Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
cin.sync_with_stdio(false);
int n;
cin >> n;
long long a[n], sum[n];
for (int i = (int)(0); i < (int)(n); i++) {
cin >> a[i];
if (i == 0)
sum[i] = a[i];
else
sum[i] = sum[i - 1] + a[i];
}
long long sump = (a[0] != 0) ? a[0] : 1, sumq = (a[0] != 0) ? -a[0] : -1;
long long p = (a[0] != 0) ? 0 : 1, q = (a[0] != 0) ? 0 : 1;
for (int i = (int)(1); i < (int)(n); i++) {
if ((sump + a[i]) * sump < 0)
sump = sump + a[i];
else if (sump < 0)
p += abs(1 - (sump + a[i])), sump = 1;
else if (sump > 0)
p += abs(-1 - (sump + a[i])), sump = -1;
if ((sumq + a[i]) * sumq < 0)
sumq = sumq + a[i];
else if (sumq < 0)
q += abs(1 - (sumq + a[i])), sumq = 1;
else if (sumq > 0)
q += abs(-1 - (sumq + a[i])), sumq = -1;
}
cout << min(p, q) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
import numpy as np
na1 = np.array(a).cumsum()
na2 = np.array(a).cumsum()
cnt1 = 0
hoge1 = 0
cnt2 = 0
hoge2 = 0
for i in range(1, n):
na1[i] += hoge1
na2[i] += hoge2
if(i % 2 == 0 and na1[i] <= 0):
delta1 = abs(na1[i]) + 1
delta2 = abs(na2[i]) + 1
cnt1 = cnt1 + delta1
hoge1 += delta1
elif(i % 2 == 1 and na1[i] >= 0):
delta1 = abs(na1[i]) + 1
delta2 = abs(na2[i]) + 1
cnt1 = cnt1 + delta1
hoge1 -= delta1
if(i % 2 == 1 and na2[i] <= 0):
delta1 = abs(na1[i]) + 1
delta2 = abs(na2[i]) + 1
cnt2 = cnt2 + delta2
hoge2 += delta2
elif(i % 2 == 0 and na2[i] >= 0):
delta1 = abs(na1[i]) + 1
delta2 = abs(na2[i]) + 1
cnt2 = cnt2 + delta2
hoge2 -= delta2
else:
na1[i]
print(min([cnt1,cnt2]))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
ios_base ::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int n, t = 0, curr = 0, prev;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
prev = curr;
curr += a[i];
if (i != 0) {
if (prev < 0 && curr <= 0) {
t += -curr + 1;
curr = 1;
} else if (prev > 0 && curr >= 0) {
t += curr + 1;
curr = -1;
}
}
}
cout << t;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
typedef std::priority_queue<int> IntPrioQueue;
typedef std::priority_queue<int, std::vector<int>, std::greater<int> >
IntReversePrioQueue;
int dx4[4] = {1, 0, -1, 0};
int dy4[4] = {0, 1, 0, -1};
int dx8[8] = {1, 0, -1, 1, -1, 1, 0, -1};
int dy8[8] = {1, 1, 1, 0, 0, -1, -1, -1};
void solve(void) {
int n;
cin >> n;
long long accsum = 0;
long long as[n];
for (int i = 0; i <= n - 1; i++) scanf("%lld ", &as[i]);
long long ans1 = 0;
for (int i = 0; i <= n - 1; i++) {
accsum += as[i];
if (i % 2 == 0) {
long long diff = max(0LL, 1LL - accsum);
ans1 += diff;
accsum += diff;
} else {
long long diff = max(0LL, 1LL + accsum);
ans1 += diff;
accsum -= diff;
}
}
accsum = 0;
long long ans2 = 0;
for (int i = 0; i <= n - 1; i++) {
accsum += as[i];
if (i % 2 != 0) {
long long diff = max(0LL, 1LL - accsum);
ans2 += diff;
accsum += diff;
} else {
long long diff = max(0LL, 1LL + accsum);
ans2 += diff;
accsum -= diff;
}
}
cout << min(ans1, ans2) << '\n';
printf("Debug\n");
}
int main(void) {
solve();
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | parseInt(x) = parse(Int, x)
function main()
n = readline() |> parseInt
a = map(parseInt, split(readline()))
b = Array{Int}(n)
k = 0
if a[1] > 0
b[1] = 1
k += abs(a[1]+1)
else
b[1] = -1
k += abs(a[1]-1)
end
for i in 2:n
b[i] = a[i]+b[i-1]
if b[i]*b[i-1] >= 0
if b[i-1] < 0
k += abs(b[i]-1)
b[i] = 1
else
k += abs(b[i]+1)
b[i] = -1
end
end
end
c = Array{Int}(n)
l = 0
if a[1] > 0
c[1] = -1
l += abs(a[1]+1)
else
c[1] = 1
l += abs(a[1]-1)
end
for i in 2:n
c[i] = a[i]+c[i-1]
if c[i]*c[i-1] >= 0
if c[i-1] < 0
l += abs(c[i]-1)
c[i] = 1
else
l += abs(c[i]+1)
c[i] = -1
end
end
end
print(min(k,l))
end
main() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T>
inline T GCD(T a, T b) {
T c;
while (b != 0) {
c = a % b;
a = b;
b = c;
}
return a;
}
template <typename T>
inline T LCM(T a, T b) {
T c = GCD(a, b);
a /= c;
return a * b;
}
template <typename T>
inline T nCr(T a, T b) {
T i, r = 1;
for (i = 1; i <= b; i++) {
r *= (a + 1 - i);
r /= i;
}
return r;
}
template <typename T>
inline T nHr(T a, T b) {
return nCr(a + b - 1, b);
}
template <typename T>
inline T POW(T a, T b) {
int i, r = 1;
for (i = 1; i <= b; i++) {
r *= a;
}
return r;
}
int main(void) {
cin.tie(0);
ios::sync_with_stdio(false);
long long n, a[100000], sum[100001], ans = 0;
cin >> n;
sum[0] = 0;
for (int i = 0; i < (n); ++i) cin >> a[i];
if (a[0] == 0) {
long long MIN = 1e15;
a[0] = -1;
long long tmp = 1;
for (int i = 0; i < (n); ++i) {
sum[i + 1] = sum[i] + a[i];
if (i != 0 and sum[i] * sum[i + 1] >= 0) {
tmp += (sum[i] > 0 ? sum[i + 1] + 1 : 1 - sum[i + 1]);
sum[i + 1] = (sum[i] > 0 ? -1 : 1);
}
}
if (tmp < MIN) MIN = tmp;
a[0] = 1;
tmp = 1;
for (int i = 0; i < (n); ++i) {
sum[i + 1] = sum[i] + a[i];
if (i != 0 and sum[i] * sum[i + 1] >= 0) {
tmp += (sum[i] > 0 ? sum[i + 1] + 1 : 1 - sum[i + 1]);
sum[i + 1] = (sum[i] > 0 ? -1 : 1);
}
}
if (tmp < MIN) MIN = tmp;
ans = tmp;
} else {
for (int i = 0; i < (n); ++i) {
sum[i + 1] = sum[i] + a[i];
if (i != 0 and sum[i] * sum[i + 1] >= 0) {
ans += (sum[i] > 0 ? sum[i + 1] + 1 : 1 - sum[i + 1]);
sum[i + 1] = (sum[i] > 0 ? -1 : 1);
}
}
}
cout << ans << "\n";
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long a[100000], b[100001];
int main() {
long long n;
cin >> n;
for (long long i = 0; i < n; i++) {
cin >> a[i];
b[i] += a[i];
b[i + 1] = b[i];
}
long long sum = 0, sum2 = 0;
if (b[0] == 0) {
int i = 0;
while (b[i] == 0) i++;
if (i % 2 == 0) {
b[0] = 1;
sum2 = 1;
} else {
b[0] = -1;
sum2 = -1;
}
sum++;
}
for (long long i = 1; i < n; i++) {
b[i] += sum2;
if (b[i] == 0) {
if (b[i - 1] > 0) {
sum2--;
sum++;
b[i] = -1;
} else {
sum2++;
sum++;
b[i] = 1;
}
} else {
if (b[i - 1] > 0 && b[i] > 0) {
sum2 -= (b[i] + 1);
sum += (b[i] + 1);
b[i] = -1;
} else if (b[i] < 0 && b[i - 1] < 0) {
sum2 += (0 - b[i] + 1);
sum += (0 - b[i] + 1);
b[i] = 1;
}
}
}
cout << sum << endl;
cin >> n;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MX = 1e5 + 5, INF = 5 << 59, MOD = 1e9 + 7;
long long N;
vector<long long> A;
void input() {
cin >> N;
A.resize(N);
for (long long i = (long long)(0); i <= (long long)(N - 1); ++i) {
cin >> A[i];
}
}
void solve() {
long long ans = INF;
long long fugo;
for (long long fg = (long long)(0); fg <= (long long)(0); ++fg) {
if (fg == 1) {
fugo = 1;
} else
fugo = 0;
long long prev = 0;
long long s = 0;
long long ans1 = 0;
for (long long i = (long long)(0); i <= (long long)(N - 1); ++i) {
s += A[i];
if (fugo) {
if (s > 0) {
ans1 += 0;
} else if (s == 0) {
ans1 += 1;
s = 1;
} else {
ans1 += abs(s) + 1;
s = 1;
}
} else {
if (s > 0) {
ans1 += (abs(s) + 1);
s = -1;
} else if (s == 0) {
ans1 += 1;
s = -1;
} else {
ans1 += 0;
}
}
prev = s;
fugo ^= 1;
}
ans = min(ans1, ans);
}
cout << ans << endl;
}
signed main() {
input();
solve();
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int ch_sign(int n) {
if (n == 0) return 0;
return (n > 0) - (n < 0);
}
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; ++i) cin >> a[i];
int sign1 = (a[0] > 0) - (a[0] < 0), sign2 = -1 * sign1;
int s1 = 0, s2 = 0;
int ans1 = 0, ans2 = 0;
for (int i = 0; i < n; ++i) {
s1 += a[i];
s2 += a[i];
sign1 *= -1;
sign2 *= -1;
if (ch_sign(s1) != sign1) {
ans1 += abs(s1 - sign1);
s1 = sign1;
}
if (ch_sign(s2) != sign2) {
ans2 += abs(s2 - sign2);
s2 = sign2;
}
}
cout << ((ans1 > ans2) ? ans1 : ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n;
cin >> n;
vector<long long> v;
while (n--) {
long long a;
cin >> a;
v.push_back(a);
}
long long sum = 0;
long long loss_sum = 0;
long long d = 1;
if (v[0] < 0) {
d = -1;
}
long long crr = 0;
long long loss = 0;
for (long long i = 0; i < v.size(); i++) {
crr = sum + v[i];
if (!(crr * d > 0)) {
loss = abs(crr) + 1;
v[i] += loss * d;
loss_sum += loss;
}
sum += v[i];
d *= -1;
}
cout << loss_sum << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = input()
b = input().split()
a = [int(b[i]) for i in range(len(b))]
def check(a):
sum = 0
for i in range(len(a)):
if(i == 0):
sum += a[0]
continue
if(sum > 0):
sum += a[i]
if(a[i] == 0 or sum >= 0):
return (i, -1)
elif(sum < 0):
sum += a[i]
if(a[i] == 0 or sum <= 0):
return (i, +1)
else:
if(a[i-1] > 0):
return (i, -1)
else:
return (i, +1)
return True
ans = 0
