0) { return SQR(POW(x, y >> 1)); } else return POW(x, y ^ 1) * x; } template <typename T> constexpr T ABS(T x) { static_assert(is_signed<T>::value, "ABS(): argument must be signed"); return x < 0 ? -x : x; } template <class BidirectionalIterator> bool next_partial_permutation(BidirectionalIterator first, BidirectionalIterator middle, BidirectionalIterator last) { reverse(middle, last); return next_permutation(first, last); } template <class BidirectionalIterator> bool next_combination(BidirectionalIterator first1, BidirectionalIterator last1, BidirectionalIterator first2, BidirectionalIterator last2) { if ((first1 == last1) || (first2 == last2)) { return false; } BidirectionalIterator m1 = last1; BidirectionalIterator m2 = last2; --m2; while (--m1 != first1 && !(*m1 < *m2)) { } bool result = (m1 == first1) && !(*first1 < *m2); if (!result) { while (first2 != m2 && !(*m1 < *first2)) { ++first2; } first1 = m1; std::iter_swap(first1, first2); ++first1; ++first2; } if ((first1 != last1) && (first2 != last2)) { m1 = last1; m2 = first2; while ((m1 != first1) && (m2 != last2)) { std::iter_swap(--m1, m2); ++m2; } std::reverse(first1, m1); std::reverse(first1, last1); std::reverse(m2, last2); std::reverse(first2, last2); } return !result; } template <typename T> constexpr bool ODD(T x) { return x % 2 != 0; } template <typename T> constexpr bool EVEN(T x) { return x % 2 == 0; } template <class T> inline T GCD(const T x, const T y) { if (x < 0) return GCD(-x, y); if (y < 0) return GCD(x, -y); return (!y) ? x : GCD(y, x % y); } template <class T> inline T LCM(const T x, const T y) { if (x < 0) return LCM(-x, y); if (y < 0) return LCM(x, -y); return x * (y / GCD(x, y)); } template <class T> inline T EXTGCD(const T a, const T b, T &x, T &y) { if (a < 0) { T d = EXTGCD(-a, b, x, y); x = -x; return d; } if (b < 0) { T d = EXTGCD(a, -b, x, y); y = -y; return d; } if (!b) { x = 1; y = 0; return a; } else { T d = EXTGCD(b, a % b, x, y); T t = x; x = y; y = t - (a / b) * y; return d; } } template <class T> inline bool ISPRIME(const T x) { if (x <= 1) return false; for (T i = 2; SQR(i) <= x; i++) if (x % i == 0) return false; return true; } template <class T> vector<bool> ERATOSTHENES(const T n) { vector<bool> arr(n, true); for (int i = 2; i < SQR(n); i++) { if (arr[i]) { for (int j = 0; i * (j + 2) < n; j++) { arr[i * (j + 2)] = false; } } } return arr; } template <typename T> vector<bool> ERATOSTHENES(const T a, const T b) { vector<bool> small = ERATOSTHENES(b); vector<bool> prime(b - a, true); for (int i = 2; (T)(SQR(i)) < b; i++) { if (small[i]) { for (T j = max(2, (a + i - 1) / i) * i; j < b; j += i) { prime[j - a] = false; } } } return prime; } template <class T> vector<T> DIVISOR(T n) { vector<T> v; for (int i = 1; i * i <= n; ++i) { if (n % i == 0) { v.push_back(i); if (i != n / i) { v.push_back(n / i); } } } sort(v.begin(), v.end()); return v; } template <typename T> T NCR(T n, T r) { T ans = 1; for (T i = n; i > n - r; --i) { ans = ans * i; } for (T i = 1; i < r + 1; ++i) { ans = ans / i; } return ans; } int MATRIZ_CHAIN(vector<int> &p, vector<vector<int> > &s) { const static int INF = 1 << 20; const int n = p.size() - 1; vector<vector<int> > X(n, vector<int>(n, INF)); s.resize(n, vector<int>(n)); for (int i = 0; i < n; ++i) X[i][i] = 0; for (int w = 1; w < n; ++w) for (int i = 0, j; j = i + w, j < n; ++i) for (int k = i; k < j; ++k) { int f = p[i] * p[k + 1] * p[j + 1]; if (X[i][k] + X[k + 1][j] + f < X[i][j]) { X[i][j] = X[i][k] + X[k + 1][j] + f; s[i][j] = k; } } return X[0][n - 1]; } vector<int> LIS(const vector<int> &a) { const static int INF = 99999999; const int n = a.size(); vector<int> A(n, INF); vector<int> id(n); for (int i = 0; i < n; ++i) { id[i] = distance(A.begin(), lower_bound(A.begin(), A.end(), a[i])); A[id[i]] = a[i]; } int m = *max_element(id.begin(), id.end()); vector<int> b(m + 1); for (int i = n - 1; i >= 0; --i) if (id[i] == m) b[m--] = a[i]; return b; } template <typename T> vector<T> LCS(const vector<T> &a, const vector<T> &b) { const int n = a.size(), m = b.size(); vector<vector<int> > X(n + 1, vector<int>(m + 1)); vector<vector<int> > Y(n + 1, vector<int>(m + 1)); for (int i = (0); i < (n); ++i) { for (int j = (0); j < (m); ++j) { if (a[i] == b[j]) { X[i + 1][j + 1] = X[i][j] + 1; Y[i + 1][j + 1] = 0; } else if (X[i + 1][j] < X[i][j + 1]) { X[i + 1][j + 1] = X[i][j + 1]; Y[i + 1][j + 1] = +1; } else { X[i + 1][j + 1] = X[i + 1][j]; Y[i + 1][j + 1] = -1; } } } vector<T> c; for (int i = n, j = m; i > 0 && j > 0;) { if (Y[i][j] > 0) --i; else if (Y[i][j] < 0) --j; else { c.push_back(a[i - 1]); --i; --j; } } reverse((c).begin(), (c).end()); return c; } vector<int> money_change(int C, vector<int> &cs) { const int INF = 99999999; int n = cs.size(); vector<int> xs(C + 1, INF); vector<int> ys(C + 1); xs[0] = 