Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections;
using System.Collections.Generic;
using System.IO;
using System.Linq;
namespace C
{
public class Program
{
static void Main(string[] args)
{
var sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false };
Console.SetOut(sw);
Solve();
Console.Out.Flush();
}
public static void Solve()
{
var N = int.Parse(Console.ReadLine());
var A = Console.ReadLine().Trim().Split(' ').Select(int.Parse).ToArray();
var answer = (long)1e18;
var t = 1;
for (var k = 0; k < 2; k++)
{
t ^= 1;
var step = 0;
var sum = 0;
for (var i = 0; i < N; i++)
{
sum += A[i];
if (i % 2 == t)
{
if (sum <= 0)
{
step += 1 - sum;
sum = 1;
}
}
else
{
if (sum >= 0)
{
step += 1 + sum;
sum = -1;
}
}
}
answer = Math.Min(answer, step);
}
Console.WriteLine(answer);
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, ans;
cin >> n;
vector<int> a(n);
for (long long i = 0; i < (long long)(n); i++) {
cin >> a[i];
}
int cnt = 0;
int b[n];
b[0] = a[0];
if (b[0] == 0 and a[1] > 0) {
b[0] = -1;
cnt += 1;
} else if (b[0] == 0 and a[1] < 0) {
b[0] = 1;
cnt += 1;
}
int temp = b[0];
for (long long i = 1; i <= (long long)(n - 1); i++) {
temp += a[i];
b[i] = temp;
if (i != n and b[i] == 0 and signbit(b[i - 1]) == true) {
b[i] += 1;
cnt += 1;
} else if (i != n and b[i] == 0 and signbit(b[i - 1]) == false) {
b[i] += -1;
cnt += 1;
}
if (i != n and b[i] != 0 and signbit(b[i]) == signbit(b[i - 1])) {
cnt += abs(b[i]) + 1;
if (b[i - 1] > 0) {
b[i] = -1;
} else {
b[i - 1] = 1;
}
}
temp = b[i];
}
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = input().split()
a = [int(i) for i in a]
sum = a[0]
counter = 0
for i in range(1,n):
if sum * (sum+a[i]) < 0:
sum += a[i]
continue
else:
while(sum * (sum+a[i]) >= 0):
if sum > 0:
a[i] -=1
counter += 1
else:
a[i] +=1
counter += 1
sum += a[i]
print(counter) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
static int ANS_POSI;
static int ANS_NEGA;
static int ANS;
static int N;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
N = Integer.parseInt(sc.nextLine());
long[] a = new long[N];
for (int i = 0; i < N; i++) {
long elm = Long.parseLong(sc.next());
a[i] = elm;
}
solve(a);
System.out.println(Math.min(ANS_POSI, ANS_NEGA));
}
private static void solve(long[] a) {
long posi = 0;
long nega = 0;
for (int i = 0; i < N; i++) {
// 前回のループで変更があった場合は、1か-1になっている値に配列値を合算して合計値としている。
posi += a[i];
nega += a[i];
if (i % 2 == 0) {
if (posi >= 0) {
ANS_POSI += posi + 1;
posi = -1;
}
if (nega <= 0) {
ANS_NEGA -= nega - 1;
nega = 1;
}
} else {
if (posi <= 0) {
ANS_POSI -= posi - 1;
posi = 1;
}
if (nega >= 0) {
ANS_NEGA += nega + 1;
nega = -1;
}
}
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int sum = 0, change = 0;
vector<int> a(n, 0);
for (int i = 0; i < n; i++) cin >> a[i];
sum = a[0];
if (sum <= 0) {
change += -sum + 1;
sum = 1;
}
for (int i = 1; i < n; i++) {
sum += a[i];
if (i % 2 == 0 && sum <= 0) {
change += -sum + 1;
sum = 1;
}
if (i % 2 == 1 && sum >= 0) {
change += sum + 1;
sum = -1;
}
}
int ans = change;
sum = a[0];
change = 0;
if (sum >= 0) {
change += sum + 1;
sum = -1;
}
for (int i = 1; i < n; i++) {
sum += a[i];
if (i % 2 == 0 && sum >= 0) {
change += sum + 1;
sum = -1;
}
if (i % 2 == 1 && sum <= 0) {
change += -sum + 1;
sum = 1;
}
}
ans = ans > change ? change : ans;
cout << ans;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = sc.nextInt();
}
sc.close();
int ans = 0;
int tmp = 0;
for (int type = 0; type < 2; type++) {
ans = 0;
int wa = 0;
for (int i = 0; i < n; i++) {
wa += a[i];
if (i % 2 == type % 2) {
if (wa >= 0) {
ans += (wa + 1);
wa = -1;
}
} else {
if (wa <= 0) {
ans -= (wa - 1);
wa = 1;
}
}
}
if (type == 0)
tmp = ans;
}
System.out.println(Math.min(ans, tmp));
}
public static int[] arrayInt(Scanner sc, int n) {
int[] array = new int[n];
for (int i = 0; i < n; i++) {
array[i] = sc.nextInt();
}
return array;
}
public static long[] arrayLong(Scanner sc, int n) {
long[] array = new long[n];
for (int i = 0; i < n; i++) {
array[i] = sc.nextLong();
}
return array;
}
public static double[] arrayDouble(Scanner sc, int n) {
double[] array = new double[n];
for (int i = 0; i < n; i++) {
array[i] = sc.nextDouble();
}
return array;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # -*- coding: utf-8 -*-
#############
# Libraries #
#############
import sys
input = sys.stdin.readline
import math
#from math import gcd
import bisect
from collections import defaultdict
from collections import deque
from functools import lru_cache
#############
# Constants #
#############
MOD = 10**9+7
INF = float('inf')
#############
# Functions #
#############
######INPUT######
def I(): return int(input().strip())
def S(): return input().strip()
def IL(): return list(map(int,input().split()))
def SL(): return list(map(str,input().split()))
def ILs(n): return list(int(input()) for _ in range(n))
def SLs(n): return list(input().strip() for _ in range(n))
def ILL(n): return [list(map(int, input().split())) for _ in range(n)]
def SLL(n): return [list(map(str, input().split())) for _ in range(n)]
######OUTPUT######
def P(arg): print(arg); return
def Y(): print("Yes"); return
def N(): print("No"); return
def E(): exit()
def PE(arg): print(arg); exit()
def YE(): print("Yes"); exit()
def NE(): print("No"); exit()
#####Shorten#####
def DD(arg): return defaultdict(arg)
#####Inverse#####
def inv(n): return pow(n, MOD-2, MOD)
######Combination######
kaijo_memo = []
def kaijo(n):
if(len(kaijo_memo) > n):
return kaijo_memo[n]
if(len(kaijo_memo) == 0):
kaijo_memo.append(1)
while(len(kaijo_memo) <= n):
kaijo_memo.append(kaijo_memo[-1] * len(kaijo_memo) % MOD)
return kaijo_memo[n]
gyaku_kaijo_memo = []
def gyaku_kaijo(n):
if(len(gyaku_kaijo_memo) > n):
return gyaku_kaijo_memo[n]
if(len(gyaku_kaijo_memo) == 0):
gyaku_kaijo_memo.append(1)
while(len(gyaku_kaijo_memo) <= n):
gyaku_kaijo_memo.append(gyaku_kaijo_memo[-1] * pow(len(gyaku_kaijo_memo),MOD-2,MOD) % MOD)
return gyaku_kaijo_memo[n]
def nCr(n,r):
if(n == r):
return 1
if(n < r or r < 0):
return 0
ret = 1
ret = ret * kaijo(n) % MOD
ret = ret * gyaku_kaijo(r) % MOD
ret = ret * gyaku_kaijo(n-r) % MOD
return ret
######Factorization######
def factorization(n):
arr = []
temp = n
for i in range(2, int(-(-n**0.5//1))+1):
if temp%i==0:
cnt=0
while temp%i==0:
cnt+=1
temp //= i
arr.append([i, cnt])
if temp!=1:
arr.append([temp, 1])
if arr==[]:
arr.append([n, 1])
return arr
#####MakeDivisors######
def make_divisors(n):
divisors = []
for i in range(1, int(n**0.5)+1):
if n % i == 0:
divisors.append(i)
if i != n // i:
divisors.append(n//i)
return divisors
#####MakePrimes######
def make_primes(N):
max = int(math.sqrt(N))
seachList = [i for i in range(2,N+1)]
primeNum = []
while seachList[0] <= max:
primeNum.append(seachList[0])
tmp = seachList[0]
seachList = [i for i in seachList if i % tmp != 0]
primeNum.extend(seachList)
return primeNum
#####GCD#####
def gcd(a, b):
while b:
a, b = b, a % b
return a
#####LCM#####
def lcm(a, b):
return a * b // gcd (a, b)
#####BitCount#####
def count_bit(n):
count = 0
while n:
n &= n -1
count += 1
return count
#####ChangeBase#####
def base_10_to_n(X, n):
if X//n:
return base_10_to_n(X//n, n)+[X%n]
return [X%n]
def base_n_to_10(X, n):
return sum(int(str(X)[-i-1])*n**i for i in range(len(str(X))))
#####IntLog#####
def int_log(n, a):
count = 0
while n>=a:
n //= a
count += 1
return count
#############
# Main Code #
#############
N = I()
A = IL()
s = 0
count1 = 0
for i in range(N):
s += A[i]
if i%2:
if s>-1:
count1 += s+1
s = -1
else:
if s<1:
count1 += 1-s
s = 1
s = A[0]
count2 = 0
for i in range(N):
s += A[i]
if i%2==0:
if s>-1:
count2 += s+1
s = -1
else:
if s<1:
count2 += 1-s
s = 1
print(min(count1,count2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long mod = 1000000007;
int main() {
int n;
cin >> n;
long long cnt_a = 0;
long long cnt_b = 0;
long long sum_a = 0;
long long sum_b = 0;
for (int i = 0; i < n; ++i) {
long long t;
cin >> t;
long long sign_t = (t > 0) ? 1 : -1;
if (i == 0) {
sum_a += t;
sum_b += -1 * sign_t;
cnt_b += abs(t) + 1;
} else {
long long tsum_a = sum_a + t;
long long tsum_b = sum_b + t;
long long sign_a = (sum_a > 0) ? 1 : -1;
long long sign_b = (sum_b > 0) ? 1 : -1;
if (tsum_a * sum_a >= 0) {
cnt_a += abs(tsum_a) + 1;
sum_a = -1 * sign_a;
} else {
sum_a = tsum_a;
}
if (tsum_b * sum_b >= 0) {
cnt_b += abs(tsum_b) + 1;
sum_b = -1 * sign_b;
} else {
sum_b = tsum_b;
}
}
}
cout << min(cnt_a, cnt_b) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long n, a[100001], b[100001]{}, ans1 = 0, ans2 = 0;
int main() {
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
if (a[0] != 0) {
b[0] += a[0];
} else {
ans1++;
int j = 1;
while (j < n && a[j] == 0) j++;
if (j != n) {
b[0] = (a[j] / abs(a[j]));
if (j % 2 == 1) b[0] *= -1;
} else
b[0] = 1;
}
for (int i = 1; i < n; i++) {
b[i] += a[i] + b[i - 1];
if (b[i] * (b[i - 1] / abs(b[i - 1])) >= 0) {
if (b[i - 1] > 0) {
ans1 += abs(b[i]) + 1;
b[i] = -1;
} else {
ans1 += abs(b[i]) + 1;
b[i] = 1;
}
}
}
if (a[0] != 0) {
b[0] += a[0];
ans2 += abs(a[0]) + 1;
b[0] = -(a[0] / abs(a[0]));
} else {
ans2++;
int j = 1;
while (j < n && a[j] == 0) j++;
if (j != n) {
b[0] = (a[j] / abs(a[j]));
if (j % 2 == 0) b[0] *= -1;
} else
b[0] = -1;
}
for (int i = 1; i < n; i++) {
b[i] += a[i] + b[i - 1];
if (b[i] * (b[i - 1] / abs(b[i - 1])) >= 0) {
if (b[i - 1] > 0) {
ans1 += abs(b[i]) + 1;
b[i] = -1;
} else {
ans1 += abs(b[i]) + 1;
b[i] = 1;
}
}
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long int MOD = 1000000007;
const long long L_INF = 1LL << 60;
const int INF = 2147483647;
const double PI = acos(-1);
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <class T>
void debug(T v) {
for (int i = 0; i < v.size(); ++i) cout << v[i] << " ";
cout << endl;
}
const long long int dx[8] = {1, 1, 0, -1, -1, -1, 0, 1};
const long long int dy[8] = {0, 1, 1, 1, 0, -1, -1, -1};
long long int n;
vector<long long int> a, s;
long long int solve(bool b) {
long long int res = 0;
if (a[0] == 0) {
if (b)
s[1] = a[0];
else
s[1] = a[0];
} else if (a[0] > 0) {
if (b)
s[1] = a[0];
else {
s[1] = -1;
res += abs(a[0]) + 1;
}
} else {
if (b) {
s[1] = 1;
res += abs(a[0]) + 1;
} else
s[1] = a[0];
}
for (int i = 1; i < n; ++i) {
if (s[i] < 0) {
if (a[i] < 0) {
res += abs(a[i]) + abs(s[i]) + 1;
s[i + 1] = 1;
} else {
s[i + 1] = s[i] + a[i];
if (s[i + 1] <= 0) {
res += abs(s[i + 1]) + 1;
s[i + 1] = 1;
}
}
} else {
if (a[i] <= 0) {
s[i + 1] = s[i] + a[i];
if (s[i + 1] >= 0) {
res += s[i + 1] + 1;
s[i + 1] = -1;
}
} else {
res += abs(a[i]) + abs(s[i]) + 1;
s[i + 1] = -1;
}
}
}
return res;
}
signed main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
;
cin >> n;
a.resize(n);
s.resize(n + 1);
for (int i = 0; i < n; ++i) cin >> a[i];
long long int ans = solve(false);
ans = min(solve(true), ans);
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
ans = 0
if a[0] > 0:
op = "+"
elif a[0] < 0:
op = "-"
elif a[0] == 0:
ans += 1
if a[1] > 0:
a[0] = -1
op = "-"
else:
a[0] = 1
op = "+"
total = a[0]
for i in range(1, n):
if (total+a[i]) >= 0 and op == "+":
ans += abs((-1 - total) - a[i])
total = -1
op = "-"
elif (total+a[i]) < 0 and op == "-":
ans += abs((1 - total) - a[i])
total = 1
op = "+"
elif total+a[i] == 0:
ans += 1
if op == "+":
total = -1
op = "-"
else:
total = 1
op = "+"
else:
total += a[i]
if op == "+":
op = "-"
else:
op = "+"
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long mod = 1e9 + 7;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < (n); ++i) cin >> a[i];
long long sum = a[0];
long long ans = 0;
for (int i = 1; i < n; ++i) {
if (sum < 0) {
if (a[i] > abs(sum)) {
sum += a[i];
} else {
ans += (1LL - sum - a[i]);
sum = 1LL;
}
} else {
if (a[i] < 0 && abs(a[i]) > sum) {
sum += a[i];
} else {
ans += abs((-1LL - sum - a[i]));
sum = -1LL;
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <iostream>
#include <algorithm>
#include <string>
using namespace std;
#define int long long
int main() {
int n;
int A[100001];
cin >> n;
for(int i = 0; i < n; i++) {
cin >> A[i];
}
int sum = 0;
int counter = 0;
// 偶数番目が正
for(int i = 0; i < n; i++) {
sum += A[i];
if(i % 2 == 0) {
while(sum <= 0){
sum++;
counter++;
}
} else {
while(sum >= 0){
sum--;
counter++;
}
}
}
int counterNeg = 0;
sum = 0;
for(int i = 0; i < n; i++) {
sum += A[i];
if(i % 2 == 1) {
while(sum <= 0){
sum++;
counterNeg++;
}
} else {
while(sum >= 0){
sum--;
counterNeg++;
}
}
}
cout << min(counter, counterNeg) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int mod = 1e9 + 7;
const int INF = 1 << 30;
const int MAX_N = 100003;
long long a[MAX_N];
int main() {
int N;
cin >> N;
long long S = 0, ans = 0;
int flag = 0;
for (int i = 0; i < N; i++) cin >> a[i];
for (int i = N - 1; i >= 0; i--) {
if (a[i] > 0) {
if (i % 2)
flag = -1;
else
flag = 1;
break;
} else if (a[i] < 0) {
if (i % 2)
flag = 1;
else
flag = -1;
break;
}
}
if (!flag) {
cout << N << endl;
return 0;
}
for (int i = 0; i < N; i++) {
S += a[i];
if (flag == 1) {
flag = -1;
if (S > 0)
continue;
else {
ans += 1 - S;
S = 1;
}
} else {
flag = 1;
if (S < 0)
continue;
else {
ans += S + 1;
S = -1;
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
sum_a = [a[0]]
sum_tmp = a[0]
ans_v = 0
ans = 0
for i in range(1, len(a)):
sum_tmp += a[i]
sum_a.append(sum_tmp)
if sum_a[i] * sum_a[i - 1] >= 0:
if sum_a[i] > 0:
diff = - 1 - sum_a[i]
ans += abs(diff)
sum_a[i] += diff
sum_tmp += diff
elif sum_a[i] < 0:
diff = 1 - sum_a[i]
ans += abs(diff)
sum_a[i] += diff
sum_tmp += diff
else:
if sum_a[i - 1] < 0:
sum_a[i] = 1
ans += 1
sum_tmp += 1
elif sum_a[i - 1] > 0:
sum_a[i] = -1
ans += 1
sum_tmp += -1
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
lis = list(map(int,input().split()))
li = lis