while(True):
c = check(a)
if(c == True):
break
a[c[0]] += c[1]
ans += 1
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
count = 0
sum_ = 0
for i in range(n):
if sum_ * (sum_+a[i]) >=0 and i!=0:
if sum_ > 0:
count += sum_+a[i]+1
a[i] = -sum_-1
elif sum_ < 0:
count += abs(sum_)-a[i]+1
a[i] = -sum_+1
sum_ += a[i]
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int &x : a) {
cin >> x;
}
bool plus;
int sum = 0;
int count_plus = 0;
plus = false;
for (int i = 0; i < n; i++) {
plus = !plus;
sum += a.at(i);
if (plus) {
if (sum > 0) {
continue;
} else {
count_plus += 1 - sum;
sum = 1;
}
} else {
if (sum < 0) {
continue;
} else {
count_plus += 1 + sum;
sum = -1;
}
}
}
int count_minus = 0;
plus = true;
sum = 0;
for (int i = 0; i < n; i++) {
plus = !plus;
sum += a.at(i);
if (plus) {
if (sum > 0) {
continue;
} else {
count_minus += 1 - sum;
sum = 1;
}
} else {
if (sum < 0) {
continue;
} else {
count_minus += 1 + sum;
sum = -1;
}
}
}
cout << min(count_plus, count_minus) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = input()
b = input().split()
a = [int(b[i]) for i in range(len(b))]
def check(a):
sum = 0
for i in range(len(a)):
if(i == 0):
if(a[i] == 0):
return (i, +1)
sum += a[0]
continue
if(sum > 0):
sum += a[i]
if(a[i] == 0 or sum >= 0):
return (i, -1)
elif(sum < 0):
sum += a[i]
if(a[i] == 0 or sum <= 0):
return (i, +1)
else:
if(a[i-1] > 0):
return (i, -1)
else:
return (i, +1)
return True
ans = 0
while(True):
c = check(a)
if(c == True):
break
a[c[0]] += c[1]
ans += 1
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
list_a = [int(x) for x in input().split()]
sum = list_a[0]
ans_even = 0
ans_odd = 0
for i in range(1,n) :
if i%2 == 0 :
if sum + list_a[i] <= 0 :
ans_even += 1 - (sum + list_a[i])
sum = 1
else :
sum = sum + list_a[i]
else :
if sum + list_a[i] > 0 :
ans_even += 1 + (sum + list_a[i])
sum = -1
else :
sum = sum + list_a[i]
for i in range(1,n) :
if i%2 == 1 :
if sum + list_a[i] <= 0 :
ans_odd += 1 - (sum + list_a[i])
sum = 1
else :
sum = sum + list_a[i]
else :
if sum + list_a[i] > 0 :
ans_odd += 1 + (sum + list_a[i])
sum = -1
else :
sum = sum + list_a[i]
print(min(ans_even, ans_odd))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
int n;
cin >> n;
ll sum = 0;
cin >> sum;
ll ans = 0;
for (int i = 0; i < n - 1; ++i) {
int a;
cin >> a;
sum += a;
if (sum == 0) {
ll need = sum - a > 0 ? -1 : 1;
sum += need;
ans += abs(need);
} else if (((sum - a > 0) == (sum > 0)) or ((sum - a < 0) == (sum < 0))) {
ll need = sum > 0 ? -(sum + 1) : -(sum - 1);
sum += need;
ans += abs(need);
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <iostream>
#include <cstdio>
#define N 100005
using namespace std;
typedef long long ll;
ll n, b, a[N];
ll abs(ll p) {return p > 0 ? p : -p;}
ll f(ll p) {
ll i, s = 0;
for (i = 1; i < n; i++) {
if (p > 0) {
p += a[i];
if (p >= 0) s += p + 1, p = -1;
} else {
p += a[i];
if (p <= 0) s += -p + 1, p = 1;
}
}
return s;
}
int main()
{
ll i, t = 1e19;
cin >> n;
for (i = 0; i < n; i++) scanf("%lld", &a[i]);
if (a[0] == 0) {cout << min(f(1), f(-1)) + 1; return 0;}
if (a[0] > 0) t = f(-1) + a[0] - 1;
else t = f(1) - a[0] + 1;
cout << min(f(a[0]), t);
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int,input().split()))
flg = A[0]
cnt = 0
for i in range(1,N):
flg1 = flg + A[i]
if flg>0 and flg1>=0:
flg1 = flg1+1
flg = -1
cnt += flg1
elif flg<0 and flg1<=0:
flg1 = 1-flg1
flg = 1
cnt += flg1
else:
flg = flg1
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | n = gets.chomp.to_i
a = gets.chomp.split(" ").map(&:to_i)
ans = 0
cumulative_sum = [0]
n.times do |i|
tmp = cumulative_sum[i] + a[i]
if tmp == 0 then
ans += 1
if 0 < cumulative_sum[i] then
cumulative_sum << -1
elsif 0 > cumulative_sum[i] then
cumulative_sum << 1
end
else
if 0 < tmp && 0 < cumulative_sum[i] then
ans += tmp + 1
cumulative_sum << -1
elsif 0 > tmp && 0 > cumulative_sum[i] then
ans += 1-tmp
cumulative_sum << 1
else
cumulative_sum << tmp
end
end
end
puts ans |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<long long> A(N);
vector<long long> sum(N);
for (int i = 0; i < (int)(N); i++) {
cin >> A[i];
sum[i] = A[i];
}
for (int i = 0; i < (int)(N - 1); i++) {
sum[i + 1] += sum[i];
}
long long diff = 0;
long long cnt = 0;
for (int i = 0; i < N - 1; i++) {
long long x = sum[i] + diff;
long long y = sum[i + 1] + diff;
if (y == 0) {
if (x > 0) {
diff--;
} else {
diff++;
}
cnt++;
continue;
}
if (x > 0 && y > 0) {
diff -= (y + 1);
cnt += (y + 1);
} else if (x < 0 && y < 0) {
diff += (abs(y) + 1);
cnt += (abs(y) + 1);
}
}
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 10;
int a[maxn];
int main() {
int n;
long long sum, num = 1e18;
scanf("%d", &n);
for (int i = 0; i < n; i++) scanf("%d", &a[i]);
sum = a[0];
long long cnt = 0;
if (sum == 0) {
int i = 1;
while (a[i] == 0 && i < n) i++;
if (i == n) {
cnt = (n - 1) * 2 + 1;
printf("%lld\n", cnt);
return 0;
}
for (int i = 1; i < n; i++) {
sum = 1;
if (sum > 0) {
long long t = sum + a[i];
if (t < 0)
sum = t;
else {
long long b = abs(t + 1);
cnt += b;
sum = -1;
}
} else if (sum < 0) {
long long t = sum + a[i];
if (t > 0)
sum = t;
else {
long long b = abs(1 - t);
cnt += b;
sum = 1;
}
}
num = min(num, cnt);
}
for (int i = 1; i < n; i++) {
sum = -1;
if (sum > 0) {
long long t = sum + a[i];
if (t < 0)
sum = t;
else {
long long b = abs(t + 1);
cnt += b;
sum = -1;
}
} else if (sum < 0) {
long long t = sum + a[i];
if (t > 0)
sum = t;
else {
long long b = abs(1 - t);
cnt += b;
sum = 1;
}
}
num = min(num, cnt);
}
printf("%lld\n", num);
return 0;
}
for (int i = 1; i < n; i++) {
if (sum > 0) {
long long t = sum + a[i];
if (t < 0)
sum = t;
else {
long long b = abs(t + 1);
cnt += b;
sum = -1;
}
} else if (sum < 0) {
long long t = sum + a[i];
if (t > 0)
sum = t;
else {
long long b = abs(1 - t);
cnt += b;
sum = 1;
}
}
}
printf("%lld\n", cnt);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a_list = list(map(int, input().split()))
total = 0
count = 0
pos_or_neg = True # True = +, False = -
if sum(a_list) >= 0:
if n % 2 == 0:
pos_or_neg = False
else:
pos_or_neg = True
else:
if n % 2 == 0:
pos_or_neg = True
else:
pos_or_neg = False
for a in a_list:
total += a
if pos_or_neg:
while total <= 0:
total += 1
count += 1
pos_or_neg = False
else:
while total >= 0:
total -= 1
count += 1
pos_or_neg = True
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(int argc, const char* argv[]) {
int n;
cin >> n;
int a[10010];
for (int i = 0; i < n; ++i) cin >> a[i];
int res = 0;
bool plus = false;
int sum = a[0];
if (a[0] > 0)
plus = true;
else if (a[0] < 0)
plus = false;
int j = 1;
while (sum == 0) {
if (a[j] > 0) {
++res;
sum = (j % 2 == 0) ? 1 : -1;
plus = (j % 2 == 0) ? true : false;
} else if (a[j] < 0) {
++res;
sum = (j % 2 == 0) ? -1 : 1;
plus = (j % 2 == 0) ? false : true;
}
++j;
if (j == n) {
cout << 1 + 2 * (n - 1) << endl;
}
}
for (int i = 0; i < n - 1; ++i) {
if (sum + a[i + 1] > 0) {
if (plus == true) {
res += sum + a[i + 1] + 1;
sum = -1;
plus = false;
} else {
sum += a[i + 1];
plus = true;
}
} else if (sum + a[i + 1] < 0) {
if (plus == false) {
res += -(sum + a[i + 1] - 1);
sum = 1;
plus = true;
} else {
sum += a[i + 1];
plus = false;
}
} else if (sum + a[i + 1] == 0) {
if (plus == true) {
++res;
sum = -1;
} else {
++res;
sum = 1;
}
}
}
cout << res << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.ArrayList;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = Integer.parseInt(sc.next());
ArrayList<Integer> a = new ArrayList<>();
for(int i=0; i<n; i++){
a.add(Integer.parseInt(sc.next()));
}
int sign = 1;
int ans1 = 0;
int sum1 = 0;
for (int i = 0; i < n; i++) {
sum1 += a.get(i);
if (sum1 * sign <= 0){
ans1 += Math.abs(sum1) + 1;
sum1 = sign;
}
sign *= -1;
}
sign = -1;
int ans2 = 0;
int sum2 = 0;
for (int i = 0; i < n; i++) {
sum2 += a.get(i);
if (sum2 * sign <= 0){
ans2 += Math.abs(sum2) + 1;
sum2 = sign;
}
sign *= -1;
}
System.out.println(Math.min(ans1, ans2));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #ifdef _DEBUG
#include "MyLib.h"
#else
#define main_C main
#include "bits/stdc++.h"
#include <regex>
#define _USE_MATH_DEFINES
#include <math.h>
#define FOR(i,s,e) for (int i = int(s); i < int(e); ++i)
