Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys import math INF = 10**9+7 def k(i): if(i == 1): return 1 else: return(i * k(i-1)) def comb(n, r): if(n == r or r == 1): return 1 else: return k(n) / (k(n-r) * k(r)) stdin = sys.stdin def na(): return map(int, stdin.readline().split()) def ns(): return stdin.readline().strip() def nsl(): return list(stdin.readline().strip()) def ni(): return int(stdin.readline()) def nil(): return list(map(int, stdin.readline().split())) n = ni() a = nil() b = [] for i in range(n): b.append(a[i]) sum = 0 c1 = 0 c2 = 0 if a[0] == 0: a[0] = 1 c1 += 1; for i in range(0, n-1): sum += a[i] sum2 = sum + a[i+1] if sum2 == 0: if sum >0: a[i+1] -= 1 sum2 -= 1 c1 +=1 if(sum * sum2 >= 0): k = abs(sum2) + 1 h = k - (abs(sum) - 1) l = k - h if sum > 0 : a[i] -= l sum -= l a[i + 1] -= h else: a[i] += l sum += l a[i + 1] += h c1 += h+l sum = 0 a = b if a[0] == 0: a[0] = 1 c2 += 1; else: c2 = abs(a[0]) + 1 if a[0] > 0: a[0] = -1 else: a[0] = 1 for i in range(0, n-1): sum += a[i] sum2 = sum + a[i+1] if sum2 == 0: if sum >0: a[i+1] -= 1 sum2 -= 1 c2 +=1 if(sum * sum2 >= 0): k = abs(sum2) + 1 h = k - (abs(sum) - 1) l = k - h if sum > 0 : a[i] -= l sum -= l a[i + 1] -= h else: a[i] += l sum += l a[i + 1] += h c2 += k print(min(c1, c2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; long long a[n]; long long res = 0; for (long long i = 0; i < n; ++i) { cin >> a[i]; } bool can1 = false; if (a[0] == 0) { for (long long i = 1; i < n; ++i) { if (a[i] > 0) { a[0] = -1; res++; can1 = true; break; } else if (a[i] < 0) { a[0] = 1; res++; can1 = true; break; } } } else can1 = true; long long total = a[0]; for (long long i = 1; i < n; ++i) { if (total < 0 && total + a[i] >= 0) { total += a[i]; if (total == 0) { total++; res++; } } else if (total > 0 && total + a[i] <= 0) { total += a[i]; if (total == 0) { total--; res++; } } else if (total < 0 && total + a[i] <= 0) { res += 1 - total - a[i]; a[i] = 1 - total; total += a[i]; if (total == 0) { total++; res++; } } else if (total > 0 && total + a[i] >= 0) { res += abs(-1 - total - a[i]); a[i] = -1 - total; total += a[i]; if (total == 0) { total--; res++; } } } if (can1 == false) cout << 2 * n + 1 << endl; else cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long a[100000]; int n; void solve() { long long sum0; long long sum1; long long ans1 = 0; long long ans2 = 0; if (a[0] == 0) { ans1++; sum0 = 1; } else { sum0 = a[0]; } for (int i = 1; i < n; i++) { sum1 = sum0 + a[i]; if (sum1 * sum0 < 0) { } else if (sum1 * sum0 > 0) { ans1 += abs(sum1) + 1; sum1 = -1 * sum0 / abs(sum0); } else { ans1++; sum1 = -1 * sum0 / abs(sum0); } sum0 = sum1; } if (a[0] == 0) { ans2++; sum0 = -1; } else { sum0 = a[0]; } for (int i = 1; i < n; i++) { sum1 = sum0 + a[i]; if (sum1 * sum0 < 0) { } else if (sum1 * sum0 > 0) { ans2 += abs(sum1) + 1; sum1 = -1 * sum0 / abs(sum0); } else { ans2++; sum1 = -1 * sum0 / abs(sum0); } sum0 = sum1; } cout << min(ans1, ans2) << endl; return; } int main() { cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } int total1 = 0; int ans1 = 0; for (int i = 0; i < n; i++) { total1 += a.at(i); if (i % 2 == 0) { if (total1 <= 0) { ans1 += total1 * (-1) + 1; total1 = 1; } } else { if (total1 >= 0) { ans1 += total1 + 1; total1 = -1; } } } int total2 = 0; int ans2 = 0; for (int i = 0; i < n; i++) { total2 += a.at(i); if (i % 2 == 1) { if (total2 <= 0) { ans2 += total2 * (-1) + 1; total2 = 1; } } else { if (total2 >= 0) { ans2 += total2 + 1; total2 = -1; } } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; signed main() { int n; cin >> n; int a[n]; for (size_t i = 0; i < n; i++) { cin >> a[i]; } int s = a[0]; int res = 0; for (size_t i = 1; i < n; i++) { if (s > 0) { int s2 = s + a[i]; if (s2 <= -1) { s = s2; } else { s = -1; res += (s2 + 1); } } else { int s2 = s + a[i]; if (s2 >= 1) { s = s2; } else { s = 1; res += (-s2 + 1); } } } cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long INFl = 1e+18 + 1; int INF = 1e+9 + 1; int sign(int A) { return (A > 0) - (A < 0); } int main() { int N; cin >> N; int a[100001]; int asum[100001] = {0}; for (int i = 0; i < N; i++) { cin >> a[i]; if (i != 0) asum[i] = asum[i - 1] + a[i]; else asum[i] = a[i]; } long long ansmin = INFl; for (int pari = 0; pari < 2; pari++) { long long ans = 0, sumplus = 0; for (int i = 0; i < N; i++) { int goal = (i + pari) % 2 * 2 - 1; if (sign(asum[i] + sumplus) != goal) { ans += abs(asum[i] + sumplus - goal); sumplus += goal - (asum[i] + sumplus); } } ansmin = min(ansmin, ans); } cout << ansmin << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
require 'prime' include Math def max(a,b); a > b ? a : b end def min(a,b); a < b ? a : b end def swap(a,b); a, b = b, a end def gif; gets.to_i end def gff; gets.to_f end def gsf; gets.chomp end def gi; gets.split.map(&:to_i) end def gf; gets.split.map(&:to_f) end def gs; gets.chomp.split.map(&:to_s) end def gc; gets.chomp.split('') end def pr(num); num.prime_division end def digit(num); num.to_s.length end def array(s,ini=nil); Array.new(s){ini} end def darray(s1,s2,ini=nil); Array.new(s1){Array.new(s2){ini}} end def rep(num); num.times{|i|yield(i)} end def repl(st,en,n=1); st.step(en,n){|i|yield(i)} end n = gif a = gi sum = [] count = 0 sum << a[0] repl 1,a.size-1 do |i| sum << a[i]+sum[i-1] if sum[i-1] > 0 loop{ break if sum[i] < 0 sum[i] -= 1 count += 1 } else loop{ break if sum[i] > 0 sum[i] += 1 count += 1 } end end puts count
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int getsign(int n) { if (n > 0) { return 1; } if (n < 0) { return -1; } return -1; } int count(int sign0, long a[], int n) { int sum = 0; int sign = sign0; int count = 0; for (int i = 0; i < n; ++i) { sum += a[i]; if (getsign(sum) != sign) { count += abs(sign - sum); sum = sign; } sign = (sign * -1); } return count; } int main() { int n; cin >> n; long a[n]; for (int i = 0; i < n; ++i) { cin >> a[i]; } cout << min(count(1, a, n), count(-1, a, n)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) sum = a[0] change = 0 if a[0]==0: i=0 while a[i]==0: i+=1 if a[i]<0: a[i-1]=1 for idx in range(i-2,-1,-1): a[idx]=a[i-1]*-1 if a[i]>0: a[i-1]=-1 for idx in range(i-2,-1,-1): a[idx]=a[i-1]*-1 change += i-1 for i in range(1,n): val = 0 tempsum = sum+a[i] if sum < 0 and tempsum <=0: val = 1 - tempsum if sum > 0 and tempsum >=0: val = -1 - tempsum sum = tempsum + val change += abs(val) print(change)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 1e9 + 7; long long n, g, ans, t; int main() { cin >> n; cin >> t; if (t == 0) { int a[100001]; g = 1; ans += 1; for (int i = 2; i <= n; i++) { cin >> a[i]; if (g > 0) { g += a[i]; if (g > -1) { ans += g + 1; g = -1; } } else { g += a[i]; if (g < 1) { ans += 1 - g; g = 1; } } } long long ans2 = 1; g = -1; for (int i = 2; i <= n; i++) { if (g > 0) { g += a[i]; if (g > -1) { ans2 += g + 1; g = -1; } } else { g += a[i]; if (g < 1) { ans2 += 1 - g; g = 1; } } } cout << min(ans, ans2); return 0; } g = t; while (--n) { cin >> t; if (g > 0) { g += t; if (g > -1) { ans += g + 1; g = -1; } } else { g += t; if (g < 1) { ans += 1 - g; g = 1; } } } cout << ans; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int ans(int n, int *, int change); int main() { int n; int a[110000]; cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; int pAns, nAns; pAns = ans(n, a, 1); nAns = ans(n, a, -1); printf("%d\n", min(pAns, nAns)); } int ans(int n, int *a, int change) { int Ans = 0; int sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; switch (change) { case -1: if (sum > -1) Ans += 1 + sum, sum = -1; change *= -1; break; case 1: if (sum < 1) Ans += 1 - sum, sum = 1; change *= -1; break; } } return Ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; enum State { Plus, Minus, Zero }; State GetState(long long sum) { State state; if (sum > 0) state = Plus; else if (sum == 0) state = Zero; else state = Minus; return state; } int main() { int n; cin >> n; vector<long long> a(n); cin >> a[0]; unsigned long long count = 0; State state = GetState(a[0]); if (state == Zero) { a[0] = -1; state = Minus; count++; } long long sum = a[0]; for (int i = 1; i < n; i++) { cin >> a[i]; State nextState = GetState(sum + a[i]); switch (nextState) { case Plus: if (state == Plus) { long long bf_a = a[i]; a[i] = -1 - sum; count += abs(a[i] - bf_a); nextState = Minus; } break; case Minus: if (state == Minus) { long long bf_a = a[i]; a[i] = 1 - sum; count += abs(a[i] - bf_a); nextState = Plus; } break; case Zero: if (state == Plus) { long long bf_a = a[i]; a[i] = -1 - sum; count += abs(a[i] - bf_a); nextState = Minus; } else if (state == Minus) { long long bf_a = a[i]; a[i] = 1 - sum; count += abs(a[i] - bf_a); nextState = Plus; } default: break; } sum += a[i]; state = nextState; } if (sum == 0) count++; cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { long int n; cin >> n; vector<long int> a(n); for (int i = 0; i < (n); i++) { cin >> a[i]; } long int oddcount = 0, evencount = 0; long int oddsum = 0, evensum = 0; bool oddplus = true, evenplus = false; for (int i = 0; i < (n); i++) { oddsum += a[i]; evensum += a[i]; if (oddplus && oddsum <= 0) { oddcount += 1 - oddsum; oddsum = 1; } else if (!oddplus && oddsum >= 0) { oddcount += 1 + oddsum; oddsum = -1; } if (evenplus && evensum <= 0) { evencount += 1 - evensum; evensum = 1; } else if (!evenplus && evensum >= 0) { evencount += 1 + evensum; evensum = -1; } oddplus = !oddplus; evenplus = !evenplus; } cout << fmin(oddcount, evencount) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys def input(): return sys.stdin.readline().strip() sys.setrecursionlimit(20000000) def main(): N = int(input()) A = list(map(int, input().split())) S = A[0] cnt = 0 if A[0] == 0: answer = [] for a in (1, -1): cnt = 1 S = a for i in range(1, N): s = S + A[i] if A[i] == 0: if S > 0: cnt += S + 1 S = -1 else: cnt += abs(S) + 1 S = 1 else: if s == 0: if S < 0: cnt += 1 S = 1 else: cnt += 1 S = -1 else: if S * s > 0: if S < 0: cnt += abs(s) + 1 S = 1 else: cnt += s + 1 S = -1 else: S = s answer.append(cnt) print(min(answer)) else: for i in range(1, N): s = S + A[i] if A[i] == 0: if S > 0: cnt += S + 1 S = -1 else: cnt += abs(S) + 1 S = 1 else: if s == 0: if S < 0: cnt += 1 S = 1 else: cnt += 1 S = -1 else: if S * s > 0: if S < 0: cnt += abs(s) + 1 S = 1 else: cnt += s + 1 S = -1 else: S = s print(cnt) if __name__ == "__main__": main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); long[] a = new long[n]; for (int i = 0; i < n; i++) { a[i] = sc.nextInt(); } sc.close(); int ans = 0; int tmp = 0; for (int type = 0; type < 2; type++) { ans = 0; long wa = 0; for (int i = 0; i < n; i++) { wa += a[i]; if (i % 2 == type % 2) { if (wa >= 0) { ans += (wa + 1); wa = -1; } } else { if (wa <= 0) { ans -= (wa - 1); wa = 1; } } } if (type == 0) tmp = ans; } System.out.println(Math.min(ans, tmp)); } public static int[] arrayInt(Scanner sc, int n) { int[] array = new int[n]; for (int i = 0; i < n; i++) { array[i] = sc.nextInt(); } return array; } public static long[] arrayLong(Scanner sc, int n) { long[] array = new long[n]; for (int i = 0; i < n; i++) { array[i] = sc.nextLong(); } return array; } public static double[] arrayDouble(Scanner sc, int n) { double[] array = new double[n]; for (int i = 0; i < n; i++) { array[i] = sc.nextDouble(); } return array; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main(void) { int n; std::cin >> n; std::vector<long