Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> A(n, 0);
for (int i = 0; i<n; i++) cin >> A[i];
long long cnt1=0, acm1=0, cnt2=0, acm2=0;
for(int i = 0; i<n; i++) {
acm1+=A[i];
acm2+=A[i];
if(i%2) {
if(acm1>0);
else {
cnt1 += abs(acm1) + 1;
acm1 = 1;
}
if(acm2<0);
else {
cnt2 += abs(acm2) + 1;
acm2 = -1;
}
}
else {
if(acm1<0);
else {
cnt1 += abs(acm1) + 1;
acm1 = -1;
}
if(acm2>0);
else {
cnt2 += abs(acm2) + 1;
acm2 = 1;
}
}
cout << min(cnt1, cnt2) << "\n";
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
*a, = map(int, input().split())
is_plus = False if a[0] > 0 else True
s = a[0]
ans = 0
for i in range(1, n):
t = 0
if is_plus and s+a[i] < 0:
t = abs(s-a[i]) - 1
a[i] += t
elif not is_plus and s+a[i] > 0:
t = abs(s+a[i]) + 1
a[i] -= t
s += a[i]
ans += t
is_plus = not is_plus
if s != 0:
print(ans)
else:
print(ans-1 if a[-1] < 0 else ans+1)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
a1 = [0] * n
a1[0] = a[0]
b = a[0]
ans = 0
def f(x):
if x == 0:
return 0
else:
return x // abs(x)
for i in range(1, n):
if b * (b + a[i]) >= 0:
a1[i] = -f(a1[i - 1]) - b
if b + a1[i] == 0:
a1[i] += f(a1[i])
ans += abs(a1[i] - a[i])
else:
a1[i] = a[i]
b += a1[i]
a2 = [0] * n
a2[0] = -f(a[0])
ans1 = abs(a2[0] - a[0])
b1 = a2[0]
for i in range(1, n):
if b1 * (b1 + a[i]) >= 0:
a2[i] = -f(a2[i - 1]) - b1
if b1 + a2[i] == 0:
a2[i] += f(a2[i])
ans1 += abs(a2[i] - a[i])
else:
a2[i] = a[i]
b1 += a2[i]
print(min(ans1, ans)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a;
cin >> a;
int sum = 0;
int x = 0;
if (a > 0) {
sum += a;
for (int t = 1; t < n; t++) {
int temp;
cin >> temp;
sum += temp;
if (t % 2 == 1 && sum >= 0) {
int s = sum + 1;
sum = -1;
x += s;
} else if (t % 2 == 0 && sum <= 0) {
int s = 1 - sum;
sum = 1;
x += s;
}
}
} else {
sum += a;
for (int t = 1; t < n; t++) {
int temp;
cin >> temp;
sum += temp;
if (t % 2 == 0 && sum >= 0) {
int s = sum + 1;
sum = -1;
x += s;
} else if (t % 2 == 1 && sum <= 0) {
int s = 1 - sum;
sum = 1;
x += s;
}
}
}
cout << x << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | #!usr/bin/env python3
from collections import defaultdict
from collections import deque
from heapq import heappush, heappop
import sys
import math
import bisect
import random
import itertools
sys.setrecursionlimit(10**5)
stdin = sys.stdin
bisect_left = bisect.bisect_left
bisect_right = bisect.bisect_right
def LI(): return list(map(int, stdin.readline().split()))
def LF(): return list(map(float, stdin.readline().split()))
def LI_(): return list(map(lambda x: int(x)-1, stdin.readline().split()))
def II(): return int(stdin.readline())
def IF(): return float(stdin.readline())
def LS(): return list(map(list, stdin.readline().split()))
def S(): return list(stdin.readline().rstrip())
def IR(n): return [II() for _ in range(n)]
def LIR(n): return [LI() for _ in range(n)]
def FR(n): return [IF() for _ in range(n)]
def LFR(n): return [LI() for _ in range(n)]
def LIR_(n): return [LI_() for _ in range(n)]
def SR(n): return [S() for _ in range(n)]
def LSR(n): return [LS() for _ in range(n)]
mod = 1000000007
inf = float('INF')
#A
def A():
a = input().split()
a = list(map(lambda x: x.capitalize(), a))
a,b,c = a
print(a[0]+b[0]+c[0])
return
#B
def B():
a = II()
b = II()
if a > b:
print("GREATER")
if a < b:
print("LESS")
if a == b:
print("EQUAL")
return
#C
def C():
II()
a = LI()
def f(suma, b):
for i in a[1:]:
if (suma + i) * suma < 0:
suma += i
continue
b += abs(suma + i) + 1
suma = -1 * (suma > 0) or 1
return b
if a[0] == 0:
ans = f(1, 1)
else:
ans = f(a[0], 0)
if a[0] == 0:
ans = min(ans, f(-1, 1))
else:
ans = min(ans, f(-a[0], 2 * abs(a[0])))
print(ans)
return
#D
def D():
s = S()
for i in range(len(s) - 1):
if s[i] == s[i+1]:
print(i + 1, i + 2)
return
for i in range(len(s) - 2):
if s[i] == s[i + 2]:
print(i + 1, i + 3)
return
print(-1, -1)
return
#Solve
if __name__ == '__main__':
C()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = 1 << 29;
const long long MOD = 1000000007;
long long gcd(long long a, long long b) {
if (b == 0) return a;
return gcd(b, a % b);
}
int main() {
int n;
cin >> n;
long long a[100100];
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
long long count1 = 0;
long long su1 = 0;
for (int j = 0; j < n; ++j) {
su1 += a[j];
if (j % 2 == 0 && su1 <= 0) {
count1 += -su1 + 1;
su1 = 1;
} else if (j % 2 == 1 && su1 >= 0) {
count1 += su1 + 1;
su1 = -1;
}
}
long long count2 = 0;
long long su2 = 0;
for (int j = 0; j < n; ++j) {
su1 += a[j];
if (j % 2 == 0 && su2 >= 0) {
count1 += -su2 + 1;
su2 = 1;
} else if (j % 2 == 1 && su2 <= 0) {
count2 += -su2 + 1;
su2 = 1;
}
}
cout << min(su1, su2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
typedef std::priority_queue<int> IntPrioQueue;
typedef std::priority_queue<int, std::vector<int>, std::greater<int> >
IntReversePrioQueue;
int dx4[4] = {1, 0, -1, 0};
int dy4[4] = {0, 1, 0, -1};
int dx8[8] = {1, 0, -1, 1, -1, 1, 0, -1};
int dy8[8] = {1, 1, 1, 0, 0, -1, -1, -1};
void solve(void) {
int n;
cin >> n;
long long accsums1[n];
long long accsums2[n];
long long temp0;
scanf("%lld\n", &temp0);
accsums1[0] = accsums2[0] = temp0;
for (int i = 0; i <= n - 1 - 1; i++) {
long long temp;
scanf("%lld\n", &temp);
accsums1[i + 1] = temp + accsums1[i];
accsums2[i + 1] = temp + accsums1[i];
}
long long ans1 = 0;
for (int i = 0; i <= n - 1; i++) {
if ((i % 2 == 0 and accsums1[i] > 0) or (i % 2 != 0 and accsums1[i] < 0))
continue;
if (i % 2 == 0) {
long long diff = 1 - accsums1[i];
ans1 += diff;
for (int j = i + 1; j <= n - 1; j++) accsums1[j] += diff;
} else {
long long diff = 1 + accsums1[i];
ans1 += diff;
for (int j = i + 1; j <= n - 1; j++) accsums1[j] -= diff;
}
}
long long ans2 = 0;
for (int i = 0; i <= n - 1; i++) {
if ((i % 2 == 0 and accsums2[i] < 0) or (i % 2 != 0 and accsums2[i] > 0))
continue;
if (i % 2 != 0) {
long long diff = 1 - accsums2[i];
ans2 += diff;
for (int j = i + 1; j <= n - 1; j++) accsums2[j] += diff;
} else {
long long diff = 1 + accsums2[i];
ans2 += diff;
for (int j = i + 1; j <= n - 1; j++) accsums2[j] -= diff;
}
}
cout << min(ans1, ans2) << '\n';
}
int main(void) {
solve();
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> a(N);
for (int i = 0; i < N; i++) cin >> a.at(i);
bool fla = false;
for (int i = 0; i < N; i++) {
if (a.at(i) != 0) {
if ((a.at(i) > 0) && (i % 2 == 0))
fla = true;
else if (i % 2 == 1)
fla = true;
break;
}
}
int t = 0, res = 0;
for (int i = 0; i < N; i++) {
int b = a.at(i);
if (fla) {
if (t + b <= 0) {
b = t * -1 + 1;
res += b - a.at(i);
}
} else {
if (t + b >= 0) {
b = t * -1 - 1;
res += abs(b - a.at(i));
}
}
t += b;
fla = !fla;
}
cout << res << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n), pref(n + 1);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
for (int i = 0; i < n; i++) {
pref[i + 1] = pref[i] + a[i];
}
long long ans = 0;
vector<long long> mod(n + 1);
long long res = 0;
for (int i = 2; i <= n; i++) {
mod[i] += mod[i - 1];
long long now = pref[i] + mod[i];
long long prev = pref[i - 1] + mod[i - 1];
if (now == 0) {
if (prev > 0) {
res += 1;
mod[i] -= 1;
} else {
res += 1;
mod[i] += 1;
}
} else {
if (prev > 0 && now > 0) {
res += now + 1;
mod[i] -= now + 1;
}
if (prev < 0 && now < 0) {
res += 1 - now;
mod[i] += 1 - now;
}
}
}
cout << res << '\n';
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (ll i = 0; i < n; i++)
#define repl(i, l, r) for (ll i = (l); i < (r); i++)
#define fi first
#define se second
#define all(x) (x).begin(), (x).end()
#define CST(x) cout << fixed << setprecision(x)
using ll = long long;
using vl = vector<ll>;
using vvl = vector<vector<ll>>;
using pl = pair<ll, ll>;
const ll MOD = 1000000007;
const int inf = 1e9 + 10;
const ll INF = 4e18;
ll f(ll a, ll c, ll d) {
ll p = a / c, q = a / d, r = a / (c / __gcd(c, d) * d);
return a - (p + q - r);
}
int main() {
cin.tie(0);
cout.tie(0);
ios::sync_with_stdio(false);
int n;
cin >> n;
ll a[n];
rep(i, n) cin >> a[i];
ll now = max(1LL, a[0]), ans = (now == a[0] ? 0 : 1 - now);
ll b[n];
b[0] = now;
rep(i, n - 1) {
now += a[i + 1];
if (now * b[i] < 0)
b[i + 1] = now;
else if (b[i] > 0) {
now = -1, b[i + 1] = now;
ans += abs(b[i] + 1 + a[i + 1]);
} else {
now = 1, b[i + 1] = now;
ans += abs(1 - b[i] - a[i + 1]);
}
}
now = min(-1LL, a[0]);
ll ans1 = (now == a[0] ? 0 : 1 + now);
b[0] = now;
rep(i, n - 1) {
now += a[i + 1];
if (now * b[i] < 0)
b[i + 1] = now;
else if (b[i] > 0) {
now = -1, b[i + 1] = now;
ans1 += abs(b[i] + 1 + a[i + 1]);
} else {
now = 1, b[i + 1] = now;
ans1 += abs(1 - b[i] - a[i + 1]);
}
}
cout << min(ans, ans1) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
int func(vector<long long> a, int fugo) {
long long ans = 0;
long long offset = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == fugo) {
if (a[i] <= offset) {
ans += offset - (a[i] - 1);
offset = a[i] - 1;
}
} else {
if (a[i] >= offset) {
ans += (a[i] + 1) - offset;
offset = a[i] + 1;
}
}
printf("[%d]", a[i]);
}
printf("%d ", ans);
return ans;
}
int main() {
cin >> n;
vector<long long> a;
int sum_tmp = 0;
for (int i = 0; i < n; i++) {
int tmp;
cin >> tmp;
sum_tmp += tmp;
a.push_back(sum_tmp);
}
int ans = min(func(a, 0), func(a, 1));
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using std::cin;
using std::cout;
using std::endl;
using std::min;
using std::vector;
static long solve(int N, vector<int> &a) {
long count_a = 0;
long count_b = 0;
int sum_a = 0;
int sum_b = 0;
int sign_a = 1;
int sign_b = -1;
for (int n = 0; n < N; n++) {
int val = a[n];
sum_a += val;
sum_b += val;
if (sum_a * sign_a <= 0) {
count_a += 1 - (sum_a * sign_a);
sum_a = sign_a;
}
if (sum_b * sign_b <= 0) {
count_b += 1 - (sum_b * sign_b);
sum_b = sign_b;
}
sign_a = -sign_a;
sign_b = -sign_b;
}
return min(count_a, count_b);
}
int main() {
int N;
cin >> N;
vector<int> a(N);
for (int n = 0; n < N; n++) {
cin >> a[n];
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <stdio.h>
#include<math.h>
int main(void) {
// your code goes here
long int a[100000];
long int n,count= 0,count1=0;
scanf("%d",&n);
int i;
for(i = 0;i<n;i++)
