Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) L = [[int(i) for i in input().split()], [-int(i) for i in input().split()]] c = 10**15 for i in range(2): A = L[i] if A[0] != 0: ans = 0 S = A[0] f = A[0]//abs(A[0]) else: ans = 1 S = 1 f = 1 for a in A[1:]: S += a if S == 0: ans += 1 S = -f else: if S/abs(S) != f*(-1): ans += abs(S)+1 S = -f f *= -1 c = min(ans, c) print(c)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; vector<long long> S; vector<long long> A; int j; bool is_plus; long long ans = 0; long long sum = 0; cin >> n; S.push_back(0); for (int i = 0; i < n; i++) { long long a; cin >> a; A.push_back(a); } for (j = 0; j < n; j++) { if (abs(A[j])) { break; } } if (j == n) { cout << A.size() * 2 - 1 << endl; return 0; } if (j) { ans += (j + 1) * 2 - 1; sum = (A[j] > 0) ? -1 : 1; } else { sum = 0; ans = 0; } for (int i = j; i < n; i++) { if (!i) { sum = A[i]; continue; } bool is_plus = sum > 0; sum += A[i]; if (sum == 0) { ans += 1; sum = is_plus ? -1 : 1; } else if (is_plus == (sum > 0)) { ans += abs(sum) + 1; sum = is_plus ? -1 : 1; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long int L = 1e5 + 5; vector<long long int> a(L); int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long int n; cin >> n; for (long long int i = 0; i < n; i++) { cin >> a[i]; } long long int cur = a[0]; long long int ans = 0; if (cur == 0) { ans++; a[0]++; } for (long long int i = 1; i < n; i++) { if (cur * (cur + a[i]) >= 0) { if (cur + a[i] == 0) { if (cur < 0) { a[i]++; } else { a[i]--; } ans++; } else { if (cur < 0) { long long int temp = a[i]; a[i] = 1 - cur; ans += abs(temp - a[i]); } else { long long int temp = a[i]; a[i] = -1 - cur; ans += abs(temp - a[i]); } } } cur += a[i]; } cout << ans << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) seq = [int(x) for x in input().split()] # first : positive case a_sum = seq[0] op = 0 if a_sum > 0: pass else: a_sum = 1 op += abs(a_sum) + 1 for a in seq[1:]: tmp = a_sum + a if tmp * a_sum < 0: a_sum = tmp elif a_sum < 0: #diff = 1 - a_sum - a a_sum = 1 op += abs(tmp) + 1 elif a_sum > 0: #diff = -1 - a_sum - a a_sum = -1 op += abs(tmp) + 1 op1 = op # first : negative case a_sum = seq[0] op = 0 if a_sum < 0: pass else: a_sum = -1 op += abs(a_sum) + 1 for a in seq[1:]: tmp = a_sum + a if tmp * a_sum < 0: a_sum = tmp elif a_sum < 0: #diff = 1 - a_sum - a a_sum = 1 op += abs(tmp) + 1 elif a_sum > 0: #diff = -1 - a_sum - a a_sum = -1 op += abs(tmp) + 1 op2 = op print(min(op1, op2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long N; cin >> N; vector<long long> v(N); bool check = false; for (int i = 0; i < N; i++) { cin >> v[i]; if (v[0] < 0) check = true; if (check) v[i] = -v[i]; } vector<long long> a(N), b(N); int cntA = 0, cntB = 0; if (v[0] == 0) { a[0] = 1; b[0] = -1; cntA++; cntB++; } else { a[0] = v[0]; b[0] = -1; cntB += v[0] + 1; } for (int i = 1; i < N; i++) { long long tmp_a = a[i - 1] + v[i]; if (i % 2 == 0 && tmp_a <= 0) { a[i] = 1; cntA += abs(tmp_a) + 1; } else if (i % 2 == 1 && tmp_a >= 0) { a[i] = -1; cntA += tmp_a + 1; } else { a[i] = tmp_a; } long long tmp_b = b[i - 1] + v[i]; if (i % 2 == 0 && tmp_b >= 0) { b[i] = -1; cntB += tmp_b + 1; } else if (i % 2 == 1 && tmp_b <= 0) { b[i] = 1; cntB += abs(tmp_b) + 1; } else { b[i] = tmp_b; } } cout << min(cntA, cntB) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void solve() { int n, total, total2, cnt, cnt2; total2 = total = cnt2 = cnt = 0; cin >> n; for (int i = 0; i < n; ++i) { int ai; cin >> ai; total2 += ai; total += ai; if (i % 2 == 0) { if (total <= 0) { cnt += -total + 1; total = 1; } if (total2 >= 0) { cnt2 += total2 + 1; total2 = -1; } } else { if (total >= 0) { cnt += total + 1; total = -1; } if (total2 <= 0) { cnt2 += -total2 + 1; total2 = 1; } } } cout << min(cnt, cnt2); } int main() { solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { int i, a, n, num; long long int sum = 0, bsum = 0, ans = 0; scanf("%d", &n); for (i = 0; i < n; i++) { scanf("%d", &a); bsum = sum; sum += a; if (bsum > 0) { if (sum > 0) { num = sum; do { num--; ans++; } while (num >= 0); sum = -1; } if (sum == 0) { ans++; sum = -1; } } if (bsum < 0) { if (sum < 0) { num = sum; do { num++; ans++; } while (num <= 0); sum = 1; } if (sum == 0) { ans++; sum = 1; } } } printf("%lld\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace std; using namespace __gnu_pbds; #define MOD 1000000007 # define INF (1 < <29) #define MODSET(d) if ((d) >= MOD) d %= MOD; #define MODNEGSET(d) if ((d) < 0) d = ((d % MOD) + MOD) % MOD; #define MODADDSET(d) if ((d) >= MOD) d -= MOD; #define MODADDWHILESET(d) while ((d) >= MOD) d -= MOD; //defines #define FILE_IO freopen("in.txt","r",stdin); freopen("out.txt","w",stdout); #define sc1(a,type) type a; cin>>a; #define sc2(a,b,type) type a,b; cin>>a>>b; #define sc3(a, b, c,type) type a,b,c; cin>>a>>b>>c; #define sc4(a, b, c, d,type) type a ,b,c,d; cin>>a>>b>>c>>d; #define nl cout<<"\n"; #define foreach(v, c) for(__typeof( (c).begin()) v = (c).begin(); v != (c).end(); ++v) #define revforeach(v, c) for(__typeof( (c).rbegin()) v = (c).rbegin(); v != (c).rend(); ++v) #define fastio ios_base::sync_with_stdio(0);cin.tie(0); #define re(i,b) for(int i=0;i<int(b);i++) #define re1(i,b) for(int i=1;i<=int(b);i++) #define all(c) c.begin(), c.end() #define rall(c) c.rbegin(),c.rend() #define mpresent(container, element) (container.find(element) != container.end()) //for map,set..etc (returns true/false value) #define vpresent(container, element) (find(all(container),element) != container.end()) //for vectors,strings,list,deque (returns true/false value) #define eb emplace_back #define mp make_pair #define fi first #define se second #define pb push_back #define pf push_front #define ins insert #define F first #define S second #define clr clear() #define sz(x) ((int)x.size()) #define dt distance #define test(t) int t; cin>>t; while(t--) #define csb(i) __builtin_popcount(i) #define csbll(i) __builtin_popcountll(i) #define clz(x) __builtin_clz(x) #define clzl(x) __builtin_clzl(x) #define cp(x) __builtin_parity(x) #define adv(v,num) advance(v,num)//used for lists and other structures that use iterators,when you can't access elements randomly ( iterator moves num positions) #define mod 1000000007 #define MAX_ARR 1000000 #define v2d(rowsize,colsize,type,name) vector<vector<type>> name(rowsize,vector<type>(colsize)); #define digits_in(i) (ll)log10(i)+1 // gives no of digits in a number #define sqr(x) (x)*(x) //does not apply for i==0 , add an excetion contition for n==0 ( cust return count 1 for that inseted of using this function) //typedef typedef string str; typedef long long ll; typedef unsigned long long ull; typedef vector<int> vi; typedef vector<ll> vll; typedef vector<str> vs; typedef vector<char> vc; typedef pair<int,int> pii; typedef pair<str,int> psi; typedef pair<int,str> pis; typedef vector<pii> vii; typedef map<int,int> mii; typedef map<ll,ll> mll; typedef map<str,int> msi; typedef map<char,int> mci; typedef map<int,str> mis; typedef unordered_map<int,int> umii; typedef unordered_map<str,int> umsi; typedef unordered_map<int,str> umis; typedef unordered_map<str,str> umss; typedef unordered_map<char,int> umci; typedef set<str> ss; typedef set<int> si; typedef unordered_set<str> uss; typedef unordered_set<int> usi; typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> pbds; #ifndef ONLINE_JUDGE #include "debug.h" #else #define debug(args...) #endif int main(){fastio #ifndef ONLINE_JUDGE FILE_IO #endif vi v; test(t){ int temp;cin>>temp; v.pb(temp); } int ct=0; re(i,sz(v)-1){ debug(v[i] ,v[i]+v[i+1]); if( (v[i]<0 && v[i]+v[i+1]<0) || (v[i]>0 && v[i]+v[i+1]>0 || v[i]+v[i+1]==0) ){ if( v[i]>0 && v[i]+v[i+1]>0){ ct+=v[i]+v[i+1]+1; } else if(v[i]<0 && v[i]+v[i+1]<0 ){ ct+=abs(v[i]+v[i+1])+1; } else{ ct+=1; } v[i+1]= v[i]>0?-1:1; } else{ v[i+1]+=v[i]; } debug(ct); } cout<<ct; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (int)(n); i++) cin >> a[i]; long long prevArraySum = a[0]; long long currentArraySum = a[0]; long long res = 0; if (a[0] == 0) { res = 1; prevArraySum = 1; currentArraySum = 1; for (int i = (1); i < (n); ++i) { if (prevArraySum > 0) { currentArraySum = prevArraySum + a[i]; if (currentArraySum >= 0) { res += abs(-1 - currentArraySum); prevArraySum = -1; } else { prevArraySum = currentArraySum; } } else { currentArraySum = prevArraySum + a[i]; if (currentArraySum <= 0) { res += abs(1 - currentArraySum); prevArraySum = 1; } else { prevArraySum = currentArraySum; } } } long long res1 = res; res = 1; prevArraySum = -1; currentArraySum = -1; for (int i = (1); i < (n); ++i) { if (prevArraySum > 0) { currentArraySum = prevArraySum + a[i]; if (currentArraySum >= 0) { res += abs(-1 - currentArraySum); prevArraySum = -1; } } else { currentArraySum = prevArraySum + a[i]; if (currentArraySum <= 0) { res += abs(1 - currentArraySum); prevArraySum = 1; } else { prevArraySum = currentArraySum; } } } res = min(res, res1); } else { for (int i = (1); i < (n); ++i) { if (prevArraySum > 0) { currentArraySum = prevArraySum + a[i]; if (currentArraySum >= 0) { res += abs(-1 - currentArraySum); prevArraySum = -1; } else { prevArraySum = currentArraySum; } } else { currentArraySum = prevArraySum + a[i]; if (currentArraySum <= 0) { res += abs(1 - currentArraySum); prevArraySum = 1; } else { prevArraySum = currentArraySum; } } } } cout << res << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys input = sys.stdin.readline n = int(input()) a = [int(x) for x in input().split()] A = a[0] if A != 0: ans = 0 for i in range(1, n): nextA = A + a[i] if (A > 0 and nextA < 0) or (A < 0 and nextA > 0): A = nextA elif nextA == 0 and A > 0: ans += 1 A = -1 elif nextA == 0 and A < 0: ans += 1 A = 1 elif A > 0: ans += abs(nextA) + 1 A = -1 else: ans += abs(nextA) + 1 A = 1 print(ans) sys.exit() # ans1 = 1 # A1 = 1 # for i in range(1, n): # nextA = A1 + a[i] # if (A1 > 0 and nextA < 0) or (A1 < 0 and nextA > 0): # A1 = nextA # elif nextA == 0 and A1 > 0: # ans1 += 1 # A1 = -1 # elif nextA == 0 and A1 < 0: # ans1 += 1 # A1 = 1 # elif A1 > 0: # ans1 += abs(nextA) + 1 # A1 = -1 # else: # ans1 += abs(nextA) + 1 # A1 = 1 # ans2 = 1 # A2 = -1 # for i in