Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) # 数列の長さ a = [int(x) for x in input().split()] # 数列の各項 # print(a) cnt = 0 # 操作回数 while True: sum = a[0] # 1列目までの和 # 1~N列目までの和を求める # print ('和 → ' + str(sum), end = ' ') # print (str(sum), end = ' ') for i in range(1, len(a)): pre = sum sum += a[i] # print (str(sum), end = ' ') # 条件を満たしてない場合は和を求めるのを中断する if (pre > 0 and sum > 0) or (pre < 0 and sum < 0) or (sum == 0): break # print('') # print('i = ' + str(i)) # print('pre = ' + str(pre) + ', sum = ', str(sum)) if (pre > 0 and sum < 0) or (pre < 0 and sum > 0): # 条件を満たした場合の処理 # print(a) print(str(cnt)) break else: # 操作が必要な場合の処理 if pre < 0: j = 1 elif pre > 0: j = -1 if pre < -1 or pre > 1: # preの絶対値が1でない場合(i - 1番目を操作する) if pre < 0 and i != len(a) - 1: j = -(pre + 1) elif pre > 0 and i != len(a) - 1: j = -(pre - 1) a[i - 1] += j else: # preの絶対値が1の場合(i番目を操作する) if pre < 0: j = -(sum - 1) elif pre > 0: j = -(sum + 1) a[i] += j # 操作回数の更新 if j < 0: j = -j cnt += j # print ('cnt = ' + str(cnt)) # print (a)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int, input().split())) S = [0] * (N+1) for i in range(N): S[i+1] = S[i] + A[i] print(S) #S[1] > 0 ans1 = 0 work = 0 for i in range(1,N+1): if i%2 == 1: # pos is required if S[i] + work <= 0: temp = 1 - (S[i] + work) ans1 += temp work += temp else: # neg is required if S[i] + work >= 0: temp = (S[i] + work) + 1 ans1 += temp work -= temp #S[1] < 0 ans2 = 0 work = 0 for i in range(1,N+1): if i%2 == 1: # neg is required if S[i] + work >= 0: temp = (S[i] + work) + 1 ans2 += temp work -= temp else: # neg is required if S[i] + work <= 0: temp = 1 - (S[i] + work) ans2 += temp work += temp print(min(ans1, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long sum = a[0]; long long cnt = 0; if (sum == 0) { sum = (a[1] > 0 ? -1 : 1); cnt++; } for (int i = 1; i < n; i++) { long long nsum = sum + a[i]; if (sum > 0 && nsum < 0 || sum < 0 && nsum > 0) { sum = nsum; continue; } sum = (sum > 0 ? -1 : 1); cnt += (nsum == 0 ? 1 : abs(nsum) + 1); } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { int n, i, check = 0; long long int a, count = 0, sum = 0; scanf("%d", &n); for (i = 0; i < n; i++) { scanf("%lld", &a); if (i == 0 && a == 0) { count = 1; sum = 1; check = 1; continue; } sum += a; if (check == 1 && sum >= 0) { count += (1 + sum); sum = -1; } else if (check == -1 && sum <= 0) { count += (1 - sum); sum = 1; } if (sum >= 0) { check = 1; } else { check = -1; } } printf("%lld", count); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; int main() { int N; cin >> N; long long ans = 0; long long sum[N]; for (int i = 0; i < N; i++) { long long t; cin >> t; if (i == 0) { sum[i] = t; continue; } sum[i] = sum[i - 1] + t; if (sum[i - 1] > 0) { if (sum[i] > 0) { ans += sum[i] + 1; sum[i] = -1; } } else { if (sum[i] < 0) { ans += -sum[i] + 1; sum[i] = 1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int A[n]; for (int i = 0; i < n; i++) { cin >> A[i]; } int countA = 0; int countB = 0; int part = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0 && A[i] + part <= 0) { countA += 1 - (A[i] + part); part = 1; } else if (i % 2 == 1 && A[i] + part >= 0) { countA += A[i] + part + 1; part = -1; } else part += A[i]; } for (int i = 0; i < n; i++) { if (i % 2 == 0 && A[i] + part >= 0) { countB += A[i] + part + 1; part = -1; } else if (i % 2 == 1 && A[i] + part <= 0) { countB += 1 - (A[i] + part); part = 1; } else part += A[i]; } cout << countA << endl; cout << countB << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) sum = a[0] s = [a[0]] cnt = 0 for i in range(1,n): sum = sum + a[i] if sum*s[i-1] < 0: s.append(sum) else: if sum > 0: cnt = cnt + (sum+1) sum = -1 elif sum < 0: cnt = cnt + (-1)*(sum-1) sum = 1 elif sum == 0: if s[i-1]<0: cnt = cnt + 1 sum = 1 elif s[i-1]>0: cnt = cnt + 1 sum = -1 s.append(sum) print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) L = list(map(int, input().split())) #print(L) sum = L[0] count = 0 for i in range(1, N): if sum * (sum + L[i]) >= 0: count = count + (abs(sum + L[i]) + 1) if sum > 0 and sum + L[i] >= 0: sum = -1 else: sum = 1 else: sum = sum + L[i] #print(sum) print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = list(map(int, input().split())) ans = 1e9 for sign in (1, -1): s = sign res, acc = 0, 0 for a in A: acc += a if acc * s <= 0: res += abs(acc-s) acc = s s *= -1 ans = min(ans, res) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n + 1]; for (int i = 1; i <= n; i++) cin >> a[i]; int GS = 0; int GC = 0; int KS = 0; int KC = 0; for (int i = 1; i <= n; i++) { GS += a[i]; if (i % 2 == 1) { if (GS >= 1) { } else { GC += 1 - GS; GS = 1; } } else { if (GS >= 1) { GC += 1 + GS; GS = -1; } } KS += a[i]; if (i % 2 != 1) { if (KS >= 1) { } else { KC += 1 - KS; KS = 1; } } else { if (KS >= 1) { KC += 1 + KS; KS = -1; } } } int Ans = min(KC, GC); cout << Ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; /** * https://abc059.contest.atcoder.jp/tasks/arc072_a */ public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int N = Integer.parseInt(sc.next()); long[] a = new long[N]; for(int i=0; i<N; i++) a[i] = sc.nextLong(); sc.close(); long sum = a[0]; long ans = 0; for(int i=1; i<N; i++){ if(sum>0 && sum+a[i]>=0){ ans += Math.abs(a[i]+sum)+1; sum = -1; }else if(sum<0 && sum+a[i]<=0){ ans += Math.abs(a[i]+sum)+1; sum = 1; }else{ sum = sum + a[i]; } } System.out.println(ans); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import java.util.Scanner object Main extends App { val sc = new Scanner(System.in) val n = sc.nextInt() val a = new Array[Int](n) for(i <- 0 until n) a(i) = sc.nextInt() var cnt = 0 var ans = 0 for(i <- 0 until n){ cnt += a(i) if(i % 2 == 0){ if(cnt < 1){ ans += 1 - cnt cnt = 1 } } else{ if(cnt > -1){ ans += cnt - (-1) cnt = -1 } } } cnt = 0 var ans2 = 0 for(i <- 0 until n){ cnt += a(i) if(i % 2 != 0){ if(cnt < 1){ ans2 += 1 - cnt cnt = 1 } } else{ if(cnt > -1){ ans2 += cnt - (-1) cnt = -1 } } } println(Math.min(ans, ans2)) }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; long long l1[n + 1]; long long x = 0, s = 0; for (int i = 1; i <= n; i++) { cin >> l1[i]; x += l1[i]; if (i == 1 && l1[i] == 0 && l1[i + 1] <= 0) x++, s++, l1[i] = 1; else if (i == 1 && l1[i] == 0 && l1[i + 1] > 0) x--, s++, l1[i] = -1; if (i >= 2) { if (x - l1[i] <= 0 && x <= 0) { s += (long long)abs(-(x - l1[i]) + 1 - l1[i]); x = 1; } else if (x - l1[i] >= 0 && x >= 0) { s += (long long)abs(-(x - l1[i]) - 1 - l1[i]); x = -1; } } } cout << s << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; long long a[100005], dp[100005]; cin >> n; long long sum = 0; for (int i = 0; i < n; i++) { cin >> a[i]; sum += a[i]; dp[i] = sum; } long long diff = 0, ans = 0; if (dp[0] == 0) diff--, ans++; for (int i = 1; i < n; i++) { if (dp[i] + diff == 0) { if (dp[i - 1] + diff < 0) diff++, ans++; if (dp[i - 1] + diff > 0) diff--, ans++; continue; } if ((dp[i - 1] + diff) / llabs(dp[i - 1] + diff) == (dp[i] + diff) / llabs(dp[i] + diff)) { if (dp[i] + diff >= 0) { ans += llabs(dp[i] + diff) + 1; diff -= llabs(dp[i] + diff) + 1; } else { ans += llabs(dp[i] + diff) + 1; diff += llabs(dp[i] + diff) + 1; } } } long long tans = ans; diff = 0, ans = 0; if (dp[0] == 0) diff++, ans++; for (int i = 1; i < n; i++) { if (dp[i] + diff == 0) { if (dp[i - 1] + diff < 0) diff++, ans++; if (dp[i - 1] + diff > 0) diff--, ans++; continue; } if ((dp[i - 1] + diff) / llabs(dp[i - 1] + diff) == (dp[i] + diff) / llabs(dp[i] + diff)) { if (dp[i] + diff >= 0) { ans += llabs(dp[i] + diff) + 1; diff -= llabs(dp[i] + diff) + 1; } else { ans += llabs(dp[i] + diff) + 1; diff += llabs(dp[i] + diff) + 1; } } } cout << min(tans, ans) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.chomp.to_i a = gets.chomp.split(" ").map(&:to_i) ans = 0 cumulative_sum = [0] n.times do |i| tmp = cumulative_sum[i] + a[i] if tmp == 0 then ans += 1 if cumulative_sum[i] == 0 then if a[i+1] < 0 then cumulative_sum << -1 else cumulative_sum << 1 end else if 0 < cumulative_sum[i] then cumulative_sum << -1 elsif 0 > cumulative_sum[i] then cumulative_sum << 1 end end else if 0 < tmp && 0 < cumulative_sum[i] then ans += tmp + 1 cumulative_sum << -1 elsif 0 > tmp && 0 > cumulative_sum[i] then ans += 1 - tmp cumulative_sum << 1 else cumulative_sum << tmp end end end puts ans
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; int count = 0; cin >> N; int a[N]; for (int i = 0; i < N; i++) { cin >> a[i]; } for (int k = 0; k < N; k++) { int num = 0; int sum = 0; for (int i = 0; i < N; i++) { num += a[i]; } for (int i = 0; i < N - 1; i++) { sum += a[i]; } if (num <= 0) { a[0] += 1; count++; } if ((sum >= 0) && (num >= 0)) { a[N] -= 1; count++; } else if ((sum <= 0) && (num <= 0)) { a[N] += 1; count++; } if (((sum > 0) && (num < 0)) || ((sum < 0) && (num > 0))) break; } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; std::vector<int64_t> data(n); for (int i = 0; i < n; i++) { cin >> data.at(i); } int answer = 0; int sum_a = data.at(0); for (int i = 1; i < n; i++) { sum_a += data.at(i); if (data.at(0) > 0) { if (i % 2 != 0 && sum_a >= 0) { while (sum_a >= 0) { sum_a--; answer++; } } if (i % 2 == 0 && sum_a <= 0) { while (sum_a <= 0) { sum_a++; answer++; } } } if (data.at(0) < 0) { if (i % 2 != 0 && sum_a <= 0) { while (sum_a <= 0) { sum_a++; answer++; } } if (i % 2 == 0 && sum_a >= 0) { while (sum_a >= 0) { sum_a--; answer++; } } } } cout << answer << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Text; using System.Linq; using System.Collections; using System.Collections.Generic; using static System.Console; using static System.Math; namespace AtCorder { public class Program { public static void Main(string[] args) { new Program().Solve(new ConsoleInput(Console.In, ' ')); } public void Solve(ConsoleInput cin) { var n = cin.ReadInt; var a = cin.ReadLongArray(n); var ans = 0L; var pre = a[0]; for(int i = 1; i < n; i++) { var now = pre + a[i]; if(pre * now < 0) { pre += a[i]; continue; } if(now > 0) { ans += now + 1; a[i] -= now + 1; } else if(now < 0) { ans += 1 - now; a[i] += 1 - now; } else { if(i < n - 1) { if(a[i + 1] < 0) { a[i]++; } else { a[i]--; } } else { a[i]++; } ans++; } pre += a[i]; } WriteLine(ans); } public long C(int X, int Y) { if (Y == 0 || Y == X) { return 1; } if (X < Y) { return 0; } var Pascal = new long[X + 1, X + 1]; for (int i = 0; i <= X; i++) { Pascal[i, 0] = 1L; Pascal[i, i] = 1L; } for (int i = 2; i <= X; i++) { for (int j = 1; j < i; j++) { Pascal[i, j] = Pascal[i - 1, j] + Pascal[i - 1, j - 1]; } } return Pascal[X, Y]; } public class ConsoleInput { private readonly System.IO.TextReader _stream; private char _separator = ' '; private Queue<string> inputStream; public ConsoleInput(System.IO.TextReader stream, char separator = ' ') { this._separator = separator; this._stream = stream; inputStream = new Queue<string>(); } public string Read { get { if (inputStream.Count != 0) return inputStream.Dequeue(); string[] tmp = _stream.ReadLine().Split(_separator); for (int i = 0; i < tmp.Length; ++i) inputStream.Enqueue(tmp[i]); return inputStream.Dequeue(); } } public string ReadLine { get { return _stream.ReadLine(); } } public int ReadInt { get { return int.Parse(Read); } } public long ReadLong { get { return long.Parse(Read); } } public double ReadDouble { get { return double.Parse(Read); } } public string[] ReadStrArray(long N) { var ret = new string[N]; for (long i = 0; i < N; ++i) ret[i] = Read; return ret; } public int[] ReadIntArray(long N) { var ret = new int[N]; for (long i = 0; i < N; ++i) ret[i] = ReadInt; return ret; } public long[] ReadLongArray(long N) { var ret = new long[N]; for (long i = 0; i < N; ++i) ret[i] = ReadLong; return ret; } } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#!/usr/bin/env ruby STDIN.gets.chomp.to_i array = STDIN.gets.chomp.split(' ').map(&:to_i) def get_answer(first, array) ans = 0 sum = first array.each do |a| if sum >= 0 if sum + a < 0 sum += a else ans += (-1 - (sum + a)).abs sum = -1 end else # sumがマイナス if sum + a > 0 sum += a else ans += (1 - (sum + a)).abs sum = 1 end end #puts "#{i}: sum = #{sum}, ans = #{ans}" end return ans end first = array.shift if first == 0 ans = [get_answer(1, array), get_answer(-1, array)].min else ans = get_answer(first, array) end puts ans
