Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long MOD = 1e9 + 7; int INF = 1 << 30; long long INFL = 1LL << 60; int main() { int n; cin >> n; vector<int> a(n); for (long long i = 0; i < (n); i++) cin >> a.at(i); int sum1 = 0; int ans1 = 0; int sum2 = 0; int ans2 = 0; for (long long i = 0; i < (n); i++) { sum1 += a.at(i); if (i % 2 == 0) { if (sum1 <= 0) { ans1 += sum1 * (-1) + 1; sum1 = 1; } } else { if (sum1 >= 0) { ans1 += sum1 + 1; sum1 = -1; } } } for (long long i = 0; i < (n); i++) { sum2 += a.at(i); if (i % 2 == 1) { if (sum2 <= 0) { ans2 += sum2 * (-1) + 1; sum2 = 1; } } else { if (sum2 >= 0) { ans2 += sum2 + 1; sum2 = -1; } } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { long N; cin >> N; long a[N]; for (int i = 0; i < N; i++) { cin >> a[i]; } long sum = 0; bool check = false; long ans = 0; if (a[0] != 0) { for (int i = 0; i < N; i++) { sum += a[i]; if (i == 0 && sum == 0 && a[1] > 0) { check = false; sum = -1; ans++; } else if (i == 0 && sum == 0 && a[1] < 0) { check = true; sum = 1; ans++; } else if (i == 0 && sum > 0) { check = true; } else if (i == 0 && sum < 0) { check = false; } else if (sum <= 0 && !check) { ans += 1 - sum; sum = 1; check = true; } else if (sum >= 0 && check) { ans += sum + 1; sum = -1; check = false; } else if (check) { check = false; } else if (!check) { check = true; } } } cout << ans; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n =sc.nextInt(); long[] a = new long[n]; for (int i = 0; i < n; i++) { a[i] = sc.nextLong(); } long[] sum = new long[n+1]; for (int i = 1; i <= n; i++) { sum[i] = sum[i-1] + a[i-1]; } long count1 = count(n, true, sum, 0 ); long count2 = count(n, false, sum, 0); System.out.println(Math.min(count1, count2)); } private static long count(int n , boolean pastPlus, long[] sum, long carry){ long count2 = 0; for (int i = 1; i <= n; i++) { long cur = sum[i] + carry; if (pastPlus && cur >= 0) { // minus nisinaito count2 += cur + 1; carry = - cur - 1; } if (!pastPlus && cur <= 0) { count2 += -cur + 1; carry = -cur + 1; } pastPlus = !pastPlus; } return count2; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
//ヘッダー #include<bits/stdc++.h> using namespace std; //型定義 typedef long long ll; //定数 const int INF=1e+9; const int MOD=1e+9+7; //REPマクロ #define REP(i,n) for(ll i=0;i<(ll)(n);i++) #define REPD(i,n) for(ll i=n-1;i>=0;i--) #define REP2(i,a,b) for(ll i=a;i<(ll)(b);i++) #define REPD2(i,a,b) for(ll i=a;i>(ll)(b);i--) // 多次元 vector 生成 template<class T> vector<T> make_vec(size_t a){ return vector<T>(a); } template<class T, class... Ts> auto make_vec(size_t a, Ts... ts){ return vector<decltype(make_vec<T>(ts...))>(a, make_vec<T>(ts...)); } //vectorの扱い #define ALL(x) (x).begin(),(x).end() //sortなどの引数省略 #define SIZE(x) ((ll)(x).size()) //size #define MAX(x) *max_element(ALL(x)) //最大値 #define MIN(x) *min_element(ALL(x)) //最小値 int main(){ ll n; cin>>n; vector<ll> a(n); ll sum=0; ll ans=0; REP(i,n) cin>>a[i]; REP(i,n){ ll tmp=sum; sum+=a[i]; if(tmp>0&&sum>0){ ans+=(sum+1); sum=-1; }else if(tmp<0&&sum<0){ ans+=abs(sum-1); sum=1; }else if(sum==0){ ans++; if(tmp<0){ sum++; }else{ sum--; } } } ll ans2=0; sum=0; REP(i,n){ ll tmp=sum; sum-=a[i]; ans2+=abs(a[i])+1; if(tmp>0&&sum>0){ ans2+=(sum+1); sum=-1; }else if(tmp<0&&sum<0){ ans2+=abs(sum-1); sum=1; }else if(sum==0){ ans2++; if(tmp<0){ sum++; }else{ sum--; } } } ans=min(ans,ans2); cout<<ans<<endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.IOException; import java.util.Scanner; public class Main { public static void main(String[] args) throws IOException{ Sequence solver = new Sequence(); solver.readInput(); solver.solve(); solver.writeOutput(); } static class Sequence { private int n; private long a[]; private long output; private Scanner scanner; public Sequence() { this.scanner = new Scanner(System.in); } public void readInput() { n = Integer.parseInt(scanner.next()); a = new long[n]; for(int i=0; i<n; i++) { a[i] = Integer.parseInt(scanner.next()); } } private int count(boolean sign) { int count=0; long sum=0; for(int i=0; i<n; i++) { sum += a[i]; if((i%2==0) == sign) { // a[i]までの合計を正にするとき if(sum<=0) { count += 1-sum; sum = 1; } } else { // a[i]までの合計を負にするとき if(0<=sum) { count += 1+sum; sum = -1; } } } return count; } public void solve() { int plus = count(true); int minus = count(false); output = Math.min(plus,minus); } public void writeOutput() { System.out.println(output); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; vector<int> rev_a = a; int result = 0; bool isPlus = a[0] > 0 ? true : false; int sum = a[0]; for (int i = 1; i < n; i++) { int temp_sum = sum + a[i]; if (isPlus) { if (temp_sum >= 0) { result += temp_sum + 1; a[i] -= temp_sum + 1; } } else { if (temp_sum <= 0) { result += -temp_sum + 1; a[i] += -temp_sum + 1; } } isPlus = !isPlus; sum += a[i]; } sum = 0; int rev_result = 0; isPlus = a[0] > 0 ? true : false; if (isPlus) { rev_result += a[0] + 1; a[0] -= a[0] + 1; isPlus = !isPlus; } for (int i = 1; i < n; i++) { int temp_sum = sum + rev_a[i]; if (isPlus) { if (temp_sum >= 0) { rev_result += temp_sum + 1; rev_a[i] -= temp_sum + 1; } } else { if (temp_sum <= 0) { rev_result += -temp_sum + 1; rev_a[i] += -temp_sum + 1; } } isPlus = !isPlus; sum += rev_a[i]; } if (rev_result < result) cout << rev_result << endl; else cout << result << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; class ParseError {}; template <typename T> class Zip { vector<T> d; bool flag; void init() { sort(d.begin(), d.end()); d.erase(unique(d.begin(), d.end()), d.end()); flag = false; } public: Zip() { flag = false; } void add(T x) { d.push_back(x); flag = true; } long long getNum(T x) { if (flag) init(); return lower_bound(d.begin(), d.end(), x) - d.begin(); } long long size() { if (flag) init(); return (long long)d.size(); } }; long long N, M, K, a, b, c, d, e, H, W, L, T; long long x, y, z; long long A[2000004] = {}; long long B[2000004] = {}; long long C[2000004] = {}; long long D[1000006] = {}; long long E[1000006] = {}; bool f; string S[200000]; string SS; set<long long> sll; pair<long long, long long> bufpl; vector<long long> vl[200005]; vector<long long> vll; vector<long long> v; vector<pair<long long, long long>> vpl; vector<string> vs; set<long long> llset; set<string> Sset; multiset<long long> llmset; queue<long long> ql; multiset<pair<long long, long long>> plmset; typedef struct ST { long long first; long long second; long long cost; bool operator<(const ST& another) const { return cost < another.cost; }; bool operator>(const ST& another) const { return cost > another.cost; }; } ST; priority_queue<ST, vector<ST>, greater<ST>> qst; long long modinv(long long aa, long long mm) { long long bb = mm, uu = 1, vv = 0; while (bb) { long long tt = aa / bb; aa -= tt * bb; swap(aa, bb); uu -= tt * vv; swap(uu, vv); } uu %= mm; if (uu < 0) uu += mm; return uu; } long long zettai(long long aa) { if (aa < 0) { aa *= -1; } return aa; } float zettai(float aa) { if (aa < 0) { aa *= -1; } return aa; } class UnionFind { public: vector<long long> pairent; vector<long long> depth; vector<long long> size; UnionFind(long long Amount) : pairent(Amount, 1), depth(Amount, 1), size(Amount, 1) { for (long long i = 0; i < Amount; i++) { pairent[i] = i; } } long long FindPairent(long long x) { if (pairent[x] == x) return x; else return pairent[x] = FindPairent(pairent[x]); } long long Merge(long long x, long long y) { x = FindPairent(x); y = FindPairent(y); if (x != y) { if (depth[x] > depth[y]) { pairent[y] = pairent[x]; return size[x] += size[y]; } else { pairent[x] = pairent[y]; if (depth[x] == depth[y]) { depth[y]++; } return size[y] += size[x]; } } else { return -1; } } bool IsSame(long long x, long long y) { if (FindPairent(x) == FindPairent(y)) return true; else return false; } long long GetSize(long long x) { x = FindPairent(x); return size[x]; } }; struct Edge { long long a, b, cost; bool operator<(const Edge& other) const { return cost < other.cost; } }; struct Graph { long long n; vector<Edge> es; }; class Kruskal { Graph origin_G; Graph MST; long long total_cost = 0; public: void Solve() { UnionFind uf = UnionFind(MST.n); for (long long i = 0; i < origin_G.es.size(); i++) { long long a = origin_G.es[i].a; long long b = origin_G.es[i].b; long long cost = origin_G.es[i].cost; if (!uf.IsSame(a, b)) { uf.Merge(a, b); MST.es.push_back(origin_G.es[i]); total_cost += cost; } } } Kruskal(Graph graph) { origin_G = graph; MST = graph; MST.es.clear(); sort(origin_G.es.begin(), origin_G.es.end()); } long long GetMinCost() { return total_cost; } }; long long RepeatSquaring(long long N, long long P, long long M) { if (P == 0) return 1; if (P % 2 == 0) { long long t = RepeatSquaring(N, P / 2, M) % M; return t * t % M; } return N * RepeatSquaring(N, P - 1, M) % M; } long long GCD(long long a, long long b) { if (a % b == 0) return b; else return GCD(b, a % b); } long long Min(long long a, long long b) { if (a < b) return a; else return b; } long long Max(long long a, long long b) { if (a > b) return a; else return b; } long long Sum(long long a, long long b) { return a + b; } template <typename T> class SegmentTree { long long n; vector<T> node; function<T(T, T)> fun, fun2; bool customChange; T outValue, initValue; public: void init(long long num, function<T(T, T)> resultFunction, T init, T out, function<T(T, T)> changeFunction = NULL) { fun = resultFunction; fun2 = changeFunction; customChange = changeFunction != NULL; n = 1; while (n < num) n *= 2; node.resize(2 * n - 1); fill(node.begin(), node.end(), init); outValue = out; initValue = init; } void valueChange(long long num, T value) { num += n - 1; if (customChange) node[num] = fun2(value, node[num]); else node[num] = value; while (num > 0) num = (num - 1) / 2, node[num] = fun(node[num * 2 + 1], node[num * 2 + 2]); } T rangeQuery(long long a, long long b, long long l = 0, long long r = -1, long long k = 0) { if (r == -1) r = n; if (a <= l && r <= b) return node[k]; if (b <= l || r <= a) return outValue; long long mid = (l + r) / 2; return fun(rangeQuery(a, b, l, mid, 2 * k + 1), rangeQuery(a, b, mid, r, 2 * k + 2)); } }; class Combination { vector<long long> factorial; vector<long long> factorial_inv; long long mod; long long max_n; public: void Init(long long init_max_n, long long init_mod) { max_n = init_max_n; mod = init_mod; factorial.resize(max_n + 1); factorial[0] = 1; for (long long i = 1; i < factorial.size(); i++) { factorial[i] = factorial[i - 1] * i; factorial[i] %= mod; } factorial_inv.resize(max_n + 1); factorial_inv[0] = 1; for (long long i = 1; i < factorial_inv.size(); i++) { factorial_inv[i] = factorial_inv[i - 1] * modinv(i, mod); factorial_inv[i] %= mod; } } long long GetComb(long long n, long long k) { long long comb = factorial[n]; comb *= factorial_inv[k]; comb %= mod; comb *= factorial_inv[n - k]; comb %= mod; return comb; } long long GetH(long long n, long long k) { long long comb = factorial[n + k - 1]; comb *= factorial_inv[n]; comb %= mod; comb *= factorial_inv[k - 1]; comb %= mod; return comb; } }; class Tree { long long node_N; vector<long long> node; vector<vector<pair<long long, long long>>> pass; long long diameter = -1; vector<long long> dist_Diamieter[2]; pair<long long, long long> maxDist_Num; public: void Init(long long node_Num) { node_N = node_Num; node.resize(node_N + 1); pass.resize(node_N + 1); dist_Diamieter[0].resize(node_N + 1); for (long long i = 0; i < node_N + 1; i++) dist_Diamieter[0][i] = -1; dist_Diamieter[1].resize(node_N + 1); for (long long i = 0; i < node_N + 1; i++) dist_Diamieter[1][i] = -1; } void AddEdge(long long a, long long b, long long dist) { bufpl.first = b; bufpl.second = dist; pass[a].push_back(bufpl); bufpl.first = a; pass[b].push_back(bufpl); } void DFS(long long step, long long now, long long dist) { dist_Diamieter[step][now] = dist; if (dist_Diamieter[step][now] > maxDist_Num.first) { maxDist_Num.first = dist_Diamieter[step][now]; maxDist_Num.second = now; } for (long long i = 0; i < pass[now].size(); i++) { long long next_node = pass[now][i].first; if (dist_Diamieter[step][next_node] == -1) { DFS(step, next_node, dist + pass[now][i].second); } } } long long GetDiameter(long long min_node_num) { if (diameter >= 0) return diameter; else { maxDist_Num.first = -1; maxDist_Num.second = -1; DFS(0, min_node_num, 0ll); long long step2_start = maxDist_Num.second; maxDist_Num.first = -1; maxDist_Num.second = -1; DFS(1, step2_start, 0ll); diameter = maxDist_Num.first; return diameter; } } long long GetDistFromMinNode(long long num) { return dist_Diamieter[0][num]; } }; void Nibu(long long node, long long co) { C[node] = co % 2; D[co % 2]++; for (long long i = 0; i < vl[node].size(); i++) { long long next = vl[node][i]; if (C[next] == -1) { Nibu(next, co + 1); } } } int main() { cin >> N; for (long long i = 0; i < N; i++) { cin >> A[i]; if (i == 0) B[i] = A[i]; else B[i] = B[i - 1] + A[i]; } long long ruiseki = 0; long long ans = 0; long long ans2 = 0; if (B[0] == 0) { for (long long i = 0; i < N; i++) C[i] = B[i]; B[0] = -1; C[0] = 1; ruiseki = 1; ans2 = 1; for (long long i = 1; i < N; i++) { if (C[i - 1] + ruiseki < 0) { if (C[i] + ruiseki <= 0) { ans2 += 1 - (C[i] + ruiseki); ruiseki += 1 - (C[i] + ruiseki); } } else { if (C[i] + ruiseki >= 0) { ans2 += (C[i] + ruiseki) - (-1); ruiseki -= (C[i] + ruiseki) - (-1); } } } ruiseki = -1; ans = 1; } else ans2 = 8223372036854775807ll; for (long long i = 1; i < N; i++) { if (B[i - 1] + ruiseki < 0) { if (B[i] + ruiseki <= 0) { ans += 1 - (B[i] + ruiseki); ruiseki += 1 - (B[i] + ruiseki); } } else { if (B[i] + ruiseki >= 0) { ans += (B[i] + ruiseki) - (-1); ruiseki -= (B[i] + ruiseki) - (-1); } } } cout << min(ans, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; set<string> c; map<ll, ll> mp; const ll inf = 100000000000000000; const ll mod = 1000000007; const ll mod2 = 998244353; ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; } ll lcm(ll c, ll d) { return c / gcd(c, d) * d; } int main() { ll n; cin >> n; vector<ll> a(n), sums(n + 1, 0); for (int i = 0; i < n; i++) cin >> a.at(i); for (int i = 0; i < n; i++) sums.at(i + 1) = a.at(i) + sums.at(i); ll ans = 0, res = 0, tmp = 0; vector<ll> sum = sums; if (sum.at(1) == 0) { sum.at(1) += 1; tmp += 1; } for (int i = 2; i < n + 1; i++) { if ((sum.at(i) + tmp > 0 && sum.at(i - 1) < 0) || (sum.at(i) + tmp < 0 && sum.at(i - 1) > 0)) continue; if (sum.at(i) == 0) { if (sum.at(i - 1) > 0) { sum.at(i) = -1; tmp--; } else { sum.at(i) = 1; tmp++; } ans++; } else if (sum.at(i - 1) < 0) { sum.at(i) += abs(sum.at(i)) + 1; ans += abs(sum.at(i)) + 1; tmp += abs(sum.at(i)) + 1; } else { sum.at(i) -= sum.at(i) - 1; ans += sum.at(i) + 1; tmp -= sum.at(i) - 1; } } sum = sums; tmp = 0; res += abs(sum.at(1)) + 1; if (sum.at(1) < 0) { sum.at(1) = 1; tmp += res; } else { sum.at(1) = -1; tmp -= res; } for (int i = 2; i < n + 1; i++) { if ((sum.at(i) + tmp > 0 && sum.at(i - 1) < 0) || (sum.at(i) + tmp < 0 && sum.at(i - 1) > 0)) continue; if (sum.at(i) == 0) { if (sum.at(i - 1) > 0) { sum.at(i) = -1; tmp--; } else { sum.at(i) = 1; tmp++; } res++; } else if (sum.at(i - 1) < 0) { sum.at(i) += abs(sum.at(i)) + 1; res += abs(sum.at(i)) + 1; tmp += abs(sum.at(i)) + 1; } else { sum.at(i) -= sum.at(i) - 1; res += sum.at(i) + 1; tmp -= sum.at(i) - 1; } } cout << min(ans, res) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int chk(long a[], int N, bool t) { long total = 0; long ops = 0; for (int i = 0; i < N; i++) { total += a[i]; if (t == true && (total < 1)) { ops += (1 - total); total = 1; } else if (t == false && (total > -1)) { ops += (total + 1); total = -1; } t = !t; } return ops; } int main() { long N; cin >> N; long a[100001]; for (long i = 0; i < N; i++) { cin >> a[i]; } printf("%d\n", min(chk(a, N, true), chk(a, N, false))); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n, a[]; double count = 0; double sum = 0, presum; n = sc.nextInt(); a = new int[n]; for(int i = 0; i < n; ++i)a[i] = sc.nextInt(); sc.close(); presum = -1.0 * a[0]; for(int i: a) { sum += (double)i; if(sum * presum > 0) { double tmp = Math.abs(sum) + 1; if(presum > 0)sum -= tmp; else sum += tmp; count += tmp; } if(sum == 0) { if(presum > 0)sum--; else sum++; ++count; } presum = sum; } System.out.printf("%.0f\n", count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { new Main().execute(); } public void execute() { Scanner sc = new Scanner(System.in); final int n = sc.nextInt(); int ops = 0; long[] sums = new long[n + 1]; for (int i = 1; i <= n; i++) { int ai = sc.nextInt(); if (i > 1 && sums[i - 1] == 0) { sums[i - 1] = (ai > 0) ? -1 : 1; } sums[i] = sums[i - 1] + ai; if (sums[i] == 0) { ops++; } else if (i > 0 && sums[i - 1] * sums[i] > 0) { if (sums[i] > 0) { ops += sums[i] + 1; sums[i] = -1; } else if (sums[i] < 0) { ops += 1 - sums[i]; sums[i] = 1; } } } System.out.println(ops); sc.close(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main() { int n; std::cin >> n; std::vector<int> vec(n); for (auto&& e : vec) std::cin >> e; auto solve = [&](bool positive) { int ret = 0; int sum = 0; for (int i = 0; i < vec.size(); ++i) { sum += vec[i]; if (sum == 0 || positive != sum > 0) { ret += std::abs(sum) + 1; sum = (positive ? 1 : -1); } positive = !positive; } return ret; }; std::cout << std::min(solve(true), solve(false)) << std::endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 1e9; const int mod = 1e9 + 7; int main() { int n; cin >> n; long long sum; cin >> sum; long long ans = 0; for (int i = 1; i < n; i++) { int a; cin >> a; if (sum > 0) { if (sum + a >= 0) { ans += llabs(sum + a) + 1; sum = -1; } else sum += a; } else { if (sum + a <= 0) { ans += llabs(sum + a) + 1; sum = 1; } else sum += a; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n, x = map(int, input().split()) l = list(map(int, input().split())) ans = 0 for i in range(1, n): if l[i] + l[i-1] > x: ans += (l[i] + l[i-1]) - x l[i] -= (l[i] + l[i-1]) - x print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { int n; cin >> n; ll a[n]; for (int i = 0; i < n; i++) cin >> a[i]; ll ans = 4e18; if (a[0] < 0) for (int i = 0; i < n; i++) a[i] *= -1; ll sum = a[0], now = 0; for (int i = 0; i < n - 1; i++) { if (i % 2) { if (sum + a[i + 1] < 0) { now += 1 - (sum + a[i + 1]); sum = 1; } else { sum += a[i + 1]; } } else { if (sum + a[i + 1] >= 0) { now += sum + a[i + 1] + 1; sum = -1; } else { sum += a[i + 1]; } } } ans = min(ans, now); sum = -1, now = a[0] + 1; for (int i = 0; i < n - 1; i++) { if (i % 2 == 0) { if (sum + a[i + 1] <= 0) { sum = 1; now += 1 - a[i + 1]; } else { sum += a[i + 1]; } } else { if (sum + a[i + 1] >= 0) { sum = -1; now += a[i + 1] + 1; } else { sum += a[i + 1]; } } } ans = min(ans, now); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<long long> a(N); for (int i = 0; i < N; i++) { cin >> a[i]; } vector<long long> b(N), c(N); long long count1 = 0, count2 = 0; if (a[0] <= 0) { b[0] = 1; count1 += 1 - a[0]; if (a[0] == 0) { c[0] = -1; count2++; } else { c[0] = a[0]; } } if (a[0] >= 0) { c[0] = -1; count2 += a[0] + 1; if (a[0] == 0) { b[0] = 1; count1++; } else { b[0] = a[0]; } } for (int i = 1; i < N; i++) { if (b[i - 1] < 0 && b[i - 1] + a[i] <= 0) { count1 += 1 - (b[i - 1] + a[i]); b[i] = 1; } else if (b[i - 1] > 0 && b[i - 1] + a[i] >= 0) { count1 += (b[i - 1] + a[i]) + 1; b[i] = -1; } else { b[i] = b[i - 1] + a[i]; } if (c[i - 1] < 0 && c[i - 1] + a[i] <= 0) { count2 += 1 - (c[i - 1] + a[i]); c[i] = 1; } else if (c[i - 1] > 0 && c[i - 1] + a[i] >= 0) { count2 += (c[i - 1] + a[i]) + 1; c[i] = -1; } else { c[i] = c[i - 1] + a[i]; } } long long ans = min(count1, count2); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; cin >> n; long long int a[n]; for (int i = 0; i < (n); i++) { cin >> a[i]; } long long int oddcount = 0, evencount = 0; long long int oddsum = 0, evensum = 0; bool oddplus = true, evenplus = false; for (int i = 0; i < (n); i++) { oddsum += a[i]; evensum += a[i]; if (oddplus && oddsum <= 0) { oddcount += 1 - oddsum; oddsum = 1; } else if (!oddplus && oddsum >= 0) { oddcount += 1 + oddsum; oddsum = -1; } if (evenplus && evensum <= 0) { evencount += 1 - evensum; evensum = 1; } else if (!evenplus && evensum >= 0) { evencount += 1 + evensum; evensum = -1; } oddplus = !oddplus; evenplus = !evenplus; } cout << fmin(oddcount, evencount) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> A(n, 0); for (int i = 0; i < n; i++) cin >> A[i]; int cnt = 0, acm = 0, ans = 0; for (int i = 0; i < n; i++) { acm += A[i]; if (i % 2) { if (acm > 0) ; else { cnt += abs(acm) + 1; acm = 1; } } else { if (acm < 0) ; else { cnt += abs(acm) + 1; acm = -1; } } } ans = cnt; cnt = 0; acm = 0; for (int i = 0; i < n; i++) { acm += A[i]; if ((i + 1) % 2) { if (acm > 0) ; else { cnt += abs(acm) + 1; acm = 1; } } else { if (acm < 0) ; else { cnt += abs(acm) + 1; acm = -1; } } } ans = min(ans, cnt); cout << ans << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) ttl = a[0] cst = 0 if a[0]>0: flg = 1 elif a[0]<0: flg = -1 for i in range(1,n): ttl += a[i] if ttl*flg < 0: flg *= -1 else: if flg > 0: memo = abs(ttl)+1 ttl -= memo cst += memo elif flg < 0: memo = abs(ttl)+1 ttl += memo cst += memo flg *= -1 ttl = a[0] cst2 = 0 print(min(cst,cst2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { const int N = 100000; int n; long long a[N]; long long sum = 0, ans = 0; bool sign1 = true; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } sum = a[0]; if (sum >= 0) sign1 = true; else sign1 = false; for (int i = 1; i < n; i++) { bool sign2 = true; sum += a[i]; if (sum >= 0) sign2 = true; else sign2 = false; if (sign1 != sign2) { if (sum == 0) { ans++; if (sign1) { sum = -1; sign1 = false; } else { sum = 1; sign1 = true; } } else { sign1 = sign2; } } else { ans += abs(sum) + 1; if (sign2) sum = -1; else sum = 1; sign1 = !sign2; } } cout << ans << endl; return (0); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; int a[100000], c[2]; int main() { cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } for (int C = -1; C <= 1; C += 2) { int sign = C; for (int s = 0, i = 0; i < n; i++, sign *= -1) { s += a[i]; if (sign * s <= 0) { c[(C + 1) / 2] += abs(s) + 1; s = sign; } } } cout << min(c[0], c[1]); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } const long long INF = 1LL << 60; bool pairCompare(const pair<double, long long int>& firstElof, const pair<double, long long int>& secondElof) { return firstElof.first < secondElof.first; } bool pairCompareSecond(const pair<double, long long int>& firstElof, const pair<double, long long int>& secondElof) { return firstElof.second < secondElof.second; } const int dx[4] = {1, 0, -1, 0}; const int dy[4] = {0, 1, 0, -1}; struct edge { long long int from, to, cost; }; long long int gcd(long long int a, long long int b) { if (a % b == 0) return (b); else return (gcd(b, a % b)); } int main() { long long int n; cin >> n; long long int a[n]; for (long long int i = 0; i < n; i++) { cin >> a[i]; } long long int x = a[0], ans1 = 0, ans2 = 0; if (x < 0) { ans1 += abs(x) + 1; x = 1; } for (long long int i = 1; i < n; i++) { x += a[i]; if (i % 2) { if (x > 0) { ans1 += x + 1; x = -1; } } else { if (x < 0) { ans1 += abs(x) + 1; x = 1; } } } x = a[0]; if (x > 0) { ans2 += x + 1; x = -1; } for (long long int i = 1; i < n; i++) { x += a[i]; if (i % 2 == 0) { if (x > 0) { ans2 += x + 1; x = -1; } } else { if (x < 0) { ans2 += abs(x) + 1; x = 1; } } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); int[] a=new int[n]; for(int i=0;i<n;i++)a[i]=sc.nextInt(); int sum=0; int count=0; for(int i=0;i<n-1;i++){ sum+=a[i]; if(sum>0){ if(sum+a[i+1]>=0){ count+=sum+a[i+1]+1; a[i+1]-=sum+a[i+1]+1; } }else if(sum<0){ if(sum+a[i+1]<=0){ count+=sum+a[i+1]+1; a[i+1]-=sum+a[i+1]+1; } } } System.out.println(count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def count_loop(n, old_state, a_list, flag): count = 0 for i in range(1, int(n)): num_state = old_state + int(a_list[i]) if flag == 1: if num_state == 0: count += 1 old_state = -1 flag = -1 elif num_state > 0: count += num_state + 1 old_state = -1 flag = -1 else: old_state = num_state flag = -1 elif flag == -1: if num_state == 0: count += 1 old_state = 1 flag = 1 elif num_state < 0: count += abs(num_state) + 1 old_state = 1 flag = 1 else: old_state = num_state flag = 1 else: if num_state == 0: count += 1 flag = 0 elif num_state > 0: old_state = num_state flag = 1 else: old_state = num_state flag = -1 return count if __name__ == "__main__": n = input() a = input() a_list = a.split(" ") old_state = int(a_list[0]) count = 0 c1 = count_loop(n,old_state,a_list,1) c2 = count_loop(n,old_state,a_list,-1) c3 = count_loop(n,old_state,a_list,0)+1 if c1 <= c2 and c1 <= c3: print(c1) elif c2 <= c1 and c2 <= c3: print(c2) else: print(c3)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[n]; for (int(i) = 0; (i) < (n); ++(i)) { cin >> a[i]; } long long ans; long long sum[n]; bool plusSumFlg; ans = 0; sum[0] = a[0]; if (sum[0] == 0) { if (a[1] >= 0) { sum[0]--; ans++; } else { sum[0]++; ans++; } } plusSumFlg = sum[0] > 0 ? true : false; for (int i = 1; i < n; ++i) { sum[i] = sum[i - 1] + a[i]; if (plusSumFlg) { plusSumFlg = false; if (sum[i] < 0) { continue; } else if (sum[i] > 0) { ans += sum[i] + 1; sum[i] = -1; } else { sum[i]++; ans++; } } else { plusSumFlg = true; if (sum[i] > 0) { continue; } else if (sum[i] < 0) { ans += -sum[i] + 1; sum[i] = 1; } else { sum[i]++; ans++; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
<?php $n = trim(fgets(STDIN)); $a = explode(' ',trim(fgets(STDIN))); $x = $a[0]; $sign_p = ['p'=>-1,'m'=>1]; $sign = []; if ($a[0] > 0){ $sign = ['p','m']; } else { $sign = ['m','p']; } $ans = 0; for($i=1; $i<$n; $i++){ $bx = $x; $x = $x + $a[$i]; if ($x == 0){ $ans++; $x = $sign_p[$sign[0]]; $sign = array_reverse($sign); } else if (($sign[0]=='p' && $x>0) || ($sign[0]=='m' && $x<0)){ $d = $sign_p[$sign[0]] - $bx; $ans += abs($d-$a[$i]); $x = $sign_p[$sign[0]]; $sign = array_reverse($sign); } else { $sign = array_reverse($sign); } } echo $ans; ?>
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> ads(n); long long sum = 0; for (int i = 0; i < n; ++i) { long long a; cin >> a; ads[i] = a + sum; sum += a; } long long ans1 = 0; long long sum1 = 0; for (int i = 0; i < n; ++i) { if (i % 2 == 0) { if (ads[i] + sum1 <= 0) { ans1 += abs(1 - ads[i] - sum1); sum1 += 1 - ads[i]; } } else { if (ads[i] + sum1 >= 0) { ans1 += abs(-1 - ads[i] - sum1); sum1 += -1 - ads[i]; } } } long long ans2 = 0; long long sum2 = 0; for (int i = 0; i < n; ++i) { if (i % 2 == 1) { if (ads[i] + sum2 <= 0) { ans2 += abs(1 - ads[i] - sum2); sum2 += 1 - ads[i]; } } else { if (ads[i] + sum2 >= 0) { ans2 += abs(-1 - ads[i] - sum2); sum2 += -1 - ads[i]; } } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Text; using System.Collections.Generic; using System.Linq; class Program { static List<long> rep; static void Main(string[] args){ //入力を受け取る var N = long.Parse(Console.ReadLine()); var A = Console.ReadLine().Split().Select(a => long.Parse(a)).ToArray(); long ans = 0; long sum = A[0]; for(int i =1 ;i <N; i++){ if(sum > 0){ if(sum*(-1) <= A[i]){ ans += (long) Math.Abs(A[i]-(sum*(-1)-1)); A[i] = sum*(-1)-1; } sum += A[i]; }else{ if(sum*(-1) >= A[i]){ ans += (long) Math.Abs(A[i]-(sum*(-1)+1)); A[i] = sum*(-1)+1; } sum += A[i]; } }  Console.WriteLine(ans); } static int LowerBound(long num){ var l = 0; var r = rep.Count()-1; while(l <= r){ var mid = l+(r-l)/2; if(rep[mid] < num){ l = mid+1; }else{ r = mid-1; } } return l; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = list(map(int, input().split())) s = 0 num = 0 sign = "+" if A[0] >= 0 else "-" for a in A: s += a if sign == "+": if s > 0: pass else: num += abs(s) + 1 s = 1 sign = "-" continue if sign == "-": if s < 0: pass else: num += s + 1 s = -1 sign = "+" continue if A[0] != 0: print(num) exit() s = 0 num2 = 0 sign = "-" for a in A: s += a if sign == "+": if s > 0: pass else: num2 += abs(s) + 1 s = 1 sign = "-" continue if sign == "-": if s < 0: pass else: num2 += s + 1 s = -1 sign = "+" continue print(min(num, num2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main() { long long n, ai, sum = 0, ans = 0; int sign; scanf("%lld", &n); for (int i = 0; i < n; i++) { scanf("%lld", &ai); if (i == 0) { if (ai >= 0) sign = 1; if (ai < 0) sign = -1; } sum += ai; if ((i % 2 == 0 && sign == 1) || (i % 2 == 1 && sign == -1)) { if (sum <= 0) { ans += -sum + 1; sum = 1; } } if ((i % 2 == 1 && sign == 1) || (i % 2 == 0 && sign == -1)) { if (sum >= 0) { ans += sum + 1; sum = -1; } } } printf("%lld\n", ans); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using lint = long long; using uint = unsigned int; using ulint = unsigned long long; using ldouble = long double; using pii = pair<int, int>; using pli = pair<lint, lint>; using pdd = pair<double, double>; using pld = pair<ldouble, ldouble>; using v1i = vector<int>; using v1li = vector<lint>; using v2i = vector<vector<int>>; using v2li = vector<vector<lint>>; using v3i = vector<vector<vector<int>>>; using v3li = vector<vector<vector<lint>>>; using v1b = vector<bool>; using v2b = vector<vector<bool>>; using v3b = vector<vector<vector<bool>>>; using v1c = vector<char>; using v2c = vector<vector<char>>; using v3c = vector<vector<vector<char>>>; constexpr lint mod1 = 1e9 + 7; constexpr lint mod2 = 998244353; int main() { lint n, p = 0, q = 0, r = 0, s = 0; cin >> n; v1i v(n), w(n), a(n), b(n); for (int i = 0; i < n; ++i) cin >> v[i]; w[0] = v[0]; for (int i = 0; i < n - 1; ++i) w[i + 1] = w[i] + v[i + 1]; for (int i = 0; i < n; ++i) { a[i] = w[i]; a[i] += r; if (i % 2 == 0) { if (w[i] < 0) { p += 1 - w[i]; r += 1 - w[i]; } } else { if (w[i] > 0) { p += w[i] + 1; r -= w[i] + 1; } } } for (int i = 0; i < n; ++i) { b[i] = w[i]; b[i] += s; if (i % 2 == 1) { if (w[i] < 0) { q += 1 - w[i]; s += 1 - w[i]; } } else { if (w[i] > 0) { q += w[i] + 1; s -= w[i] + 1; } } } cout << min(p, q) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T> using vec = vector<T>; using i32 = int_fast32_t; using i64 = int_fast64_t; using u32 = uint_fast32_t; using u64 = uint_fast64_t; using ll = long long; using ld = long double; using vi = vec<int_fast32_t>; using vl = vec<int_fast64_t>; using vld = vec<ld>; using vii = vec<vi>; using PII = pair<int_fast32_t, int_fast32_t>; template <class T> using maxheap = std::priority_queue<T>; template <class T> using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>; template <class T, class U> inline bool chmax(T &a, const U &b) { if (a < b) { a = b; return 1; } return 0; } template <class T, class U> inline bool chmin(T &a, const U &b) { if (a > b) { a = b; return 1; } return 0; } const ld Pi = std::acos(-1.0L); constexpr ll infll = (1LL << 62) - 1; constexpr int inf = (1 << 30) - 1; const int mod = 1000000007; signed main() { int START_TIME = clock(); cin.tie(nullptr); ios::sync_with_stdio(false); i32 n; cin >> n; vi a(n); for (int_fast32_t i = 0; i < ((int_fast32_t)(n)); i++) cin >> a[i]; i32 ans = 0, sum = a[0]; for (i32 i = 1; i < n; ++i) { sum += a[i]; if (i & 1) { if (sum == 0) { ++ans; sum = 1; continue; } if (sum > 0) continue; ans += 1 - sum; sum = 1; } else { if (sum == 0) { ++ans; sum = -1; continue; } if (sum < 0) continue; ans += sum + 1; sum = -1; } } i32 ans2 = 0, sum2 = a[0]; for (i32 i = 1; i < n; ++i) { sum2 += a[i]; if (!(i & 1)) { if (sum2 == 0) { ++ans2; sum2 = -1; continue; } if (sum2 > 0) continue; ans2 += 1 - sum2; sum2 = 1; } else { if (sum2 == 0) { ++ans2; sum2 = 1; continue; } if (sum2 < 0) continue; ans2 += sum2 + 1; sum2 = -1; } } cout << min(ans, ans2) << '\n'; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