range(1, n): # nextA = A2 + a[i] # if (A2 > 0 and nextA < 0) or (A2 < 0 and nextA > 0): # A2 = nextA # elif nextA == 0 and A2 > 0: # ans2 += 1 # A2 = -1 # elif nextA == 0 and A2 < 0: # ans2 += 1 # A2 = 1 # elif A2 > 0: # ans2 += abs(nextA) + 1 # A2 = -1 # else: # ans2 += abs(nextA) + 1 # A2 = 1 # print(min(ans1, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N); for (int i = 0; i < N; i++) { cin >> a.at(i); } int ans1 = 0, ans2 = 0, sum = 0; for (int i = 0; i < N; i++) { sum += a.at(i); if (i % 2 == 0 and sum <= 0) { ans1 += -sum + 1; sum = 1; } else if (i % 2 == 1 and sum >= 0) { ans1 += sum + 1; sum = -1; } } sum = 0; for (int i = 0; i < N; i++) { sum += a.at(i); if (i % 2 == 0 and sum >= 0) { ans2 += sum + 1; sum = -1; } else if (i % 2 == 1 and sum <= 0) { ans2 += -sum + 1; sum = 1; } } int ans = min(ans1, ans2); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int dx[4] = {1, 0, 0, -1}; int dy[4] = {0, 1, -1, 0}; using namespace std; bool cmp_P(const pair<long long int, long long int> &a, const pair<long long int, long long int> &b) { return a.second < b.second; } int main() { long long int tmp = 0, n, sum = 0, v, res = 0; cin >> n; vector<long long int> a(n + 1); for (int i = 0; i < (int)(n); i++) cin >> a[i]; if (a[0] != 0) { v = abs(a[0]) / a[0]; sum = a[0]; for (int i = 1; i < n; i++) { if (v == -1) { if (a[i] + sum <= 0) { res += abs(1 - a[i] - sum); sum = 1; } else { sum += a[i]; } } else { if (a[i] + sum >= 0) { res += abs(-1 - a[i] - sum); sum = -1; } else { sum += a[i]; } } v = -v; } } else { v = 1; tmp++; sum = 1; for (int i = 1; i < n; i++) { if (v == -1) { if (a[i] + sum <= 0) { tmp += abs(1 - a[i] - sum); sum = 1; } else { sum += a[i]; } } else { if (a[i] + sum >= 0) { tmp += abs(-1 - a[i] - sum); sum = -1; } else { sum += a[i]; } } v = -v; } v = 1; res++; sum = 1; for (int i = 1; i < n; i++) { if (v == -1) { if (a[i] + sum <= 0) { res += abs(1 - a[i] - sum); sum = 1; } else { sum += a[i]; } } else { if (a[i] + sum >= 0) { res += abs(-1 - a[i] - sum); sum = -1; } else { sum += a[i]; } } v = -v; } res = min(res, tmp); } cout << res << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) def solve(n): ans = 0 cusm = [] if n == -1 and a[0] > 0: cusm.append(-1) ans += abs(-1 - a[0]) elif n == -1 and a[0] < 0: cusm.append(1) ans += abs(1 - a[0]) else: cusm.append(a[0]) for i, ai in enumerate(a): if i == 0: continue if (cusm[-1] + ai) * cusm[-1] < 0: #符号が逆なら cusm.append(cusm[-1] + ai) elif cusm[-1] > 0: #操作の必要があって前が正なら ans += abs(-1 - (cusm[-1] + ai)) cusm.append(-1) else: #操作の必要があって前が負なら ans += abs(1 - (cusm[-1] + ai)) cusm.append(1) return ans print(min(solve(1),solve(-1)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <iostream> #include <vector> #include <algorithm> using namespace std; int main() { int n; cin >> n; vector<int> a(n + 1); for (int i = 1; i <= n; i++) cin >> a[i]; vector<int> a1; a1 = a; long long int sum1 = 0, ans1 = ; for (int i = 1; i <= n; i++) { sum1 += a1[i]; if (i % 2 == 1 && sum1 <= 0) { int plus = 1 - sum1; sum1 = 1; ans1 += plus; continue; } if (i % 2 == 0 && sum1 >= 0) { int minus = 1 + sum1; sum1 = -1; ans1 += minus; } } vector<int> a2; a2 = a; long long int sum2 = 0, ans2 = 0; for (int i = 1; i <= n; i++) { sum2 += a2[i]; if (i % 2 == 1 && sum2 >= 0) { int minus = 1 + sum2; sum2 = -1; ans2 += minus; continue; } else if (i % 2 == 0 && sum2 <= 0) { int plus = 1 - sum2; sum2 = 1; ans2 += plus; } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
use std::io::*; use std::str::FromStr; pub fn read<T: FromStr>() -> T { let stdin = stdin(); let stdin = stdin.lock(); let token: String = stdin .bytes() .map(|c| c.expect("failed to read char") as char) .skip_while(|c| c.is_whitespace()) .take_while(|c| !c.is_whitespace()) .collect(); token.parse().ok().expect("failed to parse token") } use std::cmp::{max, min}; use std::collections::BTreeMap; fn main() { let n = read::<i64>(); let mut vec_a = vec![]; for i in 0..n { vec_a.push(read::<i64>()); } let mut prev_sum = vec_a[0]; let mut ans = 0; if prev_sum != 0 { for i in 1..vec_a.len() { let b = vec_a[i as usize]; if 0 < prev_sum { if 0 <= prev_sum + b { ans += (1 + prev_sum).abs() + b; prev_sum = -1; } else { prev_sum += b; } } else if prev_sum < 0 { if prev_sum + b <= 0 { ans += (1 - prev_sum).abs() - b; prev_sum = 1; } else { prev_sum += b; } } } } else { prev_sum = 1; ans = 1; for i in 1..vec_a.len() { let b = vec_a[i as usize]; if 0 < prev_sum { if 0 <= prev_sum + b { ans += (1 + prev_sum).abs() + b; prev_sum = -1; } else { prev_sum += b; } } else if prev_sum < 0 { if prev_sum + b <= 0 { ans += (1 - prev_sum).abs() - b; prev_sum = 1; } else { prev_sum += b; } } } let plus_min = ans; prev_sum = -1; ans = 1; for i in 1..vec_a.len() { let b = vec_a[i as usize]; if 0 < prev_sum { if 0 <= prev_sum + b { ans += (1 + prev_sum).abs() + b; prev_sum = -1; } else { prev_sum += b; } } else if prev_sum < 0 { if prev_sum + b <= 0 { ans += (1 - prev_sum).abs() - b; prev_sum = 1; } else { prev_sum += b; } } } let minus_min = ans; ans = min(plus_min, minus_min) } println!("{}", ans); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; signed main() { int N; cin >> N; vector<long long> A(N); for (int i = 0, i_len = (N); i < i_len; ++i) cin >> A[i]; long long ans = LLONG_MAX; int sig[2] = {1, -1}; for (int j = 0, j_len = (2); j < j_len; ++j) { long long sum = 0; long long count = 0; for (int i = 0, i_len = (N); i < i_len; ++i) { sum += A[i]; if (sig[i ^ j & 1] * sum >= 0) { count += llabs(sum) + 1; sum = -sig[i ^ j & 1]; } } ans = min(ans, count); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; vector<long long int> v; int solve(int first_pon) { long long int pon = first_pon, sum = 0, result = 0; for (int i = 0; (i) < (n); i++) { sum += v[i]; if (pon > 0 && sum >= 0) { result += sum + 1; sum = -1; } else if (pon < 0 && sum <= 0) { result += (-sum) + 1; sum = 1; } if (sum > 0) { pon = 1; } else { pon = -1; } } return result; } int main() { cin >> n; v = vector<long long int>(n); for (int i = 0; (i) < (n); i++) { cin >> v[i]; } cout << min(solve(1), solve(-1)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = int(input()) a = [int(_) for _ in input().split()] ans = 0 zeroflag = True zerocnt = 0 tmp = 0 for i in a: if zeroflag and i == 0: zerocnt += 1 elif zeroflag and i != 0: zeroflag = False if zerocnt != 0 and abs(i) == 1: ans += 1 tmp += np.sign(i)*2 elif zerocnt != 0: tmp = i - np.sign(i) else: tmp = i else: if np.sign(tmp+i) == np.sign(tmp) or np.sign(tmp+i) == 0: ans += abs((tmp+i) + np.sign(tmp)) tmp = -np.sign(tmp) else: tmp += i if zerocnt != 0: ans += 2*zerocnt - 1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(a) for a in input().split()] def f(times, prefix_sum): for i in range(1, n): if prefix_sum < 0: if prefix_sum + a[i] > 0: prefix_sum += a[i] else: times += 1 - (prefix_sum + a[i]) prefix_sum = 1 elif prefix_sum > 0: if prefix_sum + a[i] < 0: prefix_sum += a[i] else: times += abs(-1 - (prefix_sum + a[i])) prefix_sum = -1 return times t1 = 0 p1 = a[0] t2 = 0 if a[0] > 0: t2 += abs(-1 - a[0]) p2 = -1 elif a[0] < 0: t2 += 1 - a[0] p2 = 1 else: # a[0] == 0 t1 = 1 p1 = -1 t2 = 1 p2 = 1 print(min(f(t1, p1), t2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i a = gets.split.map &:to_i count = 0 temp = 0 a.each{|ai| dif = 0 unless (temp + ai) * temp < 0 || temp == 0 dif = (temp + ai).abs+1 count += dif ai += dif * (-temp/temp) end temp += ai } puts count
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) a = [int(i) for i in input().split()] def pura(a): A = a[:] ans = 0 check = 0 if A[0] <= 0: ans += 1 + abs(A[0]) A[0] = 1 check += A[0] for i in range(1, N): if i % 2 != 0: if check + A[i] >= 0: ans += abs(A[i] + 1 + check) A[i] = -1 + check else: if check + A[i] <= 0: ans += abs(A[i] - (1 + check)) A[i] = 1 - check check += A[i] return ans def mai(a): A = a[:] ans = 0 check = 0 if A[0] >= 0: ans +=1 + abs(A[0]) A[0] = -1 check += A[0] for i in range(1, N): if i % 2 != 0: if check + A[i] <= 0: ans += abs(A[i] - (1 - check)) A[i] = 1 - check else: if check + A[i] >= 0: ans += abs(A[i] +( 1 + check)) A[i] = -1 - check check += A[i] return ans print(min(pura(a), mai(a)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main(void) { ll n; cin >> n; vector<ll> a(n); for (auto& it : a) cin >> it; ll total = 0; ll ans1 = 0; for (ll i = 0; i < n; i++) { if (total > 0) { if (total + a[i] >= 0) { ans1 += abs(-total - 1 - a[i]); a[i] = -total - 1; } } else { if (total + a[i] <= 0) { ans1 += abs(-total + 1 - a[i]); a[i] = -total + 1; } } total += a[i]; } total = 0; ll ans2 = 0; for (ll i = 0; i < n; i++) { if (total >= 0) { if (total + a[i] >= 0) { ans2 += abs(-total - 1 - a[i]); a[i] = -total - 1; } } else { if (total + a[i] <= 0) { ans2 += abs(-total + 1 - a[i]); a[i] = -total + 1; } } total += a[i]; } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n), es(n), os(n); for (int i = 0; i < n; i++) { cin >> a[i]; } es[0] = os[0] = a[0]; int ecnt = 0, ocnt = 0; for (int i = 0; i < n; i++) { if (i != 0) es[i] = es[i - 1] + a[i]; if (i % 2 == 0 && es[i] <= 0) { ecnt += abs(1 - es[i]); es[i] = 1; } else if (i % 2 != 0 && es[i] >= 0) { ecnt += abs(-1 - es[i]); es[i] = -1; } } for (int i = 0; i < n; i++) { if (i != 0) os[i] = os[i - 1] + a[i]; cout << os[i] << " "; if (i % 2 == 0 && os[i] >= 0) { ocnt += abs(-1 - os[i]); os[i] = -1; } else if (i % 2 != 0 && os[i] <= 0) { ocnt += abs(1 - os[i]); os[i] = 1; } } cout << (ecnt < ocnt ? ecnt : ocnt) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T1, typename T2> inline void chmin(T1 &a, T2 b) { if (a > b) a = b; } template <typename T1, typename T2> inline void chmax(T1 &a, T2 b) { if (a < b) a = b; } signed main() { int n; cin >> n; long long ans = 0; long long sum = 0; bool fl = 0; for (int i = 0; i < (n); i++) { int a; cin >> a; if (i == 0) { if (a == 0) { fl = 1; break; } sum += a; continue; } if (0 < sum) { if (0 < sum + a) { ans += sum + a + 1; sum = -1; } else if (sum + a == 0) { ans++; sum = -1; } else { sum += a; } } else { if (0 > sum + a) { ans += abs(sum + a) + 1; sum = 1; } else if (sum + a == 0) { ans++; sum = 1; } else { sum += a; } } } if (fl) { long long sum1 = 1, sum2 = -1; ans++; int ans2 = 1; for (int i = 0; i < (n - 1); i++) { int a; cin >> a; if (0 < sum1) { if (0 < sum1 + a) { ans += sum1 + a + 1; sum1 = -1; } else if (sum1 + a == 0) { ans++; sum1 = -1; } else { sum1 += a; } } else { if (0 > sum1 + a) { ans += abs(sum1 + a) + 1; sum1 = 1; } else if (sum1 + a == 0) { ans++; sum1 = 1; } else { sum1 += a; } } if (0 < sum2) { if (0 < sum2 + a) { ans2 += sum2 + a + 1; sum2 = -1; } else if (sum2 + a == 0) { ans2++; sum2 = -1; } else { sum2 += a; } } else { if (0 > sum2 + a) { ans2 += abs(sum2 + a) + 1; sum2 = 1; } else if (sum2 + a == 0) { ans2++; sum2 = 1; } else { sum2 += a; } } } chmax(ans, ans2); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) sum = a[0] count = 0 for i in range(1, n) : if sum == 0 : count += 1 if a[i] > 0 : sum = -1 elif a[i] < 0 : sum = 1 temp = sum sum += a[i] if temp > 0 and sum > 0 : count += sum + 1 sum = -1 elif temp < 0 and sum < 0 : count += -sum + 1 sum = 1 if sum == 0 : count += 1 print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { int j = 1, n, a, i, sum = 0, ope = 0; scanf("%d%d", &n, &a); if (a < 0) j = 0; sum += a; for (i = 0; i < n - 1; i++) { scanf("%d", &a); sum += a; if (sum >= 0 && j % 2 == 1) { ope += sum + 1; sum = -1; } else if (sum <= 0 && j % 2 == 0) { ope += 1 - sum; sum = 1; } j++; } printf("%d\n", ope); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; string divide[4] = {"dream", "dreamer", "erase", "eraser"}; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; ++i) cin >> a[i]; int sum = 0; int plus = 0; for (int i = 0; i < n; ++i) { if (i % 2 == 0) { if (sum + a[i] < 1) { plus += 1 - (sum + a[i]); sum = 1; } else sum += a[i]; } else { if (sum + a[i] > -1) { plus += 1 + (sum + a[i]); sum = -1; } else sum += a[i]; } } sum = 0; int minus = 0; for (int i = 0; i < n; ++i) { if (i % 2 == 1) { if (sum + a[i] < 1) { minus += 1 - (sum + a[i]); sum = 1; } else sum += a[i]; } else { if (sum + a[i] > -1) { minus += 1 + (sum + a[i]); sum = -1; } else sum += a[i]; } } cout << min(plus, minus) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; vector<int> cumulative; void reCalc(int index, int value) { for (int i = index; i < n; ++i) cumulative[i] -= value; } int main() { cin >> n; vector<int> input; for (int i = 0; i < n; ++i) { int a; cin >> a; input.push_back(a); } auto itr = input.begin(); for (int i = 0; i < n; ++i) cumulative.push_back(accumulate(itr, itr + i + 1, 0)); int ans = 0; bool isPositive = cumulative[0] > 0; for (int i = 1; i < n; ++i) { if (isPositive) { if (cumulative[i] > 0) { ans += cumulative[i] + 1; reCalc(i, cumulative[i] + 1); } else if (cumulative[i] == 0) { ++ans; reCalc(i, 1); } } else { if (cumulative[i] < 0) { int diff = (0 - cumulative[i]) + 1; ans += diff; reCalc(i, -diff); } else if (cumulative[i] == 0) { ++ans; reCalc(i, -1); } } isPositive = cumulative[i] > 0; } if (accumulate(cumulative.begin(), cumulative.end(), 0) == 0) cout << 1 << endl; else cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<bits/stdc++.h> using namespace std; #include<atcoder/all> using namespace atcoder; using ll = long long; #define _overload3(_1,_2,_3,name,...) name #define _rep(i,n) repi(i,0,n) #define repi(i,a,b) for(int i=int(a);i<int(b);++i) #define rep(...) _overload3(__VA_ARGS__,repi,_rep,)(__VA_ARGS__) #define VIEW(x) do {cerr << #x << ": "; for(auto i : x) cerr << i << " "; cerr << endl;} while(0) #define ALL(x) (x).begin(),(x).end() template<class T>bool umax(T &a, const T &b) {if(a<b){a=b;return 1;}return 0;} template<class T>bool umin(T &a, const T &b) {if(b<a){a=b;return 1;}return 0;} template<typename A,size_t N,typename T> void FILL(A (&array)[N],const T &val){fill((T*)array,(T*)(array+N),val);} template<typename T> void FILL(vector<T> &v, const T &x) {fill(v.begin(), v.end(), x);} template<typename T> void FILL(vector<vector<T>> &v, const T &x) {for(auto &i:v)fill(i.begin(), i.end(), x);} int main() { int n; cin >> n; vector<int> a(n); rep(i,n) cin >> a[i]; ll ans_p = 0; ll sum_p = 0; rep(i, n) { if(i%2) { // - if(sum_p + a[i] < 0) { sum_p += a[i]; } else { ans_p += (sum_p+a[i]) + 1; sum_p = -1; } } else { // + if(sum_p + a[i] > 0) { sum_p += a[i]; } else { ans_p += abs(sum_p+a[i]) + 1; sum_p = 1; } } } ll ans_m = 0; ll sum_m = 0; rep(i, n) { if(!(i%2)) { // + if(sum_m + a[i] < 0) { sum_m += a[i]; } else { ans_m += (sum_m+a[i]) + 1; sum_m = -1; } } else { // - if(sum_m + a[i] > 0) { sum_m += a[i]; } else { ans_m += abs(sum_m+a[i]) + 1; sum_m = 1; } } } cout << min(ans_m, ans_p) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class A> void pr(A a) { cout << (a) << endl; } template <class A, class B> void pr(A a, B b) { cout << a << " "; pr(b); } template <class A, class B, class C> void pr(A a, B b, C c) { cout << a << " "; pr(b, c); } template <class A, class B, class C, class D> void pr(A a, B b, C c, D d) { cout << a << " "; pr(b, c, d); } template <class T> inline bool chmin(T& a, T b) { return a > b ? a = b, true : false; } template <class T> inline bool chmax(T& a, T b) { return a < b ? a = b, true : false; } struct BIT { vector<long long> bit; int n; BIT(int n) : n(n), bit(vector<long long>(n + 1, 0)) {} long long sum(int i) { long long s = 0; while (i > 0) { s += bit[i]; i -= i & -i; } return s; } void add(int i, int x) { while (i <= n) { bit[i] += (long long)x; i += i & -i; } } int lower_bound(long long x) { long long ret = 0; long long k = 1; while (2 * k <= n) k <<= 1; for (; k > 0; k >>= 1) { if (ret + k < n && bit[ret + k] < x) { x -= bit[ret + k]; ret += k; } } return ret + 1; } int upper_bound(long long x) { long long ret = 0; long long k = 1; while (2 * k <= n) k <<= 1; for (; k > 0; k >>= 1) { if (ret + k < n && bit[ret + k] <= x) { x -= bit[ret + k]; ret += k; } } return ret + 1; } long long between(int i, int j) { if (i > j) return 0; return sum(j) - sum(i - 1); } }; int main(void) { int n; cin >> n; BIT a(n); BIT b(n); for (int i = 0; i < n; i++) { long long ai; cin >> ai; a.add(i + 1, ai); b.add(i + 1, ai); } long long ans = 0; for (int i = 0; i < int(n); ++i) { auto a_sum = a.sum(i + 1); if ((i & 1) == 0) { if (a_sum > 0) { a.add(i + 1, -(abs(a_sum) + 1)); ans += abs(a_sum) + 1; } else if (a_sum == 0) { a.add(i + 1, -1); ans += 1; } } else { if (a_sum < 0) { a.add(i + 1, (abs(a_sum) + 1)); ans += abs(a_sum) + 1; } else if (a_sum == 0) { a.add(i + 1, 1); ans += 1; } } } long long ans1 = 0; for (int i = 0; i < int(n); ++i) { auto b_sum = b.sum(i + 1); if ((i & 1) == 1) { if (b_sum > 0) { b.add(i + 1, -(abs(b_sum) + 1)); ans1 += abs(b_sum) + 1; } else if (b_sum == 0) { b.add(i + 1, 1); ans += 1; } } else { if (b_sum < 0) { b.add(i + 1, (abs(b_sum) + 1)); ans1 += abs(b_sum) + 1; } else if (b_sum == 0) { b.add(i + 1, -1); ans += 1; } } } pr(min(ans, ans1)); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int Inf = 1e9; const double EPS = 1e-9; int gcd(int a, int b) { if (b == 0) { return a; } else { return gcd(b, a % b); } } int lcm(int a, int b) { return a * b / gcd(a, b); } int bitCount(long bits) { bits = (bits & 0x55555555) + (bits >> 1 & 0x55555555); bits = (bits & 0x33333333) + (bits >> 2 & 0x33333333); bits = (bits & 0x0f0f0f0f) + (bits >> 4 & 0x0f0f0f0f); bits = (bits & 0x00ff00ff) + (bits >> 8 & 0x00ff00ff); return (bits & 0x0000ffff) + (bits >> 16 & 0x0000ffff); } int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; int ans = Inf; int cnt = 0; vector<int> a(n), b(n); for (int i = 0; i < (int)n; ++i) { cin >> a[i]; b[i] = a[i]; } int sum = a[0]; for (int i = 1; i < (int)n; ++i) { sum += a[i]; if (i % 2 == 1 && sum >= 0) { int diff = sum + 1; cnt += diff; sum = -1; } else if (i % 2 == 0 && sum <= 0) { int diff = 1 - sum; cnt += diff; sum = 1; } } ans = min(ans, cnt); cnt = 0; sum = b[0]; for (int i = 1; i < (int)n; ++i) { sum += a[i]; if (i % 2 == 0 && sum >= 0) { int diff = sum + 1; cnt += diff; sum = -1; } else if (i % 2 == 1 && sum <= 0) { int diff = 1 - sum; cnt += diff; sum = 1; } } ans = min(ans, cnt); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long solve(long long *a, int n) { long long count = 0; long long calc = 0; int state, pstate; if (a[0] < 0) state = -1; if (a[0] > 0) state = 1; for (int i = 1; i < n; i++) { pstate = state; int tmp = a[i] + calc; if (tmp < 0) state = -1; if (tmp == 0) state = 0; if (tmp > 0) state = 1; if (pstate == state) { if (state == -1) { count += 1 - tmp; calc += 1 - tmp; state = 1; } else if (state == 1) { count += tmp + 1; calc += -1 - tmp; state = -1; } } if (state == 0) { if (pstate == -1) { count += 1; calc += 1; state = 1; } else if (pstate == 1) { count += 1; calc += -1; state = -1; } } } return count; } int main() { int n; long long ans; long long *a; cin >> n; a = new long long[n]; for (int i = 0; i < n; i++) cin >> a[i]; for (int i = 1; i < n; i++) a[i] = a[i - 1] + a[i]; if (a[0] == 0) { long long bs, cs; long long *b = new long long[n]; long long *c = new long long[n]; for (int i = 0; i < n; i++) b[i] = a[i] + 1; for (int i = 0; i < n; i++) c[i] = a[i] - 1; bs = solve(b, n); cs = solve(c, n); ans = bs < cs ? bs : cs; } else ans = solve(a, n); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String args[]){ Scanner scanner = new Scanner(System.in); int count = 0; int l[] = new int[scanner.nextInt()]; int x[] = new int[l.length]; for (int i = 0;i < l.length;++i){ l[i] = Integer.valueOf(scanner.next()); if(i > 0){ x[i] = l[i] + x[i - 1]; } else{ x[i] = l[i]; } } for (int i = 1;i < l.length;++i){ int p = x[i - 1]; int q = x[i]; if(q == 0||(q < 0&&p < 0)||(q > 0&&p > 0)){ int c = 1 + ((p > 0) ? 