long int> a(n); for (int i = 0; i < n; i++) { std::cin >> a[i]; } long long int count = 0; long long int sum = a[0]; for (int i = 1; i < n; i++) { if (sum > 0) { sum += a[i]; if (sum >= 0) { count += sum + 1; sum = -1; } } else { sum += a[i]; if (sum <= 0) { count += -sum + 1; sum = 1; } } } std::cout << count << std::endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(false); cin.tie(0); int N; cin >> N; vector<int> a(N); for (auto& ai : a) cin >> ai; int c1 = 0; int s1 = a[0]; if (s1 <= 0) { c1 = -s1 + 1; s1 = 1; } for (int i = (1); i < (N); ++i) { if (s1 > 0) { s1 += a[i]; if (s1 >= 0) { c1 += s1 + 1; s1 = -1; } } else { s1 += a[i]; if (s1 <= 0) { c1 += -s1 + 1; s1 = 1; } } } int c2 = 0; int s2 = a[0]; if (s2 >= 0) { c2 = s2 + 1; s2 = -1; } for (int i = (1); i < (N); ++i) { if (s2 > 0) { s2 += a[i]; if (s2 >= 0) { c2 += s2 + 1; s2 = -1; } } else { s2 += a[i]; if (s2 <= 0) { c2 += -s2 + 1; s2 = 1; } } } if (c1 < c2) { cout << c1 << endl; } else { cout << c2 << endl; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using static System.Console; using static System.Math; public class Hello{ public static void Main(){ int kazu = int.Parse(ReadLine()); string[] number = ReadLine().Split(' '); long wa = 0; long wa2 = 0; int num0 = int.Parse(number[0]); long count = 0; long ans =0; if(num0 == 0){ wa = 1; wa2 = -1; count++; }else{ wa = num0; } for(int i=1;i<kazu;i++){ int numi = int.Parse(number[i]); long temp = wa + numi; if(wa > 0){ if(temp < 0){ wa = temp; }else{ count += Abs(numi + wa) + 1; wa = -1; } }else if(wa < 0){ if(temp > 0){ wa = temp; }else{ count += Abs(numi + wa) + 1; wa = 1; } } } ans = count; if(wa2 != 0){ count = 1; for(int i=1;i<kazu;i++){ int numi = int.Parse(number[i]); long temp = wa2 + numi; if(wa2 > 0){ if(temp < 0){ wa2 = temp; }else{ count += Abs(numi + wa2) + 1; wa2 = -1; } }else if(wa2 < 0){ if(temp > 0){ wa2 = temp; }else{ count += Abs(numi + wa2) + 1; wa2 = 1; } } } } WriteLine(Min(count,ans)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.*; import java.util.*; import java.lang.*; public class Main { static class FastScanner { private final InputStream in = System.in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int buflen = 0; private boolean hasNextByte() { if (ptr < buflen) { return true; } else { ptr = 0; try { buflen = in.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (buflen <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1; } private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126; } public boolean hasNext() { while (hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte(); } public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while (isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); long n = 0; boolean minus = false; int b = readByte(); if (b == '-') { minus = true; b = readByte(); } if (b < '0' || '9' < b) { throw new NumberFormatException(); } while (true) { if ('0' <= b && b <= '9') { n *= 10; n += b - '0'; } else if (b == -1 || !isPrintableChar(b)) { return minus ? -n : n; } else { throw new NumberFormatException(); } b = readByte(); } } public int nextInt() { long nl = nextLong(); if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException(); return (int) nl; } public double nextDouble() { return Double.parseDouble(next()); } } public static void main(String[] args) { FastScanner fs = new FastScanner(); int n = fs.nextInt(); long[] a = new long[n]; a[0] = fs.nextLong(); a[1] = fs.nextLong(); long ans = 0L; long sum = 0L; if (a[0] == 0 && a[1] > a[0]) { sum = -1L; ans += 1; } else if (a[0] == 0 && a[1] < a[0]) { sum = 1L; ans += 1; } else { sum = a[0]; } if (check(sum, sum + a[1])) { sum += a[1]; } else { if (sum > 0) { ans += (sum + a[1] + 1L); sum = -1L; } else { ans += (1L - sum - a[1]); sum = 1L; } } for (int i = 2; i < n; ++i) { a[i] = fs.nextLong(); if (check(sum, sum + a[i])) { sum += a[i]; } else { if (sum > 0) { ans += (sum + a[i] + 1L); sum = -1L; } else { ans += (1L - sum - a[i]); sum = 1L; } } } System.out.println(ans); } private static boolean check(long prev, long sum) { if (prev > 0 && sum < 0) { return true; } else if (prev < 0 && sum > 0) { return true; } return false; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) st = 0 while a[st]==0: st+=1 if (a[st]>0 and st%2==0) or (a[st]<0 and st%2==1): fg=1 else: fg=-1 ret = 0 tot = 0 for i in range(n): tot+=a[i] if tot*fg<=0: ret += abs(fg - tot) tot += fg - tot fg*=-1 print(ret)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int solve(vector<int>& a, vector<int>& S, int signS0 = +1) { int op = 0; S[0] = a[0]; if (S[0] * signS0 <= 0) { op = abs(S[0]) + 1; S[0] = signS0; } for (size_t i = 1; i < a.size(); ++i) { S[i] = S[i - 1] + a[i]; if (S[i] == 0) { S[i] = -(S[i - 1] / abs(S[i - 1])); ++op; } else { if (S[i - 1] * S[i] > 0) { op = op + abs(S[i]) + 1; S[i] = -(S[i] / abs(S[i])); } } } return op; } int main() { uint n; cin >> n; vector<int> a(n, 0); vector<int> S(n, 0); for (auto& x : a) cin >> x; int op1 = solve(a, S, +1); int op2 = solve(a, S, -1); int op = min(op1, op2); cout << op << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int posi(long long x) { if (x > 0) return 1; if (x < 0) return -1; return 0; } int main() { int N; cin >> N; vector<long long> a(N); for (auto &i : a) cin >> i; long long ans = 0, tmp = 0; long long sum = a[0]; for (int i = 1; i < N; i++) { if (posi(sum + a[i]) * posi(sum) == 1 || sum + a[i] == 0) { tmp += abs(sum + a[i]) + 1; sum = (sum > 0) ? -1 : 1; } else sum += a[i]; } ans = tmp; tmp = abs(a[0]) + 1; sum = (a[0] > 0) ? -1 : 1; for (int i = 1; i < N; i++) { if (posi(sum + a[i]) * posi(sum) == 1 || sum + a[i] == 0) { tmp += abs(sum + a[i]) + 1; sum = (sum > 0) ? -1 : 1; } else sum += a[i]; } ans = min(ans, tmp); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int ar[100005]; bool flag = false; int n, m; int main() { int n; cin >> n; int i; long long int sum = 0; cin >> ar[1]; int sgn = ar[1] > 0 ? 1 : -1; sum += ar[1]; long long int cont = 0; for (i = 2; i <= n; i++) { cin >> ar[i]; sum += (long long int)ar[i]; if (sgn == 1) { if (sum >= 0) { cont += abs(sum + 1); sum = -1; } sgn = -1; } else if (sgn == -1) { if (sum <= 0) { cont += abs(-sum + 1); sum = 1; } sgn = 1; } } cout << cont << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { int n; long sum1 = 0; long sum2 = 0; long tmp; long lcount = 0; long rcount = 0; long a[100000]; char input[1000000]; int i = 0, j = 0; int cp = 0, tcp = 0; char tp[12]; tp[12] = '\0'; fgets(input, 1000000, stdin); n = atoi(input); fgets(input, 1000000, stdin); for (i = 0; i < n; i++) { while (input[cp] != ' ' && input[cp] != '\n') { tp[tcp] = input[cp]; tcp++; cp++; } tp[tcp] = '\0'; tcp = 0; cp++; a[i] = atoi(tp); } tmp = a[0]; for (i = 1; i < n; i++) { if (i % 2 == 0) { tmp += a[i]; if (tmp > -1) { lcount += tmp + 1; tmp = -1; } } else { tmp += a[i]; if (tmp < 1) { lcount += 1 - tmp; tmp = 1; } } } tmp = a[0]; for (i = 1; i < n; i++) { if (i % 2 == 1) { tmp += a[i]; if (tmp > -1) { rcount += tmp + 1; tmp = -1; } } else { tmp += a[i]; if (tmp < 1) { rcount += 1 - tmp; tmp = 1; } } } printf("%ld\n", lcount > rcount ? rcount : lcount); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> void chmin(T& a, const T& b) { a = min(a, b); } template <class T> void chmax(T& a, const T& b) { a = max(a, b); } const double EPS = 1e-9; const long INF = 999999999; const long MOD = 1000000007; int dy[] = {0, 0, 1, -1, 1, 1, -1, -1}; int dx[] = {1, -1, 0, 0, 1, -1, -1, 1}; bool check(int sum) { if (sum > 0) return true; else return false; } int main() { int n, A[100001], sum = 0, counter = 0; bool plus = false; cin >> n; for (int i = 0; i < (n); i++) cin >> A[i]; sum += A[0]; plus = check(sum); for (int i = (1); i < (n); i++) { sum += A[i]; if (sum == 0) { if (plus) sum = -1; else sum = 1; counter++; } else { if (sum > 0 && plus) { counter += (1 + sum); sum = -1; } else if (sum < 0 && plus == false) { counter += (1 - sum); sum = 1; } } plus = !plus; } printf("%d\n", counter); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
fun main(args: Array<String>) { val N = nextInt() val A = listOfLong() val B = A.toMutableList() var sum = if (A[0] != 0L) A[0] else 1 var sign = sum.sign() fun resolv(init: Long = 0L): Long { var ans = init for (n in 1 until N) { val now = sum + A[n] when (now.sign()) { 1 -> if (sign != -1) { ans += (1 + now) sum = -1 } else sum = now -1 -> if (sign != 1) { ans += (1 - now) sum = 1 } else sum = now 0 -> if (sign == 1) { ans += 1 sum = -1 } else { ans += 1 sum = 1 } } sign = sum.sign() } return ans } val ans1 = resolv() + if (A[0] != 0L) 0 else 1 //System.err.println(ans1) sum = if (A[0] != 0L) A[0] else -1 sign = sum.sign() val ans2 = if (sign == -1) { sum = 1 sign = 1 resolv((1 - A[0])) } else { sum = -1 sign = -1 resolv((1 + A[0])) } + if (A[0] != 0L) 0 else 1 println(Math.min(ans1, ans2)) } fun Long.sign() = if (this > 0) 1 else if (this < 0) -1 else 0 //32988396395189 ac //32988396395187 fun next() = readLine()!! fun nextInt(delta: Int = 0) = Integer.parseInt(next()) + delta fun listOfString() = next().split(" ") fun listOfInt() = listOfString().map(String::toInt) fun listOfLong() = listOfString().map(String::toLong)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def check1(a): sum = 0 for i in range(len(a)): if(i % 2 == 0): sum += a[i] if(sum >= 0): return (i, -1) else: sum += a[i] if(sum <= 0): return (i, 1) return True def check2(a): sum = 0 for i in range(len(a)): if(i % 2 == 0): sum += a[i] if(sum <= 0): return (i, 1) else: sum += a[i] if(sum >= 0): return (i, -1) return True n = input() b = input().split() a = [int(b[i]) for i in range(len(b))] a2 = list(a) ans1 = 0 ans2 = 0 while(True): c = check1(a) if(c == True): break a[c[0]] += c[1] ans1 += 1 while(True): c = check2(a2) if(check2(a2) == True): break a2[c[0]] += c[1] ans2 += 1 print(ans1) if(ans1<ans2) else print(ans2)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void fnInput(vector<int>& rvnNum) { int nSize; cin >> nSize; rvnNum.resize(nSize); for (int& rnElm : rvnNum) cin >> rnElm; } int fnSignChgTimes(const vector<int>& cnrvnNum) { vector<int64_t> vnTimes(2); for (int nParity = 0; nParity < vnTimes.size(); nParity++) { int64_t nTimes = 0; int64_t nSum = 0; for (int n = 0; n < cnrvnNum.size(); n++) { nSum += cnrvnNum[n]; if (n % 2 == nParity) if (nSum > 0) ; else { nTimes += 1 - nSum; nSum = 1; } else if (nSum >= 0) { nTimes += 1 + nSum; nSum = -1; } else ; } vnTimes[nParity] = nTimes; } auto itElm = min_element(begin(vnTimes), end(vnTimes)); return *itElm; } int main() { vector<int> vnNum; fnInput(vnNum); cout << fnSignChgTimes(vnNum) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