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy n=int(input()) a=[int(i) for i in input().split()] ans=0 sum=0 if a[0]==0: a[0]=1 ans=1 sum=1 for j in a[1:]: if numpy.sign(sum)==numpy.sign(sum+j) or numpy.sign(sum+j)==0: ans+=abs(sum+j)+1 sum=-numpy.sign(sum) else: sum+=j pans=ans a[0]=-1 ans=1 sum=-1 for j in a[1:]: if numpy.sign(sum)==numpy.sign(sum+j) or numpy.sign(sum+j)==0: ans+=abs(sum+j)+1 sum=-numpy.sign(sum) else: sum+=j mans=ans ans=min(pans,mans) else: for j in a: if numpy.sign(sum)==numpy.sign(sum+j) or numpy.sign(sum+j)==0: ans+=abs(sum+j)+1 sum=-numpy.sign(sum) else: sum+=j print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; } inline long long toLongLong(string s) { long long v; istringstream sin(s); sin >> v; return v; } template <class T> inline string toString(T x) { ostringstream sout; sout << x; return sout.str(); } inline vector<char> toVC(string s) { vector<char> data(s.begin(), s.end()); return data; } template <typename List> void SPRIT(const std::string &s, const std::string &delim, List &result) { result.clear(); string::size_type pos = 0; while (pos != string::npos) { string::size_type p = s.find(delim, pos); if (p == string::npos) { result.push_back(s.substr(pos)); break; } else { result.push_back(s.substr(pos, p - pos)); } pos = p + delim.size(); } } string TRIM(const string &str, const char *trimCharacterList = " \t\v\r\n") { string result; string::size_type left = str.find_first_not_of(trimCharacterList); if (left != string::npos) { string::size_type right = str.find_last_not_of(trimCharacterList); result = str.substr(left, right - left + 1); } return result; } template <typename T> bool VECTOR_EXISTS(vector<T> vec, T data) { auto itr = std::find(vec.begin(), vec.end(), data); size_t index = distance(vec.begin(), itr); if (index != vec.size()) { return true; } else { return 0; } } double ceil_n(double dIn, int nLen) { double dOut; dOut = dIn * pow(10.0, nLen); dOut = (double)(int)(dOut + 0.9); return dOut * pow(10.0, -nLen); } double floor_n(double dIn, int nLen) { double dOut; dOut = dIn * pow(10.0, nLen); dOut = (double)(int)(dOut); return dOut * pow(10.0, -nLen); } double round_n(double dIn, int nLen) { double dOut; dOut = dIn * pow(10.0, nLen); dOut = (double)(int)(dOut + 0.5); return dOut * pow(10.0, -nLen); } int take_a_n(int num, int n) { string str = toString(num); return str[str.length() - n] - '0'; } int strbase_2to10(const std::string &s) { int out = 0; for (int i = 0, size = s.size(); i < size; ++i) { out *= 2; out += ((int)s[i] == 49) ? 1 : 0; } return out; } int strbase_10to2(const std::string &s) { int binary = toInt(s); int out = 0; for (int i = 0; binary > 0; i++) { out = out + (binary % 2) * pow(static_cast<int>(10), i); binary = binary / 2; } return out; } int strbase_16to10(const std::string &s) { int out = stoi(s, 0, 16); return out; } int intbase_2to10(int in) { string str = toString(in); return strbase_2to10(str); } int intbase_10to2(int in) { string str = toString(in); return strbase_10to2(str); } int intbase_16to10(int in) { string str = toString(in); return strbase_16to10(str); } string intbase_10to16(unsigned int val, bool lower = true) { if (!val) return std::string("0"); std::string str; const char hc = lower ? 'a' : 'A'; while (val != 0) { int d = val & 15; if (d < 10) str.insert(str.begin(), d + '0'); else str.insert(str.begin(), d - 10 + hc); val >>= 4; } return str; } long long bitcount64(long long bits) { bits = (bits & 0x5555555555555555) + (bits >> 1 & 0x5555555555555555); bits = (bits & 0x3333333333333333) + (bits >> 2 & 0x3333333333333333); bits = (bits & 0x0f0f0f0f0f0f0f0f) + (bits >> 4 & 0x0f0f0f0f0f0f0f0f); bits = (bits & 0x00ff00ff00ff00ff) + (bits >> 8 & 0x00ff00ff00ff00ff); bits = (bits & 0x0000ffff0000ffff) + (bits >> 16 & 0x0000ffff0000ffff); return (bits & 0x00000000ffffffff) + (bits >> 32 & 0x00000000ffffffff); } const double EPS = 1e-10; const double PI = acos(-1.0); template <typename T> inline bool BETWEEN(const T aim, const T min, const T max) { if (min <= aim && aim <= max) { return true; } else { return false; } } template <class T> inline T SQR(const T x) { return x * x; } template <class T1, class T2> inline T1 POW(const T1 x, const T2 y) { if (!y) return 1; else if ((y & 1) == 0) { return SQR(POW(x, y >> 1)); } else return POW(x, y ^ 1) * x; } template <typename T> constexpr T ABS(T x) { static_assert(is_signed<T>::value, "ABS(): argument must be signed"); return x < 0 ? -x : x; } template <class BidirectionalIterator> bool next_partial_permutation(BidirectionalIterator first, BidirectionalIterator middle, BidirectionalIterator last) { reverse(middle, last); return next_permutation(first, last); } template <class BidirectionalIterator> bool next_combination(BidirectionalIterator first1, BidirectionalIterator last1, BidirectionalIterator first2, BidirectionalIterator last2) { if ((first1 == last1) || (first2 == last2)) { return false; } BidirectionalIterator m1 = last1; BidirectionalIterator m2 = last2; --m2; while (--m1 != first1 && !(*m1 < *m2)) { } bool result = (m1 == first1) && !(*first1 < *m2); if (!result) { while (first2 != m2 && !(*m1 < *first2)) { ++first2; } first1 = m1; std::iter_swap(first1, first2); ++first1; ++first2; } if ((first1 != last1) && (first2 != last2)) { m1 = last1; m2 = first2; while ((m1 != first1) && (m2 != last2)) { std::iter_swap(--m1, m2); ++m2; } std::reverse(first1, m1); std::reverse(first1, last1); std::reverse(m2, last2); std::reverse(first2, last2); } return !result; } template <typename T> constexpr bool ODD(T x) { return x % 2 != 0; } template <typename T> constexpr bool EVEN(T x) { return x % 2 == 0; } template <class T> inline T GCD(const T x, const T y) { if (x < 0) return GCD(-x, y); if (y < 0) return GCD(x, -y); return (!y) ? x : GCD(y, x % y); } template <class T> inline T LCM(const T x, const T y) { if (x < 0) return LCM(-x, y); if (y < 0) return LCM(x, -y); return x * (y / GCD(x, y)); } template <class T> inline T EXTGCD(const T a, const T b, T &x, T &y) { if (a < 0) { T d = EXTGCD(-a, b, x, y); x = -x; return d; } if (b < 0) { T d = EXTGCD(a, -b, x, y); y = -y; return d; } if (!b) { x = 1; y = 0; return a; } else { T d = EXTGCD(b, a % b, x, y); T t = x; x = y; y = t - (a / b) * y; return d; } } template <class T> inline bool ISPRIME(const T x) { if (x <= 1) return false; for (T i = 2; SQR(i) <= x; i++) if (x % i == 0) return false; return true; } template <class T> vector<bool> ERATOSTHENES(const T n) { vector<bool> arr(n, true); for (int i = 2; i < SQR(n); i++) { if (arr[i]) { for (int j = 0; i * (j + 2) < n; j++) { arr[i * (j + 2)] = false; } } } return arr; } template <typename T> vector<bool> ERATOSTHENES(const T a, const T b) { vector<bool> small = ERATOSTHENES(b); vector<bool> prime(b - a, true); for (int i = 2; (T)(SQR(i)) < b; i++) { if (small[i]) { for (T j = max(2, (a + i - 1) / i) * i; j < b; j += i) { prime[j - a] = false; } } } return prime; } template <class T> vector<T> DIVISOR(T n) { vector<T> v; for (int i = 1; i * i <= n; ++i) { if (n % i == 0) { v.push_back(i); if (i != n / i) { v.push_back(n / i); } } } sort(v.begin(), v.end()); return v; } template <typename T> T NCR(T n, T r) { T ans = 1; for (T i = n; i > n - r; --i) { ans = ans * i; } for (T i = 1; i < r + 1; ++i) { ans = ans / i; } return ans; } int MATRIZ_CHAIN(vector<int> &p, vector<vector<int> > &s) { const static int INF = 1 << 20; const int n = p.size() - 1; vector<vector<int> > X(n, vector<int>(n, INF)); s.resize(n, vector<int>(n)); for (int i = 0; i < n; ++i) X[i][i] = 0; for (int w = 1; w < n; ++w) for (int i = 0, j; j = i + w, j < n; ++i) for (int k = i; k < j; ++k) { int f = p[i] * p[k + 1] * p[j + 1]; if (X[i][k] + X[k + 1][j] + f < X[i][j]) { X[i][j] = X[i][k] + X[k + 1][j] + f; s[i][j] = k; } } return X[0][n - 1]; } vector<int> LIS(const vector<int> &a) { const static int INF = 99999999; const int n = a.size(); vector<int> A(n, INF); vector<int> id(n); for (int i = 0; i < n; ++i) { id[i] = distance(A.begin(), lower_bound(A.begin(), A.end(), a[i])); A[id[i]] = a[i]; } int m = *max_element(id.begin(), id.end()); vector<int> b(m + 1); for (int i = n - 1; i >= 0; --i) if (id[i] == m) b[m--] = a[i]; return b; } template <typename T> vector<T> LCS(const vector<T> &a, const vector<T> &b) { const int n = a.size(), m = b.size(); vector<vector<int> > X(n + 1, vector<int>(m + 1)); vector<vector<int> > Y(n + 1, vector<int>(m + 1)); for (int i = (0); i < (n); ++i) { for (int j = (0); j < (m); ++j) { if (a[i] == b[j]) { X[i + 1][j + 1] = X[i][j] + 1; Y[i + 1][j + 1] = 0; } else if (X[i + 1][j] < X[i][j + 1]) { X[i + 1][j + 1] = X[i][j + 1]; Y[i + 1][j + 1] = +1; } else { X[i + 1][j + 1] = X[i + 1][j]; Y[i + 1][j + 1] = -1; } } } vector<T> c; for (int i = n, j = m; i > 0 && j > 0;) { if (Y[i][j] > 0) --i; else if (Y[i][j] < 0) --j; else { c.push_back(a[i - 1]); --i; --j; } } reverse((c).begin(), (c).end()); return c; } vector<int> money_change(int C, vector<int> &cs) { const int INF = 99999999; int n = cs.size(); vector<int> xs(C + 1, INF); vector<int> ys(C + 1); xs[0] = 0; for (int i = 0; i < n; ++i) { for (int c = 0; c + cs[i] <= C; ++c) { if (xs[c + cs[i]] > xs[c] + 1) { xs[c + cs[i]] = xs[c] + 1; ys[c + cs[i]] = c; } } } vector<int> zs; for (int c = C; c > 0; c = ys[c]) { zs.push_back(c - ys[c]); } return zs; } int main() { int N; cin >> N; vector<long long> a(N); for (int i = (0); i < (N); ++i) { cin >> a[i]; } long long cost = 0; long long sum = a[0]; for (int i = (0); i < (N - 1); ++i) { if (sum > 0) { if (sum + a[i + 1] < 0) { sum += a[i + 1]; } else { cost += (1 + (sum + a[i + 1])); sum = -1; } } else { if (sum + a[i + 1] > 0) { sum += a[i + 1]; } else { cost += (1 + ABS(sum + a[i + 1])); sum = 1; } } } std::cout << (cost) << endl; ; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; using System.Text.RegularExpressions; namespace kyoupuro { class MainClass { public static void Main() { var N = Input.NextLong(); var list = Input.LongList(); long count = 0; // 最初を非ゼロにする if (list[0] == 0) { var index = list.FindIndex(x => x != 0); if (index == -1) list[0] = 1; else if ((index % 2 == 1) == (list[index] < 0)) list[0] = 1; else list[0] = -1; count++; } long sum = list[0]; for (int i = 1; i < N; i++) { var nextSum = sum + list[i]; if (sum > 0 && nextSum >= 0) { count += nextSum + 1; sum = -1; } else if (sum < 0 && nextSum <= 0) { count += -nextSum + 1; sum = 1; } else { sum = nextSum; } } Console.WriteLine(count); } } class Input { static IEnumerator<string> enumerator = new string[] { }.AsEnumerable().GetEnumerator(); public static string Line() { return Console.ReadLine(); } public static int NextInt() { while (!enumerator.MoveNext()) { enumerator = StrArr().AsEnumerable().GetEnumerator(); } return int.Parse(enumerator.Current); } public static long NextLong() { while (!enumerator.MoveNext()) { enumerator = StrArr().AsEnumerable().GetEnumerator(); } return long.Parse(enumerator.Current); } public static string[] StrArr() { return Line().Split(' '); } public static List<int> IntList() { return StrArr().Select(int.Parse).ToList(); } public static List<long> LongList() { return StrArr().Select(long.Parse).ToList(); } public static void Skip(int line = 1) { enumerator.Reset(); for (int i = 0; i < line; i++) Console.ReadLine(); } public static void Reset() { enumerator.Reset(); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> long body(std::vector<long>& a) { long ans = 0; std::vector<long> s(a.size()); s.at(0) = a.at(0); for (unsigned long i = 1; i < a.size(); i++) { s.at(i) = s.at(i - 1) + a.at(i); } long diff = 0; for (unsigned long i = 1; i < s.size(); i++) { s.at(i) += diff; long n = 0; if (s.at(i - 1) > 0 && s.at(i) >= 0) { n = s.at(i) + 1; ans += n; diff -= n; s.at(i) += diff; } else if (s.at(i - 1) < 0 && s.at(i) <= 0) { n = -s.at(i) + 1; ans += n; diff += n; s.at(i) += diff; } } return ans; } int main(int argc, char** argv) { long n; std::cin >> n; std::vector<long> a(n); for (long i = 0; i < n; i++) { std::cin >> a.at(i); } int ans; if (a.at(0) != 0) { ans = body(a); } else { a.at(0) = -1; long ans_a = body(a) + 1; a.at(0) = 1; long ans_b = body(a) + 1; ans = std::min(ans_a, ans_b); } std::cout << ans << std::endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { int i, a, n, num; int sum = 0, bsum = 0, ans = 0, m = 0; scanf("%d", &n); for (i = 0; i < n; i++) { scanf("%d", &a); bsum = sum; sum += a; if (bsum > 0) { if (sum > 0) { num = sum; do { num--; ans++; m++; } while (num >= 0); sum -= m; m = 0; } if (sum = 0) { ans++; sum -= 1; } } if (bsum < 0) { if (sum < 0) { num = sum; do { num++; ans++; m++; } while (num <= 0); sum += m; m = 0; } if (sum = 0) { ans++; sum += 1; } } } printf("%d\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int, input().split())) ans = 0 prev_sm = A[0] # total to i - 1 for i in range(1, N): # if prev_sum is plus and a is more minus than prev_sum. if prev_sm > 0 and prev_sm + A[i] < 0: prev_sm += A[i] continue # if prev_sum is plus and a is larger than or equal to prev_sum. elif prev_sm > 0 and prev_sm + A[i] >= 0: diff = prev_sm + A[i] + 1 prev_sm += A[i] ans += diff A[i] -= diff # if prev_sum is minus and a is more plus than prev_sum. elif prev_sm < 0 and prev_sm + A[i] > 0: prev_sm += A[i] continue # if prev_sum is minus and a is more smaller than or equal to prev_sum. elif prev_sm < 0 and prev_sm + A[i] <= 0: diff = -(prev_sm + A[i] - 1) prev_sm += A[i] ans += diff A[i] += diff print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; scanf("%d", &n); vector<int> a; for (int i = 0; i < n; i++) { int an; scanf("%d", &an); a.push_back(an); } long long op_count = 0; long long now_sum = 0; if (a[0] == 0) { a[0] = 1; op_count++; } long long adding = a[0] > 0 ? -1 : 1; for (int i = 0; i < n; i++) { now_sum += a[i]; adding *= -1; if (now_sum == 0) { a[i] += adding; now_sum += adding; op_count++; continue; } if (adding > 0) { const long long last = 1 - now_sum; if (last > 1) { a[i] += last; now_sum += last; op_count += abs(last); } } else { const long long last = -1 - now_sum; if (last < -1) { a[i] += last; now_sum += last; op_count += abs(last); } } } printf("%lld\n", op_count); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; int main() { cin >> n; int a[n + 1]; for (int i = 0; i < n; i++) cin >> a[i]; bool flag; long long sum; long long ans1 = 0; sum = a[0]; flag = true; for (int i = 1; i < n; i++) { sum += a[i]; if (flag && sum <= 0) { ans1 += sum * -1 + 1; sum = 1; } else if (!flag && sum >= 0) { ans1 += sum + 1; sum = -1; } if (flag) flag = false; else flag = true; } long long ans2 = 0; sum = a[0]; flag = false; for (int i = 1; i < n; i++) { sum += a[i]; if (flag && sum <= 0) { ans2 += sum * -1 + 1; sum = 1; } else if (!flag && sum >= 0) { ans2 += sum + 1; sum = -1; } if (flag) flag = false; else flag = true; } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) num_list = list(map(int, input().split())) count = 0 sum_ = num_list[0] if sum_ > 0: for i in range(1, n): sum_ += num_list[i] if i%2 == 0: if sum_ <= 0: sum_ = 1 count += abs(sum_) + 1 else: if sum_ >= 0: sum_ = -1 count += abs(sum_) + 1 print(count) elif sum_ < 0: for i in range(1, n): sum_ += num_list[i] if i%2 == 1: if sum_ <= 0: sum_ = 1 count += abs(sum_) + 