1 : -1) * q; count += c; l[i] += ((p > 0) ? -1 : 1) * c; } } System.out.println(count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = input() a_s = [int(x) for x in input().split()] sum_i = 0 num = 0 for i in range(len(a_s)): a = a_s[i] new_sum_i = sum_i + a # print(f"a:{a}, tmp_sum_i:{new_sum_i}") if (new_sum_i == 0): if sum_i == 0: new_sum_i = 1 if a_s[i+1] == 0 else np.sign(a_s[i+1])*(-1) else: new_sum_i = np.sign(sum_i)*(-1) adjusted_a = new_sum_i - sum_i num += abs(max(adjusted_a, a) - min(adjusted_a, a)) sum_i = new_sum_i elif new_sum_i * sum_i > 0: new_sum_i = np.sign(new_sum_i)*-1 adjusted_a = new_sum_i - sum_i num += abs(max(adjusted_a, a) - min(adjusted_a, a)) sum_i = new_sum_i else: sum_i = new_sum_i # print(f"a:{a}, new_sum_i:{sum_i}, num:{num}") # print() print(num)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int s[n]; for (int i = 0; i < n; i++) { cin >> s[i]; } int pos = 0; int neg = 0; int tmpsum = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0) { tmpsum = tmpsum + s[i]; if (tmpsum <= 0) { pos = pos + 1 - tmpsum; tmpsum = 1; } } else { tmpsum = tmpsum + s[i]; if (tmpsum >= 0) { pos = pos + tmpsum + 1; tmpsum = -1; } } } tmpsum = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0) { tmpsum = tmpsum + s[i]; if (tmpsum >= 0) { neg = neg + 1 + tmpsum; tmpsum = -1; } } else { tmpsum = tmpsum + s[i]; if (tmpsum <= 0) { neg = neg - tmpsum + 1; tmpsum = 1; } } } if (pos > neg) { cout << neg; } else { cout << pos; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; static const int INF = 2000000000; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (int)(n); i++) cin >> a[i]; long long ans = 0; long long wa; if (a[0] != 0) { wa = a[0]; for (int i = 1; i < n; i++) { if (wa > 0) { wa += a[i]; if (wa < 0) continue; else { ans += wa + 1; wa = -1; } } else { wa += a[i]; if (wa > 0) continue; else { ans += 1 - wa; wa = 1; } } } cout << ans << endl; } else { long long ans1 = 0, ans2 = 0; wa = 1; for (int i = 1; i < n; i++) { if (wa > 0) { wa += a[i]; if (wa < 0) continue; else { ans1 += wa + 1; wa = -1; } } else { wa += a[i]; if (wa > 0) continue; else { ans1 += 1 - wa; wa = 1; } } } wa = -1; for (int i = 1; i < n; i++) { if (wa > 0) { wa += a[i]; if (wa < 0) continue; else { ans2 += wa + 1; wa = -1; } } else { wa += a[i]; if (wa > 0) continue; else { ans2 += 1 - wa; wa = 1; } } } if (ans1 < ans2) cout << ans1 << endl; else cout << ans2 << endl; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#define _GLIBCXX_DEBUG #include <iostream> #include <vector> #include <string> #include <algorithm> using namespace std; typedef long long ll; #define REP(i,n) for(int i=0;i<(int)n;++i) #define FOR(i,c) for(__typeof((c).begin())i=(c).begin();i!=(c).end();++i) #define ALL(c) (c).begin(), (c).end() int main() { int n; cin >> n; vector<ll> a(n); REP(i,n) { ll b; cin >> b; a[i] = b; } vector<ll> a2(a); // a[0] > 0 ll res1 = 0, sum1 = 0; REP(i, n) { if(i%2 == 0) { if (sum1 + a[i] <= 0) { ll dif = -(sum1 + a[i]) + 1; res1 += dif; a[i] += dif; } sum1 += a[i]; } else { if (sum1 + a[i] >= 0) { ll dif = (sum1 + a[i]) + 1; res1 += dif; a[i] -= dif; } sum1 += a[i]; } } ll res2 = 0, sum2 = 0; REP(i, n) { if(i%2 == 1) { if (sum2 + a2[i] <= 0) { ll dif = -(sum2 + a2[i]) + 1; res2 += dif; a2[i] += dif; } sum2 += a2[i]; } else { if (sum2 + a2[i] >= 0) { ll dif = (sum2 + a2[i]) + 1; res2 += dif; a2[i] -= dif; } sum2 += a2m[i]; } } cout << min(res1, res2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int64_t n; cin >> n; int64_t count = 0; int64_t Acount = 0; int64_t Bcount = 0; int64_t sum = 0; vector<int> a(n); for (int i = 0; i < (int)(n); i++) cin >> a.at(i); int Ah = 0; int Bh = 0; int64_t sumA = 0; int64_t sumB = 0; if (a.at(0) == 0) { a.at(0) = 1; Acount++; for (int i = 0; i < n - 1; i++) { sumA += a.at(i); Ah = 0; Bh = 0; for (;;) { sumB = sumA + a.at(i + 1); if (sumA > 0) Ah = 1; else Ah = -1; if (sumB > 0) Bh = 1; else if (sumB < 0) Bh = -1; else Bh = 0; if ((Ah == 1 && Bh == -1) || (Ah == -1 && Bh == 1)) break; else if (Ah == 1 && Bh != -1) { a.at(i + 1) -= abs(sumB) + 1; Acount += abs(sumB) + 1; break; } else if (Ah == -1 && Bh != 1) { a.at(i + 1) += abs(sumB) + 1; Acount += abs(sumB) + 1; break; } } } a.at(0) = -1; Bcount++; for (int i = 0; i < n - 1; i++) { sumA += a.at(i); Ah = 0; Bh = 0; for (;;) { sumB = sumA + a.at(i + 1); if (sumA > 0) Ah = 1; else Ah = -1; if (sumB > 0) Bh = 1; else if (sumB < 0) Bh = -1; else Bh = 0; if ((Ah == 1 && Bh == -1) || (Ah == -1 && Bh == 1)) break; else if (Ah == 1 && Bh != -1) { a.at(i + 1) -= abs(sumB) + 1; Bcount += abs(sumB) + 1; break; } else if (Ah == -1 && Bh != 1) { a.at(i + 1) += abs(sumB) + 1; Bcount += abs(sumB) + 1; break; } } } if (Acount > Bcount) cout << Bcount << endl; else cout << Acount << endl; } else { for (int i = 0; i < n - 1; i++) { sumA += a.at(i); Ah = 0; Bh = 0; for (;;) { sumB = sumA + a.at(i + 1); if (sumA > 0) Ah = 1; else Ah = -1; if (sumB > 0) Bh = 1; else if (sumB < 0) Bh = -1; else Bh = 0; if ((Ah == 1 && Bh == -1) || (Ah == -1 && Bh == 1)) break; else if (Ah == 1 && Bh != -1) { a.at(i + 1) -= abs(sumB) + 1; count += abs(sumB) + 1; break; } else if (Ah == -1 && Bh != 1) { a.at(i + 1) += abs(sumB) + 1; count += abs(sumB) + 1; break; } } } cout << count << endl; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) ans = 0 if a[0] == 0: flag = 1 a[0] = 1 ans += 1 elif a[0] > 0: flag = 1 else: flag = -1 dp = [0 for i in range(n)] dp[0] = a[0] for i in range(1, n): dp[i] = dp[i - 1] + a[i] if dp[i] == 0: dp[i] = flag * -1 ans += 1 elif flag == 1 and dp[i] > 0: ans += abs(-1 - dp[i]) dp[i] = -1 elif flag == -1 and dp[i] < 0: ans += abs(1 - dp[i]) dp[i] = 1 flag *= -1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; ++i) { cin >> a[i]; } int min_ans = INT_MAX; for (int mod = 0; mod < 2; ++mod) { int ans = 0; int sum = 0; for (int i = 0; i < n; ++i) { int sign = ((i % 2) == mod) * -2 + 1; sum += a[i]; if (sign * sum <= 0) { int diff = sign - sum; sum += diff; ans += abs(diff); } } min_ans = min(min_ans, ans); } cout << min_ans << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 1e9; const long long LINF = 1e18; const long long MOD = 1e9 + 7; double EPS = 1e-8; const double PI = acos(-1); int dx[] = {-1, 1, 0, 0}; int dy[] = {0, 0, -1, 1}; int n; long long rp(long long *a, long long sum, long long cnt) { for (int j = 1; j < n; j++) { if (sum > 0 && sum + a[j] < 0) { sum += a[j]; continue; } if (sum < 0 && sum + a[j] > 0) { sum += a[j]; continue; } if (sum < 0 && sum + a[j] <= 0) { long long dt = 1 - (sum + a[j]); cnt += dt; a[j] += dt; sum += a[j]; continue; } if (sum > 0 && sum + a[j] >= 0) { long long dt = (sum + a[j]) - (-1); cnt += dt; a[j] -= dt; sum += a[j]; continue; } } return cnt; } int main() { cin >> n; long long a[int(1e5) + 5]; long long b[int(1e5) + 5]; for (int i = 0; i < n; i++) { cin >> a[i]; b[i] = a[i]; } long long cnt = 0; long long sum = 0; long long result; if (a[0] > 0) { cnt += a[0] + 1; sum = -1; long long ans1 = rp(a, sum, cnt); sum = b[0]; cnt = 0; long long ans2 = rp(b, sum, cnt); result = min(ans1, ans2); } else { sum = 1; cnt = a[0] + 1; long long ans1 = rp(a, sum, cnt); sum = b[0]; cnt = 0; long long ans2 = rp(b, sum, cnt); result = min(ans1, ans2); } cout << result << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def k(n, a, p): x = 0 c = 0 for i in range(n): s = x + a[i] if (s > 0) == p: x = s else: c += abs(s) + 1 if p: x = 1 else: x = -1 p = not p return c n = int(input()) a = [int(x) for x in input().split()] print(min(k(n, a, True), k(n, a, False)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long table[100005]; int main() { long long n, ans; cin >> n; for (int i = 0; i < n; i++) { cin >> table[i]; } ans = 0; if (table[0] >= 0) { for (int i = 0; i < n; i++) { if (i > 0) table[i] += table[i - 1]; if (i % 2 == 0 && table[i] <= 0) { ans += 1 - table[i]; table[i] = 1; } if (i % 2 == 1 && table[i] >= 0) { ans += table[i] + 1; table[i] = -1; } } } else { for (int i = 0; i < n; i++) { if (i > 0) table[i] += table[i - 1]; if (i % 2 == 0 && table[i] >= 0) { ans += table[i] + 1; table[i] = -1; } if (i % 2 == 1 && table[i] <= 0) { ans += 1 - table[i]; table[i] = 1; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; static const long long maxLL = (long long)1 << 62; long long a[100001] = {}; long long s[100001] = {}; int main() { long long n; cin >> n; long long cnt = 0; for (long long i = 1; i <= n; i++) { cin >> a[i]; } for (long long i = 1; i <= n; i++) { s[i] = s[i - 1] + a[i]; if (i > 1) { if (s[i] == 0) { s[i] = s[i - 1] * -1; cnt++; } else if (i > 1 && s[i - 1] * s[i] > 0) { cnt += abs(s[i]) + 1; if (s[i] > 0) s[i] -= abs(s[i]) + 1; else if (s[i] < 0) s[i] += abs(s[i]) + 1; } } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, no, ans; int main() { cin >> n; int a; for (int i = 0; i < n; i++) { cin >> a; if (i == 0) { no = a; } else { if (no > 0) { no += a; if (no >= 0) { ans += no + 1; no = -1; } } else { no += a; if (no <= 0) { ans += no * -1 + 1; no = 1; } } } cout << no << " " << ans << endl; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) A = a[0] for i in range(1,n): num = abs(A)+1 if A*(A+a[i])<0: A += a[i] elif A+a[i]==0: if A>0: A += a[i]-num ans += num else: A += a[i]+num ans += num elif A*(A+a[i])>0: if A>0: A += a[i]-num ans += num else: A += a[i]+num ans += num print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; import java.io.*; import java.math.BigInteger; public class Main { private static final int mod =(int)1e9+7; public static void main(String[] args) throws Exception { Scanner sc=new Scanner(System.in); PrintWriter out=new PrintWriter(System.out); int n=sc.nextInt(); int a[]=new int[n]; for(int i=0;i<n;i++) { a[i]=sc.nextInt(); } long sum=a[0]; long operations=0; if(a.length==1) { if(a[0]!=0) { System.out.println(0); }else { System.out.println(1); } }else { if(sum==0) { if(a.length>=2&&sum+a[1]>0) sum--; else sum++; operations++; } for(int i=1;i<n;i++) { if(sum>0) { if(sum+a[i]<0) { sum+=a[i]; }else { if(sum+a[i]==0) { sum+=a[i]-1; operations++; }else { long req=(long)-1-1l*sum; sum=-1; operations+=(-1l*req+a[i]); } } }else { if(sum+a[i]>0) { sum+=a[i]; }else { if(sum+a[i]==0) { sum+=a[i]+1; operations++; }else { long req=(long)1+-1l*sum; sum=1; operations+=(req-a[i]); } } } } System.out.println(operations); } } static boolean vis[]=new boolean[10001]; static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } // Function to find gcd of array of // numbers static int f(int arr[], int n) { int result = n; int max=-1; int ans=0; for (int element: arr){ if(vis[element]==false) result = gcd(n, element); if(result>max) { max=result; ans=element; } } return ans; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import std.stdio, std.conv, std.algorithm, std.range, std.array, std.string, std.uni, std.bigint, std.math; void main() { auto n = readln.chomp.to!uint; auto an = readln.split.to!(int[]); auto sum = 0; auto cnt = 0; foreach (a; an) { if (sum != 0 && (sum + a) * sum >= 0) { auto na = -sum - sgn(sum); cnt += abs(na - a); a = na; }_ sum += a; } writeln(cnt); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