{
scanf("%ld",&a[i]);
};
long int new = a[0]+a[1];
if(new==0)
{
new = -1;
count++;}
int pos;
if(new <0||new == 0)
pos= 0;
else if(new>0)
pos = 1;
for(i = 2;i<n;i++)
{
new = a[i]+new;
// printf("%d",new);
pos = !pos;
if(new>0&& pos==0)
{count+=abs(new)+1;
new= -1;}
else if(new<0 && pos )
{count+=abs(new)+1;
new = 1;
}
else if(new ==0)
{
count++;
if(pos==0)
new = -1;
else
new = 1;
}
}
count1+=abs(a[0]+a[1])+1;
if(a[0]+a[1]<0)
new = 1;
else if(a[0]+a[1]>0 ||a[0]+a[1]==0)
{
new = 1;
count1++;}
for(i = 2;i<n;i++)
{
new = a[i]+new;
// printf("%d",new);
if(new>0&& pos==0)
{count1+=abs(new)+1;
new= -1;}
else if(new<0 && pos )
{count1+=abs(new)+1;
new = 1;
}
else if(new ==0)
{
count1++;
if(pos==0)
new = -1;
else
new = 1;
}
pos =!pos;
}
printf("%ld",count<count1?count:count1);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int op = 0;
long long sum = 0LL;
cin >> sum;
for (int i = 1; i < n; i++) {
long long a;
cin >> a;
if (!(sum * (sum + a) < 0)) {
long long tmp_a = sum < 0 ? abs(sum) + 1 : -1 * (abs(sum) + 1);
op += abs(tmp_a - a);
sum = sum + tmp_a;
} else {
sum += a;
}
}
cout << op << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int,input().split()))
s = A[0]
ans1 = 0
for k in range(1,N):
if s*(s+A[k])<=-1:
s += A[k]
else:
if s > 0:
if s + A[k] >= 0:
ans1 += s + A[k] + 1
s = -1
elif s < 0:
if s + A[k] <= 0:
ans1 += 1 - s - A[k]
s = 1
if A[0] > 0:
ans2 = A[0] + 1
A[0] = -1
for k in range(1,N):
if s*(s+A[k])<=-1:
s += A[k]
else:
if s > 0:
if s + A[k] >= 0:
ans2 += s + A[k] + 1
s = -1
elif s < 0:
if s + A[k] <= 0:
ans2 += 1 - s - A[k]
s = 1
else:
ans2 = 1 - A[0]
A[0] = 1
for k in range(1,N):
if s*(s+A[k])<=-1:
s += A[k]
else:
if s > 0:
if s + A[k] >= 0:
ans2 += s + A[k] + 1
s = -1
elif s < 0:
if s + A[k] <= 0:
ans2 += 1 - s - A[k]
s = 1
print(min(ans1,ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) REP(i, 0, n)
#define ALL(v) v.begin(), v.end()
#define MSG(a) cout << #a << " " << a << endl;
#define REP(i, x, n) for (int i = x; i < n; i++)
#define OP(m) cout << m << endl
typedef long long ll;
typedef unsigned long long ull;
int main()
{
int n;
cin >> n;
int a[n];
rep(i, n) cin >> a[i];
ll cnt1 = 0, cnt2 = 0;
ll sum = a[0];
rep(i, n)
{
if (i % 2 == 0 && sum < 0)
sum = 1; //符号がプラスになるべきところ。
else if (i % 2 == 1 && sum > 0)
sum = -1; //符号がマイナスになるべきところ。
cnt1 += abs(sum) + 1;
}
ll sum = a[0];
rep(i, n)
{
if (i % 2 == 0 && sum > 0)
sum = -1; //符号マイナスになるべきところ。
else if (i % 2 == 1 && sum < 0)
sum = 1; //符号がプラスになるべきところ。
cnt2 += abs(sum) + 1;
}
OP(min(cnt1, cnt2));
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const double pie = acos(-1.0);
template <typename T>
T Max(T x, T y) {
return (x > y) ? x : y;
}
template <typename T>
T Min(T x, T y) {
return (x > y) ? y : x;
}
int gcd(int n1, int n2) {
if (n2 != 0)
return gcd(n2, n1 % n2);
else
return n1;
}
template <typename Arg1>
void __f(const char* name, Arg1&& arg1) {
cerr << name << " : " << arg1 << std::endl;
}
template <typename Arg1, typename... Args>
void __f(const char* names, Arg1&& arg1, Args&&... args) {
const char* comma = strchr(names + 1, ',');
cerr.write(names, comma - names) << " : " << arg1 << " | ";
__f(comma + 1, args...);
}
clock_t time_p = clock();
void rtime() {
time_p = clock() - time_p;
cerr << "Time Taken : " << (float)1000 * (time_p) / CLOCKS_PER_SEC << "\n";
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(NULL);
cout.tie(NULL);
int n;
cin >> n;
long long int arr[n];
for (int i = 0; i < int(n); i++) cin >> arr[i];
long long int ans = 0;
long long int sum = arr[0];
for (int i = 1; i < n; i++) {
if (sum < 0) {
sum = sum + arr[i];
if (sum > 0)
continue;
else {
ans = ans + abs(sum) + 1;
sum = 1;
}
} else {
sum = sum + arr[i];
if (sum < 0)
continue;
else {
ans = ans + sum + 1;
sum = -1;
}
}
}
cout << ans;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
int A[100100];
for (int i = 0; i < N; ++i) {
cin >> A[i];
}
int mode;
if (A[0] > 0)
mode = 0;
else
mode = 1;
int ans = 0;
int total = A[0];
for (int i = 1; i < N; ++i) {
mode ^= 1;
int _total = total + A[i];
if (mode == 0 && _total <= 0 || mode == 1 && _total >= 0) {
_total = mode == 0 ? 1 : -1;
ans += abs(_total - (total + A[i]));
}
total = _total;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | open Batteries
let () =
let n = Scanf.scanf "%d " (fun a -> a) in
let a_lst = Array.to_list @@ Array.init n (fun _ -> Scanf.scanf "%d " (fun a -> a)) in
let rec aux sum sign cnt l =
match l with
| [] -> cnt
| hd :: tl -> match sign with
| `Plus ->
if sum + hd <= 0 then aux sum sign (cnt+1) (hd+1::tl) else aux (sum+hd) `Minus cnt tl
| `Minus ->
if sum + hd >= 0 then aux sum sign (cnt+1) (hd-1::tl) else aux (sum+hd) `Plus cnt tl
in
Printf.printf "%d\n" @@
aux 0 (if List.hd a_lst > 0 then `Plus else `Minus) 0 a_lst
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
class Main {
int n;
int[] a;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
Main m = new Main(sc);
m.solve();
sc.close();
}
Main(Scanner sc) {
n = sc.nextInt();
a = new int[n];
for(int i=0;i<n;i++){
a[i] = sc.nextInt();
}
}
void solve() {
int cnt1 = (a[0]>0)?0:(Math.abs(a[0])+1);
int sign = 1;
long sum = (a[0]>0)?a[0]:1;
for(int i=1;i<n;i++){
sum += a[i];
if(sum*sign>=0){
cnt1 += Math.abs(sum) + 1;
sum = -sign;
}
sign *= -1;
}
int cnt2 = (a[0]<0)?0:(Math.abs(a[0])+1);
sign = -1;
sum = (a[0]<0)?a[0]:-1;
for(int i=1;i<n;i++){
sum += a[i];
if(sum*sign>=0){
cnt2 += Math.abs(sum) + 1;
sum = -sign;
}
sign *= -1;
}
System.out.println(Math.min(cnt1, cnt2));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
l = len(a)
b = []
for i in range(l):
b.append(a[i])
ans = 0
Ans = 0
summary = a[0]
Summary = b[0]
if(summary == 0):
a[0] = 1
ans+= 1
b[0] = -1
else:
b[0] = int(-a[0]/ abs(a[0]))
Ans+= abs(a[0]- b[0])
for i in range(1, l):
if(summary* (summary+ a[i])>= 0):
if(summary > 0):
ans+= a[i]+ summary+ 1
a[i] = -summary- 1
summary= -1
else:
ans+= -summary+ 1- a[i]
a[i] = -summary+ 1
summary= 1
else:
summary+= a[i]
for i in range(1, l):
if(Summary* (Summary+ b[i])>= 0):
if(Summary > 0):
Ans+= b[i]+ Summary+ 1
b[i] = -Summary- 1
Summary= -1
else:
Ans+= -Summary+ 1- b[i]
b[i] = -Summary+ 1
Summary= 1
else:
Summary+= b[i]
print(min(ans, Ans)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <iostream>
#include <vector>
#include <string>
#include <cstring>
#include <math.h>
#include <limits.h>
#include <map>
#include <algorithm>
#include <functional>
using namespace std;
int main() {
int n;
vector<long long> A;
int j;
bool is_plus;
long long ans = 0;
long long sum = 0;
cin >> n;
S.push_back(0);
for ( int i = 0; i < n; i++ ) {
long long a;
cin >> a;
A.push_back(a);
}
// for ( j = 0; j < n; j++ ) {
// if ( abs(A[j]) ) { break; }
// }
// if ( j == n ) {
// cout << A.size()*2-1 << endl;
// return 0;
// }
// if ( j ) {
// ans += ( j+1 )*2 - 1;
// sum = ( A[j] > 0 ) ? -1: 1;
// }
// else {
// sum = 0;
// ans = 0;
// }
for ( int i = 0; i < n; i++ ) {
if ( !i ) {
sum = A[i];
continue;
}
bool is_plus = sum > 0;
sum += A[i];
if ( sum == 0 ) {
ans += 1;
sum = is_plus ? -1 : 1;
}
else if ( is_plus == (sum > 0) ) {
ans += abs(sum)+1;
sum = is_plus ? -1 : 1;
}
}
cout << ans << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = (long long)1e9;
const long long MOD = (long long)1e9 + 7;
vector<int> dx = {1, 0, -1, 0}, dy = {0, 1, 0, -1};
int main() {
long long N, cnt = 0;
bool F = false;
cin >> N;
long long a[N];
for (long long i = 0; i < N; i++) cin >> a[i];
long long sum = 0;
if (a[0] == 0) {
a[0]++;
cnt++;
F = true;
}
bool f;
if (a[0] > 0)
f = false;
else
f = true;
for (long long i = 0; i < N; i++) {
sum += a[i];
if (sum >= 0 && f) {
cnt += abs(sum) + 1;
sum = -1;
} else if (sum <= 0 && !f) {
cnt += abs(sum) + 1;
sum = 1;
}
if (sum > 0)
f = true;
else
f = false;
}
if (F) {
sum = 0;
long long CNT = 1;
a[0] = -1;
if (a[0] > 0)
f = false;
else
f = true;
for (long long i = 0; i < N; i++) {
sum += a[i];
if (sum >= 0 && f) {
CNT += abs(sum) + 1;
sum = -1;
} else if (sum <= 0 && !f) {
CNT += abs(sum) + 1;
sum = 1;
}
if (sum > 0)
f = true;
else
f = false;
}
cnt = min(CNT, cnt);
}
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
#define mod 1000000007
#define ll long long
#define mp make_pair
#define pb push_back
#define ff first
#define ss second
#define set0(a) memset ((a), 0 , sizeof(a))
#define set1(a) memset((a),-1,sizeof (a))
#define pi pair<int, int>
#define ps pair<string, string>
#define pl pair<long, long>
#define pll pair<long long, long long>
#define vll vector<long long>
#define vl vector<long>
#define vi vector<int>
#define vs vector<string>
#define vps vector< ps >
#define vpi vector< pi >
#define vpl vector< pl >
#define vpll vector< pll >
#define flash ios_base::sync_with_stdio(false); cin.tie(NULL);
#define tc(t) for(long long l=0;l<t;l++)
#define rep(i,s,n,d) for(long long i=s;i<n;i=i+d)
bool sortbysec(const pll &a,
const pll &b)
{
return (a.second < b.second);
}
void func(void)
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
}
int main(){
ll n;
cin>>n;
ll a[n];
rep(i,0,n,1){
cin>>a[i];
}
ll sum[n]={};
sum[0]=a[0];
rep(i,1,n,1){
sum[i]=sum[i-1]+a[i];
}
ll sum1=a[0];
ll count1=0;
rep(i,1,n,1){
if(sum1*(sum1+a[i])>=0){
ll d=1;
if(sum1<0){
d=1;
}else{
d=-1;
}
int dif=abs(sum1+a[i]-d);
count1=count1+dif;
sum1=d;
}
else{
sum1=sum1+a[i];
}
}
cout<<count1<<endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MX = 1e5 + 5, INF = 5 << 28, MOD = 1e9 + 7;
long long N;
vector<long long> A;
void input() {
cin >> N;
A.resize(N);
for (long long i = (long long)(0); i <= (long long)(N - 1); ++i) {
cin >> A[i];
}
}
void solve() {
long long ans = INF;
long long fugo;
for (long long fg = (long long)(0); fg <= (long long)(1); ++fg) {
if (fg == 1) {
fugo = 1;
} else
fugo = 0;
long long prev = 0;
long long s = 0;
long long ans1 = 0;
for (long long i = (long long)(0); i <= (long long)(N - 1); ++i) {
s += A[i];
if (fugo) {
if (s > 0) {
ans1 += 0;
} else if (s == 0) {
ans1 += 1;
s = 1;
} else {
ans1 += abs(s) + 1;
s = 1;
}
} else {
if (s > 0) {
ans1 += (abs(s) + 1);
s = -1;