package main import ( "bufio" "fmt" "os" "strings" "strconv" ) func main() { sc := bufio.NewScanner(os.Stdin) sc.Buffer(make([]byte, 64*1024*1024), 64*1024*1024) sc.Scan() n, _ := strconv.Atoi(sc.Text()) sc.Scan() aArr := strings.Split(sc.Text(), " ") a := make([]int, n) for i := 0; i < n; i++ { a[i], _ = strconv.Atoi(aArr[i]) } cnt := 0 sum := a[0] for i := 1; i < n; i++ { if (sum+a[i])*sum < 0 { sum += a[i] continue } else if sum+a[i] < 0 { cnt += 1-(sum+a[i]) sum = 1 } else { cnt += 1+(sum+a[i]) sum = -1 } } fmt.Println(cnt) }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; ll solve(vector<ll>& v, int first) { ll cost = abs(first - v[0]); ll sum = first; for (int i = 1; i < v.size(); ++i) { ll after = sum + v[i]; if (after * sum < 0) { sum = after; } else { cost += abs(after) + 1; sum = sum > 0 ? -1 : 1; } } return cost; } int main() { int N; cin >> N; vector<ll> v(N); for (int i = 0; i < N; i++) cin >> v[i]; ll ret = LONG_MAX; if (v[0] == 0) { ret = min(ret, solve(v, 1)); ret = min(ret, solve(v, -1)); } else { ret = min(ret, solve(v, v[0])); ret = min(ret, solve(v, v[0] > 0 ? -1 : 1)); } cout << ret << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; const int inf = 1e9 + 7; const ll longinf = 1LL << 60; const ll mod = 1e9 + 7; int main() { ll n; cin >> n; ll a[n]; for (int i = 0; i < n; i++) cin >> a[i]; ll before = 1, tmp = 0, sum = a[0]; if (a[0] / llabs(a[0]) != 1) { tmp += 1 - a[0]; sum = 1; } for (int i = 1; i < n; i++) { sum += a[i]; before *= -1; if (sum == 0) { sum += before; tmp++; } if (before != (sum / llabs(sum))) { tmp += llabs(before) + llabs(sum); sum = before; } } ll ans = tmp; before = -1, tmp = 0, sum = a[0]; if (a[0] / llabs(a[0]) != -1) { tmp += 1 + a[0]; sum = -1; } for (int i = 1; i < n; i++) { sum += a[i]; before *= -1; if (sum == 0) { sum += before; tmp++; } if (before != (sum / llabs(sum))) { tmp += llabs(before) + llabs(sum); sum = before; } } ans = min(ans, tmp); cout << ans << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def main(): import sys input = sys.stdin.readline n = int(input()) a = list(map(int, input().split())) A = [] A_append = A.append cnt = 0 for i in range(n-1): A_append(a[i]) x = sum(A) + a[i+1] if sum(A) > 0 and x > 0: y = abs(x)+1 cnt += y a[i+1] -= y elif sum(A) < 0 and x < 0: y = abs(sum(A) - a[i+1])-1 cnt += y a[i+1] += y if sum(a) == 0: cnt += 1 print(cnt) if __name__ == '__main__': main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
fun main(args: Array<String>) { val N = nextInt() val A = listOfLong() val B = A.toMutableList() var ans = 0L var sum = A[0] var sign = A[0].sign() for (n in 1 until N) { val now = sum + A[n] when (now.sign()) { 1 -> if (sign != -1) { ans += -(-1 - now) sum = -1 } else sum = now -1 -> if (sign != 1) { ans += (1 - now) sum = 1 } else sum = now 0 -> if (sign == 1) { ans += 1 sum = -1 } else { ans += 1 sum = 1 } } sign = sum.sign() } println(ans) } fun Long.sign() = if (this > 0) 1 else if (this < 0) -1 else 0 fun next() = readLine()!! fun nextInt(delta: Int = 0) = Integer.parseInt(next()) + delta fun listOfString() = next().split(" ") fun listOfInt() = listOfString().map(String::toInt) fun listOfLong() = listOfString().map(String::toLong)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using pi = pair<int, int>; using vi = vector<int>; using vvi = vector<vi>; using vl = vector<ll>; using vvl = vector<vl>; using ld = long double; template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { os << "(" << p.first << "," << p.second << ")"; return os; } template <class T> ostream &operator<<(ostream &os, const vector<T> &v) { os << "{"; for (int i = 0; i < ((int)v.size()); ++i) { if (i) os << ","; os << v[i]; } os << "}"; return os; } template <typename T, size_t S> void printArray(const T (&array)[S]) { for (auto val : array) std::cout << val << ", "; std::cout << "\n"; } const int mod = 1e9 + 7; const int inf = 1e9 + 5; int main() { cin.tie(0); ios::sync_with_stdio(false); cout << std::setprecision(10); int n; std::cin >> n; vi a(n); for (int i = 0; i < (n); ++i) std::cin >> a[i]; ll mp = 0, pm = 0, tot = 0; bool plus = true; for (int i = 0; i < (n); ++i) { tot += a[i]; if (plus && tot < 1) pm += (-1 * tot) + 1, tot = 1; else if (!plus && tot > 0) pm += tot + 1, tot = -1; plus ^= 1; } plus = false; tot = 0; for (int i = 0; i < (n); ++i) { tot += a[i]; if (plus && tot < 1) mp += (-1 * tot) + 1, tot = 1; else if (!plus && tot > 0) mp += tot + 1, tot = -1; plus ^= 1; } std::cout << min(pm, mp) << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 1; i <= n; i++) { cin >> a[i]; } int c1 = 0, s1 = 0, c2 = 0, s2 = 0; for (int i = 1; i <= n; i++) { s1 += a[i]; s2 += a[i]; if (i % 2 == 0) { if (s1 <= 0) { c1 += 1 - s1; s1 = 1; } if (s2 >= 0) { c2 += s2 + 1; s2 = -1; } } else { if (s2 <= 0) { c2 += 1 - s2; s2 = 1; } if (s1 >= 0) { c1 += s1 + 1; s1 = -1; } } } cout << min(c1, c2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int count1 = 0; int count2 = 0; vector<long long> a(n); for (int i = 0; i < n; i++) cin >> a[i]; long long sum = 0; if (a[0] >= 0) { for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 1) { while (sum >= 0) { sum--; count1++; } } else { while (sum <= 0) { sum++; count1++; } } } } else { for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0) { while (sum >= 0) { sum--; count1++; } } else { while (sum <= 0) { sum++; count1++; } } } } sum = 0; if (a[0] >= 0) { for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 1) { while (sum >= 0) { sum--; count2++; } } else { while (sum <= 0) { sum++; count2++; } } } } else { for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0) { while (sum >= 0) { sum--; count2++; } } else { while (sum <= 0) { sum++; count2++; } } } } if (count1 >= count2) cout << count2 << endl; else cout << count1 << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long gcm(long long a, long long b); long long lcm(long long a, long long b); long long fac(long long a); int main() { long long n; cin >> n; long long nowsum = 0; long long ans = 0; long long sum = 0; bool plus = false; bool minus = false; vector<long long> A(n); for (int i = 0; i < n; i++) { cin >> A[i]; sum += A[i]; } for (int i = 0; i < n; i++) { nowsum += A[i]; if (i == 0) { if (nowsum == 0) { if (A[1] > 0) { ans = A[i] - 1; nowsum = (-1) * abs(A[i] - 1); minus = true; } else if (A[1] < 0) { ans = A[i] + 1; nowsum = abs(A[i] - 1); plus = true; } else { if (sum >= 0) { ans = 1; nowsum = 1; plus = true; } else { ans = 1; nowsum = -1; minus = true; } } } else if (nowsum >= 0) plus = true; else minus = true; } else { if (plus) { if (i % 2 == 0) { if (nowsum <= 0) { ans += abs(nowsum - A[i] - 1) - A[i]; nowsum = 1; } } else { if (nowsum >= 0) { ans += A[i] + abs(nowsum - A[i] + 1); nowsum = -1; } } } else if (minus) { if (i % 2 == 0) { if (nowsum >= 0) { ans += A[i] + abs(nowsum - A[i] + 1); nowsum = -1; } } else { if (nowsum <= 0) { ans += abs(nowsum - A[i] - 1) - A[i]; nowsum = 1; } } } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 10; int a[maxn]; int main() { int n; long long sum; scanf("%d", &n); for (int i = 0; i < n; i++) scanf("%d", &a[i]); sum = a[0]; long long cnt = 0; int flag = 0; if (sum == 0) { int i = 1; while (a[i] == 0 && i < n) i++; if (i == n) { cnt = (n - 1) * 2 + 1; printf("%lld\n", cnt); return 0; } if (a[i] > 0 && (i & 1 == 1)) { sum = -1; cnt++; } else if (a[i] > 0 && (i & 1 == 0)) { sum = 1; cnt++; } else if (a[i] < 0 && (i & 1 == 1)) { sum = 1; cnt++; } else if (a[i] < 0 && (i & 1 == 0)) { sum = -1; cnt++; } } else if (sum > 0) { int f = 1; int t = sum; for (int i = 1; i < n; i++) { t += a[i]; if ((f == 1 && t >= 0) || (f == -1 && t <= 0)) { flag = 1; break; } else f = -f; } } else { int f = 1; int t = sum; for (int i = 1; i < n; i++) { t += a[i]; if ((f == 1 && t <= 0) || (f == -1 && t >= 0)) { flag = 1; break; } else f = -f; } } if (!flag) { cout << "0" << endl; return 0; } for (int i = 1; i < n - 1; i++) { if (sum > 0) { int t = sum + a[i]; if (t == -1) sum = t; else { if (t < 0) { int b = abs(-1 - t); cnt += b; sum = -1; } else { int b = abs(1 + t); cnt += b; sum = -1; } } } else if (sum < 0) { int t = sum + a[i]; if (t == 1) sum = t; else { if (t > 0) { int b = abs(t - 1); cnt += b; sum = 1; } else { int b = abs(1 - t); cnt += b; sum = 1; } } } } if (sum > 0) { int t = sum + a[n - 1]; if (t < 0) { cnt -= (-1 - t); } else { cnt += (t + 1); } } else { int t = sum + a[n - 1]; if (t > 0) { cnt -= (t - 1); } else cnt += (1 - t); } printf("%lld\n", cnt); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } long long ans = 0; long long sum = a[0]; if (sum == 0) { ans++; sum = 1; for (int i = 1; i < n; i++) { if (sum * (sum + a[i]) >= 0) { ans += abs((sum + a[i]) - (-sum / abs(sum))); sum = -sum / abs(sum); } else sum += a[i]; } long long t = 0; sum = -1; for (int i = 1; i < n; i++) { if (sum * (sum + a[i]) >= 0) { t += abs((sum + a[i]) - (-sum / abs(sum))); sum = -sum / abs(sum); } else sum += a[i]; } ans = min(t, ans); } else { for (int i = 1; i < n; i++) { if (sum * (sum + a[i]) >= 0) { ans += abs((sum + a[i]) - (-sum / abs(sum))); sum = -sum / abs(sum); } else sum += a[i]; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
#!usr/bin/env python3 from collections import defaultdict from collections import deque from heapq import heappush, heappop import sys import math import bisect import random import itertools sys.setrecursionlimit(10**5) stdin = sys.stdin bisect_left = bisect.bisect_left bisect_right = bisect.bisect_right def LI(): return list(map(int, stdin.readline().split())) def LF(): return list(map(float, stdin.readline().split())) def LI_(): return list(map(lambda x: int(x)-1, stdin.readline().split())) def II(): return int(stdin.readline()) def IF(): return float(stdin.readline()) def LS(): return list(map(list, stdin.readline().split())) def S(): return list(stdin.readline().rstrip()) def IR(n): return [II() for _ in range(n)] def LIR(n): return [LI() for _ in range(n)] def FR(n): return [IF() for _ in range(n)] def LFR(n): return [LI() for _ in range(n)] def LIR_(n): return [LI_() for _ in range(n)] def SR(n): return [S() for _ in range(n)] def LSR(n): return [LS() for _ in range(n)] mod = 1000000007 inf = float('INF') #A def A(): a = input().split() a = list(map(lambda x: x.capitalize(), a)) a,b,c = a print(a[0]+b[0]+c[0]) return #B def B(): a = II() b = II() if a > b: print("GREATER") if a < b: print("LESS") if a == b: print("EQUAL") return #C def C(): II() a = LI() def f(suma, b): for i in a[1:]: if (suma + i) * suma < 0: suma += i continue b += abs(suma + i) + 1 suma = -1 * (suma > 0) or 1 return b if a[0] == 0: ans = f(1, 1) else: ans = f(a[0], 0) if a[0] == 0: ans = min(ans, f(-1, 1)) else: ans = min(ans, f(-a[0], 2 * abs(a[0]) + 1)) print(ans) return #D def D(): s = S() for i in range(len(s) - 1): if s[i] == s[i+1]: print(i + 1, i + 2) return