cou = 0
co = 0
for i in range(n):
if i % 2 == 0:
if sum(li[:i+1]) <= 0:
cou += (1-sum(li[:i+1]))
li[i] += (1-sum(li[:i+1]))
else:
if sum(li[:i+1]) >= 0:
cou += sum(li[:i+1])+1
li[i] -= (sum(li[:i+1])+1)
for i in range(n):
if i % 2 != 0:
if sum(lis[:i+1]) <= 0:
co += (1-sum(lis[:i+1]))
lis[i] += (1-sum(lis[:i+1]))
else:
if sum(lis[:i+1]) >= 0:
co += sum(lis[:i+1])+1
lis[i] -= (sum(lis[:i+1])+1)
print(min(co,cou))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(lambda x: int(x), input().split()))
idx=0
ans=0
sum_last=0
for i in a:
if i!=0:
break
idx+=1
if idx==len(a):
ans=2*idx-1
elif idx>0:
ans=2*idx-1
if a[idx]>0:
sum_last=-1
else:
sum_last=1
else:
sum_last=a[0]
ans=0
idx=1
for i in a[idx:]:
sum_cur=sum_last+i
if sum_cur*sum_last>=0:
ans+=abs(sum_cur)+1
if sum_last>0:
sum_last=-1
else:
sum_last=1
else:
sum_last=sum_cur
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 100005;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int sum = 0, ans = INF, cnt = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i & 1) {
if (sum >= 0) {
cnt += abs(sum) + 1;
sum = -1;
}
} else {
if (sum <= 0) {
cnt += abs(sum) + 1;
sum = 1;
}
}
}
ans = min(ans, cnt);
sum = 0;
cnt = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (!(i & 1)) {
if (sum >= 0) {
cnt += abs(sum) + 1;
sum = -1;
}
} else {
if (sum <= 0) {
cnt += abs(sum) + 1;
sum = 1;
}
}
}
ans = min(ans, cnt);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using vll = vector<ll>;
const int INF = 1e9;
int main() {
int n;
cin >> n;
vll s(n, 0);
for (int i = 0; i < n; i++) {
ll a;
cin >> a;
if (i == 0) {
s[i] = a;
} else {
s[i] = s[i - 1] + a;
}
}
bool sgn;
ll tmp = 0LL, cnt = 0LL;
for (int i = 0; i < n; i++) {
if (i == 0) sgn = (s[0] > 0) ? true : false;
ll m = tmp + s[i];
if (sgn) {
if (m <= 0) {
tmp += 1 - m;
cnt += abs(1 - m);
}
} else {
if (m >= 0) {
tmp += (-1) - m;
cnt += abs((-1) - m);
}
}
sgn = (sgn) ? false : true;
}
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long a[1000000];
long long min(long long a, long long b) {
int t = a;
if (b <= t) t = b;
return t;
}
int main() {
int n;
cin >> n;
for (int t = 0; t < n; t++) cin >> a[t];
long long sum = 0LL;
long long x = 0LL;
for (int t = 0; t < n; t++) {
sum += a[t];
if (t % 2 == 1 && sum >= 0) {
long long s = sum + 1;
sum = -1;
x += s;
} else if (t % 2 == 0 && sum <= 0) {
long long s = 1 - sum;
sum = 1;
x += s;
}
}
long long positive_x = x;
x = 0LL;
sum = 0LL;
for (int t = 0; t < n; t++) {
sum += a[t];
if (t % 2 == 0 && sum >= 0) {
long long s = sum + 1;
sum = -1;
x += s;
} else if (t % 2 == 1 && sum <= 0) {
long long s = 1 - sum;
sum = 1;
x += s;
}
}
long long negative_x = x;
long long result = min(positive_x, negative_x);
cout << result << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int64_t MOD = 1e9 + 7;
int main() {
int n;
cin >> n;
vector<int> v(n);
for (int i = 0; i < n; i++) {
cin >> v.at(i);
}
int a, b;
a = 0;
b = 0;
int sum = 0;
for (int i = 0; i < n; i++) {
if (!i) {
if (v.at(i) >= 0) {
if (!v.at(0)) {
a++;
sum = 1;
} else {
sum = v.at(i);
}
} else {
sum = 1;
a += abs(v.at(i)) + 1;
}
} else {
int n = sum + v.at(i);
if (i % 2) {
if (n > 0) {
a += abs(n) + 1;
sum = -1;
} else {
if (!n) {
a++;
sum = -1;
} else {
sum = n;
}
}
} else {
if (n < 0) {
a += abs(n) + 1;
sum = 1;
} else {
if (!n) {
a++;
sum = 1;
} else {
sum = n;
}
}
}
}
}
for (int i = 0; i < n; i++) {
if (!i) {
if (v.at(i) <= 0) {
if (!v.at(0)) {
b++;
sum = -1;
} else {
sum = v.at(i);
}
} else {
sum = -1;
b += abs(v.at(i)) + 1;
}
} else {
int n = sum + v.at(i);
if (i % 2) {
if (n < 0) {
b += abs(n) + 1;
sum = 1;
} else {
if (!n) {
b++;
sum = 1;
} else {
sum = n;
}
}
} else {
int n = sum + v.at(i);
if (n > 0) {
b += abs(n) + 1;
sum = -1;
} else {
if (!n) {
b++;
sum = -1;
} else {
sum = n;
}
}
}
}
}
cout << min(a, b) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
long long sum;
cin >> sum;
if (sum == 0) {
long long delta1 = 1;
sum = 1;
long long ar[N];
for (int i = 1; i < N; ++i) {
cin >> ar[i];
long long temp = ar[i];
if (sum > 0 && sum + temp >= 0) {
sum = -1;
delta1 += sum + temp + 1;
} else if (sum < 0 && sum + temp <= 0) {
sum = 1;
delta1 += 1 - (sum + temp);
} else {
sum += temp;
}
}
long long delta2 = 1;
sum = -1;
for (int i = 1; i < N; ++i) {
long long temp = ar[i];
if (sum > 0 && sum + temp >= 0) {
sum = -1;
delta2 += sum + temp + 1;
} else if (sum < 0 && sum + temp <= 0) {
sum = 1;
delta2 += 1 - (sum + temp);
} else {
sum += temp;
}
}
if (delta1 < delta2)
cout << delta1;
else
cout << delta2;
} else {
long long delta = 0;
for (int i = 1; i < N; ++i) {
int temp;
cin >> temp;
if (sum > 0 && sum + temp >= 0) {
delta += sum + temp + 1;
sum = -1;
} else if (sum < 0 && sum + temp <= 0) {
delta += 1 - (sum + temp);
sum = 1;
} else {
sum += temp;
}
}
cout << delta;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
namespace ABC059C
{
class Program
{
static void Main(string[] args)
{
int n = Int32.Parse(Console.ReadLine());
string[] bufs = Console.ReadLine().Split(' ');
long res = 0;
int sum = Int32.Parse(bufs[0]);
if (sum == 0) { res++; }
for (int i = 1; i < n; i++)
{
int tmp = sum + Int32.Parse(bufs[i]);
if (sum == 0)
{
if (tmp == 0)
{
res += 2;
}
else if (tmp == 1 || tmp == -1)
{
sum = tmp;
res++;
}
else if (tmp > 1)
{
sum = tmp - 1;
}
else
{
sum = tmp + 1;
}
}
else if (sum > 0)
{
if (tmp >= 0)
{
res += tmp + 1;
sum = -1;
}
else
{
sum = tmp;
}
}
else
{
if (tmp <= 0)
{
res += -tmp + 1;
sum = 1;
}
else
{
sum = tmp;
}
}
}
Console.WriteLine(res);
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using lli = long long int;
using ulli = unsigned long long int;
vector<lli> N, rN;
lli in, n, d = 0, dp, pm;
ulli ans = 0;
int main() {
cin >> n;
for (lli l = 0; l < n; l++) {
cin >> in;
if (l == 0) {
N.push_back(in);
} else {
N.push_back(N[l - 1] + in);
}
}
for (lli l = 1; l < (lli)N.size(); l++) {
dp = d;
{};
{};
if (N[l - 1] + dp < 0) {
if (N[l] + dp < 0) {
d += 1 - N[l] - dp;
ans += 1 - N[l] - dp;
} else if (N[l] + dp == 0) {
d += 1;
ans += 1;
}
} else if (N[l - 1] + dp > 0) {
if (N[l] + dp > 0) {
d -= N[l] + dp + 1;
ans += N[l] + dp + 1;
} else if (N[l] + dp == 0) {
d -= 1;
ans += 1;
}
} else {
for (lli m = l - 1; m < (lli)N.size(); m++) {
if (N[m] > 0) {
pm = (m - l) % 2;
break;
} else if (N[m] < 0) {
pm = (m - l + 1) % 2;
break;
}
if (m == (lli)N.size() - 1) {
pm = (m + 1) % 2;
break;
}
}
if (pm == 1) {
d += 1;
ans += 1;
} else if (pm == 0) {
d -= 1;
ans += 1;
}
dp = d;
if (N[l] + dp < 0) {
d += 1 - N[l] - dp;
ans += 1 - N[l] - dp;
} else if (N[l] + dp == 0) {
d += 1;
ans += 1;
} else if (N[l] + dp > 0) {
d -= N[l] + dp + 1;
ans += N[l] + dp + 1;
} else if (N[l] + dp == 0) {
d -= 1;
ans += 1;
}
}
{};
{};
{};
{};
{};
}
cout << ans;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
long long a[1000010];
int n;
unsigned long long solve() {
unsigned long long sum = 0;
long long oo = 0, flag;
if (a[0] > 0)
flag = -1;
else if (a[0] < 0)
flag = 1;
for (int i = 0; i < n; i++) {
oo += a[i];
if (flag == 1) {
if (oo >= 0) {
sum += oo + 1;
oo = -1;
}
}
if (flag == -1) {
if (oo <= 0) {
sum += 0 - oo + 1;
oo = 1;
}
}
flag = -flag;
}
return sum;
}
int main() {
while (scanf("%d", &n) != EOF) {
unsigned long long sum;
for (int i = 0; i < n; i++) {
scanf("%lld", &a[i]);
}
int t = a[0];
if (a[0] == 0) {
a[0] = 1;
unsigned long long sum1 = solve();
a[0] = -1;
unsigned long long sum2 = solve();
sum = min(sum1, sum2) + 1;
} else {
a[0] = 1;
unsigned long long sum1 = solve() + abs(t - 1);
a[0] = -1;
unsigned long long sum2 = solve() + abs(t + 1);
sum = min(sum1, sum2);
}
printf("%lld\n", sum);
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
// ABC 6-C
// http://abc006.contest.atcoder.jp/tasks/abc006_3
public class Main {
public static void main (String[] args) throws java.lang.Exception {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
long sum = 0;
long answer = 0;
for (int i = 0; i < n; i++) {
int a = in.nextInt();
if (i > 0) {
if (sum < 0 && sum + a < 0) {
answer += 1 + Math.abs(sum + a);
sum = 1;
} else if (sum > 0 && sum + a > 0) {
answer += 1 + sum + a;
sum = -1;
} else if (sum + a == 0) {
answer++;
if (sum < 0) {
sum = 1;
} else {
sum = -1;
}
} else {
sum += a;
}
} else {
sum += a;
}
}
System.out.println(answer);
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
sum=a[0]
cnt=0
if a[0]==0:
sum+=1
cnt+=1
for i in range(1,n):
if sum<0:
z=sum+a[i]
if z>0:
sum=z
elif z<=0:
cnt+=(1-z)
sum=1
elif sum>0:
z=sum+a[i]
if z>=0:
cnt+=(z+1)
sum=-1
elif z<0:
sum=z
print(cnt)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using LL = long long;
using VLL = std::vector<LL>;
using VVLL = std::vector<VLL>;
using VVVLL = std::vector<VVLL>;
using LD = long double;
using VLD = std::vector<LD>;
using VVLD = std::vector<VLD>;
using VVVLD = std::vector<VVLD>;
using BL = bool;
using VBL = std::vector<BL>;
using VVBL = std::vector<VBL>;
using VVVBL = std::vector<VVBL>;
template <class T>
inline bool chmax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmin(T &a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T>
void bye(T a) {
cout << a << '\n';
exit(0);
}
template <class T>
void PRINTSP(vector<T> v, size_t w = 3) {
for (auto(a) : v) {
cerr << setw(w) << a << " ";
}
cerr << endl;
}
struct mll {
static LL MOD;
LL val;
mll(LL v = 0) : val(v % MOD) {
if (val < 0) val += MOD;
}
mll operator-() const { return -val; }
mll operator+(const mll &b) const { return val + b.val; }
mll operator-(const mll &b) const { return val - b.val; }
mll operator*(const mll &b) const { return val * b.val; }
mll operator/(const mll &b) const { return mll(*this) /= b; }
mll operator+(LL b) const { return *this + mll(b); }
mll operator-(LL b) const { return *this - mll(b); }
mll operator*(LL b) const { return *this * mll(b); }
friend mll operator+(LL a, const mll &b) { return b + a; }
friend mll operator-(LL a, const mll &b) { return -b + a; }
friend mll operator*(LL a, const mll &b) { return b * a; }
mll &operator+=(const mll &b) {
val = (val + b.val) % MOD;
return *this;
}
mll &operator-=(const mll &b) {
val = (val + MOD - b.val) % MOD;
return *this;
}
mll &operator*=(const mll &b) {
val = (val * b.val) % MOD;
return *this;
}
mll &operator/=(const mll &b) {
LL c = b.val, d = MOD, u = 1, v = 0;
while (d) {
LL t = c / d;
c -= t * d;
swap(c, d);
u -= t * v;
swap(u, v);
}
val = val * u % MOD;
if (val < 0) val += MOD;
return *this;
}
mll &operator+=(LL b) { return *this += mll(b); }
mll &operator-=(LL b) { return *this -= mll(b); }
mll &operator*=(LL b) { return *this *= mll(b); }
mll &operator/=(LL b) { return *this /= mll(b); }
bool operator==(const mll &b) { return val == b.val; }
bool operator!=(const mll &b) { return val != b.val; }
bool operator==(LL b) { return *this == mll(b); }
bool operator!=(LL b) { return *this != mll(b); }
friend bool operator==(LL a, const mll &b) { return mll(a) == b.val; }
friend bool operator!=(LL a, const mll &b) { return mll(a) != b.val; }
friend ostream &operator<<(ostream &os, const mll &a) { return os << a.val; }
friend istream &operator>>(istream &is, mll &a) { return is >> a.val; }
static mll Combination(LL a, LL b) {
chmin(b, a - b);
if (b < 0) return mll(0);
mll c = 1;
for (LL(i) = 0; (i) < (b); (i)++) c *= a - i;
for (LL(i) = 0; (i) < (b); (i)++) c /= i + 1;
return c;
}
static mll Kumiawase(LL a, LL b) {
chmin(b, a - b);
if (b < 0) return mll(0);
return Junretu(a, b) / Kaijou(b);
}
static mll Kaijou(LL a) {
if (a < 0) return mll(0);
mll c = 1;
for (LL i = 1; i <= a; i++) {
c *= i;
}
return c;
}
static mll Junretu(LL a, LL b) {
if (a < b) {
return mll(0);
}
mll c = 1;
for (LL i = a; i > a - b; i--) {
c *= i;
}
return c;
}
static mll _Junretu(LL a, LL b) {
if (a < b) {
return mll(0);
}
return Kaijou(a) / (Kaijou(a - b));
}
LL get() { return val; }
};
LL mll::MOD = (LL)(1e9 + 7);
using vmll = std::vector<mll>;
using vvmll = std::vector<vmll>;
using vvvmll = std::vector<vvmll>;
using vvvvmll = std::vector<vvvmll>;
LL modpow(LL a, LL n, LL mod) {
long long res = 1;
while (n > 0) {
if (n & 1) res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
template <typename TTT>
vector<LL> arg_sort(vector<TTT> A, bool ascend = true) {
vector<LL> index(A.size());
iota(index.begin(), index.end(), 0);
if (ascend) {
std::sort(index.begin(), index.end(),
[&A](TTT i1, TTT i2) { return A[i1] < A[i2]; });
} else {
std::sort(index.begin(), index.end(),
[&A](TTT i1, TTT i2) { return A[i1] > A[i2]; });
}
return index;
}
template <typename _Iterator, typename _Compare>
LL num_of_ika(_Iterator _first, _Iterator _last, _Compare key) {
return (LL)(upper_bound(_first, _last, key) - _first);
}
template <typename _Iterator, typename _Compare>
LL num_of_ookii(_Iterator _first, _Iterator _last, _Compare key) {
return (LL)(_last - upper_bound(_first, _last, key));
}
template <typename _Iterator, typename _Compare>
LL num_of_chisai(_Iterator _first, _Iterator _last, _Compare key) {
return (LL)(lower_bound(_first, _last, key) - _first);
}
template <typename _Iterator, typename _Compare>
LL num_of_ijou(_Iterator _first, _Iterator _last, _Compare key) {
return (LL)(_last - lower_bound(_first, _last, key));
}
template <typename _Iterator, typename _Compare>
LL num_of_onaji(_Iterator _first, _Iterator _last, _Compare key) {
return (LL)(upper_bound(_first, _last, key) -
lower_bound(_first, _last, key));
}
struct UnionFindTree {
private:
vector<LL> UFT;
public:
UnionFindTree(LL N) {
UFT.resize(N);
for (LL i = 0; i < N; i++) {
UFT[i] = -1;
}
}
LL root(LL i) {
if (UFT[i] < 0) {
return i;
} else {
LL j = root(UFT[i]);
UFT[i] = j;
return j;
}
}
bool same(LL i, LL j) { return (root(i) == root(j)); }
bool unite(LL i, LL j) {
if (same(i, j)) {
return false;
}