1 else: if sum_ >= 0: sum_ = -1 count += abs(sum_) + 1 print(count) else: sum_ = 1 for i in range(1, n): sum_ += num_list[i] if i%2 == 0: if sum_ <= 0: sum_ = 1 count += abs(sum_) + 1 else: if sum_ >= 0: sum_ = -1 count += abs(sum_) + 1 count1 = count sum_ = -1 for i in range(1, n): sum_ += num_list[i] if i%2 == 1: if sum_ <= 0: sum_ = 1 count += abs(sum_) + 1 else: if sum_ >= 0: sum_ = -1 count += abs(sum_) + 1 count2 = count print(min(count1, count2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; long long a[n]; long long res = 0; for (long long i = 0; i < n; ++i) { cin >> a[i]; } bool can1 = false; if (a[0] == 0) { for (long long i = 1; i < n; ++i) { if (a[i] > 0 && i % 2 == 0) { a[0] = -1; res++; can1 = true; break; } if (a[i] > 0 && i % 2 != 0) { a[0] = -1; res++; can1 = true; break; } else if (a[i] < 0 && i % 2 == 0) { a[0] = -1; res++; can1 = true; break; } else if (a[i] < 0 && i % 2 != 0) { a[0] = 1; res++; can1 = true; break; } } } else can1 = true; long long total = a[0]; for (long long i = 1; i < n; ++i) { if (total < 0 && total + a[i] >= 0) { total += a[i]; if (total == 0) { total++; res++; } } else if (total > 0 && total + a[i] <= 0) { total += a[i]; if (total == 0) { total--; res++; } } else if (total < 0 && total + a[i] <= 0) { res += 1 - total - a[i]; a[i] = 1 - total; total += a[i]; if (total == 0) { total++; res++; } } else if (total > 0 && total + a[i] >= 0) { res += abs(-1 - total - a[i]); a[i] = -1 - total; total += a[i]; if (total == 0) { total--; res++; } } } if (can1 == false) cout << 2 * n + 1 << endl; else cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n, ci, counter = 0; bool isPositive; cin >> n; vector<int> a(n); for (int(i) = (0); (i) <= (n - 1); ++(i)) cin >> a[i]; ci = a[0]; if (ci == 0) { long long counter1, counter2; counter1 = counter2 = 0; isPositive = true; for (int(i) = (1); (i) <= (n - 1); ++(i)) { ci += a[i]; if (isPositive && ci > 0) { counter1 += abs(ci) + 1; ci -= abs(ci) + 1; } else if (!isPositive && ci < 0) { counter1 += abs(ci) + 1; ci += abs(ci) + 1; } else if (ci == 0) { if (isPositive) { --ci; ++counter1; } else { ++ci; ++counter1; } } isPositive = !isPositive; } isPositive = false; for (int(i) = (1); (i) <= (n - 1); ++(i)) { ci += a[i]; if (isPositive && ci > 0) { counter2 += abs(ci) + 1; ci -= abs(ci) + 1; } else if (!isPositive && ci < 0) { counter2 += abs(ci) + 1; ci += abs(ci) + 1; } else if (ci == 0) { if (isPositive) { --ci; ++counter2; } else { ++ci; ++counter2; } } isPositive = !isPositive; } counter = min(counter1, counter2); cout << counter << endl; return 0; } if (ci > 0) isPositive = true; if (ci < 0) isPositive = false; for (int(i) = (1); (i) <= (n - 1); ++(i)) { ci += a[i]; if (isPositive && ci > 0) { counter += abs(ci) + 1; ci -= abs(ci) + 1; } else if (!isPositive && ci < 0) { counter += abs(ci) + 1; ci += abs(ci) + 1; } else if (ci == 0) { if (isPositive) { --ci; ++counter; } else { ++ci; ++counter; } } isPositive = !isPositive; } cout << counter << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using static System.Console; using static System.Math; public class Hello{ public static void Main(){ int kazu = int.Parse(ReadLine()); string[] number = ReadLine().Split(' '); int wa = 0; int wa2 = 0; int num0 = int.Parse(number[0]); long count = 0; long ans =0; if(num0 == 0){ wa = 1; wa2 = -1; count++; }else{ wa = num0; } for(int i=1;i<kazu;i++){ int numi = int.Parse(number[i]); int temp = wa + numi; if(wa > 0){ if(temp < 0){ wa = temp; }else{ count += Abs(numi + wa) + 1; wa = -1; } }else if(wa < 0){ if(temp > 0){ wa = temp; }else{ count += Abs(numi + wa) + 1; wa = 1; } } } ans = count; if(wa2 != 0){ count = 1; for(int i=1;i<kazu;i++){ int numi = int.Parse(number[i]); int temp = wa2 + numi; if(wa2 > 0){ if(temp < 0){ wa2 = temp; }else{ count += Abs(numi + wa2) + 1; wa2 = -1; } }else if(wa2 < 0){ if(temp > 0){ wa2 = temp; }else{ count += Abs(numi + wa2) + 1; wa2 = 1; } } } } WriteLine(Min(count,ans)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n + 10]; for (int i = 0; i < n; i++) { cin >> a[i]; } int firstOperation; int operation = 0, sum = a[0]; if (sum <= 0) { operation += abs(sum) + 1; sum = 1; } for (int i = 1; i < n; i++) { int tmp = sum + a[i]; if (sum < 0) { if (tmp <= 0) { operation += abs(tmp) + 1; sum = 1; } else sum = tmp; } else { if (tmp >= 0) { operation += tmp + 1; sum = -1; } else sum = tmp; } } firstOperation = operation; operation = 0, sum = a[0]; if (sum >= 0) { operation += abs(sum) + 1; sum = -1; } for (int i = 1; i < n; i++) { int tmp = sum + a[i]; if (sum < 0) { if (tmp <= 0) { operation += abs(tmp) + 1; sum = 1; } else sum = tmp; } else { if (tmp >= 0) { operation += tmp + 1; sum = -1; } else sum = tmp; } } cout << min(firstOperation, operation) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = input().split() a = [int(m) for m in a] q = [] k = 0 kco = 0 #+- for i in range(n): if i == 0: if a[i] > 0: q.append(a[i]) else: q.append(1) kco += 1 - a[i] k += q[i] else: k += a[i] if i % 2 != 0: if k < 0: q.append(a[i]) else: q.append(a[i]-k-1) kco += k + 1 k += q[i] - a[i] if i % 2 == 0: if k > 0: q.append(a[i]) else: q.append(a[i]-k+1) kco += -k + 1 k += q[i] - a[i] xco = kco q = [] k = 0 kco = 0 #-+ for i in range(n): if i == 0: if a[i] < 0: q.append(a[i]) else: q.append(1) kco += 1 - a[i] k += q[i] else: k += a[i] if i % 2 == 0: if k < 0: q.append(a[i]) else: q.append(a[i]-k-1) kco += k + 1 k += q[i] - a[i] if i % 2 != 0: if k > 0: q.append(a[i]) else: q.append(a[i]-k+1) kco += -k + 1 k += q[i] - a[i] yco = kco print(min(xco, yco))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys sys.setrecursionlimit(10 ** 7) f_inf = float('inf') mod = 10 ** 9 + 7 def resolve(): n = int(input()) A = list(map(int, input().split())) res = 0 R = [0] for i in range(n): if i == 0: if A[i] == 0: res += 1 if A[i + 1] >= 0: R.append(-1) else: R.append(1) else: R.append(R[-1] + A[i]) else: if R[-1] >= 0 and R[-1] + A[i] >= 0: res += R[-1] + A[i] + 1 R.append(-1) elif R[-1] <= 0 and R[-1] + A[i] <= 0: res += abs(R[-1] + A[i]) + 1 R.append(1) else: R.append(R[-1] + A[i]) print(res) if __name__ == '__main__': resolve()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) count = 0 sum_i = a[0] if sum_i < 0: sum_i = 1 pos_count = 1 - sum_i for i in range(1, n): if sum_i < 0: sum_i += a[i] if sum_i <= 0: pos_count += 1 - sum_i sum_i = 1 elif sum_i > 0: sum_i += a[i] if sum_i >= 0: pos_count += sum_i + 1 sum_i = -1 sum_i = a[0] neg_count = 0 for i in range(1, n): if sum_i < 0: sum_i += a[i] if sum_i <= 0: neg_count += 1 - sum_i sum_i = 1 elif sum_i > 0: sum_i += a[i] if sum_i >= 0: neg_count += sum_i + 1 sum_i = -1 if neg_count < pos_count: count = neg_count else: count = pos_count elif sum_i > 0: sum_i = a[0] pos_count = 0 for i in range(1, n): if sum_i < 0: sum_i += a[i] if sum_i <= 0: pos_count += 1 - sum_i sum_i = 1 elif sum_i > 0: sum_i += a[i] if sum_i >= 0: pos_count += sum_i + 1 sum_i = -1 sum_i = -1 neg_count = sum_i + 1 for i in range(1, n): if sum_i < 0: sum_i += a[i] if sum_i <= 0: neg_count += 1 - sum_i sum_i = 1 elif sum_i > 0: sum_i += a[i] if sum_i >= 0: neg_count += sum_i + 1 sum_i = -1 if neg_count < pos_count: count = neg_count else: count = pos_count else: sum_i = 1 pos_count = 1 for i in range(1, n): if sum_i < 0: sum_i += a[i] if sum_i <= 0: pos_count += 1 - sum_i sum_i = 1 elif sum_i > 0: sum_i += a[i] if sum_i >= 0: pos_count += sum_i + 1 sum_i = -1 sum_i = -1 neg_count = 1 for i in range(1, n): if sum_i < 0: sum_i += a[i] if sum_i <= 0: neg_count += 1 - sum_i sum_i = 1 elif sum_i > 0: sum_i += a[i] if sum_i >= 0: neg_count += sum_i + 1 sum_i = -1 if neg_count < pos_count: count = neg_count else: count = pos_count print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); int n; cin >> n; int a[n]; long long int s = 0; long long int ans = INT_MAX; int i; for (i = 0; i < n; i++) cin >> a[i]; s = a[0]; long long int p = 0; if (s > 0) { for (i = 1; i < n; i++) { if (i % 2) { if (s + a[i] < 0) { s += a[i]; } else { p += 1 + s + a[i]; s = -1; } } else { if (s + a[i] > 0) s += a[i]; else { p += 1 - s - a[i]; s = 1; } } } s = -1; ans = min(ans, p); cout << ans << endl; } else if (s < 0) { for (i = 1; i < n; i++) { if (i % 2 == 0) { if (s + a[i] < 0) { s += a[i]; } else { p += 1 + s + a[i]; s = -1; } } else { if (s + a[i] > 0) s += a[i]; else { p += 1 - s - a[i]; s = 1; } } } s = 1; ans = min(ans, p); cout << ans << endl; } else { p = 1; s = 1; for (i = 1; i < n; i++) { if (i % 2) { if (s + a[i] < 0) { s += a[i]; } else { p += 1 + s + a[i]; s = -1; } } else { if (s + a[i] > 0) s += a[i]; else { p += 1 - s - a[i]; s = 1; } } } s = -1; ans = min(ans, p); p = 1; for (i = 1; i < n; i++) { if (i % 2 == 0) { if (s + a[i] < 0) { s += a[i]; } else { p += 1 + s + a[i]; s = -1; } } else { if (s + a[i] > 0) s += a[i]; else { p += 1 - s - a[i]; s = 1; } } } ans = min(ans, p); cout << ans << endl; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> data(N); for (int i = 0; i < N; i++) cin >> data[i]; int count = 0; int ans = data[0]; int saisyo; for (int i = 1; i < N; i++) { ans += data[i]; if (i % 2 == 0) { while (ans <= 0) { ans++; count++; } } else { while (ans >= 0) { ans--; count++; } } } saisyo = count; count = 0; ans = data[0]; while (ans >= 0) { ans--; count++; } for (int i = 1; i < N; i++) { ans += data[i]; if (i % 2 != 0) { while (ans <= 0) { ans++; count++; } } else { while (ans >= 0) { ans--; count++; } } } saisyo = min(saisyo, count); cout << saisyo << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } long long Sum = a[0], ans = 0; if (Sum <= 0) { ans += -Sum + 1; Sum = 1; } for (int i = 0; i < n - 1; i++) { if (Sum < 0 && Sum + a[i + 1] <= 0) { ans += -(Sum + a[i + 1]) + 1; Sum = 1; } else if (Sum > 0 && Sum + a[i + 1] >= 0) { ans += Sum + a[i + 1] + 1; Sum = -1; } else { Sum += a[i + 1]; } } long long S1 = a[0], t1 = 0; if (S1 >= 0) { ans += S1 + 1; Sum = -1; } for (int i = 0; i < n - 1; i++) { if (S1 < 0 && S1 + a[i + 1] <= 0) { t1 += -(S1 + a[i + 1]) + 1; S1 = 1; } else if (S1 > 0 && S1 + a[i + 1] >= 0) { t1 += S1 + a[i + 1] + 1; S1 = -1; } else { S1 += a[i + 1]; } } ans = min(ans, t1); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[100000]; for (int i = 0; i < (int)(n); i++) cin >> a[i]; bool zeroFlag = false; int costA = 0, costB = 0; int sum = 0, prev = 0; for (int i = 0; i < (int)(n); i++) { if (a[0] == 0) { a[0] = 1; costA++; zeroFlag = true; } prev = sum; sum += a[i]; if (i == 0) continue; if ((prev * sum) < 0) continue; if (prev < 0) { for (; (prev * sum) >= 0; sum++) costA++; } else { for (; (prev * sum) >= 0; sum--) costA++; } } if (zeroFlag) { a[0] = -1; costB++; } else { a[0] = -1 * a[0] / abs(a[0]); } sum = 0; prev = 0; for (int i = 0; i < (int)(n); i++) { prev = sum; sum += a[i]; if (i == 0) continue; if ((prev * sum) < 0) continue; if (prev < 0) { for (; (prev * sum) >= 0; sum++) costB++; } else { for (; (prev * sum) >= 0; sum--) costB++; } } cout << min(costA, costB) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = [int(x) for x in input().split()] count = 0 sum_before = A[0] for i in range(n): if i == 0: continue sum_for_i = sum_before + A[i] #print('[',i,']: before',sum_before,'after',sum_for_i, A) if sum_for_i == 0 and sum_before > 0: #print("case 1") A[i] -= 1 count += 1 elif sum_for_i == 0 and sum_before <0: #print("case 2") A[i] += 1 count += 1 elif sum_before >0 and sum_for_i>0: #print("case 3") count += (abs(sum_for_i)+1) A[i] -= (abs(sum_for_i)+1) elif sum_before <0 and sum_for_i<0: #print("case 4") count += (abs(sum_for_i)+1) A[i] += (abs(sum_for_i)+1) #print('[',i,']: ',A, 'count', count) sum_before += A[i] print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; long long ans = 0; long long num = 0; int offset = 0; for (int i = 0; i < N; i++) { long long a; cin >> a; num += a; if (i == 0 && a < 0) offset = 1; if ((i + offset) % 2 == 0 && num <= 0) { ans += 1 - num; num = 1; } else if ((i + offset) % 2 == 1 && num >= 0) { ans += num + 1; num = -1; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) sum = a[0] ans = 0 if sum > 0: flg = 1 else: flg = -1 for i in range(1, n): sum += a[i] if flg == 1: if sum < 0: flg = -1 else: ans += sum + 1 sum = -1 flg = -1 else: if sum > 0: flg = 1 else: ans += (sum) * (-1) + 1 sum = 1 flg = 1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