0; for (int i = 0; i < n; ++i) { for (int c = 0; c + cs[i] <= C; ++c) { if (xs[c + cs[i]] > xs[c] + 1) { xs[c + cs[i]] = xs[c] + 1; ys[c + cs[i]] = c; } } } vector<int> zs; for (int c = C; c > 0; c = ys[c]) { zs.push_back(c - ys[c]); } return zs; } int main() { int N; cin >> N; vector<long long> a(N); for (int i = (0); i < (N); ++i) { cin >> a[i]; } long long cost = 0; long long sum = a[0]; long long cost2 = 0; long long sum2 = -a[0]; for (int i = (0); i < (N - 1); ++i) { if (sum > 0) { if (sum + a[i + 1] < 0) { sum += a[i + 1]; } else { cost += (1 + (sum + a[i + 1])); sum = -1; } } else { if (sum + a[i + 1] > 0) { sum += a[i + 1]; } else { cost += (1 + ABS(sum + a[i + 1])); sum = 1; } } } for (int i = (0); i < (N - 1); ++i) { if (sum2 > 0) { if (sum2 + a[i + 1] < 0) { sum2 += a[i + 1]; } else { cost2 += (1 + (sum2 + a[i + 1])); sum2 = -1; } } else { if (sum2 + a[i + 1] > 0) { sum2 += a[i + 1]; } else { cost2 += (1 + ABS(sum2 + a[i + 1])); sum2 = 1; } } } std::cout << (((cost) < (cost2) ? (cost) : (cost2))) << endl; ; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> void print(std::string s1, std::string s2) { for (int i = 0; i < s1.length(); i++) { if (s1[i] == s2[i]) continue; if (s1[i] > s2[i]) { std::cout << "GREATER"; return; } if (s1[i] < s2[i]) { std::cout << "LESS"; return; } } std::cout << "EQUAL"; } int main() { std::string s1, s2; std::cin >> s1 >> s2; if (s1.length() > s2.length()) std::cout << "GREATER"; else if (s1.length() < s2.length()) std::cout << "LESS"; else if (s1.length() == s2.length()) print(s1, s2); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, a[100000]; int even() { int res = 0; int sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0) { if (sum <= 0) { res += -sum + 1; sum = 1; } } else { if (sum >= 0) { res += sum + 1; sum = -1; } } } return res; } int odd() { int res = 0; int sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0) { if (sum >= 0) { res += sum + 1; sum = -1; } } else { if (sum <= 0) { res += -sum + 1; sum = 1; } } } return res; } int main() { cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } cout << min(even(), odd()) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const double EPS = 1e-9; const int INF = 1 << 29; int main() { int n; cin >> n; long long s1, s2, c1, c2, a; for (int i = 1; i < n + 1; i++) { cin >> a; s1 += a; s2 += a; if (i % 2) { if (s1 <= 0) c1 += 1 - s1, s1 = 1; if (s2 >= 0) c2 += 1 + s2, s2 = -1; } else { if (s1 >= 0) c1 += 1 + s1, s1 = -1; if (s2 <= 0) c2 += 1 - s2, s2 = 1; } } cout << min(c1, c2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; using i_i = pair<int, int>; using ll_ll = pair<ll, ll>; using d_ll = pair<double, ll>; using ll_d = pair<ll, double>; using d_d = pair<double, double>; template <class T> using vec = vector<T>; static constexpr ll LL_INF = 1LL << 60; static constexpr int I_INF = 1 << 28; static constexpr double PI = static_cast<double>(3.14159265358979323846264338327950288); static constexpr double EPS = numeric_limits<double>::epsilon(); static map<type_index, const char* const> scanType = {{typeid(int), "%d"}, {typeid(ll), "%lld"}, {typeid(double), "%lf"}, {typeid(char), "%c"}}; template <class T> static void scan(vector<T>& v); [[maybe_unused]] static void scan(vector<string>& v, bool isWord = true); template <class T> static inline bool chmax(T& a, T b); template <class T> static inline bool chmin(T& a, T b); template <class T> static inline T gcd(T a, T b); template <class T> static inline T lcm(T a, T b); template <class A, size_t N, class T> static void Fill(A (&arr)[N], const T& val); template <class T> T mod(T a, T m); template <class Monoid> struct SegmentTree { using F = function<Monoid(Monoid, Monoid)>; int sz; vector<Monoid> seg; const F f; const Monoid M1; SegmentTree(int n, const F f, const Monoid& M1) : f(f), M1(M1) { sz = 1; while (sz < n) sz <<= 1; seg.assign(2 * sz, M1); } void set(int k, const Monoid& x) { seg[k + sz] = x; } void build() { for (int k = sz - 1; k > 0; k--) { seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]); } } void update(int k, const Monoid& x) { k += sz; seg[k] = x; while (k >>= 1) { seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]); } } Monoid query(int a, int b) { Monoid L = M1, R = M1; for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) { if (a & 1) L = f(L, seg[a++]); if (b & 1) R = f(seg[--b], R); } return f(L, R); } Monoid operator[](const int& k) const { return seg[k + sz]; } template <class C> int find_subtree(int a, const C& check, Monoid& M, bool type) { while (a < sz) { Monoid nxt = type ? f(seg[2 * a + type], M) : f(M, seg[2 * a + type]); if (check(nxt)) a = 2 * a + type; else M = nxt, a = 2 * a + 1 - type; } return a - sz; } template <class C> int find_first(int a, const C& check) { Monoid L = M1; if (a <= 0) { if (check(f(L, seg[1]))) return find_subtree(1, check, L, false); return -1; } int b = sz; for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) { if (a & 1) { Monoid nxt = f(L, seg[a]); if (check(nxt)) return find_subtree(a, check, L, false); L = nxt; ++a; } } return -1; } template <class C> int find_last(int b, const C& check) { Monoid R = M1; if (b >= sz) { if (check(f(seg[1], R))) return find_subtree(1, check, R, true); return -1; } int a = sz; for (b += sz; a < b; a >>= 1, b >>= 1) { if (b & 1) { Monoid nxt = f(seg[--b], R); if (check(nxt)) return find_subtree(b, check, R, true); R = nxt; } } return -1; } }; int main(int argc, char* argv[]) { ll n; cin >> n; vec<ll> a(n); scan(a); SegmentTree<ll> seg( n, [](ll x, ll y) { return x + y; }, 0LL); for (int i = (0); i < (n); i++) { seg.set(i, a[i]); } seg.build(); ll ans = 0; bool next_sign = (a[0] < 0) ? true : false; if (a[0] == 0) { seg.update(0, 1LL); ans++; } for (int i = (2); i < (n + 1); i++) { ll sum = seg.query(0, i); if ((next_sign && sum > 0) || (!next_sign && sum < 0)) { next_sign = !next_sign; continue; } ll to = (next_sign) ? 1 : -1; ll diff = abs(sum - to); ans += diff; seg.update(i - 1, seg[i - 1] + (to - sum)); next_sign = !next_sign; } ll ans2 = 0; for (int i = (0); i < (n); i++) { seg.update(i, a[i]); } next_sign = (a[0] < 0) ? true : false; if (a[0] == 0) { seg.update(0, -1LL); ans2++; } for (int i = (2); i < (n + 1); i++) { ll sum = seg.query(0, i); if ((next_sign && sum > 0) || (!next_sign && sum < 0)) { next_sign = !next_sign; continue; } ll to = (next_sign) ? 1 : -1; ll diff = abs(sum - to); ans2 += diff; seg.update(i - 1, seg[i - 1] + (to - sum)); next_sign = !next_sign; } ((cout) << (min(ans, ans2)) << (endl)); return 0; } template <class T> static void scan(vector<T>& v) { auto tFormat = scanType[typeid(T)]; for (T& n : v) { scanf(tFormat, &n); } } static void scan(vector<string>& v, bool isWord) { if (isWord) { for (auto& n : v) { cin >> n; } return; } int i = 0, size = v.size(); string s; getline(cin, s); if (s.size() != 0) { i++; v[0] = s; } for (; i < size; ++i) { getline(cin, v[i]); } } template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } template <class T> inline T gcd(T a, T b) { return __gcd(a, b); } template <class T> inline T lcm(T a, T b) { T c = min(a, b), d = max(a, b); return c * (d / gcd(c, d)); } template <class A, size_t N, class T> void Fill(A (&arr)[N], const T& val) { std::fill((T*)arr, (T*)(arr + N), val); } template <class T> T mod(T a, T m) { return (a % m + m) % m; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long> a(n); long long wa = 0; int now_sign = 0; int pre_sign = 0; long long count = 0; for (int i = 0; i < n; i++) { cin >> a[i]; } pre_sign = a[0] / abs(a[0]); wa = a[0]; for (int i = 1; i < n; i++) { wa += a[i]; if (wa != 0) now_sign = wa / abs(wa); else now_sign = 0; if (now_sign == pre_sign || now_sign == 0) { count += abs(wa) + 1; wa = -1 * pre_sign; now_sign = -1 * pre_sign; } pre_sign = now_sign; } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main(int argc, char const* argv[]) { uint64_t n; std::cin >> n; int64_t sum, current; std::cin >> current; sum = current; uint64_t result = 0; bool is_sum_negative = sum < 0; for (int i = 1; i < n; ++i) { std::cin >> current; sum += current; auto tmp = std::abs(sum) + 1; if (is_sum_negative) { if (sum <= 0) { sum += tmp; result += tmp; assert(sum == 1); } } else { if (sum >= 0) { sum -= tmp; result += tmp; assert(sum == -1); } } is_sum_negative = !is_sum_negative; } std::cout << result << std::endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int sign(int a) { return a / abs(a); } int main() { cin.tie(0); ios::sync_with_stdio(false); long long int a[100001]; int n; cin >> n; for (int i = 0; i < (int)n; i++) cin >> a[i]; long long int sum = 0; long long int c = 1; long long int c1 = 0, c2 = 0; for (int i = 0; i < (int)n; i++) { sum += a[i]; if (sum * c <= 0) { c1 += abs(sum) + 1; sum = c; } c *= -1; } c = -1; for (int i = 0; i < (int)n; i++) { sum += a[i]; if (sum * c <= 0) { c2 += abs(sum) + 1; sum = c; } c *= -1; } cout << min(c1, c2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