LL root_i = root(i);
LL root_j = root(j);
if (root_i != root_j) {
if (size(root_i) < size(root_j)) {
swap(root_i, root_j);
}
UFT[root_i] += UFT[root_j];
UFT[root_j] = root_i;
}
return true;
}
LL size(LL i) { return -UFT[root(i)]; }
LL get_root_num() {
set<LL> roots;
for (LL i = 0; i < (LL)UFT.size(); ++i) {
roots.insert(root(i));
}
return (LL)roots.size();
}
map<LL, vector<LL>> get_root_child() {
map<LL, vector<LL>> a;
for (LL i = 0; i < (LL)UFT.size(); ++i) {
LL j = root(i);
a[j].push_back(i);
}
return a;
}
void print() {
for (LL i = 0; i < (LL)UFT.size(); ++i) {
cerr << root(i) << " ";
}
cerr << endl;
}
};
inline VLL cinvll(LL N, LL minus = 0) {
VLL A(N);
for (LL(i) = 0; (i) < (N); (i)++) {
cin >> A[i];
A[i] -= minus;
}
return move(A);
}
inline VVLL zerosll(LL H, LL W, LL val = 0) {
VVLL A(H, VLL(W, val));
return move(A);
}
inline VVVLL zerosll3(LL H, LL W, LL C, LL val = 0) {
VVVLL A(H, VVLL(W, VLL(C, val)));
return move(A);
}
template <typename T>
istream &operator>>(istream &is, vector<T> &vec) {
for (T &x : vec) is >> x;
return is;
}
template <typename T, typename U>
ostream &operator<<(ostream &os, pair<T, U> &pair_var) {
os << "(" << pair_var.first << ", " << pair_var.second << ")";
return os;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &vec) {
for (LL i = 0; i < (LL)vec.size(); i++) {
os << setw(5) << vec[i];
}
os << endl;
return os;
}
template <typename T, typename U>
ostream &operator<<(ostream &os, map<T, U> &map_var) {
os << "{";
for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {
os << *itr;
itr++;
if (itr != map_var.end()) os << ", ";
itr--;
}
os << "}";
return os;
}
template <typename T>
ostream &operator<<(ostream &os, set<T> &set_var) {
os << "{";
for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {
os << *itr;
itr++;
if (itr != set_var.end()) os << ", ";
itr--;
}
os << "}";
return os;
}
void dump_func() { cerr << endl; }
template <class Head, class... Tail>
void dump_func(Head &&head, Tail &&...tail) {
cerr << ("\033[36m");
cerr << head;
if (sizeof...(Tail) > 0) {
cerr << ", ";
}
dump_func(std::move(tail)...);
cerr << "\033[m";
}
struct Fast {
Fast() {
cin.tie(0);
ios::sync_with_stdio(false);
cout << fixed << setprecision(std::numeric_limits<double>::max_digits10);
}
} fast;
bool isPrime(LL N) {
if (N < 2) {
return false;
} else if (N == 2) {
return true;
} else if (N % 2 == 0) {
return false;
}
LD sqrtNum = sqrt(N);
for (LL i = 3; i <= sqrtNum; i += 2) {
if (N % i == 0) {
return false;
}
}
return true;
}
map<LL, LL> prime_factor(LL n) {
map<LL, LL> ret;
for (LL i = 2; i * i <= n; i++) {
while (n % i == 0) {
ret[i]++;
n /= i;
}
}
if (n != 1) ret[n] = 1;
return ret;
}
LL GCD(LL m, LL n) {
if (m < n) {
swap(m, n);
}
while (n != 0) {
LL n_new = m % n;
m = n;
n = n_new;
}
return m;
}
LL LCM(LL x, LL y) { return x / GCD(x, y) * y; }
struct Furui {
LL n;
VLL f;
VLL prime;
Furui(LL n = 1) : n(n), f(n + 1) {
f[0] = -1;
f[1] = -1;
for (LL i = 2; i <= n; i++) {
if (f[i]) {
continue;
}
prime.push_back(i);
for (LL j = i; j <= n; j += i) {
if (f[j] == 0) {
f[j] = i;
}
}
}
}
bool isPrime(LL x) {
if (x <= 1) {
return false;
}
return (f[x] == x);
}
VLL factorList(LL x) {
VLL res;
if (x >= 2 and x <= n) {
while (x != 1) {
res.push_back(f[x]);
x /= f[x];
}
}
return res;
}
vector<pair<LL, LL>> factor(LL x) {
VLL factors = factorList(x);
vector<pair<LL, LL>> P;
if (factors.size() == 0) {
return P;
}
P.emplace_back(factors[0], 0);
for (auto p : factors) {
if (P.back().first == p) {
P.back().second++;
} else {
P.emplace_back(p, 1);
}
}
return P;
}
};
template <typename T>
struct edge {
int src, to;
T cost;
edge(int to, T cost) : src(-1), to(to), cost(cost) {}
edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}
edge &operator=(const int &x) {
to = x;
return *this;
}
operator int() const { return to; }
};
template <typename T>
using Edges = vector<edge<T>>;
template <typename T>
using WeightedGraph = vector<Edges<T>>;
using UnWeightedGraph = vector<vector<int>>;
template <typename T>
using Matrix = vector<vector<T>>;
template <typename T>
void warshall_floyd(Matrix<T> &g, T INF) {
for (int k = 0; k < g.size(); k++) {
for (int i = 0; i < g.size(); i++) {
for (int j = 0; j < g.size(); j++) {
if (g[i][k] == INF || g[k][j] == INF) continue;
g[i][j] = min(g[i][j], g[i][k] + g[k][j]);
}
}
}
}
template <typename T>
T kruskal(Edges<T> &edges, LL V) {
sort(begin(edges), end(edges),
[](const edge<T> &a, const edge<T> &b) { return (a.cost < b.cost); });
UnionFindTree tree(V);
T ret = 0;
for (auto &e : edges) {
if (tree.unite(e.src, e.to)) ret += e.cost;
}
return (ret);
}
bool isOK(LL mid) { return true; }
LL binary_search() {
LL ng = 0;
LL ok = 100000;
while (abs(ok - ng) > 1) {
LL mid = (ok + ng) / 2;
if (isOK(mid))
ok = mid;
else
ng = mid;
}
return ok;
}
LL powll(LL a, LL b) {
LL c = 1LL;
for (LL(i) = 0; (i) < (b); (i)++) {
c *= a;
}
return c;
}
LL knapsack(vector<LL> v, vector<LL> w, LL W) {
LL N = (LL)v.size();
vector<LL> dp(W + 1, 0);
for (LL i = 0; i < N; ++i) {
for (LL j = w[i]; j <= W; ++j) {
dp[j] = max(dp[j], dp[j - w[i]] + v[i]);
}
}
return dp[W];
}
template <typename T>
vector<T> dijkstra(WeightedGraph<T> &g, int s) {
const auto INF = numeric_limits<T>::max();
vector<T> dist(g.size(), INF);
using Pi = pair<T, int>;
priority_queue<Pi, vector<Pi>, greater<Pi>> que;
dist[s] = 0;
que.emplace(dist[s], s);
while (!que.empty()) {
T cost;
int idx;
tie(cost, idx) = que.top();
que.pop();
if (dist[idx] < cost) continue;
for (auto &e : g[idx]) {
auto next_cost = cost + e.cost;
if (dist[e.to] <= next_cost) continue;
dist[e.to] = next_cost;
que.emplace(dist[e.to], e.to);
}
}
return dist;
}
template <typename T>
struct BinaryIndexedTree {
vector<T> data;
BinaryIndexedTree(int sz = 10) { data.assign(++sz, 0); }
T sum(int k) {
T ret = 0;
for (++k; k > 0; k -= k & -k) ret += data[k];
return (ret);
}
void add(int k, T x) {
for (++k; k < data.size(); k += k & -k) data[k] += x;
}
void resize(int sz) { data.assign(++sz, 0); }
};
LL Combination(LL a, LL b) {
chmin(b, a - b);
if (b < 0) return 0;
LL c = 1;
for (LL(i) = 0; (i) < (b); (i)++) c *= a - i;
for (LL(i) = 0; (i) < (b); (i)++) c /= i + 1;
return c;
}
struct IntegralImage {
VVLL I;
LL H;
LL W;
IntegralImage(VVLL M) {
I = M;
H = M.size();
W = M[0].size();
bool isOK = true;
for (LL(i) = 0; (i) < (H); (i)++) {
if ((LL)I[i].size() != W) {
isOK = false;
}
}
if (not isOK) {
cerr << "shape error :";
for (LL(i) = 0; (i) < (H); (i)++) {
cerr << I[i].size() << " ";
}
cerr << endl;
throw 0;
}
for (LL(i) = 0; (i) < (H); (i)++) {
for (LL(j) = 0; (j) < (W - 1); (j)++) {
I[i][j + 1] += I[i][j];
}
}
for (LL(j) = 0; (j) < (W); (j)++) {
for (LL(i) = 0; (i) < (H - 1); (i)++) {
I[i + 1][j] += I[i][j];
}
}
}
LL get_sum(LL y, LL h, LL x, LL w) {
if (y < 0 or x < 0 or h < 0 or w < 0 or y + h >= H or x + w >= W) {
fprintf(stderr, "H=%lld, W=%lld, y=%lld, h=%lld, x=%lld, w=%lld\n", H, W,
y, h, x, w);
throw 1;
}
LL a1 = I[y + h][x + w];
LL a2 = 0;
if (y > 0) {
a2 = I[y - 1][x + w];
}
LL a3 = 0;
if (x > 0) {
a3 = I[y + h][x - 1];
}
LL a4 = 0;
if (y > 0 && x > 0) {
a4 = I[y - 1][x - 1];
}
return (a1 + a4 - a2 - a3);
}
void print() {
for (LL(i) = 0; (i) < ((LL)I.size()); (i)++) {
PRINTSP(I[i]);
}
}
};
bool isKaibun(string S) {
bool ok = true;
LL N = (LL)S.length();
for (LL(i) = 0; (i) < (N); (i)++) {
if (S[i] != S[N - i - 1]) {
ok = false;
break;
}
}
return ok;
}
VLL my_dycstra(VVVLL &R, LL start = 0) {
LL S = start;
LL N = R.size();
LL INFINF = 1e15;
priority_queue<VLL, VVLL, greater<VLL>> Q;
VLL C(N, INFINF);
C[S] = 0;
Q.push({0, S});
while (!Q.empty()) {
VLL q = Q.top();
Q.pop();
LL cost = q[0];
LL no = q[1];
for (auto r : R[no]) {
LL to = r[0];
LL cost_to = r[1];
if (chmin(C[to], (cost + cost_to))) {
Q.push({cost + cost_to, to});
}
}
}
return move(C);
}
VLL haba_yuusen_kyori(VVLL &V, LL n) {
LL N = V.size();
VLL D(N, -1);
queue<pair<LL, LL>> Q;
Q.push({n, 0});
while (!Q.empty()) {
auto q = Q.front();
Q.pop();
LL no = q.first;
LL d = q.second;
D[no] = d;
for (auto v : V[no]) {
if (D[v] != -1) {
continue;
}
D[v] = d + 1;
Q.push({v, d + 1});
}
}
return move(D);
}
struct SegmentTree {
VLL D;
LL N;
LL DEFAULT;
string mode;
void init(LL N, string mode = "min") {
this->mode = mode;
if (mode == "min") {
DEFAULT = LONG_LONG_MAX;
} else if (mode == "max") {
DEFAULT = LONG_LONG_MIN;
} else if (mode == "sum") {
DEFAULT = 0LL;
} else {
this->mode = "min";
DEFAULT = LONG_LONG_MAX;
}
LL K = 1;
while (K < N) {
K *= 2;
}
this->N = K;
this->D.resize(2 * this->N, DEFAULT);
;
}
SegmentTree(LL N, string mode = "min") { init(N, mode); }
SegmentTree(VLL &A, string mode = "min") {
LL N = A.size();
this->init(N, mode);
;
for (LL(i) = 0; (i) < (N); (i)++) {
;
set(i, A[i]);
};
build();
}
void set(LL i, LL x) { D[i + N] = x; }
void build() {
for (LL i = N - 1; i > 0; i--) {
if (mode == "min") {
D[i] = min({D[2 * i], D[2 * i + 1]});
} else if (mode == "max") {
D[i] = max({D[2 * i], D[2 * i + 1]});
} else if (mode == "sum") {
D[i] = D[2 * i] + D[2 * i + 1];
}
}
}
void update(LL i, LL x) {
D[i + N] = x;
LL j = i + N;
while (j > 1) {
LL k = j / 2;
if (mode == "min") {
chmin(D[k], D[j]);
} else if (mode == "max") {
chmax(D[k], D[j]);
} else if (mode == "sum") {
D[k] += D[j];
}
j = k;
}
}
void print() {
;
for (LL(i) = 1; (i) < (2 * N); (i)++) {
cerr << D[i] << " ";
if (__builtin_popcountll(i + 1) == 1) {
cerr << endl;
}
}
}
LL query(LL a, LL b, LL k = 1, LL l = 0, LL r = -1) {
if (r == -1) {
r = N;
}
if (b <= l || r <= a) {
return DEFAULT;
}
if (a <= l && r <= b) {
return D[k];
}
LL vl = query(a, b, 2 * k, l, (l + r) / 2);
LL vr = query(a, b, 2 * k + 1, (l + r) / 2, r);
if (mode == "min") {
return min({vl, vr});
} else if (mode == "max") {
return max({vl, vr});
} else if (mode == "sum") {
return vl + vr;
}
}
};
void oira_tua(LL me, LL oya, VVLL &T, VLL &IO) {
IO.push_back(me);
;
for (LL i = 0; i < (LL)T[me].size(); i++) {
LL ko = T[me][i];
if (ko == oya) {
continue;
}
oira_tua(ko, me, T, IO);
IO.push_back(me);
}
}
VVLL cinvll2(LL H, LL W, LL bias = 0) {
VVLL A = zerosll(H, W);
for (LL(i) = 0; (i) < (H); (i)++) {
for (LL(j) = 0; (j) < (W); (j)++) {
cin >> A[i][j];
A[i][j] += bias;
}
}
return move(A);
}
void print(vector<priority_queue<LL>> P) {
for (LL(i) = 0; (i) < (P.size()); (i)++) {
auto p = P[i];
cerr << i << " : ";
while (!p.empty()) {
LL f = p.top();
p.pop();
cerr << f << " ";
}
cerr << endl;
}
}
void print(vector<multiset<LL, greater<LL>>> P) {
for (LL(i) = 0; (i) < (P.size()); (i)++) {
auto p = P[i];
cerr << i << " : ";
for (auto f : p) {
cerr << f << " ";
}
cerr << endl;
}
}
void print(vector<map<LL, LL, greater<LL>>> P) {
for (LL(i) = 0; (i) < (P.size()); (i)++) {
auto p = P[i];
cerr << i << " : ";
for (auto f : p) {
cerr << f << " ";
}
cerr << endl;
}
}
LL funcx(VLL A, bool flg) {
LL N = A.size();
LL husai = 0;
LL cnt = 0;
for (LL(i) = 0; (i) < (N); (i)++) {
A[i] += husai;
if (i == 0) {
if (flg) {
if (A[0] <= 0) {
husai += 1 - A[i];
cnt += abs(1 - A[i]);
}
} else {
if (A[0] >= 0) {
husai += -1 - A[i];
cnt += abs(-1 - A[i]);
A[i] = -1;
}
}
} else if (i > 0) {
if (A[i - 1] > 0 and A[i] >= 0) {
husai += -1 - A[i];
cnt += abs(-1 - A[i]);
A[i] = -1;
} else if (A[i - 1] < 0 and A[i] <= 0) {
husai += 1 - A[i];
cnt += abs(1 - A[i]);
A[i] = 1;
}
};
;
}
return cnt;
}
void func() {
LL N;
cin >> N;
VLL A = cinvll(N);
LL cnt = 0;
LL husai = 0;
for (LL(i) = 0; (i) < (N - 1); (i)++) {
A[i + 1] += A[i];
}
LL p = funcx(A, true);
LL m = funcx(A, false);
;
bye(min({p, m}));
}
int main() {
func();
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
l=list(map(int,input().split()))
if l[0]!=0:
count=0
suml=l[0]
for i in range(1,n):
if suml>0 and suml+l[i]<0:
suml+=l[i]
elif suml<0 and suml+l[i]>0:
suml+=l[i]
elif suml>0 and suml+l[i]>=0:
count+=suml+l[i]+1
suml=-1
else:
count+=-suml-l[i]+1
suml=1
print(count)
else:
count=1
suml1=1
for i in range(1,n):
if suml1>0 and suml1+l[i]<0:
suml1+=l[i]
elif suml1<0 and suml1+l[i]>0:
suml1+=l[i]
elif suml1>0 and suml1+l[i]>=0:
count+=suml1+l[i]+1
suml1=-1
else:
count+=-suml1-l[i]+1
suml1=1
k1=count
count=1
suml2=-1
for i in range(1,n):
if suml2>0 and suml2+l[i]<0:
suml2+=l[i]
elif suml2<0 and suml2+l[i]>0:
suml2+=l[i]
elif suml2>0 and suml2+l[i]>=0:
count+=suml2+l[i]+1
suml2=-1
else:
count+=-suml2-l[i]+1
suml2=1
k2=count
print(min(k1,k2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace AtCoder
{
partial class Program
{
static long mod = 1000000007;
static void Main()
{
Console.SetOut(new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false });
Solve();
Console.Out.Flush();
Console.ReadKey();
}
//ここから
static void Solve()
{
int N = GetInt();
var A = GetLongArray();
var sum = Enumerable.Repeat(0L, N ).ToArray();
sum[0] = A[0]!=0?A[0]:A[1]>0?-1:1;
long ans = A[0] != 0 ? 0 : 1;
for(int i = 1; i < N; i++)
{
sum[i] = sum[i-1] + A[i];
if (sum[i - 1] * sum[i] >= 0)
{
if (sum[i-1] > 0)
{
ans += sum[i] + 1;
sum[i] = -1;
}
else
{
ans += 1 - sum[i];
sum[i] = 1;
}
}
}
Console.WriteLine(ans);
}
}
//拡張メソッド
public static class Ex
{
public static List<string> FastSort(this List<string> s) { s.Sort(StringComparer.Ordinal); return s.ToList(); }
public static string yesno(this bool b) { return b ? "yes" : "no"; }
public static string YesNo(this bool b) { return b ? "Yes" : "No"; }
public static string YESNO(this bool b) { return b ? "YES" : "NO"; }
}
partial class Program
{
static public string GetStr() { return Console.ReadLine().Trim(); }
static public char GetChar() { return Console.ReadLine().Trim()[0]; }
static public int GetInt() { return int.Parse(Console.ReadLine().Trim()); }
static public long GetLong() { return long.Parse(Console.ReadLine().Trim()); }