} else if (s == 0) {
ans1 += 1;
s = -1;
} else {
ans1 += 0;
}
}
prev = s;
fugo ^= 1;
}
ans = min(ans1, ans);
}
cout << ans << endl;
}
signed main() {
input();
solve();
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
import copy
a2 = copy.copy(a)
ans1 = 0 #偶数インデックスが正
for i in range(n):
s1 = sum(a[:i+1])
if i % 2 == 0:
if s1 <= 0:
x = abs(s1) + 1
ans1 += x
a[i] += x
else:
continue
else:
if s1 >= 0:
x = abs(s1) + 1
ans1 += x
a[i] -= x
ans2 = 0 #偶数インデックスが負
for i in range(n):
s2 = sum(a2[:i+1])
if i % 2 == 1:
if s2 <= 0:
x = abs(s2) + 1
ans2 += x
a2[i] += x
else:
continue
else:
if s2 >= 0:
x = abs(s2) + 1
ans2 += x
a2[i] -= x
print(min(ans1, ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
s = [a[0]]
for i in range(1, n):
s.append(s[-1]+a[i])
cnt_a = 0
base = 0
for i in range(n):
if (base + s[i] > 0) != (i % 2 == 0):
cnt_a += (1 + abs(base + s[i]))
base += (1 + abs(base + s[i])) * (-1) ** i
cnt_b = 0
base = 0
for i in range(n):
if (base + s[i] > 0) == (i % 2 == 0):
cnt_b += (1 + abs(base + s[i]))
base -= (1 + abs(base + s[i])) * (-1) ** i
print(min(cnt_a, cnt_b)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, a[100005], dp[100005];
cin >> n;
int sum = 0;
for (int i = 0; i < n; i++) {
cin >> a[i];
sum += a[i];
dp[i] = sum;
}
int diff = 0, ans = 0;
for (int i = 1; i < n; i++) {
if (dp[i] + diff == 0) {
if (dp[i - 1] + diff < 0) diff++, ans++;
if (dp[i - 1] + diff >= 0) diff--, ans++;
}
if ((dp[i - 1] + diff) / abs(dp[i - 1] + diff) ==
(dp[i] + diff) / abs(dp[i] + diff)) {
if (dp[i] + diff >= 0) {
ans += abs(dp[i] + diff) + 1;
diff -= abs(dp[i] + diff) + 1;
} else {
ans += abs(dp[i] + diff) + 1;
diff += abs(dp[i] + diff) + 1;
}
}
}
if (dp[n - 1] == 0) {
if (dp[n - 2] + diff < 0) ans++;
if (dp[n - 2] + diff >= 0) ans--;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # nの把握
n = int(input())
# 数列の把握
AL = list(map(int, input().split()))
"""
条件1:すべてのi(1≦i≦n) に対し、第 1 項から第 i 項までの和は 0 でない
条件2:すべてのi(1≦i≦n−1) に対し、i 項までの和と i+1 項までの和の符号が異なる
条件2より、i項までの総和とi+1項までの総和は、正負又は負正という順番で進行する。
条件を満たさないとき、iについて、総和が1or-1となるまで手順を実施する。
"""
#正負を確かめる関数
def PN(AL):
ISUM = 0
P = 0
for i in range(n):
ISUM += AL[i]
if i % 2 == 0:
if ISUM > 0:
pass
else:
P += abs(1 - ISUM)
ISUM = 1
else:
if ISUM < 0:
pass
else:
P += abs(-1 - ISUM)
ISUM = 1
return P
#負正を確かめる関数
def NP(AL):
ISUM = 0
P = 0
for i in range(n):
ISUM += AL[i]
if i % 2 == 0:
if ISUM < 0:
pass
else:
P += abs(-1 - ISUM)
ISUM = -1
else:
if ISUM > 0:
pass
else:
P += abs(1- ISUM)
ISUM = 1
return P
ANSWER = min(PN(AL), NP(AL))
print(ANSWER) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
template <class T, class S>
void cmin(T &a, const S &b) {
if (a > b) a = b;
}
template <class T, class S>
void cmax(T &a, const S &b) {
if (a < b) a = b;
}
using namespace std;
signed main() {
long long int n;
cin >> n;
vector<long long int> v(n);
bool flag = false;
for (long long int i = 0; i < n; i++) cin >> v[i];
vector<long long int> sum(n);
long long int ans = 0;
for (long long int i = 0; i < n; i++) sum[i] = v[i];
for (long long int i = 0; i < n; i++) {
if (!i) {
if (sum[0] >= 0)
flag = true;
else
flag = false;
continue;
}
sum[i] += sum[i - 1];
if (flag) {
if (sum[i] < 0)
flag = false;
else {
ans += (abs(sum[i]) + 1);
sum[i] = -1;
flag = false;
}
} else {
if (sum[i] > 0)
flag = true;
else {
ans += (abs(sum[i]) + 1);
sum[i] = 1;
flag = true;
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> A(N);
for (int i = 0; i < N; i++) cin >> A.at(i);
int sum = A.at(0);
int ans = 0;
for (int i = 1; i < N; i++) {
if (sum == 0) continue;
if (sum > 0 && sum + A.at(i) >= 0) {
ans += abs(sum + A.at(i)) + 1;
sum = -1;
} else if (sum < 0 && sum + A.at(i) <= 0) {
ans += abs(sum + A.at(i)) + 1;
sum = 1;
} else
sum += A.at(i);
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long mod = 998244353;
const long long inf = 5e15;
struct query {
long long type;
long long value;
query(long long a = 0, long long b = 0) : type(a), value(b) {}
};
long long INF = (1LL << 60);
struct segtree {
long long SIZE;
vector<query> s;
vector<long long> t;
vector<long long> u;
segtree(long long n = 1) {
SIZE = 1;
while (SIZE < n) SIZE *= 2;
s.clear();
t.clear();
u.clear();
s.resize(SIZE * 2, query());
t.resize(SIZE * 2, 0);
u.resize(SIZE * 2, 0);
}
void func(long long k, long long l, long long r, query q) {
if (q.type == 1) {
if (s[k].type == 0)
s[k] = q;
else
s[k].value += q.value;
t[k] += q.value * (r - l);
u[k] += q.value;
}
if (q.type == 2) {
s[k] = q;
t[k] = q.value * (r - l);
u[k] = q.value;
}
}
void compute(long long k, long long l, long long r) {
query q = s[k];
s[k] = query();
if (q.type == 0 || r - l == 1) return;
long long m = (l + r) / 2;
func(k * 2 + 1, l, m, q);
func(k * 2 + 2, m, r, q);
}
void Update(long long a, long long b, query x, long long k, long long l,
long long r) {
if (b <= l || r <= a) return;
compute(k, l, r);
if (a <= l && r <= b) {
func(k, l, r, x);
} else {
long long m = (l + r) / 2;
Update(a, b, x, k * 2 + 1, l, m);
Update(a, b, x, k * 2 + 2, m, r);
t[k] = t[k * 2 + 1] + t[k * 2 + 2];
u[k] = max(u[k * 2 + 1], u[k * 2 + 2]);
}
}
long long Dfs(long long type, long long a, long long b, long long k,
long long l, long long r) {
if (b <= l || r <= a) {
if (type == 1) return 0;
if (type == 2) return -inf;
}
compute(k, l, r);
if (a <= l && r <= b) {
if (type == 1) return t[k];
if (type == 2) return u[k];
} else {
long long m = (l + r) / 2;
long long lv = Dfs(type, a, b, k * 2 + 1, l, m);
long long rv = Dfs(type, a, b, k * 2 + 2, m, r);
if (type == 1) return lv + rv;
if (type == 2) return max(lv, rv);
}
}
void Add(long long a, long long b, long long x) {
Update(a, b, query(1, x), 0, 0, SIZE);
}
void Set(long long a, long long b, long long x) {
Update(a, b, query(2, x), 0, 0, SIZE);
}
long long Getsum(long long a, long long b) {
return Dfs(1, a, b, 0, 0, SIZE);
}
long long Getmax(long long a, long long b) {
return Dfs(2, a, b, 0, 0, SIZE);
}
};
int main() {
long long n;
cin >> n;
vector<pair<long long, long long> > a(n);
for (long long i = 0; i < n; i++) {
long long x, d;
cin >> x >> d;
a[i] = {x, x + d};
}
sort(a.begin(), a.end());
segtree d(n + 1);
d.Set(0, n + 1, 0);
d.Set(n, n + 1, n);
vector<long long> dp(n + 1);
vector<long long> ans(n + 1);
dp[0] = 1;
ans[0] = dp[0];
for (long long i = 0; i < n; i++) {
long long x = a[n - i - 1].second;
long long it =
upper_bound(a.begin(), a.end(), pair<long long, long long>(x, 0)) -
a.begin();
if (it == n - i) {
d.Set(n - i - 1, n - i, it);
} else {
d.Set(n - i - 1, n - i, max(d.Getmax(n - i, it), it));
}
long long id = n - d.Getmax(n - i - 1, n - i);
(dp[i + 1] = ans[id]) %= mod;
(ans[i + 1] = ans[i] + dp[i + 1]) %= mod;
}
cout << ans[n] << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using llong = long long;
void input(vector<int>& rvnNum)
{
int nSize;
cin >> nSize;
rvnNum.resize(nSize);
for (int& rnElm : rvnNum)
cin >> rnElm;
}
llong calcMinOpeTimes(const vector<int>& cnrvnNum)
{
vector<llong> vnOpeTimes(2);
for (int nEvnOdd = 0; nEvnOdd < vnOpeTimes.size(); nEvnOdd++)
{
llong nOpeTimes = 0;
llong nCumlSum = 0;
for (int n = 0; n < cnrvnNum.size(); n++)
{
nCumlSum += cnrvnNum[n];
if ( n % 2 == nEvnOdd )
if ( nCumlSum > 0 );
else
{
nOpeTimes += 1 - nCumlSum;
nCumlSum = 1;
}
else
if ( nCumlSum < 0 );
else
{
nOpeTimes += nCumlSum - (-1);
nCumlSum = -1;
}
else;
}
vnOpeTimes[nEvnOdd] = nOpeTimes;
}
auto itElm = min_element(begin(vnOpeTimes), end(vnOpeTimes));
return *itElm;
}
int main()
{
vector<int> vnNum;
input(vnNum);
cout << calcMinOpeTimes(vnNum) << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int inf = 1e9;
int main() {
int n;
cin >> n;
int a[100010];
for (int i = (0); i < (int)n; i++) {
cin >> a[i];
}
long long ans = 0;
long long sum = a[0];
for (int i = (1); i < (int)n; i++) {
long long tmp;
tmp = sum;
sum += a[i];
if (sum >= 0 && tmp > 0) {
if (sum < tmp) {
ans += sum + 1;
sum = -1;
} else {
ans += tmp + 1;
sum = a[i] - 1;
}
} else if (sum <= 0 && tmp < 0) {
if (sum > tmp) {
ans += -sum + 1;
sum = 1;
} else {
ans += -tmp + 1;
sum = a[i] + 1;
}
}
}
cout << (ans) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
int ans1 = 0;
int sum = 0;
for (int i = 0; i < n; i++) {
int cur = a[i];
if (i % 2) {
if (sum + cur > 0) cur = -(sum + 1);
} else {
if (sum + cur == 0)
cur++;
else if (sum + cur < 0)
cur = -sum + 1;
}
sum += cur;
ans1 += abs(a[i] - cur);
}
int ans2 = 0;
sum = 0;
for (int i = 0; i < n; i++) {
int cur = a[i];
if (i % 2 == 0) {
if (sum + cur > 0) cur = -(sum + 1);
} else {
if (sum + cur == 0)
cur++;
else if (sum + cur < 0)
cur = -sum + 1;
}
sum += cur;
ans2 += abs(a[i] - cur);
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
S = []
S.append(0)
cnt = 0
P =[]
x=0
y=0
for i in range(n):
if a[i] != 0:
if i%2 ==0:
x=1
else:
x=-1
if a[i] >0:
y=1
else:
y=-1
break
if x*y>=0:
P.append(1)
else:
P.append(-1)
for i in range(n-1):
P.append(-P[i])
for i in range(n):
if (S[i] + a[i])*P[i]<=0:
cnt += abs(P[i]-S[i]-a[i])
a[i] = P[i]-S[i]
S.append(S[i]+a[i])
print(cnt)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n;
cin >> n;
int a[n], c[n];
for (int i = 0; i < n; i++) cin >> a[i];
for (int i = 0; i < n; i++) c[i] = a[i];
int count = 0, count2 = 0, sum = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0) {
if (sum + a[i] <= 0) {
int b = 1 - sum;
count += abs(b - a[i]);
a[i] = b;
}
sum += a[i];
} else {
if (sum + a[i] >= 0) {
int b = -1 - sum;
count += abs(b - a[i]);
a[i] = b;
}
sum += a[i];
}
}
sum = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 1) {
if (sum + c[i] <= 0 || c[i] <= 0) {
int b = 1 - sum;
count2 += abs(b - c[i]);
c[i] = b;
}
sum += c[i];
} else {
if (sum + c[i] >= 0 || c[i] >= 0) {
int b = -1 - sum;
count2 += abs(b - c[i]);
c[i] = b;
}
sum += c[i];
}
}
cout << min(count, count2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long long cnt1 = 0, cnt2 = 0;
long long sumv = a[0];
for (int i = 1; i < n; i++) {
if (i % 2 == 0 && sumv < 0) {
sumv = 1;
cnt1 += abs(sumv) + 1;
} else if (i % 2 == 1 && sumv > 0) {
sumv = -1;
cnt1 += abs(sumv) + 1;
}
sumv += a[i];
}