for i in range(len(s) - 2): if s[i] == s[i + 2]: print(i + 1, i + 3) return print(-1, -1) return #Solve if __name__ == '__main__': C()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = (int)1e9; const int MOD = (int)1e9 + 7; const double EPS = (double)1e-10; struct Accelerate_Cin { Accelerate_Cin() { cin.tie(0); ios::sync_with_stdio(0); cout << fixed << setprecision(20); }; }; signed main() { int n; cin >> n; static int a[3][100010], sum[3][100010]; for (int t = 0; t < n; t++) cin >> a[0][t]; for (int t = 0; t < n; t++) a[1][t] = a[0][t]; int ans = INF; for (int i = 0; i < 2; i++) { int cont = 0; for (int t = 0; t < n; t++) { if (a[i][0] == 0 && i == 0) { a[i][0] = 1; cont++; } if (a[i][0] == 0 && i == 1) { a[i][0] = -1; cont++; } sum[i][0] = a[i][0]; if (t != 0) sum[i][t] = sum[i][t - 1] + a[i][t]; if (sum[i][t] * sum[i][t - 1] >= 0 && t != 0) { cont += abs(sum[i][t]) + 1; if (sum[i][t - 1] > 0) sum[i][t] = -1; if (sum[i][t - 1] < 0) sum[i][t] = 1; } } ans = min(ans, cont); } cout << ans << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; constexpr ll atcoder_mod = 1e9 + 7; template <typename T = int> T in() { T x; cin >> x; return (x); } template <typename T = int, typename C = vector<T>> C vecin(int N) { C x(N); for (int i = 0; i < (N); ++i) { x[i] = in<T>(); } return move(x); } void vout() { cout << endl; } template <typename Head, typename... Tail> void vout(Head&& h, Tail&&... t) { cout << ' ' << h; vout(forward<Tail>(t)...); } void out() { cout << endl; } template <typename Head, typename... Tail> void out(Head&& h, Tail&&... t) { cout << h; vout(forward<Tail>(t)...); } int main() { cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(10); int N = in(); auto V = vecin<ll>(N); ll S1 = V[0], A1 = 0; for (int i = 1; i < N; i++) { if (S1 > 0) { if (S1 + V[i] < 0) { S1 += V[i]; } else { A1 += S1 + V[i] + 1LL; S1 = -1; } } else { if (S1 + V[i] > 0) { S1 += V[i]; } else { A1 += abs(S1 + V[i]) + 1LL; S1 = 1; } } } ll S2 = -V[0], A2 = 0; for (int i = 1; i < N; i++) { if (S2 > 0) { if (S2 + V[i] < 0) { S2 += V[i]; } else { A2 += S2 + V[i] + 1LL; S2 = -1; } } else { if (S2 + V[i] > 0) { S2 += V[i]; } else { A2 += abs(S2 + V[i]) + 1LL; S2 = 1; } } } out(min(A1, A2)); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; signed main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; int sum1 = 0, cost1 = 0; for (int i = 0; i < n; i++) { sum1 += a[i]; int diff = abs(sum1) + 1; if (i % 2 == 0 && sum1 < 0) { sum1 += diff; cost1 += diff; } if (i % 2 == 1 && sum1 > 0) { sum1 -= diff; cost1 += diff; } if (sum1 == 0) { if (i % 2 == 0) { sum1++; cost1++; } if (i % 2 == 1) { sum1--; cost1++; } } } int sum2 = 0, cost2 = 0; for (int i = 0; i < n; i++) { sum2 += a[i]; int diff = abs(sum2) + 1; if (i % 2 == 0 && sum2 > 0) { sum2 -= diff; cost2 += diff; } if (i % 2 == 1 && sum2 < 0) { sum2 += diff; cost2 += diff; } if (sum2 == 0) { if (i % 2 == 0) { sum2--; cost2++; } if (i % 2 == 1) { sum2++; cost2++; } } } cout << min(cost1, cost2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; using pii = pair<int, int>; using pll = pair<ll, ll>; const int MOD = 1000000007; const int mod = 1000000007; const int INF = 1000000000; const long long LINF = 1e18; const int MAX = 510000; bool code(long long int n) { if (n < 0) return 1; else if (n > 0) return 0; } int main() { int n; long long int sum = 0; long long int ans = 0; long long int ans2 = 0; cin >> n; vector<long long int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } sum = a.at(0); if (a.at(0) != 0) { for (int i = 1; i < n; i++) { if (sum + a.at(i) == 0) { ans++; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else if (code(sum + a.at(i)) == code(sum)) { ans += abs(sum + a.at(i)) + 1; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else { sum = a.at(i) + sum; } } cout << ans << endl; return 0; } else if (a.at(0) == 0) { sum = -1; ans = 1; for (int i = 1; i < n; i++) { if (sum + a.at(i) == 0) { ans++; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else if (code(sum + a.at(i)) == code(sum)) { ans += abs(sum + a.at(i)) + 1; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else { sum = a.at(i) + sum; } } sum = 1; ans2 = 1; for (int i = 1; i < n; i++) { if (sum + a.at(i) == 0) { ans2++; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else if (code(sum + a.at(i)) == code(sum)) { ans2 += abs(sum + a.at(i)) + 1; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else { sum = a.at(i) + sum; } } cout << min(ans, ans2) << endl; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) *A, = map(int,input().split()) ans = 0 S = A[0] for a in A[1:]: S1 = S+a if S1*S >= 0: ans += abs(S1)+1 S1 = -S//abs(S) S = S1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
package main import ( "fmt" "math" ) func main() { var n int fmt.Scan(&n) sum := 0 ans := 0 for i := 0; i < n; i++ { var tmp int fmt.Scan(&tmp) prev := sum sum += tmp if prev < 0 && sum <= 0 { ans += abs(sum) + 1 sum = 1 } else if prev > 0 && sum >= 0 { ans += abs(sum) + 1 sum = -1 } } fmt.Println(ans) } func abs(x int) int { return int(math.Abs(float64(x))) }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# # Written by NoKnowledgeGG @YlePhan # ('ω') # #import math #mod = 10**9+7 #import itertools #import fractions #import numpy as np #mod = 10**4 + 7 """def kiri(n,m): r_ = n / m if (r_ - (n // m)) > 0: return (n//m) + 1 else: return (n//m)""" """ n! mod m 階乗 mod = 1e9 + 7 N = 10000000 fac = [0] * N def ini(): fac[0] = 1 % mod for i in range(1,N): fac[i] = fac[i-1] * i % mod""" """mod = 1e9+7 N = 10000000 pw = [0] * N def ini(c): pw[0] = 1 % mod for i in range(1,N): pw[i] = pw[i-1] * c % mod""" """ def YEILD(): yield 'one' yield 'two' yield 'three' generator = YEILD() print(next(generator)) print(next(generator)) print(next(generator)) """ """def gcd_(a,b): if b == 0:#結局はc,0の最大公約数はcなのに return a return gcd_(a,a % b) # a = p * b + q""" """def extgcd(a,b,x,y): d = a if b!=0: d = extgcd(b,a%b,y,x) y -= (a//b) * x print(x,y) else: x = 1 y = 0 return d""" def readInts(): return list(map(int,input().split())) mod = 10**9 + 7 def main(): n = int(input()) A = readInts() # 符号 positive? #po_ = True # 変わったか変わってないか if A[0] >= 0: # if positive po_ = True else: # negative po_ = False Cost = 0 ANS = [0] * (n+1) ANS[0] = A[0] for i in range(1,n): #print(ANS[i-1],po_,ANS[i-1] + A[i],Cost) if ANS[i-1]+A[i] > 0 and not po_: # sumがpositiveで前がnegativeだった po_ = True ANS[i] = ANS[i-1] + A[i] # これで終わり elif ANS[i-1]+A[i] > 0 and po_: # posi : posi ? # 負にしなければならない Cost += abs(-1 - (ANS[i-1]+A[i])) # 先にこれやれ A[i] += -1 - (ANS[i-1] + A[i]) # -4 ANS[i] = ANS[i-1] + A[i] po_ = False elif ANS[i-1]+A[i] < 0 and not po_: #nega : nega # -1 はここ # print(A[i]) Cost += abs(1 - (ANS[i-1]+A[i])) # 先にこれやれ A[i] += 1 - (ANS[i-1] + A[i]) ANS[i] = ANS[i-1] + A[i] po_ = True elif ANS[i-1]+A[i] == 0 and po_: # nega: pos po_ = False A[i] += 1 Cost += 1 ANS[i] = ANS[i-1] + A[i] elif ANS[i-1]+A[i] < 0 and po_: po_ = False ANS[i] = ANS[i-1] + A[i] elif ANS[i-1]+A[i] == 0 and not po_: po_ = True A[i] += 1 Cost += 1 ANS[i] = ANS[i-1] + A[i] print(Cost) if __name__ == '__main__': main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int sum = 0; int ans = 0; int positive = 1; for (int i = 0; i < n; i++) { int a; cin >> a; if (sum == 0) { sum += a; } else if (sum > 0) { if (sum + a >= 0) { ans += abs(-sum - 1 - a); sum = -1; } else { sum += a; } } else { if (sum + a <= 0) { ans += abs(-sum + 1 - a); sum = 1; } else { sum += a; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; int sumi = a[0]; int sump = a[0]; int cnt = 0; for (int i = 0; i < n - 1; i++) { sump += a[i + 1]; if (sumi < 0) { if (sump <= 0) { cnt += 1 - sump; sump = 1; } } else if (sumi > 0) { if (sump >= 0) { cnt += sump + 1; sump = -1; } } sumi = sump; } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 1e9; const long long LINF = 1e18; const int MOD = INF + 7; struct edge { int to, cost; }; int main() { ios::sync_with_stdio(false); cin.tie(0); int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } for (int i = 1; i < n; i++) { a[i] += a[i - 1]; } long long sum = 0; long long ans[2] = {}; long long tmp; for (int i = 0; i <= 1; i++) { sum = 0; for (int j = 0; j < n; j++) { tmp = abs(a[j] + sum); if ((i + j) % 2 == 0 && a[j] + sum <= 0) { ans[i] += tmp + 1; sum += tmp + 1; } if ((i + j) % 2 == 1 && a[j] + sum >= 0) { ans[i] += tmp + 1; sum -= tmp + 1; } } } cout << min(ans[0], ans[1]) << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, ans; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } for (int i = 0; i < n - 1; i++) { int sum = 0; for (int j = i; j >= 0; j--) sum += a.at(j); while (sum * a.at(i + 1) >= 0 || sum + a.at(i + 1) == 0) { if (a.at(i) > 0) { a.at(i + 1)--; ans++; } if (a.at(i) < 0) { a.at(i + 1)++; ans++; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) throws Exception { Scanner sc = new Scanner(System.in); int N = sc.nextInt(); long[] map = new long[N]; for (int i = 0; i < N; i++) { map[i] = sc.nextLong(); } long ans1 = 0; long ai = map[0]; if (map[0] < 0) { ans1 += Math.abs(map[0] - 1); ai = 1; } for (int i = 1; i < N; i++) { long a = map[i]; long total = ai + a; if (ai > 0) { if (total < 0) { ai = total; continue; } else { long tmp = total + 1; ans1 += Math.abs(tmp); ai = -1; } } else if(ai < 0) { if (total > 0) { ai = total; continue; } else { long tmp = total - 1; ans1 += Math.abs(tmp); ai = 1; } } } long ans2 = 0; if (map[0] > 0) { ans2 += Math.abs(map[0] + 1); ai = -1; } for (int i = 1; i < N; i++) { long a = map[i]; long total = ai + a; if (ai > 0) { if (total < 0) { ai = total; continue; } else { long tmp = total + 1; ans2 += Math.abs(tmp); ai = -1; } } else if(ai < 0) { if (total > 0) { ai = total; continue; } else { long tmp = total - 1; ans2 += Math.abs(tmp); ai = 1; } } } System.out.println(Math.min(ans1, ans2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T> void DEBUG(T e) { if (true == false) return; std::cout << e << " "; } template <typename T> void DEBUG(const std::vector<T>& v) { if (true == false) return; for (const auto& e : v) { std::cout << e << " "; } std::cout << std::endl; } template <typename T> void DEBUG(const std::vector<std::vector<T> >& vv) { if (true == false) return; for (const auto& v : vv) { DEBUG(v); } } template <class T, class... Ts> void DEBUG(T d, Ts... e) { if (true == false) return; DEBUG(d); DEBUG(e...); } template <class T> void corner(bool flg, T hoge) { if (flg) { cout << hoge << endl; exit(0); } } template <typename T1, typename T2> inline bool chmax(T1& a, T2 b) { return a < b && (a = b, true); } template <typename T1, typename T2> inline bool