def func(a, n, x, a0) res=x sum=a0 (1...n).each do |i| t=sum+a[i] if t==0 || (sum>0)==(t>0) t=sum>0 ? -1 :1 res+=(t-sum-a[i]).abs end sum=t end res end n, *a=`dd`.split.map &:to_i puts (a[0]==0 ? [func(a, n, 1, 1), func(a, n, 1, -1)].min : func(a, n, 0, a[0]))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def main(): import sys input = sys.stdin.readline n = int(input()) a = list(map(int, input().split())) A = () A_append = A.append cnt = 0 for i in range(n-1): A_append(a[i]) x = sum(A) + a[i+1] if sum(A) > 0 and x > 0: y = abs(x)+1 cnt += y a[i+1] -= y elif sum(A) < 0 and x < 0: y = abs(sum(A) - a[i+1])-1 cnt += y a[i+1] += y if sum(a) == 0: cnt += 1 print(cnt) if __name__ == '__main__': main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; long a, sum1 = 0, sum2 = 0, ans1 = 0, ans2 = 0; for (int i = 1; i <= N; i++) { cin >> a; sum1 += a; sum2 += a; if (i % 2 != 0) { if (sum1 < 0) { ans1 += 1 - sum1; sum1 = 1; } if (sum2 >= 0) { ans2 += 1 + sum2; sum2 = -1; } } else { if (sum1 >= 0) { ans1 += 1 + sum1; sum1 = -1; } if (sum2 <= 0) { ans2 += 1 - sum2; sum2 = 1; } } } cout << min(ans1, ans2); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace std; using namespace __gnu_pbds; #define MOD 1000000007 # define INF (1 < <29) #define MODSET(d) if ((d) >= MOD) d %= MOD; #define MODNEGSET(d) if ((d) < 0) d = ((d % MOD) + MOD) % MOD; #define MODADDSET(d) if ((d) >= MOD) d -= MOD; #define MODADDWHILESET(d) while ((d) >= MOD) d -= MOD; //defines #define FILE_IO freopen("in.txt","r",stdin); freopen("out.txt","w",stdout); #define sc1(a,type) type a; cin>>a; #define sc2(a,b,type) type a,b; cin>>a>>b; #define sc3(a, b, c,type) type a,b,c; cin>>a>>b>>c; #define sc4(a, b, c, d,type) type a ,b,c,d; cin>>a>>b>>c>>d; #define nl cout<<"\n"; #define foreach(v, c) for(__typeof( (c).begin()) v = (c).begin(); v != (c).end(); ++v) #define revforeach(v, c) for(__typeof( (c).rbegin()) v = (c).rbegin(); v != (c).rend(); ++v) #define fastio ios_base::sync_with_stdio(0);cin.tie(0); #define re(i,b) for(int i=0;i<int(b);i++) #define re1(i,b) for(int i=1;i<=int(b);i++) #define all(c) c.begin(), c.end() #define rall(c) c.rbegin(),c.rend() #define mpresent(container, element) (container.find(element) != container.end()) //for map,set..etc (returns true/false value) #define vpresent(container, element) (find(all(container),element) != container.end()) //for vectors,strings,list,deque (returns true/false value) #define eb emplace_back #define mp make_pair #define fi first #define se second #define pb push_back #define pf push_front #define ins insert #define F first #define S second #define clr clear() #define sz(x) ((int)x.size()) #define dt distance #define test(t) int t; cin>>t; while(t--) #define csb(i) __builtin_popcount(i) #define csbll(i) __builtin_popcountll(i) #define clz(x) __builtin_clz(x) #define clzl(x) __builtin_clzl(x) #define cp(x) __builtin_parity(x) #define adv(v,num) advance(v,num)//used for lists and other structures that use iterators,when you can't access elements randomly ( iterator moves num positions) #define mod 1000000007 #define MAX_ARR 1000000 #define v2d(rowsize,colsize,type,name) vector<vector<type>> name(rowsize,vector<type>(colsize)); #define digits_in(i) (ll)log10(i)+1 // gives no of digits in a number #define sqr(x) (x)*(x) //does not apply for i==0 , add an excetion contition for n==0 ( cust return count 1 for that inseted of using this function) //typedef typedef string str; typedef long long ll; typedef unsigned long long ull; typedef vector<int> vi; typedef vector<ll> vll; typedef vector<str> vs; typedef vector<char> vc; typedef pair<int,int> pii; typedef pair<str,int> psi; typedef pair<int,str> pis; typedef vector<pii> vii; typedef map<int,int> mii; typedef map<ll,ll> mll; typedef map<str,int> msi; typedef map<char,int> mci; typedef map<int,str> mis; typedef unordered_map<int,int> umii; typedef unordered_map<str,int> umsi; typedef unordered_map<int,str> umis; typedef unordered_map<str,str> umss; typedef unordered_map<char,int> umci; typedef set<str> ss; typedef set<int> si; typedef unordered_set<str> uss; typedef unordered_set<int> usi; typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> pbds; // #ifndef ONLINE_JUDGE // #include "debug.h" // #else // #define debug(args...) // #endif int main(){fastio // #ifndef ONLINE_JUDGE // FILE_IO // #endif vi v; test(t){ int temp;cin>>temp; v.pb(temp); } int ct=0; re(i,sz(v)-1){ // debug(v[i] ,v[i]+v[i+1]); if( (v[i]<0 && v[i]+v[i+1]<0) || (v[i]>0 && v[i]+v[i+1]>0 || v[i]+v[i+1]==0) ){ if( v[i]>0 && v[i]+v[i+1]>0){ ct+=v[i]+v[i+1]+1; } else if(v[i]<0 && v[i]+v[i+1]<0 ){ ct+=abs(v[i]+v[i+1])+1; } else{ ct+=1; } v[i+1]= v[i]>0?-1:1; } else{ v[i+1]+=v[i]; } // debug(ct); } cout<<ct; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N); for (auto &i : a) cin >> i; int64_t sum = 0; int64_t cnt = 0; int sign; for (int i = 0; i < N; i++) { if (a.at(i) != 0) { sign = a.at(i) / abs(a.at(i)); break; } if (i == N - 1) { cout << 2 * N - 1 << endl; return 0; } } for (int i = 0; i < N; i++) { sum += a.at(i); if (sign * sum <= 0) { cnt += abs(sum) + 1; sum = sign; } sign *= -1; } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { int n; cin >> n; vector<ll> v(n), s(n, 0); ll sum = 0; for (int i = 0; i < n; i++) { cin >> v[i]; sum += v[i]; s[i] = sum; } ll c = 0; ll ans = 0; for (int i = 1; i < n; i++) { s[i] += c; if (s[i - 1] * s[i] > 0) { ans += abs(s[i]); c -= s[i]; s[i] -= s[i]; } if (s[i] == 0) { if (s[i - 1] < 0) s[i]++, c++, ans++; if (s[i - 1] > 0) s[i]--, c--, ans++; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } int sum = a.at(0); int count_eve = 0; int count_odd = 0; if (a.at(0) <= 0) { count_eve += -sum + 1; sum = 1; } for (int i = 0; i < n - 1; i++) { if (i % 2 == 0) { if (sum + a.at(i + 1) < 0) { sum += a.at(i + 1); } else { count_eve += sum + a.at(i + 1) + 1; sum = -1; } } else if (i % 2 == 1) { if (sum + a.at(i + 1) > 0) { sum += a.at(i + 1); } else { count_eve += -sum - a.at(i + 1) + 1; sum = 1; } } } sum = a.at(0); if (a.at(0) >= 0) { count_odd += sum + 1; sum = -1; } for (int i = 0; i < n - 1; i++) { if (i % 2 == 0) { if (sum + a.at(i + 1) > 0) { sum += a.at(i + 1); } else { count_odd += -sum - a.at(i + 1) + 1; sum = 1; } } else if (i % 2 == 1) { if (sum + a.at(i + 1) < 0) { sum += a.at(i + 1); } else { count_odd += sum + a.at(i + 1) + 1; sum = -1; } } } cout << min(count_eve, count_odd); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; long long a[100006]; long long ans1 = 0; long long ans2 = 0; long long sum = 0; int i; scanf("%d", &n); for (i = 0; i < n; i++) scanf("%lld", &a[i]); sum = a[0]; for (i = 1; i < n; i++) { if (sum > 0) { if (sum + a[i] >= 0) { ans1 += a[i] + sum + 1; sum = -1; } else { sum += a[i]; } } else { if (sum + a[i] <= 0) { ans1 += -sum + 1 - a[i]; sum = 1; } else { sum += a[i]; } } } sum = -a[0]; for (i = 1; i < n; i++) { if (sum > 0) { if (sum + a[i] >= 0) { ans2 += a[i] + sum + 1; sum = -1; } else { sum += a[i]; } } else { if (sum + a[i] <= 0) { ans2 += -sum + 1 - a[i]; sum = 1; } else { sum += a[i]; } } } printf("%lld\n", min(ans1, ans2)); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int store[100007]; int main() { int n; cin >> n; for (int i = 1; i <= n; i++) scanf("%d", &store[i]); int cnt = 0; int sum = store[1]; for (int i = 2; i <= n; i++) { int tmp = store[i] + sum; if (tmp) if ((tmp < 0 && sum > 0) || (tmp > 0 && sum < 0)) { sum = tmp; continue; } int need; if (sum > 0) { need = -1 - sum, sum = -1; if (!need) need = -2 - sum, sum = -2; } else { need = abs(1 - sum), sum = 1; if (!need) need = abs(2 - sum), sum = 2; } cnt += abs(store[i] - need); } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import copy n = int(input()) a = [int(i) for i in input().split()] b=a.copy() s0p = a[0] s0n = b[0] countp = 0 countn = 0 if s0p<=0: s0p+=(abs(s0p)+1) countp+=abs(s0p) if s0n>=0: s0n-=(abs(s0n)+1) countn+=abs(s0n) for i in range(1,n): s1 = s0p+a[i] if s0p*s1>=0: if s1>0: a[i]-=(abs(s1)+1) countp+=(abs(s1)+1) elif s1<0: a[i]+=(abs(s1)+1) countp+=(abs(s1)+1) elif s1==0: if s0p>0: a[i]-=1 countp+=1 elif s0p<0: a[i]+=1 countp+=1 s0p += a[i] for i in range(1,n): s1 = s0n+b[i] if s0n*s1>=0: if s1>0: b[i]-=(abs(s1)+1) countn+=(abs(s1)+1) elif s1<0: b[i]+=(abs(s1)+1) countn+=(abs(s1)+1) elif s1==0: if s0n>0: b[i]-=1 countn+=1 elif s0n<0: b[i]+=1 countn+=1 s0n += b[i] print(countp if countp<=countn else(countn))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using lli = long long int; using ulli = unsigned long long int; vector<lli> N, rN; lli in, n, d = 0, dp, pm; ulli ans = 0; int main() { cin >> n; for (lli l = 0; l < n; l++) { cin >> in; if (l == 0) { N.push_back(in); } else { N.push_back(N[l - 1] + in); } } for (lli l = 1; l < (lli)N.size(); l++) { dp = d; {}; {}; if (N[l - 1] + dp < 0) { if (N[l] + dp < 0) { d += 1 - N[l] - dp; ans += 1 - N[l] - dp; } else if (N[l] + dp == 0) { d += 1; ans += 1; } } else if (N[l - 1] + dp > 0) { if (N[l] + dp > 0) { d -= N[l] + dp + 1; ans += N[l] + dp + 1; } else if (N[l] + dp == 0) { d -= 1; ans += 1; } } else { for (lli m = l - 1; m < (lli)N.size(); m++) { if (N[m] + dp > 0) { pm = (m - l) % 2; break; } else if (N[m] + dp < 0) { pm = (m - l + 1) % 2; break; } if (m == (lli)N.size() - 1) { pm = (m + 1) % 2; break; } } if (pm == 1) { d += 1; ans += 1; } else if (pm == 0) { d -= 1; ans += 1; } dp = d; if (N[l] + dp < 0) { d += 1 - N[l] - dp; ans += 1 - N[l] - dp; } else if (N[l] + dp == 0) { d += 1; ans += 1; } else if (N[l] + dp > 0) { d -= N[l] + dp + 1; ans += N[l] + dp + 1; } else if (N[l] + dp == 0) { d -= 1; ans += 1; } } {}; {}; {}; {}; {}; } cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } long n, i, a, sum1, ans1, sum2, ans2; bool sign1, sign2; inline void solve() { cin >> (n); for ((i) = (0); (i) < (n); (i)++) { cin >> (a); if (i == 0) { sum1 = a; sum2 = a; if (a < 0) { sign1 = false; sign2 = true; } else { sign1 = true; sign2 = false; } } else { if (sign1) { if (sum1 + a >= 0) { ans1 += sum1 + a + 1; sum1 = -1; } else { sum1 += a; } sign1 = false; } else { if (sum1 + a <= 0) { ans1 += abs(sum1 + a) + 1; sum1 = 1; } else { sum1 += a; } sign1 = true; } if (sign2) { if (sum2 + a >= 0) { ans2 += sum2 + a + 1; sum2 = -1; } else { sum2 += a; } sign2 = false; } else { if (sum2 + a <= 0) { ans2 += abs(sum2 + a) + 1; sum2 = 1; } else { sum2 += a; } sign2 = true; } } } cout << min(ans1, ans2) << endl; } int main(int argc, char** argv) { ios_base::sync_with_stdio(0); cin.tie(0); solve(); return EXIT_SUCCESS; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) ansl = [] s = a[0] ans = 0 if s <= 0: s = 1 ans += abs(s) + 1 for i in range(n-1): if s > 0: s += a[i+1] if s >= 0: ans += abs(s) + 1 s = -1 """ print(i) print('s > 0') print(ans) print(s) """ elif s < 0: s += a[i+1] if s <= 0: ans += abs(s) + 1 s = 1 """ print(i) print('s < 0') print(ans) print(s) """ ansl.append(ans) s = a[0] ans = 0 if s >= 0: s = -1 ans += abs(s) + 1 for i in range(n-1): if s > 0: s += a[i+1] if s >= 0: ans += abs(s) + 1 s = -1 """ print(i) print('s > 0') print(ans) print(s) """ elif s < 0: s += a[i+1] if s <= 0: ans += abs(s) + 1 s = 1 """ print(i) print('s < 0') print(ans) print(s) """ ansl.append(ans) print(min(ansl))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