sumv = a[0];
for (int i = 1; i < n; i++) {
if (i % 2 == 0 && sumv > 0) {
sumv = -1;
cnt2 += abs(sumv) + 1;
} else if (i % 2 == 1 && sumv < 0) {
sumv = 1;
cnt2 += abs(sumv) + 1;
}
sumv += a[i];
}
cout << min(cnt1, cnt2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
import copy
n = int(input())
a = list(map(int,input().split()))
b=copy.deepcopy(a)
cntm=0
cntp=0
sum_a=0
sum_b=0
if a[0]==0:
cntm+=1
cntp+=1
a[0]=1
b[0]=-1
for i in range(n-1):
sum_a += a[i]
sum_b += b[i]
if abs(sum_a) >= abs(a[i+1]) or sum_a*a[i+1]>=0:
cntp += abs(-sum_a-np.sign(sum_a) -a[i+1])
a[i+1]=-sum_a-np.sign(sum_a)
if abs(sum_b) >= abs(b[i+1]) or sum_b*b[i+1]>=0:
cntm += abs(-sum_b-np.sign(sum_b) -b[i+1])
b[i+1]=-sum_b-np.sign(sum_b)
print(min(cntm, cntp)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long num_operate(long n, long sum, long* a) {
long j;
for (long i = 1; i < n; i++) {
if (sum * (sum + a[i]) < 0)
sum += a[i];
else {
j += abs(sum + a[i]) + 1;
if (sum < 0)
sum = 1;
else
sum = -1;
}
}
return j;
}
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
long n;
cin >> n;
vector<long> a(n);
for (long i = 0; i < n; i++) cin >> a[i];
long sum = a[0];
long cnt1 = num_operate(n, 1, &a.front()) + 1;
long cnt2 = num_operate(n, -1, &a.front()) + 1;
long cnt3 = num_operate(n, sum, &a.front());
cout << min({cnt1, cnt2, cnt3}) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
vector<int> a;
cin >> n;
int A;
for (int i = 0; i < n; i++) {
cin >> A;
a.push_back(A);
}
int s = 0;
int ans1 = 0;
int count = 0;
for (int i = 0; i < n; i++) {
ans1 += a[i];
if (i % 2 == 0) {
if (ans1 >= 0) {
count += ans1 + 1;
ans1 = -1;
}
} else {
if (ans1 <= 0) {
count += 1 - ans1;
ans1 = 1;
}
}
}
int count2 = 0;
ans1 = 0;
for (int i = 0; i < n; i++) {
ans1 += a[i];
if (i % 2 != 0) {
if (ans1 >= 0) {
count2 += ans1 + 1;
ans1 = -1;
}
} else {
if (ans1 <= 0) {
count2 += 1 - ans1;
ans1 = 1;
}
}
}
cout << min(count, count2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int solve();
int adds(int i, int num);
int show();
vector<long> adder;
int N;
int main() {
cin >> N;
adder = vector<long>(N + 1);
adder.at(0) = 0;
long buf;
for (int i = 0; i < N; i++) {
cin >> buf;
adder.at(i + 1) = adder.at(i) + buf;
}
solve();
}
int solve() {
int flag = 0;
int count = 0;
for (int i = 0; i < N;) {
show();
if (adder.at(i + 1) > 0) {
if (flag != 1) {
flag = 1;
i++;
} else {
adds(i + 1, -1);
count++;
}
} else if (adder.at(i + 1) < 0) {
if (flag != -1) {
flag = -1;
i++;
} else {
adds(i + 1, 1);
count++;
}
} else {
if (flag == -1) {
adds(i + 1, 1);
count++;
flag == 1;
i++;
} else if (flag == 1) {
adds(i + 1, -1);
count++;
flag == -1;
i++;
} else {
if (i == 0) {
adds(i + 1, 1);
}
}
}
}
cout << count << endl;
return 0;
}
int adds(int i, int num) {
for (int j = i; j < N + 1; j++) {
adder.at(j) += num;
}
return 0;
}
int show() { return 0; }
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
template <class T, class S>
void cmin(T &a, const S &b) {
if (a > b) a = b;
}
template <class T, class S>
void cmax(T &a, const S &b) {
if (a < b) a = b;
}
using namespace std;
signed main() {
long long int n;
cin >> n;
vector<long long int> v(n), sum(n);
for (long long int i = 0; i < n; i++) cin >> v[i];
long long int ans = 0;
bool used = true, flag = false;
for (long long int i = 0; i < n; i++) {
if (i)
sum[i] = v[i] + sum[i - 1];
else
sum[i] = v[i];
if (used) {
if (sum[i] > 0) {
flag = true;
used = false;
continue;
}
if (sum[i] < 0) {
flag = false;
used = false;
continue;
}
ans++;
continue;
}
if (flag) {
if (sum[i] < 0) {
flag = false;
continue;
}
if (sum[i] >= 0) {
flag = false;
ans += abs(sum[i]) + 1;
sum[i] = -1;
continue;
}
} else {
if (sum[i] > 0) {
flag = true;
continue;
}
if (sum[i] <= 0) {
flag = false;
ans += abs(sum[i]) + 1;
sum[i] = 1;
continue;
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int solve();
int adds(int i, int num);
int show();
vector<long> adder;
int N;
int main() {
cin >> N;
adder = vector<long>(N + 1);
adder.at(0) = 0;
long buf;
for (int i = 0; i < N; i++) {
cin >> buf;
adder.at(i + 1) = adder.at(i) + buf;
}
solve();
}
int solve() {
int flag = 0;
int count = 0;
int buf;
for (int i = 0; i < N;) {
show();
if (adder.at(i + 1) > 0) {
if (flag != 1) {
flag = 1;
i++;
} else {
buf = abs(adder.at(i + 1)) + 1;
adds(i + 1, -buf);
count += buf;
}
} else if (adder.at(i + 1) < 0) {
if (flag != -1) {
flag = -1;
i++;
} else {
buf = abs(adder.at(i + 1)) + 1;
adds(i + 1, buf);
count += buf;
}
} else {
if (flag == -1) {
adds(i + 1, 1);
count++;
flag == 1;
i++;
} else if (flag == 1) {
adds(i + 1, -1);
count++;
flag == -1;
i++;
} else {
if (i == 0) {
adds(i + 1, 1);
}
}
}
}
cout << count << endl;
return 0;
}
int adds(int i, int num) {
for (int j = i; j < N + 1; j++) {
adder.at(j) += num;
}
return 0;
}
int show() { return 0; }
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<long long> A(N);
for (int i = 0; i < N; i++) {
cin >> A[i];
}
vector<long long> S1(N);
vector<long long> S2(N);
S1[0] = A[0];
S2[0] = A[0];
int cnt1 = 0;
int cnt2 = 0;
for (int i = 0; i < N; i++) {
if (i) {
S1[i] = S1[i - 1] + A[i];
S2[i] = S2[i - 1] + A[i];
}
if (!(i % 2)) {
if (S1[i] <= 0) {
cnt1 += 1 - S1[i];
S1[i] = 1;
}
if (S2[i] >= 0) {
cnt2 += S2[i] + 1;
S2[i] = -1;
}
} else {
if (S1[i] >= 0) {
cnt1 += S1[i] + 1;
S1[i] = -1;
}
if (S2[i] <= 0) {
cnt2 += 1 - S2[i];
S2[i] = 1;
}
}
}
cout << min(cnt1, cnt2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(i) for i in input().split()]
ans1 = 0
ans2 = 0
summ = 0
summ2 = 0
a2 = a[:]
for i in range(n):
if i % 2 == 0:
if summ + a[i] <= 0:
ans1 += abs(summ + a[i]) + 1
a[i] = -summ + 1
summ = 1
else:
summ += a[i]
else:
if summ + a[i] >= 0:
ans1 += abs(summ + a[i]) + 1
a[i] = -summ -1
summ = -1
else:
summ += a[i]
for i in range(n):
if i % 2 != 0:
if summ2 + a2[i] <= 0:
ans2 += abs(summ2 + a2[i]) + 1
a2[i] = -summ2 + 1
summ2 = 1
else:
summ2 += a[i]
else:
if summ2 + a2[i] >= 0:
ans2 += abs(summ2 + a2[i]) + 1
a2[i] = -summ2 -1
summ2 = -1
else:
summ2 += a2[i]
print(min(ans1, ans2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
// ABC 6-C
// http://abc006.contest.atcoder.jp/tasks/abc006_3
public class Main {
public static void main (String[] args) throws java.lang.Exception {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] nums = new int[n];
for (int i = 0; i < n; i++) {
nums[i] = in.nextInt();
}
long answer = 0;
if (nums[0] == 0) {
answer = solve(nums, 0, 0);
} else {
answer = solve(nums, nums[0], 1);
}
System.out.println(answer);
//
// long sum = 0;
// long answer = 0;
//
// for (int i = 0; i < n; i++) {
// int a = in.nextInt();
//
// if (sum < 0 && sum + a < 0) {
// answer += 1 + Math.abs(sum + a);
// sum = 1;
// } else if (sum > 0 && sum + a > 0) {
// answer += 1 + sum + a;
// sum = -1;
// } else if (sum + a == 0) {
// answer++;
// if (sum < 0) {
// sum = 1;
// } else {
// sum = -1;
// }
// } else {
// sum += a;
// }
// }
// System.out.println(answer);
}
public static long solve(int[] nums, long sum, int index) {
if (index == nums.length) {
return 0;
}
if (sum < 0 && sum + nums[index] < 0) {
return 1 + Math.abs(sum + nums[index]) + solve(nums, 1, index + 1);
} else if (sum > 0 && sum + nums[index] > 0) {
return 1 + sum + nums[index] + solve(nums, -1, index + 1);
} else if (sum + nums[index] == 0) {
if (sum < 0) {
return 1 + solve(nums, 1, index + 1);
} else if (sum > 0) {
return 1 + solve(nums, -1, index + 1);
} else {
return 1 + Math.min(solve(nums, 1, index + 1), solve(nums, -1, index + 1));
}
} else if (sum == 0) {
return 1 + Math.min(solve(nums, 1, index + 1), solve(nums, -1, index + 1));
} {
return solve(nums, sum + nums[index], index + 1);
}
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
def solve(isPosi,N,A):
ans = 0
sm = A[0]
if sm>0:
isPosi = True
elif sm<0:
isPosi = False
for a in A[1:]:
if isPosi:
sm += a
if sm >= 0:
ans += abs(-1-sm)
sm = -1
isPosi = False
else:
sm += a
if sm <= 0:
ans += abs(1-sm)
sm = 1
isPosi = True
return ans
ans_p = solve(True,N,A)
ans_n = solve(False,N,A)
print(min(ans_p,ans_n)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int sum, ans, n, i;
int a[100005];
int main() {
cin >> n;
for (i = 1; i <= n; i++) {
cin >> a[i];
}
ans = 0;
sum = 0;
for (i = 1; i <= n; i++) {
if (a[i] == 0) {
sum++;
} else
break;
}
if (sum % 2 == 0 && sum != 0) {
if (a[sum + 1] > 0) {
a[1] = 1;
ans += 1;
} else {
a[1] = -1;
ans += 1;
}
} else if (sum % 2 != 0) {
if (a[sum + 1] > 0) {
a[1] = -1;
ans += 1;
} else {
a[1] = 1;
ans += 1;
}
}
sum = a[1];
for (i = 2; i <= n; i++) {
if (sum == 0) {
if (a[i - 1] > 0) {
ans++;
sum--;
} else {
ans++;
sum++;
}
}
if (sum > 0) {
if (a[i] + sum >= 0) {
ans += a[i] + sum + 1;
sum = -1;
} else {
sum += a[i];
}
} else {
if (a[i] + sum <= 0) {
ans += abs(a[i] + sum) + 1;
sum = 1;
} else {
sum += a[i];
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 0x7fffffff;
const int maxn = 1e5 + 10;
int a[maxn];
int n;
int main() {
scanf("%d", &n);
for (int i = 0; i < (n); ++i) {
scanf("%d", &a[i]);
}
long long ans = 0;
if (a[0] == 0 && a[1] > 0) {
a[0] = -1;
++ans;
}
if (a[0] == 0 && a[1] <= 0) {
a[0] = 1;
++ans;
}
long long t = a[0];
for (int i = 1; i < n; ++i) {
if (t < 0) {
t += a[i];
if (t <= 0) {
ans += 1 - (t);
t = 1;
}
continue;
}
t += a[i];
if (t >= 0) {
ans += t + 1;
t = -1;
}
}
printf("%lld\n", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int N;
cin >> N;
vector<int> A(N);
for (long long i = 0; i < long long(N); i++) {
cin >> A[i];
}
int ansA = 0;
int sumA = 0;
for (long long i = 0; i < long long(N); i++) {
sumA += A[i];
if (i % 2 == 0) {
if (sumA <= 0) {
ansA += (abs(sumA) + 1);
sumA += (abs(sumA) + 1);
}
} else {
if (sumA >= 0) {
ansA += (abs(sumA) + 1);
sumA -= (abs(sumA) + 1);
}
}
}
int ansB = 0;
int sumB = 0;
for (long long i = 0; i < long long(N); i++) {
sumB += A[i];
if (i % 2 != 0) {
if (sumB <= 0) {
ansB += (abs(sumB) + 1);
sumB += (abs(sumB) + 1);
}
} else {
if (sumB >= 0) {
ansB += (abs(sumB) + 1);
sumB -= (abs(sumB) + 1);
}
}
}
cout << min(ansA, ansB) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # coding: utf-8