cost=0 n=int(input()) a=list(map(int,input().split())) sums=a[0] if a[0]==0: if a[1]>0: a[0]=-1 else: a[0]=1 cost+=1 for i in range(1,n): m=sums+a[i] if m==0: if i==n-1: cost+=1 break else: if sums>0: m=-1 cost+=1 else: m=1 cost+=1 else: if m*sums>0: if sums>0: cost+=m+1 m=-1 else: cost+=abs(m)+1 m=1 sums=m print(cost)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int N; int64_t cont = 0, ans = INT_MAX; ; void dfs(bool odd, int64_t sum, int i, vector<int64_t> &a) { if (i == N) { ans = min(ans, cont); cont = 0; return; } if (odd) { if (a[i] + sum <= 0) { cont += abs(1 - sum - a[i]); sum = 1; } else { sum += a[i]; } dfs(false, sum, i + 1, a); } else { if (a[i] + sum >= 0) { cont += abs(-1 - sum - a[i]); sum = -1; } else { sum += a[i]; } dfs(true, sum, i + 1, a); } } int main() { cin >> N; vector<int64_t> a(N); for (int i = 0; i < N; i++) { cin >> a.at(i); } dfs(true, 0, 0, a); dfs(false, 0, 0, a); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MX = 100005, INF = 1001001001; const long long int LINF = 1e18; const double eps = 1e-10; int n; vector<int> a; long long int ansp = 0; long long int ansm = 0; int main() { cin >> n; int inp; for (int i = 0; i < n; i++) { cin >> inp; a.push_back(inp); } long long int sum = 0; for (int i = 0; i < (n); ++i) { sum += a[i]; if (i % 2 == 1) { while (sum >= 0) { sum++; ansm++; } } else { while (sum <= 0) { sum--; ansm++; } } } sum = 0; for (int i = 0; i < (n); ++i) { sum += a[i]; if (i % 2 == 0) { while (sum >= 0) { sum++; ansp++; } } else { while (sum <= 0) { sum--; ansp++; } } } cout << min(ansm, ansp) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> bool should_continue(int p_num, int n_sum) { if (p_num < 0 && n_sum > 0) { return true; } if (p_num > 0 && n_sum < 0) { return true; } return false; } int main() { int n; scanf("%d", &n); int a[n]; for (int i = 0; i < n; i++) { scanf("%d", a + i); } int p_sum = a[0]; int n_sum = a[0] + a[1]; int i = 2; int cnt = 0; while (true) { if (should_continue(p_sum, n_sum)) { if (i == n) { break; } p_sum = n_sum; n_sum += a[i]; ++i; continue; } if (p_sum == 0) { if (n_sum > 0) { --p_sum; --n_sum; } else { ++p_sum; ++n_sum; } } else if (p_sum < 0) { ++n_sum; } else { --n_sum; } ++cnt; } printf("%d", cnt); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(i) for i in input().split()] count1 = 0 count2 = 0 sum = 0 for i in range(0,n-1): if i % 2 == 0: if sum + a[i] > 0: continue elif sum + a[i] <= 0: count1 += abs(1 - sum -a[i]) sum = 1 if i % 2 == 1: if sum + a[i] < 0: continue else: count1 += abs(-1 - sum - a[i]) sum = -1 sum = 0 for i in range(0,n-1): if i % 2 == 1: if sum + a[i] > 0: continue elif sum + a[i] <= 0: count2 += abs(1 - sum -a[i]) sum = 1 if i % 2 == 0: if sum + a[i] < 0: continue else: count2 += abs(-1 - sum - a[i]) sum = -1 if count1 >= count2: print(count1) else: print(count2)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(int argc, char const *argv[]) { long long int n, ans = 0, sum = 0; cin >> n; vector<long long int> a(n); for (size_t i = 0; i < n; i++) { cin >> a[i]; if (i == 0) sum += a[i]; else { if (sum * (sum + a[i]) > 0) { if (sum < 0) { ans += abs(1 - (sum + a[i])); a[i] += abs(1 - (sum + a[i])); } else if (sum > 0) { ans += abs(-1 - (sum + a[i])); a[i] += -1 - (sum + a[i]); } } if (sum + a[i] == 0) { if (sum > 0) a[i]--; else a[i]++; ans++; } sum += a[i]; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { long int n, i, j, sum = 0, count, cost1 = 0, cost2 = 0; cin >> n; vector<long int> a(n); for (i = 0; i < n; i++) { cin >> a[i]; } if (a[0] < 0) { cost1 += abs(a[0]) + 1; sum = 1; } else { sum += a[0]; } for (i = 1; i < n; i++) { sum += a[i]; if (sum <= 0 && i % 2 == 0) { cost1 += abs(sum) + 1; sum = 1; } if (sum >= 0 && i % 2 == 1) { cost1 += abs(sum) + 1; sum = -1; } } sum = 0; if (a[0] >= 0) { cost2 += abs(a[0]) + 1; a[0] = -1; sum = -1; } else sum += a[0]; for (i = 1; i < n; i++) { sum += a[i]; if (sum >= 0 && i % 2 == 0) { cost2 += abs(sum) + 1; sum = -1; } if (sum <= 0 && i % 2 == 1) { cost2 += abs(sum) + 1; sum = 1; } } cout << min(cost1, cost2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; class Main { public static void main(String args[]) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); Solver solver = new Solver(); solver.init(); solver.readHead(in.readLine()); for (; solver.hasNext();) { solver.readBody(in.readLine()); } } } class Solver { int N; int cnt; public void init() { N = 0; cnt = 0; } public void readHead(String str) { String[] strArr = str.split(" "); N = Integer.parseInt(strArr[0]); // System.out.println(N); } public boolean hasNext() { return cnt < 1; } int[] A; public void readBody(String str) { // System.out.println(str);] String[] strArr = str.split(" "); A = new int[N]; for (int i = 0; i < N; i++) A[i] = Integer.parseInt(strArr[i]); if (A[0] != 0) { System.out.println(cnt()); } else { A[0] = 1; long cnt1 = cnt() + 1; A[0] = -1; long cnt2 = cnt() + 1; if (cnt1 < cnt2) System.out.println(cnt1); else System.out.println(cnt2); } cnt++; } private long cnt() { int s = 1; if (A[0] < 0) s = -1; long ans = 0; int sum = A[0]; for (int i = 1; i < N; i++) { s = s * -1; sum = sum + A[i]; if (s == -1 && sum >= 0) { ans += (sum + 1); sum = -1; } else if (s == 1 && sum <= 0) { ans += (-sum + 1); sum = 1; } } return ans; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = (0); i < (n); ++i) cin >> a[i]; long long ans = 0; long long sum = a[0]; for (int i = (1); i < (n); ++i) { int sign = int(abs(sum)) / sum; if (sign * (sum + a[i]) < 0) sum += a[i]; else { ans += 1 + sign * (sum + a[i]); sum = -sign; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) b=[] for i in range(n): b.append(a[i]) ct1=0 if a[0]<=0: ct1+=1-a[0] a[0]=1 x=a[0] for i in range(1,n): y=x+a[i] if i%2==1: if y>=0: ct1+=y+1 a[i]=-x-1 else: if y<=0: ct1+=1-y a[i]=-x+1 x+=a[i] ct2=0 if b[0]>=0: ct2+=b[0]-1 b[0]=-1 x=b[0] for i in range(1,n): y=x+b[i] if i%2==0: if y>=0: ct2+=y+1 b[i]=-x-1 else: if y<=0: ct2+=1-y b[i]=-x+1 x+=b[i] print(min(ct1,ct2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<iostream> #include<algorithm> #include<math.h> #include<string> #include<tuple> #include<vector> #include<cstdlib> #include<cstdint> #include<stdio.h> #include<cmath> #include<limits> #include<iomanip> #include<ctime> #include<climits> #include<random> #include<queue> #include<map> using namespace std; template <class T> using V = vector<T>; template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } const long long INF = 1LL << 60; const double pi=acos(-1); using ll = long long; using db = long double; using st = string; using ch = char; using vll = V<ll>; using vpll =V<pair<ll,ll>>; using vst = V<st>; using vdb = V<db>; using vch = V<ch>; using graph = V<V<int>>; using pq = priority_queue<ll>; #define FOR(i,a,b) for(ll i=(a);i<(b);i++) #define bgn begin() #define en end() #define SORT(a) sort((a).bgn,(a).en) #define REV(a) reverse((a).bgn,(a).en) #define fi first #define se second #define sz size() #define gcd(a,b) __gcd(a,b) #define pb(a) push_back(a); #define ALL(a) (a).begin(),(a).end() ll Sum(ll n) { ll m=0; while(n){ m+=n%10; n/=10; } return m; } const int MAX = 510000; // change const int MOD = 1000000007; long long fac[MAX], finv[MAX], inv[MAX]; void Comuse() { fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < MAX; i++){ fac[i] = fac[i - 1] * i % MOD; inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD; finv[i] = finv[i - 1] * inv[i] % MOD; } } #define comuse Comuse() ll combi(int n, int k){ if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD; } ll perm(int n,int k){ if(n < k) return 0; if(n < 0 || k < 0) return 0; return fac[n] * (finv[k] % MOD) % MOD; } ll modpow(ll a,ll n,ll mod){ ll ans=1; while(n>0){ if(n&1){ ans=ans*a%mod; } a=a*a%mod; n>>=1; } return ans; } ll modinv(ll a, ll mod) { return modpow(a, mod - 2, mod); } ll modcombi(int n,int k,int mod){ ll ans=1; for(ll i=n;i>n-k;i--){ ans*=i; ans%=mod; } for(ll i=1;i<=k;i++){ ans*=modinv(i,mod); ans%=mod; } return ans; } ll lcm(ll a,ll b){ ll n; n=a/gcd(a,b)*b; return n; } vll div(ll n){ vll ret; for(ll i=1;i*i<=n;i++){ if(n%i==0){ ret.push_back(i); if(i*i!=n){ ret.push_back(n/i); } } } SORT(ret); return (ret); } vector<bool> isprime(MAX+100,true); void primeuse(){ isprime[0]=false; isprime[1]=false; for(int i=2;i<MAX+50;i++){ int up=sqrt(i)+1; for(int j=2;j<up;j++){ if(i%j==0){ isprime[i]=false; } } } } void bf(ll n,string s){ for(ll i=0;i<n;i++){ cout<<s; } cout<<"\n"; } void Solve(); const int MAX_N = 131072; //segment tree int NN; int seg[MAX_N*2-1]; void seguse(){ for(int i=0;i<2*NN-1;i++){ seg[i]=INT_MAX; } } signed main(){ cin.tie(0); ios::sync_with_stdio(false); cout<<setprecision(20)<<fixed; Solve(); } /****************************************\ | Thank you for viewing my code:) | | Written by RedSpica a.k.a. RanseMirage | | Twitter:@asakaakasaka | \****************************************/ //segtreeの葉の先頭の添え字はN-1 void Solve(){ ll n; cin>>n; vll A(n); vll B(n); FOR(i,0,n){ cin>>A[i]; } ll ans=0; ll all=A[0]; bool can=true; FOR(i,1,n){ if((all+A[i])*all>=0){ can=false; break; } } if(can){ cout<<"0\n"; return; } B[0]=A[0]; if(A[0]==0){ ans++; if(A[1]>0){ B[0]=-1; } else if(A[1]<0){ B[0]=1; } } FOR(i,1,n){ B[i]=B[i-1]+A[i]; if(B[i]*B[i-1]<0){ continue; } ans+=abs(B[i])+1; if(B[i-1]<0){ B[i]=1; } else{ B[i]=-1; } } cout<<ans<<"\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) sm=a[0] ans=[0, 0] for i in range(n-1): sm1=sm+a[i+1] if sm*sm1>=0: ans[0]+=abs(sm1)+1 if sm>0: sm=-1 else: sm=1 else: sm=sm1 sm=-1 ans[1]+=abs(a[0])+1 for i in range(n-1): sm1=sm+a[i+1] if sm*sm1>=0: ans[1]+=abs(sm1)+1 if sm>0: sm=-1 else: sm=1 else: sm=sm1 print(min(ans))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long MOD = 1000000007; const int MAX_N = 100000005; int n; int a[MAX_N]; int check(long long sum, long long ans) { for (int i = 1; i < n; i++) { long long t = sum + a[i]; if ((sum >= 0 && t < 0) || (sum < 0 && t >= 0)) { sum = t; if (sum == 0) { sum = 1; ans++; } continue; } long long at; if (sum >= 0) at = -1 - sum; else at = 1 - sum; ans = ans + abs(a[i] - at); sum = sum + at; } return ans; } int main() { cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } long long another; if (a[0] >= 0) another = -1; else another = 1; long long a1 = check(a[0], 0); long long a2 = check(another, abs(a[0] - another)); cout << min(a1, a2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = list(map(int,input().split())) def func(list1,op,acc = 0,count = 0): for i in range(n): acc += list1[i] if i % 2 == 1 and acc * op >= 0: count += op * acc + 1 acc = -op elif i % 2 == 0 and acc * op <= 0: count += -op * acc + 1 acc = op if acc == 0: count += 1 return count if A[0] > 0: ans = func(A,1) elif A[0] < 0: ans = func(A,-1) elif A[0] == 0: ans = min(func(A,1),func(A,-1)) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { int n, a, ans0 = 0, ans1 = 0, sum0 = 0, sum1 = 0; cin >> n; for (int i = 0; i < n; i++) { cin >> a; sum0 += a; sum1 += a; if (i % 2 == 0) { if (sum0 <= 0) { ans0 += 1 - sum0; sum0 = 1; } if (sum1 >= 0) { ans1 += sum1 + 1; sum1 = -1; } } else { if (sum1 <= 0) { ans1 += 1 - sum1; sum1 = 1; } if (sum0 >= 0) { ans0 += sum0 + 1; sum0 = -1; } } } cout << min(ans0, ans1) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python2