chmin(T1& a, T2 b) { return a > b && (a = b, true); } void solve(void) { long long N; cin >> N; vector<long long> vec(N, 0); for (long long i = 0; i < N; i++) { cin >> vec[i]; } long long SUM = 0; long long ANS = 0; for (long long i = 0; i < N; i++) { if (i == 0) { SUM += vec[i]; continue; } long long tmp = SUM + vec[i]; if (tmp * SUM >= 0) { if (SUM >= 0) vec[i] -= abs(tmp) + 1; else { vec[i] += abs(tmp) + 1; } ANS += abs(abs(tmp) + 1); } SUM += vec[i]; } cout << ANS << endl; return; } int32_t main(int32_t argc, const char* argv[]) { std::ios::sync_with_stdio(false); std::cin.tie(0); std::cout << std::fixed; std::cout << std::setprecision(9); solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> void scan(vector<T>& a, long long n, istream& cin) { T c; for (long long(i) = 0; (i) < (n); ++(i)) { cin >> c; a.push_back(c); } } using vs = vector<string>; using vi = vector<long long>; using pii = pair<long long, long long>; using psi = pair<string, long long>; using vvi = vector<vi>; template <class T> bool valid(T x, T w) { return 0 <= x && x < w; } long long dx[4] = {1, -1, 0, 0}; long long dy[4] = {0, 0, 1, -1}; vi a; signed main() { ios::sync_with_stdio(false); cin.tie(0); ; long long n; cin >> n; for (long long(i) = 0; (i) < (n); ++(i)) { long long c; cin >> c; a.push_back(c); } long long k = a[0]; bool f = k > 0; long long ans = 0; for (long long(i) = (1); (i) < (n); ++(i)) { if (k == 0) { if (f) { k--; ans++; } else { k++; ans++; } f = !f; continue; } k += a[i]; if (f) { if (k < 0) { f = !f; continue; } else { ans += k + 1; k = -1; f = !f; continue; } } else { if (k > 0) { f = !f; continue; } else { ans += (-k) + 1; k = 1; f = !f; continue; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int a[100005]; int sum[100005]; int main() { int n; scanf("%d", &n); int ans = 0; scanf("%d", &a[1]); if (a[1] == 0) { a[1] = 1; ans++; } sum[1] = a[1]; for (int i = 2; i <= n; i++) { scanf("%d", &a[i]); sum[i] = sum[i - 1] + a[i]; if (sum[i] == 0 && sum[i - 1] < 0) { sum[i] += 1; a[i] += 1; ans++; } else if (sum[i] == 0 && sum[i - 1] > 0) { sum[i] -= 1; a[i] -= 1; ans++; } else if (sum[i - 1] < 0 && sum[i] < 0) { int t = -sum[i]; sum[i] += t + 1; a[i] += t + 1; ans += t + 1; } else if (sum[i - 1] > 0 && sum[i] > 0) { int t = sum[i]; sum[i] -= t + 1; a[i] -= t + 1; ans += t + 1; } } printf("%d\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#[macro_use] mod input { use std; use std::io; const SPLIT_DELIMITER: char = ' '; #[macro_export] #[allow(unused_macros)] macro_rules! input { ( $($x:expr ),*) => { { let temp_str = input_line_str(); let mut split_result_iter = temp_str.split_whitespace(); $( let buf_split_result = split_result_iter.next(); let buf_split_result = buf_split_result.unwrap(); ($x) = buf_split_result.parse().unwrap(); )* } }; } #[allow(dead_code)] pub fn input_line_str() -> String { let mut s = String::new(); io::stdin().read_line(&mut s).unwrap(); s.trim().to_string() } #[allow(dead_code)] pub fn p<T>(t: T) where T: std::fmt::Display, { println!("{}", t); } #[allow(dead_code)] pub fn input_vector2d<T>(line: usize) -> Vec<Vec<T>> where T: std::str::FromStr, { let mut v: Vec<Vec<T>> = Vec::new(); for _ in 0..line { let vec_line = input_vector(); v.push(vec_line); } v } #[allow(dead_code)] pub fn input_vector<T>() -> Vec<T> where T: std::str::FromStr, { let mut v: Vec<T> = Vec::new(); let s = input_line_str(); let split_result = s.split(SPLIT_DELIMITER); for z in split_result { let buf = match z.parse() { Ok(r) => r, Err(_) => panic!("Parse Error"), }; v.push(buf); } v } #[allow(dead_code)] pub fn str2vec(s: &str) -> Vec<char> { let mut v: Vec<char> = Vec::new(); for c in s.chars() { v.push(c); } v } } use input::*; use std::cmp; fn main() { let n: usize; let mut sum = 0; let mut ans1 = 0; let mut ans2 = 0; let mut flag = true; input!(n); let s = input_vector::<isize>(); for z in s.iter() { sum += z; if flag { if sum <= 0 { ans1 += -1 * sum + 1; sum = 1; } flag = false; } else { if sum >= 0 { ans1 += sum + 1; sum = -1; } flag = true; } } flag = false; sum = 0; for z in s.iter() { sum += z; if flag { if sum <= 0 { ans2 += -1 * sum + 1; sum = 1; } flag = false; } else { if sum >= 0 { ans2 += sum + 1; sum = -1; } flag = true; } } p(cmp::min(ans1, ans2)); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Linq; using System.Collections.Generic; using System.Collections; class Program { #region Lib static int Gcd(int a, int b) { if (a % b == 0) return b; else return Gcd(b, a % b); } #endregion static void Main() { ReadInts(); var nums = ReadInts(); var e = nums.AsEnumerable<int>().GetEnumerator(); var zeroCount = 0; var f = false; while ((f = e.MoveNext()) && e.Current == 0) zeroCount++; var sum = 0; var count = 0; if (zeroCount != 0) { count = zeroCount * 2 - 1; } while (f) { var c = e.Current; var ps = Math.Sign(sum); var ns = Math.Sign(sum + c); if (ps == 0) ps = -ns; if (ns == 0) { sum = -ps; count++; } else if (ps == ns) { count += Math.Abs(sum + c) + 1; sum = -ps; } else { sum += c; } f = e.MoveNext(); } Console.WriteLine(count); } #region Utils public static int[] ReadInts() { return Console.ReadLine().Split().Select(int.Parse).ToArray(); } #endregion }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; int ans1 = 0, ans2 = 0; int sum1 = 0, sum2 = 0; for (int i = 0; i < n; i++) { sum1 += a[i]; sum2 += a[i]; if (i % 2 == 0) { ans1 += max(0, -sum1 + 1); ans2 += max(0, sum2 + 1); sum1 += max(0, -sum1 + 1); sum2 -= max(0, sum2 + 1); } else { ans1 += max(0, sum1 + 1); ans2 += max(0, -sum2 + 1); sum1 -= max(0, sum1 + 1); sum2 += max(0, -sum2 + 1); } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } long long cnt1 = 0; long long cnt2 = 0; for (int i = 0; i < n; i += 2) { if (a[i] <= 0) { cnt1 += 1 - a[i]; } } for (int i = 1; i < n; i += 2) { if (0 <= a[i]) { cnt1 += 1 + a[i]; } } for (int i = 0; i < n; i += 2) { if (0 <= a[i]) { cnt2 += 1 + a[i]; } } for (int i = 1; i < n; i += 2) { if (a[i] <= 0) { cnt2 += 1 - a[i]; } } long long ans = min(cnt1, cnt2); cout << ans; cout << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import qualified Data.ByteString.Char8 as BC import Data.Maybe (fromJust) main = do n <- readLn :: IO Int (a:as) <- getIntListBC let ans1 = solve a as x = (+1) $ abs a ans2 = x + solve (a+x) as ans3 = x + solve (a-x) as print $ minimum [ans1, ans2, ans3] bsToInt :: BC.ByteString -> Int bsToInt = fst . fromJust . BC.readInt getIntListBC :: IO [Int] getIntListBC = map bsToInt . BC.words <$> BC.getLine solve :: Int -> [Int] -> Int solve _ [] = 0 solve s (a:as) | s > 0 = let n = negate $ s + 1 in if n > a then solve (s + a) as else (abs $ a - n) + solve (s + n) as | otherwise = let n = negate $ s - 1 in if n < a then solve (s + a) as else (abs $ n - a) + solve (s + n) as
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 2e18; const long long MOD = 1e9 + 7; long long N; long long a[100010]; long long Calc() { long long ret = 0; long long sum = a[0]; long long preSum; for (long long i = 1; i < N; i++) { preSum = sum; sum += a[i]; if (sum == 0 || ((preSum < 0) ^ (sum > 0))) { if (preSum > 0) { ret += abs(-1 - sum); sum = -1; } else { ret += abs(1 - sum); sum = 1; } } } return ret; } int main() { cin >> N; for (long long i = 0; i < N; i++) cin >> a[i]; if (a[0] == 0) { a[0] = 1; long long tmp = Calc(); a[0] = -1; cout << min(tmp, Calc()) + 1 << endl; return 0; } cout << Calc() << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T> bool PN(T x) { if (x <= 1) return false; if (x == 2) return true; for (int i = 2; i < sqrt(x) + 1; i++) if (x % i == 0) return false; return true; } const long long MOD = 1e9 + 7; void solve() { int n; cin >> n; int a[n]; long long sum = 0; for (int i = 0; i < n; ++i) { cin >> a[i]; } long long ans = 0; for (int i = 0; i < n; ++i) { if (i == 0) { sum += a[i]; continue; } if (sum > 0) { sum += a[i]; if (sum > 0) { ans += sum + 1; sum = -1; } else if (sum < 0) { continue; } else { ans++; sum = -1; } } else if (sum < 0) { sum += a[i]; if (sum > 0) { continue; } else if (sum < 0) { ans += abs(sum) + 1; sum = 1; } else { ans++; sum = 1; } } } cout << ans << endl; } int main() { solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys, os f = lambda:list(map(int,input().split())) if 'local' in os.environ : sys.stdin = open('./input.txt', 'r') def solve(): n = f()[0] a = f() suma = [0] * n minop = 1e9 for greater0 in [True, False]: oper = 0 for i in range(n): if i == 0: suma[i] = a[i] if suma[i]<0: greater0 = False else: suma[i] = a[i] + suma[i-1] greater0 = not greater0 if greater0 and suma[i]<=0: oper += 1 - suma[i] suma[i] = 1 continue if (not greater0) and suma[i]>=0: oper += 1 + suma[i] suma[i] = -1 continue minop = min(minop, oper) print(oper) solve()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 1e9; const long long MOD = 1e9 + 7; int main() { long long n; cin >> n; vector<long long> a(n); for (long long i = 0; i < n; ++i) { cin >> a[i]; } long long ans = INF; for (long long i = 0; i < 2; ++i) { long long sum = 0; long long cnt = 0; for (long long j = 0; j < n; ++j) { sum += a[j]; if (j % 2 == i && sum <= 0) { cnt += 1 - sum; sum = 1; } else if (j % 2 == i - 1 && sum >= 0) { cnt += 1 + sum; sum = -1; } } ans = min(ans, cnt); } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; using unsi = unsigned; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using pii = pair<int, int>; using db = double; using plex = complex<double>; using vs = vector<string>; template <class T> inline bool amax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool amin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } struct aaa { aaa() { cin.tie(0); ios::sync_with_stdio(0); cout << fixed << setprecision(20); }; } aaaaaaa; const int INF = 1001001001; const ll LINF = 1001001001001001001ll; const int MOD = 1e9 + 7; const db EPS = 1e-9; const int dx[] = {1, 1, 0, -1, -1, -1, 0, 1}, dy[] = {0, 1, 1, 1, 0, -1, -1, -1}; signed main() { int n; cin >> n; int odd{}; int ans{}; int even{}; vector<int> a(n); for (auto i = 0; i != n; ++i) { cin >> a.at(i); } if (a[0] < 0) { for (auto i = 0; odd < n; ++i) { odd = 2 * i + 1; while (a[odd] <= 0) { ++a[odd]; ++ans; } } } if (a[0] = 0) { ++a[0]; } if (a[0] > 0) { for (auto i = 1; even < n; ++i) { even = 2 * i; while (a[even] > 0) { ++a[even]; ++ans; } } } cout << ans; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int,input().split())) #print(A) def getSign(a): if a < 0: return -1 elif a == 0: return 0 else: return 1 count = 0 sumN = A[0] beforeSign = getSign(A[0]) for i in range(1,N): sumN += A[i] #print("be",i,sumN,A[i],count) if 0 <= beforeSign * sumN: add = -sumN - beforeSign