static public double GetDouble() { return double.Parse(Console.ReadLine().Trim()); }
static public string[] GetStrArray() { return Console.ReadLine().Trim().Split(' '); }
static public int[] GetIntArray() { return Console.ReadLine().Trim().Split(' ').Select(int.Parse).ToArray(); }
static public long[] GetLongArray() { return Console.ReadLine().Trim().Split(' ').Select(long.Parse).ToArray(); }
static public char[] GetCharArray() { return Console.ReadLine().Trim().Split(' ').Select(char.Parse).ToArray(); }
static public double[] GetDoubleArray() { return Console.ReadLine().Trim().Split(' ').Select(double.Parse).ToArray(); }
static public T[][] CreateJaggedArray<T>(int H, int W, T value) { return Enumerable.Repeat(0, H).Select(s => Enumerable.Repeat(value, W).ToArray()).ToArray(); }
static public int[][] GetIntJaggedArray(int N) { return Enumerable.Repeat(0, N).Select(s => GetIntArray().ToArray()).ToArray(); }
static public long[][] GetLongJaggedArray(int N) { return Enumerable.Repeat(0, N).Select(s => GetLongArray().ToArray()).ToArray(); }
static public char[][] GetCharJaggedArray(int N) { return Enumerable.Repeat(0, N).Select(s => GetStr().ToCharArray()).ToArray(); }
static public double[][] GetDoubleJaggedArray(int N) { return Enumerable.Repeat(0, N).Select(s => GetDoubleArray()).ToArray(); }
static public void WriteObjects<T>(IReadOnlyCollection<T> values) { var array = values.ToArray(); var num = array.Length; Console.Write(array[0]); for (int i = 1; i < num; i++) { Console.Write(" "+array[i]);} Console.WriteLine(); }
static bool eq<T, U>() => typeof(T).Equals(typeof(U));
static T ct<T, U>(U a) => (T)Convert.ChangeType(a, typeof(T));
static T cv<T>(string s) => eq<T, int>() ? ct<T, int>(int.Parse(s))
: eq<T, long>() ? ct<T, long>(long.Parse(s))
: eq<T, double>() ? ct<T, double>(double.Parse(s))
: eq<T, char>() ? ct<T, char>(s[0])
: ct<T, string>(s);
static void Multi<T>(out T a) => a = cv<T>(GetStr());
static void Multi<T, U>(out T a, out U b)
{
var ar = GetStrArray(); a = cv<T>(ar[0]); b = cv<U>(ar[1]);
}
static void Multi<T, U, V>(out T a, out U b, out V c)
{
var ar = GetStrArray(); a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]);
}
static void Multi<T, U, V, W>(out T a, out U b, out V c, out W d)
{
var ar = GetStrArray(); a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]);
}
static void Multi<T, U, V, W, X>(out T a, out U b, out V c, out W d, out X e)
{
var ar = GetStrArray(); a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]);
}
static void Multi<T, U, V, W, X,Y>(out T a, out U b, out V c, out W d, out X e,out Y f)
{
var ar = GetStrArray(); a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]);f = cv<Y>(ar[5]);
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int main(void) {
long long i, j, k, ans = 0, be, n, a;
scanf("%d%d", &n, &be);
for (i = 1; i < n; ++i) {
scanf("%lld", &a);
if (be > 0 && -1 < be + a)
ans += be + a + 1, be = -1;
else if (be < 0 && 1 > be + a)
ans += 1 + -be - a, be = -1;
else
be += a;
}
printf("%lld", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def c(ints):
for i in range(len(ints)):
if ints[i] != 0:
sig = 1 if ints[i] > 0 else -1
sig_ = -sig
total = ints[i]
total_ = -sig
mov = i
mov_ = i
if i > 0:
mov += 1
mov_ += abs(total) + 1
j = i
break
if i == len(ints) - 1:
return i + 1
for i_ in ints[j+1:]:
tmp = total + i_
tmp_ = total_ + i_
if tmp == 0:
mov +=1
tmp = -sig
elif sig * tmp > 0:
mov += abs(tmp) + 1
tmp = -sig
if tmp_ == 0:
mov_ +=1
tmp_ = -sig_
elif sig_ * tmp_ > 0:
mov_ += abs(tmp_) + 1
tmp_ = -sig_
sig *= -1
total = tmp
sig_ *= -1
total_ = tmp_
return min(mov, mov_)
_ = input()
inp = input()
inp = inp.split(' ')
inp = [int(i_) for i_ in inp]
print(c(inp)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long int LINF = 2000000000000000000ll;
const int INF = 1000000100;
const long long int MOD = 1e9 + 7;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < (n); ++i) cin >> a[i];
int ans = INF;
int ans_t, total, sign;
for (int j = 0; j < (2); ++j) {
ans_t = 0;
total = 0;
if (j == 0)
sign = true;
else
sign = false;
for (int i = 0; i < (n); ++i) {
total += a[i];
if (sign) {
while (total >= 0) {
total--;
ans_t++;
}
} else {
while (total <= 0) {
total++;
ans_t++;
}
}
sign = 1 - sign;
}
ans = min(ans, ans_t);
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
import copy
N=int(input())
l=list(map(int, input().split()))
cp = copy.copy(l)
if l[0]!=0:
for k in range(1,N):
if sum(l[:k])*sum(l[:k+1])>0:
l[k]=-np.sign(sum(l[:k]))-sum(l[:k])
if sum(l)==0:
print(1+sum([abs(l[n]-cp[n]) for n in range(N)]))
else:
print(sum([abs(l[n]-cp[n]) for n in range(N)]))
else:#頭0のとき;和0なので変える =>1,-1にした時両方やって良いほうに
#1にする場合
sei_l=copy.copy(l)
sei_l[0]=1
for k in range(1,N):
if sum(sei_l[:k])*sum(sei_l[:k+1])>0:
sei_l[k]=-np.sign(sum(sei_l[:k]))-sum(sei_l[:k])
if sum(sei_l)==0:
c1=1+sum([abs(sei_l[n]-cp[n]) for n in range(N)])
else:
c1=sum([abs(sei_l[n]-cp[n]) for n in range(N)])
#-1にする場合
fu_l=copy.copy(l)
sei_l[0]=-1
for k in range(1,N):
if sum(fu_l[:k])*sum(fu_l[:k+1])>0:
fu_l[k]=-np.sign(sum(fu_l[:k]))-sum(fu_l[:k])
if sum(fu_l)==0:
c2=1+sum([abs(fu_l[n]-cp[n]) for n in range(N)])
else:
c2=sum([abs(fu_l[n]-cp[n]) for n in range(N)])
print(max(c1,c2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T>
void showvector(vector<T> v) {
for (T x : v) cout << x << " ";
cout << "\n";
}
template <typename T>
void showvector1(vector<T> v) {
long long int n = v.size();
for (long long int i = 1; i <= n - 1; i++) cout << v[i] << "\n";
}
template <typename T>
void showset(set<T> s) {
for (T x : s) cout << x << " ";
cout << "\n";
}
template <class T>
void showvectorpair(vector<T> v) {
for (auto it = v.begin(); it != v.end(); it++)
cout << it->first << " " << it->second << "\n";
cout << "\n";
}
template <typename T, typename P>
void showmap(map<T, P> m) {
for (auto it = m.begin(); it != m.end(); it++)
cout << it->first << " " << it->second << "\n";
cout << "\n";
}
template <typename T>
bool comp(T a, T b) {
return (a > b);
}
template <class T>
bool comppair(T a, T b) {
if (a.first == b.first) return (a.second > b.second);
return (a.first > b.first);
}
bool sameparity(long long int a, long long int b) { return (a % 2 == b % 2); }
bool difparity(long long int a, long long int b) { return !(a % 2 == b % 2); }
bool isprime(long long int x) {
if (x <= 1) return false;
for (long long int i = 2; i <= sqrt(x); i++) {
if (x % i == 0) return false;
}
return true;
}
bool iseven(long long int x) { return !(x % 2); }
bool isodd(long long int x) { return (x % 2); }
void vfun() {
long long int n, k;
cin >> n;
vector<long long int> v(n);
for (long long int i = 0; i < n; i++) cin >> v[i];
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
long long int test = 1;
while (test--) {
long long int n;
cin >> n;
vector<long long int> v(n);
for (long long int i = 0; i < n; i++) cin >> v[i];
long long int sum = v[0], psum = v[0], cnt = 0;
for (long long int i = 1; i <= n - 1; i++) {
sum += v[i];
if (psum > 0) {
if (sum >= 0) {
cnt += sum + 1;
sum = -1;
}
} else {
if (sum <= 0) {
cnt += abs(sum) + 1;
sum = 1;
}
}
psum = sum;
}
cout << cnt << "\n";
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long op = 0LL;
long long sum = 0LL;
sum = a[0];
for (int i = 1; i < n; i++) {
long long a;
cin >> a;
if (!(sum * (sum + a) < 0)) {
long long tmp_a = sum < 0 ? abs(sum) + 1 : -1 * (abs(sum) + 1);
op += abs(tmp_a - a);
sum = sum + tmp_a;
} else {
sum += a;
}
}
long long op_m = op;
if (a[0] > 0) {
sum = -1LL;
op = a[0] + 1;
} else {
sum = 1LL;
op = -1 * a[0] + 1;
}
for (int i = 1; i < n; i++) {
long long a;
cin >> a;
if (!(sum * (sum + a) < 0)) {
long long tmp_a = sum < 0 ? abs(sum) + 1 : -1 * (abs(sum) + 1);
op += abs(tmp_a - a);
sum = sum + tmp_a;
} else {
sum += a;
}
}
op = min(op, op_m);
cout << op << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n;
cin >> n;
vector<long long int> a(100001);
long long int s;
for (int i = 0; i < (n); i++) {
cin >> s;
a[i] = s;
}
long long int oddcount = 0, evencount = 0;
long long int oddsum = 0, evensum = 0;
bool odd = true, even = false;
for (int i = 0; i < (n); i++) {
oddsum += a[i];
evensum += a[i];
if (odd && oddsum <= 0) {
oddcount += 1 - oddsum;
oddsum = 1;
}
if (even && oddsum >= 0) {
oddcount += 1 + oddsum;
oddsum = -1;
}
if (even && evensum <= 0) {
evencount += 1 - evensum;
evensum = 1;
}
if (odd && evensum >= 0) {
evencount += 1 + evensum;
evensum = -1;
}
odd = !odd;
even = !even;
}
cout << fmin(oddcount, evencount) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int main(void) {
int N;
long long cnt = 0;
long long sum = 0;
scanf("%d%lld", &N, &sum);
for (int i = 0; i < N - 1; i++) {
int tmp;
scanf("%d", &tmp);
if (sum > 0 && sum + tmp >= 0) {
cnt += sum + tmp + 1;
sum = -1;
} else if (sum < 0 && sum + tmp <= 0) {
cnt += -(sum + tmp) + 1;
sum = 1;
} else {
sum += tmp;
}
}
printf("%lld\n", cnt);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MaxN = 1e5;
bool flag, ok;
long long sum, ans, anv, anw;
int n;
int a[MaxN + 5], b[MaxN + 5], c[MaxN + 5];
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
b[i] = a[i];
c[i] = a[i];
}
sum = a[1];
if (a[1] < 0) flag = 1, ok = 1;
if (a[1] != 0) {
for (int i = 2; i <= n; i++) {
if (flag == 1) {
if (sum + a[i] <= 0) {
long long ant = sum + a[i];
int t = a[i];
a[i] = 1 - sum;
ans += (a[i] - t);
sum += a[i];
} else
sum += a[i];
flag = 0;
} else {
if (sum + a[i] >= 0) {
long long ant = sum + a[i];
int t = a[i];
a[i] = -1 - sum;
ans += (t - a[i]);
sum += a[i];
} else
sum += a[i];
flag = 1;
}
}
}
if (a[1] == 0) ans = 1LL << 62, ok = 1;
int tr = b[1];
if (ok)
b[1] = 1, flag = 0;
else
b[1] = -1, flag = 1;
anv += (abs(b[1] - tr));
sum = b[1];
for (int i = 2; i <= n; i++) {
if (flag == 1) {
if (sum + b[i] <= 0) {
long long ant = sum + b[i];
int t = b[i];
b[i] = 1 - sum;
anv += (b[i] - t);
sum += b[i];
} else
sum += b[i];
flag = 0;
} else {
if (sum + b[i] >= 0) {
long long ant = sum + b[i];
int t = b[i];
b[i] = -1 - sum;
anv += (t - b[i]);
sum += b[i];
} else
sum += b[i];
flag = 1;
}
}
if (a[1] == 0) anw = 1LL << 62;
int te = c[1];
if (!ok)
c[1] = 1, flag = 0;
else
c[1] = -1, flag = 1;
anw += (abs(c[1] - te));
sum = c[1];
for (int i = 2; i <= n; i++) {
if (flag == 1) {
if (sum + c[i] <= 0) {
long long ant = sum + c[i];
int t = c[i];
c[i] = 1 - sum;
anw += (c[i] - t);
sum += c[i];
} else
sum += c[i];
flag = 0;
} else {
if (sum + c[i] >= 0) {
long long ant = sum + c[i];
int t = c[i];
c[i] = -1 - sum;
anw += (t - c[i]);
sum += c[i];
} else
sum += c[i];
flag = 1;
}
}
if (anw < anv) anv = anw;
if (anv < ans) ans = anv;
printf("%lld\n", ans);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
map<int, int> mpa, mpb;
priority_queue<pair<ll, ll>, vector<pair<ll, ll>>, greater<pair<ll, ll>>> pque;
int main() {
ios::sync_with_stdio(false);
cin.tie(NULL);
int N;
cin >> N;
int a[N + 2];
for (int i = 1; i <= N; i++) {
cin >> a[i];
}
int cnt1 = 0, cnt2 = 0;
int sum = 0;
for (int i = 1, s = 1; i <= N; i++, s *= -1) {
sum += a[i];
if (sum * s <= 0) cnt1 += abs(sum - s), sum = s;
}
sum = 0;
for (int i = 1, s = -1; i <= N; i++, s *= -1) {
sum += a[i];
if (sum * s <= 0) cnt2 += abs(sum - s), sum = s;
}
cout << min(cnt1, cnt2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
int ans = 0, ans2 = 0, sum = a[0];
for (int i = 0; i < n; i++) {
while (sum <= 0 && i % 2 == 0) {
sum++;
a[i]++;
ans++;
if (sum == 1) break;
}
while (sum >= 0 && i % 2 == 1) {
sum--;
a[i]--;
ans++;
if (sum == -1) break;
}
cout << sum << " ";
if (i == n) break;
sum += a[i + 1];
}
for (int i = 0; i < n; i++) {
while (sum <= 0 && i % 2 == 1) {
sum++;
a[i]++;
ans2++;
if (sum == 1) break;
}
while (sum >= 0 && i % 2 == 0) {
sum--;
a[i]--;
ans2++;
if (sum == -1) break;
}
cout << sum << " ";
if (i == n) break;
sum += a[i + 1];
}
cout << min(ans, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
n = int(input())
l = list(map(int, input().split()))
if all((x == 0 for x in l)):
print(n * 2 - 1)
sys.exit()
ans = 0
last_sum = l[0]
if last_sum == 0:
for i in range(n - 1):
if l[i + 1] != 0:
if i + 1 % 2 == 1:
ans = + 1
last_sum = -1
else:
ans = + 1
last_sum = 1
for i in range(n - 1):
# print(last_sum)
if last_sum > 0:
if last_sum + l[i + 1] < 0:
last_sum += l[i + 1]
else:
a = -1 - last_sum - l[i + 1]
ans += abs(a)
last_sum += a + l[i + 1]
else:
if last_sum + l[i + 1] > 0:
last_sum += l[i + 1]
else:
a = 1 - last_sum - l[i + 1]
ans += abs(a)
last_sum += a + l[i + 1]
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int DIM = 1e5 + 5;
int arr[DIM];
inline int sign(long long x) { return x > 0 ? 1 : -1; }
inline long long solve(int n) {
long long sum(arr[1]), ans(0);
for (int i = 2; i <= n; i++) {
long long aux(sum + arr[i]);
if (aux == 0) {
ans++;
if (sum < 0)
aux++;
else
aux--;
}
if (sign(sum) == sign(aux))
ans += abs(aux) + 1, sum = sign(-aux);
else
sum = aux;
}
return ans;
}
int main(void) {
int n;
cin >> n;
long long ans(1e18);
for (int i = 1; i <= n; i++) cin >> arr[i];
if (arr[1] != 0)
ans = solve(n);
else {
arr[1] = -1;
ans = min(ans, 1 + solve(n));
arr[1] = +1;
ans = min(ans, 1 + solve(n));
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
currentSum = 0
count3 = 0
count4 = 0
currentSum = 0
for i in range(N):
restSum = currentSum
currentSum += A[i]
if currentSum <= 0 and restSum < 0:
count4 += abs(currentSum) + 1
currentSum = 1
elif currentSum >= 0 and restSum > 0:
count4 += abs(currentSum) + 1
currentSum = -1
elif A[i] >= 0 and restSum == 0:
count4 += abs(currentSum) + 1
currentSum = -1
print(count4)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
long long a[N];
for (int i = 0; i < N; i++) cin >> a[i];
long long sum = a[0];
long long ans = 0;
for (int i = 1; i < N; i++) {