n = int(raw_input()) a = map(int, raw_input().split()) count = 0 if a[0] == 0: count += 1 if 0 < a[1]: a[0] = 1 else: a[0] = -1 SUM = a[0] for i in range(1, n): SUM_next = SUM + a[i] if 0 <= SUM * SUM_next: if 0 < SUM: a[i] -= (SUM_next + 1) count += (SUM_next + 1) else: a[i] += (-SUM_next + 1) count += (-SUM_next + 1) SUM = SUM_next print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T> void remove(std::vector<T>& vector, unsigned int index) { vector.erase(vector.begin() + index); } long long INF = 1000000000000000000; long long MOD = 1e9 + 7; int main() { long long N; cin >> N; vector<long long> A(N), sum(N + 1), sum2(N + 1); sum[0] = 0; for (int i = 0; i < N; i++) { cin >> A[i]; sum[i + 1] = sum[i] + A[i]; sum2[i + 1] = sum[i + 1]; } long long ans = 0; long long memo1 = 0, memo2 = 0; long long cnt = 0; for (int i = 1; i <= N; i++) { if (i == 1) { if (sum[i] < 0) { cnt += abs(sum[i] - 1); memo1 += abs(sum[i] - 1); sum[i] = 1; } } else { sum[i] += cnt; if (i % 2 == 0) { if (sum[i] > 0) { cnt -= abs(sum[i] + 1); memo1 += abs(sum[i] + 1); sum[i] = -1; } else if (sum[i] == 0) { cnt--; memo1++; sum[i] = -1; } } else { if (sum[i] < 0) { cnt += abs(sum[i] - 1); memo1 += abs(sum[i] - 1); sum[i] = 1; } else if (sum[i] == 0) { cnt++; memo1++; sum[i] = 1; } } } } for (int i = 1; i <= N; i++) { if (i == 1) { if (sum2[i] > 0) { cnt -= abs(sum2[i] + 1); memo2 += abs(sum2[i] + 1); sum2[i] = -1; } } else { sum2[i] += cnt; if (i % 2 == 0) { if (sum2[i] < 0) { cnt += abs(sum2[i] - 1); memo2 += abs(sum2[i] - 1); sum2[i] = 1; } else if (sum[i] == 0) { cnt++; memo2++; sum2[i] = 1; } } else { if (sum2[i] > 0) { cnt -= abs(sum2[i] + 1); memo2 += abs(sum2[i] + 1); sum2[i] = 1; } else if (sum2[i] == 0) { cnt--; memo2++; sum2[i] = 1; } } } } cout << min(memo1, memo2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.StringTokenizer; public class Main { private static final int MOD = (int)Math.pow(10, 9); public static void main(String[] args) { FastReader sc = new FastReader(); int n = sc.nextInt(); int[] nums = new int[n]; int[] prefix = new int[n]; for (int i = 0; i < nums.length; i++) { nums[i] = sc.nextInt(); } prefix[0] = nums[0]; // Compute prefix sum for (int i = 1; i < prefix.length; i++) { prefix[i] = nums[i] + prefix[i-1]; } int firstDigitPostive = 0; int prefixSum = 0; for (int i = 0; i < nums.length; i++) { prefixSum += nums[i]; if (i % 2 == 0) { // odd is postive if (prefixSum == 0) { prefixSum--; firstDigitPostive++; } else if (prefixSum < 0) { firstDigitPostive += (1 - prefixSum); prefixSum += 1 - prefixSum; } } else { // even is negative if (prefixSum == 0) { prefixSum++; } else if (prefixSum > 0) { firstDigitPostive += (1 + prefixSum); prefixSum -= (prefixSum + 1) ; } } } prefixSum = 0; int firstDigitNegative = 0; for (int i = 0; i < nums.length; i++) { prefixSum += nums[i]; if (i % 2 == 0) { // odd is negative if (prefixSum == 0) { prefixSum++; } else if (prefixSum > 0) { firstDigitNegative += (1 + prefixSum); prefixSum -= (prefixSum + 1) ; } } else { // even is postive if (prefixSum == 0) { prefixSum--; firstDigitNegative++; } else if (prefixSum < 0) { firstDigitNegative += (1 - prefixSum); prefixSum += 1 - prefixSum; } } } System.out.println(Math.min(firstDigitPostive, firstDigitNegative)); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try{ str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; enum State { Plus, Minus, Zero }; State GetState(int sum) { State state; if (sum > 0) state = Plus; else if (sum == 0) state = Zero; else state = Minus; return state; } int main() { int n; cin >> n; vector<int> a(n); cin >> a[0]; int count = 0; State state = GetState(a[0]); if (state == Zero) { a[0] = 1; state = Plus; count++; } int sum = a[0]; for (int i = 1; i < n; i++) { cin >> a[i]; State nextState = GetState(sum + a[i]); switch (nextState) { case Plus: if (state == Plus) { int bf_a = a[i]; a[i] = -1 - sum; count += abs(a[i] - bf_a); nextState = Minus; } break; case Minus: if (state == Minus) { int bf_a = a[i]; a[i] = 1 - sum; count += abs(a[i] - bf_a); nextState = Plus; } break; case Zero: if (state == Plus) { int bf_a = a[i]; a[i] = -1 - sum; count += abs(a[i] - bf_a); nextState = Minus; } else if (state == Minus) { int bf_a = a[i]; a[i] = 1 - sum; count += abs(a[i] - bf_a); nextState = Plus; } default: break; } sum += a[i]; state = nextState; } if (sum == 0) count++; cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long a[100000]; long n; long long s[100000]; long long s2[100000]; long long ans = 0; long long ans2 = 0; scanf("%ld", &n); for (long i = 0; i < n; i++) { scanf("%lld", &a[i]); } s[0] = a[0]; for (long i = 1; i < n; i++) { s[i] = s[i - 1] + a[i]; if ((s[i - 1] > 0 && s[i] < 0) || (s[i - 1] < 0 && s[i] > 0)) { continue; } else { ans += abs((-s[i - 1] / abs(s[i - 1])) - s[i]); s[i] = -s[i - 1] / abs(s[i - 1]); } } s2[0] = -a[0] / abs(a[0]); for (long i = 1; i < n; i++) { s2[i] = s2[i - 1] + a[i]; if ((s2[i - 1] > 0 && s2[i] < 0) || (s2[i - 1] < 0 && s2[i] > 0)) { continue; } else { ans2 += abs((-s2[i - 1] / abs(s2[i - 1])) - s2[i]); s2[i] = -s2[i - 1] / abs(s2[i - 1]); } } if (ans2 < ans) ans = ans2; printf("%lld\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) b = [int(x) for x in input().split()] a = list() temp = 0 count1 = 0 count2 = 0 a = b.copy() if a[0] == 0: a[0] = 1 count1 = 1 sum = a[0] for i in range(1, n): if abs(a[i]) <= abs(sum) or a[i] * sum >= 0: if sum > 0: temp = -1 * abs(sum) - 1 count1 += abs(temp - a[i]) else: temp = abs(sum) + 1 count1 += abs(temp - a[i]) a[i] = temp sum += a[i] a = b.copy() count2 = abs(a[0]) + 1 if a[0] == 0: a[0] = 1 count1 = 1 if a[0] > 0: a[0] = -1 else: a[0] = 1 sum = a[0] for i in range(1, n): if abs(a[i]) <= abs(sum) or a[i] * sum >= 0: count2 += abs(sum - a[i]) + 1 if sum > 0: temp = -1 * abs(sum) - 1 count2 += abs(temp - a[i]) else: temp = abs(sum) + 1 count2 += abs(temp - a[i]) a[i] = temp sum += a[i] print(min(count1, count2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<iostream> #include<vector> #include<algorithm> #include<string> #include<cmath> #include<map> #include<cstdio> #include<stack> #include<queue> #include<fstream> #include<cstdio> using namespace std; #define ok1 printf("ok1\n"); #define ok2 printf("ok2\n"); #define M 1000000 #define rep(i,n) for(int i=0;i<n;i++) #define REP(i,s,n) for(int i=(s);i<(n);i++) #define repr(i,n) for(int i=n-1;i>=0;i--) #define REPR(i,s,n) for(int i=(s);i>=(g);(i)--) #define all(a) (a).begin(),(a).end() #define reall(a) (a).rbegin(),(a).rend() #define pb push_back #define MIN(a,b) a=min((a),(b)) #define MAX(a,b) a=max((a),(b)) #define SIZE(v) (int)v.size() typedef vector<int> vi; typedef vector<string> vs; typedef long long ll; typedef vector<ll> vll; #ifdef TESTING #define DEBUG fprintf(stderr,"====TESTING====\n") #define VALUE(x) cerr << "The value of " << #x << " is " << x << endl #define debug(...) fprintf(stderr, __VA_ARGS__) #else #define DEBUG #define VALUE(x) #define debug(...) #endif inline string IntToString(ll a) { char x[100]; sprintf_s(x, "%lld", a); string s = x; return s; } inline ll StringToInt(string a) { char x[100]; ll res; strcpy_s(x, a.c_str()); sscanf_s(x, "%lld", &res); return res; } inline string uppercase(string s) { int n = SIZE(s); rep(i, n) if (s[i] >= 'a' && s[i] <= 'z') s[i] = s[i] - 'a' + 'A'; return s; } inline string lowercase(string s) { int n = SIZE(s); rep(i, n) if (s[i] >= 'A' && s[i] <= 'Z') s[i] = s[i] - 'A' + 'a'; return s; } int n; ll d[100005]; ll solve() { ll nans = 0; ll nowsum = 0; rep(i, n) { if (i % 2 == 0) { if (nowsum + d[i] <= 0) { nans += llabs(nowsum + d[i] - 1); nowsum = 1; } else { nowsum += d[i]; } } else { if (nowsum + d[i] >= 0){ nans += llabs(nowsum + d[i] - (-1)); nowsum = -1; } else nowsum += d[i]; } //cout << nans << endl; } return nans; } int main() { cin >> n; rep(i, n) { cin >> d[i]; } ll ans = solve(); rep(i, n) d[i] *= -1; ans = MIN(ans, solve()); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) t = a[0] r, tmp, count = 0, 0, 0 for i in range(1, n): tmp = t + a[i] if t < 0 and tmp < 0: r = 1 - tmp elif t > 0 and tmp > 0: r = -tmp - 1 elif tmp == 0: if t < 0: r += 1 - t - a[i] else: r += -1 - t - a[i] else: r = 0 count += abs(r) t = tmp + r print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.IOException; import java.io.InputStream; import java.util.*; import java.util.function.IntFunction; import java.util.function.Supplier; import java.util.stream.IntStream; import java.util.stream.Stream; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(); int n=scanner.nextInt(); long[] a=new long[n+1]; for(int i=1;i<=n;i++){ a[i]=scanner.nextInt(); } Arrays.parallelPrefix(a,(c,b)->c+b); //put(Arrays.toString(a)); long ruiseki=1-a[1]; long ans=Math.abs(ruiseki); for(int i=2;i<=n;i++){ //put(format("i=%d",i)); //put(format("ruiseki=%d",ruiseki)); long val=a[i]+ruiseki; long val_=a[i-1]+ruiseki; //put(format("val=%d",val)); //put(format("val_=%d",val_)); if(val==0){ int bit=Long.signum(val_); ruiseki+=-bit; ans+=Math.abs(bit); }else if(val>0&&val_>0){ ruiseki-=(val+1); ans+=Math.abs(val+1); }else if(val<0&&val_<0){ ruiseki+=Math.abs(val)+1; ans+=Math.abs(val)+1; } //put(ans); //put(); } long min=ans; ruiseki=-1-a[1]; ans=Math.abs(ruiseki); for(int i=2;i<=n;i++){ //put(format("i=%d",i)); //put(format("ruiseki=%d",ruiseki)); long val=a[i]+ruiseki; long val_=a[i-1]+ruiseki; //put(format("val=%d",val)); //put(format("val_=%d",val_)); if(val==0){ int bit=Long.signum(val_); ruiseki+=-bit; ans+=Math.abs(bit); }else if(val>0&&val_>0){ ruiseki-=(val+1); ans+=Math.abs(val+1); }else if(val<0&&val_<0){ ruiseki+=Math.abs(val)+1; ans+=Math.abs(val)+1; } //put(ans); //put(); } put(Math.min(min,ans)); } public static void print(Object object){ System.out.print(object); } public static void put(Object object) { System.out.println(object); } public static void put(){ System.out.println(); } public static String format(String string, Object... args) { return String.format(string, args); } } final class Scanner { private final InputStream in = System.in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int buflen = 0; private boolean hasNextByte() { if (ptr < buflen) { return true; } else { ptr = 0; try { buflen = in.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (buflen <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1; } private boolean isPrintableChar(int c) { return 33 <= c && c <= 126; } public boolean hasNext() { while (hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte(); } public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while (isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); long n = 0; boolean minus = false; int b = readByte(); if (b == '-') { minus = true; b = readByte(); } if (b < '0' || '9' < b) { throw new NumberFormatException(); } while (true) { if ('0' <= b && b <= '9') { n *= 10; n += b - '0'; } else if (b == -1 || !isPrintableChar(b)) { return minus ? -n : n; } else { throw new NumberFormatException(); } b = readByte(); } } public int nextInt() { long nl = nextLong(); if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException(); return (int) nl; } public double nextDouble() { return Double.parseDouble(next()); } } final class Pair { final public int x, y; Pair(int x, int y) { this.x = x; this.y = y; } @Override public int hashCode() { return x+y; } @Override public boolean equals(Object obj) { boolean result=super.equals(obj); if(obj.getClass()!=this.getClass()){ return false; } Pair pair=(Pair)obj; if(this.x==pair.x&&this.y==pair.y) return true; return false; } @Override public String toString() { return String.format("(%d,%d)", x, y); } } final class Tuple<T,V>{ //immutabl1でないことに注意(T,Vがmutableの場合変更可能) final public T t; final public V v; Tuple(T t,V v){ this.t=t; this.v=v; } @Override public int hashCode() { return (t.hashCode()+v.hashCode()); } @Override public boolean equals(Object obj) { if(obj.getClass()!=this.getClass()){ return false; } Tuple<T,V> tuple=(Tuple)obj; return tuple.t.equals(this.t)&&tuple.v.equals(this.v); } @Override public String toString() { return String.format("<Tuple>=<%s,%s>",t,v); } } final class LowerBoundComparator<T extends Comparable<? super T>> implements Comparator<T> { public int compare(T x, T y) { return (x.compareTo(y) >= 0) ? 