#define REP(i,e) FOR(i,0,e)
#define INF (INT_MAX/2)
#define EPS (1.0e-8)
#define LINF (LONG_MAX/2)
const int MGN = 8;
const int ARY_SZ_MAX = 10000000;
using namespace std;
using ll = long long; using ull = unsigned long long;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vl = vector<ll>; using vvl = vector<vl>;
using vd = vector<double>; using vs = vector<string>;
using pii = pair<int, int>; using pll = pair<ll, ll>;
using psi = pair<string, int>;
// functions
#endif
int main_C() {
cin.tie(0);
ios::sync_with_stdio(false);
int N; cin >> N;
vl A(N); REP(i, N) cin >> A[i];
vl s(N);
A.push_back(0);
s.push_back(0);
// +-+-
int ans = INF;
int cost = 0;
s[0] = A[0];
FOR(i, 1, N+1) {
if (i % 2 == 0 && s[i-1] <= 0){
cost += abs(s[i-1]) + 1;
s[i-1] = 1;
} else if (i % 2 == 1 && s[i-1] >= 0) {
cost += abs(s[i-1]) + 1;
s[i-1] = -1;
}
s[i] = s[i-1] + A[i];
}
ans = min(ans, cost);
// -+-+
cost = 0;
s[0] = A[0];
FOR(i, 1, N+1) {
if (i % 2 == 0 && s[i-1] >= 0){
cost += abs(s[i-1]) + 1;
s[i-1] = -1;
} else if (i % 2 == 1 && s[i-1] <= 0) {
cost += abs(s[i-1]) + 1;
s[i-1] = 1;
}
s[i] = s[i-1] + A[i];
}
ans = min(ans, cost);
cout << ans << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def main():
n = int(input())
a = list(map(int, input().split()))
s = a[0] + a[1]
ans = 0
for i in range(1, n - 1):
ai = a[i + 1]
if s > 0 and s + a[i + 1] >= 0:
a[i + 1] = -s - 1
if 0 > s and 0 >= s + a[i + 1]:
a[i + 1] = -s + 1
s += a[i + 1]
ans += abs(ai - a[i + 1])
print(ans)
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, s;
int count = 0;
vector<int> a;
cin >> n;
for (int i = 0; i < n; ++i) {
cin >> s;
a.emplace_back(s);
}
int sum = a[0];
if (a[0] == 0) {
count = count + 1;
}
for (int i = 0; i < n - 1; ++i) {
if (i > 0) {
sum = sum + a[i];
}
if (sum * (sum + a[i + 1]) >= 0 && abs(sum) >= abs(sum + a[i + 1])) {
count = count + abs(sum + a[i + 1]) + 1;
if (sum + a[i + 1] < 0) {
sum = sum + abs(sum + a[i + 1]) + 1;
} else {
sum = sum - abs(sum + a[i + 1]) - 1;
}
}
if (sum * (sum + a[i + 1]) >= 0 && abs(sum) < abs(sum + a[i + 1])) {
count = count + abs(sum) + 1;
if (sum < 0) {
sum = sum + abs(sum) + 1;
} else {
sum = sum - abs(sum) - 1;
}
}
}
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int main(void) {
int n;
long sum1 = 0;
long sum2 = 0;
long tmp;
long lcount = 0;
long rcount = 0;
int a[100000];
char input[1500000];
int i = 0, j = 0;
int cp = 0, tcp = 0;
char tp[12];
tp[12] = '\0';
fgets(input, 1500000, stdin);
n = atoi(input);
fgets(input, 1500000, stdin);
for (i = 0; i < n; i++) {
while (input[cp] != ' ' && input[cp] != '\n') {
tp[tcp] = input[cp];
tcp++;
cp++;
}
tp[tcp] = '\0';
tcp = 0;
cp++;
a[i] = atoi(tp);
}
for (i = 0; i < n; i++) {
if (i % 2 == 0)
sum2 += a[i];
else
sum1 += a[i];
}
tmp = a[0];
if (sum1 == sum2) {
if (a[0] < 0) {
sum1++;
} else {
sum2++;
}
}
for (i = 1; i < n; i++) {
if (i % 2 == 0) {
tmp += a[i];
while (tmp > -1) {
lcount++;
tmp--;
}
} else {
tmp += a[i];
while (tmp < 1) {
lcount++;
tmp++;
}
}
}
tmp = a[0];
for (i = 1; i < n; i++) {
if (i % 2 == 1) {
tmp += a[i];
while (tmp > -1) {
rcount++;
tmp--;
}
} else {
tmp += a[i];
while (tmp < 1) {
rcount++;
tmp++;
}
}
}
printf("%ld\n", lcount > rcount ? rcount : lcount);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
def check(f):
flag = f
t = 0
c = 0
for i in range(n):
if t + a[i] <= 0 and flag == 1:
c += 1 - t - a[i]
t = 1
elif t + a[i] >= 0 and flag == -1:
c += 1 + t + a[i]
t = -1
else:
t += a[i]
flag *= -1
print(t)
return c
total_p = check(1)
total_m = check(-1)
print(min(total_p, total_m)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(i) for i in input().split()]
ans = 0
tmp = a[0]
for i in range(1,n):
#print(tmp,ans)
if tmp > 0:
if tmp + a[i] >= 0:
ans += tmp + a[i] + 1
tmp = -1
else:
tmp += a[i]
else:
if tmp + a[i] <= 0:
ans += abs(tmp + a[i]) + 1
tmp = 1
else:
tmp += a[i]
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> a(N);
for (int i = 0; i < N; i++) {
cin >> a.at(i);
}
int ans1 = 0, ans2 = 0, sum = 0;
for (int i = 0; i < N; i++) {
sum += a.at(i);
if (i % 2 == 0 && sum <= 0) {
ans1 += 1 - sum;
sum = 1;
} else if (i % 2 != 0 && sum >= 0) {
ans1 += sum + 1;
sum = -1;
}
}
sum = 0;
for (int i = 0; i < N; i++) {
sum += a.at(i);
if (i % 2 == 0 && sum >= 0) {
ans2 += sum + 1;
sum = -1;
} else if (i % 2 != 0 && sum <= 0) {
ans2 += 1 - sum;
sum = 1;
}
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
a = [int(i) for i in input().split()]
count = 0
if(a[0]==0):
if (a[1] > 0):
a[0] -= 1
elif (a[1] < 0):
a[0] += 1
count += 1
for i in range(1,N):
if (sum(a[:i]) == 0):
if (sum(a[:i - 1]) > 0):
a[i-1] -= 1
elif (sum(a[i - 1]) < 0):
a[i-1] += 1
count += 1
if(sum(a[:i-1])*sum(a[:i]) > 0):
k = abs(0-sum(a[:i-1]))+1
ll = k+abs(a[i-1])
if(a[i-1] > 0):
a[i-1] -= ll
elif (a[i-1] < 0):
a[i-1] += ll
count += ll
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = 1LL << 60;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n;
cin >> n;
vector<int> A(n);
vector<int> B(n + 1);
vector<int> B2(n + 1);
B[0] = 0;
B2[0] = 0;
for (long long i = 0; i < n; i++) {
cin >> A[i];
B[i + 1] = A[i] + B[i];
B2[i + 1] = B[i + 1];
}
for (long long i = 0; i < n + 1; i++) {
cout << B[i] << " ";
}
cout << endl;
int sum_p = 0;
int pm = 0;
for (long long i = 1; i < n + 1; i++) {
int del = 0;
if (i % 2 && B[i] + pm <= 0) del = abs(B[i] + pm) + 1;
if (i % 2 == 0 && B[i] + pm >= 0) del = -(B[i] + pm + 1);
pm += del;
sum_p += abs(del);
}
int sum_m = 0;
pm = 0;
for (long long i = 1; i < n + 1; i++) {
int del = 0;
if (i % 2 == 0 && B2[i] + pm <= 0) del = abs(B2[i] + pm) + 1;
if (i % 2 && B2[i] + pm >= 0) del = -(B2[i] + pm + 1);
pm += del;
sum_m += abs(del);
}
cout << min(sum_p, sum_m) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
long long int n, a[100010];
cin >> n;
for (int i = 0; i < n; ++i) cin >> a[i];
long long int sum1 = a[0], sum2 = -a[0], cnt1 = 0, cnt2 = 2 * abs(a[0]);
if (sum1 == 0) {
++cnt1;
if (a[1] > 0)
sum1 = -1;
else
sum1 = 1;
}
for (int i = 1; i < n; ++i) {
if (sum1 < 0) {
if (sum1 + a[i] > 0) {
sum1 += a[i];
} else {
cnt1 += abs(sum1 + a[i]) + 1;
sum1 = 1;
}
} else {
if (sum1 + a[i] < 0) {
sum1 += a[i];
} else {
cnt1 += abs(sum1 + a[i]) + 1;
sum1 = -1;
}
}
}
if (sum2 == 0) {
++cnt2;
if (a[1] > 0)
sum2 = 1;
else
sum2 = -1;
}
for (int i = 1; i < n; ++i) {
if (sum2 < 0) {
if (sum2 + a[i] > 0) {
sum2 += a[i];
} else {
cnt2 += abs(sum2 + a[i]) + 1;
sum2 = 1;
}
} else {
if (sum2 + a[i] < 0) {
sum2 += a[i];
} else {
cnt2 += abs(sum2 + a[i]) + 1;
sum2 = -1;
}
}
}
cout << min(cnt1, cnt2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | integer N
integer,allocatable,dimension(:)::A
integer Asum,ans,preans
read*,N
allocate(A(N))
read*,A
Asum=0;preans=0
do i=1,N
Asum=Asum+A(i)
select case(mod(i,2))
case(1)
if(Asum<=0)then
preans=preans+abs(1-Asum)
Asum=1
endif
case(0)
if(Asum>=0)then
preans=preans+abs(-1-Asum)
Asum=-1
endif
end select
end do
ans=preans
Asum=0;preans=0
do i=1,N
Asum=Asum+A(i)
select case(mod(i,2))
case(0)
if(Asum<=0)then
preans=preans+abs(1-Asum)
Asum=1
endif
case(1)
if(Asum>=0)then
preans=preans+abs(-1-Asum)
Asum=-1
endif
end select
end do
ans=min(ans,preans)
print"(i0)",ans
end |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | #
# Written by NoKnowledgeGG @YlePhan
# ('ω')
#
#import math
#mod = 10**9+7
#import itertools
#import fractions
#import numpy as np
#mod = 10**4 + 7
"""def kiri(n,m):
r_ = n / m
if (r_ - (n // m)) > 0:
return (n//m) + 1
else:
return (n//m)"""
""" n! mod m 階乗
mod = 1e9 + 7
N = 10000000
fac = [0] * N
def ini():
fac[0] = 1 % mod
for i in range(1,N):
fac[i] = fac[i-1] * i % mod"""
"""mod = 1e9+7
N = 10000000
pw = [0] * N
def ini(c):
pw[0] = 1 % mod
for i in range(1,N):
pw[i] = pw[i-1] * c % mod"""
"""
def YEILD():
yield 'one'
yield 'two'
yield 'three'
generator = YEILD()
print(next(generator))
print(next(generator))
print(next(generator))
"""
"""def gcd_(a,b):
if b == 0:#結局はc,0の最大公約数はcなのに
return a
return gcd_(a,a % b) # a = p * b + q"""
"""def extgcd(a,b,x,y):
d = a
if b!=0:
d = extgcd(b,a%b,y,x)
y -= (a//b) * x
print(x,y)
else:
x = 1
y = 0
return d"""
def readInts():
return list(map(int,input().split()))
mod = 10**9 + 7
def main():
n = int(input())
A = readInts()