# Here your code
N = int(input())
a = [int(i) for i in input().split()]
result_1 = 0
before_sum =a[0]
after_sum =a[0]
for i in range(1,N):
before_sum = after_sum
after_sum = before_sum + a[i]
if before_sum * after_sum > 0:
if after_sum < 0:
result_1 += 1 - after_sum
after_sum = 1
elif after_sum > 0:
result_1 += 1 + after_sum
after_sum = -1
elif before_sum * after_sum == 0:
result_1 += 1
if before_sum < 0:
after_sum = 1
else:
after_sum = -1
before_sum =int(-a[0]/abs(a[0]))
after_sum =before_sum
result_2 = 1 + abs(before_sum)
for i in range(1,N):
before_sum = after_sum
after_sum = before_sum + a[i]
if before_sum * after_sum > 0:
if after_sum < 0:
result_2 += 1 - after_sum
after_sum = 1
elif after_sum > 0:
result_2 += 1 + after_sum
after_sum = -1
elif before_sum * after_sum == 0:
result_2 += 1
if before_sum < 0:
after_sum = 1
else:
after_sum = -1
print(min(result_1,result_2-1))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = [int(i) for i in input().split()]
c = 10**15
for i in range(2):
A = [-a for a in A]
if A[0] != 0:
ans = 0
S = A[0]
f = A[0]//abs(A[0])
else:
ans = 1
S = 1
f = 1
for a in A[1:]:
S += a
if S == 0:
ans += 1
S = -f
else:
if S//abs(S) != f*(-1):
ans += abs(S)+1
S = -f
f *= -1
c = min(ans, c)
print(c)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int main(void) {
int n, a[10001];
int i, s;
long int c1, c2;
scanf("%d", &n);
for (i = 0; i < n; i++) {
scanf("%d", &a[i]);
}
s = 0;
c1 = 0;
for (i = 0; i < n; i++) {
s += a[i];
if (i % 2 == 0) {
while (s >= 0) {
s--;
c1++;
}
} else {
while (s <= 0) {
s++;
c1++;
}
}
}
s = 0;
c2 = 0;
for (i = 0; i < n; i++) {
s += a[i];
if (i % 2 != 0) {
while (s >= 0) {
s--;
c2++;
}
} else {
while (s <= 0) {
s++;
c2++;
}
}
}
if (c1 < c2)
printf("%ld\n", c1);
else
printf("%ld\n", c2);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MOD = 1000000007;
const long long INF = -10000000000;
long long maxx(long long x, long long y, long long z) {
return max(max(x, y), z);
}
long long minn(long long x, long long y, long long z) {
return min(min(x, y), z);
}
long long gcd(long long x, long long y) {
if (x % y == 0)
return y;
else
return gcd(y, x % y);
}
long long lcm(long long x, long long y) { return x * (y / gcd(x, y)); }
int main() {
long long N;
cin >> N;
vector<long long> A(N);
for (long long i = 0; i < N; i++) cin >> A[i];
long long cnt = 0, ans;
long long sum = A[0];
for (long long i = 1; i <= N - 1; i++) {
if (abs(sum * 2 + A[i]) < abs(sum) + abs(sum + A[i]))
sum += A[i];
else {
if (sum < 0) {
cnt += abs((-1) * (sum - 1 + A[i]));
sum = 1;
} else {
cnt += abs((-1) * (sum + 1 + A[i]));
sum = -1;
}
}
}
ans = cnt;
cnt = 0;
sum = (-1) * A[0];
for (long long i = 1; i <= N - 1; i++) {
if (abs(sum * 2 + A[i]) < abs(sum) + abs(sum + A[i]))
sum += A[i];
else {
if (sum < 0) {
cnt += abs((-1) * (sum - 1 + A[i]));
sum = 1;
} else {
cnt += abs((-1) * (sum + 1 + A[i]));
sum = -1;
}
}
}
cout << min(ans, cnt);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 1e9;
const int MOD = 1e9 + 7;
const long long LINF = 1e18;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < (int)(n); i++) cin >> a[i];
long long sum = 0;
int flag = 1;
long long ans = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (sum == 0) {
ans += 1;
} else if ((flag == 1) ^ (sum > 0) == 1) {
ans += (abs(sum) + 1);
if (flag)
sum = 1;
else
sum = -1;
}
flag = (flag + 1) % 2;
}
sum = 0;
flag = 0;
long long temp = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (sum == 0) {
temp += 1;
} else if ((flag == 1) ^ (sum > 0) == 1) {
temp += (abs(sum) + 1);
if (flag)
sum = 1;
else
sum = -1;
}
flag = (flag + 1) % 2;
}
cout << min(temp, ans) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
n = int(input())
A = [int(i) for i in input().split()]
def j(B,sign):
ans,cur = 0,[0]
for i in range(n):
cur.append(cur[i]+B[i])
cs = np.sign(cur[i+1])
if cs != sign:
if sign == -1:
ans += -(-cur[i]-1)+B[i]
cur[i+1] = -1
else:
ans += -cur[i]+1-B[i]
cur[i+1] = 1
sign *= -1
return ans
print(j(A,np.sign(A[0])))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def main():
N = int(input())
A = [int(i) for i in input().split()]
ans1 = 0
S = [0] * N
S[0] = A[0]
for i in range(1, N):
S[i] = S[i-1] + A[i]
if S[i]*S[i-1] < 0:
continue
if S[i-1] > 0:
S[i] = -1
ans1 += abs((-1) - (S[i-1]+A[i]))
else:
S[i] = 1
ans1 += abs(1 - (S[i-1]+A[i]))
S2 = [0] * N
ans2 = 0
if A[0] > 0:
S[0] = -1
ans2 += abs((-1) - A[i])
else:
S[0] = 1
ans2 += abs(1 - A[i])
ans2 = 0
for i in range(1, N):
S2[i] = S2[i-1] + A[i]
if S2[i]*S2[i-1] < 0:
continue
if S2[i-1] > 0:
S2[i] = -1
ans2 += abs((-1) - (S2[i-1]+A[i]))
else:
S2[i] = 1
ans2 += abs(1 - (S2[i-1]+A[i]))
print(min(ans1, ans2))
if __name__ == '__main__':
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int main() {
int n, i, ans1 = 0, ans2 = 0, sum = 0;
long long int a[100010];
scanf("%d", &n);
for (i = 1; i <= n; i++) {
scanf("%lld", &a[i]);
}
for (i = 1; i <= n; i++) {
sum += a[i];
if (i % 2 == 1 && sum <= 0) {
ans1 += 1 - sum;
sum = 1;
} else if (i % 2 == 0 && sum >= 0) {
ans1 += sum + 1;
sum = -1;
}
}
sum = 0;
for (i = 1; i <= n; i++) {
sum += a[i];
if (i % 2 == 1 && sum >= 0) {
ans2 += sum + 1;
sum = -1;
} else if (i % 2 == 0 && sum <= 0) {
ans2 += 1 - sum;
sum = 1;
}
}
if (ans1 > ans2) {
printf("\n%d\n\n", ans2);
} else {
printf("\n%d\n\n", ans1);
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
scanf("%d", &n);
vector<long long> a;
for (int i = 0; i < n; i++) {
long long an;
scanf("%lld", &an);
a.push_back(an);
}
long long op_count = 0;
long long now_sum = 0;
if (a[0] == 0) {
int numOfZeros = 1;
while (a[numOfZeros] == 0) {
numOfZeros++;
}
if (a[numOfZeros] > 0) {
if (numOfZeros % 2 == 0) {
a[0] = 1;
} else {
a[0] = -1;
}
} else {
if (numOfZeros % 2 == 0) {
a[0] = -1;
} else {
a[0] = 1;
}
}
op_count++;
}
long long adding = a[0] > 0 ? -1 : 1;
for (int i = 0; i < n; i++) {
now_sum += a[i];
adding *= -1;
if (now_sum == 0) {
a[i] += adding;
now_sum += adding;
op_count++;
continue;
}
if (adding > 0) {
const long long last = 1 - now_sum;
if (last > 1) {
a[i] += last;
now_sum += last;
op_count += abs(last);
}
} else {
const long long last = -1 - now_sum;
if (last < -1) {
a[i] += last;
now_sum += last;
op_count += abs(last);
}
}
}
printf("%lld\n", op_count);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import copy
n=int(input())
a=[0]+list(map(int,input().split()))
b=copy.copy(a)
psum=0
nsum=0
sum1=0
sum2=0
for i in range(1,n+1):
if i%2!=0:
psum+=max([0,1-sum1-a[i]])
a[i]+=max([0,1-sum1-a[i]])
sum1+=a[i]
else:
psum+=max([0,1+sum1+a[i]])
a[i]-=max([0,1+sum1+a[i]])
sum1+=a[i]
for i in range(1,n+1):
if i%2!=0:
nsum+=max([0,1+sum2+b[i]])
b[i]-=max([0,1+sum2+b[i]])
sum2+=b[i]
else:
nsum+=max([0,1-sum2-b[i]])
a[i]+=max([0,1-sum2-b[i]])
sum2+=b[i]
print(min([psum,nsum]))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace AtCoder
{
class Program
{
static void Main(string[] args)
{
int n = int.Parse(Console.ReadLine());
int[] a = new int[n];
int[] sum = new int[n];
string[] lines = Console.ReadLine().Split(' ');
for (int i = 0; i < n; i++)
{
a[i] = int.Parse(lines[i]);
}
int ans1 = 0;
int ans2 = 0;
int sign = 1;
sum[0] = a[0];
for (int i = 1; i < n; i++)
{
sum[i] = sum[i - 1] + a[i];
if (sign > 0)
{
if (sum[i] >= 0)
{
ans1 += sum[i] + 1;
sum[i] = -1;
}
}
else
{
if (sum[i] <= 0)
{
ans1 -= sum[i] - 1;
sum[i] = 1;
}
}
sign = -sign;
}
sign = -1;
sum[0] = a[0];
for (int i = 1; i < n; i++)
{
if (sign > 0)
{
if (sum[i] >= 0)
{
ans2 += sum[i] + 1;
sum[i] = -1;
}
}
else
{
if (sum[i] <= 0)
{
ans2 -= sum[i] - 1;
sum[i] = 1;
}
}
sign = -sign;
}
Console.WriteLine(Math.Min(ans1, ans2));
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < (int)(n); i++) cin >> a.at(i);
vector<long long> b(n);
for (int i = 0; i < (int)(n); i++) b.at(i) = a.at(i);
long long cnt = 0;
long long wa = 0;
long long wa2 = 0;
wa = a.at(0);
long long cntA = 0;
long long cntB = 0;
if (wa != 0) {
for (int i = 0; i < n - 1;) {
wa2 = wa + a.at(i + 1);
if (wa > 0) {
if (wa2 < 0) {
i++;
wa = wa2;
} else if (wa2 > 0) {
cnt += abs(-1 - wa2);
a.at(i + 1) -= abs(-1 - wa2);
} else if (wa2 == 0) {
cnt += abs(-1 - wa2);
a.at(i + 1) -= abs(-1 - wa2);
}
} else if (wa < 0) {
if (wa2 < 0) {
cnt += abs(1 - wa2);
a.at(i + 1) += abs(1 - wa2);
} else if (wa2 > 0) {
i++;
wa = wa2;
} else if (wa2 == 0) {
cnt += abs(1 - wa2);
a.at(i + 1) += abs(1 - wa2);
}
}
}
cout << cnt << endl;
} else {
wa = 1;
for (int i = 0; i < n - 1;) {
wa2 = wa + a.at(i + 1);
if (wa > 0) {
if (wa2 < 0) {
i++;
wa = wa2;
} else if (wa2 > 0) {
cnt += abs(-1 - wa2);
a.at(i + 1) -= abs(-1 - wa2);
} else if (wa2 == 0) {
cnt += abs(-1 - wa2);
a.at(i + 1) -= abs(-1 - wa2);
}
} else if (wa < 0) {
if (wa2 < 0) {
cnt += abs(1 - wa2);
a.at(i + 1) += abs(1 - wa2);
} else if (wa2 > 0) {
i++;
wa = wa2;
} else if (wa2 == 0) {
cnt += abs(1 - wa2);
a.at(i + 1) += abs(1 - wa2);
}
}
}
wa = -1;
for (int i = 0; i < n - 1;) {
wa2 = wa + b.at(i + 1);
if (wa > 0) {
if (wa2 < 0) {
i++;
wa = wa2;
} else if (wa2 > 0) {
cntB += abs(-1 - wa2);
b.at(i + 1) -= abs(-1 - wa2);
} else if (wa2 == 0) {
cntB += abs(-1 - wa2);
b.at(i + 1) -= abs(-1 - wa2);
}
} else if (wa < 0) {
if (wa2 < 0) {
cntB += abs(1 - wa2);
b.at(i + 1) += abs(1 - wa2);
} else if (wa2 > 0) {
i++;
wa = wa2;
} else if (wa2 == 0) {
cntB += abs(1 - wa2);
b.at(i + 1) += abs(1 - wa2);
}
}
}
if (cnt < cntB)
cout << cnt << endl;
else
cout << cntB << endl;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < (int)(n); i++) cin >> a[i];
int sum = 0;
int count = 0;
int tmp = 0;
for (int i = 0; i < (int)(n); i++) {
if (i % 2 == 0) {
sum += a[i];
if (sum <= 0) {
count += abs(sum) + 1;
sum += abs(sum) + 1;
}
}
if (i % 2 == 1) {
sum += a[i];
if (sum >= 0) {
count += abs(sum) + 1;
sum -= abs(sum) + 1;
}
}
}
int count2 = 0;
sum = 0;
for (int i = 0; i < (int)(n); i++) {
if (i % 2 == 1) {
sum += a[i];
if (sum <= 0) {
count2 += abs(sum) + 1;
sum += abs(sum) + 1;
}
}
if (i % 2 == 0) {
sum += a[i];
if (sum >= 0) {
count2 += abs(sum) + 1;
sum -= abs(sum) + 1;
}
}
}