package main import ( "bufio" "fmt" "os" "strings" "strconv" ) func main() { sc := bufio.NewScanner(os.Stdin) sc.Buffer(make([]byte, 64*1024*1024), 64*1024*1024) sc.Scan() n, _ := strconv.Atoi(sc.Text()) sc.Scan() aArr := strings.Split(sc.Text(), " ") a := make([]int, n) for i := 0; i < n; i++ { a[i], _ = strconv.Atoi(aArr[i]) } cnt := 0 sum := a[0] for i := 1; i < n; i++ { if (sum+a[i])*sum < 0 { sum += a[i] continue } else if sum+a[i] > 0 { for j := 1; j < 10000000000; j++ { if sum+a[i]-j < 0 { cnt += j sum += a[i]-j break } } } else { for j := 1; j < 10000000000; j++ { if sum+a[i]+j > 0 { cnt += j sum += a[i]+j break } } } } fmt.Println(cnt) }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a; for (int i = 0; i < n; i++) { int ai; cin >> ai; a.push_back(ai); } int count = 0; if (a.at(0) == 0) { a.at(0) = 1; count = 1; } int sum = a.at(0); for (int i = 0; i < n - 1; i++) { int sum_next = sum + a.at(i + 1); if (sum > 0 && sum_next >= 0) { int diff = sum_next + 1; count += diff; sum_next -= diff; } else if (sum < 0 && sum_next <= 0) { int diff = -sum_next + 1; count += diff; sum_next += diff; } sum = sum_next; } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (int)n; i++) cin >> a[i]; int c1 = 0, c2 = 0; int s1 = 0, s2 = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0 && s1 + a[i] <= 0) { c1 += -(s1 + a[i]) + 1; s1 = 1; } else if (i % 2 == 1 && s1 + a[i] >= 0) { c1 += s1 + a[i] + 1; s1 = -1; } else { s1 += a[i]; } if (i % 2 == 1 && s2 + a[i] <= 0) { c2 += -(s2 + a[i]) + 1; s2 = 1; } else if (i % 2 == 0 && s2 + a[i] >= 0) { c2 += s2 + a[i] + 1; s2 = -1; } else { s2 += a[i]; } } cout << min(c1, c2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def resolve(SL): # L[0]!=0を起点とする cnt = 0 for i in range(len(SL)-1): s0 = SL[i] s1 = SL[i+1] if(s0>0 and s1>=0): SL[(i+1):] = [s-(s1+1) for s in SL[(i+1):]] cnt += (s1+1) elif(s0<0 and s1<=0): SL[(i+1):] = [s+(-s1+1) for s in SL[(i+1):]] cnt += (-s1+1) return cnt def ans(L): SL = [sum(L[:(i+1)]) for i in range(len(L))] c0,c1=0,0 if (L[0]>0): c0 = resolve(SL) c1 = (L[0]+1) + resolve(list(map(lambda x:x-(L[0]+1), SL))) elif (L[0]<0): c0 = resolve(SL) c1 = (-L[0]+1) + resolve(list(map(lambda x:x+(-L[0]+1), SL))) else: c0 = 1 + resolve(list(map(lambda x:x+1, SL))) c1 = 1 + resolve(list(map(lambda x:x-1, SL))) return(min(c0,c1)) N = int(input()) L = [int(x) for x in input().split(' ')] print(ans(L))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n, x = 0, a[100001], ans = 0; cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; for (int i = 0; a[i] == 0; ++i) { ans = 2 * (i + 1); x = i + 1; } int sum1 = a[x], sum2 = a[x]; for (int i = x + 1; i < n; i++) { sum2 += a[i]; if (sum2 >= 0 && sum1 > 0) { ans += abs(sum2) + 1; a[i] = a[i] - abs(sum2) - 1; sum2 = sum2 - abs(sum2) - 1; } if (sum2 <= 0 && sum1 < 0) { ans += abs(sum2) + 1; a[i] = a[i] + abs(sum2) + 1; sum2 = sum2 + abs(sum2) + 1; } sum1 = sum2; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } long n, i, a, sum, ans; bool sign; inline void solve() { cin >> (n); for ((i) = (0); (i) < (n); (i)++) { cin >> (a); if (i == 0) { sum = a; if (a < 0) sign = false; else sign = true; } else { if (sign) { if (sum + a >= 0) { ans += sum + a + 1; sum = -1; } else { sum += a; } sign = false; } else { if (sum + a <= 0) { ans += abs(sum + a) + 1; sum = 1; } else { sum += a; } sign = true; } } } cout << ans << endl; } int main(int argc, char** argv) { ios_base::sync_with_stdio(0); cin.tie(0); solve(); return EXIT_SUCCESS; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Main main = new Main(); main.run(); } public void run() { Scanner sc = new Scanner(System.in); int n= sc.nextInt(); int sum1=0; int sum2=0; int ans1=0; int ans2=0; for(int i=0; i<n; i++) { int a = sc.nextInt(); sum1 += a; sum2 += a; if(i%2==0) { if(sum1 <= 0) { ans1 += (1-sum1); sum1=1; } if(sum2 >= 0) { ans2 += sum2+1; sum2=-1; } }else { if(sum1 >= 0) { ans1 += sum1+1; sum1 = -1; } if(sum2 <= 0) { ans2 += (1-sum2); sum2 = 1; } } } System.out.println(Math.min(ans1, ans2)); sc.close(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = [int(i) for i in input().split()] seq_sum = A[0] sign = 1 if seq_sum > 0 else -1 count = 0 for i in range(1, n): if A[i] * sign * (-1) > seq_sum * sign: seq_sum += A[i] sign = sign * (-1) else: count += abs(sign * (-1) - (seq_sum + A[i])) A[i] += (sign * (-1) - (seq_sum + A[i])) * (sign * (-1)) seq_sum += A[i] sign = sign * (-1) print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
#!/usr/bin/env python3 import sys def solve(n: int, a: "List[int]"): def _solve(): from itertools import cycle ab = 0 for aa in map(lambda a_o: a_o[0]*a_o[1], zip(a, cycle([1, -1] if a[0] > 0 else [-1, 1]))): ab -= aa if ab >= 0: yield ab + 1 ab = 1 ab = abs(ab) return sum(_solve()) # Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools (tips: You use the default template now. You can remove this line by using your custom template) def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() n = int(next(tokens)) # type: int a = [int(next(tokens)) for _ in range(n)] # type: "List[int]" print(solve(n, a)) if __name__ == '__main__': main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; int sum = a[0], count = 0; for (int i = 1; i < n; i++) { if (sum > 0) { if (sum + a[i] >= 0) { count += abs(a[i] - (-1 - sum)); a[i] = -1 - sum; } } else { if (sum + a[i] <= 0) { count += abs(a[i] - (1 - sum)); a[i] = 1 - sum; } } sum += a[i]; } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#!/usr/bin/env ruby # n = STDIN.gets.to_i a = STDIN.gets.split(' ').map{|x| x.to_i} s = Array.new(n,0) output = 0 s[0] = a[0] 1.upto(n-1) do |i| s[i] = s[i-1] + a[i] if (s[i-1] > 0) ^ (s[i] > 0) change = 0 else change = s[i].abs+1 s[i] = (s[i-1] > 0) ? -1: 1 end output += change end puts output