# 符号 positive?
#po_ = True
# 変わったか変わってないか
if A[0] >= 0: # if positive
po_ = True
else: # negative
po_ = False
Cost = 0
ANS = [0] * (n+1)
ANS[0] = A[0]
for i in range(1,n):
#print(ANS[i-1],po_,ANS[i-1] + A[i])
if ANS[i-1]+A[i] >= 0 and not po_: # sumがpositiveで前がnegativeだった
po_ = True
if ANS[i-1]+A[i] == 0:
A[i] -= 1
ANS[i] = ANS[i-1] + A[i]
Cost += 1
ANS[i] = ANS[i-1] + A[i]
# これで終わり
elif ANS[i-1]+A[i] >= 0 and po_: # posi : posi ?
# 負にしなければならない
Cost += abs(-1 - (ANS[i-1]+A[i])) # 先にこれやれ
A[i] += -1 - (ANS[i-1] + A[i])
# -4
ANS[i] = ANS[i-1] + A[i]
po_ = False
elif ANS[i-1]+A[i] < 0 and not po_: #nega : nega
# -1 はここ
# print(A[i])
Cost += abs(1 - (ANS[i-1]+A[i])) # 先にこれやれ
A[i] += 1 - (ANS[i-1] + A[i])
ANS[i] = ANS[i-1] + A[i]
po_ = True
elif ANS[i-1]+A[i] < 0 and po_: # nega: pos
po_ = False
ANS[i] = ANS[i-1] + A[i]
print(Cost)
if __name__ == '__main__':
main() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a, sumA = 0, sumB = 0, mA = 0, mB = 0;
for (int i = 1; i <= n; i++) {
cin >> a;
sumA += a;
sumB += a;
if (i % 2) {
if (sumA <= 0) {
mA += 1 - sumA;
sumA = 1;
}
if (sumB >= 0) {
mB += 1 + sumB;
sumB = -1;
}
} else {
if (sumA >= 0) {
mA += 1 + sumA;
sumA = -1;
}
if (sumB <= 0) {
mB += 1 - sumB;
sumB = 1;
}
}
}
cout << min(mA, mB) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int,input().split()))
ret = 0
if A[0] == 0:
i = 0
while A[i] == 0:
i += 1
if (i%2 == 1 and A[i] > 0) or (i%2 == 0 and A[i] < 0):
A[0] = -1
else:
A[0] = 1
ret += 1
s = A[0]
for e in A[1:]:
#print(e,ret,s,s+e)
if 0 < s and 0 <= s + e:
ret += abs(s + e + 1)
s = -1
elif s < 0 and s + e <= 0:
ret += abs(s + e - 1)
s = 1
else:
s += e
print(ret) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main()
{
int n,ans;
cin>>n;
vector<int>a(n);
for(int i=0;i<n;i++){
cin>>a.at(i);
}
for(int i=0;i<n-1;i++){
int sum=0;
for(int j=i;j>=0;j--)sum+=a.at(j);//sum
while(p*a.at(i+1)>=0||p+a.at(i+1)==0){
if(a.at(i)>0){
a.at(i+1)--;
ans++;
}
if(a.at(i)<0){
a.at(i+1)++;
ans++;
}
}
}
cout<<ans<<endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long op = 0LL;
long long sum = 0LL;
cin >> sum;
for (int i = 1; i < n; i++) {
long long a;
cin >> a;
if (!(sum * (sum + a) < 0)) {
long long tmp_a = sum < 0 ? abs(sum) + 1 : -1 * (abs(sum) + 1);
op += abs(tmp_a - a);
sum = sum + tmp_a;
} else {
sum += a;
}
}
cout << op << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
vector<tuple<int, int, int> > V;
vector<int> W;
int N;
int main() {
cin >> N;
for (auto i = 0; i < N; i++) {
int a, b;
cin >> a >> b;
V.push_back(tuple<int, int, int>(a, b, 0));
}
for (auto i = 0; i < N; i++) {
int a, b;
cin >> a >> b;
V.push_back(tuple<int, int, int>(a, b, 1));
}
sort(V.begin(), V.end());
int ans = 0;
for (auto e : V) {
int x = get<0>(e);
int y = get<1>(e);
int c = get<2>(e);
if (c == 0) {
W.push_back(y);
} else {
sort(W.begin(), W.end());
reverse(W.begin(), W.end());
for (auto it = W.begin(); it != W.end(); it++) {
if (*it < y) {
ans++;
W.erase(it);
break;
}
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
ttl = a[0]
cst = 0
if a[0]>0:
flg = 1
elif a[0] == 0:
cst += 1
ttl += 1
flg = 1
else:
flg = -1
for i in range(1,n):
ttl += a[i]
if ttl*flg < 0:
flg *= -1
else:
if flg > 0:
memo = abs(ttl)+abs(-1)
ttl -= memo
cst += memo
elif flg < 0:
memo = abs(ttl)+abs(-1)
ttl += memo
cst += memo
flg *= -1
print(cst)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
_arr = list(map(int, input().split()))
ans = []
for first in (_arr[0], 1, -1):
arr = _arr[:]
c = 0
prev = 0
for i in range(n):
t = prev + arr[i]
if i == 0:
arr[i] = first
elif prev > 0 and t >= 0:
diff = t + 1
c += diff
arr[i] -= diff
elif prev < 0 and t <= 0:
diff = -1 * t + 1
c += diff
arr[i] += diff
prev += arr[i]
ans.append(c)
print(min(ans)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int ddx[8] = {0, 1, 1, 1, 0, -1, -1, -1};
const int ddy[8] = {1, 1, 0, -1, -1, -1, 0, 1};
const int dx[4] = {0, 1, 0, -1};
const int dy[4] = {1, 0, -1, 0};
int n;
int main(int argc, char const *argv[]) {
cin.tie(0);
ios::sync_with_stdio(false);
cin >> n;
int a[n];
for (int i = (0); i < (n); ++i) cin >> a[i];
bool sign;
if (a[0] >= 0)
sign = true;
else
sign = false;
int sum;
int count = 0;
int reminder;
sum = a[0];
for (int i = (1); i < (n); ++i) {
if (sign) {
sum += a[i];
if (sum >= 0)
sign = true;
else
sign = false;
if (sign) {
reminder = abs(-1 - sum);
count += reminder;
sum = -1;
sign = false;
}
} else {
sum += a[i];
if (sum >= 0)
sign = true;
else
sign = false;
if (!sign) {
reminder = abs(1 - sum);
count += reminder;
sum = 1;
sum = true;
}
}
}
if (sum == 0) count++;
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int d[n];
for (int i = 0; i < n; i++) cin >> d[i];
int sume = 0;
int counte = 0;
for (int i = 0; i < n; i++) {
sume += d[i];
if (i % 2 == 0) {
if (sume <= 0) {
counte += 1 - sume;
sume = 1;
}
} else {
if (sume >= 0) {
counte += sume + 1;
sume = -1;
}
}
}
int sumo = 0;
int counto = 0;
for (int i = 0; i < n; i++) {
sumo += d[i];
if (i % 2 == 1) {
if (sumo <= 0) {
counto += 1 - sumo;
sumo = 1;
}
} else {
if (sumo >= 0) {
counto += sumo + 1;
sumo = -1;
}
}
}
cout << min(counte, counto) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int main() {
long long int n, a[100002], i, d[100002], b;
scanf("%lld", &n);
for (i = 1; i <= n; i++) {
scanf("%lld", &a[i]);
}
d[1] = a[1];
b = 0;
for (i = 2; i <= n; i++) {
d[i] = d[i - 1] + a[i];
if (d[i] * d[i - 1] >= 0) {
if (d[i - 1] < 0) {
b = b + 1 - d[i];
d[i] = 1;
}
if (d[i - 1] > 0) {
b = b + 1 + d[i];
d[i] = -1;
}
}
}
printf("%lld\n", b);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int main(void) {
long long i, j, k, ans = 0, be, n;
scanf("%lld", &n);
long long a[n];
for (i = 0; i < n; ++i) scanf("%lld", &a[i]);
be = a[0] > 0 ? a[0] : 1;
if (a[0] < 0) ans = 1 - a[0];
for (i = 1; i < n; ++i) {
if (be > 0 && -1 < be + a[i])
ans += be + a[i] + 1, be = -1;
else if (be < 0 && 1 > be + a[i])
ans += 1 - be - a[i], be = 1;
else
be += a[i];
}
long long tmp = ans;
ans = 0;
be = a[0] < 0 ? a[0] : -1;
if (a[0] > 0) ans = a[0] + 1;
for (i = 1; i < n; ++i) {
if (be > 0 && -1 < be + a[i])
ans += be + a[i] + 1, be = -1;
else if (be < 0 && 1 > be + a[i])
ans += 1 - be - a[i], be = 1;
else
be += a[i];
}
printf("%lld", (ans > tmp ? tmp : ans));
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int sign(long long int num) {
if (num == 0) {
return 0;
} else {
return num / abs(num);
}
}
int main() {
int n;
cin >> n;
vector<long long int> list(n);
for (int i = 0; i < n; i++) {
cin >> list.at(i);
}
long long int count1 = 0, count2 = 0, sum = 0;
for (int i = 0, s = 1; i < n; i++) {
sum += list.at(i);
if (sum * s <= 0) {
count1 += abs(sum) + 1;
sum = s;
}
s *= -1;
}
for (int i = 0, s = -1; i < n; i++) {
sum += list.at(i);
if (sum * s <= 0) {
count2 += abs(sum) + 1;
sum = s;
}
s *= -1;
}
cout << min(count1, count2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n;
cin >> n;
vector<int> v(n);
for (int i = 0; i < n; i++) cin >> v[i];
long long op = 0;
long long prev_sum = 0;
for (int i = 0; i < n; i++) {
long long new_sum = prev_sum + v[i];
if (i == 0 && v[i] != 0)
prev_sum = new_sum;
else if (i == 0 && v[i] == 0) {
op += 1;
prev_sum = 1;
} else if (prev_sum >= 0 && new_sum >= 0) {
op += new_sum + 1;
prev_sum = -1;
} else if (prev_sum <= 0 && new_sum <= 0) {
op += -new_sum + 1;
prev_sum = 1;
} else
prev_sum = new_sum;
}
prev_sum = 0;
long long op2 = 0;
for (int i = 0; i < n; i++) {
long long new_sum = prev_sum + v[i];
if (i == 0 && v[i] != 0)
prev_sum = new_sum;
else if (i == 0 && v[i] == 0) {
op2 += 1;
prev_sum = -1;
} else if (prev_sum >= 0 && new_sum >= 0) {
op2 += new_sum + 1;
prev_sum = -1;
} else if (prev_sum <= 0 && new_sum <= 0) {
op2 += -new_sum + 1;
prev_sum = 1;
} else