A[i] += add sumN += add count += abs(add) beforeSign = getSign(sumN) #print("af",i,sumN,A[i],count) print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #include <boost/multiprecision/cpp_int.hpp> using boost::multiprecision::cpp_int; using namespace std; #if __has_include("print.hpp") #include "print.hpp" #endif #define rep(i, n) for(int i = 0; i < (int)(n); i++) #define ALL(x) (x).begin(), (x).end() #define RALL(x) (x).rbegin(), (x).rend() #define MOD 1000000007 template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } typedef long long ll; typedef pair<ll, ll> p; int main(){ ios::sync_with_stdio(false); cin.tie(0); int n; cin >> n; vector<int> v(n); rep(i, n) cin >> v[i]; ll sum = v[0]; ll res = 0; if(sum == 0){ sum = 1; res = 1; } for (int i = 1; i < n; ++i) { // cout << i << del; if((sum + v[i]) * sum < 0){ sum += v[i]; }else{ ll t = -sum - (sum / abs(sum)) ; ll remain = t - v[i]; // cout << t << endl; // cout << remain << endl; res += abs(remain); sum += t; v[i] += t; } // cout << sum << endl; // cout << "===" << endl; } cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> void initvv(vector<vector<T> > &v, int a, int b, const T &t = T()) { v.assign(a, vector<T>(b, t)); } template <class F, class T> void convert(const F &f, T &t) { stringstream ss; ss << f; ss >> t; } int main() { long long n; cin >> n; long long a[n]; for (int i = 0; i < int(n); ++i) { cin >> a[i]; } long long sum = 0; long long ans = 0; for (int i = 0; i < int(n); ++i) { long long nextSum = sum + a[i]; if (nextSum == 0) { if (i == 0) { if (n >= 2) { if (a[1] > 0) --a[0]; else ++a[0]; } else { ++a[0]; } } else { if (sum > 0) { --a[i]; } else { ++a[i]; } } nextSum = sum + a[i]; ++ans; } if ((i > 0) && (sum * nextSum > 0)) { a[i] += (nextSum > 0 ? -1 : 1) * (abs(nextSum) + 1); ans += abs(nextSum) + 1; } sum += a[i]; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, a[100000], ans = 0, sum = 0, tmp; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; sum += a[i]; if (i % 2 == 0 && sum <= 0) { ans += abs(sum); ans++; sum = 1; } if (i % 2 != 0 && sum >= 0) { ans += sum; ans++; sum = -1; } } tmp = ans; ans = 0; sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0 && sum >= 0) { ans += sum; ans++; sum = -1; } if (i % 2 != 0 && sum <= 0) { ans += abs(sum); ans++; sum = 1; } } cout << min(tmp, ans) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const long long int INF = 1e9; using namespace std; struct Point { int x, y; }; bool vector_finder(std::vector<int> vec, int number) { auto itr = std::find(vec.begin(), vec.end(), number); size_t index = std::distance(vec.begin(), itr); if (index != vec.size()) { return true; } else { return false; } } long long int factorial(long long int N) { long long int ans = 1; for (long long int i = 1; i <= (long long int)(N); i++) { ans *= i; } return ans; } vector<long long int> Eratosthenes(long long int N) { bool arr[N + 1]; arr[0] = false; arr[1] = false; for (long long int i = 2; i < N + 1; i++) { arr[i] = true; } for (long long int i = 2; i <= sqrt(N); i++) { if (arr[i]) { for (long long int j = 0; i * (j + 2) <= N; j++) { arr[i * (j + 2)] = false; } } } vector<long long int> prime; for (long long int i = 1; i <= (long long int)(N); i++) { if (arr[i] == true) { prime.push_back(i); } } return prime; } char alphabet[] = {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'}; int main() { long long int n; cin >> n; long long int sum[n + 2]; long long int A[n + 2]; for (long long int i = 1; i <= (long long int)(n); i++) { cin >> A[i]; } sum[0] = 0; sum[1] = A[1]; long long int cnt = 0; for (long long int i = 2; i <= n; i++) { sum[i] = sum[i - 1] + A[i]; if (i % 2 == 0) { if (sum[i] > -1) { long long int new_sum = -1; cnt += abs(new_sum - sum[i]); sum[i] = new_sum; } } else { if (sum[i] < 1) { long long int new_sum = 1; cnt += abs(new_sum - sum[i]); sum[i] = new_sum; } } } long long int cnt2 = 0; for (long long int i = 2; i <= n; i++) { sum[i] = sum[i - 1] + A[i]; if (i % 2 == 1) { if (sum[i] > -1) { long long int new_sum = -1; cnt2 += abs(new_sum - sum[i]); sum[i] = new_sum; } } else { if (sum[i] < 1) { long long int new_sum = 1; cnt2 += abs(new_sum - sum[i]); sum[i] = new_sum; } } } cout << min(cnt, cnt2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long a[100001]; int main() { int N; cin >> N; for (int i = 0; i < N; i++) { cin >> a[i]; } for (int i = 1; i < N; i++) { a[i] += a[i - 1]; } long long add = 0, res1 = 0, res2 = 0; for (int i = 0; i < N; i++) { if (i % 2 == 0) { if (a[i] + add > 0) { res1 += abs(a[i] + add + 1); add -= (a[i] + add + 1); } else if (a[i] + add == 0) { add--; res1++; } } else { if (a[i] + add < 0) { cout << a[i] << endl; res1 += abs(-a[i] + add + 1); add += (-a[i] + add + 1); } else if (a[i] + add == 0) { add++; res1++; } } } cout << res1 << endl; add = 0; for (int i = 0; i < N; i++) { if (i % 2 == 1) { if (a[i] + add > 0) { res2 += abs(a[i] + add + 1); add -= (a[i] + add + 1); } else if (a[i] == 0) { add--; res2++; } } else { if (a[i] + add < 0) { res2 += abs(-a[i] + add + 1); add += (-a[i] + add + 1); } else if (a[i] == 0) { add++; res2++; } } } cout << min(res1, res2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int count = 0; bool plus; int first; cin >> first; if (first > 0) { plus = true; } else if (first < 0) { plus = false; } else { count++; first++; plus = true; } int sum = first; for (int i = 0; i < n - 1; i++) { plus = !plus; int a; cin >> a; sum += a; if (plus) { if (sum > 0) { continue; } else { count += 1 - sum; sum = 1; } } else { if (sum < 0) { continue; } else { count += 1 + sum; sum = -1; } } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int ms = 1e5 + 9; int val; int vet[ms]; int main() { int f = 0; long long soma = 0, ans = 0; int n; cin >> n; for (int i = 0; i < n; i++) cin >> vet[i]; soma = vet[0]; if (soma < 0) f = 1; else if (soma == 0 and vet[1] < 0) { ans++; soma++; } else if (soma == 0 and vet[1] >= 0) { ans++; soma--; f = 1; } for (int i = 1; i < n; i++) { val = vet[i]; soma += val; if (f) { if (soma == 0) { ans += 1; soma++; } else if (soma < 0) { ans += ((-soma) + 1); soma = 1; } } else { if (soma == 0) { ans++; soma--; } else if (soma > 0) { ans += (soma + 1); soma = -1; } } f = 1 - f; } cout << ans << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> S(N + 1); for (int i = 1; i <= N; ++i) { cin >> S[i]; S[i] += S[i - 1]; } int ans = 0; int add = 0; int sign = ((S[1] >> 31) << 1) + 1; for (int i = 2; i <= N; ++i) { S[i] += add; int sign_i = ((S[i] >> 31) << 1) + 1; if (sign_i == sign) { ans += abs(-sign_i - S[i]); add += -sign_i - S[i]; S[i] = -sign_i; sign_i = -sign_i; } else if (S[i] == 0) { ans += 1; add += -sign; S[i] += -sign; sign_i = -sign; } sign = sign_i; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np import copy N=int(input()) l=list(map(int, input().split())) cp = copy.copy(l) if l[0]!=0: for k in range(1,N): if sum(l[:k])*sum(l[:k+1])>0: l[k]=-np.sign(sum(l[:k]))-sum(l[:k]) if sum(l)==0: print(1+sum([abs(l[n]-cp[n]) for n in range(N)])) else: print(sum([abs(l[n]-cp[n]) for n in range(N)])) else:#頭0のとき;和0なので変える =>1,-1にした時両方やって良いほうに #1にする場合 sei_l=copy.copy(l) sei_l[0]=1 for k in range(1,N): if sum(sei_l[:k])*sum(sei_l[:k+1])>0: sei_l[k]=-np.sign(sum(sei_l[:k]))-sum(sei_l[:k]) if sum(sei_l)==0: c1=1+sum([abs(sei_l[n]-cp[n]) for n in range(N)]) else: c1=sum([abs(sei_l[n]-cp[n]) for n in range(N)]) #-1にする場合 fu_l=copy.copy(l) fu_l[0]=-1 for k in range(1,N): if sum(fu_l[:k])*sum(fu_l[:k+1])>0: fu_l[k]=-np.sign(sum(fu_l[:k]))-sum(fu_l[:k]) if sum(fu_l)==0: c2=1+sum([abs(fu_l[n]-cp[n]) for n in range(N)]) else: c2=sum([abs(fu_l[n]-cp[n]) for n in range(N)]) print(max(c1,c2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; vector<long long int> vec; vector<vector<long long int> > vec2; long long int MOD = 1000000007; int main() { long long int N; cin >> N; vector<long long int> vec(N, 0); for (long long int i = 0; i < N; i++) { cin >> vec[i]; } long long int ans = 0; long long int g_ans = 0; long long int k_ans = 0; long long int sum = 0; bool flg = true; for (long long int i = 0; i < N; i++) { sum += vec[i]; if (flg == true) { if (sum <= 0) { k_ans += abs(sum) + 1; sum += 1; } flg = false; } else { if (sum >= 0) { k_ans += abs(sum) + 1; sum += -1; } flg = true; } } flg = true; sum = 0; for (long long int i = 0; i < N; i++) { sum += vec[i]; if (flg == false) { if (sum <= 0) { g_ans += abs(sum) + 1; sum += 1; } flg = true; } else { if (sum >= 0) { g_ans += abs(sum) + 1; sum += -1; } flg = false; } } ans = min(k_ans, g_ans); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# sys.stdin.readline import sys input = sys.stdin.readline class AtCoder: def main(self): n = int(input()) a = list(map(int, input().split())) ans = 0 if a[0] == 0: a[0] = 1 ans += 1 for i in range(1, n): a[i] = a[i] + a[i - 1] if a[i - 1] > 0 and a[i] >= 0: ans += a[i] + 1 a[i] = - 1 elif a[i - 1] < 0 and a[i] < 0: ans += -1 * a[i] + 1 a[i] = 1 elif a[i] == 0: a[i] = 1 ans += 1 print(ans) # Run main if __name__ == '__main__': AtCoder().main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <iostream> #include <vector> #include <algorithm> #include <map> using namespace std; int main(){ int N; cin >> N; vector<long long int> A(N); for(int i = 0; i < N; i++) cin >> A[i]; long long unsigned int cnt, cnt1 ,cnt2 = 0; long long unsigned int M = 0; M = A[0]; for(int i = 1 ; i < N; i++){ if(i % 2 == 0){ cnt1 += abs(1 - M); }else{ cnt1 += abs(-1 - M); } M += A[i]; } M = A[0] for(int i = 1 ; i < N; i++){ if(i % 2 == 1){ cnt2 += abs(1 - M); }else{ cnt2 += abs(-1 - M); } } cnt = min(cnt1, cnt2); cout << cnt; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int a[100000]; int main() { int n; long long sum = 0; int ans = 0; bool flag = true; bool preflag = false; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } if (a[0] < 0) { flag = false; preflag = true; } sum += a[0]; for (int i = 1; i < n; i++) { sum += a[i]; if (flag == true) { if (sum >= 0) { ans += (sum + 1); sum = -1; } flag = false; } else { if (sum <= 0) { ans += (sum * -1 + 1); sum = 1; } flag = true; } cerr << ans << endl; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) nums = list(map(int, input().split())) sum_n = 0 before = 0 ans = 10*14 for n in [-1, 1]: cnt = 0 before = n sum_n = nums[0] if sum_n * before >= 0: if before > 0: cnt += abs(-1-sum_n) sum_n = -1 else: cnt += abs(1-sum_n) sum_n = 1 before = sum_n for num in nums[1:]: sum_n += num if before * sum_n >= 0: if before > 0: cnt += abs(-1-sum_n) sum_n = -1 else: cnt += abs(1-sum_n) sum_n = 1 before = sum_n ans = min(ans, cnt) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; int