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using Graph = vector<vector<long long>>; const long long mod = 1000000007; long long digitsum(long long n, long long b) { if (b < 2) return -1; if (n < b) return n; return digitsum(n / b, b) + n % b; } long long mpow(long long a, long long x); long long m_inv(long long n); vector<long long> split(long long n, long long a); string xal_number(long long n, long long x); long long gcd(long long x, long long y) { return y ? gcd(y, x % y) : x; } long long lcm(long long x, long long y) { return x * y / gcd(x, y); } class Factorial { private: vector<long long> fac; public: Factorial(long long N) { fac.push_back(1); for (long long i = (0); i < (N); ++i) fac.push_back(fac[i] * (i + 1) % mod); } long long fact(long long a) { return fac[a]; } long long ifac(long long a) { return m_inv(fac[a]); } long long cmb(long long n, long long r); }; struct UnionFind { vector<long long> par; UnionFind(long long n = 1) { init(n); } void init(long long n = 1) { par.resize(n); for (long long i = (0); i < (n); ++i) par[i] = -1; } long long root(long long x) { if (par[x] < 0) return x; else return par[x] = root(par[x]); } long long size(long long x) { return -par[root(x)]; } bool issame(long long x, long long y) { return root(x) == root(y); } bool connect(long long x, long long y); }; signed main() { long long n; cin >> n; vector<long long> a(n); for (long long i = (0); i < (n); ++i) cin >> a[i]; long long ans = 0; vector<long long> S(n + 1); S[0] = 0; for (long long i = (0); i < (n); ++i) { S[i + 1] = S[i] + a[i]; if (S[i + 1] * S[i] > 0) { ans += abs(S[i + 1]) + 1; S[i + 1] = (S[i] > 0) ? -1 : 1; } if (S[i + 1] == 0) { ans += 1; S[i + 1] += (S[i] > 0) ? -1 : 1; } } long long ans2 = 0; S[n] = 0; for (long long i = n; i > 0; --i) { S[i - 1] = S[i] + a[i]; if (S[i - 1] * S[i] > 0) { ans2 += abs(S[i - 1]) + 1; S[i - 1] = (S[i] > 0) ? -1 : 1; } if (S[i + 1] == 0) { ans2 += 1; S[i - 1] += (S[i] > 0) ? -1 : 1; } } cout << min(ans, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> namespace tools { template <typename T> class fenwick { private: std::vector<T> values; public: template <typename InputIter, typename std::enable_if< std::is_same<T, typename std::iterator_traits< InputIter>::value_type>::value && std::is_base_of<std::input_iterator_tag, typename std::iterator_traits< InputIter>::iterator_category>::value, std::nullptr_t>::type = nullptr> fenwick(InputIter begin, InputIter end) : values(begin, end) { for (std::size_t i = 1; i < this->values.size(); ++i) { this->values[i + (i & -i) - 1] += this->values[i - 1]; } } std::size_t size() const { return this->values.size(); } void add(std::size_t i, const T value) { assert(i < this->values.size()); for (i += 1; i <= this->values.size(); i += i & -i) { this->values[i - 1] += value; } } T sum(const std::size_t begin, const std::size_t end) const { if (begin == 0) { assert(end <= this->values.size()); T result = 0; for (std::size_t i = end; i > 0; i -= i & -i) { result += this->values[i - 1]; } return result; } else { return begin < end ? this->sum(0, end) - this->sum(0, begin) : 0; } } T operator[](const std::size_t i) const { return this->sum(i, i + 1); } }; } // namespace tools std::int_fast64_t solve(const tools::fenwick<std::int_fast64_t>& a_fenwick, const std::int_fast64_t first_target) { assert(first_target == 1 || first_target == -1); tools::fenwick<std::int_fast64_t> work = a_fenwick; std::int_fast64_t target = first_target; std::int_fast64_t result = 0; for (std::size_t i = 0; i < work.size(); ++i, target *= -1) { const std::int_fast64_t current_sum = work.sum(0, i + 1); const std::int_fast64_t diff = (target > 0 ? current_sum < target : target < current_sum) ? target - current_sum : 0; result += std::abs(diff); work.add(i, diff); } return result; } int main() { std::int_fast64_t n; std::cin >> n; std::vector<std::int_fast64_t> a(n); std::copy_n(std::istream_iterator<std::int_fast64_t>(std::cin), n, a.begin()); tools::fenwick<std::int_fast64_t> a_fenwick(a.begin(), a.end()); std::cout << std::min(solve(a_fenwick, 1), solve(a_fenwick, -1)) << std::endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) #n = 6 #a = list(map(int,"-1 4 3 2 -5 4".split())) #a = list(map(int,"-1 4 -4 2 -5 5".split())) f = "+" if a[0] < 0 else "-" s = a[0] c = 0 #print((s,f,c)) for i in range(1,n): if f == "+" and s + a[i] > 0: f = "-" s = s + a[i] # print((s,f,c)) elif f == "+": c = c + abs(s + a[i])+1 f = "-" s = 1 # print((s,f,c)) elif f == "-" and