Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
int N;
cin >> N;
vector<ll> A(N);
for (int i = 0; i < N; i++) cin >> A[i];
ll ret = 0;
ll sum = A[0];
for (int i = 1; i < N; i++) {
ll after = sum + A[i];
if (after * sum < 0) {
sum = after;
} else {
ret += abs(after) + 1;
if (sum > 0)
sum = -1;
else
sum = 1;
}
}
ll ret2 = 0;
ll sum2 = -A[0];
for (int i = 1; i < N; i++) {
ll after = sum + A[i];
if (after * sum < 0) {
sum = after;
} else {
ret += abs(after) + 1;
if (sum > 0)
sum = -1;
else
sum = 1;
}
}
cout << min(ret, ret2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
X=list(map(int,input().split()))
res=X[0]
cnt=0
if X[0]==0:
cnt=1
res=1
for i in range(1,n):
if X[i]>0:
tmp=i
cnt+=2*(i-1)
res=-1
elif X[i]<0:
tmp=i
cnt+=2*(i-1)
res=1
for i in range(tmp,n):
res+=X[i]
if res>=0 and res-X[i]>0:
cnt+=(1+res)
res=-1
elif res<=0 and res-X[i]<0:
cnt+=(1-res)
res=1
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int main(void) {
int n;
long int a[100000] = {0}, b[100001] = {0}, fugo, dif, ans = 0;
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%ld", &a[i]);
}
if (a[0] < 0)
fugo = 0;
else
fugo = 1;
for (int i = 0; i < n; i++) {
dif = 0;
b[i + 1] = b[i] + a[i];
if ((i + 1) % 2 == fugo) {
if (b[i + 1] <= 0) {
dif += -1 - b[i];
b[i] += dif;
dif += 1 - b[i + 1] - dif;
b[i + 1] += dif;
ans += dif;
}
} else {
if (b[i + 1] >= 0) {
dif += b[i] - 1;
b[i] -= dif;
dif += b[i + 1] + 1 - dif;
b[i + 1] -= dif;
ans += dif;
}
}
}
printf("%d\n", ans);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
t = a[0]
r, tmp, count = 0, 0, 0
for i in range(1, n):
tmp = t + a[i]
if t < 0 and tmp < 0:
r = 1 - tmp
elif t > 0 and tmp > 0:
r = -tmp - 1
elif tmp == 0:
if t < 0:
r = 1 - t - a[i]
else:
r = -1 - t - a[i]
# if a[i] < 0:
# r = a[i] - 1
# elif a[i] > 0:
# r = a[i] + 1
else:
r = 0
count += abs(r)
t = tmp + r
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int64_t n;
int64_t i;
int64_t sum;
bool default_flag;
bool plus_flag, minus_flag;
int64_t ope_count;
cin >> n;
vector<int64_t> a(n);
for (i = 0; i < n; i++) {
cin >> a.at(i);
}
sum = 0;
ope_count = 0;
default_flag = true;
plus_flag = false;
minus_flag = false;
for (i = 0; i < n; i++) {
sum += a.at(i);
if (default_flag == true) {
default_flag = false;
if (a.at(i + 1) > 0) {
while (sum >= 0) {
ope_count++;
sum--;
}
minus_flag = true;
} else if (a.at(i + 1) < 0) {
while (sum <= 0) {
ope_count++;
sum++;
}
plus_flag = true;
}
} else if (plus_flag == true) {
while (sum >= 0) {
ope_count++;
sum--;
}
plus_flag = false;
minus_flag = true;
} else if (minus_flag == true) {
while (sum <= 0) {
ope_count++;
sum++;
}
plus_flag = true;
minus_flag = false;
}
}
cout << ope_count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < (int)(n); i++) cin >> a[i];
int s = a[0];
long long ans1 = 0, ans2 = 0;
if (s == 0) ans1++;
for (int i = (1); i < (int)(n); i++) {
if (i % 2 && s + a[i] >= 0) {
ans1 += s + a[i] + 1;
s = -1;
} else if (i % 2 == 0 && s + a[i] <= 0) {
ans1 += -(s + a[i]) + 1;
s = 1;
} else
s += a[i];
}
s = a[0];
if (s == 0) ans2++;
for (int i = (1); i < (int)(n); i++) {
if (i % 2 == 0 && s + a[i] >= 0) {
ans2 += s + a[i] + 1;
s = -1;
} else if (i % 2 && s + a[i] <= 0) {
ans2 += -(s + a[i]) + 1;
s = 1;
} else
s += a[i];
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using lint = long long;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < (n); i++) cin >> a[i];
lint ans = 0, sum = 0;
for (int i = 0; i < (n); i++) {
sum += a[i];
if (sum - a[i] > 0) {
if (sum >= 0) {
ans += sum + 1;
sum = -1;
}
} else if (sum - a[i] < 0) {
if (sum <= 0) {
ans += 1 - sum;
sum = 1;
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(i) for i in input().split()]
num,answer1= a[0],0
if a[0]==0:
num,answer = 1,1