if (sum + a[i] >= 0 && sum > 0) {
ans += abs(-sum - 1 - a[i]);
sum = -1;
} else if (sum + a[i] <= 0 && sum < 0) {
ans += abs(-sum + 1 - a[i]);
sum = 1;
} else
sum += a[i];
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
#define FF ios_base::sync_with_stdio(0);cin.tie(0)
#define binary(value, size) cout << bitset<size>(value) << '\n'
#define PI acos(-1.0) //3.1416(180 degree to radian)
#define PIby2 asin(1) //(3.1416/2) for angle(90 degree to radian)
#define eps 1e-67
#define pf printf
#define sf scanf
#define sz size()
#define rr read
#define ww write
#define clr(arr) memset((arr),0,(sizeof(arr)))
#define rep(i,a,b) for(long long int i=a;i<b;i++)
#define repb(i,a,b) for(long long int i=a;i>=b;i--)
#define repa(i,a,b,c) for(long long int i=a;i<b;i=i+c)
#define reps(i,a,b,c) for(long long int i=a;i>b;i=i-c)
#define asort(a) sort(a.begin(),a.end())
#define asort2(a,comp) sort(a.begin(),a.end(),comp)
#define arev(a) reverse(a.begin(),a.end())
#define all(v) (v).begin(),(v).end()
#define all2(v,a,b) (v).begin()+a,(v).end()-b
#define F first
#define S second
#define pb push_back
#define eb emplace_back
#define pbb pop_back
#define mp make_pair
#define mt make_tuple
#define BS(v,x) binary_search(v.begin(),v.end(),x) //return true /false
#define LB(v,x) lower_bound(v.begin(),v.end(),x) //found and that value and not found than greater value pos
#define UB(v,x) upper_bound(v.begin(),v.end(),x) //found and greater value pos && not found also greater pos
#define convertlower(c) towlower(c)
#define root(x) sqrt(x)
#define power(a,n) pow(a,n)
#define tu(c) towupper(c)
#define sq(a) ((a)*(a))
#define cube(a) ((a)*(a)*(a))
#define mx 1000
#define MX 100000
#define mod 1000000007
#define INF 2000000000
#define N 10000000
#define Ceil(n) (long long int)ceil(n)
#define Floor(n) (long long int)floor(n)
#define deb(x) std::cout << #x << " = " << x << std::endl;
#define out(ans) cout<<ans<<endl
#define outs(ans) cout<<ans<<" "<<endl
using namespace std;
typedef string str;
typedef long long int ll;
typedef double lf;
typedef long double llf;
typedef unsigned long long int ull;
typedef vector<int> vi;
typedef vector<ll> vll;
typedef pair<int,int> pi;
typedef pair<ll,ll> pll;
typedef vector<pll> vpll;
typedef char ch;
typedef map<ll,ll> mpl;
//vector<vector<int>> grid(n, vector<int>(n, 0)); 2D Array
bool isLetter(char c)
{
return (c >= 'A' and c <= 'Z') or (c >= 'a' and c <= 'Z');
}
bool isUpperCase(char c)
{
return c >= 'A' and c <= 'Z';
}
bool isLowerCase(char c)
{
return c >= 'a' and c <= 'z';
}
bool isDigit(char c)
{
return c >= '0' and c <= '9';
}
bool isVowel(char c)
{
return c == 'a' or c == 'e' or c == 'i' or c == 'o' or c == 'u';
}
bool isConsonant(char c)
{
return !isVowel(c);
}
template<class T>
void Debug(T v)
{
for(int i=0; i<(int)v.size(); i++)cout << v[i] <<" ";
cout<<endl;
}
template<class T>
void Input(T &v)
{
for(int i=0; i<(int)v.size(); i++)cin >> v[i];
}
template<class T>
string toString(T n)
{
ostringstream ost;
ost << n;
ost.flush();
return ost.str();
}
string intTobinary(int x)
{
std::string binary = std::bitset<32>(x).to_string();
return binary;
}
//BigMod (a^p)%mod
template<typename A, typename P>
int BigMod(A a, P p, const int MOD)
{
int ret = 1;
while(p)
{
if(p & 1)ret = (1LL * ret * a) % MOD;
a = (1LL * a * a) % MOD;
p >>= 1LL;
}
return ret;
}
//Base (value,base)
template<typename T>
T toBase(T n, T base)
{
T ret = 0LL;
while(n)
{
ret += n % base;
ret *= 10LL;
n /= base;
}
return ret;
}
// Divisor
template<typename T>
vector<T> Divisor(T value)
{
vector<T> v;
for(int i = 1LL; i * i <= value; ++i)
{
if(value % i == 0)
{
v.push_back(i);
if(i * i != value) v.push_back(value / i);
}
}
return v;
}
//Primes
template<typename T>
bool prime(T n)
{
if (n % 2 == 0) return 0;
for (T i = 3; i*i <= n; i += 2)
{
if (n % i == 0) return 0;
}
return 1;
}
//Sieve
template<typename T>
void SieveOfEratostheness(T n)
{
bool prime[n+1];
memset(prime, true, sizeof(prime));
for (T p=2; p*p<=n; p++)
{
if (prime[p] == true)
{
for (int i=p*p; i<=n; i += p) prime[i] = false;
}
}
}
//Math
template<typename T>
ll sum(std::vector<T> &v)
{
return std::accumulate(all(v), 0);
}
template<typename T>
T minval(std::vector<T> &v)
{
return *std::min_element(all(v));
}
template<typename T>
T maxval(std::vector<T> &v)
{
return *std::max_element(all(v));
}
template<typename T>
void make_unique(std::vector<T> &v)
{
v.resize(unique(all(v)) - v.begin());
}
template<typename T>
void make_unique_sorted(std::vector<T> &v)
{
asort(v);
v.resize(unique(all(v)) - v.begin());
}
template<typename T>
int lowerBound(std::vector<T> &v, T x)
{
return v.back() < x ? -1 : lower_bound(all(v), x) - v.begin();
}
template<typename T>
int upperBound(std::vector<T> &v, T x)
{
return v.back() < x ? -1 : upper_bound(all(v), x) - v.begin();
}
double startTime = clock();
void showCurrentTime()
{
printf("%.6lf\n", ((double)clock() - startTime) / CLOCKS_PER_SEC);
}
//Graph
/*
std::vector<int> g[N], v, lev[N];
int par[N], vis[N];
void init(){
for(int i = 0; i < N; i++){
g[i].clear(); lev[i].clear();
par[i] = -1;
vis[i] = 0;
}
}
//DFS
void dfs(int u, int p = -1, int d = 0){
lev[d].pb(u);
par[u] = p;
for( auto v : g[u]){
if(p == v) continue;
dfs(v, u, d + 1);
}
}
*/
/*
Graph representation:
cin>>n>>ed;
vi ar[n+1];
while(ed--)
{cin>>a>>b)
ar[a].pb(b);
ar[b].pb(a); (if directed then comment out)
}
/*
//DFS
/*
bool vis[MX]={0};
int graph[MX];
void DFS(int v)
{
vis[v]=1;
rep(i,0,graph[v].size())//for(int child:graph[v])
{
int child=graph[v][i];
if(vis[child]==0)
{
DFS(child);
}
}
}
*/
//BFS
/*
vector<int> graph[10001];
bool vis[MX]={0};
int dist[MX];
int par[MX];
void BFS(int source)
{
queue<int> q;
vis[source]=1;
dist[source]=0;
q.push(source);
while(!q.empty())
{
int node=q.front();
q.pop();
rep(i,0,graph[node].size())
{
int next=graph[node][i];
if(vis[next]==0)
{
vis[next]=1;
dist[next]=dist[node]+1;
q.push(next);
par[next]=node;
}
}
}
}
*/
//Bit Hacks
ll MakeOneBit(ll decimalvalue, int pos)
{
return (decimalvalue | (1 << pos)); //make pos bit of value 1
}
ll MakeZeroBit(ll decimalvalue, int pos)
{
return (decimalvalue & ~(1 << pos)); //make pos of value bit 0
}
ll FlipBit(ll decimalvalue, int pos)
{
return (decimalvalue ^ (1 << pos)); //flip pos bit of value reverse
}
bool CheckBit(ll decimalvalue, int pos)
{
return (decimalvalue & (1 << pos));
}
int MSB(ll k)
{
return ( 63 - __builtin_clzll(k)); // leftmost set bit
}
int LSB(ll k)
{
return __builtin_ffs(k)-1 ; // right most set bit
}
int Totalset(ll decimalvalue)
{
return __builtin_popcountll(decimalvalue); //total 1 in value
}
int Totolnotset(ll decimalvalue)
{
return MSB(decimalvalue) - Totalset(decimalvalue) + 1; //total 0 in value
}
bool ispow2(int i)
{
return i&&(i&-i)==i;
}
ll nC2(ll n)
{
return (n * (n - 1)) / 2;
}
ll nc3(ll n)
{
return (n * (n - 1) * (n - 2)) / 6;
}
ll apsum(ll n, ll a = 1, ll d = 1)
{
return (n * (a + a + (n - 1) * d) ) / 2;
}
ll LCM(ll a, ll b)
{
return (a / __gcd(a, b) ) * b;
}
ll OnetoNsum(ll n)
{
return (n*(n+1))/2;
}
//cout<<setprecision(decimal)<<value<<endl;
//vector<vector<int>> grid(n, vector<int>(n, 0)); 2D Array
int main()
{
ll tc;
cin>>n;
vll v;
rep(i,0,n)
{
ll d; cin>>d; v.pb(d);
}
ll sign=1,sum=0,ans1=0,ans2=0;
rep(i,0,n)
{
sum+=v[i];
if(sign*sum<=0) ans1+=labs(sign-sum),sum=sign;
sign*=-1;
}
sign=-1,sum=0;
rep(i,0,n)
{
sum+=v[i];
if(sign*sum<=0) ans2+=labs(sign-sum),sum=sign;
sign*=-1;
}
cout<<min(ans1,ans2)<<endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int N;
cin >> N;
vector<long long> a(N);
for (int i = 0; i < N; i++) {
cin >> a[i];
}
long long sum = 0;
long long cnt = 0;
for (int i = 0; i < N; i++) {
if (sum + a[i] == 0) {
if (sum < 0) {
cnt++;
a[i]++;
} else if (sum > 0) {
cnt++;
a[i]--;
} else {
if (a[i + 1] > 0)
a[i]++;
else if (a[i + 1] < 0)
a[i]--;
else
a[i]++;
cnt++;
}
} else if (sum < 0 && sum + a[i] < 0) {
long long diff = abs(sum + a[i]) + 1;
cnt += diff;
a[i] += diff;
} else if (sum > 0 && sum + a[i] > 0) {
long long diff = abs(sum + a[i]) + 1;
cnt += diff;
a[i] -= diff;
}
sum += a[i];
}
for (int i = 0; i < N; i++) {
cerr << a[i] << " ";
}
cerr << endl;
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
long long A[N];
for (int i = 0; i < N; i++) cin >> A[i];
bool loop = true;
long long delta = 0;
while (loop) {
int sum[N];
bool sign = (A[0] > 0);
sum[0] = A[0];
loop = false;
for (int i = 1; i < N; i++) {
sum[i] = sum[i - 1] + A[i];
sign = !sign;
if (sign && sum[i] <= 0) {
long long dd = 1 - sum[i];
delta += abs(dd);
A[i] = A[i] + dd;
sum[i] = 1;
loop = true;
} else if (!sign && sum[i] >= 0) {
long long dd = -1 - sum[i];
delta += abs(dd);
A[i] = A[i] + dd;
sum[i] = -1;
loop = true;
}
}
}
cout << delta << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
input = sys.stdin.readline
n=int(input())
a=list(map(int,input().split()))
v=[]
for s in (1,-1):
x=a[::]
hugou=[s*(-1)**i sor i in range(n)]
total=0
for i in range(n):
if (total+x[i])*hugou[i]<=0:
x[i]=hugou[i]-total
total+=xs[i]
v.append(sum(absa[i]-x[i])for i in range(n))
print(min(v))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, i, count = 0;
double a[100001], sum;
scanf("%d", &n);
for (i = 0; i < n; i++) {
scanf("%lf", &a[i]);
}
if (a[0] == 0) {
if (a[1] >= 0)
a[0]--;
else
a[0]++;
count++;
}
sum = a[0];
for (i = 1; i < n; i++) {
if (a[i] == 0) {
if (sum > 0) {
while (sum + a[i] >= 0) {
a[i]--;
count++;
}
} else {
while (sum + a[i] <= 0) {
a[i]++;
count++;
}
}
} else if (sum > 0) {
if (sum + a[i] >= 0) {
count += sum + 1 + a[i];
a[i] = -sum - 1;
}
} else if (sum < 0) {
while (sum + a[i] <= 0) {
count += -sum + 1 - a[i];
a[i] = -sum + 1;
}
}
sum += a[i];
}
printf("%d\n", count);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
int ans = 0, sum = 0;
vector<int> a(N);
for (int i = 0; i < N; i++) cin >> a[i];
if (a[0] > 0) {
for (int i = 0, tmp = 1; i < N; i++, tmp *= -1) {
if (a[i] * a[i + 1] > 0) {
sum += a[i];
ans += abs(sum - tmp);
sum = tmp;
}
}
sum = 0;
} else if (a[0] < 0) {
for (int i = 0, tmp = -1; i < N; i++, tmp *= -1) {
if (a[i] * a[i + 1] > 0) {
sum += a[i];
ans += abs(sum - tmp);
sum = tmp;
}
}
} else {
a[0] += 1;
ans = 1;
for (int i = 0, tmp = 1; i < N; i++, tmp *= -1) {
if (a[i] * a[i + 1] > 0) {
sum += a[i];
ans += abs(sum - tmp);
sum = tmp;
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
int sum = 0, count = 0;
cin >> n;
vector<int> a(n, 0);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
sum = a[0];
for (int i = 1; i < n; i++) {
if (sum < 0) {
sum += a[i];
if (sum < 0) {
count += abs(sum) + 1;
}
continue;
} else if (sum > 0) {
sum += a[i];
if (sum > 0) {
count += abs(sum) + 1;
}
continue;
}
}
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename A, typename B>
string to_string(pair<A, B> p);
template <typename A, typename B, typename C>
string to_string(tuple<A, B, C> p);
template <typename A, typename B, typename C, typename D>
string to_string(tuple<A, B, C, D> p);
string to_string(const string& s) { return '"' + s + '"'; }
string to_string(const char* s) { return to_string((string)s); }
string to_string(bool b) { return (b ? "true" : "false"); }
string to_string(vector<bool> v) {
bool first = true;
string res = "{";
for (int i = 0; i < static_cast<int>(v.size()); i++) {
if (!first) {
res += ", ";
}
first = false;
res += to_string(v[i]);
}
res += "}";
return res;
}
template <size_t N>
string to_string(bitset<N> v) {
string res = "";
for (size_t i = 0; i < N; i++) {
res += static_cast<char>('0' + v[i]);
}
return res;
}
template <typename A>
string to_string(A v) {
bool first = true;
string res = "{";
for (const auto& x : v) {
if (!first) {
res += ", ";
}
first = false;
res += to_string(x);
}
res += "}";
return res;
}
template <typename A, typename B>
string to_string(pair<A, B> p) {
return "(" + to_string(p.first) + ", " + to_string(p.second) + ")";
}
template <typename A, typename B, typename C>
string to_string(tuple<A, B, C> p) {
return "(" + to_string(get<0>(p)) + ", " + to_string(get<1>(p)) + ", " +
to_string(get<2>(p)) + ")";
}
template <typename A, typename B, typename C, typename D>
string to_string(tuple<A, B, C, D> p) {
return "(" + to_string(get<0>(p)) + ", " + to_string(get<1>(p)) + ", " +
to_string(get<2>(p)) + ", " + to_string(get<3>(p)) + ")";
}
void debug_out() { cerr << endl; }
template <typename Head, typename... Tail>
void debug_out(Head H, Tail... T) {
cerr << " " << to_string(H);
debug_out(T...);
}
int main() {
int n;
cin >> n;
int sump = 1;
int sumn = -1;
int ansp = 0;
int ansn = 0;
for (int i = 0; i < n; i++) {
int x;
cin >> x;
if (sump > 0) {
sump += x;
if (sump >= 0) {
ansp += sump + 1;
sump = -1;
}
} else {
sump += x;
if (sump <= 0) {
ansp += abs(sump) + 1;
sump = 1;
}
}
if (sumn > 0) {
sumn += x;
if (sumn >= 0) {
ansn += sumn + 1;
sumn = -1;
}
} else {
sumn += x;
if (sumn <= 0) {
ansn += abs(sumn) + 1;
sumn = 1;
}
}
}
cout << min(ansn, ansp) - 1;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | // AtCoder-Template.cpp : このファイルには 'main' 関数が含まれています。プログラム実行の開始と終了がそこで行われます。
//
#include <iostream>
#include <algorithm>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <vector>
using namespace std;
using ll = long long;
#define fst first
#define snd second
#define FOR(i,N) for(auto i=0; i<N; ++i)
#define FORREV(i,N,_cnt) for(auto i=N-1,cnt=_cnt; cnt > 0; --i, --cnt)
#define ALL(x) x.begin(), x.end()
/* clang-format off */
template <class T, size_t D> struct _vec { using type = vector<typename _vec<T, D - 1>::type>; };
template <class T> struct _vec<T, 0> { using type = T; };
template <class T, size_t D> using vec = typename _vec<T, D>::type;
template <class T> vector<T> make_v(size_t size, const T& init) { return vector<T>(size, init); }