s + a[i] < 0: f = "+" s = s + a[i] # print((s,f,c)) else: c = c + abs(s+a[i])+1 f = "+" s = -1 # print((s,f,c)) print(c)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; std::vector<int64_t> data(n); for (int i = 0; i < n; i++) { cin >> data.at(i); } int answer = 0; int64_t sum_a = data.at(0); for (int i = 1; i < n; i++) { sum_a += data.at(i); if (data.at(0) > 0) { if (i % 2 != 0 && sum_a >= 0) { while (sum_a != -1) { sum_a--; answer++; } } if (i % 2 == 0 && sum_a <= 0) { while (sum_a != 1) { sum_a++; answer++; } } } if (data.at(0) < 0) { if (i % 2 != 0 && sum_a <= 0) { while (sum_a != 1) { sum_a++; answer++; } } if (i % 2 == 0 && sum_a >= 0) { while (sum_a != -1) { sum_a--; answer++; } } } } cout << answer << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ld = long double; using ll = long long; using ui = unsigned int; using ull = unsigned long long; using Pi_i = pair<int, int>; using Pll_ll = pair<ll, ll>; using VB = vector<bool>; using VC = vector<char>; using VD = vector<double>; using VI = vector<int>; using VLL = vector<ll>; using VS = vector<string>; using VSH = vector<short>; using VULL = vector<ull>; const int MOD = 1000000007; const int INF = 1000000000; const int NIL = -1; const ll LINF = 1000000000000000000; const double EPS = 1E-10; template <class T, class S> bool chmax(T &a, const S &b) { if (a < b) { a = b; return true; } return false; } template <class T, class S> bool chmin(T &a, const S &b) { if (b < a) { a = b; return true; } return false; } int main() { int n; cin >> n; VI a(n); for (int i = (0), i_len = (n); i < i_len; ++i) cin >> a[i]; ll ans(LLONG_MAX); for (int s = (0), s_len = (2); s < s_len; ++s) { ll sum(0); ll cnt(0); for (int i = (0), i_len = (n); i < i_len; ++i) { int sgn = (s + i) % 2 * 2 - 1; sum += a[i]; if (sum / sgn <= 0) { cnt += abs(sum - sgn); sum = sgn; } } chmin(ans, cnt); } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) a = list(map(int, input().split())) ans = [0, 0] if a[0] == 0: sum = 1 ans[0] = 1 else: sum = a[0] for i in range(1, N): if sum < 0: if abs(sum) < a[i]: sum += a[i] else: ans[0] += abs(sum)-a[i]+1 sum += 1 elif sum > 0: if sum + a[i] < 0: sum += a[i] else: ans[0] += abs(-1-sum-a[i]) sum = -1 if a[0] == 0: sum = -1 ans[1] = 1 else: if a[0] > 0: ans[1] += a[0] + 1 sum = -1 else: ans[1] += abs(a[0]) + 1 sum = 1 for i in range(1, N): if sum < 0: if abs(sum) < a[i]: sum += a[i] else: ans[1] += abs(sum)-a[i]+1 sum += 1 elif sum > 0: if sum + a[i] < 0: sum += a[i] else: ans[1] += abs(-1-sum-a[i]) sum = -1 print(min(ans))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
package sample.code; import java.util.Scanner; public class Main { public static void main(String[] args) { long[] a = null; try(Scanner sc = new Scanner(System.in)){ // N入力 aスペース区切り入力 a = new long[sc.nextInt()]; for(int i = 0; i < a.length; i ++) { a[i] = sc.nextLong(); } } long start = a[0]; boolean isNaturalNum = true; if(start < 0) { isNaturalNum = false; } long ret = 0L; for(int i = 1; i < a.length; i++) { long temp2 = start + a[i]; if(isNaturalNum) { if(temp2 > 0) { ret += Math.abs(start) + 1 + Math.abs(a[i]); start += (1 + Math.abs(a[i]) )* -1; } else { //OK start = temp2; } isNaturalNum = false; } else { if(temp2 < 0) { ret += Math.abs(start) + 1 - Math.abs(a[i]); start += Math.abs(start) + 1; } else { start = temp2; } isNaturalNum = true; } } System.out.println(ret); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long N; cin >> N; vector<long long> a(N), S(N + 7); for (long long i = 0; i < N; i++) { cin >> a[i]; } long long ans = 0; S[0] = a[0]; if (S[0] == 0) { for (long long i = 0; i < N; i++) { if (a[i] > 0) { if (i % 2 == 0) { S[0] = 1; ans++; break; } else { S[0] = -1; ans++; break; } } else if (a[i] < 0) { if (i % 2 == 0) { S[0] = -1; ans++; break; } else { S[0] = 1; ans++; break; } } else if (i == N - 1 && a[i] == 0) { ans = (2 * N) - 1; cout << ans << endl; return 0; } } } for (int i = 1; i < N; i++) { S[i] = S[i - 1] + a[i]; } for (long long i = 1; i < N; i++) { if (S[i - 1] > 0 && S[i] >= 0) { ans += abs(S[i]) + 1; S[i] = -1; } else if (S[i - 1] < 0 && S[i] <= 0) { ans += abs(S[i]) + 1; S[i] = 1; } if (i != N - 1) { S[i + 1] = S[i] + a[i + 1]; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; #define forx(i,a,b) for(int i=(a);i<(b);i++) #define rep(j,n) for(int j=0;j<(n);j++) typedef long long ll; int main() { int n,ansa=0,ansb=0,suma=0;sumb=0; cin>>n; bool plus=true; rep(i,n){ int a,b; cin>>b; a=b; while(plus&&suma+a<=0){ a++; ansa++; } while(!plus&&suma+a>=0){ a--; ansa++; } while(plus&&sumb+b>=0){ b++; ansb++; } while(!plus&&sumb+b<=0){ b--; ansb++; } suma+=a; sumb+=b; plus=!plus; } cout<<min(ansa,ansb)<<endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