cout << min(count, count2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int inf = 1e9;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
long long int ans = inf;
long long int tmp = 0;
long long int cnt = 0;
for (int i = 0; i < n; i++) {
tmp += a[i];
if (i % 2 == 0 && tmp <= 0) {
cnt += (1 - tmp);
tmp = 1;
} else if (i % 2 == 1 && tmp >= 0) {
cnt += (1 + tmp);
tmp = -1;
}
}
ans = min(ans, cnt);
tmp = 0;
cnt = 0;
for (int i = 0; i < n; i++) {
tmp += a[i];
if (i % 2 == 1 && tmp <= 0) {
cnt += (1 - tmp);
tmp = 1;
} else if (i % 2 == 0 && tmp >= 0) {
cnt += (1 + tmp);
tmp = -1;
}
}
ans = min(ans, cnt);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N=int(input())
A=list(map(int,input().split()))
cur=A[0]
ans=0
isplus=True
ind=1
if cur<0:
isplus=False
if cur==0:
# すべて0の場合
allzero=True
firstNotZero=0
firstNotZeroInd=0
for i in range(N):
if A[i]!=0:
firstNotZero=A[i]
firstNotZeroInd=i
allzero=False
break
if allzero:
print(N)
exit(0)
# 0以外が出てくる場合
if firstNotZero>0:
cur=-1
ind=firstNotZeroInd
isplus=False
else:
cur=1
ind=firstNotZeroInd
isplus=True
for i in range(ind,N):
if isplus:
if cur+A[i]>=0:
diff=abs((cur+A[i])-(-1))
ans+=diff
cur=-1
else:
cur+=A[i]
isplus=False
else:
if cur+A[i]<=0:
diff=abs((cur+A[i])-1)
ans+=diff
cur=1
else:
cur+=A[i]
isplus=True
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
data = input().split()
for i in range(n):
data[i] = int(data[i])
count = 0
sum = data[0]
if(sum == 0):
i = 1
while(data[i] == 0):
i += 1
if(i % 2 == 0):
if(data[i] > 0):
sum += 1
else:
sum -= 1
else:
if(data[i] > 0):
sum -= 1
else:
sum += 1
i = 1
while(i < n):
while(sum * (sum + data[i]) >= 0):
if sum > 0:
data[i] -= 1
count += 1
elif sum < 0:
data[i] += 1
count += 1
sum += data[i]
if(sum == 0):
if(data[i] > 0):
sum += 1
else:
sum -= 1
i += 1
print(count)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
inline int toInt(string s) {
int v;
istringstream sin(s);
sin >> v;
return v;
}
template <class T>
inline string toString(T x) {
ostringstream sout;
sout << x;
return sout.str();
}
template <class T>
inline T sqr(T x) {
return x * x;
}
int main(void) {
int n;
cin >> n;
long long a[n + 1];
for (int i = 1; i <= n; ++i) {
cin >> a[i];
}
long long S1, S2;
long long ans[2];
if (a[1] == 0) {
S1 = 1;
ans[0] = 1;
for (int i = (2); i < (n + 1); ++i) {
S2 = S1 + a[i];
if ((S1 < 0 && S2 > 0) || (S1 > 0 && S2 < 0)) {
S1 = S2;
} else {
ans[0] += llabs(S2) + 1;
if (S1 < 0)
S2 = 1;
else
S2 = -1;
S1 = S2;
}
}
S1 = -1;
ans[1] = 1;
for (int i = (2); i < (n + 1); ++i) {
S2 = S1 + a[i];
if ((S1 < 0 && S2 > 0) || (S1 > 0 && S2 < 0)) {
S1 = S2;
} else {
ans[1] += llabs(S2) + 1;
if (S1 < 0)
S2 = 1;
else
S2 = -1;
S1 = S2;
}
}
ans[0] = min(ans[0], ans[1]);
printf("%lld/n", ans[0]);
} else {
S1 = a[1];
ans[0] = 0;
for (int i = (2); i < (n + 1); ++i) {
S2 = S1 + a[i];
if ((S1 < 0 && S2 > 0) || (S1 > 0 && S2 < 0)) {
S1 = S2;
} else {
ans[0] += llabs(S2) + 1;
if (S1 < 0)
S2 = 1;
else
S2 = -1;
S1 = S2;
}
}
printf("%lld/n", ans[0]);
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int main(void) {
int n;
std::cin >> n;
std::vector<long long int> a(n);
for (int i = 0; i < n; i++) {
std::cin >> a[i];
}
long long int count = 0;
if (a[0] == 0) {
count++;
if (a[1] > 0) {
a[0] = -1;
} else {
a[0] = +1;
}
}
long long int sum = a[0];
for (int i = 1; i < n; i++) {
if (sum > 0) {
sum += a[i];
if (sum >= 0) {
count += sum + 1;
sum = -1;
}
} else {
sum += a[i];
if (sum <= 0) {
count += -sum + 1;
sum = 1;
}
}
}
std::cout << count << std::endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN |
solver::[Int]->Int
solver xs = let h = head xs in minimum [(check_tot (abs (h-1)) 1 (tail xs))
,(check_tot (abs (h+1)) (-1) (tail xs))
,(check_tot 0 h (tail xs))]
main::IO()
main=do
_<-getLine
datc<-getLine
print (solver (map read (words datc)))
--おそい。Step_sumを作る事無く、シーケンシャルにいく
--今のカウント手数、ここまでの修正されたトータル(これはゼロでない事が保証される)、食べるリスト。
check_tot::Int -> Int -> [Int] -> Int
check_tot st _ [] = st
check_tot st tot xs
| (tot > 0)&&((tot+(head xs))>=0) = let dec = (tot+(head xs))+1 in check_tot (dec+st) (-1) (tail xs)
| (tot > 0)&&((tot+(head xs)) <0) = check_tot st (tot+(head xs)) (tail xs)
| (tot < 0)&&((tot+(head xs)) >0) = check_tot st (tot+(head xs)) (tail xs)
| (tot < 0)&&((tot+(head xs))<=0) = let inc = 1-(tot+(head xs)) in check_tot (inc+st) 1 (tail xs) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(int argc, char* argv[]) {
int n;
cin >> n;
vector<long long> a(n, 0);
vector<long long> s(n, 0);
int i;
for (i = 0; i < n; i++) {
cin >> a[i];
}
long long aw = 0;
if (a[0] == 0) {
a[0] = 1;
aw++;
}
s[0] = a[0];
long long x;
for (i = 1; i < n; i++) {
s[i] = s[i - 1] + a[i];
if (s[i - 1] > 0) {
if (s[i] < 0) {
continue;
} else {
x = s[i - 1] + a[i] + 1;
if (x < 0) {
x = -x;
}
aw += x;
a[i] = -1 - s[i - 1];
s[i] = s[i - 1] + a[i];
}
} else {
if (s[i] > 0) {
continue;
} else {
x = s[i - 1] + a[i] - 1;
if (x < 0) {
x = -x;
}
aw += x;
a[i] = 1 - s[i - 1];
s[i] = s[i - 1] + a[i];
}
}
}
cout << aw << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 1000000001;
const double PI = 3.141592653589;
const long long LMAX = 1000000000000001;
long long gcd(long long a, long long b) {
if (a < b) swap(a, b);
while ((a % b) != 0) {
a = b;
b = a % b;
}
return b;
}
int dx[] = {-1, 0, 1, 0};
int dy[] = {0, 1, 0, -1};
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
vector<vector<long long>> dp(2, vector<long long>(n, 0));
vector<long long> sum(2, a[0]);
if (sum[0] > 0)
sum[1] = -1;
else
sum[1] = 1;
dp[1][0] = abs(a[0]) + 1;
for (int j = 0; j < 2; j++) {
for (int i = 1; i < n; i++) {
if (sum[j] > 0) {
if (sum[j] + a[i] < 0) {
dp[j][i] = dp[j][i - 1];
sum[j] += a[i];
} else {
dp[j][i] = dp[j][i - 1] + abs(sum[j] + a[i]) + 1;
sum[j] = -1;
}
} else if (sum[j] < 0) {
if (sum[j] + a[i] > 0) {
dp[j][i] = dp[j][i - 1];
sum[j] += a[i];
} else {
dp[j][i] = dp[j][i - 1] + abs(sum[j] + a[i]) + 1;
sum[j] = 1;
}
}
}
}
cout << min(dp[0][n - 1], dp[1][n - 1]) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
as_ = list(map(int, input().split()))
ans = 0
sum_ = as_[0]
if sum_ == 0 and as_[1] >= 0:
sum_ -= 1
ans += 1
elif sum_ == 0 and as_[1] < 0:
sum_ += 1
ans += 1
else:
pass
for i in range(1, n):
new_sum_ = sum_+as_[i]
if sum_ > 0 and new_sum_ >= 0:
as_[i] -= (1+new_sum_)
ans += 1+new_sum_
sum_ = -1
elif sum_ < 0 and new_sum_ <= 0:
as_[i] += (1-new_sum_)
ans += 1-new_sum_
sum_ = 1
else:
sum_ = new_sum_
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
static const long long MOD_NUM = 1000000007;
template <class _T>
static void getint(_T& a) {
std::cin >> a;
}
template <class _T>
static void getint(_T& a, _T& b) {
std::cin >> a >> b;
}
template <class _T>
static void getint(_T& a, _T& b, _T& c) {
std::cin >> a >> b >> c;
}
template <class _T>
static _T tp_abs(_T a) {
if (a < (_T)0) {
a *= (_T)-1;
}
return a;
}
static void exec();
int main() {
exec();
fflush(stdout);
return 0;
}
static void exec() {
int N;
getint(N);
std::vector<long long> ai(N);
for (int i = 0; i < N; i++) {
getint(ai[i]);
}
long long ans = 0;
long long sum = ai[0];
if (ai[0] == 0) {
if (ai[1] > 0) {
sum--;
} else {
sum++;
}
ans++;
}
for (int i = 1; i < N; i++) {
int bfrSign = (sum > 0) ? 1 : -1;
sum += ai[i];
if ((bfrSign > 0) && (sum >= 0)) {
ans += (tp_abs(sum) + 1);
sum = -1;
} else if ((bfrSign < 0) && (sum <= 0)) {
ans += (tp_abs(sum) + 1);
sum = 1;
}
}
printf("%lld\n", ans);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
int n;
cin >> n;
int a[n];
long long int s = 0;
long long int ans = INT_MAX;
int i;
for (i = 0; i < n; i++) cin >> a[i];
s = a[0];
long long int p = 0;
if (s > 0) {
for (i = 1; i < n; i++) {
if (i % 2) {
if (s + a[i] < 0) {
s += a[i];
} else {
p += 1 + s + a[i];
s = -1;
}
} else {
if (s + a[i] > 0)
s += a[i];
else {
p += 1 - s - a[i];
s = 1;
}
}
}
s = -1;
ans = min(ans, p);
p = a[0] + 1;
for (i = 1; i < n; i++) {
if (i % 2 == 0) {
if (s + a[i] < 0) {
s += a[i];
} else {
p += 1 + s + a[i];
s = -1;
}
} else {
if (s + a[i] > 0)
s += a[i];
else {
p += 1 - s - a[i];
s = 1;
}
}
}
ans = min(ans, p);
cout << ans << endl;
} else if (s < 0) {
for (i = 1; i < n; i++) {
if (i % 2 == 0) {
if (s + a[i] < 0) {
s += a[i];
} else {
p += 1 + s + a[i];
s = -1;
}
} else {
if (s + a[i] > 0)
s += a[i];
else {
p += 1 - s - a[i];
s = 1;
}
}
}
s = 1;
ans = min(ans, p);
p = -1 * a[0] + 1;
for (i = 1; i < n; i++) {
if (i % 2 == 1) {
if (s + a[i] < 0) {
s += a[i];
} else {
p += 1 + s + a[i];
s = -1;
}
} else {
if (s + a[i] > 0)
s += a[i];
else {
p += 1 - s - a[i];
s = 1;
}
}
}
ans = min(ans, p);
cout << ans << endl;
} else {
p = 1;
s = 1;
for (i = 1; i < n; i++) {
if (i % 2) {
if (s + a[i] < 0) {
s += a[i];
} else {
p += 1 + s + a[i];
s = -1;
}
} else {
if (s + a[i] > 0)
s += a[i];
else {
p += 1 - s - a[i];
s = 1;
}
}
}
s = -1;
ans = min(ans, p);
p = 1;
for (i = 1; i < n; i++) {
if (i % 2 == 0) {
if (s + a[i] < 0) {
s += a[i];
} else {
p += 1 + s + a[i];
s = -1;
}
} else {
if (s + a[i] > 0)
s += a[i];
else {
p += 1 - s - a[i];
s = 1;
}
}
}
ans = min(ans, p);
cout << ans << endl;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (long long &x : a) cin >> x;
long long ans = 0;
if (a[0] == 0 && a[1] < 0) {
a[0] = 1;
ans++;
}
if (a[0] == 0 && a[1] > 0) {
a[0] = -1;
ans++;
}
long long sum = a[0];
if (a[0] > 0) {
for (int i = 1; i < n; i++) {
sum += a[i];
if (i % 2 == 1) {
while (sum >= 0) {
sum--;
ans++;
}
}
if (i % 2 == 0) {
while (sum <= 0) {
sum++;
ans++;
}
}
}
}
if (a[0] < 0) {
for (int i = 1; i < n; i++) {
sum += a[i];
if (i % 2 == 1) {
while (sum <= 0) {
sum++;
ans++;
}
}
if (i % 2 == 0) {
while (sum >= 0) {
sum--;
ans++;
}
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
void sum(int *N, long *S, int n);
int main() {
int *N;
long *S;
long count_eve = 0, count_odd = 0, n;
int j = 0, k = 0;
cin >> n;
N = new int[n];
S = new long[n];
for (int i = 0; i < n; i++) {
cin >> N[i];
}
sum(N, S, n);
int del1 = 0, del2 = 0;
while (j != n) {
if (j % 2 == 0 && S[j] + del1 <= 0) {
count_eve += abs(S[j] + del1) + 1;
del1 += abs(S[j] + del1) + 1;
} else if (j % 2 == 1 && S[j] + del1 >= 0) {