1 : -1; } } final class UpperBoundComparator<T extends Comparable<? super T>> implements Comparator<T> { public int compare(T x, T y) { return (x.compareTo(y) > 0) ? 1 : -1; } } final class Util { static long gcd(long a,long b){ if(a%b==0)return b; return gcd(b,a%b); } static long lcm(long a,long b){ long gcd=gcd(a,b); long result=b/gcd; return a*result; } static long kaijoMod(int n,int mod){ if(n<1) return -1; long result=1; for(int i=n;i>1;i--){ result*=i; result%=mod; } return result; } static <T extends Comparable> Map<T,Integer> count(List<T> list){ //副作用 Collections.sort(list); Map<T,Integer> result=new HashMap<>(); int l=0,r=0; while(l<list.size()){ while(r<list.size()-1&&list.get(r).equals(r+1)){ r++; } result.put(list.get(r),r-l+1); r++; l=r; } return result; } static Map<Integer,Integer> count(int[] array){ //副作用 Arrays.sort(array); Map<Integer,Integer> result=new HashMap<>(); int l=0,r=0; while(l<array.length){ while(r<array.length-1&&array[r]==array[r+1]){ r++; } result.put(array[l],r-l+1); r++; l=r; } return result; } static String toStringBWS(Iterable iterable){ Iterator ite=iterable.iterator(); return toStringBWS(ite); } static String toStringBWS(Iterator ite){ StringBuilder sb=new StringBuilder(); sb.append(ite.next()); while(ite.hasNext()){ sb.append(" "); sb.append(ite.next()); } return sb.toString(); } static String toStringBWS(int[] array){ StringBuilder sb=new StringBuilder(); for(int i=0;i<array.length-1;i++){ sb.append(array[i]); sb.append(" "); } sb.append(array[array.length-1]); return sb.toString(); } static String toStringBWS(long[] array){ StringBuilder sb=new StringBuilder(); for(int i=0;i<array.length-1;i++){ sb.append(array[i]); sb.append(" "); } sb.append(array[array.length-1]); return sb.toString(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(lambda x: int(x), input().split())) a.sort() cnt=[] val=[] last=-1 for i in a: if i == last: cnt[-1]+=1 else: cnt.append(1) val.append(i) last = i low_val=-10 low_cnt=0 mid_val=0 mid_cnt=0 ans=0 for i, v in enumerate(val): if v>=low_val+3: ans=max(ans, low_cnt+mid_cnt+cnt[i]) low_val=v low_cnt=cnt[i] mid_val=0 mid_cnt=0 elif v==low_val+2: ans=max(ans, low_cnt+mid_cnt+cnt[i]) if mid_val>0: low_val=mid_val low_cnt=mid_cnt mid_val=v mid_cnt=cnt[i] else: low_val=v low_cnt=cnt[i] mid_val=0 mid_cnt=0 if v==low_val+1: mid_val=v mid_cnt=cnt[i] ans=max(ans, low_cnt+mid_cnt) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) cin >> a[i]; long long ans = 0; long long sum = a[0]; for (int i = 1; i < n; i++) { if (sum * (sum + a[i]) >= 0) { ans += abs(sum * (-1) - sum / abs(sum) - a[i]); sum += sum * (-1) - sum / abs(sum); } else sum += a[i]; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 100000000; int dx[] = {0, 1, -1, 0, 1, -1, 1, -1}; int dy[] = {1, 0, 0, -1, 1, -1, -1, 1}; int main() { int n; cin >> n; vector<int> v(n + 1, 0), w(n + 1, 0); for (int i = 1; i <= n; i++) { cin >> v[i]; w[i] += w[i - 1] + v[i]; } int ans = 0; for (int i = 1; i <= n; i++) { if (w[i] == 0 && w[i - 1] < 0) { v[i]++; w[i]++; ans++; } else if (w[i] == 0 && w[i - 1] > 0) { v[i]--; w[i]--; ans++; } else if (w[i] < 0 && w[i - 1] < 0) { while (w[i] <= 0) { v[i]++; w[i]++; ans++; } } else if (w[i] > 0 && w[i - 1] > 0) { while (w[i] >= 0) { v[i]--; w[i]--; ans++; } } if (i < n) { w[i + 1] = w[i] + v[i + 1]; } } int sum = accumulate(v.begin(), v.end(), 0); if (sum == 0) ans++; cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long sum = 0, num = 0; for (int i = 0; i < n; i++) { int a; cin >> a; if (sum > 0 && sum + a >= 0) { num += sum + a + 1; a -= sum + a + 1; } else if (sum < 0 && sum + a <= 0) { num += abs(sum + a) + 1; a += abs(sum + a) + 1; } sum += a; } cout << num << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; double EPS = 1e-9; int INF = 1000000005; long long INFF = 1000000000000000005LL; double PI = acos(-1); int dirx[8] = {-1, 0, 0, 1, -1, -1, 1, 1}; int diry[8] = {0, 1, -1, 0, -1, 1, -1, 1}; inline string IntToString(long long a) { char x[100]; sprintf(x, "%lld", a); string s = x; return s; } inline long long StringToInt(string a) { char x[100]; long long res; strcpy(x, a.c_str()); sscanf(x, "%lld", &res); return res; } inline string GetString(void) { char x[1000005]; scanf("%s", x); string s = x; return s; } inline string uppercase(string s) { int n = ((int)(s).size()); for (int(i) = (0); (i) < (n); ++(i)) if (s[i] >= 'a' && s[i] <= 'z') s[i] = s[i] - 'a' + 'A'; return s; } inline string lowercase(string s) { int n = ((int)(s).size()); for (int(i) = (0); (i) < (n); ++(i)) if (s[i] >= 'A' && s[i] <= 'Z') s[i] = s[i] - 'A' + 'a'; return s; } inline void OPEN(string s) { freopen((s + ".in").c_str(), "r", stdin); freopen((s + ".out").c_str(), "w", stdout); } using namespace std; inline bool feq(const double& a, const double& b) { return fabs(a - b) < 1e-10; } inline int gcd(int a, int b) { if (b == 0) return a; return a < b ? gcd(b, a) : gcd(b, a % b); } long long mo = 1000000007; bool f(pair<long long, long long> p1, pair<long long, long long> p2) { return p1.first < p2.first; } long long solve(vector<long long>& ns, int n) { long long res = 0; long long sum = 0; for (int i = 0; i < n; ++i) { if (i % 2 == 0) { if (sum + ns.at(i) >= 0) { res = llabs(sum + ns.at(i)) + 1; sum = -1; } else { sum += ns.at(i); } } else { if (sum + ns.at(i) <= 0) { res = llabs(sum + ns.at(i)) + 1; sum = 1; } else { sum += ns.at(i); } } } return res; } int main() { int n; cin >> n; vector<long long> ns(n); for (int i = 0; i < n; ++i) { cin >> ns.at(i); } long long cnt = solve(ns, n); for (int i = 0; i < n; ++i) { ns.at(i) *= -1; } cout << min(cnt, solve(ns, n)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int minuss(int n, vector<int> a) { int x = 0; int sum = 0; int counter = 0; while (x < n) { if (x % 2 == 0 && sum + a.at(x) >= 0) { int olda = a.at(x); a.at(x) = -1 - sum; counter += abs(a.at(x) - olda); } if (x % 2 == 1 && sum + a.at(x) <= 0) { int olda = a.at(x); a.at(x) = 1 - sum; counter += abs(a.at(x) - olda); } sum += a.at(x); x++; } return counter; } int pluss(int n, vector<int> a) { int x = 0; int sum = 0; int counter = 0; while (x < n) { if (x % 2 == 0 && sum + a.at(x) <= 0) { int olda = a.at(x); a.at(x) = 1 - sum; counter += abs(a.at(x) - olda); } if (x % 2 == 1 && sum + a.at(x) >= 0) { int olda = a.at(x); a.at(x) = -1 - sum; counter += abs(a.at(x) - olda); } sum += a.at(x); x++; } return counter; } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } cout << min(minuss(n, a), pluss(n, a)) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) list_a = list(map(int,input().split())) i = 0 k = 0 count = 0 if list_a[0] == 0: while list_a[i] != 0: if i == n: ans = 2*n -1 break k = i i += 1 else: if list_a[k+1] > 0: count += abs(list_a[0] - (-1) ** (k+1)) list_a[0] = (-1) ** (k+1) else: count += abs(list_a[0] - (-1) ** k) list_a[0] = (-1) ** k ans = list_a[0] if list_a[0] > 0: for i in range(1,n): ans += list_a[i] if ans / ((-1) ** i) <= 0: count += abs(ans - (-1) ** i) ans = (-1) ** i else: for i in range(1,n): ans += list_a[i] if ans / ((-1) ** (i+1)) <= 0: count += abs(ans - (-1) ** (i+1)) ans = (-1) ** (i+1) print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAX = 1e+5; int n; int a[MAX + 1]; int main() { cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; bool plus; int sum = a[0] + a[1]; if (sum < 0) plus = true; else plus = false; long long ans = 0; for (int i = 2; i < n; i++) { sum += a[i]; if (plus && sum <= 0) { ans += -sum + 1; sum = 1; } else if (!plus && sum >= 0) { ans += sum + 1; sum = -1; } plus = !plus; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=[int(i) for i in input().split()] f_sum=a[0] n_sum=a[0] ans=0 for i in range(1,n): n_sum+=a[i] if((f_sum>0 and n_sum>0) or (f_sum<0 and n_sum<0) or n_sum==0): if(n_sum==0): if(f_sum>0): ans+=1 a[i]+=-1 else: ans+=1 a[i]+=1 elif(n_sum>0): ans+=abs(-1-n_sum) a[i]+=(-1-n_sum) elif(n_sum<0): ans+=abs(1-n_sum) a[i]+=(1-n_sum) f_sum+=a[i] n_sum=f_sum print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
N=gets.to_i list=gets.split(" ").map(&:to_i) sum = 0 res = 0 if(list[0] == 0) then temp = 0 flag= true (N-1).times{|i| temp += list[i+1] if(temp > 0 && flag) then res += 1 list[0] = 1 flag = false elsif(temp < 0 && flag) then res +=1 list[0] = -1 flag = false end if(i == N-2) then res += 1 list[0]=1 end } end N.times{|i| before_sum = sum sum += list[i] if (sum*before_sum> 0) then if(sum > 0) then res += (sum+1) sum = -1 else res += (-sum+1) sum = 1 end elsif sum*before_sum==0 then if(before_sum < 0 )then res += 1 sum = 1 elsif(before_sum > 0) then sum = -1 res += 1 end end } puts(res)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; vector<int> T; cin >> N; for (int i = 0; i < N; i++) { int tmp; cin >> tmp; T.push_back(tmp); } int ans = 0; int sum = 0; bool pre_pm; sum = T.at(0); if (sum > 0) { pre_pm = true; } else if (sum < 0) { pre_pm = false; } else { ans++; sum++; } for (int i = 1; i < N; i++) { if (pre_pm) { sum += T.at(i); while (0 <= sum) { sum--; ans++; } pre_pm = false; } else { sum += T.at(i); while (sum <= 0) { sum++; ans++; } pre_pm = true; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int inf = 1000000007; using namespace std; int main() { int n; cin >> n; vector<int> data(n); int ans = 0; for (int i = 0; i < n; i++) { cin >> data.at(i); } vector<int> data2 = data; int64_t sum = data.at(0); int64_t sump = sum; for (int i = 1; i < n; i++) { sump += data.at(i); if (sum * sump >= 0) { int64_t c = sump; if (c < 0) c *= -1; c++; ans += c; if (sump > 0) { data.at(i) -= c; sump -= c; } else { data.at(i) += c; sump += c; } } sum += data.at(i); } int64_t ans2 = 0; int64_t sum2 = data2.at(0) * -1; int64_t sump2 = sum2; for (int i = 1; i < n; i++) { sump2 += data2.at(i); if (sum2 * sump2 >= 0) { int64_t c = sump2; if (c < 0) c *= -1; c++; ans2 += c; if (sump2 > 0) { data2.at(i) -= c; sump2 -= c; } else { data2.at(i) += c; sump2 += c; } } sum2 += data2.at(i); } if (ans < ans2) { cout << ans << endl; } else { cout << ans2 << endl; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