template <class... Ts> auto make_v(size_t size, Ts... rest) { return vector<decltype(make_v(rest...))>(size, make_v(rest...)); }
template <class T> inline void chmin(T& a, const T& b) { if (b < a) a = b; }
template <class T> inline void chmax(T& a, const T& b) { if (b > a) a = b; }
/* clang-format on */
int main() {
#ifdef DEBUG
ifstream ifs("in.txt");
cin.rdbuf(ifs.rdbuf());
#endif
ll N; cin >> N; vector<ll> A(N); FOR(i, N) cin >> A[i];
// RUISEKI
vector<ll> Rui(N); Rui[0] = A[0];
ll ans = 0;
FOR(i, N - 1) {
Rui[i + 1] += Rui[i] + A[i + 1];
if (i + 1 >= 1 and Rui[i+1] * Rui[i] >= 0) {
if (Rui[i + 1] * Rui[i] == 0 and Rui[i] > 0) {
ans += 1; Rui[i + 1] = -1;
}
else if (Rui[i + 1] * Rui[i] == 0 and Rui[i] < 0) {
ans += 1; Rui[i + 1] = 1;
}
else { // 両方とも同じ符号になった場合
if (Rui[i + 1] > 0) {
ans += Rui[i + 1] + 1;
Rui[i + 1] = -1;
}
else {
ans += - Rui[i + 1] + 1;
Rui[i + 1] = 1;
}
}
}
}
cout << ans << endl;
//cout << 0 << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
input = sys.stdin.readline
N = int(input())
a = list(map(int, input().split()))
ans1, ans2 = 0, 0
f = a[0]
if f <= 0:
f = 1
ans1 += 1 - a[0]
for i in range(1, N):
if f * (f + a[i]) < 0:
f += a[i]
continue
ans1 += abs(f + a[i]) + 1
if f > 0:
f = -1
else:
f = 1
f = -a[0]
if f >= 0:
f = -1
ans2 += 1 - a[i]
for i in range(1, N):
if f * (f + a[i]) < 0:
f += a[i]
continue
ans2 += abs(f + a[i]) + 1
if f > 0:
f = -1
else:
f = 1
print(min(ans1, ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<iostream>
#include<string>
#include<vector>
#include<stdio.h>
#include<algorithm>
#include<math.h>
#include<numeric>
#include<iomanip>
#include<deque>
#include<tuple>
#include<queue>
#include<map>
#include <cstdint>
#include <boost/multiprecision/cpp_int.hpp>
#define rep(i, n) for(int i = 0; i < (int)(n); i++)
#define FOR(i,a,b) for(int i=(a);i<(b);i++)
#define vi vector<int>
#define all(x) (x).begin(),(x).end()
#define Endl endl
#define F first
#define S second
namespace mp = boost::multiprecision;
using cpp_int = mp::cpp_int;
using ll = long long;
using namespace std;
int operation(int n,ll cnt,vector<ll>sum,vector<ll> a) {
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + a[i];
if (sum[i - 1] > 0) {
if (sum[i] >= 0) {
cnt += sum[i] + 1;
sum[i] = -1;
}
}
else if (sum[i - 1] < 0) {
if (sum[i] <= 0) {
cnt += abs(sum[i]) + 1;
sum[i] = 1;
}
}
}
return cnt;
}
int main() {
int n;
cin >> n;
vector<ll>sum(n),a(n),sum2(n);
rep(i, n) {
cin >> a[i];
}
ll count = 0;
ll count2 = 0;
sum[0] = a[0];
if (sum[0]>0) {
sum2[0] = -1;
count2 += sum[0] + 1;
}
else if (sum[0] < 0) {
sum2[0] = 1;
count2 += abs(sum[0])+1;
}
else {
sum[0] = 1;
count++;
sum2[0] = -1;
count2++;
}
cout<<min(operation(n, count, sum, a)
,operation(n, count2, sum2, a))<< endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
int a[100001];
int b[100001];
long long s[100001];
long long ans = 0;
int main() {
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
s[0] = a[0];
if (s[0] == 0) {
a[0] = 1;
s[0] = 1;
for (int i = 0; i < n - 1; i++) {
int m = s[i] + a[i + 1];
if (s[i] * m >= 0) {
if (s[i] < 0) {
s[i + 1] = 1;
int t = a[i + 1];
a[i + 1] = s[i + 1] - s[i];
ans += (a[i + 1] - t);
} else if (s[i] > 0) {
s[i + 1] = -1;
int t = a[i + 1];
a[i + 1] = s[i + 1] - s[i];
ans += (t - a[i + 1]);
}
}
}
long long ans2 = 0;
a[0] = -1;
s[0] = -1;
for (int i = 0; i < n - 1; i++) {
int m = s[i] + a[i + 1];
if (s[i] * m >= 0) {
if (s[i] < 0) {
s[i + 1] = 1;
int t = a[i + 1];
a[i + 1] = s[i + 1] - s[i];
ans2 += (a[i + 1] - t);
} else if (s[i] > 0) {
s[i + 1] = -1;
int t = a[i + 1];
a[i + 1] = s[i + 1] - s[i];
ans2 += (t - a[i + 1]);
}
}
}
cout << min(ans, ans2) << endl;
return 0;
} else {
for (int i = 0; i < n - 1; i++) {
int m = s[i] + a[i + 1];
if (s[i] * m >= 0) {
if (s[i] < 0) {
s[i + 1] = 1;
int t = a[i + 1];
a[i + 1] = s[i + 1] - s[i];
ans += (a[i + 1] - t);
} else if (s[i] > 0) {
s[i + 1] = -1;
int t = a[i + 1];
a[i + 1] = s[i + 1] - s[i];
ans += (t - a[i + 1]);
}
} else {
s[i + 1] = s[i] + a[i + 1];
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
from itertools import accumulate
read = sys.stdin.read
readline = sys.stdin.readline
readlines = sys.stdin.readlines
sys.setrecursionlimit(10 ** 9)
INF = 1 << 60
MOD = 1000000007
def solve(A):
ans = 0
s = A[0]
for a in A[1:]:
prev, s = s, s + a
if prev > 0 and s >= 0:
ans += s + 1
s = -1
if prev < 0 and s <= 0:
ans += -s + 1
s = 1
return ans
def main():
N, *A = map(int, read().split())
a0 = A[0]
ans1 = 0
if a0 <= 0:
ans1 = -a0 + 1
A[0] = 1
ans1 = solve(A)
A[0] = a0
ans2 = 0
if a0 >= 0:
ans2 = a0 + 1
A[0] = -1
ans2 += solve(A)
print(min(ans1, ans2))
return
if __name__ == '__main__':
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
A = a[:]
count_plus=0
count_minus=0
x = 0
y = 0
for i in range(n):
if i%2==0:
x+=a[i]
if x<0:
count_plus+=-1*x+1
a[i]+=-1*x+1
x+=-1*x+1
else:
x+=a[i]
if x>0:
count_plus+=x+1
a[i]+=-1*x-1
x+=-1*x-1
for i in range(n):
if i%2==0:
y+=A[i]
if y>0:
count_minus+=y+1
A[i]+=-1*y-1
y+=-1*y-1
else:
y+=A[i]
if y<0:
count_minus+=-1*y+1
A[i]+=-1*y+1
y+=-1*y+1
if x==0:
count_plus+=1
if y==0:
count_minus+=1
print(min(count_plus,count_minus)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | // ABC 59 C
#include <bits/stdc++.h>
#define rep(i,n) for (int i = 0; i < n; ++i)
using namespace std;
typedef long long ll;
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; }
const long long INF = 1LL<<60;
ll foo(const vector<ll>& a, bool oddPositive)
{
size_t n = a.size();
vector<ll> b1(n);
ll ans = 0;
b1[0] = a[0];
if (oddPositive && a[0] <= 0) {
b1[0] = 1;
ans += abs(a[0] + 1);
}
if (!oddPositive && a[0] => 0) {
b1[0] = -1;
ans += abs(a[0] + 1);
}
for (int i = 1; i < n; i++) {
if ((b1[i-1] + a[i]) * b1[i-1] < 0) {
b1[i] = b1[i-1] + a[i];
continue;
}
if (a[i] + b1[i-1] == 0) {
ans += 1;
} else if (b1[i-1] * a[i] > 0) {
// a[i], b[i-1] の符号が同じ
ans += abs(a[i]) + abs(b1[i-1]) + 1;
} else {
// a[i], b[i-1] の符号が逆
ans += abs(b1[i-1]) - abs(a[i]) + 1;
}
b1[i] = b1[i-1] < 0 ? 1 : -1;
}
return ans;
}
int main() {
int n;
cin >> n;
vector<ll> a(n);
rep(i, n) {
ll tmp = 0;
cin >> tmp;
a[i] = tmp;
}
ll ans1 = foo(a, true); // 奇数番目が正の数
ll ans2 = foo(a, false); // 奇数番目が負の数
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
count = 0
sum_i = a[0]
for i in range(1, n):
if sum_i < 0:
sum_i += a[i]
if sum_i <= 0:
count += 1 - sum_i
sum_i = 1
elif sum_i > 0:
sum_i += a[i]
if sum_i >= 0:
count += sum_i + 1
sum_i = -1
print(count)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
ans = 0
if a[0] > 0:
op = "+"
elif a[0] < 0:
op = "-"
elif a[0] == 0:
ans += 1
if a[1] > 0:
a[0] = -1
op = "-"
else:
a[0] = 1
op = "+"
total = a[0]
for i in range(1, n):
if (total+a[i]) > 0 and op == "+":
ans += abs((-1 - total) - a[i])
total = -1
op = "-"
elif (total+a[i]) < 0 and op == "-":
ans += abs((1 - total) - a[i])
total = 1
op = "+"
elif total+a[i] == 0:
ans += 1
if op == "+":
total = -1
op = "-"
else:
total = 1
op = "+"
else:
total += a[i]
if op == "+":
op = "-"
else:
op = "+"
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
ios::sync_with_stdio(false);
std::cin.tie(nullptr);
ll n;
cin >> n;
vector<ll> a(n);
for (ll i = 0; i < n; i++) cin >> a[i];
vector<ll> sums(n + 1, 0);
for (ll i = 0; i < n; i++) sums[i] = sums[i] + a[i];
ll ans = 0;
for (ll i = 1; i <= n; i++) {
if (a[i + 1] * a[i] >= 0) {
ans += (a[i + 1] + 2);
a[i + 1] -= (a[i + 1] + 2);
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
a_1 = a
ans = 0
ans_2 = 0
o = 0
for i in range(n):
if i == 0:
if a[i] == 0:
f = "+"
a[i] = 1
elif a[0] > 0:
f = "+"
elif a[0] < 0:
f = "-"
else:
o += a[i-1]
if f == "+":
if a[i] + o > 0:
c = -1 - o
ans += abs(c - a[i])
a[i] = c
f = "-"
else:
if a[i] + o == 0:
a[i] -= 1
ans += 1
f = "-"
elif f == "-":
if a[i] + o < 0:
c = 1 - o
ans += abs(c - a[i])
a[i] = c
f = "+"
else:
if a[i] + o == 0:
a[i] += 1
ans += 1
f = "+"
a = a_1
for i in range(n):
if i == 0:
if a[i] == 0:
f = "+"
a[i] = 1
elif a[0] > 0:
f = "-"
c = -1 - a[0]
ans_2 += abs(c - a[0])
a[i] = c
elif a[0] < 0:
c = 1 - a[0]
ans_2 += abs(c - a[0])
a[i] = c
f = "+"
else:
o += a[i-1]
if f == "+":
if a[i] + o > 0:
c = -1 - o
ans_2 += abs(c - a[i])
a[i] = c
f = "-"
else:
if a[i] + o == 0:
a[i] -= 1
ans += 1
f = "-"
elif f == "-":
if a[i] + o < 0:
c = 1 - o
ans_2 += abs(c - a[i])
a[i] = c
f = "+"
else:
if a[i] + o == 0:
a[i] += 1
ans += 1
f = "+"
#print(a)
print(min(ans,ans_2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
vector<long long> cumulative;
void reCalc(int index, long long value) {
for (int i = index; i < n; ++i) cumulative[i] -= value;
}
int main() {
cin >> n;
vector<long long> input;
for (int i = 0; i < n; ++i) {
long long a;
cin >> a;
input.push_back(a);
}
auto itr = input.begin();
for (int i = 0; i < n; ++i)
cumulative.push_back(accumulate(itr, itr + i + 1, 0));
int ans = 0;
bool isPositive = cumulative[0] > 0;
for (int i = 1; i < n; ++i) {
if (isPositive) {
if (cumulative[i] > 0) {
ans += cumulative[i] + 1;
reCalc(i, cumulative[i] + 1);
} else if (cumulative[i] == 0) {
++ans;
reCalc(i, 1);
}
} else {
if (cumulative[i] < 0) {
long long diff = (0 - cumulative[i]) + 1;
ans += diff;
reCalc(i, -diff);
} else if (cumulative[i] == 0) {
++ans;
reCalc(i, -1);
}
}
isPositive = cumulative[i] > 0;
}
if (accumulate(cumulative.begin(), cumulative.end(), 0) == 0)
cout << 1 << endl;
else
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long long sum = a[0];
long long cnt = 0;
if (sum == 0) {
sum = (a[1] > 0 ? -1 : 1);
cnt++;
}
for (int i = 1; i < n; i++) {
long long nsum = sum + a[i];
if (sum > 0 && nsum < 0 || sum < 0 && nsum > 0) {
sum = nsum;
continue;
}
if (nsum == 0) {
sum = (sum > 0 ? -1 : 1);
cnt++;
} else {
if (sum > 0 && nsum > 0)
sum = -1;
else
sum = 1;
cnt += abs(nsum) + 1;
}
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace AtCoder
{
class Code3
{
static void Main(string[] args)
{
string s1 = Console.ReadLine();
string s2 = Console.ReadLine();
Console.WriteLine(funcMain(s1,s2));
}
static private string funcMain(string arg1, string arg2)
{
long ret = 0;
long ret1 = 0;
long ret2 = 0;
long sum = 0;
short sign = 0;
for (int i = 0; i <= 1; i++) // 0はそのまま、1は逆符号
{
sum = ret = 0;
foreach (string buf in arg2.Split())
{
if (sum == 0)
{
sum = long.Parse(buf);
if (sum >= 0)
sign = 1;
else
sign = -1;
if (i == 1)
{
ret += Math.Abs(sum) + 1;
sum = sign * -1;
sign *= -1;
}
}
else
{
sum += long.Parse(buf);
if ((sum * sign) >= 0)
{
ret += Math.Abs(sum) + 1;
sum = sign * -1;
}
sign *= -1;
}
}
if (i == 0)
ret1 = ret;
else
ret2 = ret;
}
ret = Math.Min(ret1, ret2);
return ret.ToString();
}
// 何のパターンを漏らしているのかがわからぬ・・・・・・
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(){
int n;
cin>>n;
long long A[n]={};
long long ans=0;
for(int i=0;i<n;i++){
cin>>A[i];
}
for(int i=1;i<n;i++){
if(A[i-1]*A[i]>0){
ans+=abs(A[i-1]+A[i])+1;
A[i]=pow(-1,i+1);
}
else if((A[i-1]+A[i])*A[i]>0){
ans+=abs(A[i]+A[i-1]+1);
A[i]=pow(-1,i+1);
}
else if(A[i-1]+A[i]==0){
ans+=1;
A[i]=pow(-1,i+1);
}
}
cout<<ans<<endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n;
cin >> n;
long long int a[n], sum = 0, count = 0;
for (int i = 0; i < n; i++) cin >> a[i];
for (int i = 0; i < n; i++) {
sum += a[i];
if (sum == 0) {
if (a[i + 1] > 0) {
a[i]--;
count++;
} else if (a[i + 1] < 0) {
a[i]++;
count++;
} else if (a[i + 1] == 0) {
a[i]++;
a[i + 1] -= 2;
count += 3;
}
continue;
} else if (sum > 0) {
if (sum + a[i + 1] > 0) {
while (sum + a[i + 1] >= 0) {
a[i + 1]--;
count++;
}
continue;
}
} else if (sum < 0) {
if (sum + a[i + 1] < 0) {
while (sum + a[i + 1] <= 0) {
a[i + 1]++;
count++;
}
}
}
}
cout << count;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
ans1 = 0
ans2 = 0
cur1 = a[0]
cur2 = a[0]
for i in range(1, n):
cun = a[i]
# iが偶数のときプラス
if i % 2 == 0:
# プラスじゃないとき
if a[i] + cur1 <= 0:
ans1 += -(a[i] + cur1) + 1
cun = -cur1 + 1
# iが奇数のときマイナス
else:
# マイナスじゃないとき
if a[i] + cur1 >= 0:
ans1 += a[i] + cur1 + 1
cun = -cur1 - 1
cur1 += cun
for i in range(1, n):
cun = a[i]
# iが偶数のときマイナス
if i % 2 == 0:
# マイナスじゃないとき
if a[i] + cur2 >= 0:
ans2 += a[i] + cur2 + 1
cun = -cur2 - 1
# iが奇数のときプラス
else:
# プラスじゃないとき
if a[i] + cur2 <= 0:
ans2 += -(a[i] + cur2) + 1
cun = -cur2 + 1
cur2 += cun
print(min(ans1, ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using static System.Console;
using static System.Math;
public class Hello{
public static void Main(){
int kazu = int.Parse(ReadLine());
string[] number = ReadLine().Split(' ');
long wa = 0;
long count1 = 0;
long ans = 0;
for(int i=0;i<kazu;i++){
long numi = int.Parse(number[i]);
long temp = wa + numi;
if(i%2==0){
if(temp > 0){
wa = temp;
}else{
count1 += Abs(temp) +1;
wa = 1;
}
}else{
if(temp < 0){
wa = temp;
}else{
count1 += Abs(temp) +1;
wa = -1;
}
}
}
long count2 = 0;
for(int i=0;i<kazu;i++){
long numi = int.Parse(number[i]);
long temp = wa + numi;
if(i%2==1){
if(temp > 0){
wa = temp;
}else{
count2 += Abs(temp) +1;
wa = 1;
}
}else{
if(temp < 0){
wa = temp;
}else{
count2 += Abs(temp) +1;
wa = -1;
}
}
}
WriteLine(Min(count1,count2));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
vector<long long> A;
int j;
bool is_plus;
long long ans = 0;
long long sum = 0;
cin >> n;
for (int i = 0; i < n; i++) {
long long a;
cin >> a;
A.push_back(a);
}
for (int i = 0; i < n; i++) {
if (!i) {
if (A[i] == 0) {
if (A[i + 1] >= 0) {
sum = -1;
} else {
sum = 1;
}
ans++;
} else {
sum = A[i];
}
continue;
}
bool is_plus = sum > 0;
sum += A[i];
if (sum == 0) {
ans += 1;
sum = is_plus ? -1 : 1;
} else if (is_plus == (sum > 0)) {
ans += abs(sum) + 1;
sum = is_plus ? -1 : 1;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
N = int(input())
a_s = input().split()
for i in range(N):
a_s[i] = int(a_s[i])
a_s = np.array(a_s)
#sum = 1,-1,1, ...