from copy import copy n = int(input()) a = [int(x) for x in input().split()] ans1=[(-1)**i for i in range(n)] b=copy(a) res_b=0 c=copy(a) res_c=0 for i in range(n): if ans1[i]*sum(b[:i+1])>0: pass else: b[i]=ans1[i]-sum(b[:i]) res_b+=abs(b[i]-a[i]) if -1*ans1[i]*sum(c[:i+1])>0: pass else: c[i]=-1*ans1[i]-sum(c[:i]) res_c+=abs(c[i]-a[i]) print(min(res_b,res_c))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int N; vector<int> a; int main() { cin >> N; a.resize(N); for (int i = 0; i < (N); i++) { cin >> a[i]; } int sum = a[0]; int ans = 0; if (sum == 0) { if (a[1] > 0) sum--; else sum++; ans++; } for (int i = (1); i < (N); i++) { int b; if (sum > 0) { b = sum * -1 - 1; if (b < a[i]) { ans += a[i] - b; a[i] = b; } } else { b = sum * -1 + 1; if (b > a[i]) { ans += b - a[i]; a[i] = b; } } sum += a[i]; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long calc(bool plus, vector<long long> a) { long long ret = 0; int n = a.size(); if (a[0] == 0) { if (plus) { a[0] = 1; } else { a[0] = -1; } ret++; } else if (a[0] > 0 && !plus) { ret += 1 - a[0]; a[0] = -1; } else if (a[0] < 0 && plus) { ret += a[0] + 1; a[0] = 1; } for (int i = 1; i <= n - 1; i++) { a[i] += a[i - 1]; if (a[i] == 0) { if (a[i - 1] < 0) a[i] = 1; if (a[i - 1] > 0) a[i] = -1; ret++; } else if (a[i] > 0 && a[i - 1] > 0) { ret += a[i] + 1; a[i] = -1; } else if (a[i] < 0 && a[i - 1] < 0) { ret += 1 - a[i]; a[i] = 1; } } return ret; } int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) cin >> a[i]; cout << min(calc(true, a), calc(false, a)) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; int a[100100]; int ans1 = 0, ans2 = 0; int sum1 = 0, sum2 = 0; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; sum1 += a[i]; sum2 += a[i]; if (sum1 >= 0) { ans1 += (sum1 + 1); sum1 = -1; } if (sum2 <= 0) { ans2 -= (sum2 - 1); sum2 = 1; } swap(sum1, sum2); swap(ans1, ans2); } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[n]; for (int i = 0; i < (n); i++) cin >> a[i]; long long sum = 0; long long cnt1 = 0; for (int i = 0; i < (n); i++) { sum += a[i]; if (i % 2 == 0) { if (sum <= 0) { cnt1 += (-1) * sum + 1; sum = 1; } } else { if (sum >= 0) { cnt1 += sum + 1; sum = -1; } } } sum = 0; long long cnt2 = 0; for (int i = 0; i < (n); i++) { sum += a[i]; if (i % 2 == 0) { if (sum <= 0) { cnt2 += (-1) * sum + 1; sum = 1; } } else { if (sum >= 0) { cnt2 += sum + 1; sum = -1; } } } cout << min(cnt1, cnt2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def sign(x): if x<0: return -1 elif x>0: return 1 else: return 0 n = int(input()) a = list(map(int,input().split())) cumulative_sum = a[0] flag = sign(cumulative_sum) ans = 0 for i in range(1,n): cumulative_sum += a[i] if sign(cumulative_sum) == flag or sign(cumulative_sum) == 0: ans += abs(-flag-cumulative_sum) cumulative_sum = -flag flag = sign(cumulative_sum) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { bool ch = false; long long N, i; long long ans = 0, count = 0; cin >> N; long long a[N]; cin >> a[0]; ans += a[0]; if (ans > 0) ch = true; else ch = false; for (i = 1; i < N; i++) { cin >> a[i]; if (ch) { if (ans >= -a[i]) { count += ans + a[i] + 1; ans = -1; } else ans += a[i]; ch = false; } else { if (ans <= -a[i]) { count += -ans - a[i] + 1; ans = 1; } else ans += a[i]; ch = true; } } long long con = 0; if (a[0] > 0) { ans = -1; ch = false; } else { ans = 1; ch = true; } con = a[0] + 1; for (i = 1; i < N; i++) { if (ch) { if (ans >= -a[i]) { con += ans + a[i] + 1; ans = -1; } else ans += a[i]; ch = false; } else { if (ans <= -a[i]) { con += -ans - a[i] + 1; ans = 1; } else ans += a[i]; ch = true; } } cout << min(count, con) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main() { long long n; std::cin >> n; long long a; long long sum_plus[n], sum_minus[n]; for (long long i = 0; i < n; ++i) { std::cin >> a; if (i == 0) sum_plus[i] = a; else sum_plus[i] = sum_plus[i - 1] + a; sum_minus[i] = sum_plus[i]; } long long count_plus = 0; long long count_minus = 0; bool plus = true; for (long long i = 0; i < n; ++i) { if (plus) { if (sum_plus[i] <= 0) { long long add = -sum_plus[i] + 1; count_plus += add; for (long long j = i; j < n; ++j) sum_plus[j] += add; } if (sum_minus[i] >= 0) { long long add = sum_minus[i] + 1; count_minus += add; for (long long j = i; j < n; ++j) sum_minus[j] -= add; } } else { if (sum_plus[i] >= 0) { long long add = sum_plus[i] + 1; count_plus += add; for (long long j = i; j < n; ++j) sum_plus[j] -= add; } if (sum_minus[i] <= 0) { long long add = -sum_minus[i] + 1; count_minus += add; for (long long j = i; j < n; ++j) sum_minus[j] += add; } } plus = !plus; } long long ans = std::min(count_plus, count_minus); std::cout << ans << std::endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Arrays; import java.util.Scanner; public class Main { public static void main(String[] args) { @SuppressWarnings("resource") Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = sc.nextInt(); } int