/* package whatever; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ class Ideone { public static void main (String[] args) throws java.lang.Exception { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] input = new int[n]; int[] result = new int[n]; int even = 0; int odd = 0; boolean sign = true; //正=true, 負=false for(int i = 0; i < n; i++) { input[i] = sc.nextInt(); if(i % 2 == 0) { even += input[i]; } else { odd += input[i]; } } if(even > 0 && odd < 0) { //正負 sign = true; } else if(even < 0 && odd > 0) { //負正 sign = false; } else if(even > 0 && odd > 0) { //正正 if(even > odd) { sign = true; } else { sign = false; } } else if(even < 0 && odd < 0) { //負負 if(even > odd) { sign = false; } else { sign = true; } } else if(even == 0) { if(odd < 0) { sign = true; } else { sign = false; } } else if(odd == 0){ if(even > 0) { sign = true; } else { sign = false; } } //System.out.println(Arrays.toString(input)); //System.out.println(sign + ""); //System.out.println(counting(input, result, 0, 0, sign)); counting(input, result, 0, 0, sign); } public static void counting(int[] input, int[] result, int count, int index, boolean sign) { if(index > 0) { result[index] = result[index - 1] + input[index]; } else { result[index] = input[index]; } if(sign) { if(result[index] <= 0) { count += Math.abs(result[index]) + 1; result[index] = result[index] + Math.abs(result[index]) + 1; } sign = false; } else { if(result[index] >= 0) { count += Math.abs(result[index]) + 1; result[index] = result[index] - Math.abs(result[index]) - 1; } sign = true; } if(index < result.length - 1) { counting(input, result, count, index+1, sign); } else { System.out.println(count); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) original_A = [int(x) for x in input().split()] ans = [] for k in range(2): A = original_A.copy() count = 0 if not k%2: if A[0] >= 0: A[0] = -1 count += (abs(A[0]) +1) else: if A[0] < 0: A[0] = 1 count += (abs(A[0]) +1) sum_before = A[0] #print('***', k, A, '***') for i in range(n): if i == 0: continue sum_for_i = sum_before + A[i] #print('[',i,']: before',sum_before,'after',sum_for_i, 'before', A) if sum_for_i == 0 and sum_before > 0: #print("case 1") A[i] -= 1 count += 1 elif sum_for_i == 0 and sum_before <0: #print("case 2") A[i] += 1 count += 1 elif sum_before >0 and sum_for_i>0: #print("case 3") count += (abs(sum_for_i)+1) A[i] -= (abs(sum_for_i)+1) elif sum_before <0 and sum_for_i<0: #print("case 4") count += (abs(sum_for_i)+1) A[i] += (abs(sum_for_i)+1) #print('[',i,']: ','modified', A, 'count', count) sum_before += A[i] ans.append(count) print(min(ans))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i A = gets.split.map(&:to_i) x = A[0] answer = 0 for i in 0..n-2 s = x + A[i+1] if x * s >= 0 if s < 0 answer = answer - s + 1 A[i+1] = A[i+1] - s + 1 else answer = answer + s + 1 A[i+1] = A[i+1] - s - 1 end end x = x + A[i+1] end puts answer
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; } template <class T> inline string toString(T x) { ostringstream sout; sout << x; return sout.str(); } template <class T> inline T sqr(T x) { return x * x; } const double EPS = 1e-10; const double PI = acos(-1.0); pair<long long, long long> maxP(vector<long long> a, long long size) { pair<long long, long long> p; long long Max = a[0]; long long place = 0; for (int i = (0); i < (size); ++i) { if (a[i] > Max) { Max = a[i]; place = i; } } p.first = Max; p.second = place; return p; } pair<long long, long long> minP(vector<long long> a, long long size) { pair<long long, long long> p; long long min = a[0]; long long place = 0; for (int i = (0); i < (size); ++i) { if (a[i] < min) { min = a[i]; place = i; } } p.first = min; p.second = place; return p; } long long sumL(vector<long long> a, long long size) { long long sum = 0; for (int i = (0); i < (size); ++i) { sum += a[i]; } return sum; } long long counT(vector<long long> a, long long t) { sort(a.begin(), a.end()); return upper_bound(a.begin(), a.end(), t) - lower_bound(a.begin(), a.end(), t); } long long DIV[1000 + 1][1000 + 1]; void divide(long long n, long long m) { DIV[0][0] = 1; for (int i = (1); i < (n + 1); ++i) { DIV[i][0] = 0; } for (int i = (0); i < (n + 1); ++i) { DIV[i][1] = 1; } for (int i = (1); i < (m + 1); ++i) { for (int t = (0); t < (n + 1); ++t) { if (DIV[t][i] > 0) continue; if (t >= i) { DIV[t][i] = DIV[t - i][i] + DIV[t][i - 1]; } else { DIV[t][i] = DIV[t][i - 1]; } } } } bool IsPrime(int num) { if (num < 2) return false; else if (num == 2) return true; else if (num % 2 == 0) return false; double sqrtNum = sqrt(num); for (int i = 3; i <= sqrtNum; i += 2) { if (num % i == 0) { return false; } } return true; } class UnionFind { public: vector<long long> par; vector<long long> rank; UnionFind(long long N) : par(N), rank(N) { for (int i = (0); i < (N); ++i) par[i] = i; for (int i = (0); i < (N); ++i) rank[i] = 0; } ~UnionFind() {} long long root(long long x) { if (par[x] == x) return x; else { par[x] = root(par[x]); return par[x]; } } void unite(long long x, long long y) { long long rx = root(x); long long ry = root(y); if (rx == ry) return; if (rank[rx] < rank[ry]) { par[rx] = ry; } else { par[ry] = rx; if (rank[rx] == rank[ry]) { rank[rx]++; } } } bool same(long long x, long long y) { long long rx = root(x); long long ry = root(y); return rx == ry; } }; class BFS_shortestDistance { public: BFS_shortestDistance(vector<vector<char> > p_, long long h_, long long w_) { p = p_; h = h_; w = w_; initial_number = h * w * 2; for (int i = (0); i < (h); ++i) { vector<long long> k(w); for (int t = (0); t < (w); ++t) k[t] = initial_number; field.push_back(k); } } vector<vector<char> > p; long long h; long long w; long long initial_number; vector<vector<long long> > field; pair<long long, long long> plus(pair<long long, long long> &a, pair<long long, long long> &b) { pair<long long, long long> p; p.first = a.first + b.first; p.second = a.second + b.second; return p; } bool equal(pair<long long, long long> &a, pair<long long, long long> &b) { return (a.first == b.first && a.second == b.second); } bool is_in_field(int h, int w, const pair<long long, long long> &point) { const int c = point.second; const int r = point.first; return (0 <= c && c < w) && (0 <= r && r < h); } void init() { for (int i = (0); i < (field.size()); ++i) { for (int t = (0); t < (field[i].size()); ++t) { field[i][t] = initial_number; } } } void shortest(long long sy, long long sx) { init(); pair<long long, long long> c[4]; c[0].first = 0; c[0].second = 1; c[1].first = 0; c[1].second = -1; c[2].first = 1; c[2].second = 0; c[3].first = -1; c[3].second = 0; queue<pair<long long, long long> > Q; pair<long long, long long> s; s.first = sy; s.second = sx; field[sy][sx] = 0; Q.push(s); while (Q.empty() == false) { pair<long long, long long> now = Q.front(); Q.pop(); for (int u = 0; u < 4; u++) { pair<long long, long long> x = c[u]; pair<long long, long long> next = plus(now, x); if (is_in_field(h, w, next)) { if (p[next.first][next.second] == '.') { if (field[next.first][next.second] == initial_number) { field[next.first][next.second] = field[now.first][now.second] + 1; Q.push(next); } else { } } } } } } }; bool Ischanged(long long a, long long b) { if (a * b < 0) { return true; } else { return false; } } int main() { long long n; cin >> n; vector<long long> a(n); for (int i = (0); i < (n); ++i) cin >> a[i]; long long sum = 0; long long count = 0; for (int i = (0); i < (n); ++i) { if (i == 0) { sum += a[i]; if (sum == 0 && n != 1) { if (a[1] >= 0) { sum = -1; } else { sum = 1; } } count++; } else { long long was = sum; sum += a[i]; if (Ischanged(was, sum)) { continue; } else { if (sum < 0) { count += abs(sum) + 1; sum = 1; } else { count += abs(sum) + 1; sum = -1; } } } } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int ans(int n, int *, int change); int main() { int n; int a[110000]; cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; long long pAns, nAns; pAns = ans(n, a, 1); nAns = ans(n, a, -1); printf("%d\n", min(pAns, nAns)); } int ans(int n, int *a, int change) { long long Ans = 0; long long sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; switch (change) { case -1: if (sum > -1) Ans += 1 + sum, sum = -1; change *= -1; break; case 1: if (sum < 1) Ans += 1 - sum, sum = 1; change *= -1; break; } } return Ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = int64_t; int main() { ll N; cin >> N; vector<ll> A(N); ll osum = 0; ll esum = 0; for (int i = 0; i < ((int)(N)); i++) { cin >> A.at(i); if (A[i] < 0) { if (i % 2 == 0) esum++; else osum++; } } bool evenIsPositive = (osum > esum) ? true : false; ll step = 0; ll sum = 0; for (int i = 0; i < N; i++) { ll tmp = sum + A[i]; if (i % 2 == 0) { if (evenIsPositive) { if (tmp < 0) { step += abs(tmp) + 1; sum = 1; } else if (tmp == 0) { sum = 1; step++; } else { sum = tmp; } } else { if (tmp < 0) { sum = tmp; } else if (tmp == 0) { sum = -1; step++; } else { step += tmp + 1; sum = -1; } } } else { if (evenIsPositive) { if (tmp < 0) { sum = tmp; } else if (tmp == 0) { sum = -1; step++; } else { step += sum + 1; sum = -1; } } else { if (tmp < 0) { step += abs(tmp) + 1; sum = 1; } else if (tmp == 0) { sum = 1; step++; } else { sum = tmp; } } } } cout << step << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int N; std::vector<long> A; bool bxor(bool a, bool b) { return !a != !b; } long solve(bool f) { long sum = 0; long ans = 0; for (long i = 0; i < (N); ++i) { sum += A[i]; if (!bxor(bxor(f, i % 2 == 0), sum > 0)) { long dist = bxor(f, i % 2 == 0) ? (-1) : 1; ans += std::abs(sum - dist); sum = dist; } } return ans; } int main() { std::cin >> N; A.resize(N); for (long i = 0; i < (N); ++i) { std::cin >> A[i]; } std::cout << std::min(solve(true), solve(false)) << std::endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { ios::sync_with_stdio(false); std::cin.tie(nullptr); ll n; cin >> n; vector<ll> a(n); for (ll i = 0; i < n; i++) cin >> a[i]; ll sumodd = 0; ll sumeven = 0; ll ans = 0; for (ll i = 0; i < n; i++) { if (i % 2 == 0) { if (sumodd + abs(a[i]) == 0) sumodd += 1; else if (i > 1 && sumodd + abs(a[i]) <= sumeven) { ans += sumeven - sumodd + 1; sumodd += abs(a[i]); } } if (i % 2 != 0) { if (sumeven + abs(a[i]) == 0) sumeven += 1; else if (sumeven + abs(a[i]) <= sumodd) ans += sumodd - sumeven + 1; sumeven += abs(a[i]); } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; long long A[100001]; cin >> n; for (int i = 0; i < n; i++) { cin >> A[i]; } long long sum = 0; int counter = 0; for (int i = 0; i < n; i++) { sum += A[i]; if (i % 2 == 0) { while (sum <= 0) { sum++; counter++; } } else { while (sum >= 0) { sum--; counter++; } } } int counterNeg = 0; sum = 0; for (int i = 0; i < n; i++) { sum += A[i]; if (i % 2 == 1) { while (sum <= 0) { sum++; counterNeg++; } } else { while (sum >= 0) { sum--; counterNeg++; } } } cout << min(counter, counterNeg) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, t = 0; long long r1 = 0, r2 = 0; cin >> n; vector<int> a(n); for (int i = 0; i < (n); ++i) cin >> a.at(i); for (int i = 0; i < (n); ++i) { t += a.at(i); if (i % 2 == 0 && t <= 0) { r1 += abs(-t) + 1; t = 1; } else if (i % 2 && t >= 0) { r1 += t + 1; t = -1; } } t = 0; for (int i = 0; i < (n); ++i) { t += a.at(i); if (i % 2 && t <= 0) { r2 += abs(-t) + 1; t = 1; } else if (i % 2 == 0 && t >= 0) { r2 += t + 1; t = -1; } } cout << min(r1, r2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 1LL << 60; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; vector<int> A(n); vector<int> B(n + 1); vector<int> B2(n + 1); B[0] = 0; B2[0] = 0; for (long long i = 0; i < n; i++) { cin >> A[i]; B[i + 1] = A[i] + B[i]; B2[i + 1] = B[i + 1]; } long long sum_p = 0; long long pm = 0; for (long long i = 1; i < n + 1; i++) { long long del = 0; if (i % 2 && B[i] + pm <= 0) del = abs(B[i] + pm) + 1; if (i % 2 == 0 && B[i] + pm >= 0) del = -(B[i] + pm + 1); pm += del; sum_p += abs(del); } long long sum_m = 0; pm = 0; for (long long i = 1; i < n + 1; i++) { long long del = 0; if (i % 2 == 0 && B2[i] + pm <= 0) del = abs(B2[i] + pm) + 1; if (i % 2 && B2[i] + pm >= 0) del = -(B2[i] + pm + 1); pm += del; sum_m += abs(del); } cout << ((sum_p < sum_m) ? sum_p : sum_m) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } long long ans1 = 0, ans2 = 0; long long total; for (int p = 0; p < 2; p++) { ans2 = ans1; ans1 = 0; long long temp; if (p == 0) { if (a[0] == 0) { total = 1; ans1++; } else { total = a[0]; } } if (p == 1) { if (a[0] == 0) { total = -1; ans1++; } else { total = -a[0]; ans1 = 2 * abs(a[0]); } } for (int i = 1; i < n; i++) { temp = a[i]; if (total > 0) { if (total + a[i] >= 0) { a[i] = -(total + 1); } total += a[i]; ans1 += abs(a[i] - temp); a[i] = temp; } else if (total < 0) { if (total + a[i] <= 0) { a[i] = (-total + 1); } total += a[i]; ans1 += abs(a[i] - temp); a[i] = temp; } } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const constexpr int INF = 1e9; int N; string s; void solve() { vector<long long> v(N); long long minV = INF; for (int i = 0; i < N; ++i) cin >> v[i]; long long cnt = 0; long long tmp = v[0]; if (v[0] <= 0) { cnt += -v[0] + 1; v[0] = 1; } long long sum = v[0]; v[0] = tmp; for (int i = 1; i < N; ++i) { sum += v[i]; if (i % 2 != 0 && sum > 0) { cnt += sum + 1; sum = -1; } if (i % 2 == 0 && sum < 0) { cnt += -sum + 1; sum = 1; } if (sum == 0) { if (i % 2 == 0) sum = -1; else sum = 1; cnt++; } } minV = min(minV, cnt); cnt = 0; sum = 0; if (v[0] >= 0) { cnt += v[0] + 1; v[0] = -1; } sum = v[0]; for (int i = 1; i < N; ++i) { sum += v[i]; if (i % 2 != 0 && sum < 0) { cnt += -sum + 1; sum = 1; } if (i % 2 == 0 && sum > 0) { cnt += sum + 1; sum = -1; } if (sum == 0) { if (i % 2 == 0) sum = 1; else sum = -1; cnt++; } } cout << min(minV, cnt) << endl; } int main() { cin >> N; solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python2