# main n = gets.to_i ary = gets.split(' ').map(&:to_i) sum = ary[0] cnt = 0 if ary[0] == 0 if ary[1] > 1 sum = -1 else sum = 1 end cnt = 1 end (1...n).each{ |i| if sum < 0 sum += ary[i] if sum <= 0 cnt += 1-sum sum = 1 end else sum += ary[i] if sum >= 0 cnt += sum+1 # sum-(-1) sum = -1 end end } puts cnt
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } if (a[0] < 0) { for (int i = 0; i < n; i++) { a[i] *= -1; } } int64_t ans = 0; int64_t sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0) { if (sum <= 0) { ans += 1 - sum; sum = 1; } } else { if (sum >= 0) { ans += sum + 1; sum = -1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys # -*- coding: utf-8 -*- # 整数の入力 n = int(input()) a = list(map(int, input().split())) b = a[:] # 無変更チェック counter_1=0 S=int(a[0]) if a[0]!=0: for i in range(1,n): if S<0 and S+int(a[i])<=0: break elif S>0 and S+int(a[i])>=0: break S+=int(a[i]) if i==n-1: print(counter_1) sys.exit() # a[0]を1に変えた場合の計算 counter_1=abs(int(b[0])-1) b[0]=1 S=b[0] for i in range(1,n): if S<0 and S+int(b[i])<=0: counter_1+=-S-int(b[i])+1 b[i]=-S+1 elif S>0 and S+int(b[i])>=0: counter_1+=S+int(b[i])+1 b[i]=-S-1 S+=int(b[i]) # a[0]を-1に変えた場合の計算 counter_2=abs(int(a[0])+1) a[0]=-1 S=a[0] for i in range(1,n): if S<0 and S+int(a[i])<=0: counter_2+=-S-int(a[i])+1 a[i]=-S+1 elif S>0 and S+int(a[i])>=0: counter_2+=S+int(a[i])+1 a[i]=-S-1 S+=int(a[i]) print(min(counter_1,counter_2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); long[] a = new long[n]; for(int i = 0; i < n; i++) { a[i] = sc.nextLong(); } long sum = a[0]; long x = 0; if(a[0] == 0) { if(a[1] >= 0) { sum = -1; x++; } else { sum = 1; x++; } } long count = 0; for(int i = 1; i < n; i++) { sum += a[i]; if((sum - a[i]) * a[i] < 0) { if(Math.abs(a[i]) - Math.abs(sum - a[i]) < 0) { if(sum - a[i] < 0) { count = Math.abs(sum - a[i]) - Math.abs(a[i]) + 1; } else { count = -1 * (Math.abs(sum - a[i]) - Math.abs(a[i]) + 1); } sum -= a[i]; a[i] += count; sum += a[i]; x += Math.abs(count); } else if(Math.abs(a[i]) - Math.abs(sum - a[i]) == 0) { if(a[i] > 0) { count = 1; } else { count = -1; } sum -= a[i]; a[i] += count; sum += a[i]; x += Math.abs(count); } } else if((sum - a[i]) * a[i] > 0) { if(a[i] < 0) { count = -a[i] + 1; } else if(a[i] > 0) { count = -a[i] - 1; } else { if(sum < 0) { count = sum + 1; } else { count = -sum - 1; } } sum -= a[i]; a[i] += count; sum += a[i]; x += Math.abs(count); } else { if(sum - a[i] < 0) { count = -(sum - a[i]) + 1; } else { count = -(sum - a[i]) - 1; } sum -= a[i]; a[i] += count; sum += a[i]; x += Math.abs(count); } } System.out.println(x); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; long long nums[n]; for (int i = 0; i < n; i++) { cin >> nums[i]; } long long current = nums[0]; long long res = 0; bool current_positive, val_positive = false; if (current >= 0) current_positive = true; else current_positive = false; for (int i = 1; i < n; i++) { long long val = nums[i]; if (val >= 0) val_positive = true; else val_positive = false; if (current_positive) { if (val_positive) { res += ((current + val) + 1); current = -1; } else { if ((current + val) >= 0) { current += val; res += (current + 1); current = -1; } else { current += val; } } current_positive = false; } else { if (val_positive) { if ((current + val) <= 0) { current += val; res += (abs(current) + 1); current = 1; } else { current += val; } } else { res += ((current + val) + 1); current = 1; } current_positive = true; } } cout << res << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
package main import ( "bufio" "fmt" "os" "strconv" ) func main() { var n int fmt.Scan(&n) sc := bufio.NewScanner(os.Stdin) sc.Split(bufio.ScanWords) const ( unknown = 0 + iota plus minus ) preSign := unknown sum, operationNum := 0, 0 for i := 0; i < n; i++ { sc.Scan() a, _ := strconv.Atoi(sc.Text()) sum = sum + a if sum != 0 { if preSign == unknown { if sum > 0 { preSign = plus } else { preSign = minus } } else if preSign == plus { if sum > 0 { operationNum += (sum + 1) sum = -1 } preSign = minus } else { // preSign == minus if sum < 0 { operationNum -= (sum - 1) sum = 1 } preSign = plus } } else { if preSign == plus { operationNum++ sum = -1 preSign = minus } else { operationNum++ sum = 1 preSign = plus } } } fmt.Printf("%d\n", operationNum) }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long int modpow(long long int a, int n) { if (n == 0) return 1; if (n == 1) return a; long long int wk = modpow(a, n / 2); long long int ret = 0; if (n % 2 == 0) { ret = 1; } else { ret = a; } return (((ret * wk) % 1000000007) * wk) % 1000000007; } long long int gcd(long long int a, long long int b) { long long int tmp; if (a < b) { tmp = a; a = b; b = tmp; } long long int r = a % b; while (r != 0) { a = b; b = r; r = a % b; } return b; } long long int lcm(long long int a, long long int b) { long long int wk_int; wk_int = (a * b) % 1000000007; long long int ret; ret = (wk_int * modpow(gcd(a, b), 1000000007 - 2)) % 1000000007; return ret; } int main() { int n; cin >> n; vector<long long int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } bool plusmode = true; long long int ans = LLONG_MAX; long long int wk_ans = 0; long long int sum = 0; for (int i = 0; i < n; i++) { plusmode = !plusmode; sum += a[i]; if (plusmode) { if (sum <= 0) { wk_ans += abs(sum) + 1; sum = 1; } } else { if (sum >= 0) { wk_ans += abs(sum) + 1; sum = -1; } } } if (wk_ans < ans) ans = wk_ans; plusmode = false; wk_ans = 0; sum = 0; for (int i = 0; i < n; i++) { plusmode = !plusmode; sum += a[i]; if (plusmode) { if (sum <= 0) { wk_ans += abs(sum) + 1; sum = 1; } } else { if (sum >= 0) { wk_ans += abs(sum) + 1; sum = -1; } } } if (wk_ans < ans) ans = wk_ans; cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = (long long)1e9; const long long MOD = (long long)1e9 + 7; const long long MAX = 510000; vector<int> dx = {1, 0, -1, 0}, dy = {0, 1, 0, -1}; template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } int main() { long long N, sum, ans = 0; cin >> N; long long A[N], B[N]; bool f = false; for (long long i = 0; i < N; i++) { cin >> A[i]; B[i] = A[i]; } if (A[0] == 0) { A[0] = 1; B[0] = -1; f = true; } sum = A[0]; for (long long i = 1; i < N; i++) { if (sum * (sum + A[i]) >= 0) { if (sum > 0) { ans += abs(sum * (-1) - 1 - A[i]); sum = -1; } else { ans += abs(sum * (-1) + 1 - A[i]); sum = 1; } } else sum += A[i]; } if (f) { long long sumb = B[0], ansb = 0; for (long long i = 1; i < N; i++) { if (sumb * (sumb + B[i]) >= 0) { if (sumb > 0) { ansb += abs(sumb * (-1) - 1 - B[i]); sumb = -1; } else { ansb += abs(sumb * (-1) + 1 - B[i]); sumb = 1; } } else sumb += B[i]; } ans = min(ans, ansb); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long N; int main() { cin >> N; vector<long long> a(N); for (int i = 0; i < (N); ++i) cin >> a[i]; vector<long long> sum_a(N); sum_a[0] = a[0]; for (int i = 1; i < N; i++) { sum_a[i] += sum_a[i - 1] + a[i]; } int counter = 0; int ans1 = 0; for (int i = 0; i < N; i++) { int diff = 0; if (i % 2 == 0) { if (counter + sum_a[i] <= 0) { diff = abs(counter + sum_a[i]) + 1; } } else { if (counter + sum_a[i] >= 0) { diff = abs(counter + sum_a[i]) + 1; } } if (i % 2 == 0) { counter += diff; } else { counter -= diff; } ans1 += diff; } int counter2 = 0; int ans2 = 0; for (int i = 0; i < N; i++) { int diff2 = 0; if (i % 2 == 1) { if (counter2 + sum_a[i] <= 0) { diff2 = abs(counter2 + sum_a[i]) + 1; } } else { if (counter2 + sum_a[i] >= 0) { diff2 = abs(counter2 + sum_a[i]) + 1; } } if (i % 2 == 1) { counter2 += diff2; } else { counter2 -= diff2; } ans2 += diff2; } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; int ans = 0; vector<int> vec(100000); vector<int> rui(100000); for (int i = (int)(0); i < (int)(N); ++i) { cin >> vec[i]; } rui[0] = vec[0]; for (int i = 1; i < N; i++) { rui[i] = rui[i - 1] + vec[i]; } int G = vec[0]; int X = 0; if (G >= 0) { for (int i = (int)(0); i < (int)(N); ++i) { if (i % 2 == 0) { if (rui[i] <= 0) { X = abs(1 - rui[i]); ans += X; } } else { if (rui[i] >= 0) { X = abs(-1 - rui[i]) * -1; ans += abs(X); } } for (int j = i; j < N; j++) { rui[j] += X; } } } else { for (int i = (int)(0); i < (int)(N); ++i) { X = 0; if (i % 2 == 0) { if (rui[i] >= 0) { X = abs(-1 - rui[i]) * -1; ans += abs(X); } } else { if (rui[i] <= 0) { X = abs(1 - rui[i]); ans += abs(X); } } for (int j = i; j < N; j++) { rui[j] += X; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) num = a[0] result = 0 r = 1 if num == 0: for i in range(1, n): if a[i] > 0: num = a[i] - 1 result = 1 + (i - 1) * 2 if num == 0: num += 1 result += 1 r = i + 1 break elif a[i] < 0: num = a[i] + 1 result = 1 + (i - 1) * 2 if num == 0: num -= 1 result += 1 r = i + 1 break if i == n - 1 and a[i] == 0: r = n result = n * 2 - 1 for i in range(r, n): if num > 0: if num + a[i] >= 0: result += num + a[i] + 1 num = -1 