from functools import reduce N =int(input()) A = list(map(int, input().split())) def check(A): arr1 = [0]*N ans1 = 0 for i in range(len(A)): if i ==0: arr1[0] = A[0] else: arr1[i] += arr1[i-1] + A[i] if arr1[i]*arr1[i-1] >0: if arr1[i-1] >=0: arr1[i] = -1 elif arr1[i-1] <=0: arr1[i] = 1 ans1 += abs(arr1[i])+1 ans2 = 0 arr2 = [0]*N #change head. for i in range(len(A)): if i ==1: if A[0]>=0: arr2[0] = -1 elif A[0]<=0: arr2[0] = 1 ans2 += (abs(A[0])+1) else: arr2[i] += arr2[i-1] + A[i] if arr2[i]*arr2[i-1] >=0: if arr2[i-1]>=0: arr2[i] = -1 elif arr2[i-1]<=0: arr2[i] = 1 ans2 += abs(arr2[i])+1 return min(ans1,ans2) print(check(A))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T> T gcd(T a, T b) { if (a < b) gcd(b, a); if (b == 1) return 1; T r; while ((r = a % b)) { a = b; b = r; } return b; } bool comp(pair<long long int, long long int> a, pair<long long int, long long int> b) { return a.second < b.second; } struct UnionFind { vector<int> par; vector<int> rank; UnionFind(int n = 1) { init(n); } void init(int n = 1) { par.resize(n); rank.resize(n); for (int i = 0; i < n; ++i) { par[i] = i; rank[i] = 0; } } int root(int x) { if (par[x] == x) { return x; } else { int r = root(par[x]); return par[x] = r; } } bool issame(int x, int y) { return root(x) == root(y); } bool merge(int x, int y) { x = root(x); y = root(y); if (x == y) return false; if (rank[x] < rank[y]) swap(x, y); if (rank[x] == rank[y]) ++rank[x]; par[y] = x; return true; } }; class SegmentTree { public: int N, n; vector<long long int> value; SegmentTree(int n) { this->n = n; this->N = 1; while (N < n) N *= 2; this->value = vector<long long int>(2 * N - 1, (long long int(1e18))); } void update(int i, long long int x) { i += N - 1; value[i] = x; while (i > 0) { i = (i - 1) / 2; value[i] = min(value[i * 2 + 1], value[i * 2 + 2]); } } long long int query(int l, int r) { return _query(l, r, 0, 0, N); } long long int _query(int a, int b, int k, int l, int r) { if (r <= a || b <= l) return (long long int(1e18)); if (a <= l && r <= b) return value[k]; else { long long int c1 = _query(a, b, 2 * k + 1, l, (l + r) / 2); long long int c2 = _query(a, b, 2 * k + 2, (l + r) / 2, r); return min(c1, c2); } } }; int msb(long long int x) { int n = 0; while (x > 0) { x /= 2; n++; } return n; } pair<long long int, long long int> merge(long long int a, long long int b) { long long int cnt = 1; while (a + b >= 10) { long long int c = a + b; a = c / 10; b = c % 10; cnt++; } return make_pair(a + b, cnt); } vector<long long int> decomp(long long int d, long long int c, long long int *cost) { vector<long long int> x; if (c % 2 == 1) { x.push_back(d); } if (c >= 2) { auto r = merge(d, d); *cost = *cost + r.second * (c / 2); auto y = decomp(r.first, c / 2, cost); x.insert(x.end(), y.begin(), y.end()); } return x; } int main(int argc, const char *argv[]) { cin.tie(0); ios::sync_with_stdio(false); long long int n; cin >> n; vector<long long int> a(n); for (long long int i = 0, i_len = (n); i < i_len; ++i) { cin >> a[i]; } vector<long long int> sp(n), sn(n); long long int p = 0, q = 0; if (a[0] > 0) { q += a[0] + 1; sn[0] = -1; sp[0] = a[0]; } else if (a[0] < 0) { p += 1 - a[0]; sp[0] = 1; sn[0] = a[0]; } else { p = 1; sp[0] = 1; sn[0] = -1; } for (long long int i = (1), i_len = (n); i < i_len; ++i) { sp[i] = sp[i - 1] + a[i]; if (sp[i] >= 0 && i % 2 == 1) { p += sp[i] + 1; sp[i] = -1; } else if (sp[i] <= 0 && i % 2 == 0) { p += 1 - sp[i]; sp[i] = 1; } sn[i] = sn[i - 1] + a[i]; if (sn[i] >= 0 && i % 2 == 0) { q += sn[i] + 1; sn[i] = -1; } else if (sn[i] <= 0 && i % 2 == 1) { q += 1 - sn[i]; sn[i] = 1; } } cout << min(q, p) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int t; int answer = 0; int sumi; bool flag; cin >> t; vector<int> A(t); cin >> A[0]; sumi = A[0]; if (sumi > 0) { flag = true; } else if (sumi < 0) { flag = false; } else { answer += 1; A[0] += 1; sumi += 1; } for (int i = 1; i < t; i++) { cin >> A[i]; sumi += A[i]; if (sumi == 0) { answer += 1; if (flag) { sumi = -1; } else { sumi = 1; } } else if (sumi > 0 == flag) { answer += sumi + 1; if (sumi > 0) { sumi = -1; } else { sumi = 1; } } flag = !flag; } cout << answer << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int a[100005]; int N; int solve() { int Num = 0, Sum = 0; for (int i = 0; i < N; i++) { if (i % 2 == 0) { if (Sum + a[i] <= 0) { Num += 1 - (Sum + a[i]); Sum = 1; } else Sum += a[i]; } else { if (Sum + a[i] >= 0) { Num += 1 + Sum + a[i]; Sum = -1; } else Sum += a[i]; } } return Num; } int main() { cin >> N; for (int i = 0; i < N; i++) { cin >> a[i]; } int ans1, ans2; ans1 = solve(); for (int i = 0; i < N; i++) a[i] *= -1; ans2 = solve(); printf("%d\n", min(ans1, ans2)); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# -*- coding: utf-8 -*- """ Created on Sat Sep 8 15:51:53 2018 @author: maezawa """ n = int(input()) a = list(map(int, input().split())) sa = 0 cnt = 0 for i in range(n-1): sa += a[i] if sa == 0: sa += 1 cnt += 1 na = -sa//abs(sa)*(abs(sa)+1) if abs(a[i+1]) > abs(na) and a[i+1]*na > 0: continue else: cnt += abs(na-a[i+1]) a[i+1] = na print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; bool value(int y, int x, int R, int C) { return 0 <= y && y < R && 0 <= x && x < C; } double pie = acos(-1); int INF = 1000000007; int dx[4] = {0, -1, 0, 1}; int dy[4] = {-1, 0, 1, 0}; int main() { int n; long long a[100005], ans = 0, b; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } b = a[0]; if (b > 0) { for (int i = 1; i < n; i++) { if (i % 2 == 1) { if (a[i] + b < 0) { b += a[i]; } else { ans += abs(b + a[i]) + 1; a[i] = a[i] - abs(b + a[i]) - 1; b += a[i]; } } else { if (a[i] + b > 0) { b += a[i]; } else { ans += abs(b + a[i]) + 1; a[i] = a[i] + abs(b + a[i]) + 1; b += a[i]; } } } } else { for (int i = 1; i < n; i++) { if (i % 2 == 0) { if (a[i] + b < 0) { b += a[i]; } else { ans += abs(b + a[i]) + 1; a[i] = a[i] - abs(b + a[i]) - 1; b += a[i]; } } else { if (a[i] + b > 0) { b += a[i]; } else { ans += abs(b + a[i]) + 1; a[i] = a[i] + abs(b + a[i]) + 1; b += a[i]; } } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 1e9 + 7; const long long N = 100003; long long n, a[N], ans = 0; int main() { ios::sync_with_stdio(false); cin.tie(0); cin >> n; for (long long i = (0); i < (n); ++i) { cin >> a[i]; } long long w = a[0]; if (a[0] <= 0) { ans += -a[0] + 1; w = 1; } for (long long i = (1); i < (n); ++i) { if (i % 2 == 1) { if (w + a[i] >= 0) { ans += (w + a[i]) + 1; w = -1; } else { w += a[i]; } } else { if (w + a[i] <= 0) { ans += -(w + a[i]) + 1; w = 1; } else { w += a[i]; } } } long long ans2 = 0; w = a[0]; if (a[0] >= 0) { ans2 += a[0] + 1; w = 1; } for (long long i = (1); i < (n); ++i) { if (i % 2 == 0) { if (w + a[i] >= 0) { ans2 += (w + a[i]) + 1; w = -1; } else { w += a[i]; } } else { if (w + a[i] <= 0) { ans2 += -(w + a[i]) + 1; w = 1; } else { w += a[i]; } } } cout << min(ans, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) numbers = list(map(int, input().split())) counter = 0 sum_i_n = 0 sum_i_n_1 = numbers[0] for i in range(len(numbers) - 1): # sum_i_n = sum(numbers[:i + 1]) # sum_i_n_1 = sum(numbers[:i + 2]) sum_i_n += numbers[i] sum_i_n_1 += numbers[i + 1] if sum_i_n == 0: numbers[i] += 1 sum_i_n += 1 sum_i_n_1 += 1 counter += 1 if sum_i_n * sum_i_n_1 > 0: sub = abs(sum_i_n_1) + 1 counter += sub if sum_i_n_1 > 0: numbers[i + 1] -= sub sum_i_n_1 -= sub else: numbers[i + 1] += sub sum_i_n_1 += sub if sum_i_n_1 == 0: counter += 1 print(counter)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using itn = int; using ld = long double; template <class T> using vec = vector<T>; int main() { int n; cin >> n; vec<int> a(n); for (int i = 0; i < (int)(n); i++) cin >> a[i]; int ans = 0; vec<int> s(n, 0); int ii = 0; while (true) { s[ii] = a[ii]; if (s[ii] != 0) break; ++ii; } ans += ii; for (int i = ((int)(ii + 1)); i < ((int)(n)); i++) { s[i] = a[i] + s[i - 1]; if (s[i] * s[i - 1] > 0) { if (s[i] < 0) { ans += 1 - s[i]; s[i] = 1; } else if (s[i] > 0) { ans += s[i] + 1; s[i] = -1; } } else if (s[i] == 0) { if (s[i - 1] < 0) { ++ans; s[i] = 1; } else if (s[i - 1] > 0) { ++ans; s[i] = -1; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n, *A = map(int, open(0).read().split()) def sgn(n): return 0 if n==0 else 1 if n>0 else -1 C = [0, 0] S = [1, -1] for a in A: for i, s in enumerate(S): sgn_sum = sgn(s) if sgn(s+a) != sgn_sum: S[i] += a else: C[i] += abs(s+a+sgn_sum) S[i] = -sgn_sum print(min(C))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long func(vector<long long> a, int fugo) { long long ans = 0; long long offset = 0; for (int i = 0; i < n; i++) { if (i % 2 == fugo) { if (a[i] <= offset) { ans += offset - (a[i] - 1); offset = a[i] - 1; } } else { if (a[i] >= offset) { ans += (a[i] + 1) - offset; offset = a[i] + 1; } } printf("[%d]", offset); } return ans; } int main() { cin >> n; vector<long long> a; long long sum_tmp = 0; for (int i = 0; i < n; i++) { int tmp; cin >> tmp; sum_tmp += tmp; a.push_back(sum_tmp); } long long ans = min(func(a, 0), func(a, 1)); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T = int> T in() { T x; cin >> x; return x; } int calc_sum(int N, vector<int> a, int sum, int start) { int prev = start; for (int i = 1; i < N; i++) { int curr = prev + a[i]; ; ; if (prev < 0 && curr < 0) { sum += abs(curr) + 1; curr = 1; } else if (prev > 0 && curr > 0) { sum += abs(curr) + 1; curr = -1; } else if (prev > 0 && curr == 0) { curr -= 1; sum++; } else if (prev < 0 && curr == 0) { curr += 1; sum++; } prev = curr; } return sum; } int main() { int N = in(); vector<int> a(N); for (int i = 0; i < (N); i++) a[i] = in(); int start1; int start2; int sum1 = 0; int sum2 = 0; if (a[0] == 0) { start1 = 1; start2 = -1; } else { start1 = a[0]; if (a[0] > 0) { start2 = -1; } else { start2 = 1; } sum2 += abs(a[0]) + 1; } int res1 = calc_sum(N, a, sum1, start1); int res2 = calc_sum(N, a, sum2, start2); cout << min(res1, res2) << '\n'; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> List(n); for (int i = 0; i < n; i++) { cin >> List.at(i); } int cnt = 0; long long Sign = 0; for (int i = 0; i < n; i++) { if (Sign == 0) { if (List.at(i) > 0) { Sign = List.at(i); } else if (List.at(i) < 0) { Sign = List.at(i); } continue; } if (Sign > 0) { if (Sign + List.at(i) >= 0) { cnt += abs(Sign + List.at(i)) + 1; Sign = -1; } else { Sign += List.at(i); } continue; } if (Sign < 0) { if (List.at(i) + Sign <= 0) { cnt += abs(Sign + List.at(i)) + 1; Sign = 1; } else { Sign += List.at(i); } continue; } } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; int A[N]; for (int i = 0; i < N; i++) cin >> A[i]; int numSign = 1, sum = 0, actNum = 0; for (int i = 0; i < N; i++) { if (A[i] > 0) break; else if (A[i] < 0) { numSign *= -1; break; } else numSign *= -1; } for (int i = 0; i < N; i++) { sum += A[i]; if (numSign == 1) { if (sum <= 0) { actNum += 1 - sum; sum = 1; } } else { if (sum >= 0) { actNum += sum - -1; sum = -1; } } numSign *= -1; } cout << actNum << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
package main import ( "fmt" "math" ) func nextInt() int { var x int fmt.Scan(&x) return x } func main() { n := nextInt() a := make([]int, n) for i := range a { a[i] = nextInt() } ans := math.MaxInt64 for j := 0; j <= 1; j++ { miniAns := 0 now := 0 for i, v := range a { k := pow(-1, i+j) now += v if sign(now) != k { miniAns += abs(k - now) now = k } } ans = min(ans, miniAns) } fmt.Println(ans) } func abs(a int) int { if a > 0 { return a } return -a } func sign(a int) int { if a != 0 { return a / abs(a) } return 0 } func min(a, b int) int { if a < b { return a } return b } func pow(a, b int) int { res := 1 for range make([]struct{}, b) { res *= a } return res }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int counter(int N, vector<int> A, int sum, int ans) { for (int i = 1; i < N; i++) { if (sum > 0 && sum + A.at(i) >= 0) { ans += sum + A.at(i) + 1; sum = -1; } else if (sum < 0 && sum + A.at(i) <= 0) { ans += -(sum + A.at(i)) + 1; sum = 1; } else sum += A.at(i); } return ans; } int main() { int N; cin >> N; vector<int> A(N); for (int i = 0; i < N; i++) cin >> A.at(i); int sum = A.at(0); int ans = 0; if (sum != 0) { cout << counter(N, A, sum, ans) << endl; return 0; } ans = min(counter(N, A, sum + 1, ans + 1), counter(N, A, sum - 1, ans + 1)); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { long long n, i, j, sw, sw2, count = 0, add = 0, adda = 0; cin >> n; vector<long long> a(n); for (i = 0; i < n; i++) { cin >> a[i]; adda += a[i]; } if (a[0] > 0) sw = 1; else sw = -1; add += a[0]; if ((adda > 0 && n % 2 == 1) || (adda < 0 && n % 2 == 0)) { } else { if (a[0] < 0) { while (a[0] != 1) { add++; a[0]++; count++; } } else { while (a[0] != -1) { add--; a[0]--; count++; } } } if (a[0] > 0) sw = 1; else sw = -1; for (i = 1; i < n; i++) { add += a[i]; if (sw == 1) { if (add < 0) { } else { while (add != -1) { a[i]--; add--; count++; } } } else { if (add > 0) { } else { while (add != 1) { a[i]++; add++; count++; } } } if (a[i] > 0) sw = 1; else sw = -1; } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main() { int n; scanf("%d", &n); int data[100001]; for (int i = 0; i < n; i++) { scanf("%d", data + i); } int sum = data[0]; int change = 0; int lastsum = sum; if (lastsum == 0) { if (data[1] > 0) { lastsum = -1; } else { lastsum = 1; } change = 1; } for (int i = 1; i < n; i++) { sum += data[i]; if (lastsum * sum < 0) { lastsum = sum; continue; } else { if (lastsum > 0) { change += sum + 1; lastsum = -1; sum = -1; } else { change += (-sum + 1); lastsum = 1; sum = 1; } } } printf("%d", change); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Text; using System.Linq; using System.Collections; using System.Collections.Generic; using static System.Console; using static System.Math; namespace AtCorder { public class Program { public static void Main(string[] args) { new Program().Solve(new ConsoleInput(Console.In, ' ')); } public void Solve(ConsoleInput cin) { var n = cin.ReadInt; var a = cin.ReadLongArray(n); var ans = 0L; var pre = a[0]; for(int i = 1; i < n; i++) { var now = pre + a[i]; if(pre * now < 0) { pre += a[i]; continue; } if(now > 0) { ans += (now + 1); a[i] -= (now + 1); } else if(now < 0) { ans += 1 - now; a[i] += 1 - now; } else if(now == 0) { if(pre < 0) { a[i]++; } else { a[i]--; } ans++; } pre += a[i]; } WriteLine(ans); } public long C(int X, int Y) { if (Y == 0 || Y == X) { return 1; } if (X < Y) { return 0; } var Pascal = new long[X + 1, X + 1]; for (int i = 0; i <= X; i++) { Pascal[i, 0] = 1L; Pascal[i, i] = 1L; } for (int i = 2; i <= X; i++) { for (int j = 1; j < i; j++) { Pascal[i, j] = Pascal[i - 1, j] + Pascal[i - 1, j - 1]; } } return Pascal[X, Y]; } public class ConsoleInput { private readonly System.IO.TextReader _stream; private char _separator = ' '; private Queue<string> inputStream; public ConsoleInput(System.IO.TextReader stream, char separator = ' ') { this._separator = separator; this._stream = stream; inputStream = new Queue<string>(); } public string Read { get { if (inputStream.Count != 0) return inputStream.Dequeue(); string[] tmp = _stream.ReadLine().Split(_separator); for (int i = 0; i < tmp.Length; ++i) inputStream.Enqueue(tmp[i]); return inputStream.Dequeue(); } } public string ReadLine { get { return _stream.ReadLine(); } } public int ReadInt { get { return int.Parse(Read); } } public long ReadLong { get { return long.Parse(Read); } } public double ReadDouble { get { return double.Parse(Read); } } public string[] ReadStrArray(long N) { var ret = new string[N]; for (long i = 0; i < N; ++i) ret[i] = Read; return ret; } public int[] ReadIntArray(long N) { var ret = new int[N]; for (long i = 0; i < N; ++i) ret[i] = ReadInt; return ret; } public long[] ReadLongArray(long N) { var ret = new long[N]; for (long i = 0; i < N; ++i) ret[i] = ReadLong; return ret; } } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long sum = a[0]; long long cnt = 0; if (sum == 0) { int ind = 1; for (int i = 0; i < n; i++) { if (a[i] != 0) ind = i; break; } if (a[ind] > 0) sum = (ind % 2 == 0 ? -1 : 1); else sum = (ind % 2 == 0 ? 