count = 0,sabun = 0; int[] imos = new int[a.length]; Arrays.fill(imos, 0); for (int i = 0; i < a.length; i++) { imos[i] = a[i]; } for (int i = 0; i < a.length-1; i++) { imos[i+1] += imos[i]; } // System.out.println("init"); // for (int i = 0; i < imos.length; i++) { // System.out.println(imos[i]); // } // System.out.println("init:finish"); // for (int i = 1; i < a.length; i++) { if (imos[i-1]*imos[i] > 0) { if (imos[i-1] < 0) { sabun = -imos[i-1]-1; } else { sabun = -imos[i-1]-1; } count += Math.abs(sabun); for (int j = i; j < imos.length; j++) { imos[j] += sabun; } } if (imos[i-1]*imos[i] == 0) { count += 1; if (imos[i-1] < 0) { sabun = 1; } else { sabun = -1; } for (int j = i; j < imos.length; j++) { imos[j] += sabun ; } } } for (int i = 0; i < a.length; i++) { // System.out.println(imos[i]); } System.out.println(count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys input = sys.stdin.readline n = int(input()) s = list(map(int, input().split())) l = [0] * (n + 1) l[0] = 0 for i in range(1, n + 1): l[i] = l[i - 1] + s[i - 1] count = 0 sabun = 0 for i in range(1, n): subl = l[i:i + 2] subl = [subl[0] + sabun, subl[1] + sabun] if 0 in subl: if subl[0] > 0: count += 1 l[i + 1] = -1 else: count += 1 l[i + 1] = 1 if subl[0] * subl[1] > 0: t = subl[1] m = True if t > 0: t = 1 + t else: t = 1 - t m = False if m: l[i + 1] -= t sabun -= t else: l[i + 1] += t sabun += t count += t print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int solve(int *a, int n) { int count = 0; int calc = 0; int state, pstate; cout << endl; if (a[0] < 0) state = -1; if (a[0] > 0) state = 1; for (int i = 1; i < n; i++) { pstate = state; int tmp = a[i] + calc; if (tmp < 0) state = -1; if (tmp == 0) state = 0; if (tmp > 0) state = 1; if (pstate == state) { if (state == -1) { count += 1 - tmp; calc += 1 - tmp; state = 1; } else if (state == 1) { count += tmp + 1; calc += -1 - tmp; state = -1; } } if (state == 0) { if (pstate == -1) { count += 1; calc += 1; state = 1; } else if (pstate == 1) { count += 1; calc += -1; state = -1; } } } return count; } int main() { int n; int ans; int *a; cin >> n; a = new int[n]; for (int i = 0; i < n; i++) cin >> a[i]; for (int i = 1; i < n; i++) a[i] = a[i - 1] + a[i]; if (a[0] == 0) { int bs, cs; int *b = new int[n]; int *c = new int[n]; for (int i = 0; i < n; i++) b[i] = a[i] + 1; for (int i = 0; i < n; i++) c[i] = a[i] - 1; bs = solve(b, n); cs = solve(c, n); ans = bs < cs ? bs : cs; } else ans = solve(a, n); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int inf = 999999999; const double pi = acos(-1); long long a[100005] = {}; int main() { unsigned long long ans = 0; long long wa = 0; int n; cin >> n; for (int i = (0); i < (int)(n); i++) cin >> a[i]; wa = a[0]; for (int i = (1); i < (int)(n); i++) { if (wa >= 0) { long long tes = wa + a[i]; if (tes < 0) { wa = tes; } else { ans += (unsigned long long)(-(-1 - tes)); wa = -1; } } else { long long tes = wa + a[i]; if (tes > 0) { wa = tes; } else { ans += (unsigned long long)(1 - tes); wa = 1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def read_input(): n = int(input()) alist = list(map(int, input().split())) return n, alist def get_sign(x): if x > 0: return 1 elif x < 0: return -1 return 0 def submit(): n, alist = read_input() s = alist[0] sign = get_sign(s) edit = 0 for a in alist[1:]: temp = s + a temp_sign = get_sign(temp) while temp_sign == sign or temp == 0: edit += 1 temp -= sign temp_sign = get_sign(temp) s = temp sign = temp_sign print(edit) if __name__ == '__main__': submit()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N = 0; cin >> N; vector<long long int> A(N), a(N), b(N); for (int i = 0; i < N; i++) cin >> A[i]; for (int i = 0; i < N; i++) a[i] = A[i]; for (int i = 0; i < N; i++) b[i] = A[i]; long long int M = 0; long long int cnt1 = 0, cnt2 = 0; for (int i = 1; i < N; i++) { M += a[i - 1]; if (i % 2 == 0) { cnt1 += abs(1 - (M + a[i])); a[i] = 1 - (M + a[i]); } else { cnt1 += abs(-1 - (M + a[i])); a[i] = -1 - (M + a[i]); } } for (int i = 1; i < N; i++) { M += b[i - 1]; if (i % 2 == 1) { cnt2 += abs(1 - (M + b[i])); a[i] = 1 - (M + b[i]); } else { cnt2 += abs(-1 - (M + b[i])); a[i] = -1 - (M + b[i]); } } long long int ans = min(cnt1, cnt2); cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long int n; cin >> n; long long int A[n]; for (int i = 0; i < n; i++) cin >> A[i]; long long int sum = A[0], count = 0, temp; if (sum == 0) { count++; sum = 1; } for (int i = 1; i < n; i++) { temp = sum + A[i]; if ((temp < 0 && sum < 0) || (temp > 0 && sum > 0) || temp == 0) { if (sum > 0) { count += abs(temp + 1); sum = -1; } else if (sum < 0) { count += abs(temp - 1); sum = 1; } else if (temp == 0) { if (sum > 0) { count++; sum = -1; } else { count++; sum = 1; } } } else sum = temp; } cout << count; }