prev_sum = new_sum;
}
cout << min(op, op2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, ans;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
for (int i = 0; i < n - 1; i++) {
int p = 0;
for (int j = i + 1; j >= 0; j--) p += a.at(j);
while (a.at(i) * a.at(i + 1) >= 0 || p == 0) {
if (a.at(i) > 0) {
a.at(i + 1)--;
ans++;
if (p == 0) p++;
}
if (a.at(i) < 0) {
a.at(i + 1)++;
ans++;
if (p == 0) p++;
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int a[100050];
int sum[100050];
int main() {
int n;
scanf("%d", &n);
int cnt1 = 0, cnt2 = 0;
memset(sum, 0, sizeof(sum));
for (int i = 0; i < n; i++) {
scanf("%d", &a[i]);
sum[i] = sum[i - 1] + a[i];
}
int lazy1 = 0, lazy2 = 0;
for (int i = 0; i < n; i++) {
int sum1 = sum[i], sum2 = sum[i];
sum1 += lazy1;
sum2 += lazy2;
if (i % 2 == 0 && sum1 <= 0) {
lazy1 += 1 - sum1;
cnt1 += 1 - sum1;
} else if (i % 2 == 1 && sum1 >= 0) {
lazy1 -= 1 + sum1;
cnt1 += sum1 + 1;
}
if (i % 2 == 0 && sum2 >= 0) {
lazy2 -= 1 + sum2;
cnt2 += sum2 + 1;
} else if (i % 2 == 1 && sum2 <= 0) {
lazy2 += 1 - sum2;
cnt2 += 1 - sum2;
}
}
printf("%d\n", min(cnt1, cnt2));
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, count = 0;
cin >> n;
vector<int> v(n), ans(n);
for (size_t i = 0; i < n; i++) {
cin >> v[i];
}
for (size_t i = 0; i < n; i++) {
if (i == 0) {
ans[i] = v[i];
} else {
if (ans[i - 1] < 0 && ans[i - 1] + v[i] > 0 ||
ans[i - 1] > 0 && ans[i - 1] + v[i] < 0) {
ans[i] = ans[i - 1] + v[i];
} else if (ans[i - 1] + v[i] == 0) {
if (ans[i - 1] < 0) {
count++;
ans[i] = 1;
} else {
count++;
ans[i] = -1;
}
} else {
count += abs(ans[i - 1] + v[i]) + 1;
if (ans[i - 1] + v[i] < 0) {
ans[i] = 1;
} else if (ans[i - 1] + v[i] > 0) {
ans[i] = -1;
}
}
}
}
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | module Main
( main
)
where
import Control.Applicative
import Control.Monad
import Data.List
import Data.Array
import Data.Char
main = do
n <- (read :: String -> Int) <$> getLine
arr <- map (read :: String -> Int) . words <$> getLine
print $ calcCost arr
calcCost :: [Int] -> Int
calcCost (x : xs)
| x /= 0
= snd $ foldl update (x, 0) xs
| otherwise
= 1 + min (calcCost (1 : xs)) (calcCost ((-1) : xs))
update :: (Int, Int) -> Int -> (Int, Int)
update (s, c) v =
let next = calcNext s
in if next * v > 0 && abs v > abs next
then (s + v, c)
else (s + next, c + abs (next - v))
calcNext :: Int -> Int
calcNext a = if a > 0 then -a - 1 else -a + 1
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
import java.util.Arrays;
public class Main{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int [n];
for(int i = 0;i < n;i++){
a[i] = sc.nextInt();
}
int[] sum1 = new int[n];
int[] sum2 = new int[n];
sum1[0] = a[0];
sum2[0] = a[0];
int count = 0;
//System.out.println("sum > 0 : "+solve1(sum1,a,count));
//System.out.println("sum < 0 : "+solve2(sum2,a,count));
count = Math.min(solve1(sum1,a,count),solve2(sum2,a,count));
System.out.println(count);
}
public static int solve1(int[] sum,int[] a,int count){
if(sum[0] == 0){
count++;
sum[0] = 1;
}
for(int i = 0;i < sum.length-1;i++){
sum[i+1] = sum[i] + a[i+1];
if((i+1) % 2 == 1){
if(sum[i+1] >= 0){
count += 1 + sum[i+1];
sum[i+1] = -1;
}
}
if((i+1) % 2 == 0){
if(sum[i+1] <= 0){
count += 1 - sum[i+1];
sum[i+1] = 1;
}
}
}
return count;
}
public static int solve2(int[] sum,int[] a,int count){
if(sum[0] == 0){
count++;
sum[0] = -1;
}
for(int i = 0;i < sum.length-1;i++){
sum[i+1] = sum[i] + a[i+1];
if((i+1) % 2 == 1){
if(sum[i+1] <= 0){
count += 1 - sum[i+1];
sum[i+1] = 1;
}
}
if((i+1) % 2 == 0){
if(sum[i+1] >= 0){
count += 1 + sum[i+1];
sum[i+1] = -1;
}
}
}
return count;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | (defun solver ()
(let* ((n (read))
(numv (make-array n :fill-pointer 0))
(sum 0) (presum 0) (count 0))
(loop repeat n
do (vector-push (read) numv))
(loop for x across numv
do (incf sum x)
(loop
(cond ((and (zerop sum) (plusp presum))
(decf sum) (incf count))
((and (zerop sum) (minusp presum))
(incf sum) (incf count))
((and (plusp sum) (plusp presum))
(decf sum) (incf count))
((and (plusp sum) (minusp presum))
(return))
((and (minusp sum) (plusp presum))
(return))
((and (minusp sum) (minusp presum))
(incf sum) (incf count))
(t (return))))
(setf presum sum))
(format t "~A~%" count)))
(solver) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
int sum = a.at(0), ans = 0;
for (int i = 1; i < n; i++) {
if (sum > 0) {
if (a.at(i) + sum >= 0) {
ans += a.at(i) + sum + 1;
a.at(i) -= a.at(i) + sum + 1;
}
} else if (sum < 0) {
if (a.at(i) + sum <= 0) {
ans += -(a.at(i) + sum - 1);
a.at(i) += -(a.at(i) + sum - 1);
}
}
sum += a.at(i);
}
cout << ans;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
int a[100001];
int sumo[100001];
int sume[100001];
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i + 1];
}
int anso = 0;
int anse = 0;
sumo[0] = 0;
sume[0] = 0;
for (int i = 1; i <= n; i++) {
if (i % 2 == 0) {
if (sume[i - 1] + a[i] > 0) sume[i] = sume[i - 1] + a[i];
if (sume[i - 1] + a[i] <= 0) {
sume[i] = 1;
anse += (1 - (sume[i - 1] + a[i]));
}
if (sumo[i - 1] + a[i] < 0) sumo[i] = sumo[i - 1] + a[i];
if (sumo[i - 1] + a[i] >= 0) {
sumo[i] = -1;
anso += sumo[i - 1] + a[i] + 1;
}
} else if (i % 2 == 1) {
if (sumo[i - 1] + a[i] > 0) sumo[i] = sumo[i - 1] + a[i];
if (sumo[i - 1] + a[i] <= 0) {
sumo[i] = 1;
anso += (1 - (sumo[i - 1] + a[i]));
}
if (sume[i - 1] + a[i] < 0) sume[i] = sume[i - 1] + a[i];
if (sume[i - 1] + a[i] >= 0) {
sume[i] = -1;
anse += (sume[i - 1] + a[i] + 1);
}
}
}
int ans;
ans = min(anso, anse);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int ans, n, a[100000], sum;
int get_sign(int x) {
if (0 < x)
return 1;
else if (x < 0)
return -1;
else
return 0;
}
int main() {
cin >> n;
for (int i = 0; i < n; ++i) cin >> a[i];
int standard = get_sign(a[0]);
for (int i = 0; i < n; ++i) {
sum += a[i];
if (standard != get_sign(sum)) {
int add = abs(sum) + 1;
ans += add;
if (sum > 0)
sum -= add;
else if (sum < 0)
sum += add;
} else if (get_sign(sum) == 0) {
ans++;
sum = get_sign(a[i + 1]) * (-1);
}
standard *= (-1);
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import itertools
n=int(input())
a=list(map(int,input().split()))
ans=0
res=0#0が正、1が負
if a[0]<0:
res=1
for i in range(n-1):
aa=list(itertools.accumulate(a))
if aa[i+1]<0:
if res==1:
adj = 1-aa[i+1]
a[i+1]=a[i+1]+adj
ans=ans+abs(adj)
res = 0
else:
res=1
if aa[i+1]>0:
if res==0:
adj = -1-aa[i+1]
a[i+1]=a[i+1]+adj
ans=ans+abs(adj)
res = 1
else:
res=0
if aa[i+1]==0:
if res == 1:
a[i+1]=a[i+1]+1
ans+=1
res=0
else:
a[i+1]=a[i+1]-1
ans+=1
res=1
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A2 = list(map(int,input().split()))
#print(A)
def getSign(a):
if a < 0:
return -1
elif a == 0:
return 0
else:
return 1
counts = []
for j in range(2):
A = list(A2)
count = 0
sumN = A[0]
beforeSign = getSign(A[0])
if j == 0:
add = -A[0] - beforeSign
A[0] += add
count += abs(add)
sumN = A[0]
beforeSign = getSign(A[0])
for i in range(1,N):
sumN += A[i]
#print("be",i,sumN,A[i],count)
if 0 <= beforeSign * sumN:
add = -sumN - beforeSign
A[i] += add
sumN += add
count += abs(add)
beforeSign = getSign(sumN)
#print("af",i,sumN,A[i],count)
counts.append(count)
print(min(counts)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
L = list(map(int, input().split()))
tmp = L[0]
res = 0
def diff(a,b):
if a*b < 0:
return True
else:
return False
if tmp > 0:
flag = True
elif tmp < 0:
flag = False
else:
if L[1] > 0:
tmp = -1
res += 1
else:
tmp = 1
res += 1
for i in range(1, N):
n = L[i] + tmp
if diff(n, tmp):
tmp = n
else:
if tmp < 0:
res = res + abs(n) + 1
tmp = 1
else:
res = res + abs(n) + 1
tmp = -1
print(res) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long long cnt1 = 0, cnt2 = 0;
long long sumv = 0;