a[100000]; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } int sum1, sum2; int cnt = 0; sum1 = 0; for (int i = 0; i < n; i++) { int a1_p = a[i]; sum1 += a[i]; if (sum1 == 0) { if (a[i + 1] >= 0) a[i]++; else a[i]--; cnt++; } sum1 -= a1_p; sum1 += a[i]; if (i < n - 1) { sum2 = sum1 + a[i + 1]; if (sum1 * sum2 >= 0) { int a2_p = a[i + 1]; if (sum1 > 0) a[i + 1] = -sum1 - 1; else if (sum1 < 0) a[i + 1] = -sum1 + 1; cnt += abs(a[i + 1] - a2_p); } } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; int a[100100]; int main() { cin >> n; for (long long i = 1; i < n + 1; i++) cin >> a[i]; int check = 0; long long ans = 0; for (long long i = 1; i < n + 1; i++) { check += a[i]; if (i % 2 != 0 && check < 0) { ans += abs(1 - check); check = 1; } else if (i % 2 == 0 && check > 0) { ans += abs(check + 1); check = -1; } } check = 0; long long tmp = 0; for (long long i = 1; i < n + 1; i++) { check += a[i]; if (i % 2 != 0 && check >= 0) { tmp += abs(check + 1); check = -1; } else if (i % 2 == 0 && check <= 0) { tmp += abs(1 - check); check = -1; } } cout << min(tmp, ans) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long N, i, sum, count; cin >> N; vector<long long> input(N); for (i = 0; i < N; i++) { cin >> input.at(i); } sum = 0; count = 0; sum = input.at(0); if (input.at(0) >= 0) { for (i = 1; i < N; i++) { if (i % 2 == 1) { sum += input.at(i); if (sum >= 0) { count += 1 + sum; sum = -1; } } if (i % 2 == 0) { sum += input.at(i); if (sum < 0) { count += 1 - sum; sum = 1; } } } } if (input.at(0) < 0) { for (i = 1; i < N; i++) { if (i % 2 == 1) { sum += input.at(i); if (sum <= 0) { while (sum <= 0) { count += 1 - sum; sum = 1; } } } if (i % 2 == 0) { sum += input.at(i); if (sum >= 0) { count += 1 + sum; sum = -1; } } } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) cnt=0 for i in range(0,n): if i==0: num=a[0] else: if a[0] > 0: tmp = num + a[i] if i % 2 == 0: if tmp > 0: num += a[i] continue elif tmp == 0: cnt+=1 num += a[i]+1 continue elif tmp < 0: while True: tmp += 1 cnt += 1 if tmp > 0: a[i]+=cnt break num += a[i] if i % 2 == 1: if tmp < 0: num += a[i] continue elif tmp == 0: cnt+=1 num += a[i]-1 continue elif tmp > 0: while True: tmp -= 1 cnt += 1 if tmp < 0: a[i]-=cnt break num += a[i] elif a[0] < 0: tmp = num + a[i] if i % 2 == 1: if tmp > 0: num += a[i] continue elif tmp == 0: cnt+=1 num += a[i]+1 continue elif tmp < 0: while True: tmp += 1 cnt += 1 if tmp > 0: a[i] += cnt break num += a[i] if i % 2 == 0: if tmp < 0: num += a[i] continue elif tmp == 0: cnt+=1 num += a[i]-1 continue elif tmp > 0: while True: tmp -= 1 cnt += 1 if tmp < 0: a[i] -= cnt break num += a[i] print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int, input().split())) c=0 s=a[0] for i in range(1, len(a)): S = s if s>0: S+=a[i] if S>=0: c+=abs(a[i]-s) s = -1 else: s = S else: S+=a[i] if S<=0: c+=abs(a[i]-s) s = 1 else: s = S print(c)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N=int(input()) A=list(map(int,input().split())) Acop = A.copy() cum = [0]*N cum[0] = A[0] for i in range(1, N): cum[i] = cum[i-1] + A[i] cumcop = cum.copy() # + - + - ... start = N for i in range(N): if i % 2 == 0: if cum[i] <= 0: start = i break else: if cum[i] >= 0: start = i break if start == N: print(0) exit() ans1 = 0 for i in range(start, N): cum[i] = cum[i-1] + A[i] if i % 2 == 0: if cum[i] <= 0: ans1 += abs(cum[i]) + 1 A[i] += abs(cum[i]) + 1 cum[i] = 1 else: if cum[i] >= 0: ans1 += abs(cum[i]) + 1 A[i] -= abs(cum[i]) + 1 cum[i] = -1 # cum[i] = cum[i-1] + A[i] # - + - + A = Acop cum = cumcop start = N for i in range(N): if i % 2 == 1: if cum[i] <= 0: start = i break else: if cum[i] >= 0: start = i break if start == N: print(0) exit() ans2 = 0 for i in range(start, N): cum[i] = cum[i-1] + A[i] if i % 2 == 1: if cum[i] <= 0: ans2 += abs(cum[i]) + 1 A[i] += abs(cum[i]) + 1 cum[i] = 1 else: if cum[i] >= 0: ans2 += abs(cum[i]) + 1 A[i] -= abs(cum[i]) + 1 cum[i] = -1 # cum[i] = cum[i-1] + A[i] print(min(ans1, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
package main import ( "bufio" "fmt" "os" "strconv" ) func getScanner(fp *os.File) *bufio.Scanner { scanner := bufio.NewScanner(fp) scanner.Split(bufio.ScanWords) scanner.Buffer(make([]byte, 500001), 500000) return scanner } func getNextString(scanner *bufio.Scanner) string { scanner.Scan() return scanner.Text() } func getNextInt(scanner *bufio.Scanner) int { i, _ := strconv.Atoi(getNextString(scanner)) return i } func getNextInt64(scanner *bufio.Scanner) int64 { i, _ := strconv.ParseInt(getNextString(scanner), 10, 64) return i } func main() { fp := os.Stdin if len(os.Args) > 1 { fp, _ = os.Open(os.Args[1]) } scanner := getScanner(fp) writer := bufio.NewWriter(os.Stdout) n := getNextInt(scanner) aa := make([]int64, n) ss := make([]int64, n+1) for i := 0; i < n; i++ { aa[i] = getNextInt64(scanner) ss[i+1] = ss[i] + aa[i] } var ans, adjust int64 // i%2 == 0を正 for i := 1; i < n+1; i++ { if i%2 == 0 { if ss[i]+adjust <= 0 { diff := int64(1) - (ss[i] + adjust) ans += diff adjust += diff } continue } if ss[i]+adjust >= 0 { diff := int64(1) + (ss[i] + adjust) ans += diff adjust -= diff } } ans1 := ans ans = 0 // i%2 == 1を正 for i := 1; i < n+1; i++ { if i%2 == 1 { if ss[i]+adjust <= 0 { diff := int64(1) - (ss[i] + adjust) ans += diff adjust += diff } continue } if ss[i]+adjust >= 0 { diff := int64(1) + (ss[i] + adjust) ans += diff adjust -= diff } } if ans > ans1 { ans = ans1 } fmt.Fprintln(writer, ans) writer.Flush() }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long n; cin >> n; int i; long a[n], su, cnt; su = 0; cnt = 0; for (i = 0; i < n; i++) { cin >> a[i]; } for (i = 0; i < n; i++) { su += a[i]; if (a[0] >= 0) { if (i % 2 == 0) { if (su <= 0) { cnt += 1 - su; su = 1; } } else { if (su >= 0) { cnt += su + 1; su = -1; } } } else { if (i % 2 == 0) { if (su >= 0) { cnt += su + 1; su = -1; } } else { if (su <= 0) { cnt += 1 - su; su = 1; } } } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main{ public static void main(String[] args) { Scanner sc = new Scanner(System.in); int num_count = sc.nextInt(); int[] array = new int[num_count]; int first_plus_cost = 0; int sum = 0; for(int i = 0;i < num_count;i++){ array[i] = sc.nextInt(); } for(int i = 0;i < num_count;i++){ int temp = sum; temp += array[i]; if(i % 2 == 0 && temp <= 0){ int cost = 1 - temp; first_plus_cost += cost; temp += cost; }else if(i % 2 == 1 && temp >= 0){ int cost = 1 + temp; first_plus_cost += cost; temp -= cost; } sum = temp; } System.out.println(); int second_plus_cost = 0; sum = 0; for(int i = 0;i < num_count;i++){ int temp = sum; temp += array[i]; if(i % 2 == 0 && temp >= 0){ int cost = 1 + temp; second_plus_cost += cost; temp -= cost; }else if(i % 2 == 1 && temp <= 0){ int cost = 1 - temp; second_plus_cost += cost; temp += cost; } sum = temp; } int min_cost = first_plus_cost < second_plus_cost ? first_plus_cost : second_plus_cost; System.out.println(min_cost); sc.close(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
N=gets.to_i list=gets.split(" ").map(&:to_i) sum = 0 res = 0 if(list[0] == 0) then temp = 0 flag= true (N-1).times{|i| temp += list[i+1] if(temp > 0 && flag) then res += 1 list[0] = -1 flag = false elsif(temp < 0 && flag) then res +=1 list[0] = 1 flag = false end if(i == N-2) then res += 1 list[0]=1 end } end N.times{|i| before_sum = sum sum += list[i] if (sum*before_sum> 0) then if(sum > 0) then res += (sum+1) sum = -1 else res += (-sum+1) sum = 1 end elsif sum*before_sum==0 then if(before_sum < 0 )then res += 1 sum = 1 elsif(before_sum > 0) then sum = -1 res += 1 end end } puts(res)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<long long>(A); for (int x = 0; x < (N); x++) { long long aa; cin >> aa; (A).push_back(aa); } if (A.at(0) == 0) { long long ans1 = 1, ans2 = 1; vector<long long>(B); for (int x = 0; x < (N); x++) { (B).push_back((A.at(x))); } A.at(0) = 1; B.at(0) = -1; for (int y = (1); y < (N); y++) { A.at(y) += A.at(y - 1); if (A.at(y) * A.at(y - 1) >= 0) { ans1 += abs(A.at(y)) + 1; if (A.at(y - 1) < 0) { A.at(y) = 1; } else { A.at(y) = -1; } } } for (int y = (1); y < (N); y++) { B.at(y) += B.at(y - 1); if (B.at(y) * B.at(y - 1) >= 0) { ans2 += abs(B.at(y)) + 1; if (B.at(y - 1) < 0) { B.at(y) = 1; } else { B.at(y) = -1; } } } cout << min(ans1, ans2) << endl; } else { long long ans = 0; for (int y = (1); y < (N); y++) { A.at(y) += A.at(y - 1); if (A.at(y) * A.at(y - 1) >= 0) { ans += abs(A.at(y)) + 1; if (A.at(y - 1) < 0) { A.at(y) = 1; } else { A.at(y) = -1; } } } cout << ans << endl; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long ans = 0; int sum = a[0]; bool plus = (sum > 0); if (sum == 0) { ans++; sum++; plus = true; } for (int i = 1; i < n; i++) { sum += a[i]; if ((plus && sum < 0) || (!plus && sum > 0)) { plus = !plus; continue; } if (plus) { ans += (sum + 1); sum = -1; } else { ans += (-sum + 1); sum = 1; } plus = !plus; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a.at(i); int sum1 = 0; int sum2 = 0; int cnt1 = 0; int cnt2 = 0; for (int i = 0; i < n; i++) { sum1 += a.at(i); sum2 += a.at(i); if (i % 2 == 0) { if (sum1 <= 0) { cnt1 += 1 - sum1; sum1 = 1; } if (sum2 >= 0) { cnt2 += sum2 + 1; sum2 = -1; } } else { if (sum1 >= 0) { cnt1 += sum1 + 1; sum1 = -1; } if (sum2 <= 0) { cnt2 += 1 - sum2; sum2 = 1; } } } cout << min(cnt1, cnt2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<bits/stdc++.h> using namespace std const int MAX_N = 1e5; int N, a[MAX_N+5]; int solve(int next){ int s = 0, cnt = 0; for(int i=0;i<N;i++){ s += a[i]; if(next==1 && s<=0){ cnt += next - s; s = 1; }else if(next==-1 && s>=0){ cnt += s - next; s = -1; } next *= -1; } return cnt; } int main(){ cin >> N; for(int i=0;i<N;i++) cin >> a[i]; cout << min(solve(1), solve(-1)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { long long int i, a, n, num; int sum = 0, bsum = 0, ans = 0, m = 0; scanf("%d", &n); for (i = 0; i < n; i++) { scanf("%d", &a); bsum = sum; sum += a; if (bsum > 0) { if (sum > 0) { num = sum; do { num--; ans++; m++; } while (num >= 0); sum -= m; m = 0; } if (sum = 0) { ans++; sum -= 1; } } if (bsum < 0) { if (sum < 0) { num = sum; do { num++; ans++; m++; } while (num <= 0); sum += m; m = 0; } if (sum = 0) { ans++; sum += 1; } } } printf("%d\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (int)(n); i++) { cin >> a[i]; } int s = a[0]; int ss = a[0]; long long ans = 0; for (int i = 1; i < n; i++) { s = ss; ss = s + a[i]; if (ss * s < 0) continue; if (ss == 0) { ans += abs(ss) + 1; ss = -s / abs(s); } else { ans += abs(ss - (-ss / abs(ss))); ss = -ss / abs(ss); } } cout << ans << endl; return 0; }