import sys from collections import deque import copy import math def get_read_func(fileobject): if fileobject == None : return raw_input else: return fileobject.readline def calc(A, N): s = 0 count = 0 pre_sign = 0 for i in range(N): s += A[i] if s == 0: if pre_sign == 1: s -= 1 elif pre_sign == -1: s += 1 count += 1 if pre_sign == s/abs(s): if s < 0: ope = 1 - s else: ope = -1 - s s += ope count += abs(ope) pre_sign = s/abs(s) return count def main(): if len(sys.argv) > 1: f = open(sys.argv[1]) else: f = None read_func = get_read_func(f); input_raw = read_func().strip().split() [N] = [int(input_raw[0])] input_raw = read_func().strip().split() A = [int(input_raw[i]) for i in range(N)] s = 0 count = 0 pre_sign = 0 if A[0] != 0: count = calc(A, N) else: A[0] = -1 count_minus =calc(A, N) + 1 A[0] = 1 count_plus =calc(A, N) + 1 count = min(count_minus, count_plus) print count if __name__ == '__main__': main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = int(input()) A = [int(x) for x in input().split()] sum_start_plus = 0 sum_start_minus = 0 ans_start_plus = 0 ans_start_minus = 0 # プラス始まりの場合を計算する for i in range(n): sum_start_plus += A[i] if i % 2 == 0: if np.sign(sum_start_plus) == 1: continue else: ans_start_plus += abs(1 - sum_start_plus) sum_start_plus = 1 else: if np.sign(sum_start_plus) == -1: continue else: ans_start_plus += abs(-1 - sum_start_plus) sum_start_plus = -1 # マイナス始まりの場合を計算する for i in range(n): sum_start_minus += A[i] print(sum_start_minus) if i % 2 == 0: if np.sign(sum_start_minus) == -1: continue else: ans_start_minus += abs(-1 - sum_start_minus) sum_start_minus = -1 else: if np.sign(sum_start_minus) == 1: continue else: ans_start_minus += abs(1 - sum_start_minus) sum_start_minus = 1 print(min(ans_start_plus, ans_start_minus))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int store[200007]; int main() { int n; cin >> n; for (int i = 1; i <= n; i++) scanf("%d", &store[i]); long long cnt = 0; long long sum = store[1]; if (sum == 0) sum++, cnt++; for (int i = 2; i <= n; i++) { if (sum < 0 && sum + store[i] <= 0) { cnt += 1 - (sum + store[i]); sum = 1; } else if (sum > 0 && sum + store[i] > 0) { cnt += (sum + store[i]) + 1; sum = -1; } else sum += store[i]; } cout << cnt << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); int ju = 0; for (int i = 0; i < (int)(n); i++) { cin >> a[i]; if (i % 2 == 0 && a[i] > 0) ju++; if (i % 2 == 1 && a[i] < 0) ju++; } long long int sum = 0, ans = 0; if (ju > n / 2) { for (int i = 0; i < (int)(n); i++) { sum += a[i]; if (sum <= 0 && i % 2 == 0) { ans += abs(1 - sum); sum = 1; } else if (sum >= 0 && i % 2 == 1) { ans += abs(-1 - sum); sum = -1; } } } else { for (int i = 0; i < (int)(n); i++) { sum += a[i]; if (sum >= 0 && i % 2 == 0) { ans += abs(-1 - sum); sum = -1; } else if (sum <= 0 && i % 2 == 1) { ans += abs(1 - sum); sum = 1; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def f(c, cost): for i in a[1:]: if c > 0: if c + i >= 0: cost += c + i + 1 c = -1 else: c += i else: if c + i <= 0: cost += 1 - c - i c = 1 else: c += i return c, cost n = int(input()) a = list(map(int, input().split())) cost = (a[0] == 0) c = a[0] + (a[0] == 0) c, cost = f(c, cost) tmp = cost cost = 0 if a[0] >= 0: cost = a[0] + 1 c = -1 else: cost = -a[0] + 1 c = 1 c, cost = f(c, cost) print(min(cost, tmp))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main { public static void main(String[] args) throws Exception { // Your code here! Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] array = new int[n]; for (int i = 0; i < n; i++) { array[i] = sc.nextInt(); } int countA = 0; int sum = 0; for (int i = 0; i < n; i++) { sum += array[i]; if (i % 2 == 0) { if (sum <= 0) { countA += sum * (-1) + 1; sum = 1; } } else { if (sum >= 0) { countA += sum + 1; sum = -1; } } } int countB = 0; sum = 0; for (int i = 0; i < n; i++) { sum += array[i]; if (i % 2 == 1) { if (sum <= 0) { countB += sum * (-1) + 1; sum = 1; } } else { if (sum >= 0) { countB += sum + 1; sum = -1; } } } System.out.println(Math.min(countA, countB)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(x) for x in input().split()] def odd_positive(List, n): sum_a = 0 cost = 0 i = 0 for a in List: i += 1 nextsum = sum_a + a if i & 1 and nextsum <= 0: cost = - nextsum + 1 sum_a = 1 elif (not i & 1) and nextsum >= 0: cost = nextsum + 1 sum_a = -1 return cost def odd_negative(List, n): sum_a = 0 cost = 0 i = 0 for a in List: i += 1 nextsum = sum_a + a if i & 1 and nextsum >= 0: cost = nextsum + 1 sum_a = -1 elif (not i & 1) and nextsum <= 0: cost = - nextsum + 1 sum_a = 1 return cost ans = min(odd_positive(a,n), odd_negative(a,n)) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) i = input() i = i.split() for item in range(len(i)): i[item] = int(i[item]) totn = 0 totp = 0 countp = 0 countn = 0 for x in range(len(i)): totp += i[x] totn += i[x] ''' if x == 0: if totp == 0: totn = -1 countn = 1 totp = 1 countp = 1 elif totp < 0: countp = abs(totp) + 1 totp = 1 elif totp > 0: countn = abs(totn) + 1 totn = -1 ''' if x %2 == 1: if totn == 0: countn += 1 totn = 1 elif totn < 0: countn += abs(totn) + 1 totn = 1 if totp == 0: countp += 1 totp = -1 elif totp > 0: countp += abs(totp) + 1 totp = -1 elif x %2 == 0: if totn == 0: countn += 1 totn = -1 elif totn > 0: countn += abs(totn) + 1 totn = -1 if totp == 0: countp += 1 totp = 1 elif totp < 0: countp += abs(totp) + 1 totp = 1 '''print('totn', totn) print('countn', countn) print('totp', totp) print('countp', countp) ''' count = min(countn, countp) print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys sys.setrecursionlimit(1 << 25) read = sys.stdin.readline ra = range enu = enumerate def exit(*argv, **kwarg): print(*argv, **kwarg) sys.exit() def mina(*argv, sub=1): return list(map(lambda x: x - sub, argv)) # 受け渡されたすべての要素からsubだけ引く.リストを*をつけて展開しておくこと def a_int(): return int(read()) def ints(): return list(map(int, read().split())) def read_col(H): '''H is number of rows A列、B列が与えられるようなとき ex1)A,B=read_col(H) ex2) A,=read_col(H) #一列の場合''' ret = [] for _ in range(H): ret.append(list(map(int, read().split()))) return tuple(map(list, zip(*ret))) def read_tuple(H): '''H is number of rows''' ret = [] for _ in range(H): ret.append(tuple(map(int, read().split()))) return ret def read_matrix(H): '''H is number of rows''' ret = [] for _ in range(H): ret.append(list(map(int, read().split()))) return ret # return [list(map(int, read().split())) for _ in range(H)] # 内包表記はpypyでは遅いため MOD = 10**9 + 7 INF = 2**31 # 2147483648 > 10**9 # default import from collections import defaultdict, Counter, deque from operator import itemgetter, xor, add from itertools import accumulate, product, permutations, combinations from bisect import bisect_left, bisect_right # , insort_left, insort_right from functools import reduce from math import gcd def lcm(a, b): # 最小公倍数 g = gcd(a, b) return a // g * b # https://atcoder.jp/contests/abc059/tasks/arc072_a # si=a1+..+aiと定義する # s1...si,si+1,snの符号は+-+-... or -+-+...にしたい←両方試せばいい # +-+-にするのに最小の操作は? n = a_int() A = ints() S = list(accumulate(A)) #+-+-のとき now = 1 # 正負 pad = 0 ans1 = 0 for s in S: s += pad if s * now < 0: # 異符号だったら修正する必要あり if now == 1: # +にしたい場合 n_ope = 1 - s pad += n_ope else: # -にしたい場合 n_ope = s + 1 pad -= n_ope ans1 += n_ope now *= -1 #-+-+のとき now = -1 # 正負 pad = 0 ans2 = 0 for s in S: s += pad if s * now <= 0: # 異符号だったら修正する必要あり if now == 1: # +にしたい場合 n_ope = 1 - s pad += n_ope else: # -にしたい場合 n_ope = s + 1 pad -= n_ope ans2 += n_ope now *= -1 # print(S) # print(ans1, ans2) print(min(ans1, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const double PI = acos(-1); const double EPS = 1e-7; const int inf = 1e8; const long long INF = 1e16; int dx[] = {0, 1, 0, -1}; int dy[] = {1, 0, -1, 0}; long long n; vector<long long> in; long long f() { long long ans = 0; long long sum = in[0]; for (int i = 1; i < n; i++) { if (sum < 0) { long long t = -sum + 1; ans += max(t - in[i], 0ll); sum += max(t - in[i], 0ll) + in[i]; } else { long long t = -sum - 1; ans += max(in[i] - t, 0ll); sum += in[i] - max(in[i] - t, 0ll); } } return ans; } int main() { cin >> n; in = vector<long long>(n); for (int i = 0; i < n; i++) cin >> in[i]; long long out = INF; if (in[0] == 0) { in[0] = 1; out = min(out, f()); in[0] = -1; out = min(out, f()); } else out = min(out, f()); cout << out << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { int N; cin >> N; vector<ll> a(N); for (int i = 0; i < N; i++) { cin >> a.at(i); } ll ans = 0; if (a.at(0) != 0) { vector<ll> sum(N + 1, 0); for (int i = 0; i < N; i++) { sum.at(i + 1) = sum.at(i) + a.at(i); } for (int i = 2; i <= N; i++) { sum.at(i) = sum.at(i - 1) + a.at(i - 1); if (sum.at(i) == 0) { if (sum.at(i - 1) < 0) { sum.at(i) = 1; } else { sum.at(i) = -1; } ans++; } else if (sum.at(i - 1) * sum.at(i) > 0) { if (sum.at(i - 1) < 0) { ans += 1 - sum.at(i); sum.at(i) = 1; } else { ans += 1 + sum.at(i); sum.at(i) = -1; } } } } else { vector<ll> sum(N + 1, 0); ans = 1; a.at(0) = 1; for (int i = 0; i < N; i++) { sum.at(i + 1) = sum.at(i) + a.at(i); } for (int i = 2; i <= N; i++) { sum.at(i) = sum.at(i - 1) + a.at(i - 1); if (sum.at(i) == 0) { if (sum.at(i - 1) < 0) { sum.at(i) = 1; } else { sum.at(i) = -1; } ans++; } else if (sum.at(i - 1) * sum.at(i) > 0) { if (sum.at(i - 1) < 0) { sum.at(i) = 1; ans += 1 - sum.at(i); } else { sum.at(i) = -1; ans += 1 + sum.at(i); } } } ll ans2 = 1; a.at(0) = -1; for (int i = 0; i < N; i++) { sum.at(i + 1) = sum.at(i) + a.at(i); } for (int i = 2; i <= N; i++) { sum.at(i) = sum.at(i - 1) + a.at(i - 1); if (sum.at(i) == 0) { if (sum.at(i - 1) < 0) { sum.at(i) = 1; } else { sum.at(i) = -1; } ans2++; } else if (sum.at(i - 1) * sum.at(i) > 0) { if (sum.at(i - 1) < 0) { sum.at(i) = 1; ans2 += 1 - sum.at(i); } else { sum.at(i) = -1; ans2 += 1 + sum.at(i); } } } ans = min(ans, ans2); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; if (scanf("%d", &n) < 1) return 0; int tmp; int sm = 0; long long int cnt = 0; for (int i = 0; i < n; i++) { if (scanf("%d", &tmp) < 1) return 0; if ((0 <= sm + tmp) && (0 < sm)) { cnt = cnt + (1 + sm + tmp); sm = -1; } else if ((sm + tmp <= 0) && (sm < 0)) { cnt = cnt + (1 - sm - tmp); sm = 1; } else sm = sm + tmp; } printf("%lld\n", cnt); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int