for (int i = 0; i < n; i++) {
sumv += a[i];
if (i % 2 == 0 && sumv < 0) {
cnt1 += abs(sumv) + 1;
sumv = 1;
} else if (i % 2 == 1 && sumv > 0) {
cnt1 += abs(sumv) + 1;
sumv = -1;
}
}
sumv = 0;
for (int i = 0; i < n; i++) {
sumv += a[i];
if (i % 2 == 0 && sumv > 0) {
cnt2 += abs(sumv) + 1;
sumv = -1;
} else if (i % 2 == 1 && sumv < 0) {
cnt2 += abs(sumv) + 1;
sumv = 1;
}
}
cout << min(cnt1, cnt2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
X = [a[0]]
ans = 0
#+-+-のとき
if a[0] >= 0:
for i in range(n-1):
#print(X[i], a[i+1])
num = X[i] + a[i+1]
if i % 2 != 0: #iが奇数の時はnumの値は正
if num < 0:
X.append(1)
ans += abs(num) + 1
else:
X.append(num)
else: #iが偶数のときnumの値は負
if num > 0:
X.append(-1)
ans += abs(num) + 1
else:
X.append(num)
#-+-+のとき
else:
for i in range(n-1):
#print(X[i], a[i+1])
num = X[i] + a[i+1]
if i % 2 != 0: #iが奇数の時はnumの値は負
if num < 0:
X.append(num)
else:
ans += abs(num) + 1
X.append(-1)
else: #iが偶数のときnumの値は正
if num > 0:
X.append(num)
else:
X.append(1)
ans += abs(num) + 1
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmin(T &a, const T &b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
long long a[100010];
signed main() {
long long n;
cin >> n;
for (long long i = 0; i < n; i++) {
cin >> a[i];
}
long long ans = a[0] > 0 ? 0 : 1 - a[0];
long long wa = a[0] > 0 ? a[0] : 1;
for (long long i = 1; i < n; i++) {
long long nxt = abs(wa) + 1;
if (wa < 0) {
if (nxt > a[i]) {
ans += nxt - a[i];
wa += nxt;
} else {
wa += a[i];
}
} else {
nxt *= -1;
if (nxt < a[i]) {
ans += a[i] - nxt;
wa += nxt;
} else {
wa += a[i];
}
}
}
long long ans2 = a[0] < 0 ? 0 : -1 - a[0];
wa = a[0] < 0 ? a[0] : -1;
for (long long i = 1; i < n; i++) {
long long nxt = abs(wa) + 1;
if (wa < 0) {
if (nxt > a[i]) {
ans2 += nxt - a[i];
wa += nxt;
} else {
wa += a[i];
}
} else {
nxt *= -1;
if (nxt < a[i]) {
ans2 += a[i] - nxt;
wa += nxt;
} else {
wa += a[i];
}
}
}
cout << min(ans, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long mod = 1000000007;
const vector<int> di = {-1, 0, 1, 0};
const vector<int> dj = {0, 1, 0, -1};
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a.at(i);
vector<int> s(n);
int sum = 0;
int ans = 0;
for (int i = 0; i < n; i++) {
if (i == 0) {
s.at(i) = a.at(i);
if (s.at(i) == 0) {
if (a.at(i + 1) > 0) {
s.at(i) = -1;
ans++;
} else {
s.at(i) = 1;
ans++;
}
}
}
if (i > 0) {
s.at(i) = s.at(i - 1) + a.at(i);
if (s.at(i - 1) * s.at(i) > 0 && s.at(i) < 0) {
ans += 1 - s.at(i);
s.at(i) = 1;
}
if (s.at(i - 1) * s.at(i) > 0 && s.at(i) > 0) {
ans += s.at(i) + 1;
s.at(i) = -1;
}
if (s.at(i - 1) * s.at(i) == 0) {
if (s.at(i - 1) > 0) {
s.at(i) = -1;
ans++;
}
if (s.at(i - 1) < 0) {
s.at(i) = 1;
ans++;
}
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long solve(vector<int> A) {
long res = 0;
long sum = A[0];
for (int i = 1; i < A.size(); i++) {
if (sum > 0) {
sum += A[i];
while (sum >= 0) {
res++;
sum--;
}
} else if (sum < 0) {
sum += A[i];
while (sum <= 0) {
res++;
sum++;
}
}
}
return res;
}
int main() {
int N;
cin >> N;
vector<int> A(N);
for (int i = 0; i < N; i++) {
cin >> A[i];
}
long res;
if (A[0] != 0) {
res = solve(A);
cout << res << endl;
} else {
long res_first_plus = 1, res_first_minus = 1;
A[0] = 1;
res_first_plus += solve(A);
A[0] = -1;
res_first_minus += solve(A);
res = min(res_first_plus, res_first_minus);
cout << res << endl;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def c(ints):
for i in range(len(ints)):
if ints[i] != 0:
sig = 1 if ints[i] > 0 else -1
total = ints[i]
mov = i
j = i
break
if i == len(ints) - 1:
return i + 1
for i_ in ints[j+1:]:
tmp = total + i_
if tmp == 0:
mov +=1
tmp = -sig
elif sig * tmp > 0:
mov += abs(tmp) + 1
tmp = -sig
sig *= -1
total = tmp
return mov
_ = input()
inp = input()
inp = inp.split(' ')
inp = [int(i_) for i_ in inp]
c(inp) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <iostream>
#define rep(i, n) for(int i = 0; i < (n); i++)
using namespace std;
int main(){
int n;
cin >> n;
ll ary[n], cnt1 = 0, cnt2 = 0, sum = 0;
rep(i, n) cin >> ary[i];
// S_odd < 0, S_even > 0
rep(i, n){
sum += ary[i];
if(i % 2 && sum >= 0){
cnt1 += sum + 1;
sum = -1;
} else if(i % 2 == 0 && sum <= 0){
cnt1 += -sum + 1;
sum = 1;
}
}
sum = 0;
// S_odd > 0, S_even < 0
rep(i, n){
sum += ary[i];
if(i % 2 == 0 && sum >= 0){
cnt2 += sum + 1;
sum = -1;
} else if(i % 2 && sum <= 0){
cnt2 += -sum + 1;
sum = 1;
}
}
cout << min(cnt1, cnt2) << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | i=0
while True:
i+=1 |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
class Program {
static void Main(string[] args) {
int n = int.Parse(Console.ReadLine());
string[] A = Console.ReadLine().Split();
long ans = 1 << 60;
int sum, sign, count, a;
for (int cnt = 0; cnt < 2; ++cnt) {
a = int.Parse(A[0]);
sign = Math.Sign(a);
if (cnt == 0) {
sum = a;
count = 0;
}
else {
sign *= -1;
sum = sign;
count = Math.Abs(a) + 1;
}
for (int i = 1; i < n; ++i) {
a = int.Parse(A[i]);
sign *= -1;
if (sign * Math.Sign(a + sum) > 0) {
sum += a;
}
else {
count += Math.Abs((Math.Abs(sum) + 1) * sign - a);
sum = sign;
}
}
ans = Math.Min(ans, count);
}
Console.WriteLine(ans);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
numbers = list(map(int, input().split()))
counter = 0
sum_i_n = 0
sum_i_n_1 = numbers[0]
for i in range(len(numbers) - 1):
# sum_i_n = sum(numbers[:i + 1])
# sum_i_n_1 = sum(numbers[:i + 2])
sum_i_n += numbers[i]
sum_i_n_1 += numbers[i + 1]
if sum_i_n == 0:
numbers[i] += 1
sum_i_n += 1
sum_i_n_1 += 1
counter += 1
if sum_i_n * sum_i_n_1 >= 0:
sub = abs(sum_i_n_1) + 1
counter += sub
if sum_i_n_1 > 0:
numbers[i + 1] -= sub
sum_i_n_1 -= sub
else:
numbers[i + 1] += sub
sum_i_n_1 += sub
if sum_i_n_1 == 0:
counter += 1
print(counter)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N, a[100000];
cin >> N;
for (int i = 0; i < N; ++i) cin >> a[i];
int counter = 0;
if (a[0] >= 0) {
for (int i = 0; i < N; ++i) {
if (i % 2 == 0) {
while (a[i] <= 0) {
++a[i];
++counter;
}
} else {
while (a[i] >= 0) {
--a[i];
++counter;
}
}
}
} else {
for (int i = 1; i < N; ++i) {
if (i % 2 == 0) {
while (a[i] >= 0) {
--a[i];
++counter;
}
} else {
while (a[i] <= 0) {
++a[i];
++counter;
}
}
}
}
cout << counter << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | from copy import copy
n = int(input())
a = [int(x) for x in input().split()]
ans1=[(-1)**i for i in range(n)]
ans2=[(-1)**(i+1) for i in range(n)]
b=copy(a)
res_b=0
for i in range(n):
if ans1[i]*sum(b[:i+1])>0:
pass
else:
b[i]=ans1[i]-sum(b[:i])
res_b+=abs(b[i]-a[i])
c=copy(a)
res_c=0
for i in range(n):
if ans2[i]*sum(c[:i+1])>0:
pass
else:
c[i]=ans2[i]-sum(c[:i])
res_c+=abs(c[i]-a[i])
print(min(res_b,res_c)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <stdio.h>
#include<math.h>
int main(void) {
// your code goes here
long int a[100000];
int n,count= 0;
scanf("%d",&n);
int i,j,max=-1000000000;
for(i = 0;i<n;i++)
{
scanf("%ld",&a[i]);
if(a[i]+a[i-1]>max&& i>0);
max = a[i]+a[i-1];
}
if((a[0]+a[1]-max)<(a[0]+a[1]+max));
else
max = -max;
for(i = 0;i<n-1;i++)
{
int new;
new = a[i]+a[i+1];
new = abs(new-max);
count+=new;
max = -max;
}
printf("%d",count);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long[] nums = new long[n];
for(int i = 0; i < n; i++){
nums[i] = sc.nextInt();
}
long result = 0;
long sum = 0;
// + - + -
for(int i = 0; i < n; i++){
if(i % 2 == 0 && sum + nums[i] <= 0){
result += Math.abs(1 - (sum + nums[i]));
sum = 1;
}
else if(i % 2 == 1 && sum + nums[i] >= 0){
result += Math.abs(-1 - (sum + nums[i]));
sum = -1;
}
else{
sum += nums[i];
}
}
int result2 = 0;
sum = 0;
// - + - +
for(int i = 0; i < n; i++){
if(i % 2 == 1 && sum + nums[i] <= 0){
result2 += Math.abs(1 - (sum + nums[i]));
sum = 1;
}
else if(i % 2 == 0 && sum + nums[i] >= 0){