1 : -1); cnt++; } for (int i = 1; i < n; i++) { long long nsum = sum + a[i]; if (sum > 0 && nsum < 0 || sum < 0 && nsum > 0) { sum = nsum; continue; } sum = (sum > 0 ? -1 : 1); cnt += (nsum == 0 ? 1 : abs(nsum) + 1); } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using Int = long long; Int INF = 1 << 30; int main() { Int n; std::cin >> n; std::vector<Int> a(n); for (Int i = 0; i < n; i++) std::cin >> a[i]; Int ans = 0; Int sum = a[0]; if (a[0] > 0) { for (Int i = 1; i < n; i++) { sum += a[i]; if (i % 2 == 1 && sum >= 0) { ans += sum + 1; sum = -1; } if (i % 2 == 0 && sum <= 0) { ans += 1 - sum; sum = 1; } } } if (a[0] < 0) { for (Int i = 1; i < n; i++) { sum += a[i]; if (i % 2 == 1 && sum <= 0) { ans += 1 - sum; sum = 1; } if (i % 2 == 0 && sum >= 0) { ans += sum + 1; sum = -1; } } } std::cout << ans << std::endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; signed main() { int n; cin >> n; vector<int> A(n), S(n); for (int i = 0; i < n; ++i) { cin >> A[i]; } int posC = 0, negC = 0; if (A[0] <= 0) { posC += abs(A[0]) + 1; S[0] = 1; } else S[0] = A[0]; for (int i = 1; i < n; ++i) { S[i] = S[i - 1] + A[i]; if (S[i] * S[i - 1] < 0) continue; posC += abs(S[i]) + 1; if (S[i - 1] < 0) S[i] = 1; else S[i] = -1; } if (A[0] >= 0) { negC += A[0] + 1; S[0] = -1; } else S[0] = A[0]; for (int i = 1; i < n; ++i) { S[i] = S[i - 1] + A[i]; if (S[i] * S[i - 1] < 0) continue; negC += abs(S[i]) + 1; if (S[i - 1] < 0) S[i] = 1; else S[i] = -1; } cout << min(negC, posC) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int a[100005]; int main() { int n, sum; long long num = 0; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } sum = a[0]; bool flag; if (a[0] < 0) flag = true; else flag = false; for (int i = 1; i < n; i++) { sum += a[i]; if (flag) { flag = !flag; if (sum > 0) continue; else if (sum == 0) num += 1, sum = 1; else num += 1 - sum, sum = 1; } else { flag = !flag; if (sum < 0) continue; else if (sum == 0) num += 1, sum = -1; else num += sum + 1, sum = -1; } } cout << num << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < (n); i++) cin >> a[i]; vector<long long> sums(n); long long ans = 0; sums[0] = a[0]; for (int i = 1; i < n; i++) { sums[i] = sums[i - 1] + a[i]; if (sums[i - 1] > 0 && sums[i] >= 0) { ans += a[i] + sums[i - 1] + 1; a[i] = -(sums[i - 1] + 1); sums[i] = sums[i - 1] + a[i]; } else if (sums[i - 1] < 0 && sums[i] <= 0) { ans += (-a[i]) + (-sums[i - 1] + 1); a[i] = (-sums[i - 1] + 1); sums[i] = sums[i - 1] + a[i]; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) cin >> a[i]; long long ans = 0, cumsum = a[0]; if (a[0] == 0) { int i = 1; while (a[i] == 0 && i < n) i++; if (i == n || (a[i] < 0 && i % 2 == 1) || (a[i] > 0 && i % 2 == 0)) cumsum = 1; else cumsum = -1; ans += 1; } for (int i = 1; i < n; i++) { if (cumsum > 0) { if (cumsum + a[i] >= 0) { ans += cumsum + a[i] + 1; cumsum = -1; } else cumsum += a[i]; } else { if (cumsum + a[i] <= 0) { ans += 1 - cumsum - a[i]; cumsum = 1; } else cumsum += a[i]; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using vi = std::vector<int>; using vc = std::vector<char>; using vll = std::vector<long long>; using vs = std::vector<string>; using Mi = map<int, int>; using Mll = map<ll, ll>; using UMi = unordered_map<int, int>; using UMll = unordered_map<ll, ll>; using Pi = pair<int, int>; using Pll = pair<ll, ll>; using vPi = vector<Pi>; using vPll = vector<Pll>; using vvi = vector<vector<int>>; using vvll = vector<vector<ll>>; using vvc = vector<vector<char>>; using vvs = vector<vector<string>>; using pqgi = priority_queue<int, vector<int>, greater<int>>; using pqsi = priority_queue<int, vector<int>, less<int>>; using pqgll = priority_queue<int, vector<int>, greater<int>>; using pssll = priority_queue<int, vector<int>, less<int>>; template <class T> using vec = vector<T>; class Cpmath { public: template <typename T> static T gcd(T a, T b) { if (a == 0) return b; return gcd(b % a, a); } template <typename T> static T findGCD(vector<T>& arr, size_t n) { T result = arr[0]; for (size_t i = 1; i < n; i++) result = gcd(arr[i], result); return result; } template <typename T> static T findLCM(vector<T>& arr, size_t n) { T lcm = arr[0]; for (size_t i = 1; i < n; i++) { lcm = (lcm / gcd(arr[i], lcm)) * arr[i]; } return lcm; } template <typename T> static bool is_prime(T n) { if (n == 1) { return false; } for (size_t i = 2; i <= pow(n, 0.5); i++) { if (n % i == 0) { return false; } } return true; } static ll fact(ll n) { if (n == 0) { return 1LL; } else { return n * fact(n - 1); } } static ll permutation(int n, int r) { assert(n >= r); ll ret = 1; for (int i = n; i > n - r; i--) { ret *= i; } return ret; } }; class NCR { private: static const int MAX = 210000; static const int MOD = 998244353; ll fac[MAX], finv[MAX], inv[MAX]; public: void COMinit() { fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < MAX; i++) { fac[i] = fac[i - 1] * i % MOD; inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD; finv[i] = finv[i - 1] * inv[i] % MOD; } } ll COM(int n, int k) { if (n < k) return 0; if (n < 0 || k < 0) { return 0; } return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD; } }; struct BipartiteMatching { vector<vector<int>> E; int n, m; vector<int> match, dist; void init(int _n, int _m) { n = _n, m = _m; E.resize(n + m + 2); match.resize(n + m + 2); dist.resize(n + m + 2); } bool bfs() { queue<int> que; for (int i = (1); i < (n + 1); i++) { if (!match[i]) dist[i] = 0, que.push(i); else dist[i] = 1e9; } dist[0] = 1e9; while (!que.empty()) { int u = que.front(); que.pop(); if (u) for (auto& v : E[u]) if (dist[match[v]] == 1e9) { dist[match[v]] = dist[u] + 1; que.push(match[v]); } } return (dist[0] != 1e9); } bool dfs(int u) { if (u) { for (auto& v : E[u]) if (dist[match[v]] == dist[u] + 1) if (dfs(match[v])) { match[v] = u; match[u] = v; return true; } dist[u] = 1e9; return false; } return true; } void add(int a, int b) { b += n; E[a + 1].push_back(b + 1); E[b + 1].push_back(a + 1); } int whois(int x) { return match[x + 1] - 1; } int solve() { for (int i = (0); i < (n + m + 1); i++) match[i] = 0; int res = 0; while (bfs()) for (int i = (1); i < (n + 1); i++) if (!match[i] && dfs(i)) res++; return res; } }; struct SegmentTree { private: int n; vector<int> node; public: SegmentTree(vector<int> v) { int sz = v.size(); n = 1; while (n < sz) n *= 2; node.resize(2 * n - 1, 1e9); for (int i = 0; i < sz; i++) { node[i + n - 1] = v[i]; } for (int i = n - 2; i >= 0; i--) { node[i] = min(node[2 * i + 1], node[2 * i + 2]); } } void update(int x, int val) { x += (n - 1); node[x] = val; while (x > 0) { x = (x - 1) / 2; node[x] = min(node[2 * x + 1], node[2 * x + 2]); } } int getmin(int a, int b, int k = 0, int l = 0, int r = -1) { if (r < 0) { r = n; } if (r <= a || b <= l) { return 1e9; } if (a <= l && r <= b) { return node[k]; } int vl = getmin(a, b, 2 * k + 1, l, (l + r) / 2); int vr = getmin(a, b, 2 * k + 2, (l + r) / 2, r); return min(vl, vr); } }; template <class Abel> struct WUnionFind { vector<int> par; vector<int> rank; vector<Abel> diff_weight; WUnionFind(int n = 1, Abel SUM_UNITY = 0) { init(n, SUM_UNITY); } void init(int n = 1, Abel SUM_UNITY = 0) { par.resize(n); rank.resize(n); diff_weight.resize(n); for (int i = 0; i < n; ++i) par[i] = i, rank[i] = 0, diff_weight[i] = SUM_UNITY; } int root(int x) { if (par[x] == x) { return x; } else { int r = root(par[x]); diff_weight[x] += diff_weight[par[x]]; return par[x] = r; } } Abel weight(int x) { root(x); return diff_weight[x]; } bool issame(int x, int y) { return root(x) == root(y); } bool merge(int x, int y, Abel w) { w += weight(x); w -= weight(y); x = root(x); y = root(y); if (x == y) return false; if (rank[x] < rank[y]) swap(x, y), w = -w; if (rank[x] == rank[y]) ++rank[x]; par[y] = x; diff_weight[y] = w; return true; } Abel diff(int x, int y) { return weight(y) - weight(x); } }; struct UnionFind { vector<int> par; UnionFind(int n) : par(n, -1) {} void init(int n) { par.assign(n, -1); } int root(int x) { if (par[x] < 0) return x; else return par[x] = root(par[x]); } bool issame(int x, int y) { return root(x) == root(y); } bool merge(int x, int y) { x = root(x); y = root(y); if (x == y) return false; if (par[x] > par[y]) { swap(x, y); } par[x] += par[y]; par[y] = x; return true; } int size(int x) { return -par[root(x)]; } }; void YN(bool a) { cout << (a ? "YES" : "NO") << "\n"; } void Yn(bool a) { cout << (a ? "Yes" : "No") << "\n"; } void yn(bool a) { cout << (a ? "yes" : "no") << "\n"; } template <class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } template <class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } int dx[4] = {1, 0, -1, 0}; int dy[4] = {0, 1, 0, -1}; template <typename T> inline int digitsum(T num) { int ret = 0; while (num) { ret += num % 10; num /= 10; } return ret; } template <typename InputIt, typename T> inline bool argexist(InputIt first, InputIt last, const T& x) { if (std::find(first, last, x) != last) { return true; } else { return false; } } template <typename InputIt, typename T> inline int argfind(InputIt first, InputIt last, const T& x) { auto it = find(first, last, x); return distance(first, it); } template <typename InputIt> inline int argmax(InputIt first, InputIt last) { auto it = max_element(first, last); return distance(first, it); } template <typename InputIt> inline int argmin(InputIt first, InputIt last) { auto it = min_element(first, last); return distance(first, it); } template <typename T> inline void erasebv(vector<T>& c, T v) { c.erase(remove(begin(c), end(c), v), end(c)); } template <typename T> inline void uniq(T& c) { c.erase(unique(begin(c), end(c)), end(c)); } template <typename T> inline T POP_BACK(vector<T>& que) { T x = que.back(); que.pop_back(); return x; } template <typename T> inline T POP_BACK(deque<T>& que) { T x = que.back(); que.pop_back(); return x; } template <typename T> inline T POP_FRONT(deque<T>& que) { T x = que.front(); que.pop_front(); return x; } template <typename T, typename C> inline T POP(stack<T, C>& stk) { T x = stk.top(); stk.pop(); return x; } template <typename T, typename C> inline T POP(queue<T, C>& que) { T x = que.front(); que.pop(); return x; } template <typename T, typename Cont, typename Cmp> inline T POP(priority_queue<T, Cont, Cmp>& que) { T x = que.top(); que.pop(); return x; } template <typename T1, typename T2> ostream& operator<<(ostream& s, const pair<T1, T2>& p) { return s << "(" << p.first << ", " << p.second << ")"; } template <typename T> ostream& operator<<(ostream& s, const vector<T>& v) { int len = v.size(); for (int i = 0; i < len; ++i) { s << v[i]; if (i < len - 1) s << "\t"; } return s; } template <typename T> ostream& operator<<(ostream& s, const vector<vector<T>>& vv) { int len = vv.size(); for (int i = 0; i < len; ++i) { s << vv[i] << "\n"; } return s; } namespace GraphLib { using Weight = int; struct Edge { int src, dst; Weight weight; Edge(int src, int dst, Weight weight) : src(src), dst(dst), weight(weight) {} }; bool operator<(const Edge& e, const Edge& f) { return e.weight != f.weight ? e.weight > f.weight : e.src != f.src ? e.src < f.src : e.dst < f.dst; } using Edges = vector<Edge>; using Graph = vector<Edges>; using Array = vector<Weight>; using Matrix = vector<Array>; void DijkstraShortestPath(const Graph& g, int s, vector<Weight>& dist, vector<int>& prev) { int n = g.size(); dist.assign(n, 1e9); dist[s] = 0; prev.assign(n, -1); priority_queue<Edge> Q; for (Q.push(Edge(-2, s, 0)); !Q.empty();) { Edge e = Q.top(); Q.pop(); if (prev[e.dst] != -1) continue; prev[e.dst] = e.src; for (auto& f : g[e.dst]) { if (dist[f.dst] > e.weight + f.weight) { dist[f.dst] = e.weight + f.weight; Q.push(Edge(f.src, f.dst, e.weight + f.weight)); } } } } vector<int> DijkstraBuildPath(const vector<int>& prev, int t) { vector<int> path; for (int u = t; u >= 0; u = prev[u]) path.push_back(u); reverse(path.begin(), path.end()); return path; } bool BellmandFordshortestPath(const Graph g, int s, vector<Weight>& dist, vector<int>& prev) { int n = g.size(); dist.assign(n, 1e9 + 1e9); dist[s] = 0; prev.assign(n, -2); bool negative_cycle = false; for (int k = 0; k < (int)(n); k++) for (int i = 0; i < (int)(n); i++) for (auto& e : g[i]) { if (dist[e.dst] > dist[e.src] + e.weight) { dist[e.dst] = dist[e.src] + e.weight; prev[e.dst] = e.src; if (k == n - 1) { dist[e.dst] = -1e9; negative_cycle = true; } } } return !negative_cycle; } vector<int> BellmanFordbuildPath(const vector<int>& prev, int t) { vector<int> path; for (int u = t; u >= 0; u = prev[u]) path.push_back(u); reverse(path.begin(), path.end()); return path; } void visit(const Graph& g, int v, int u, Edges& brdg, vector<vector<int>>& tecomp, stack<int>& roots, stack<int>& S, vector<bool>& inS, vector<int>& num, int& time) { num[v] = ++time; S.push(v); inS[v] = true; roots.push(v); for (auto& e : g[v]) { int