count_eve += abs(S[j] + del1) + 1;
del1 += -abs(S[j] + del1) - 1;
}
j++;
}
sum(N, S, n);
while (k != n) {
if (k % 2 == 0 && S[k] + del2 >= 0) {
count_odd += abs(S[k] + del2) + 1;
del2 += -abs(S[k] + del2) - 1;
} else if (k % 2 == 1 && S[k] + del2 <= 0) {
count_odd += abs(S[k] + del2) + 1;
del2 += abs(S[k] + del2) + 1;
}
k++;
}
cout << min(count_eve, count_odd) << endl;
delete[] N;
delete[] S;
return 0;
}
void sum(int *N, long *S, int n) {
S[0] = N[0];
for (int i = 1; i < n; i++) S[i] = S[i - 1] + N[i];
}
void add(int *S, int n, int del, int k) {
for (int i = k; i < n + 1; i++) S[i] += del;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
int main() {
cin >> n;
int a[n + 1];
for (int i = 0; i < n; i++) cin >> a[i];
bool flag;
long long sum;
long long ans1 = 0;
sum = a[0];
flag = true;
for (int i = 1; i < n; i++) {
sum += a[i];
if (flag && sum <= 0) {
ans1 += -sum + 1;
sum = 1;
} else if (!flag && sum >= 0) {
ans1 += sum + 1;
sum = -1;
}
flag = !flag;
}
long long ans2 = 0;
sum = a[0];
flag = false;
for (int i = 1; i < n; i++) {
sum += a[i];
if (flag && sum <= 0) {
ans2 += -sum + 1;
sum = 1;
} else if (!flag && sum >= 0) {
ans2 += sum + 1;
sum = -1;
}
flag = !flag;
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
// debug
#define d(x) cerr << #x ":" << x << endl;
#define dd(x, y) cerr << "(" #x "," #y "):(" << x << "," << y << ")" << endl;
#define ddd(x, y, z) cerr << "(" #x "," #y "," #z "):(" << x << "," << y << "," << z << ")" << endl;
#define dump(v) cerr<<#v":[ ";for (auto macro_vi:v){cerr<<macro_vi<< " ";}cerr<<"]"<<endl;
#define ddump(v) cerr<<#v":"<<endl;for(auto macro_row:v) {cerr<<"["; for (auto macro__vi:macro_row){cerr<<macro__vi<< " ";}cerr<<"]"<<endl;}
#define damp(m) for(auto macro_pair:m){cerr<< macro_pair.first<<":"<<macro_pair.second<<endl;}
#define dpair(p) cerr << #p":"<<"(" << p.first << "," << p.second << ")" << endl;
// iterate
#define repr(i, a, b) for (int i = (int)(a); i < (int)(b); i++)
#define rep(i, n) repr(i, 0, n)
#define reprrev(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)
#define reprev(i, n) reprrev(i, 0, n)
#define repi(itr, ds) for (auto itr = ds.begin(); itr != ds.end(); itr++)
#define all(v) v.begin(), v.end()
// etc
#define chmin(mi, val) mi = min(mi, val);
#define chmax(ma, val) ma = max(ma, val);
using ll = long long;
using namespace std;
int main(){
cin.tie(0);
ios::sync_with_stdio(false);
int n;
cin >> n;
vector<ll> v(n, 0);
rep(i,n)cin >> v[i];
vector<int> p1(n+1,1), p2(n+1,1);
rep(i,n+1){
if(i%2==0) p1[i]*=-1;
}
rep(i,n+1){
if(i%2==1) p2[i]*=-1;
}
// dump(p1)
// dump(p2)
priority_queue<int, vector<int>, greater<int> > pq;
// dump(v)
vector<ll>sum_until(n+1,0);
int cnt;
// pat1
cnt = 0;
for(int i=1; i<=n; i++){
sum_until[i] = sum_until[i-1] + v[i-1];
// dump(sum_until)
if(sum_until[i]*p1[i] < 0){
int plus = abs(sum_until[i]);
dd(i,plus*p1[i])
d(sum_until[i])
sum_until[i] += plus*p1[i] + p1[i];
d(sum_until[i])
cnt += abs(plus*p1[i]) +1;
}
else if(sum_until[i] == 0){
sum_until[i] = p1[i];
cnt += 1;
}
dump(sum_until)
d(cnt)
pq.push(cnt);
p1 = p2;
// dump(sum_until)
cnt = 0;
for(int i=1; i<=n; i++){
d(i)
sum_until[i] = sum_until[i-1] + v[i-1];
// dump(sum_until)
if(sum_until[i]*p1[i] < 0){
int plus = abs(sum_until[i]);
dd(i,plus*p1[i])
d(sum_until[i])
sum_until[i] += plus*p1[i] + p1[i];
d(sum_until[i])
cnt += abs(plus*p1[i]) +1;
}
else if(sum_until[i] == 0){
sum_until[i] = p1[i];
cnt += 1;
}
}
pq.push(cnt);
d(cnt)
dump(sum_until)
cout << pq.top() << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
ttl = a[0]
cst = 0
if a[0]>=0:
flg = 1
elif a[0]<0:
flg = -1
for i in range(1,n):
ttl += a[i]
if ttl*flg < 0:
flg *= -1
else:
if flg > 0:
memo = abs(ttl)+1
ttl -= memo
cst += memo
elif flg < 0:
memo = abs(ttl)+1
ttl += memo
cst += memo
flg *= -1
print(cst)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
b=list(map(int,input().split()))
a=b
condition=''
cnt=0
wa=0
for i in range(n):
wa+=a[i]
if i == 0:
if a[i]>0:
condition='minus'
else:
condition='plus'
elif condition == 'plus':
condition='minus'
if wa<=0:
cnt+=abs(wa)+1
a[i]+=abs(wa)+1
wa+=abs(wa)+1
elif condition == 'minus':
condition='plus'
if wa>=0:
cnt+=abs(wa)+1
a[i]-=abs(wa)-1
wa-=abs(wa)-1
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> A(n);
for (int i = 0; i < n; i++) {
cin >> A.at(i);
}
int cntA, cntB, sigA, sigB;
cntA = cntB = 0;
;
for (int i = 0; i < n; i++) {
if (i == 0) {
if (A.at(i) > 0) {
sigA = A.at(i);
sigB = -1;
cntB += abs(A.at(i)) + 1;
} else {
sigB = A.at(i);
sigA = 1;
cntA += abs(A.at(i)) + 1;
}
continue;
}
if (sigA > 0) {
if (sigA + A.at(i) >= 0) {
cntA += abs(sigA + A.at(i)) + 1;
sigA = -1;
} else {
sigA += A.at(i);
}
if (sigB + A.at(i) <= 0) {
cntB += abs(sigB + A.at(i)) + 1;
sigB = 1;
} else {
sigB += A.at(i);
}
} else {
if (sigA + A.at(i) <= 0) {
cntA += abs(sigA + A.at(i)) + 1;
sigA = 1;
} else {
sigA += A.at(i);
}
if (sigB + A.at(i) > 0) {
cntB += abs(sigB + A.at(i)) + 1;
sigB = -1;
} else {
sigB += A.at(i);
}
continue;
}
}
cout << min(cntA, cntB) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, i, j, count, sum, x, bsum, s, count2;
vector<int> a, b;
cin >> n;
a.resize(n);
b.resize(n);
cin >> a[0];
for (i = 1; i < n; i++) {
cin >> a[i];
}
b = a;
count = 0;
count2 = 0;
if (a[0] == 0) {
a[0] = 1;
count = 1;
}
sum = 0;
for (int i = 0; i < n - 1; i++) {
sum += a[i];
if (sum + a[i + 1] == 0) {
count++;
if (sum > 0) {
a[i + 1]--;
} else {
a[i + 1]++;
}
}
if (sum * (sum + a[i + 1]) > 0) {
if (sum > 0) {
x = sum + 1;
s = x + a[i + 1];
a[i + 1] = -x;
count += abs(s);
} else {
x = sum - 1;
s = x + a[i + 1];
a[i + 1] = -x;
count += abs(s);
}
}
}
x = abs(b[0]) + 1;
if (b[0] >= 0) {
b[0] = -1;
} else {
b[0] = 1;
}
count2 = x;
sum = 0;
for (int i = 0; i < n - 1; i++) {
sum += b[i];
if (sum + b[i + 1] == 0) {
count2++;
if (sum > 0) {
b[i + 1]--;
} else {
b[i + 1]++;
}
}
if (sum * (sum + b[i + 1]) > 0) {
if (sum > 0) {
x = sum + 1;
s = x + b[i + 1];
b[i + 1] = -x;
count2 += abs(s);
} else {
x = sum - 1;
s = x + b[i + 1];
a[i + 1] = -x;
count2 += abs(s);
}
}
}
cout << min(count, count2);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n;
int i;
int sum;
bool default_flag;
bool plus_flag, minus_flag;
int ope_count;
cin >> n;
vector<int> a(n);
for (i = 0; i < n; i++) {
cin >> a.at(i);
}
sum = 0;
ope_count = 0;
default_flag = true;
plus_flag = false;
minus_flag = false;
for (i = 0; i < n; i++) {
sum += a.at(i);
if (default_flag == true) {
default_flag = false;
if (sum > 0) {
plus_flag = true;
} else if (sum < 0) {
minus_flag = true;
} else if (sum == 0) {
ope_count++;
if (a.at(i + 1) <= 0) {
sum++;
plus_flag = true;
} else if (a.at(i + 1) > 0) {
sum--;
minus_flag = true;
}
}
} else if (plus_flag == true) {
while (sum >= 0) {
ope_count++;
sum--;
}
plus_flag = false;
minus_flag = true;
} else if (minus_flag == true) {
while (sum <= 0) {
ope_count++;
sum++;
}
plus_flag = true;
minus_flag = false;
}
}
cout << ope_count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxx = 1e5 + 7;
ll n, ans = 1ll << 60;
ll a[maxx];
int main() {
cin >> n;
for(int i = 1; i <= n; i++) cin >> a[i];
int flag = 0;
LL sum = 0;
LL res = 0;
for(int i = 1; i <= n; i++) {
sum += a[i];
if(flag == 0){
if(sum <= 0) {
res = res + 1 - sum;
sum = 1;
}
}
else {
if(sum >= 0){
res = res + sum + 1;
sum = -1;
}
}
flag ^= 1;
}
ans = min(ans, res);
res = 0;
sum = 0;
flag = 0;
for(int i = 1; i <= n; i++) {
sum += a[i];
if(flag == 1){
if(sum <= 0) {
res = res + 1 - sum;
sum = 1;
}
}
else {
if(sum >= 0){
res = res + sum + 1;
sum = -1;
}
}
flag ^= 1;
}
ans = min(ans, res);
cout << ans << endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | /**
* purpose : ABC 59 C
* author : kyomukyomupurin
* created : 2018-10-22 02:22:55
**/
#include <bits/stdc++.h>
using namespace std;
#define int64 long long
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
int N; cin >> N;
int64 a[N] = {};
for (int i = 0; i < N; ++i) cin >> a[i];
// i(odd) > 0
int64 sum1 = 0; int64 cost1 = 0;
for (int i = 0; i < N; ++i) {
sum1 += a[i];
if (i % 2 == 1 && sum1 <= 0) {
cost1 += -1 * sum1 + 1; sum1 = 1;
}
else if (i % 2 == 0 && sum1 >= 0) {
cost1 += sum1 + 1; sum1 = -1;
}
}
//i(even) > 0
int64 sum2 = 0; int64 cost2 = 0;
for (int i = 0; i < N; ++i) {
sum2 += a[i];
if (i % 2 == 0 && sum2 <= 0){
cost2 += -1 * sum2 + 1; sum2 = 1;
}
else if (i % 2 == 1 && sum2 >= 0){
cost2 += sum2 + 1; sum2 = 1;
}
}
cout << min(cost1, cost2) << '\n';
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
struct Fast {
Fast() {
cin.tie(0);
ios::sync_with_stdio(false);
}
} fast;
template <typename T>
inline size_t maxElement(T beginIt, T endIt) {
return max_element(beginIt, endIt);
}
template <typename T>
inline size_t minElement(T beginIt, T endIt) {
return min_element(beginIt, endIt);
}
template <typename T>
inline size_t maxIndex(T beginIt, T endIt) {
return distance(beginIt, *max_element(beginIt, endIt));
}
template <typename T>
inline size_t minIndex(T beginIt, T endIt) {
return distance(beginIt, *min_element(beginIt, endIt));
}
template <typename T>
inline int sum(T beginIt, T endIt) {
return accumulate(beginIt, endIt, 0);
}
template <typename T>
inline int mean(T beginIt, T endIt) {
return sum(beginIt, endIt) / distance(beginIt, endIt);
}
template <typename T>
inline void debug(T x) {
cerr << x << " "
<< "(L:" << 17 << ")" << endl;
}
signed main(void) {
int num = 0;
int N;
array<int, 100000> A;
string S;
array<int, 100000> S1;
array<int, 100000> S2;
cin >> N;
for (int i = 0; i < N; ++i) {
cin >> A[i];
if (i == 0)
S1[i] = A[i];
else
S1[i] = S2[i - 1] + A[i];
S2[i] = S[i];
}
for (int i = 0; i < N; ++i) {
if (i % 2 == 0) {
if (S1[i] <= 0) {
num += -S1[i] + 1;
S1[i] = 1;
if (i < N - 1) S1[i + 1] = S1[i] + A[i + 1];
}
} else {
if (S1[i] >= 0) {
num += -S1[i] - 1;
S1[i] = -1;
if (i < N - 1) S1[i + 1] = S1[i] + A[i + 1];
}
}
}
int tmp = 0;
for (int i = 0; i < N; ++i) {
if (i % 2 == 1) {
if (S2[i] <= 0) {
tmp += -S2[i] + 1;
S2[i] = 1;
if (i < N - 1) S2[i + 1] = S2[i] + A[i + 1];
}
} else {
if (S2[i] >= 0) {