result2 += Math.abs(-1 - (sum + nums[i]));
sum = -1;
}
else{
sum += nums[i];
}
}
System.out.println(Math.min(result, result2));
sc.close();
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main()
{
int n,ans,sum;
cin>>n;
vector<int>a(n);
for(int i=0;i<n;i++){
cin>>a.at(i);
}
sum=a.at(0);
for(int i=0;i<n-1;i++){
while(sum>0&&sum+a.at(i+1)>=0)||(sum<0&&sum+a.at(i+1)<=0)){
if(a.at(i)<0){
a.at(i+1)++;
ans++;
}
if(a.at(i)>0){
a.at(i+1)--;
ans++;
}
}
sum+=a.at(i+1);
}
cout<<ans<<endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def c(ints):
for i in range(len(ints)):
if ints[i] != 0:
sig = 1 if ints[i] > 0 else -1
total = ints[i]
mov = i
if i > 0:
mov += 1
j = i
break
if i == len(ints) - 1:
return i + 1
for i_ in ints[j+1:]:
tmp = total + i_
if tmp == 0:
mov +=1
tmp = -sig
elif sig * tmp > 0:
mov += abs(tmp) + 1
tmp = -sig
sig *= -1
total = tmp
return mov
_ = input()
inp = input()
inp = inp.split(' ')
inp = [int(i_) for i_ in inp]
print(c(inp)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using P = pair<int, int>;
int main() {
long long n;
cin >> n;
long long c[2], s[2];
long long a;
for (int i = 0; i < (n); ++i) {
cin >> a;
for (int j : {0, 1}) {
s[j] += a;
auto p = 1 - (i + j) % 2 * 2;
if (s[j] * p <= 0) {
c[j] += abs(p - s[j]);
s[j] = p;
}
}
}
cout << min(c[0], c[1]) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = input()
A = list(map(int, input().split()))
def Chk(a, pos):
cnt = 0
tmp = 0
for a in A:
tmp += a
if pos and tmp < 1:
cnt += 1 - tmp
tmp = 1
elif not pos and tmp > -1:
cnt += 1 + tmp
tmp = -1
pos = not pos
return cnt
print(min(Chk(A, True), Chk(a, False))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<int, int>;
int INF = 1e9;
template <typename T>
struct BIT {
int n;
vector<T> d;
BIT(int n = 0) : n(n), d(n + 1) {}
void add(int i, T x = 1) {
for (i++; i <= n; i += i & -i) {
d[i] += x;
}
}
T sum(int i) {
T x = 0;
for (i++; i > 0; i -= i & -i) {
x += d[i];
}
return x;
}
};
int main() {
int n;
cin >> n;
vector<int> a(n);
BIT<ll> tree1(100005), tree2(100005);
for (int i = 0; i < (n); ++i) {
cin >> a[i];
tree1.add(i, a[i]);
tree2.add(i, a[i]);
}
ll ans = 1e18;
ll count = 0;
int flag;
if (a[0] > 0)
flag = 1;
else
flag = -1;
for (int i = 1; i < n; i++) {
ll sum = tree1.sum(i);
if (sum * flag >= 0) {
tree1.add(i, -(abs(sum) + 1) * flag);
count += abs(sum) + 1;
}
flag *= -1;
}
ans = min(ans, count);
if (a[0] > 0)
flag = 1;
else
flag = -1;
count = 0;
for (int i = 0; i < n; i++) {
ll sum = tree2.sum(i);
if (sum * flag >= 0) {
tree2.add(i, -(abs(sum) + 1) * flag);
count += abs(sum) + 1;
}
flag *= -1;
}
ans = min(ans, count);
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
void sum(int *N, long long *S, int n);
int main() {
int *N;
long long *S;
;
long long count_eve = 0, count_odd = 0, n;
;
int j = 0, k = 0;
cin >> n;
N = new int[n];
S = new long long[n];
;
for (int i = 0; i < n; i++) {
cin >> N[i];
}
sum(N, S, n);
int del1 = 0, del2 = 0;
while (j != n) {
if (j % 2 == 0 && S[j] + del1 <= 0) {
count_eve += abs(S[j] + del1) + 1;
del1 += abs(S[j] + del1) + 1;
} else if (j % 2 == 1 && S[j] + del1 >= 0) {
count_eve += abs(S[j] + del1) + 1;
del1 += -abs(S[j] + del1) - 1;
}
j++;
}
sum(N, S, n);
while (k != n) {
if (k % 2 == 0 && S[k] + del2 >= 0) {
count_odd += abs(S[k] + del2) + 1;
del2 += -abs(S[k] + del2) - 1;
} else if (k % 2 == 1 && S[k] + del2 <= 0) {
count_odd += abs(S[k] + del2) + 1;
del2 += abs(S[k] + del2) + 1;
}
k++;
}
cout << min(count_eve, count_odd) << endl;
delete[] N;
delete[] S;
return 0;
}
void sum(int *N, long long *S, int n) {
S[0] = N[0];
for (int i = 1; i < n; i++) S[i] = S[i - 1] + N[i];
}
void add(int *S, int n, int del, int k) {
for (int i = k; i < n + 1; i++) S[i] += del;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java |
import java.util.*;
public class Main {
public static void main(String[] args) {
Main main = new Main();
main.run();
}
public void run() {
Scanner sc = new Scanner(System.in);
int n=sc.nextInt();
long sum = sc.nextLong();
long cnt = 0;
for(int i=1; i<n; i++) {
long v= sc.nextLong();
if(sum * v >= 0) {
cnt += v + Math.abs(sum-v) + 1;
if(sum<0) {
v = 1;
}else {
v = -1;
}
}else {
int s = 1;
if(v<0) {
s = -1;
}
if(Math.abs(sum)>=Math.abs(v)) {
cnt+=Math.abs(sum)-Math.abs(v)+1;
v += s*(Math.abs(sum)-Math.abs(v)+1);
}
}
sum += v;
}
System.out.println(cnt);
sc.close();
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
cntA, sumA = 0, 0
for i in range(N):
sumA += A[i]
if i % 2 == 0:
if sumA < 0:
cntA += abs(sumA) + 1
sumA += abs(sumA) + 1
else:
if sumA > 0:
cntA += abs(sumA) + 1
sumA -= abs(sumA) + 1
cntB, sumB = 0, 0
for i in range(N):
sumB += A[i]
if i % 2 != 0:
if sumB > 0:
cntB += abs(sumB) + 1
sumB += abs(sumB) + 1
else:
if sumB > 0:
cntB += abs(sumB) + 1
sumB -= abs(sumB) + 1
print(min(cntA, cntB)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def solve(N, As):
i = As[0]
positive = True if As[0] < 0 else False
ans = 0
if i == 0:
ans = 1
i = 1
for a in As[1:]:
if positive:
if i + a <= 0:
ans += abs(1 - (i + a))
a += 1 - (i + a)
else:
if i + a >= 0:
ans += abs(-1 - (i + a))
a += -1 - (i + a)
i += a
positive = not positive
return ans
if __name__ == "__main__":
n = int(input())
As = list(map(int, input().split(" ")))
print(solve(n, As))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
vector<long long> copy_a = a;
long long count = 0;
long long sum = 0;
if (a[0] != 0) {
for (int i = 0; i < n - 1; i++) {
sum += a[i];
if (sum < 0 && sum + a[i + 1] <= 0) {
long long na = 1 - sum;
count += abs(na - a[i + 1]);
a[i + 1] = na;
}
if (sum > 0 && sum + a[i + 1] >= 0) {
long long na = -1 - sum;
count += abs(na - a[i + 1]);
a[i + 1] = na;
}
}
} else if (a[0] == 0) {
a[0] = 1;
long long count1 = 1;
for (int i = 0; i < n - 1; i++) {
sum += a[i];
if (sum < 0 && sum + a[i + 1] <= 0) {
long long na = 1 - sum;
count1 += abs(na - a[i + 1]);
a[i + 1] = na;
}
if (sum > 0 && sum + a[i + 1] >= 0) {
long long na = -1 - sum;
count1 += abs(na - a[i + 1]);
a[i + 1] = na;
}
}
copy_a[0] = -1;
long long count2 = 1;
long long sum2 = 0;
for (int i = 0; i < n - 1; i++) {
sum2 += copy_a[i];
if (sum2 < 0 && sum2 + copy_a[i + 1] <= 0) {
long long na = 1 - sum2;
count2 += abs(na - copy_a[i + 1]);
copy_a[i + 1] = na;
}
if (sum2 > 0 && sum2 + copy_a[i + 1] >= 0) {
long long na = -1 - sum2;
count2 += abs(na - copy_a[i + 1]);
copy_a[i + 1] = na;
}
}
count = min(count1, count2);
}
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int main(void) {
long long int i, a, n, num;
long long int sum = 0, bsum = 0, ans = 0, m = 0;
scanf("%lld", &n);
for (i = 0; i < n; i++) {
scanf("%lld", &a);
bsum = sum;
sum += a;
if (bsum > 0) {
if (sum > 0) {
num = sum;
do {
num--;
ans++;
m++;
} while (num >= 0);
sum -= m;
m = 0;
}
if (sum = 0) {
ans++;
sum -= 1;
}
}
if (bsum < 0) {
if (sum < 0) {
num = sum;
do {
num++;
ans++;
m++;
} while (num <= 0);
sum += m;
m = 0;
}
if (sum = 0) {
ans++;
sum += 1;
}
}
}
printf("%lld\n", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long mod = 1000000007;
const vector<int> di = {-1, 0, 1, 0};
const vector<int> dj = {0, 1, 0, -1};
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a.at(i);
vector<int> s(n);
int sum = 0;
int ans = 0;
for (int i = 0; i < n; i++) {
if (i == 0) {
s.at(i) = a.at(i);
if (s.at(i) == 0) {
if (a.at(i + 1) > 0) {
s.at(i) = -1;
ans++;
} else {
s.at(i) = 1;
ans++;
}
}
}
if (i > 0) {
s.at(i) = s.at(i - 1) + a.at(i);
if (s.at(i - 1) * s.at(i) > 0 && s.at(i) < 0) {
ans += 1 - s.at(i);
s.at(i) = 1;
continue;
}
if (s.at(i - 1) * s.at(i) > 0 && s.at(i) > 0) {
ans += s.at(i) + 1;
s.at(i) = -1;
continue;
}
if (s.at(i - 1) * s.at(i) == 0) {
if (s.at(i - 1) > 0) {
s.at(i) = -1;
ans++;
continue;
}
if (s.at(i - 1) < 0) {
s.at(i) = 1;
ans++;
}