else: num += a[i] else: if num + a[i] <= 0: result -= num + a[i] - 1 num = 1 else: num += a[i] print(result)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) b = [i for i in a] def solve(cnt,A,N): for i in range(1, N): if sum(A[0:i])>0: if sum(A[0:i+1])>=0: r = A[i] A[i]=-sum(A[0:i])-1 cnt+=abs(r-A[i]) else: if sum(A[0:i+1])<=0: r = A[i] A[i]=-sum(A[0:i])+1 cnt+=abs(r-A[i]) return cnt cnt1=0 if b[0]<=0: ini=b[0] b[0]=1 cnt1=abs(1-ini) ans1=solve(cnt1,b,n) cnt2=0 if a[0]>=0: ini=a[0] a[0]=-1 cnt2=abs(-1-ini) ans2=solve(cnt2,a,n) print(min(ans1,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; int main() { cin.tie(0); ios::sync_with_stdio(false); long long n; cin >> n; long long a[n]; long long ans = 0, num = 0; bool maki = false; for (int i = 0; i < n; i++) { cin >> a[i]; if (i) { if ((num < 0 && num + a[i] > 0) || (num > 0 && num + a[i] < 0)) { num += a[i]; } else { if (num < 0) { ans += 1 - (num + a[i]); num = 1; } else { ans += 1 + (num + a[i]); num = -1; } } } else { if (a[0] == 0) { num = -1; ans = 1; maki = true; } else { num = a[i]; } } } long long a1 = num = 0; if (maki) { for (int i = 0; i < n; i++) { if (i) { if ((num < 0 && num + a[i] > 0) || (num > 0 && num + a[i] < 0)) { num += a[i]; } else { if (num < 0) { a1 += 1 - (num + a[i]); num = 1; } else { a1 += 1 + (num + a[i]); num = -1; } } } else { num = a1 = 1; } } ans = min(ans, a1); } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long a[100000], b[100001]; int main() { long long n; cin >> n; for (long long i = 0; i < n; i++) { cin >> a[i]; b[i] += a[i]; b[i + 1] = b[i]; } long long sum = 0, sum2 = 0; if (b[0] == 0) { long long i = 0; while (b[i] == 0 && i < n) i++; if (i % 2 == 0) { b[0] = 1; sum2 = 1; } else { b[0] = -1; sum2 = -1; } sum++; } for (long long i = 1; i < n; i++) { b[i] += sum2; if (b[i] == 0) { if (b[i - 1] > 0) { sum2--; sum++; b[i] = -1; } else { sum2++; sum++; b[i] = 1; } } else { if (b[i - 1] > 0 && b[i] > 0) { sum2 -= (b[i] + 1); sum += (b[i] + 1); b[i] = -1; } else if (b[i] < 0 && b[i - 1] < 0) { sum2 += (0 - b[i] + 1); sum += (0 - b[i] + 1); b[i] = 1; } } } cout << sum << endl; cin >> n; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np N = int(input()) a_s = input().split() for i in range(N): a_s[i] = int(a_s[i]) a_s = np.array(a_s) def get_sign(x): if x>0: return +1 elif x<0: return -1 else: return 0 ans = 0 for i,a in enumerate(a_s): if i==0: S = a if S == 0: ans += 1 S = get_sign(a_s[1])*(-1) else: S = S0 + a if get_sign(S0) == get_sign(S): ans += abs(get_sign(S)*(-1) - S) S = get_sign(S)*(-1) elif get_sign(S)==0: ans += 1 if i<N-1: S = get_sign(a_s[i+1])*(-1) elif i==N-1: pass S0 = S print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N, sum_p = 0, sum_n = 0, count_p = 0, count_n = 0; cin >> N; int A[N]; for (int i = 0; i < N; ++i) cin >> A[i]; for (int i = 0; i < N; ++i) { sum_n += A[i]; if (i % 2 == 0) { if (sum_n <= 0) { count_n += 1 - sum_n; sum_n = 1; } } else { if (sum_n >= 0) { count_n += sum_n + 1; sum_n = -1; } } } for (int i = 0; i < N; ++i) { sum_p += A[i]; if (i % 2 == 1) { if (sum_p <= 0) { count_p += 1 - sum_p; sum_p = 1; } } else { if (sum_p >= 0) { count_p += sum_p + 1; sum_p = -1; } } } int ans = min(count_p, count_n); cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int count = 0; long long a1; cin >> a1; long long sum = a1; if (a1 >= 0) { for (int i = 0; i < n - 1; i++) { long long a; cin >> a; sum += a; if (i % 2 == 0) { while (sum >= 0) { sum--; count++; } } else { while (sum <= 0) { sum++; count++; } } } } else { for (int i = 0; i < n - 1; i++) { long long a; cin >> a; sum += a; if (i % 2 == 1) { while (sum >= 0) { sum--; count++; } } else { while (sum <= 0) { sum++; count++; } } } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; constexpr auto INF = 100000000000; constexpr auto mod = 1000000007; struct edge { int to, cost; }; long long modpow(long long a, long long n, long long mod) { long long res = 1; while (n > 0) { if (n & 1) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } long long modinv(long long a, long long m) { long long b = m, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } u %= m; if (u < 0) u += m; return u; } long long int c(long long int a, long long int b, long long int m) { long long int ans = 1; for (long long int i = 0; i < b; i++) { ans *= a - i; ans %= m; } for (long long int i = 1; i <= b; i++) { ans *= modinv(i, m); ans %= m; } return ans; } void dijkdtra(int s, int v, vector<int>& d, vector<vector<edge>>& G) { priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> que; d[s] = 0; que.push(pair<int, int>(0, s)); while (!que.empty()) { pair<int, int> p = que.top(); que.pop(); int V = p.second; if (d[V] < p.first) continue; for (int i = 0; i < G[V].size(); i++) { edge e = G[V][i]; if (d[e.to] > d[V] + e.cost) { d[e.to] = d[V] + e.cost; que.push(pair<int, int>(d[e.to], e.to)); } } } } long long int binary_search(vector<int>& s, long long int a) { long long int l = -1; long long int r = (int)s.size(); while (r - l > 1) { long long int mid = l + (r - l) / 2; if (s[mid] >= a) r = mid; else l = mid; } return r; } int k(long long n) { int x = 0; while (n) { x += n % 10; n /= 10; } return x; } long long max(long long x, long long y) { if (x < y) return y; return x; } int main() { long long int n, ans = 10000000000000000; cin >> n; vector<long long int> a(n), t(n), s(n); for (int i = (0); i < (n); i++) { cin >> a[i]; t[i] = a[i]; s[i] = a[i]; } long long int w = a[0]; if (w <= 0) { w = 1; } for (int i = (1); i < (n); i++) { if (i % 2 == 0) { if (abs(w) >= a[i]) { a[i] = abs(w) + 1; } w += a[i]; } else { if (w >= abs(a[i])) { a[i] = -1 * (w + 1); } w += a[i]; } } w = t[0]; if (w >= 0) { w = -1; } for (int i = (1); i < (n); i++) { if (i % 2 == 1) { if (abs(w) >= t[i]) { t[i] = abs(w) + 1; } w += t[i]; } else { if (w >= abs(t[i])) { t[i] = -1 * (w + 1); } w += t[i]; } } long long int cost1 = 0, cost2 = 0; for (int i = (0); i < (n); i++) { cost1 += abs(s[i] - a[i]); cost2 += abs(s[i] - t[i]); } ans = min(cost1, cost2); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } int ans = 0; int sum = a.at(0); if (a.at(0) > 0) { for (int i = 1; i < n; i++) { sum += a.at(i); if (i % 2 == 0 && sum <= 0) { ans += 1 - sum; sum = 1; } else if (i % 2 == 1 && sum >= 0) { ans += sum + 1; sum = -1; } } } else if (a.at(0) < 0) { for (int i = 1; i < n; i++) { sum += a.at(i); if (i % 2 == 0 && sum >= 0) { ans += sum + 1; sum = -1; } else if (i % 2 == 1 && sum <= 0) { ans += 1 - sum; sum = 1; } } } else if (a.at(0) == 0) { ans++; sum++; for (int i = 1; i < n; i++) { sum += a.at(i); if (i % 2 == 0 && sum <= 0) { ans += 1 - sum; sum = 1; } else if (i % 2 == 1 && sum >= 0) { ans += sum + 1; sum = -1; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) for i in range(1,n): a[i] += a[i-1] a_1 = a.copy() ans = 0 for i in range(n): if i%2==0 and a_1[i]<=0: tmp = -a_1[i]-1 for j in range(i,n): a_1[j] += tmp ans += abs(tmp) elif i%2==1 and a_1[i]>=0: tmp = -a_1[i]+1 for j in range(i,n): a_1[j] += tmp ans += abs(tmp) ans_2 = 0 for i in range(n): if i%2==1 and a[i]<=0: tmp = -a[i]+1 for j in range(i,n): a[j] += tmp ans_2 += abs(tmp) elif i%2==0 and a[i]>=0: tmp = -a[i]-1 for j in range(i,n): a[j] += tmp ans_2 += abs(tmp) print(min(ans,ans_2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) ans = 0 for i in range(n): if i == 0: if a[i] == 0: f = "+" a[i] = 1 elif a[0] > 0: f = "+" elif a[0] < 0: f = "-" else: if f == "+": if a[i] + sum(a[:i]) > 0: c = -1 - sum(a[:i]) ans += abs(c - a[i]) a[i] = c f = "-" else: if a[i] + sum(a[:i]) == 0: a[i] -= 1 ans += 1 f = "-" elif f == "-": if a[i] + sum(a[:i]) < 0: c = 1 - sum(a[:i]) ans += abs(c - a[i]) a[i] = c f = "+" else: if a[i] + sum(a[:i]) == 0: a[i] += 1 ans += 1 f = "+" print(a) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; vector<long long> a(n); for (long long i = 0; i < n; i++) { cin >> a.at(i); } long long ans = 0; long long sum = a.at(0); if (a.at(0) > 0) { for (long long i = 1; i < n; i++) { sum += a.at(i); if (i % 2 == 0 && sum <= 0) { ans += 1 - sum; sum = 1; } else if (i % 2 == 1 && sum >= 0) { ans += sum + 1; sum = -1; } } } else if (a.at(0) < 0) { for (long long i = 1; i < n; i++) { sum += a.at(i); if (i % 2 == 0 && sum >= 0) { ans += sum + 1; sum = -1; } else if (i % 2 == 1 && sum <= 0) { ans += 1 - sum; sum = 1; } } } else if (a.at(0) == 0) { ans++; sum++; for (long long i = 1; i < n; i++) { sum += a.at(i); if (i % 2 == 0 && sum <= 0) { ans += 1 - sum; sum = 1; } else if (i % 2 == 1 && sum >= 0) { ans += sum + 1; sum = -1; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long n; long long data[100001]; long long solve() { long long res = 0; long long part = 0; part += data[0]; bool isP = part > 0 ? true : false; for (int i = 1; i < n; i++) { part += data[i]; if (isP) { if (part > 0) { res += part + 1; part = -1; } else if (part == 0) { res++; part = -1; } isP = false; } else { if (part < 0) { res += 1 - part; part = 1; } else if (part == 0) { res++; part = 1; } isP = true; } } return res; } int main() { cin >> n; long long ans = 0; for (int i = 0; i < n; i++) cin >> data[i]; ans = solve(); for (int i = 0; i < n; i++) data[i] *= -1; cout << min(ans, solve()) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