w = e.dst; if (num[w] == 0) visit(g, w, v, brdg, tecomp, roots, S, inS, num, time); else if (u != w && inS[w]) while (num[roots.top()] > num[w]) roots.pop(); } if (v == roots.top()) { brdg.push_back(Edge(u, v, 1)); tecomp.push_back(vector<int>()); while (1) { int w = S.top(); S.pop(); inS[w] = false; tecomp.back().push_back(w); if (v == w) break; } roots.pop(); } } void bridge(const Graph& g, Edges& brdg, vector<vector<int>>& tecomp) { const int n = g.size(); vector<int> num(n); vector<bool> inS(n); stack<int> roots, S; int time = 0; for (int u = 0; u < (int)(n); u++) if (num[u] == 0) { visit(g, u, n, brdg, tecomp, roots, S, inS, num, time); brdg.pop_back(); } } pair<Weight, Edges> minimumSpanningTree(const Graph& g, int r = 0) { int n = g.size(); Edges T; Weight total = 0; vector<bool> visited(n); priority_queue<Edge> Q; Q.push(Edge(-1, r, 0)); while (!Q.empty()) { Edge e = Q.top(); Q.pop(); if (visited[e.dst]) continue; T.push_back(e); total += e.weight; visited[e.dst] = true; for (auto& f : g[e.dst]) if (!visited[f.dst]) Q.push(f); } return pair<Weight, Edges>(total, T); } } // namespace GraphLib ll N; vll a; vll s; signed main() { std::ios::sync_with_stdio(false); std::cin.tie(0); cin >> N; a.resize(N); vll s(N + 1, 0); for (int i = 0; i < (int)(N); i++) { cin >> a[i]; } ll ans = (1LL << 60); for (int j = 0; j < (int)(2); j++) { ll ret = 0; bool prev_sign; s[0] = 0; s[1] = a[0]; if (a[0] > 0) { prev_sign = 1; if (j == 0) { prev_sign = 1; ret = ret + abs(a[0] + 1); s[1] = -1; } } else { prev_sign = 0; if (j == 0) { prev_sign = 1; ret = ret + abs(a[0] - 1); s[1] = 1; } } for (int i = (1); i < (N); i++) { if (prev_sign) { ll cur_s = s[i] + a[i]; if (cur_s < 0) { s[i + 1] = s[i] + a[i]; } else { s[i + 1] = -1; ret += abs(cur_s + 1); } prev_sign = 0; } else { ll cur_s = s[i] + a[i]; if (cur_s > 0) { s[i + 1] = s[i] + a[i]; } else { s[i + 1] = 1; ret += abs(cur_s - 1); } prev_sign = 1; } } ans = min(ret, ans); } cout << ans << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) count = 0 sum_ = 0 for i in range(n): if sum_ * (sum_+a[i]) >0: if sum_ > 0: count += sum_+a[i]+1 a[i] = -sum_-1 if sum_ < 0: count += abs(sum_+a[i])+1 a[i] = -sum_+1 sum_ += a[i] print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) list_a = list(map(int,input().split())) i = 0 k = 0 count = 0 ans = 0 if list_a[0] > 0: for i in range(0,n): ans += list_a[i] if ans / ((-1) ** i) <= 0: count += abs(ans - (-1) ** i) ans = (-1) ** i else: for i in range(0,n): ans += list_a[i] if ans / ((-1) ** (i+1)) <= 0: count += abs(ans - (-1) ** (i+1)) ans = (-1) ** (i+1) count1 = count count = 0 if list_a[0] <= 0: for i in range(0,n): ans += list_a[i] if ans / ((-1) ** i) <= 0: count += abs(ans - (-1) ** i) ans = (-1) ** i else: for i in range(0,n): ans += list_a[i] if ans / ((-1) ** (i+1)) <= 0: count += abs(ans - (-1) ** (i+1)) ans = (-1) ** (i+1) count2 = count print(min(count1, count2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i as = gets.split(' ').map { |e| e.to_i } x = 0 bs = [] as.each { |e| x += e bs << x } # p bs ans = 0 for i in (1..(n - 1)) a, b = bs[i - 1], bs[i] if a >= 0 && b >= 0 d = b + 1 for j in (i..(n-1)) bs[j] = bs[j] - d end # p bs ans += d elsif a <= 0 && b <= 0 d = -1 * b + 1 for j in (i..(n-1)) bs[j] = bs[j] + d end # p bs ans += d end end ans += 1 if bs[n-1] == 0 puts ans
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(int argc, char *argv[]) { int i, n, t = 0, a, sign, c = 0; scanf("%d", &n); scanf("%d", &t); sign = t > 0 ? -1 : 1; for (i = 1; i < n; i++) { scanf("%d", &a); if (sign < 0) { if (t + a >= 0) { c += abs(-1 - t - a); t = -1; } else { t += a; } } else { if (t + a <= 0) { c += abs(1 - t - a); t = 1; } else { t += a; } } sign *= -1; } printf("%d\n", c); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def 解(): iN = int(input()) aA = [int(_) for _ in input().split()] iL = len(aA) iStart = 0 if sum(aA[0::2]) < sum(aA[2::2]): iStart = 1 iC = 0 aD = [0]*iL if 0 % 2 == iStart : if aA[0] <= 0: aA[0] = 1 iC += -1 * aA[0] + 1 else: if 0 <= aA[0] : aA[0] = -1 iC += aA[0] + 1 aD[0] = aA[0] for i in range(1,iL): aD[i] = aD[i-1]+aA[i] if i % 2 == iStart: if aD[i] <= 0: iC += -1*aD[i] +1 aD[i] = 1 else: if aD[i] >= 0: iC += aD[i] +1 aD[i] = -1 print(iC) 解()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
from sys import stdout printn = lambda x: stdout.write(str(x)) inn = lambda : int(input()) inl = lambda: list(map(int, input().split())) inm = lambda: map(int, input().split()) ins = lambda : input().strip() DBG = True # and False BIG = 999999999 R = 10**9 + 7 def ddprint(x): if DBG: print(x) n = inn() a = inl() ne = sum(a[::2]) no = sum(a[1::2]) p0 = (ne>no) cnt = 0 acc = 0 #ddprint("ne {} no {} p0 {} a {}".format(ne,no,p0,a)) for i in range(n): if (p0 if i%2==0 else not p0): x = max(0, 1-a[i]-acc) cnt += x acc += a[i]+x else: x = max(0, a[i]+acc+1) cnt += x acc += a[i]-x #ddprint("cnt {} acc {}".format(cnt,acc)) print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> template <typename T1, typename T2> inline void chmin(T1& a, T2 b) { if (a > b) a = b; } template <typename T1, typename T2> inline void chmax(T1& a, T2 b) { if (a < b) a = b; } using namespace std; std::mt19937 mt((long long)time(0)); long long dx[4] = {0, 1, 0, -1}; long long dy[4] = {1, 0, -1, 0}; using Weight = long long; using Flow = long long; struct Edge { long long src, dst; Weight weight; Flow cap; Edge() : src(0), dst(0), weight(0) {} Edge(long long s, long long d, Weight w) : src(s), dst(d), weight(w) {} }; using Edges = std::vector<Edge>; using Graph = std::vector<Edges>; using Array = std::vector<Weight>; using Matrix = std::vector<Array>; void add_edge(Graph& g, long long a, long long b, Weight w = 1) { g[a].emplace_back(a, b, w); g[b].emplace_back(b, a, w); } void add_arc(Graph& g, long long a, long long b, Weight w = 1) { g[a].emplace_back(a, b, w); } struct uf_tree { std::vector<long long> parent; long long __size; uf_tree(long long size_) : parent(size_, -1), __size(size_) {} void unite(long long x, long long y) { if ((x = find(x)) != (y = find(y))) { if (parent[y] < parent[x]) std::swap(x, y); parent[x] += parent[y]; parent[y] = x; __size--; } } bool is_same(long long x, long long y) { return find(x) == find(y); } long long find(long long x) { return parent[x] < 0 ? x : parent[x] = find(parent[x]); } long long size(long long x) { return -parent[find(x)]; } long long size() { return __size; } }; template <signed M, unsigned T> struct mod_int { constexpr static signed MODULO = M; constexpr static unsigned TABLE_SIZE = T; signed x; mod_int() : x(0) {} mod_int(long long y) : x(static_cast<signed>(y >= 0 ? y % MODULO : MODULO - (-y) % MODULO)) {} mod_int(signed y) : x(y >= 0 ? y % MODULO : MODULO - (-y) % MODULO) {} mod_int& operator+=(const mod_int& rhs) { if ((x += rhs.x) >= MODULO) x -= MODULO; return *this; } mod_int& operator-=(const mod_int& rhs) { if ((x += MODULO - rhs.x) >= MODULO) x -= MODULO; return *this; } mod_int& operator*=(const mod_int& rhs) { x = static_cast<signed>(1LL * x * rhs.x % MODULO); return *this; } mod_int& operator/=(const mod_int& rhs) { x = static_cast<signed>((1LL * x * rhs.inv().x) % MODULO); return *this; } mod_int operator-() const { return mod_int(-x); } mod_int operator+(const mod_int& rhs) const { return mod_int(*this) += rhs; } mod_int operator-(const mod_int& rhs) const { return mod_int(*this) -= rhs; } mod_int operator*(const mod_int& rhs) const { return mod_int(*this) *= rhs; } mod_int operator/(const mod_int& rhs) const { return mod_int(*this) /= rhs; } bool operator<(const mod_int& rhs) const { return x < rhs.x; } mod_int inv() const { assert(x != 0); if (x <= static_cast<signed>(TABLE_SIZE)) { if (_inv[1].x == 0) prepare(); return _inv[x]; } else { signed a = x, b = MODULO, u = 1, v = 0, t; while (b) { t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } return mod_int(u); } } mod_int pow(long long t) const { assert(!(x == 0 && t == 0)); mod_int e = *this, res = mod_int(1); for (; t; e *= e, t >>= 1) if (t & 1) res *= e; return res; } mod_int fact() { if (_fact[0].x == 0) prepare(); return _fact[x]; } mod_int inv_fact() { if (_fact[0].x == 0) prepare(); return _inv_fact[x]; } mod_int choose(mod_int y) { assert(y.x <= x); return this->fact() * y.inv_fact() * mod_int(x - y.x).inv_fact(); } static mod_int _inv[TABLE_SIZE + 1]; static mod_int _fact[TABLE_SIZE + 1]; static mod_int _inv_fact[TABLE_SIZE + 1]; static void prepare() { _inv[1] = 1; for (long long i = 2; i <= (long long)TABLE_SIZE; ++i) { _inv[i] = 1LL * _inv[MODULO % i].x * (MODULO - MODULO / i) % MODULO; } _fact[0] = 1; for (unsigned i = 1; i <= TABLE_SIZE; ++i) { _fact[i] = _fact[i - 1] * signed(i); } _inv_fact[TABLE_SIZE] = _fact[TABLE_SIZE].inv(); for (long long i = (long long)TABLE_SIZE - 1; i >= 0; --i) { _inv_fact[i] = _inv_fact[i + 1] * (i + 1); } } }; template <signed M, unsigned F> std::ostream& operator<<(std::ostream& os, const mod_int<M, F>& rhs) { return os << rhs.x; } template <signed M, unsigned F> std::istream& operator>>(std::istream& is, mod_int<M, F>& rhs) { long long s; is >> s; rhs = mod_int<M, F>(s); return is; } template <signed M, unsigned F> mod_int<M, F> mod_int<M, F>::_inv[TABLE_SIZE + 1]; template <signed M, unsigned F> mod_int<M, F> mod_int<M, F>::_fact[TABLE_SIZE + 1]; template <signed M, unsigned F> mod_int<M, F> mod_int<M, F>::_inv_fact[TABLE_SIZE + 1]; template <signed M, unsigned F> bool operator==(const mod_int<M, F>& lhs, const mod_int<M, F>& rhs) { return lhs.x == rhs.x; } template <long long M, unsigned F> bool operator!=(const mod_int<M, F>& lhs, const mod_int<M, F>& rhs) { return !(lhs == rhs); } const signed MF = 1000010; const signed MOD = 1000000007; using mint = mod_int<MOD, MF>; mint binom(long long n, long long r) { return (r < 0 || r > n || n < 0) ? 0 : mint(n).choose(r); } mint fact(long long n) { return mint(n).fact(); } mint inv_fact(long long n) { return mint(n).inv_fact(); } template <typename T, typename E> struct SegmentTree { typedef function<T(T, T)> F; typedef function<T(T, E)> G; typedef function<E(E, E)> H; typedef function<E(E, long long)> P; long long n; F f; G g; H h; P p; T d1; E d0; vector<T> dat; vector<E> laz; SegmentTree( long long n_, F f, G g, H h, T d1, E d0, vector<T> v = vector<T>(), P p = [](E a, long long b) { return a; }) : f(f), g(g), h(h), d1(d1), d0(d0), p(p) { init(n_); if (n_ == (long long)v.size()) build(n_, v); } void init(long long n_) { n = 1; while (n < n_) n *= 2; dat.clear(); dat.resize(2 * n - 1, d1); laz.clear(); laz.resize(2 * n - 1, d0); } void build(long long n_, vector<T> v) { for (long long i = 0; i < n_; i++) dat[i + n - 1] = v[i]; for (long long i = n - 2; i >= 0; i--) dat[i] = f(dat[i * 2 + 1], dat[i * 2 + 2]); } inline void eval(long long len, long long k) { if (laz[k] == d0) return; if (k * 2 + 1 < n * 2 - 1) { laz[k * 2 + 1] = h(laz[k * 2 + 1], laz[k]); laz[k * 2 + 2] = h(laz[k * 2 + 2], laz[k]); } dat[k] = g(dat[k], p(laz[k], len)); laz[k] = d0; } T update(long long a, long long b, E x, long long k, long long l, long long r) { eval(r - l, k); if (r <= a || b <= l) return dat[k]; if (a <= l && r <= b) { laz[k] = h(laz[k], x); return g(dat[k], p(laz[k], r - l)); } return dat[k] = f(update(a, b, x, k * 2 + 1, l, (l + r) / 2), update(a, b, x, k * 2 + 2, (l + r) / 2, r)); } T update(long long a, long long b, E x) { return update(a, b, x, 0, 0, n); } T query(long long a, long long b, long long k, long long l, long long r) { eval(r - l, k); if (r <= a || b <= l) return d1; if (a <= l && r <= b) return dat[k]; T vl = query(a, b, k * 2 + 1, l, (l + r) / 2); T vr = query(a, b, k * 2 + 2, (l + r) / 2, r); return f(vl, vr); } T query(long long a, long long b) { return query(a, b, 0, 0, n); } }; class compress { public: static const long long MAP = 10000000; map<long long, long long> zip; long long unzip[MAP]; compress(vector<long long>& x) { sort(x.begin(), x.end()); x.erase(unique(x.begin(), x.end()), x.end()); for (long long i = 0; i < x.size(); i++) { zip[x[i]] = i; unzip[i] = x[i]; } } }; unsigned euclidean_gcd(unsigned a, unsigned b) { while (1) { if (a < b) swap(a, b); if (!b) break; a %= b; } return a; } template <class T> struct CumulativeSum2D { vector<vector<T>> data; CumulativeSum2D(long long W, long long H) : data(W + 1, vector<long long>(H + 1, 0)) {} void add(long long x, long long y, T z) { ++x, ++y; if (x >= data.size() || y >= data[0].size()) return; data[x][y] += z; } void build() { for (long long i = 1; i < data.size(); i++) { for (long long j = 1; j < data[i].size(); j++) { data[i][j] += data[i][j - 1] + data[i - 1][j] - data[i - 1][j - 1]; } } } T query(long long sx, long long sy, long long gx, long long gy) { return (data[gx][gy] - data[sx][gy] - data[gx][sy] + data[sx][sy]); } }; long long nC2(long long n) { return n * (n - 1) / 2; } class node { public: long long depth; long long num; node(long long d, long long n) { depth = d; num = n; } }; CumulativeSum2D<long long> sumB(4001, 4001); template <class T> struct CumulativeSum { vector<T> data; CumulativeSum(long long sz) : data(sz, 0){}; void add(long long k, T x) { data[k] += x; } void build() { for (long long i = 1; i < data.size(); i++) { data[i] += data[i - 1]; } } T query(long long k) { if (k < 0) return (0); return (data[min(k, (long long)data.size() - 1)]); } T query(long long left, long long right) { return query(right) - query(left - 1); } }; std::vector<bool> IsPrime; void sieve(size_t max) { if (max + 1 > IsPrime.size()) { IsPrime.resize(max + 1, true); } IsPrime[0] = false; IsPrime[1] = false; for (size_t i = 2; i * i <= max; ++i) if (IsPrime[i]) for (size_t j = 2; i * j <= max; ++j) IsPrime[i * j] = false; } vector<int64_t> divisor(int64_t n) { vector<int64_t> ret; for (int64_t i = 1; i * i <= n; i++) { if (n % i == 0) { ret.push_back(i); if (i * i != n) ret.push_back(n / i); } } sort(begin(ret), end(ret)); return (ret); } long long binary_search(function<bool(long long)> isOk, long long ng, long long ok) { while (abs(ok - ng) > 1) { long long mid = (ok + ng) / 2; if (isOk(mid)) ok = mid; else ng = mid; } return ok; } std::pair<std::vector<Weight>, bool> bellmanFord(const Graph& g, long long s) { long long n = g.size(); const Weight inf = std::numeric_limits<Weight>::max() / 8; Edges es; for (long long i = 0; i < n; i++) for (auto& e : g[i]) es.emplace_back(e); std::vector<Weight> dist(n, inf); dist[s] = 0; bool negCycle = false; for (long long i = 0;; i++) { bool update = false; for (auto& e : es) { if (dist[e.src] != inf && dist[e.dst] > dist[e.src] + e.weight) { dist[e.dst] = dist[e.src] + e.weight; update = true; } } if (!update) break; if (i > n) { negCycle = true; break; } } return std::make_pair(dist, !negCycle); } std::pair<std::vector<Weight>, bool> bellmanFord(const Graph& g, long long s, long long d) { long long n = g.size(); const Weight inf = std::numeric_limits<Weight>::max() / 8; Edges es; for (long long i = 0; i < n; i++) for (auto& e : g[i]) es.emplace_back(e); std::vector<Weight> dist(n, inf); dist[s] = 0; bool negCycle = false; for (long long i = 0; i < n * 2; i++) { bool update = false; for (auto& e : es) { if (dist[e.src] != inf && dist[e.dst] > dist[e.src] + e.weight) { dist[e.dst] = dist[e.src] + e.weight; update = true; if (e.dst == d && i == n * 2 - 1) negCycle = true; } } if (!update) break; } return std::make_pair(dist, !negCycle); } vector<long long> Manachar(string S) { long long len = S.length(); vector<long long> R(len); long long i = 0, j = 0; while (i < S.size()) { while (i - j >= 0 && i + j < S.size() && S[i - j] == S[i + j]) ++j; R[i] = j; long long k = 1; while (i - k >= 0 && i + k < S.size() && k + R[i - k] < j) R[i + k] = R[i - k], ++k; i += k; j -= k; } return R; } std::vector<long long> tsort(const Graph& g) { long long n = g.size(), k = 0; std::vector<long long> ord(n), in(n); for (auto& es : g) for (auto& e : es) in[e.dst]++; std::queue<long long> q; for (long long i = 0; i < n; ++i) if (in[i] == 0) q.push(i); while (q.size()) { long long v = q.front(); q.pop(); ord[k++] = v; for (auto& e : g[v]) { if (--in[e.dst] == 0) { q.push(e.dst); } } } return *std::max_element(in.begin(), in.end()) == 0 ? ord : std::vector<long long>(); } std::vector<Weight> dijkstra(const Graph& g, long long s) { const Weight INF = std::numeric_limits<Weight>::max() / 8; using state = std::tuple<Weight, long long>; std::priority_queue<state> q; std::vector<Weight> dist(g.size(), INF); dist[s] = 0; q.emplace(0, s); while (q.size()) { Weight d; long long v; std::tie(d, v) = q.top(); q.pop(); d *= -1; if (dist[v] < d) continue; for (auto& e : g[v]) { if (dist[e.dst] > dist[v] + e.weight) { dist[e.dst] = dist[v] + e.weight; q.emplace(-dist[e.dst], e.dst); } } } return dist; } Matrix WarshallFloyd(const Graph& g) { auto const INF = std::numeric_limits<Weight>::max() / 8; long long n = g.size(); Matrix d(n, Array(n, INF)); for (long long i = (0); i < (long long)(n); i++) d[i][i] = 0; for (long long i = (0); i < (long long)(n); i++) for (auto& e : g[i]) d[e.src][e.dst] = std::min(d[e.src][e.dst], e.weight); for (long long k = (0); k < (long long)(n); k++) for (long long i = (0); i < (long long)(n); i++) for (long long j = (0); j < (long long)(n); j++) { if (d[i][k] != INF && d[k][j] != INF) { d[i][j] = std::min(d[i][j], d[i][k] + d[k][j]); } } return d; } const long long BLACK = 1, WHITE = 0; bool isValid(vector<vector<long long>>& mapData, long long gyo, long long retu) { bool f = true; for (long long i = (0); i < (long long)(gyo); i++) { for (long long j = (0); j < (long long)(retu); j++) { long long colorCnt = 0; if (j > 0 && mapData[i][j] == mapData[i][j - 1]) { colorCnt++; } if (i > 0 && mapData[i][j] == mapData[i - 1][j]) { colorCnt++; } if (i < gyo - 1 && mapData[i][j] == mapData[i + 1][j]) { colorCnt++; } if (j < retu - 1 && mapData[i][j] == mapData[i][j + 1]) { colorCnt++; } if (colorCnt > 1) { f = false; } } } return f; } void getNext(long long nowX, long long nowY, long long* pOutX, long long* pOutY, long long gyo, long long retu) { if (nowX == retu - 1) { *pOutY = nowY + 1; *pOutX = 0; return; } *pOutX = nowX + 1; *pOutY = nowY; } void dfs(vector<vector<long long>> mapData, long long nowX, long long nowY, long long gyo, long long retu, long long* outCnt) { if (nowX == retu - 1 && nowY == gyo - 1) { mapData[nowY][nowX] = BLACK; if (isValid(mapData, gyo, retu)) { *outCnt = *outCnt + 1; } mapData[nowY][nowX] = WHITE; if (isValid(mapData, gyo, retu)) { *outCnt = *outCnt + 1; } return; } mapData[nowY][nowX] = BLACK; long long nextX, nextY; getNext(nowX, nowY, &nextX, &nextY, gyo, retu); dfs(mapData, nextX, nextY, gyo, retu, outCnt); mapData[nowY][nowX] = WHITE; getNext(nowX, nowY, &nextX, &nextY, gyo, retu); dfs(mapData, nextX, nextY, gyo, retu, outCnt); } void dec(map<long long, long long>& ma, long long a) { ma[a]--; if (ma[a] == 0) { ma.erase(a); } } long long N; long long solve(long long ans, vector<long long> A, vector<long long> cu) { for (long long i = (0); i < (long long)(N); i++) { if (cu[i] == 0) { ans++; if (i == 0) { if (cu[i + 1] < 0) { cu[i] = 1; } else { cu[i] = -1; } } else { if (cu[i - 1] < 0) { cu[i] = 1; } else { cu[i] = -1; } } } if (cu[i] < 0 == cu[i + 1] < 0) { if (cu[i + 1] > 0) { ans += cu[i + 1] + 1; cu[i + 1] -= cu[i + 1] + 1; } else { ans += -cu[i + 1] + 1; cu[i + 1] += -cu[i + 1] + 1; } } cu[i + 2] = cu[i + 1] + A[i + 2]; } return ans; } signed main() { cin >> N; vector<long long> A(N + 2), A2; vector<long long> cu(N + 2); long long su = 0; for (long long i = (0); i < (long long)(N); i++) { cin >> A[i]; su += A[i]; cu[i] = su; } A2 = A; long long ans1 = 0, ans2 = 0; ans1 = solve(ans1, A, cu); if (A2[0] < 0) { ans2 = -A2[0] + 1; A2[0] = 1; } else { ans2 = A2[0] + 1; A2[0] = -1; } su = 0; for (long long i = (0); i < (long long)(N); i++) { su += A2[i]; cu[i] = su; } ans2 = solve(ans2, A2, cu); cout << min(ans1, ans2) << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
#k = int(input()) #s = input() #a, b = map(int, input().split()) #s, t = map(str, input().split()) #l = list(map(int, input().split())) #l = [list(map(int,input().split())) for i in range(n)] #a = [input() for _ in range(n)] import copy n = int(input()) a = list(map(int, input().split())) b = copy.copy(a) lastSum = a[0] for i in range(1, n): nowSum = sum(a[:i+1]) #print(nowSum) if lastSum > 0: if nowSum >=0: a[i] = a[i] - (nowSum+1) else: #lastSum < 0 if nowSum <= 0: a[i] = a[i] - (nowSum-1) lastSum = sum(a[:i+1]) ans = 0 for i in range(n): ans += abs(a[i]-b[i]) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; long long l1[n + 1]; long long x = 0, s = 0; for (int i = 1; i <= n; i++) { cin >> l1[i]; x += l1[i]; if (i == 0 && l1[i] == 0 && l1[i + 1] <= 0) x++, s++, l1[i] = 1; else if (i == 0 && l1[i] == 0 && l1[i + 1] > 0) x--, s++, l1[i] = -1; if (i >= 2) { if (x - l1[i] <= 0 && x <= 0) { s += abs((-x + l1[i] + 1) - l1[i]); l1[i] = l1[i] - x + 1; x = 1; } else if (x - l1[i] >= 0 && x >= 0) { s += abs(-(x - l1[i] + 1) - l1[i]); l1[i] = -(x - l1[i] + 1); x = -1; } } } cout << s << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < (n); ++i) { cin >> a[i]; } if (a[0] != 0) { long long now = 0; long long ans = 0; now += a[0]; for (int i = 1; i < n; i++) { long long nex = now + a[i]; if (now > 0) { if (nex >= 0) { now = -1; ans += nex + 1; } else { now = nex; } } else { if (nex <= 0) { now = 1; ans += 1 - nex; } else { now = nex; } } } cout << ans << endl; } else { long long now = 0; long long ans1 = 1; now = 1; for (int i = 1; i < n; i++) { long long nex = now + a[i]; if (now > 0) { if (nex >= 0) { now = -1; ans1 += nex + 1; } else { now = nex; } } else { if (nex <= 0) { now = 1; ans1 += 1 - nex; } else { now = nex; } } } now = -1; long long ans2 = 1; for (int i = 1; i < n; i++) { long long nex = now + a[i]; if (now > 0) { if (nex >= 0) { now = -1; ans2 += nex + 1; } else { now = nex; } } else { if (nex <= 0) { now = 1; ans2 += 1 - nex; } else { now = nex; } } } cout << min(ans1, ans2) << endl; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
include <bits/stdc++.h> using namespace std; #define ll long long #define int long long #define rep(i, a) for (int i = 0; i < (int) (a); i++) #define reps(i, a, b) for (int i = (int) (a); i < (int) (b); i++) #define rrep(i, a) for (int i = (int) a-1; i >= 0; i--) #define rreps(i, a, b) for (int i = (int) (a)-1; i >= (int) (b); i--) #define MP(a, b) make_pair((a), (b)) #define PB(a) push_back((a)) #define all(v) (v).begin(), (v).end() #define PRINT(f) if((f)){cout << (TRUE__) << endl;}else{cout << FALSE__ << endl;} #define TRUE__ "Yes" #define FALSE__ "No" #define PERM(v) next_permutation(all(v)) #define UNIQUE(v) sort(all(v));(v).erase(unique(all(v)), v.end()) #define CIN(type, x) type x;cin >> x #ifdef LOCAL #define lcout(a) cout << a; #define lcoutln(a) cout << a << endl; #define lcerr(a) cerr << a; #define lcerrln(a) cerr << a << endl; #else #define lcout(a) #define lcoutln(a) #define lcerr(a) #define lcerrln(a) #endif vector<int> a; int N; signed main() { cin >> N; rep(i, N) { CIN(int, t); a.PB(t); } int res = 0; int cnt = 0; int sum = 0; rep(i, N) { sum += a[i]; if (sum <= 0) { cnt += -sum + 1; sum = 1; } i++; if (i == N) break; sum += a[i]; if (sum >= 0) { cnt += sum + 1; sum = -1; } } res = cnt; sum = 0; cnt = 0; rep (i, N) { sum += a[i]; if (sum >= 0) { cnt += sum + 1; sum = -1; } i++; if (i == N) break; sum += a[i]; if (sum <= 0) { cnt += -sum + 1; sum = 1; } } res = min(res, cnt); cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using vi = vector<int>; using vvi = vector<vi>; using vs = vector<string>; const int INF = 1001001001; const int MOD = 1000000007; const long long INFL = (1LL << 60); const double EPS = 1e-9; bool meet(vi a) { bool ret = true; bool pos = (a[0] > 0); int sum = a[0]; for (int i = (1); i < (int)(a.size()); i++) { sum += a[i]; if ((pos && i % 2 && sum >= 0) || (pos && !(i % 2) && sum <= 0) || (!pos && i % 2 && sum <= 0) || (!pos && !(i % 2) && sum >= 0)) { ret = false; break; } } return ret; } int solve(vi a, int res) { int sum = a[0]; bool pos = (a[0] > 0); for (int i = (1); i < (int)(a.size()); i++) { if ((pos && i % 2 && sum + a[i] >= 0) || (!pos && !(i % 2) && sum + a[i] >= 0)) { while (true) { a[i]--; res++; if (sum + a[i] == -1) break; } } else if ((pos && !(i % 2) && sum + a[i] <= 0) || (!pos && i % 2 && sum + a[i] <= 0)) { while (true) { a[i]++; res++; if (sum + a[i] == 1) break; } } sum += a[i]; } return res; } int main() { int N; cin >> N; vi a(N); for (int i = 0; i < (int)(N); i++) cin >> a[i]; bool flg = meet(a); bool pos = (a[0] > 0); int res = 0; int res1 = solve(a, res); res = 0; if (pos) { while (a[0] != -1) { a[0]--; res++; } } else { while (a[0] != 1) { a[0]++; res++; } } int res2 = solve(a, res); res = min(res1, res2); if (flg) res = 0; cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <iostream> int a[1000000010]; int main(){ std::cin.tie(0); std::ios::sync_with_stdio(false); int n, sum, count, i; std::cin >> n; for (i = 0; i < n; i++) std::cin >> a[i]; for (i = 0; i < n; i++){ sum += a[i]; if(sum>0){ while(sum>=-1) count++; } else if (sum<0){ while(sum <= 1) count++; } std::cout << count << '\n'; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import bisect import collections import itertools def getint(): return int(input()) def getints(): return list(map(int, input().split())) def getint2d(rows): return [getints() for _ in range(rows)] def getgrid(rows): return [input() for _ in range(rows)] def array1d(n, value): return [value for _ in range(n)] def array2d(n, m, value): return [array1d(m, value) for _ in range(n)] n = getint() values = getints() def solve(values, prev): res = 0 for v in values: s = prev + v add = 0 if prev > 0 and s >= 0: add = -s - 1 if prev < 0 and s <= 0: add = -s + 1 res += abs(add) prev = s + add return res res1, res2 = 0, 0 if values[0] <= 0: add = abs(values[0]) + 1 res1 = solve(values[1:], values[0] + add) + add res2 = solve(values[1:], values[0]) else: res1 = solve(values[1:], values[0]) add = -(values[0] + 1) res2 = solve(values[1:], values[0] + add) + abs(add) print(min(res1, res2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; int *a; int ans = 0; cin >> n; a = new int[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } int sum = 0; int opr1 = 0, opr2 = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 1 && sum <= 0) { int add = 1 - sum; sum += add; opr1 += add; } else if (i % 2 == 0 && sum >= 0) { int add = -1 - sum; sum += add; opr1 += (add * -1); } } sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0 && sum <= 0) { int add = 1 - sum; sum += add; opr2 += add; } else if (i % 2 == 1 && sum >= 0) { int add = -1 - sum; sum += add; opr2 += (add * -1); } } ans = min(opr1, opr2); cout << ans << endl; delete (a); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; constexpr ll MOD = 1000000007; const long long INF = numeric_limits<long long>::max(); template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } int main() { ll N; cin >> N; vector<ll> vec(N); for (ll i = 0; i < (N); i++) { cin >> vec[i]; } ll count = INF; { ll c = 0; ll sum = 0; for (ll i = 0; i < N; ++i) { bool isSign = (i % 2) == 0; ll tmp = sum + vec[i]; if (isSign != (tmp > 0)) { ll next = isSign ? 1 : -1; c += abs(tmp - next); sum = next; } else { sum = tmp; } } chmin(count, c); } { ll c = 0; ll sum = 0; for (ll i = 0; i < N; ++i) { bool isSign = (i % 2) != 0; ll tmp = sum + vec[i]; if (isSign != (tmp > 0)) { ll next = isSign ? 