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split(' ')))
result = 0
h = 0
if a[0] == 0:
a[0] += 1
result += 1
h = 1
counter = a[0]
for i in range(1, n):
if counter < 0:
counter += a[i]
if counter > 0:
continue
else:
result += 1-counter
counter = 1
else:
counter += a[i]
if counter < 0:
continue
else:
result += counter+1
counter = -1
out = []
out.append(result)
result = 0
if h == 1:
result = 1
if a[0] > 0:
result += a[0] +1
counter = -1
else:
result += 1-a[0]
counter = 1
for i in range(1, n):
if counter < 0:
counter += a[i]
if counter > 0:
continue
else:
result += 1-counter
counter = 1
else:
counter += a[i]
if counter < 0:
continue
else:
result += counter+1
counter = -1
out.append(result)
print(min(out)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < (int)(n); i++) {
cin >> a[i];
}
int s = a[0];
int ss = a[0];
long long ans = 0;
for (int i = 1; i < n; i++) {
s = ss;
ss = s + a[i];
if (ss * s < 0) continue;
if (ss == 0) {
ans += 1;
ss = -s / abs(s);
} else {
ans += abs(ss - (-ss / abs(ss)));
ss = -ss / abs(ss);
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long> a(n), sum1(n), sum2(n);
long ans1 = 0, ans2 = 0;
for (int i = 1; i < n; i++) {
cin >> a[i];
if (i > 0) {
sum1[i] = sum1[i - 1] + a[i];
sum2[i] = sum2[i - 1] + a[i];
} else
sum1[0] = sum2[0] = a[0];
if (i % 2 == 0) {
if (sum1[i] <= 0) {
ans1 += abs(1 - sum1[i]);
sum1[i] = 1;
}
if (sum2[i] >= 0) {
ans2 += abs(-1 - sum2[i]);
sum2[i] = -1;
}
}
if (i % 2 == 1) {
if (sum1[i] >= 0) {
ans1 += abs(-1 - sum1[i]);
sum1[i] = -1;
}
if (sum2[i] <= 0) {
ans2 += abs(1 - sum2[i]);
sum2[i] = 1;
}
}
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, a, cnt[25];
long long sum, ans;
int main() {
scanf("%d", &n);
for (int i = 1, x = 0; i <= n; i++) {
scanf("%d", &a);
x ^= a;
for (int j = 0; j <= 16; j++) {
cnt[j] += x >> j & 1;
}
}
for (int k = 0; k <= 16; k++) {
ans += (n + 1ll - cnt[k]) * cnt[k] << k;
}
printf("%lld", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
import numpy as np
import copy
sys.setrecursionlimit(10 ** 6)
INF = float("inf")
MOD = 10 ** 9 + 7
def input():
return sys.stdin.readline().strip()
def main():
N = int(input())
A = list(map(int, input().split()))
c1 = np.cumsum(A)
c2 = copy.deepcopy(c1)
# + - + - の順番
cnt = 0 if c1[0] > 0 else abs(c1[0]) + 1
val = 0 if c1[0] > 0 else abs(c1[0]) + 1
for i in range(N):
if i % 2 == 0:
# +
c1[i] += val
if c1[i] > 0:
pass
else:
cnt += abs(c1[i]) + 1
val += abs(c1[i]) + 1
else:
# -
c1[i] += val
if c1[i] < 0:
pass
else:
cnt += c1[i] + 1
val -= c1[i] + 1
ans = cnt
# - + - +の順番
cnt = 0 if c2[0] < 0 else abs(c2[0]) + 1
val = 0 if c2[0] < 0 else abs(c2[0]) + 1
for i in range(N):
if i % 2 == 1:
# +
c2[i] += val
if c2[i] > 0:
pass
else:
cnt += abs(c2[i]) + 1
val += abs(c2[i]) + 1
else:
# -
c2[i] += val
if c2[i] < 0:
pass
else:
cnt += c2[i] + 1
val -= c2[i] + 1
if ans > cnt:
ans = cnt
print(ans)
if __name__ == "__main__":
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.Linq;
namespace ProgramingStydying
{
class Program
{
static void Main(string[] args)
{
var n = int.Parse(Console.ReadLine());
var a = Console.ReadLine().Split().Select(int.Parse).ToList();
var ans = 0;
if(a[0] == 0)
{
ans = Math.Min(Solve(n, a, 1), Solve(n, a, -1)) + 1;
}
else if(a[0] > 0)
{
ans = Math.Min(Solve(n, a, a[0]), Solve(n, a, -1) + a[0] + 1);
}
else
{
ans = Math.Min(Solve(n, a, a[0]), Solve(n, a, 1) - a[0] + 1);
}
Console.WriteLine(ans);
}
static int Solve(int n, List<int> a, int sum)
{
var ans = 0;
for (int i = 1; i < n; i++)
{
if (sum > 0)
{
sum += a[i];
if (sum < 0)
{
continue;
}
else
{
ans += sum + 1;
sum = -1;
}
}
else if (sum < 0)
{
sum += a[i];
if (sum > 0)
{
continue;
}
else
{
ans += -sum + 1;
sum = 1;
}
}
}
return ans;
}
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
cnt = 0
total = 0
if a[0] > 0:
code = -1
elif a[0] < 0:
code = 1
else:
if a[1] < 0:
code = -1
else:
code = 1
for i in range(n):
total += a[i]
if total != 0:
if total * code < 0:
code *= -1
else:
cnt += total * code + 1
total = code * -1
code *= -1
else:
total = code * -1
cnt += 1
code *= -1
print(cnt)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
ll counter(int N, vector<ll> A, ll sum, ll ans) {
for (int i = 1; i < N; i++) {
if (sum > 0 && sum + A.at(i) >= 0) {
ans += sum + A.at(i) + 1;
sum = -1;
} else if (sum < 0 && sum + A.at(i) <= 0) {
ans += -(sum + A.at(i)) + 1;
sum = 1;
} else
sum += A.at(i);
}
return ans;
}
int main() {
int N;
cin >> N;
vector<ll> A(N);
for (int i = 0; i < N; i++) cin >> A.at(i);
ll sum = A.at(0);
ll ans = 0;
if (sum != 0) {
cout << counter(N, A, sum, ans) << endl;
return 0;
}
ans = min(counter(N, A, sum + 1, ans + 1), counter(N, A, sum - 1, ans + 1));
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 |
import sys
input = sys.stdin.readline
sys.setrecursionlimit(2147483647)
INF=float("inf")
MOD=10**9+7
# A = [ int(input()) for _ in range(N) ]
##############################
N = int(input())
A = list(map(int, input().split()))
def get_count(summary):
count = 0
for i in range(1, N):
# print(summary)
# 次はマイナス
if summary > 0:
# 条件を満たしてる?
if (summary + A[i]) < 0:
summary += A[i]
else:
# プラスになっちゃってるので修正
summary += A[i]
count += abs(-1-summary)
summary = -1
# 次はプラス
else:
if (summary + A[i]) > 0:
summary += A[i]
else:
# マイナスになっちゃってるので修正
summary += A[i]
count += abs(1-summary)
summary = 1
return count
if A[0] > 0:
plus = get_count(A[0])
minus = get_count(-1)
minus += (A[0]+1)
elif A[0] == 0:
plus = get_count(0)+1
minus = get_count(-1)+1
else:
minus = get_count(A[0])
plus = get_count(1)
plus += (abs(plus)+1)
print(min(plus, minus)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | //Sequence.cpp (C)
#include <iostream>
using namespace std;
long long ans(int n, int*, int change);
int main(){
int n;
int a[110000];
cin >> n;
for(int i = 0; i < n; i++) cin >> a[i];
long long pAns,nAns;
pAns = ans(n,a,1);
nAns = ans(n,a,-1);
printf("%d\n",min(pAns,nAns));
}
int ans(int n, int *a, int change){
long long Ans = 0;
long long sum = 0;
for(int i = 0; i < n; i++){
sum += a[i];
switch (change) {
case -1:
if(sum > -1) Ans += 1 + sum, sum = -1;
change *= -1;
break;
case 1:
if(sum < 1) Ans += 1 - sum, sum = 1;
change *= -1;
break;
}
}
return Ans;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
s, ans, i = 0,0,0
while a[i] == 0 and i < n:
ans += 2
i += 1
ans = max(0, ans - 1)
if i == n:
print(ans)
exit()
if ans > 0:
if abs(a[i]) == 1:
ans += 1
s = a[i] // abs(a[i])
else:
s = a[0]
i += 1
for j in range(i,n):
if abs(a[j]) > abs(s) and a[j] // abs(a[j]) != s // abs(s):
s += a[j]
else:
s = -1 * s // abs(s)
ans += abs(abs(a[j]) - 2)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | import java.io.InputStreamReader
import java.io.BufferedReader
fun main(args: Array<String>) {
val br = BufferedReader(InputStreamReader(System.`in`))
br.readLine()
val a = br.readLine().split(" ").map { it.toInt() }
.toIntArray()
fun solve(init: Int): Int {
return a.foldIndexed(Pair(0,0)) { i, acc, e ->
val v = acc.second + e
// println("${i}: ${acc}, ${v}")
if(i % 2 == init) {
if(v > 0) Pair(acc.first, v)
else Pair(acc.first - v + 1, 1)
}
else {
if(v < 0) Pair(acc.first, v)
else Pair(acc.first + v + 1, -1)
}
}.first
}
val ans = Math.min(solve(0), solve(1))
println(ans)
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
a_t = [0]
for i in range(n):
a_t.append(a[i] + a_t[i])
ans = 0
count = 0
for i in range(2, n + 1):
if a_t[i - 1] + count > 0:
if a_t[i] + count > 0:
ans += a_t[i] + count + 1
count += -(a_t[i] + count) - 1
if a_t[i] + count == 0:
ans += 1
count -= 1
elif a_t[i - 1] + count < 0:
if a_t[i] + count < 0:
ans += -(a_t[i] + count) + 1
count += -(a_t[i] + count) + 1
if a_t[i] + count == 0:
ans += 1
count += 1
print(ans) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.