n = Integer.parseInt(scanner.nextLine()); int[] array = new int[n]; int i = 0; for(String ai : scanner.nextLine().split(" ")) { array[i++] = Integer.parseInt(ai); } int op = 0; if (array[0] == 0) { if (array[1] > 0) { array[0]--; } else { array[0]++; } op++; } int pos; while ((pos = getpos(array, n)) >= 0) { if (array[0] > 0) { if (pos % 2 == 0) { array[pos]++; } else { array[pos]--; } } else { if (pos % 2 == 0) { array[pos]--; } else { array[pos]++; } } op++; } System.out.println(op); } public static int getpos(int[] array, int n) { int sum = array[0]; if (sum == 0) { return 0; } boolean previous = sum > 0; // +: true -: false for(int i = 1; i < n; i++) { sum += array[i]; if (sum == 0) { return i; } if (previous && sum > 0) { return i; } if (!previous && sum < 0) { return i; } previous = sum > 0; } return -1; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = INT_MAX; const long long INFL = LLONG_MAX; const long double pi = acos(-1); int dx[] = {1, -1, 0, 0}; int dy[] = {0, 0, 1, -1}; long long xx(vector<long long> &v) { long long s = 0; long long ans = 0; int n = int((v).size()); for (int i = 0; i < n; i++) { if (!i) s = v[0]; else { if (s > 0) { if (s + v[i] < 0) { s += v[i]; continue; } long long x, y; x = max(s + v[i] + 1, (long long)0); ans += x; if (x != 0) s = -1; } else { if (s + v[i] > 0) { s += v[i]; continue; } long long x, y; x = max(1 - (s + v[i]), (long long)0); ans += x; if (x != 0) s = 1; } } } return ans; } int main() { ios_base::sync_with_stdio(0); cout.precision(15); cout << fixed; cout.tie(0); cin.tie(0); int n; cin >> n; vector<long long> v(n); for (int(i) = 0; (i) < (n); (i)++) cin >> v[i]; if (n == 1) { cout << 0 << '\n'; return 0; } long long ans = INFL; if (v[0] == 0) { v[0] += 1; ans = min(ans, xx(v)); v[0] = -1; ans = min(ans, xx(v)); } else if (v[0] > 0) { ans = min(ans, xx(v)); v[0] = -1; ans = min(ans, xx(v)); } else { ans = min(ans, xx(v)); v[0] = 1; ans = min(ans, xx(v)); } cout << ans << '\n'; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> bool umax(T &a, const T &b) { if (a < b) { a = b; return true; } return false; } template <class T> bool umin(T &a, const T &b) { if (b < a) { a = b; return true; } return false; } template <typename T> T gcd(T a, T b) { if (a == 0) return b; return gcd(b % a, a); } int findGCD(int arr[], int n) { int result = arr[0]; for (int i = 1; i < n; i++) result = gcd(arr[i], result); return result; } template <typename T> T lcm(T m, T n) { if ((0 == m) || (0 == n)) return 0; return ((m / gcd(m, n)) * n); } template <typename A, size_t N, typename T> void Fill(A (&array)[N], const T &val) { fill((T *)array, (T *)(array + N), val); } int dx[5] = {1, 0, -1, 0}; int dy[5] = {0, 1, 0, -1}; vector<int> G[200010]; vector<int> c(10010, 0); int num[200010]; bool used[200010]; int now_c = 0; int dfs(int s) { if (used[s]) { return 0; } else { used[s] = true; } num[s] = c[now_c]; now_c++; for (int i = 0; i < G[s].size(); i++) { dfs(G[s][i]); } return 0; } int main() { int N; cin >> N; vector<int> a(N); for (int i = 0; i < (int)(N); i++) { cin >> a[i]; } long long int ans1 = 0LL; long long int sum = 0LL; for (auto a_temp : a) { if (sum == 0LL) { if (a_temp < 0) { sum = a_temp; } else if (a_temp > 0) { sum = -1; ans1 += (a_temp + 1LL); } else { sum = -1LL; ans1 += 1LL; } } else if (sum < 0) { if (sum + a_temp <= 0) { ans1 += -(sum + a_temp) + 1LL; sum = 1LL; } else { sum += a_temp; } } else if (sum > 0) { if (sum + a_temp >= 0) { ans1 += (sum + a_temp + 1LL); sum = -1LL; } else { sum += a_temp; } } } sum = 0LL; long long int ans2 = 0LL; for (auto a_temp : a) { if (sum == 0LL) { if (a_temp < 0) { sum = a_temp; ans2 += (-a_temp + 1LL); } else if (a_temp > 0) { sum = a_temp; } else { sum = 1LL; ans2 += 1LL; } } else if (sum < 0) { if (sum + a_temp <= 0) { ans2 += -(sum + a_temp) + 1LL; sum = 1LL; } else { sum += a_temp; } } else if (sum > 0) { if (sum + a_temp >= 0) { ans2 += (sum + a_temp + 1LL); sum = -1LL; } else { sum += a_temp; } } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 1e9; const long long LINF = 1e18; const double EPS = 1e-9; const double PI = M_PI; const int dx[4] = {1, 0, -1, 0}; const int dy[4] = {0, 1, 0, -1}; long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } long long lcm(long long a, long long b) { return a / gcd(a, b) * b; } void yes() { cout << "Yes" << endl; } void no() { cout << "No" << endl; } int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; vector<long long> a(n); for (long long(i) = 0; (i) < (long long)(n); i++) { cin >> a[i]; } vector<long long> sum(n); sum[0] = a[0]; long long ans = 0; for (long long(i) = 1; (i) < (long long)n; i++) { sum[i] = sum[i - 1] + a[i]; if (sum[i] * sum[i - 1] < 0) { continue; } else if (sum[i] * sum[i - 1] > 0) { if (sum[i] > 0 && sum[i - 1] > 0) { ans += sum[i] + 1; sum[i] = -1; } else { ans += -sum[i] + 1; sum[i] = 1; } } else { ans++; if (sum[i - 1] > 0) { sum[i] = -1; } else { sum[i] = 1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(int(i) for i in input().split()) b = [] for i in range(0,len(a)): b.append(a[i]) def solve(cnt,A,N): for i in range(1, N): if sum(A[0:i])>0: if sum(A[0:i+1])>=0: r = A[i] A[i]=-sum(A[0:i])-1 cnt+=abs(r-A[i]) else: if sum(A[0:i+1])<=0: r = A[i] A[i]=-sum(A[0:i])+1 cnt+=abs(r-A[i]) return cnt cnt1=0 if b[0]<=0: while b[0]<=0: b[0]+=1 cnt1+=1 ans1=solve(cnt1,b,n) cnt2=0 if a[0]>=0: while a[0]>=0: a[0]-=1 cnt2+=1 ans2=solve(cnt2,a,n) print(min(ans1,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i arr = gets.chomp.split(" ").map(&:to_i) count = 0 num = arr[0] + arr[1] (2...arr.size).each do |i| diff = num + arr[i] # puts %(num : #{num}) # puts %(diff : #{diff}) if num > 0 if diff > 0 arr[i] -= diff.abs+1 count += diff.abs+1 end else if diff < 0 arr[i] += diff.abs+1 count += diff.abs+1 end end if diff == 0 if num > 0 arr[i] -= 1 else arr[i] += 1 end count += 1 end num += arr[i] end #p arr puts count
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; long long a[100005], dp[100005]; cin >> n; long long sum = 0; for (int i = 0; i < n; i++) { cin >> a[i]; sum += a[i]; dp[i] = sum; } long long diff = 0, ans = 0; if (dp[0] == 0) { ans++; diff++; } for (int i = 1; i < n; i++) { if (dp[i] + diff == 0) { if (dp[i - 1] + diff < 0) diff++, ans++; if (dp[i - 1] + diff > 0) diff--, ans++; continue; } if ((dp[i - 1] + diff) / llabs(dp[i - 1] + diff) == (dp[i] + diff) / llabs(dp[i] + diff)) { if (dp[i] + diff < 0) { ans += llabs(dp[i] + diff) + 1; diff += llabs(dp[i] + diff) + 1; } else { ans += llabs(dp[i] + diff) + 1; diff -= llabs(dp[i] + diff) + 1; } } } long long tans = ans; diff = 0; ans = 0; if (dp[0] == 0) { ans++; diff--; } else { dp[0] *= (-1); ans += llabs(dp[0]); if (dp[0] < 0) diff -= llabs(dp[0]); else diff += llabs(dp[0]); } for (int i = 1; i < n; i++) { if (dp[i] + diff == 0) { if (dp[i - 1] + diff < 0) diff++, ans++; if (dp[i - 1] + diff > 0) diff--, ans++; continue; } if ((dp[i - 1] + diff) / llabs(dp[i - 1] + diff) == (dp[i] + diff) / llabs(dp[i] + diff)) { if (dp[i] + diff < 0) { ans += llabs(dp[i] + diff) + 1; diff += llabs(dp[i] + diff) + 1; } else { ans += llabs(dp[i] + diff) + 1; diff -= llabs(dp[i] + diff) + 1; } } } cout << min(ans, tans) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; double mod = 1e9 + 7; char alphabet[26] = {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'}; int cnt(ll n) { int c = 0; while (true) { if (n < 1) break; n = n / 10; c++; } return c; } int main() { ll N = 0, answer = 0, sum1 = 0, sum2 = 0, tmp = 0; int cnt1 = 0, cnt2 = 0; cin >> N; int *a = new int[N]; for (int i = 0; i < (int)N; ++i) cin >> a[i]; sum1 += a[0]; sum2 += a[0]; for (int i = 1; i < (int)N; ++i) { sum1 += a[i]; sum2 += a[i]; if (i % 2 == 0) { if (sum1 > 0) { cnt1 += abs(sum1) + 1; sum1 -= abs(sum1) + 1; } else if (sum1 == 0) { sum1++; cnt1++; } if (sum2 < 0) { cnt2 += abs(sum2) + 1; sum2 += abs(sum2) + 1; } else if (sum2 == 0) { sum2++; cnt2++; } } else { if (sum1 < 0) { cnt1 += abs(sum1) + 1; sum1 += abs(sum1) + 1; } else if (sum1 == 0) { sum1++; cnt1++; } if (sum2 > 0) { cnt2 += abs(sum2) + 1; sum2 -= abs(sum2) + 1; } else if (sum2 == 0) { sum2++; cnt2++; } } } cout << min(cnt1, cnt2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; using pii = pair<int, int>; using pll = pair<ll, ll>; const int MOD = 1000000007; const int mod = 1000000007; const int INF = 1000000000; const long long LINF = 1e18; const int MAX = 510000; bool code(long long int n) { if (n < 0) return 1; else if (n > 0) return 0; } int main() { int n; long long int sum = 0; unsigned long long int ans = 0; unsigned long long int ans2 = 0; cin >> n; vector<long long int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } if (a.at(0) != 0) { sum = a.at(0); for (int i = 1; i < n; i++) { if (sum + a.at(i) == 0) { ans++; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else if (code(sum + a.at(i)) == code(sum)) { ans += abs(sum + a.at(i)) + 1; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else { sum = a.at(i) + sum; } } cout << ans << endl; return 0; } else if (a.at(0) == 0) { sum = -1; ans = 1; for (int i = 1; i < n; i++) { if (sum + a.at(i) == 0) { ans++; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else if (code(sum + a.at(i)) == code(sum)) { ans += abs(sum + a.at(i)) + 1; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else { sum = a.at(i) + sum; } } sum = 1; ans2 = 1; for (int i = 1; i < n; i++) { if (sum + a.at(i) == 0) { ans2++; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else if (code(sum + a.at(i)) == code(sum)) { ans2 += abs(sum + a.at(i)) + 1; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else { sum = a.at(i) + sum; } } if (ans > ans2) cout << ans2 << endl; else { cout << ans << endl; } } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main (String[] args) { Scanner sc = new Scanner(System.in); int n = Integer.parseInt(sc.next()); long[] a = new long[n+1]; long[] b = new long[n+1]; long ans1 =0, ans2 =0,total =0; //a[1]を+とするケース for (int i =1; i<=n; i++) { a[i] = Long.parseLong(sc.next()); b[i] = a[i]; total += a[i]; if (i % 2 == 1 && total <=0) { ans1 += 1 - (total); a[i] += ans1; total += ans1; } if (i % 2 == 0 && total >=0) { ans1 += 1 + total; a[i] += -ans1; total += -ans1; } } total =0; //a[1]を-とするケース for (int i =1; i<=n; i++) { total += b[i]; if (i % 2 == 0 && total <=0) { ans2 += 1 - (total); b[i] += ans2; total += ans2; } if (i % 2 == 1 && total >=0) { ans2 += 1 + total; b[i] += -ans2; total += -ans2; } } System.out.print(Math.min(ans1,ans2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; cin >> n; vector<long long> a(n); cin >> a[0]; for (int i = 1; i < n; i++) { cin >> a[i]; a[i] += a[i - 1]; } for (int i = 0; i < n; i++) cout << a[i] << ' '; cout << endl; long long move = 0, cnt1 = 0, cnt2 = 0; for (int i = 0; i < n; i++) { long long new_move; long long tmp = a[i] + move; if (i % 2 == 0) { new_move = max((long long)0, 1 - tmp); cnt1 += abs(new_move); move += new_move; } else { new_move = -1 * max((long long)0, 1 + tmp); cnt1 += abs(new_move); move += new_move; } } move = 0; for (int i = 0; i < n; i++) { long long new_move; long long tmp = a[i] + move; if (i % 2 == 0) { new_move = -1 * max((long long)0, 1 + tmp); cnt2 += abs(new_move); move += new_move; } else { new_move = max((long long)0, 1 - tmp); cnt2 += abs(new_move); move += new_move; } } cout << min(cnt1, cnt2) << endl; return 0; }