ans1 = 0
sum0 = 0
for i ,a in enumerate(a_s):
sum1 = sum0 + a
if i==0:
if sum1>0:
pass
else:
ans1 += abs(1 - sum1)
sum1 = 1
elif i%2==0:
if sum1*sum0<0:
pass
else:
ans1 += abs(1 - sum1)
sum1 = 1
else:
if sum1*sum0<0:
pass
else:
ans1 += abs(-1 - sum1)
sum1 = -1
sum0 = sum1
#sum = -1,1,-1, ...
ans2 = 0
sum0 = 0
for i ,a in enumerate(a_s):
sum2 = sum0 + a
if i==0:
if sum2<0:
pass
else:
ans2 += abs(-1 - sum2)
sum2 = -1
if i%2==0:
if sum2*sum0<0:
pass
else:
ans2 += abs(-1 - sum2)
sum2 = -1
else:
if sum2*sum0<0:
pass
else:
ans2 += abs(1 - sum2)
sum2 = 1
sum0 = sum2
ans = min(ans1,ans2)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
cnt = 0
sum = [0]*n
sum[0] = a[0]
for i in range(1,n):
sum[i] = sum[i-1]+a[i]
if sum[i]*sum[i-1]<0:
continue
if sum[i-1]*a[i]<0:
cnt += abs(sum[i-1])-abs(a[i])+1
sum[i] = -sum[i-1]//abs(sum[i-1])
else:
cnt += abs(sum[i-1])+abs(a[i])+1
sum[i] = -sum[i-1]//abs(sum[i-1])
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(i) for i in input().split()]
s0 = a[0]
count=0
if a[0]==0:
s0+=1
count+=1
for i in range(1,n):
s1 = s0+a[i]
if s0*s1>=0:
if s1>0:
a[i]-=(s1+1)
count+=(s1+1)
elif s1<0:
a[i]+=(s1+1)
count+=(s1+1)
elif s1==0:
if s0>0:
a[i]-=1
count+=1
elif s0<0:
a[i]+=1
count+=1
s0 += a[i]
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
long long sum = 0;
long long tmp = 0;
long long ans = 0;
int sign = 1;
int start = 0;
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
if (a.at(0) == 0) {
for (int i = 0; i < n; i++) {
if (a.at(i) != 0) {
start = i;
sign = -a.at(i) / abs(a.at(i));
ans += i;
break;
}
}
} else {
sign = -a.at(0) / abs(a.at(0));
}
for (int i = start; i < n; i++) {
sum += a.at(i);
if (sum == 0) {
ans += 1;
sum = -1 * sign;
} else if (sign == sum / abs(sum)) {
ans += abs(-1 * sign - sum);
sum = -1 * sign;
}
sign *= -1;
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
int ans1 = 0;
int sum = 0;
for (int i = 0; i < n; i++) {
int cur = a[i];
if (i % 2) {
if (sum + cur >= 0) cur = -(sum + 1);
} else {
if (sum + cur <= 0) cur = -sum + 1;
}
sum += cur;
ans1 += abs(a[i] - cur);
}
int ans2 = 0;
sum = 0;
for (int i = 0; i < n; i++) {
int cur = a[i];
if (i % 2 == 0) {
if (sum + cur >= 0) cur = -(sum + 1);
} else {
if (sum + cur <= 0) cur = -sum + 1;
}
sum += cur;
ans2 += abs(a[i] - cur);
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(i) for i in input().split()]
s = []
sign = []
debug_total = [0 for i in range(n)]
ans = 0
if a[0]==0:
if a[1]<0:
a[0]=1
else:
a[0]=-1
ans+=1
if a[0]<0:
sign.append(-1)
else:
sign.append(1)
total = a[0]
debug_total[0]=total
op = 0
#print('total_in: ',total)
#print('ans_in: ',ans)
for i in range(1,n):
total+=a[i]
if total==0:
sign.append(sign[i-1]*-1)
total += sign[i-1]*-1
a[i] += sign[i-1]*-1
ans += 1
elif total<0:
sign.append(-1)
else:
sign.append(1)
if sign[i]==sign[i-1]:
op = abs(total)+1
if total+op==0 or total-op==0:
op+=1
if sign[i]==1:
total -= op
a[i] -= op
else:
total += op
a[i] += op
ans += op
sign[i] *= -1
debug_total[i] = total
#print('==========================')
#print('i: ',i)
#print('total: ',total)
#print('ans: ',ans)
#print('a: ',a)
#print('total_list: ', debug_total)
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import copy
n = int(input())
a = [int(i) for i in input().split()]
b=a.copy()
s0p = a[0]
s0n = b[0]
countp = 0
countn = 0
if a.count(0)==n:
print(2*n-1)
exit()
if s0p<=0:
s0p+=(abs(s0p)+1)
countp+=abs(s0p)
print(countp,abs(s0p)+1,s0p,a[0])
if s0n>=0:
s0n-=(abs(s0n)+1)
countn+=abs(s0n)
for i in range(1,n):
s1 = s0p+a[i]
if s0p*s1>=0:
if s1>0:
a[i]-=(abs(s1)+1)
countp+=(abs(s1)+1)
elif s1<0:
a[i]+=(abs(s1)+1)
countp+=(abs(s1)+1)
elif s1==0:
if s0p>0:
a[i]-=1
countp+=1
elif s0p<0:
a[i]+=1
countp+=1
s0p += a[i]
for i in range(1,n):
s1 = s0n+b[i]
if s0n*s1>=0:
if s1>0:
b[i]-=(abs(s1)+1)
countn+=(abs(s1)+1)
elif s1<0:
b[i]+=(abs(s1)+1)
countn+=(abs(s1)+1)
elif s1==0:
if s0n>0:
b[i]-=1
countn+=1
elif s0n<0:
b[i]+=1
countn+=1
s0n += b[i]
print(countp if countp<=countn else(countn))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
A=list(map(int,input().split()))
count=0
tmp=A[1]-A[0]
if tmp==0:
count+=abs(-1-(A[1]+A[0]))
tmp=-1
for i in range(2,n):
if tmp<0:
if tmp+A[i]<=0:
count+= abs(1-(A[i]+tmp))
tmp=1
else:
tmp+=A[i]
continue
else:
if tmp+A[i]>=0:
count+=abs(-1-(A[i]+tmp))
tmp=-1
else:
tmp+=A[i]
continue
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int N = sc.nextInt();
int[] A = new int[N];
for (int i = 0; i < N; ++i) {
A[i] = sc.nextInt();
}
sc.close();
int sum1 = 0;
int sum2 = 0;
int ans1 = 0;
int ans2 = 0;
for (int i = 0; i < N; ++i) {
sum1 += A[i];
if (i % 2 == 0 && sum1 >= 0) {
ans1 += sum1 +1;
sum1 = -1;
} else if (i % 2 != 0 && sum1 <= 0) {
ans1 += Math.abs(sum1) + 1;
sum1 = 1;
}
}
for (int i = 0; i < N; ++i) {
sum2 += A[i];
if (i % 2 == 0 && sum2 <= 0) {
ans2 += Math.abs(sum1) +1;
sum2 = 1;
} else if (i % 2 != 0 && sum2 >= 0) {
ans2 += sum2 + 1;
sum2 = -1;
}
}
System.out.println(Math.min(ans1, ans2));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using namespace std;
int main() {
long long n;
cin >> n;
vector<long long> a(n);
vector<long long> sum(n, 0);
for (long long i = 0; i < (n); i++) {
cin >> a[i];
if (i == 0)
sum[i] = a[i];
else
sum[i] = a[i] + sum[i - 1];
}
long long minus = 0;
long long plus = 0;
long long s = 0;
for (long long i = 0; i < (n); i++) {
bool p = i % 2 == 1;
bool q = sum[i] + s > 0;
if (p != q) {
if (sum[i] + s == 0) {
minus++;
if (p)
s++;
else
s--;
} else {
minus += abs(sum[i] + s) + 1;
if (p)
s += abs(sum[i] + s) + 1;
else
s -= abs(sum[i] + s) + 1;
}
}
}
s = 0;
for (long long i = 0; i < (n); i++) {
bool p = i % 2 == 0;
bool q = sum[i] + s > 0;
if (p != q) {
if (sum[i] + s == 0) {
plus++;
if (p)
s++;
else
s--;
} else {
plus += abs(sum[i] + s) + 1;
if (p)
s += abs(sum[i] + s) + 1;
else
s -= abs(sum[i] + s) + 1;
}
}
}
cout << min(minus, plus) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const double PI = acos(-1);
const double EPS = 1e-15;
long long INF = (long long)1E17;
long mod(long a) {
long long c = a % (long long)(1E9 + 7);
if (c >= 0) return c;
return c + (long long)(1E9 + 7);
}
using namespace std;
bool prime_(int n) {
if (n == 1) {
return false;
} else if (n == 2) {
return true;
} else {
for (int i = 2; i <= sqrt(n); i++) {
if (n % i == 0) {
return false;
}
}
return true;
}
}
long long gcd_(long long a, long long b) {
if (a < b) {
swap(a, b);
}
if (a % b == 0) {
return b;
} else {
return gcd_(b, a % b);
}
}
long long lcm_(long long x, long long y) { return (x / gcd_(x, y)) * y; }
class UnionFind {
public:
vector<int> Parent;
UnionFind(int N) { Parent = vector<int>(N, -1); }
int root(int A) {
if (Parent[A] < 0) return A;
return Parent[A] = root(Parent[A]);
}
int size(int A) { return -Parent[root(A)]; }
bool connect(int A, int B) {
A = root(A);
B = root(B);
if (A == B) {
return false;
}
if (size(A) < size(B)) swap(A, B);
Parent[A] += Parent[B];
Parent[B] = A;
return true;
}
};
int main() {
int n;
long long a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long s = 0;
long long ans = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0) {
s += a[i];
if (s > 0) continue;
ans += 1 - s;
s = 1;
} else {
s += a[i];
if (s < 0) continue;
ans += s + 1;
s = -1;
}
}
s = 0;
long long temp = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0) {
s += a[i];
if (s < 0) continue;
temp += s + 1;
s = -1;
} else {
s += a[i];
if (s > 0) continue;
temp += 1 - s;
s = 1;
}
}
ans = min(ans, temp);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long func(long long a[], int n) {
long long cnt = 0;
long long s = 0;
for (int i = 1; i < n; i++) {
s += a[i - 1];
long long t = 0, u;
if (s > 0) {
u = (-1) * s - 1;
if (u < a[i]) {
t = a[i] - u;
a[i] = u;
}
} else {
u = (-1) * s + 1;
if (u > a[i]) {
t = u - a[i];
a[i] = u;
}
}
cnt += t;
}
return cnt;
}
int main() {
int n;
cin >> n;
long long a[n];
for (int i = 0; i < (n); i++) cin >> a[i];
long long cnt1 = func(a, n);
int d;
if (a[0] > 0) {
d = a[0] + 1;
a[0] = -1;
} else {
d = (-1) * a[0] + 1;
a[0] = 1;
}
long long cnt2 = func(a, n);
cout << min(cnt1, cnt1) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main{
public static void main(String[] args){
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int[] a_ = new int[n];
for(int i = 0; i < n; i++){
a_[i] = scan.nextInt();
}
int count = 0;
int[] sum_ = new int[n];
//i % 2 == 1 : sum_[i] <= -1
if(a_[0] > 0){
sum_[0] = a_[0];
for(int i = 1; i < n;){
sum_[i] = sum_[i-1] + a_[i];
if(i % 2 != 0){
if(sum_[i] < 0){
//OK
i++;
}else{
if(sum_[i-1] > 1){
sum_[i-1]--;
}else{
a_[i]--;
}
count++;
}
}else{
if(sum_[i] > 0){
//OK
i++;
}else{
if(sum_[i-1] < -1){
sum_[i-1]++;
}else{
a_[i]++;
}
count++;
}
}if(count == 10)break;
}
}else{
sum_[0] = a_[0];
for(int i = 1; i < n;){
sum_[i] = sum_[i-1] + a_[i];
if(i % 2 != 0){
if(sum_[i] > 0){
//OK
i++;
}else{
if(sum_[i-1] < -1){
sum_[i-1]++;
}else{
a_[i]++;
}
count++;
}
}else{
if(sum_[i] < 0){
//OK
i++;
}else{
if(sum_[i-1] > 1){
sum_[i-1]--;
}else{
a_[i]--;
}
count++;
}
}
}
}
System.out.println(count);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int N;
cin >> N;
int a, now, res = 0;
cin >> now;
for (int i = 0; i < N - 1; ++i) {
cin >> a;
if (now * (now + a) >= 0) {
res += abs(a + now) + 1;
if (now > 0) {
now = -1;
} else {
now = 1;
}
} else {
now += a;
}
}
cout << res << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
// ABC 6-C
// http://abc006.contest.atcoder.jp/tasks/abc006_3
public class Main {
public static void main (String[] args) throws java.lang.Exception {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
long sum = 0;
long answer = 0;
for (int i = 0; i < n; i++) {
int a = in.nextInt();
// if (i > 0) {
if (sum < 0 && sum + a < 0) {
answer += 1 + Math.abs(sum + a);
sum = 1;
} else if (sum > 0 && sum + a > 0) {
answer += 1 + sum + a;
sum = -1;
} else if (sum + a == 0) {
answer++;
if (sum < 0) {
sum = 1;
} else {
sum = -1;
}
} else {
sum += a;
}
// } else {
// sum += a;
// }
}
System.out.println(answer);
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
using i_i = pair<int, int>;
using ll_ll = pair<ll, ll>;
using d_ll = pair<double, ll>;
using ll_d = pair<ll, double>;
using d_d = pair<double, double>;
template <class T>
using vec = vector<T>;
static constexpr ll LL_INF = 1LL << 60;
static constexpr int I_INF = 1 << 28;
static constexpr double PI =
static_cast<double>(3.14159265358979323846264338327950288);
static constexpr double EPS = numeric_limits<double>::epsilon();
static map<type_index, const char* const> scanType = {{typeid(int), "%d"},
{typeid(ll), "%lld"},
{typeid(double), "%lf"},
{typeid(char), "%c"}};
template <class T>
static void scan(vector<T>& v);
[[maybe_unused]] static void scan(vector<string>& v, bool isWord = true);
template <class T>
static inline bool chmax(T& a, T b);
template <class T>
static inline bool chmin(T& a, T b);
template <class T>
static inline T gcd(T a, T b);
template <class T>
static inline T lcm(T a, T b);
template <class A, size_t N, class T>
static void Fill(A (&arr)[N], const T& val);
template <class T>
T mod(T a, T m);
template <class Monoid>
struct SegmentTree {
using F = function<Monoid(Monoid, Monoid)>;
int sz;
vector<Monoid> seg;
const F f;
const Monoid M1;
SegmentTree(int n, const F f, const Monoid& M1) : f(f), M1(M1) {
sz = 1;
while (sz < n) sz <<= 1;
seg.assign(2 * sz, M1);
}
void set(int k, const Monoid& x) { seg[k + sz] = x; }
void build() {
for (int k = sz - 1; k > 0; k--) {
seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
}
}
void update(int k, const Monoid& x) {
k += sz;
seg[k] = x;
while (k >>= 1) {
seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
}
}
Monoid query(int a, int b) {
Monoid L = M1, R = M1;
for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
if (a & 1) L = f(L, seg[a++]);
if (b & 1) R = f(seg[--b], R);
}
return f(L, R);
}
Monoid operator[](const int& k) const { return seg[k + sz]; }
template <class C>
int find_subtree(int a, const C& check, Monoid& M, bool type) {
while (a < sz) {
Monoid nxt = type ? f(seg[2 * a + type], M) : f(M, seg[2 * a + type]);
if (check(nxt))
a = 2 * a + type;
else
M = nxt, a = 2 * a + 1 - type;
}
return a - sz;
}
template <class C>
int find_first(int a, const C& check) {
Monoid L = M1;
if (a <= 0) {
if (check(f(L, seg[1]))) return find_subtree(1, check, L, false);
return -1;
}
int b = sz;
for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
if (a & 1) {
Monoid nxt = f(L, seg[a]);
if (check(nxt)) return find_subtree(a, check, L, false);
L = nxt;
++a;
}
}
return -1;
}
template <class C>
int find_last(int b, const C& check) {
Monoid R = M1;
if (b >= sz) {
if (check(f(seg[1], R))) return find_subtree(1, check, R, true);
return -1;
}
int a = sz;
for (b += sz; a < b; a >>= 1, b >>= 1) {
if (b & 1) {
Monoid nxt = f(seg[--b], R);
if (check(nxt)) return find_subtree(b, check, R, true);
R = nxt;
}
}
return -1;
}
};
int main(int argc, char* argv[]) {
ll n;
cin >> n;
vec<ll> a(n);
scan(a);
SegmentTree<ll> seg(
n, [](ll x, ll y) { return x + y; }, 0LL);
for (int i = (0); i < (n); i++) {
seg.set(i, a[i]);
}
seg.build();
ll ans = 0;
bool next_sign = (a[0] < 0) ? true : false;
if (a[0] == 0) {
seg.update(0, 1LL);
ans++;
}
for (int i = (2); i < (n + 1); i++) {
ll sum = seg.query(0, i);
if ((next_sign && sum > 0) || (!next_sign && sum < 0)) {
next_sign = !next_sign;
continue;
}
ll to = (next_sign) ? 1 : -1;
ll diff = abs(sum - to);
ans += diff;
seg.update(i - 1, seg[i - 1] + (to - sum));
next_sign = !next_sign;
}
ll ans2 = 0;
for (int i = (0); i < (n); i++) {
seg.update(i, a[i]);
}
next_sign = (a[0] < 0) ? true : false;
if (a[0] == 0) {
seg.update(0, -1LL);
ans++;
}