1 : -1; c += abs(tmp - next); sum = next; } else { sum = tmp; } } chmin(count, c); } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n, i, j, ans = 0, sum = 0, flag; cin >> n; vector<long long> a(n); for (i = 0; i < n; i++) { cin >> a[i]; } sum += a[0]; if (sum == 0) { ans++; for (i = 0; i < n; i++) { if (a[i] > 0) { if (i % 2 == 0) { sum = 1; } else { sum = -1; } break; } else if (a[i] < 0) { if (i % 2 != 0) { sum = 1; } else { sum = -1; } break; } } } for (i = 1; i < n; i++) { if (sum > 0) { flag = 1; } else { flag = 0; } if (flag == 1) { sum += a[i]; if (sum >= 0) { ans += (sum + 1); sum = -1; } } else { sum += a[i]; if (sum <= 0) { ans += 1 - sum; sum = 1; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[n], s[n]; for (int i = 0; i < n; i++) { cin >> a[i]; if (i == 0) { s[0] = a[0]; } else { s[i] = s[i - 1] + a[i]; } } long long cng = 0; long long ans = 0; if (a[0] == 0) { cng++; ans++; } for (int i = 1; i < n; i++) { if (((s[i] + cng < 0) && (0 < s[i - 1] + cng)) || ((s[i] + cng > 0) && (0 > s[i - 1] + cng))) { continue; } assert(s[i - 1] + cng != 0); if (s[i] + cng >= 0) { ans += s[i] + cng + 1; cng -= s[i] + cng + 1; } else { ans += -(s[i] + cng) + 1; cng += -(s[i] + cng) + 1; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys input = sys.stdin.readline n = int(input()) a_list = list(map(int, input().split())) cnt = 0 a_sum = a_list[0] if a_sum > 0: flag = 1 elif a_sum < 0: flag = -1 else: flag = 0 cnt += 1 for a in a_list[1:]: if flag == 0: if a > 0: flag = 1 a_sum = a - 1 if a == 1: cnt += 1 elif a < 0: flag = -1 a_sum = a + 1 if a == -1: cnt += 1 else: flag = 0 cnt += 2 else: a_sum += a if flag == 1: if a_sum >= 0: cnt += a_sum+1 a_sum = -1 flag = -1 else: if a_sum <= 0: cnt += abs(a_sum)+1 a_sum = 1 flag = 1 print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 1001001001; const int MOD = (int)1e9 + 7; const long long INFLL = 1001001001001001001; const long long MODLL = (long long)1e9 + 7; const double EPS = 1e-9; int sign(int n) { return (n > 0) - (n < 0); } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (n); ++i) cin >> a[i]; int count1 = 0; int cum1 = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0) { if (cum1 + a[i] <= 0) { count1 += abs(cum1 + a[i]) + 1; cum1 = 1; } else { cum1 += a[i]; } } else { if (cum1 + a[i] >= 0) { count1 += abs(cum1 + a[i]) + 1; cum1 = -1; } else { cum1 += a[i]; } } } int count2 = 0; int cum2 = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0) { if (cum2 + a[i] >= 0) { count2 += abs(cum2 + a[i]) + 1; cum2 = -1; } else { cum2 += a[i]; } } else { if (cum2 + a[i] <= 0) { count2 += abs(cum2 + a[i]) + 1; cum2 = 1; } else { cum2 += a[i]; } } } cout << min(count1, count2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; class Program { static void Main(string[] args) { new Calc().Solve(); } public class Calc { public Calc() { } public void Solve() { int n = Utils.ReadLine<int>(); var a = Utils.ReadLine<int>(' '); int sum = a[0]; int cnt = 0; int index = 1; bool toggle = true; while (index<n) { if (sum + a[index] == 0) { a[index] += sum < 0 ? 1 : -1; cnt++; }else if ((sum < 0 && sum + a[index] < 0) || (sum > 0 && sum + a[index] > 0)) { if (toggle && Math.Abs(a[index - 1]) > 2) { int dir = a[index - 1] < 0 ? 1 : -1; a[index - 1] += dir; sum += dir; toggle = true; } else { int dir = a[index] < 0 ? 1 : -1; a[index] += dir; toggle = false; } cnt++; } else { sum += a[index]; index++; } } cnt.WriteLine(); return; } } } public static class Utils { public static T ReadLine<T>() { return (T)Convert.ChangeType(Console.ReadLine(), typeof(T)); } public static T[] ReadLine<T>(params char[] separators) { return Console.ReadLine() .Split(separators) .Where(_ => _.Length > 0) .Select(_ => (T)Convert.ChangeType(_, typeof(T))) .ToArray(); } public static List<T> ReadLines<T>(int readCount) { List<T> rt = new List<T>(); for (int i = 0; i < readCount; i++) { rt.Add(ReadLine<T>()); } return rt; } public static string Docking<T>(this IEnumerable<T> s, int sequenceRange, Func<T, string> filter = null) { string str = ""; int c = 0; foreach (var item in s) { str += filter == null ? item.ToString() : filter(item); c++; if (c == sequenceRange) break; } return str; } public static string Docking<T>(this IEnumerable<T> s, Func<T, string> filter = null) { return s.Docking(s.Count(), filter); } public static string RangeDocking<T>(this IEnumerable<T> s, int start, int end, Func<T, string> filter = null) { string str = ""; end = end < s.Count() ? end : s.Count(); var items = s.ToArray(); for (int i = start; i < end; i++) { str += filter == null ? items[i].ToString() : filter(items[i]); } return str; } public static int IntParse(this string n) { return int.Parse(n); } public static void WriteLine(this object obj) { Console.WriteLine(obj); } public static void AddTo<T>(this T obj,List<T> list) { list.Add(obj); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; // ABC 6-C // http://abc006.contest.atcoder.jp/tasks/abc006_3 public class Main { public static void main (String[] args) throws java.lang.Exception { Scanner in = new Scanner(System.in); int n = in.nextInt(); int[] nums = new int[n]; for (int i = 0; i < n; i++) { nums[i] = in.nextInt(); } int answer = 0; if (nums[0] == 0) { answer = solve(nums, 0, 0); } else { answer = solve(nums, nums[0], 1); } System.out.println(answer); } public static int solve(int[] nums, int sum, int index) { if (index == nums.length) { return 0; } if (sum < 0 && sum + nums[index] < 0) { return 1 + Math.abs(sum + nums[index]) + solve(nums, 1, index + 1); } else if (sum > 0 && sum + nums[index] > 0) { return 1 + sum + nums[index] + solve(nums, -1, index + 1); } else if (sum + nums[index] == 0) { return 1 + Math.min(solve(nums, 1, index + 1), solve(nums, -1, index + 1)); } else { return solve(nums, sum + nums[index], index + 1); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = int64_t; using pi = pair<ll, ll>; using vi = vector<ll>; using ld = long double; template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { os << "(" << p.first << "," << p.second << ")"; return os; } template <class T> ostream &operator<<(ostream &os, const vector<T> &v) { os << "{"; for (ll i = ll(0); i < ll((ll)v.size()); i++) { if (i) os << ","; os << v[i]; } os << "}"; return os; } ll read() { ll i; scanf("%" SCNd64, &i); return i; } void printSpace() { printf(" "); } void printEoln() { printf("\n"); } void print(ll x, ll suc = 1) { printf("%" PRId64, x); if (suc == 1) printEoln(); if (suc == 2) printSpace(); } string readString() { static char buf[3341000]; scanf("%s", buf); return string(buf); } char *readCharArray() { static char buf[3341000]; static ll bufUsed = 0; char *ret = buf + bufUsed; scanf("%s", ret); bufUsed += strlen(ret) + 1; return ret; } template <class T, class U> void chmax(T &a, U b) { if (a < b) a = b; } template <class T, class U> void chmin(T &a, U b) { if (b < a) a = b; } template <class T> T Sq(const T &t) { return t * t; } const ll mod = 1e9 + 7; signed main() { ll n = read(), sum = 0, ans = 0; ll a = read(); bool isPlus = (a > 0); sum = a; for (ll i = ll(0); i < ll(n - 1); i++) { sum += read(); if (isPlus && sum >= 0) { ans += sum + 1; sum = -1; } else if (!isPlus && sum <= 0) { ans += -1 * sum + 1; sum = 1; } isPlus ^= 1; } print(ans); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = (int)1e9 + 7; const int MAX = 1e6; int arr[MAX], arr2[MAX], n; int status(int a) { if (a < 0) return 1; else if (a > 0) return 0; else return 2; } long long int solve() { long long int cnt = 0; arr2[0] = arr[0]; for (int i = 1; i < n; i++) { arr2[i] = arr[i]; if (status(arr2[i - 1]) == status(arr2[i])) { cnt += abs(arr2[i] * 2); arr2[i] *= -1; } } long long int sum = arr2[0], f = 0; if (arr2[0] < 0) f = 1; else f = 0; for (int i = 1; i < n; i++) { f ^= 1; sum += arr2[i]; if (status(sum) != f) { cnt += abs(sum) + 1; if (f) sum = -1; else sum = 1; } } return cnt; } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n; for (int i = 0; i < n; i++) { cin >> arr[i]; } if (!arr[0]) { arr[0] = 1; long long int x = solve(); arr[0] = -1; long long int y = solve(); cout << min(x, y) << endl; } else cout << solve() << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); long long n; cin >> n; long long a[n]; long long sum = 0, cnt = 0; for (int i = 0; i < n; i++) cin >> a[i]; int flag = 2; sum = a[0]; if (sum == 0) { cnt++; flag = 2; } else if (sum < 0) { flag = -2; } for (int i = 1; i < n; i++) { sum = sum + a[i]; if (flag == 2) { if (sum > 0) { cnt += sum + 1; sum = -1; } else if (sum == 0) { cnt++; } flag = 0 - flag; } else { if (sum < 0) { cnt += 1 - sum; sum = 1; } else if (sum == 0) cnt++; flag = 0 - flag; } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; class Main{ public static void main(String[] args) { Scanner sc=new Scanner(System.in); int N=sc.nextInt(); long[] k=new long[N]; for(int i=0; i<N; i++) { k[i]=sc.nextLong(); } for(int i=1; i<N; i++) { k[i]=k[i-1]+k[i]; } long counter=0; if(k[0]>0) { counter=1; } else { counter=-1; } long[] tasu=new long[N]; long kaz=0; for(int i=0; i<N; i++) { tasu[i]=0; } for(int i=0; i<N; i++) { long tmp=counter*(k[i]+tasu[i]); if(tmp>0) { //条件を満たすのでOK } else if(tmp<0){ if((k[i]+tasu[i])>0) { long tt=(k[i]+tasu[i])+1; kaz+=tt; tasu[i]-=tt; } else if((k[i]+tasu[i])<0) { long tt=((k[i]+tasu[i])-1)*-1; kaz+=tt; tasu[i]+=tt; } } if(tmp==0) { if(counter==-1) { tasu[i]--; } else if(counter==1) { tasu[i]++; } kaz++; } if(i!=N-1) { tasu[i+1]=tasu[i]; } counter*=-1; } System.out.println(kaz); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct edge { int to, cost; }; const int INF = 100000000; int main() { long long int n, a[100010], sum = 0, ans = 0; cin >> n; for (int i = 0; i < (n); i++) { cin >> a[i]; } if (a[0] >= 0) { sum += a[0]; for (int i = 1; i < n; i++) { sum += a[i]; if (i % 2 != 0) { if (sum > 0) { ans += abs(sum) + 1; sum = -1; } } else { if (sum < 0) { ans += abs(sum) + 1; sum = 1; } } } if (sum == 0) { ans++; } } else { sum += a[0]; for (int i = 1; i < n; i++) { sum += a[i]; if (i % 2 != 0) { if (sum < 0) { ans += abs(sum) + 1; sum = 1; } } else { if (sum > 0) { ans += abs(sum) + 1; sum = -1; } } } if (sum == 0) { ans++; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; int cnt1, cnt2; cnt1 = cnt2 = 0; int sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0 && sum <= 0) { cnt1 += abs(sum - 1); sum = 1; } else if (i % 2 != 0 && sum >= 0) { cnt1 += sum + 1; sum = -1; } } sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0 && sum >= 0) { cnt2 += sum + 1; sum = -1; } if (i % 2 != 0 && sum <= 0) { cnt2 += abs(sum - 1); sum = 1; } } int ans = min(cnt1, cnt2); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int N; int64_t cont = 0; long long dfs(bool odd, int64_t sum, int i, vector<int64_t> &a) { long long ans; if (i == N) { ans = cont; return ans; } if (odd) { if (a[i] + sum <= 0) { cont += abs(1 - sum - a[i]); sum = 1; } else { sum += a[i]; } ans = dfs(false, sum, i + 1, a); } else { if (a[i] + sum >= 0) { cont += abs(-1 - sum - a[i]); sum = -1; } else { sum += a[i]; } ans = dfs(true, sum, i + 1, a); } return ans; } int main() { long long ans; cin >> N; vector<int64_t> a(N); for (int i = 0; i < N; i++) { cin >> a.at(i); } ans = min(dfs(true, 0, 0, a), dfs(false, 0, 0, a)); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; int main() { int n; cin >> n; long long a[120000]; for (int i = 0; i < (n); i++) cin >> a[i]; long long total = 0; long long count1 = 0; long long count2 = 0; for (int i = 0; i < (n - 2) / 2; i++) { total += a[2 * i]; if (total >= 0) { count1 += (abs(total) + 1); total = -1; } if (total <= 0) { count2 += (abs(total) + 1); total = 1; } total += a[2 * i + 1]; if (total <= 0) { count1 += (abs(total) + 1); total = 1; } if (total >= 0) { count2 += (abs(total) + 1); total = -1; } } cout << min(count1, count2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; long long a[n]; for (long long i = 0; i < n; i++) { cin >> a[i]; } long long left = 0; long long right = 0; long long now = 0; for (long long i = 0; i < n; i++) { if (i == 0) { if (a[i] <= 0) { now = 1; left = 1 - a[i]; } else { now = a[i]; left = 0; } } else { if (now > 0) { if (now + a[i] < 0) { now = now + a[i]; } else { left += now + a[i] + 1; now = -1; } } else { if (now + a[i] > 0) { now = now + a[i]; } else { left += -a[i] - now + 1; now = 1; } } } } now = 0; for (long long i = 0; i < n; i++) { if (i == 0) { if (a[i] >= 0) { now = 1; right = 1 + a[i]; } else { now = a[i]; right = 0; } } else { if (now > 0) { if (now + a[i] < 0) { now = now + a[i]; } else { right += now + a[i] + 1; now = -1; } } else { if (now + a[i] > 0) { now = now + a[i]; } else { right += -a[i] - now + 1; now = 1; } } } } cout << ((left > right) ? right : left) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void sum(int* N, int* S, int n); void add(int* S, int n, int del, int k); int main() { int *N, *S; int count_eve = 0, count_odd = 0, n; int j = 0, k = 0; cin >> n; N = new int[n]; S = new int[n]; for (int i = 0; i < n; i++) { cin >> N[i]; } sum(N, S, n); int delta1 = 0, delta2 = 0; while (j != n) { if (j % 2 == 0 && S[j] <= 0) { count_eve += abs(S[j]) + 1; add(S, n, abs(S[j]) + 1, j); } else if (j % 2 == 1 && S[j] >= 0) { count_eve += abs(S[j]) + 1; add(S, n, -abs(S[j]) - 1, j); } j++; } sum(N, S, n); while (k != n) { if (k % 2 == 0 && S[k] >= 0) { count_odd += abs(S[k]) + 1; add(S, n, -abs(S[k]) - 1, k + 1); } else if (k % 2 == 1 && S[k] <= 0) { count_odd += abs(S[k]) + 1; add(S, n, abs(S[k]) + 1, k); } k++; } cout << min(count_eve, count_odd) << endl; return 0; } void sum(int* N, int* S, int n) { S[0] = N[0]; for (int i = 1; i < n; i++) S[i] = S[i - 1] + N[i]; for (int i = 0; i < n; i++) { } } void add(int* S, int n, int del, int k) { for (int i = k; i < n + 1; i++) S[i] += del; }