tmp += -S2[i] - 1;
S2[i] = -1;
if (i < N - 1) S2[i + 1] = S2[i] + A[i + 1];
}
}
}
cout << num << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | main :: IO()
main = do
getLine
lis <- words <$> getLine
let numlis = map read lis
print $ solve numlis 0
solve :: [Integer] -> Integer -> Integer
solve [] x = 0
solve (x:xs) 0 = solve xs x
solve (x:xs) m
| m > 0 = max 0 (sum+1) + solve xs (min sum (-1))
| m < 0 = max 0 (1-sum) + solve xs (max sum 1)
where sum = m+x
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.Linq;
namespace AtCoderBeginnerContest
{
public class Program
{
public static void Main(string[] args)
{
// C
var n = long.Parse(Console.ReadLine());
var a = Console.ReadLine().Split(' ').Select(x => long.Parse(x)).ToArray();
long sum = a[0];
long count = 0;
for (int i = 1; i < n; i++)
{
// 差し引き0になってしまうとき
if (sum + a[i] == 0)
{
if (i == n - 1 || a[i + 1] > 0) sum = -1;
else sum = 1;
count++;
}
// sumとsum+a[i]の符号が違うとき
else if ((sum > 0 && sum+a[i] < 0) || (sum < 0 && sum + a[i] > 0))
{
sum = sum + a[i];
}
// sumとsum+a[i]の符号が同じとき
else
{
if (Math.Abs(sum + a[i]) > Math.Abs(sum))
{
count += Math.Abs(sum) + 1;
sum = sum > 0 ? sum = -1 + a[i] : sum = 1 + a[i];
}
else
{
count += Math.Abs(sum+a[i]) + 1;
sum = sum > 0 ? sum = -1 : sum = 1;
}
}
}
Console.WriteLine(count);
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, ans, countv = 0, countu = 0, sumv = 0, sumu = 0;
cin >> n;
vector<int> v(n), u(n);
for (int i = 0; i < n; i++) {
cin >> v.at(i);
u.at(i) = v.at(i);
}
for (int j = 0; j < n; j++) {
sumv += v.at(j);
if (j % 2 == 0) {
while (sumv <= 0) {
sumv++;
countv++;
}
}
if (j % 2 == 1) {
while (sumv >= 0) {
sumv--;
countv++;
}
}
}
for (int j = 0; j < n; j++) {
sumu += u.at(j);
if (j % 2 == 0) {
while (sumu >= 0) {
sumu--;
;
countu++;
}
}
if (j % 2 == 1) {
while (sumu <= 0) {
sumu++;
countu++;
}
}
}
cout << min(countv, countu) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int main(void) {
int n;
long sum1 = 0;
long sum2 = 0;
long tmp;
long lcount = 0;
long rcount = 0;
int a[100000];
char input[1500000];
int i = 0, j = 0;
int cp = 0, tcp = 0;
char tp[12];
tp[12] = '\0';
fgets(input, 1500000, stdin);
n = atoi(input);
fgets(input, 1500000, stdin);
for (i = 0; i < n; i++) {
while (input[cp] != ' ' && input[cp] != '\n') {
tp[tcp] = input[cp];
tcp++;
cp++;
}
tp[tcp] = '\0';
tcp = 0;
cp++;
a[i] = atoi(tp);
}
tmp = a[0];
for (i = 1; i < n; i++) {
if (i % 2 == 0) {
tmp += a[i];
while (tmp > -1) {
lcount++;
tmp--;
}
} else {
tmp += a[i];
while (tmp < 1) {
lcount++;
tmp++;
}
}
}
tmp = a[0];
for (i = 1; i < n; i++) {
if (i % 2 == 1) {
tmp += a[i];
while (tmp > -1) {
rcount++;
tmp--;
}
} else {
tmp += a[i];
while (tmp < 1) {
rcount++;
tmp++;
}
}
}
printf("%ld\n", lcount > rcount ? rcount : lcount);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | import java.util.Scanner
object Main extends App {
val sc = new Scanner(System.in)
val n = sc.nextInt()
val a = new Array[Int](n)
for(i <- 0 until n)
a(i) = sc.nextInt()
var cnt = 0
var ans = 0
for(i <- 0 until n){
val now = a(i)
cnt += now
if(i % 2 == 0){
if(cnt < 1){
ans += 1 - cnt
cnt = 1
}
}
else{
if(cnt > -1){
ans += cnt - (-1)
cnt = -1
}
}
}
cnt = 0
var ans2 = 0
for(i <- 0 until n){
val now = a(i)
cnt += now
if(i % 2 != 0){
if(cnt < 1){
ans2 += 1 - cnt
cnt = 1
}
}
else{
if(cnt > -1){
ans2 += cnt - (-1)
cnt = -1
}
}
}
println(Math.min(ans, ans2))
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = list(map(int, input().split()))
plus_ans = 0
minus_ans = 0
for i in range(len(A)):
if i == 0:
if A[0] <= 0:
plus_ans += A[0] + 1
sum = 1
else:
sum = A[0]
else:
if sum > 0:
if sum + A[i] >= 0:
plus_ans += abs(sum + A[i]) + 1
sum = -1
else:
sum += A[i]
elif sum < 0:
if sum + A[i] <= 0:
plus_ans += abs(sum + A[i]) + 1
sum = 1
else:
sum += A[i]
for i in range(len(A)):
if i == 0:
if A[0] >= 0:
minus_ans += A[0] + 1
sum = -1
else:
sum = A[0]
else:
if sum > 0:
if sum + A[i] >= 0:
minus_ans += abs(sum + A[i]) + 1
sum = -1
else:
sum += A[i]
elif sum < 0:
if sum + A[i] <= 0:
minus_ans += abs(sum + A[i]) + 1
sum = 1
else:
sum += A[i]
print(min(plus_ans, minus_ans))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int[] a=new int[n];
for(int i=0;i<n;i++)a[i]=sc.nextInt();
int sum=0;
int count=0;
for(int i=0;i<n-1;i++){
sum+=a[i];
if(sum>0){
if(sum+a[i+1]>=0){
count+=sum+a[i+1]+1;
a[i+1]-=sum+a[i+1]+1;
}
}else if(sum<0){
if(sum+a[i]<=0){
count+=sum+a[i+1]+1;
a[i+1]-=sum+a[i+1]+1;
}
}
}
System.out.println(count);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
signed main() {
int n;
cin >> n;
int a[n];
for (size_t i = 0; i < n; i++) {
cin >> a[i];
}
int s = 0;
int res = 0;
for (size_t i = 0; i < n; i++) {
int s2 = s + a[i];
if (i % 2 == 0) {
if (s2 <= -1) {
s = s2;
} else {
s = -1;
res += (s2 + 1);
}
} else {
if (s2 >= 1) {
s = s2;
} else {
s = 1;
res += (-s2 + 1);
}
}
}
s = 0;
int res2 = 0;
for (size_t i = 0; i < n; i++) {
int s2 = s + a[i];
if (i % 2 == 1) {
if (s2 <= -1) {
s = s2;
} else {
s = -1;
res2 += (s2 + 1);
}
} else {
if (s2 >= 1) {
s = s2;
} else {
s = 1;
res2 += (-s2 + 1);
}
}
}
cout << min(res, res2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using lli = long long int;
using ulli = unsigned long long int;
vector<lli> N, rN;
lli in, n, d = 0, dp, pm;
ulli ans = 0;
int main() {
cin >> n;
for (lli l = 0; l < n; l++) {
cin >> in;
if (l == 0) {
N.push_back(in);
} else {
N.push_back(N[l - 1] + in);
}
}
for (lli l = 1; l < (lli)N.size(); l++) {
dp = d;
if (N[l - 1] + dp < 0) {
if (N[l] + dp < 0) {
d += 1 - N[l] - dp;
ans += 1 - N[l] - dp;
} else if (N[l] + dp == 0) {
d += 1;
ans += 1;
}
} else if (N[l - 1] + dp > 0) {
if (N[l] + dp > 0) {
d -= N[l] + dp + 1;
ans += N[l] + dp + 1;
} else if (N[l] + dp == 0) {
d -= 1;
ans += 1;
}
} else {
for (lli m = l; m < (lli)N.size(); m++) {
if (N[m] > 0) {
pm = (m - l) % 2;
break;
} else if (N[m] < 0) {
pm = (m - l + 1) % 2;
break;
}
if (m == (lli)N.size() - 1) {
pm = (m + 1) % 2;
break;
}
}
if (pm == 0) {
d += 1;
ans += 1;
} else if (pm == 1) {
d -= 1;
ans += 1;
}
}
}
cout << ans;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
int sum = 0;
int ans0 = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0 && sum <= 0) {
ans0 += abs(sum) + 1;
sum = 1;
} else if (i & 2 == 1 && sum >= 0) {
ans0 += abs(sum) + 1;
sum = -1;
}
}
sum = 0;
int ans1 = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0 && sum >= 0) {
ans1 += abs(sum) + 1;
sum = -1;
} else if (i % 2 == 1 && sum <= 0) {
ans1 += abs(sum) + 1;
sum = 1;
}
}
cout << min(ans0, ans1) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 |
n = int(input())
l = map(int, input().split())
ll = []
for q in range(len(l)):
ll.append(l[q])
print(ll)
sums1 = [0] * n
count1 = 0
sums1[0] = ll[0]
for i in range(1, len(ll)):
sums1[i] = sums1[i-1] + ll[i]
if l[0] == 0:
for v in range(len(sums1)):
sums1 += [1] * len(sums1)
count1 += 1
for k in range(1, len(sums1)):
while sums1[k] == 0 or sums1[k] * sums1[k-1] > 0:
if sums1[k] == 0:
for p in range(k, len(sums1)):
sums1[p] += -(sums1[k-1]/abs(sums1[k-1]))
count1 += 1
if sums1[k] * sums1[k-1] > 0:
for p in range(k, len(sums1)):
sums1[p] += (abs(sums1[k])+1) * (-(sums1[k])/abs(sums1[k]))
count1 += abs(sums1[k])+1
sums2 = [0] * n
count2 = 0
sums2[0] = ll[0]
for i in range(1, len(ll)):
sums2[i] = sums2[i-1] + ll[i]
if l[0] == 0:
for v in range(len(sums2)):
sums2 -= [1] * len(sums2)
count2 += 1
for k in range(1, len(sums2)):
while sums2[k] == 0 or sums2[k] * sums2[k-1] > 0:
if sums2[k] == 0:
for p in range(k, len(sums2)):
sums2[p] += -sums2[k-1]/abs(sums2[k-1])
count2 += 1
if sums2[k] * sums2[k-1] > 0:
for p in range(k, len(sums1)):
sums2[p] += -(abs(sums2[k])+1) * ((sums2[k])/abs(sums2[k]))
count2 += abs(sums1[k])+1
print(min(count2, count2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using lint = long long;
using uint = unsigned int;
using ulint = unsigned long long;
using ldouble = long double;
using pii = pair<int, int>;
using pli = pair<lint, lint>;
using pdd = pair<double, double>;
using pld = pair<ldouble, ldouble>;
using v1i = vector<int>;
using v1li = vector<lint>;
using v2i = vector<vector<int>>;
using v2li = vector<vector<lint>>;
using v3i = vector<vector<vector<int>>>;
using v3li = vector<vector<vector<lint>>>;
using v1b = vector<bool>;
using v2b = vector<vector<bool>>;
using v3b = vector<vector<vector<bool>>>;
using v1c = vector<char>;
using v2c = vector<vector<char>>;
using v3c = vector<vector<vector<char>>>;
constexpr lint mod1 = 1e9 + 7;
constexpr lint mod2 = 998244353;
int main() {
lint n, p = 0, q = 0, r = 0, s = 0;
cin >> n;
v1i v(n), w(n), a(n), b(n);
for (int i = 0; i < n; ++i) cin >> v[i];
w[0] = v[0];
for (int i = 0; i < n - 1; ++i) w[i + 1] = w[i] + v[i + 1];
for (int i = 0; i < n; ++i) {
a[i] = w[i];
a[i] += r;
if (i % 2 == 0) {
if (w[i] < 0) {
p += 1 - w[i];
r += 1 - w[i];
}
} else {
if (w[i] > 0) {
p += w[i] + 1;
r -= w[i] + 1;
}
}
}
for (int i = 0; i < n; ++i) {
a[i] = w[i];
a[i] += r;
if (i % 2 == 1) {
if (w[i] < 0) {
q += 1 - w[i];
s += 1 - w[i];
}
} else {
if (w[i] > 0) {
q += w[i] + 1;
s -= w[i] + 1;
}
}
}
cout << min(p, q) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <iostream>
#include <vector>
long body(std::vector<long>& a){
long ans = 0;
std::vector<long> s(a.size());
s.at(0) = a.at(0);
for(unsigned long i = 1; i < a.size(); i++){
s.at(i) = s.at(i-1) + a.at(i);
}
long diff = 0;
for(unsigned long i = 1; i < s.size(); i++){
s.at(i) += diff; // update
long n = 0;
if(s.at(i-1) > 0 && s.at(i) >= 0){
n = s.at(i) + 1;
ans += n;
diff -= n;
s.at(i) += diff;
}else if(s.at(i-1) < 0 && s.at(i) <= 0){
n = - s.at(i) + 1;
ans += n;
diff += n;
s.at(i) += diff;
}
}
return ans;
}
int main(int argc, char **argv)
{
long n;
std::cin >> n;
std::vector<long> a(n);
for(long i = 0; i < n; i++){
std::cin >> a.at(i);
}
if(a.at(0) != 0){
ans = body(a);
}else{
a.at(0) = -1;
long ans_a = body(a) + 1;
a.at(0) = 1;
long ans_b = body(a) + 1;
ans = std::min(ans_a, ans_b);
}
std::cout << ans << std::endl;
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.