for (int i = (2); i < (n + 1); i++) {
ll sum = seg.query(0, i);
if ((next_sign && sum > 0) || (!next_sign && sum < 0)) {
next_sign = !next_sign;
continue;
}
ll to = (next_sign) ? 1 : -1;
ll diff = abs(sum - to);
ans2 += diff;
seg.update(i - 1, seg[i - 1] + (to - sum));
next_sign = !next_sign;
}
((cout) << (min(ans, ans2)) << (endl));
return 0;
}
template <class T>
static void scan(vector<T>& v) {
auto tFormat = scanType[typeid(T)];
for (T& n : v) {
scanf(tFormat, &n);
}
}
static void scan(vector<string>& v, bool isWord) {
if (isWord) {
for (auto& n : v) {
cin >> n;
}
return;
}
int i = 0, size = v.size();
string s;
getline(cin, s);
if (s.size() != 0) {
i++;
v[0] = s;
}
for (; i < size; ++i) {
getline(cin, v[i]);
}
}
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return 1;
}
return 0;
}
template <class T>
inline T gcd(T a, T b) {
return __gcd(a, b);
}
template <class T>
inline T lcm(T a, T b) {
T c = min(a, b), d = max(a, b);
return c * (d / gcd(c, d));
}
template <class A, size_t N, class T>
void Fill(A (&arr)[N], const T& val) {
std::fill((T*)arr, (T*)(arr + N), val);
}
template <class T>
T mod(T a, T m) {
return (a % m + m) % m;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
long long Num[1111111];
long long Sum[1111111];
long long Out;
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%lld", &Num[i]);
if (Num[1] == 0) Num[1] = 1, Out++;
if (Num[1] > 0) {
for (int i = 1; i <= n; i++) {
Sum[i] = Sum[i - 1] + Num[i];
if (i % 2 == 0) {
if (Sum[i] >= 0) {
Out += (Sum[i] + 1);
Sum[i] = -1;
}
} else {
if (Sum[i] <= 0) {
Out += (1 - Sum[i]);
Sum[i] = 1;
}
}
}
} else {
for (int i = 1; i <= n; i++) {
Sum[i] = Sum[i - 1] + Num[i];
if (i % 2 == 1) {
if (Sum[i] >= 0) {
Out += (Sum[i] + 1);
Sum[i] = -1;
}
} else {
if (Sum[i] <= 0) {
Out += (1 - Sum[i]);
Sum[i] = 1;
}
}
}
}
printf("%lld\n", Out);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const long long int INF = 1e9;
using namespace std;
struct Point {
int x, y;
};
bool vector_finder(std::vector<int> vec, int number) {
auto itr = std::find(vec.begin(), vec.end(), number);
size_t index = std::distance(vec.begin(), itr);
if (index != vec.size()) {
return true;
} else {
return false;
}
}
long long int factorial(long long int N) {
long long int ans = 1;
for (long long int i = 1; i <= (long long int)(N); i++) {
ans *= i;
}
return ans;
}
vector<long long int> Eratosthenes(long long int N) {
bool arr[N + 1];
arr[0] = false;
arr[1] = false;
for (long long int i = 2; i < N + 1; i++) {
arr[i] = true;
}
for (long long int i = 2; i <= sqrt(N); i++) {
if (arr[i]) {
for (long long int j = 0; i * (j + 2) <= N; j++) {
arr[i * (j + 2)] = false;
}
}
}
vector<long long int> prime;
for (long long int i = 1; i <= (long long int)(N); i++) {
if (arr[i] == true) {
prime.push_back(i);
}
}
return prime;
}
char alphabet[] = {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i',
'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r',
's', 't', 'u', 'v', 'w', 'x', 'y', 'z'};
int main() {
long long int n;
cin >> n;
long long int sum[n + 2];
long long int A[n + 2];
for (long long int i = 1; i <= (long long int)(n); i++) {
cin >> A[i];
}
sum[0] = 0;
sum[1] = A[1];
long long int cnt = 0;
if (A[1] > 0) {
for (long long int i = 2; i <= n; i++) {
sum[i] = sum[i - 1] + A[i];
if (i % 2 == 0) {
if (sum[i] > -1) {
long long int new_sum = -1;
cnt += abs(new_sum - sum[i]);
sum[i] = new_sum;
}
} else {
if (sum[i] < 1) {
long long int new_sum = 1;
cnt += abs(new_sum - sum[i]);
sum[i] = new_sum;
}
}
}
} else {
for (long long int i = 2; i <= n; i++) {
sum[i] = sum[i - 1] + A[i];
if (i % 2 == 1) {
if (sum[i] > -1) {
long long int new_sum = -1;
cnt += abs(new_sum - sum[i]);
sum[i] = new_sum;
}
} else {
if (sum[i] < 1) {
long long int new_sum = 1;
cnt += abs(new_sum - sum[i]);
sum[i] = new_sum;
}
}
}
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
a = [int(i) for i in input().split()]
def pura(a):
A = a[:]
ans = 0
check = 0
if A[0] <= 0:
ans += abs(1-A[0])
A[0] = 1
check += A[0]
for i in range(1, N):
if i % 2 != 0:
if check + A[i] >= 0:
ans += abs(A[i] + 1 + check)
A[i] = -1 + check
else:
if check + A[i] <= 0:
ans += abs(A[i] - (1 + check))
A[i] = 1 - check
check += A[i]
return ans
def mai(a):
A = a[:]
ans = 0
check = 0
if A[0] >= 1:
ans +=1+abs(A[0])
A[0] = -1
check += A[0]
for i in range(1, N):
if i % 2 != 0:
if check + A[i] <= 0:
ans += abs(A[i] - (1 + check))
A[i] = 1 - check
else:
if check + A[i] >= 0:
ans += abs(A[i] + 1 + check)
A[i] = -1 + check
check += A[i]
return ans
print(min(pura(a), mai(a))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
int *a;
int ans = 0;
cin >> n;
a = new int[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int sum = 0;
int opr1 = 0, opr2 = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0) {
if (sum > 0) continue;
opr1 += abs(sum) + 1;
sum = 1;
} else {
if (sum < 0) continue;
opr1 += abs(sum) + 1;
sum = -1;
}
}
sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0) {
if (sum < 0) continue;
opr2 += abs(sum) + 1;
sum = -1;
} else {
if (sum > 0) continue;
opr2 += abs(sum) + 1;
sum = 1;
}
}
cout << opr1 << " " << opr2 << endl;
ans = min(opr1, opr2);
cout << ans << endl;
delete (a);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
vector<long long int> vec;
vector<vector<long long int> > vec2;
long long int MOD = 1000000007;
int main() {
long long int N;
cin >> N;
vector<long long int> vec(N, 0);
for (long long int i = 0; i < N; i++) {
cin >> vec[i];
}
long long int ans = 0;
long long int g_ans = 0;
long long int k_ans = 0;
long long int sum = 0;
bool flg = true;
for (long long int i = 0; i < N; i++) {
sum += vec[i];
if (flg == true) {
if (sum <= 0) {
k_ans += abs(sum) + 1;
sum += k_ans;
}
flg = false;
} else {
if (sum >= 0) {
k_ans += abs(sum) + 1;
sum += -k_ans;
}
flg = true;
}
}
flg = true;
sum = 0;
for (long long int i = 0; i < N; i++) {
sum += vec[i];
if (flg == false) {
if (sum <= 0) {
g_ans += abs(sum) + 1;
sum += g_ans;
}
flg = true;
} else {
if (sum >= 0) {
g_ans += abs(sum) + 1;
sum += -g_ans;
}
flg = false;
}
}
ans = min(k_ans, g_ans);
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[n], b[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long cnt1 = 0;
long long sum = a[0];
if (sum == 0) {
sum = 1;
cnt1++;
}
for (int i = 1; i < n; i++) {
long long sumNext = sum + a[i];
if (sumNext * sum >= 0) {
if (sum < 0) {
cnt1 += 1 - sumNext;
sumNext = 1;
} else {
cnt1 += 1 + sumNext;
sumNext = -1;
}
}
sum = sumNext;
}
long long cnt2 = 0;
sum = a[0];
if (sum == 0) {
sum = -1;
cnt2++;
}
for (int i = 1; i < n; i++) {
long long sumNext = sum + a[i];
if (sumNext * sum >= 0) {
if (sum < 0) {
cnt2 += 1 - sumNext;
sumNext = 1;
} else {
cnt2 += 1 + sumNext;
sumNext = -1;
}
}
sum = sumNext;
}
cout << min(cnt1, cnt2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
prv_total =0
cnt = 0
if a[0] == 0:
if a[1]>= 0:
a[0] = -1
else:
a[0] = -1
cnt += 1
for i in range(n-1):
total = prv_total + a[i]
nxt_total = total+a[i+1]
if total == 0 and i != 0:
if prv_total > 0:
cnt += 1
total -= 1
nxt_total -= 1
else:
cnt += 1
total += 1
nxt_total += 1
if total > 0 and nxt_total >= 0:
a[i+1] -= nxt_total+1
cnt += nxt_total+1
nxt_total -= nxt_total+1
elif total < 0 and nxt_total <=0:
a[i+1] += abs(nxt_total)+1
cnt += abs(nxt_total)+1
nxt_total += abs(nxt_total)+1
prv_total = total
total = prv_total + a[-1]
if total == 0:
cnt += 1
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = scan.nextLong();
}
long sum1[] = new long[n];
long sum2[] = new long[n];
sum1[0] = a[0];
sum2[0] = a[0];
long ans1 = 0;
long ans2 = 0;
for (int i = 1; i < n; i++) {//偶数添字が正
sum1[i] = sum1[i-1]+a[i];
if (i%2 == 0) {
if (sum1[i] > 0) continue;
else {
ans1 += (1 + Math.abs(sum1[i]));
sum1[i] = 1;
}
}
else if (i%2 == 1) {
if (sum1[i] < 0) continue;
else {
ans1 += (sum1[i] + 1);
sum1[i] = -1;
}
}
}
for (int i = 1; i < n; i++) {//奇数添字が正
sum2[i] = sum2[i-1]+a[i];
if (i%2 == 1) {
if (sum2[i] > 0) continue;
else {
ans2 += (1 + Math.abs(sum2[i]));
sum2[i] = 1;
}
}
else if (i%2 == 0) {
if (sum2[i] < 0) continue;
else {
ans2 += (sum2[i] + 1);
sum2[i] = -1;
}
}
}
System.out.println(Math.min(ans1, ans2));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n;
cin >> n;
vector<long long> v(n);
for (__typeof(n) i = (0) - ((0) > (n)); i != (n) - ((0) > (n));
i += 1 - 2 * ((0) > (n)))
cin >> v[i];
long long res1 = 0, res2 = 0, res3, res4;
long long som = v[0];
if (som > 0) {
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 1)
if (som < 0)
continue;
else {
res1 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res1 += 1 - som;
som = 1;
}
}
res2 = v[0] + 1;
som = -1;
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 0)
if (som < 0)
continue;
else {
res2 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res2 += 1 - som;
som = 1;
}
}
} else if (som < 0) {
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 0)
if (som < 0)
continue;
else {
res1 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res1 += 1 - som;
som = 1;
}
}
res2 = 1 - v[0];
som = 1;
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 1)
if (som < 0)
continue;
else {
res2 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res2 += 1 - som;
som = 1;
}
}
}
if (v[0] == 0) {
res1 = 1;
som = 1;
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 1)
if (som < 0)
continue;
else {
res2 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res2 += 1 - som;
som = 1;
}
}
res2 = 1;
som = -1;
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 0)
if (som < 0)
continue;
else {
res2 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res2 += 1 - som;
som = 1;
}
}
}
cout << min(res1, res2);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long int abso(long int a) {
if (a < 0)
return -a;
else
return a;
}
bool isDifabso(long int a, long int b) {
if (a * b < 0) return true;
return false;
}
int main() {
int n;
long int sum, tmp, ttmp, ans = 0;
cin >> n;
if (n == 0) {
cout << 0 << endl;
return 0;
}
cin >> sum;
for (int i = 1; i < n; i++) {
cin >> tmp;
if (!isDifabso(sum, sum + tmp)) {
ttmp = tmp;
if (sum < 0)
tmp = abso(tmp) + 1;
else if (sum > 0)
tmp = -(abso(tmp) + 1);
ans += abso(tmp - ttmp);
} else if (sum + tmp == 0) {
if (sum < 0) tmp++;
if (sum > 0) tmp--;
ans++;
}
sum += tmp;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Arrays;
import java.util.Scanner;
public class Main {
static final Scanner sc = new Scanner(System.in);
static final int MOD = (int) 1E9 + 7;
static final long INF_L = (long) 4E18;
public static void main(String[] args) {
int n = nint();
int[] a = nints(n);
boolean a0was0 = a[0] == 0;
if (a0was0) {
a[0] = 1;
}
long ans = solve(a);
a[0] = -a[0];
ans = min(solve(a) + 2*abs(a[0]), ans);
if (a0was0) ans++;
System.out.println(ans);
}
static long solve(int[] a) {
if (a[0] == 0) throw new AssertionError();
int n = a.length;
long currentSum = a[0];
long count = 0;
for (int i = 1; i < n; i++) {
long nextSumTemp = currentSum + a[i];
if (nextSumTemp == 0) {
nextSumTemp = (currentSum > 0) ? -1 : 1; // いま正なら負になるように操作する
count++;
} else if (currentSum > 0 == nextSumTemp > 0) {
nextSumTemp = currentSum > 0 ? -1 : 1;
count += abs(-a[i] + nextSumTemp - currentSum);
}
currentSum = nextSumTemp;
}
return count;
}
@Deprecated
static int nint() {
return sc.nextInt();
}
@Deprecated
static int[] nints(int N) {
return nints(N, 0, 0);
}
@Deprecated
private static int[] nints(int N, int padL, int padR) {
int[] a = new int[padL + N + padR];
for (int i = 0; i < N; i++)
a[padL + i] = nint();
return a;
}
static long nlong() {
return sc.nextLong();
}
static long[] nlongs(int N) {
return nlongs(N, 0, 0);
}
static long[] nlongs(int N, int padL, int padR) {
long[] a = new long[padL + N + padR];
for (int i = 0; i < N; i++)
a[padL + i] = nlong();
return a;
}
static double ndouble() {
return sc.nextDouble();
}
static double[] ndoubles(int N) {
return ndoubles(N, 0, 0);
}
static double[] ndoubles(int N, int padL, int padR) {
double[] d = new double[N + padL + padR];
for (int i = 0; i < N; i++) {
d[padL + i] = ndouble();
}
return d;
}
static String nstr() {
return sc.next();
}
static char[] nchars() {
return sc.next().toCharArray();
}
static char[] nchars(int padL, int padR) {
char[] temp = sc.next().toCharArray();
char[] ret = new char[temp.length + padL + padR];
System.arraycopy(temp, 0, ret, padL, temp.length);
return ret;
}
static char[][] nchars2(int H, int W) {
return nchars2(H, W, 0, 0);
}
static char[][] nchars2(int H, int W, int padLU, int padRD) {
char[][] a2 = new char[H + padLU + padRD][W + padLU + padRD];
for (int i = 0; i < H; i++)
System.arraycopy(nchars(), 0, a2[padLU + i], padLU, W);
return a2;
}
static long min(long... ls) {
return Arrays.stream(ls).min().getAsLong();
}
static long max(long... ls) {
return Arrays.stream(ls).max().getAsLong();
}
static long abs(long a) {
return Math.abs(a);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> a(N);
for (int i = 0; i < N; i++) cin >> a.at(i);
bool fla = false;
for (int i = 0; i < N; i++) {
if (a.at(i) != 0) {
if ((a.at(i) > 0) && (i % 2 == 0))
fla = true;
else if (i % 2 == 1)
fla = true;
break;
}
}
int t = 0, res1 = 0, res2 = 0;
for (int i = 0; i < N; i++) {
int b = a.at(i);
if (fla) {
if (t + b <= 0) {
b = t * -1 + 1;
res1 += b - a.at(i);
}
} else {
if (t + b >= 0) {
b = t * -1 - 1;
res1 += abs(b - a.at(i));
}
}
t += b;
fla = !fla;
}
for (int i = 0; i < N; i++) {
int b = a.at(i);
if (!fla) {
if (t + b <= 0) {
b = t * -1 + 1;
res2 += b - a.at(i);
}
} else {
if (t + b >= 0) {
b = t * -1 - 1;
res2 += abs(b - a.at(i));
}
}
t += b;
fla = !fla;
}
int res = min(res1, res2);
cout << res << endl;
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.