# n + 1 長の array を返す def cumulative_sum(array) tmp = [0] previous = 0 array.each { |num| tmp << previous += num } tmp end def ans(cumulative_sums, previous_plus, ans, added) cumulative_sums.each do |sum| if previous_plus && sum + added >= 0 ans += (sum + added).abs + 1 added -= (sum + added).abs + 1 elsif !previous_plus && sum + added <= 0 ans += (sum + added).abs + 1 added += (sum + added).abs + 1 end previous_plus = !previous_plus end ans end n = gets.to_i nums = gets.split.map(&:to_i) cumulative_sums = cumulative_sum(nums) cumulative_sums.delete_at(0) first = cumulative_sums.delete_at(0) answers = [] if first > 0 answers << ans(cumulative_sums, true, 0, 0) elsif first < 0 answers << ans(cumulative_sums, false, 0, 0) else answers << ans(cumulative_sums, true, 1, 1) answers << ans(cumulative_sums, false, 1, -1) end puts answers.min
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; int main() { int n; cin >> n; ll a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } ll sum = a[0]; ull ans = 0; for (int i = 1; i < n; i++) { if (sum < 0) { if (sum + a[i] > 0) { sum += a[i]; } else { ans += abs(1 - sum - a[i]); sum = 1; } } else { if (sum + a[i] < 0) { sum += a[i]; } else { ans += abs(-1 - sum - a[i]); sum = -1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; void _IOS() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin.sync_with_stdio(0); } int sx, sy, tx, ty; struct threeElements { int _1st, _2nd, _3rd; }; vector<vector<int>> adj(10); long long v[200009]; int n; int solve(int x) { int ans = 0, sum = x; for (int i = 2; i <= n; i++) { int u = v[i] + sum; if (sum < 0) { if (u <= 0) { ans += abs(u) + 1; u = 1; } } else { if (u >= 0) { ans += u + 1; u = -1; } } sum = u; } return ans; } int main() { _IOS(); cin >> n; for (int i = 1; i <= n; i++) { int x; cin >> x; v[i] = x; } if (v[1] == 0) { cout << min(solve(1), solve(-1)) + 1; } else { long long ans1 = solve(v[1]); long long ans2 = solve(-v[1]); cout << min(ans1, ans2); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; ll mod(ll a, ll b) { return (a % b + b) % b; } ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; } ll lcm(ll a, ll b) { return a * b / gcd(a, b); } void Yes() { cout << "Yes" << endl; } void No() { cout << "No" << endl; } void Judge(bool b) { b ? Yes() : No(); } void YES() { cout << "YES" << endl; } void NO() { cout << "NO" << endl; } void JUDGE(bool b) { b ? YES() : NO(); } ll powMod(ll b, ll e, ll m) { ll r = 1; while (e > 0) { if (e & 1) r = (r % m) * (b % m) % m; b = (b % m) * (b % m) % m; e >>= 1; } return r; } double distance(ll x1, ll y1, ll x2, ll y2) { return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); } template <typename T> void ppp(T n) { cout << n << endl; } int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; int a[n]; for (int i = 0; i < (n); ++i) { cin >> a[i]; } int s[n + 1]; s[0] = 0; for (int i = 0; i < (n); ++i) { s[i + 1] = s[i] + a[i]; } ll ans1 = 0, ans2 = 0, diff1 = 0, diff2 = 0; for (int i = 1; i <= n; ++i) { if (i % 2) { if (s[i] + diff1 <= 0) { ll tmp = abs((s[i] + diff1) - 1); ans1 += tmp; diff1 += tmp; } if (s[i] + diff2 >= 0) { ll tmp = abs((s[i] + diff2) + 1); ans2 += tmp; diff2 -= tmp; } } else { if (s[i] + diff1 >= 0) { ll tmp = abs((s[i] + diff1) + 1); ans1 += tmp; diff1 -= tmp; } if (s[i] + diff2 <= 0) { ll tmp = abs((s[i] + diff2) - 1); ans2 += tmp; diff2 += tmp; } } } ppp(min(ans1, ans2)); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using Int = long long; Int INF = 1 << 30; Int large0(std::vector<Int> a, Int n) { Int ans = 0; Int sum = a[0]; for (Int i = 1; i < n; i++) { sum += a[i]; if (i % 2 == 1 && sum >= 0) { ans += sum + 1; sum = -1; } if (i % 2 == 0 && sum <= 0) { ans += 1 - sum; sum = 1; } } return ans; } Int small0(std::vector<Int> a, Int n) { Int ans = 0; Int sum = a[0]; for (Int i = 1; i < n; i++) { sum += a[i]; if (i % 2 == 1 && sum <= 0) { ans += 1 - sum; sum = 1; } if (i % 2 == 0 && sum >= 0) { ans += sum + 1; sum = -1; } } return ans; } int main() { Int n; std::cin >> n; std::vector<Int> a(n); for (Int i = 0; i < n; i++) std::cin >> a[i]; Int ans = 0; Int sum = a[0]; if (a[0] > 0) { std::cout << large0(a, n) << std::endl; } if (a[0] < 0) { std::cout << small0(a, n) << std::endl; } if (a[0] == 0) { Int res1 = 0; Int res2 = 0; a[0] = 1; res1 = large0(a, n); a[0] = -1; res2 = small0(a, n); std::cout << std::min(res1, res2) + 1 << std::endl; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[100100]; for (int i = 0; i < n; i++) cin >> a[i]; long long ans = 0, sum = a[0]; int sign = (a[0] > 0 ? 1 : -1); for (int i = 1; i < n; i++) { sum += a[i]; if (sum == 0) { sum += -1 * sign; ans++; } else if (sign > 0 && sum > 0) { long long x = sum + 1; sum -= x; ans += x; } else if (sign < 0 && sum < 0) { long long y = abs(sum) + 1; sum += y; ans += y; } sign *= -1; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int inf = 1000000007; using namespace std; int main() { int64_t n; cin >> n; vector<int64_t> data(n); int64_t ans = 0; for (int i = 0; i < n; i++) { cin >> data.at(i); } int64_t sum = data.at(0); int64_t sump = sum; for (int i = 1; i < n; i++) { sump += data.at(i); if (sum * sump >= 0) { int c = sump; if (c < 0) c *= -1; c++; ans += c; if (sump > 0) { data.at(i) -= c; sump -= c; } else { data.at(i) += c; sump += c; } } sum += data.at(i); } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; int a[100010]; int main() { int n; while (scanf("%d", &n) != EOF) { unsigned long long sum = 0; for (int i = 0; i < n; i++) { scanf("%d", &a[i]); } int tmp = -1; int flagg = 0; for (int i = 0; i < n; i++) { if (a[i] != 0) { tmp = i; flagg = 1; break; } } if (!flagg) { printf("%d\n", (n - 1) * 2 + 1); continue; } if (tmp != 0 && a[tmp] > 0) { if (tmp % 2) a[0] = -1; else a[0] = 1; sum++; } else if (tmp != 0 && a[tmp] < 0) { if (tmp % 2) a[0] = 1; else a[0] = -1; sum++; } unsigned long long oo = a[0], flag; if (a[0] > 0) flag = 1; else if (a[0] < 0) flag = -1; for (int i = 1; i < n; i++) { oo += a[i]; if (flag == 1) { if (oo >= 0) { sum += oo + 1; oo = -1; } flag = -1; } else if (flag == -1) { if (oo <= 0) { sum += 0 - oo + 1; oo = 1; } flag = 1; } } printf("%lld\n", sum); } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long MOD7 = 1000000007; const long long MOD9 = 1000000009; int main() { cin.tie(0); ios::sync_with_stdio(false); long long N; cin >> N; vector<long long> vec(N); for (long long i = 0; i < N; i++) cin >> vec[i]; long long res, partial, distance_0; vector<long long> res_vec; bool flag_before; for (long long n = 0; n < 2; ++n) { res = 0, partial = vec[0]; flag_before = (n == 0) ? partial > 0 : partial < 0; for (long long i = 1; i < N; ++i) { partial += vec[i]; distance_0 = abs(partial) + 1; if (flag_before) { if (partial >= 0) { res += distance_0; partial -= distance_0; } } else { if (partial <= 0) { res += distance_0; partial += distance_0; } } flag_before = !flag_before; } res_vec.push_back(res); } cout << *min_element(((res_vec)).begin(), ((res_vec)).end()) << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = (int)1e9 + 7; const int MAX = 1e6; int arr[MAX], n; int status(int a) { if (a < 0) return 1; else if (a > 0) return 0; else return 2; } long long int solve() { long long int cnt = 0; long long int sum = arr[0], f = 0; if (arr[0] < 0) f = 1; else f = 0; for (int i = 1; i < n; i++) { f ^= 1; int add = arr[i]; if (status(arr[i]) != f) add = 0, cnt += abs(arr[i]); sum += add; if (status(sum) != f) { cnt += abs(sum) + 1; if (f) sum = -1; else sum = 1; } } return cnt; } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n; for (int i = 0; i < n; i++) { cin >> arr[i]; } if (!arr[0]) { arr[0] = 1; long long int x = solve() + 1; arr[0] = -1; long long int y = solve() + 1; cout << min(x, y) << endl; } else { long long int x, y; x = solve(); arr[0] *= -1; y = solve() + (abs(arr[0] * 2)); cout << min(x, y) << endl; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> long body(std::vector<long>& a) { long ans = 0; std::vector<long> s(a.size()); s.at(0) = a.at(0); for (unsigned long i = 1; i < a.size(); i++) { s.at(i) = s.at(i - 1) + a.at(i); } long diff = 0; for (unsigned long i = 1; i < s.size(); i++) { s.at(i) += diff; long n = 0; if (s.at(i - 1) > 0 && s.at(i) >= 0) { n = s.at(i) + 1; ans += n; diff -= n; s.at(i) += diff; } else if (s.at(i - 1) < 0 && s.at(i) <= 0) { n = -s.at(i) + 1; ans += n; diff += n; s.at(i) += diff; } } return ans; } int main(int argc, char** argv) { long n; std::cin >> n; std::vector<long> a(n); for (long i = 0; i < n; i++) { std::cin >> a.at(i); } long ans; if (a.at(0) != 0) { ans = body(a); } else { a.at(0) = -1; long ans_a = body(a); a.at(0) = 1; long ans_b = body(a); ans = std::min(ans_a, ans_b); } std::cout << ans << std::endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAX_N = 1e5; int N, a[MAX_N + 5]; int solve(int next) { int s = 0, cnt = 0; for (int i = 0; i < N; i++) { s += a[i]; if (next == 1 && s <= 0) { cnt += next - s; s = 1; } else if (next == -1 && s >= 0) { cnt += s - next; s = -1; } next *= -1; } return cnt; } int main() { cin >> N; for (int i = 0; i < N; i++) cin >> a[i]; cout << min(solve(1), solve(-1)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# vim: fileencoding=utf-8 def main(): n = int(input()) a = list(map(int, input().split())) ans = 0 cursol = a[0] if cursol == 0: if a[1] >= 0: cursol = -1 else: cursol = 1 ans += 1 for i in a[1:]: t = cursol + i if cursol > 0: if t >= 0: ans += t + 1 cursol = -1 else: cursol = t elif cursol < 0: if t <= 0: ans += abs(t) + 1 cursol = 1 else: cursol = t print(ans) if __name__ == "__main__": main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = [int(x) for x in input().split()] flag = True if A[0] > 0 else False count = 0 for i in range(n): if i == 0: continue sum_for_i = sum(A[:i]) sum_for_next = sum(A[:i+1]) if (sum_for_i != 0 and ((sum_for_i > 0 and sum_for_next <0) or (sum_for_i < 0 and sum_for_next >0))): continue else: #print("needs to be changed: A[{}] ({})".format(i, A[i])) while not (sum_for_i != 0 and ((sum_for_i > 0 and sum_for_next <0) or (sum_for_i < 0 and sum_for_next >0))): if (sum_for_i < 0): A[i] += 1 count += 1 else: A[i] -= 1 count += 1 sum_for_i = sum(A[:i]) sum_for_next = sum(A[:i+1]) print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def solve(): n = int(input()) a = list(map(int, input().split())) i = 0 sum = 0 ans = 0 for i in range(n-1): sum += a[i] if sum > 0 and sum+a[i+1] > 0: tmp = -1 - sum ans += abs(tmp - a[i+1]) a[i+1] = tmp elif sum < 0 and sum+a[i+1] < 0: tmp = 1 - sum ans += abs(tmp - a[i+1]) a[i+1] = tmp print(ans) # print(a) if __name__ == "__main__": solve()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys input = sys.stdin.readline N = int(input()) a = list(map(int, input().split())) ans1, ans2 = 0, 0 f = 0 f += a[0] if f <= 0: f = 1 ans1 += 1 - a[0] for i in range(1, N): if f * (f + a[i]) < 0: f += a[i] continue ans1 += abs(f + a[i]) + 1 if f > 0: f = -1 else: f = 1 f = 0 f += a[0] if f >= 0: f = -1 ans2 += 1 + a[i] for i in range(1, N): if f * (f + a[i]) < 0: f += a[i] continue ans2 += abs(f + a[i]) + 1 if f > 0: f = -1 else: f = 1 print(min(ans1, ans2))