for i in range(1,n):
if num*(num+a[i]) >= 0:
x = (-num)//abs(num)
answer1 += abs((x-num)-a[i])
num = x
else:
num += a[i]
if a[0]==0: num,answer2 = -1,1
else: num,answer2 = -a[0]//abs(a[0]),abs(a[0]-(-a[0]//abs(a[0])))
for i in range(1,n):
if num*(num+a[i]) >= 0:
x = (-num)//abs(num)
answer2 += abs((x-num)-a[i])
num = x
else:
num += a[i]
print(min(answer1,answer2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int sign(int a) {
if (a > 0)
return 1;
else if (a < 0)
return -1;
else
return 0;
}
int main(void) {
int n;
cin >> n;
int sum = 0, s = 1;
int num = 0;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
for (int i = 0; i < n; i++) {
sum += a[i];
if (i != 0 && (sign(s) == sign(sum) || sum == 0)) {
num += abs(sum) + 1;
sum = sign(s) * (-1);
s *= -1;
} else if (i == 0 && a[i] == 0) {
num++;
sum++;
s = 1;
} else {
s = sign(sum);
}
}
int m = num;
sum = 0;
num = 0;
num += abs(a[0]) + 1;
if (a[0] >= 0)
sum = -1;
else
sum = 1;
s = sum;
for (int i = 1; i < n; i++) {
sum += a[i];
if (i != 0 && (sign(s) == sign(sum) || sum == 0)) {
num += abs(sum) + 1;
sum = sign(s) * -1;
s *= -1;
} else {
s = sign(sum);
}
}
m = min(num, m);
cout << m << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <iostream>
#include <vector>
#include <algorithm>
#include <map>
using namespace std;
int main(){
int N;
cin >> N;
vector<long long int> A(N);
for(int i = 0; i < N; i++) cin >> A[i];
long long unsigned int cnt, cnt1 ,cnt2 = 0;
long long unsigned int M = 0;
M = A[0];
for(int i = 1 ; i < N; i++){
if(i % 2 == 0){
cnt1 += abs(1 - M);
}else{
cnt1 += abs(-1 - M);
}
M += A[i];
}
M = A[0];
for(int i = 1 ; i < N; i++){
if(i % 2 == 1){
cnt2 += abs(1 - M);
}else{
cnt2 += abs(-1 - M);
}
}
cnt = min(cnt1, cnt2);
cout << cnt;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | package main
import (
"bufio"
"errors"
"fmt"
"math"
"os"
"strconv"
"strings"
)
var rdr = bufio.NewReaderSize(os.Stdin, 1000000)
// readLine can read long line string (at least 10^5)
func readLine() string {
buf := make([]byte, 0, 1000000)
for {
l, p, e := rdr.ReadLine()
if e != nil {
panic(e)
}
buf = append(buf, l...)
if !p {
break
}
}
return string(buf)
}
// NextLine reads a line text from stdin, and then returns its string.
func NextLine() string {
return ReadLine()
}
// NextIntsLine reads a line text, that consists of **ONLY INTEGERS DELIMITED BY SPACES**, from stdin.
// And then returns intergers slice.
func NextIntsLine() []int {
ints := []int{}
intsStr := NextLine()
tmp := strings.Split(intsStr, " ")
for _, s := range tmp {
integer, _ := strconv.Atoi(s)
ints = append(ints, integer)
}
return ints
}
// NextRunesLine reads a line text, that consists of **ONLY CHARACTERS ARRANGED CONTINUOUSLY**, from stdin.
// Ant then returns runes slice.
func NextRunesLine() []rune {
return []rune(NextLine())
}
// Max returns the max integer among input set.
// This function needs at least 1 argument (no argument causes panic).
func Max(integers ...int) int {
m := integers[0]
for i, integer := range integers {
if i == 0 {
continue
}
if m < integer {
m = integer
}
}
return m
}
// Min returns the min integer among input set.
// This function needs at least 1 argument (no argument causes panic).
func Min(integers ...int) int {
m := integers[0]
for i, integer := range integers {
if i == 0 {
continue
}
if m > integer {
m = integer
}
}
return m
}
// PowInt is integer version of math.Pow
func PowInt(a, e int) int {
if a < 0 || e < 0 {
panic(errors.New("[argument error]: PowInt does not accept negative integers"))
}
fa := float64(a)
fe := float64(e)
fanswer := math.Pow(fa, fe)
return int(fanswer)
}
// AbsInt is integer version of math.Abs
func AbsInt(a int) int {
fa := float64(a)
fanswer := math.Abs(fa)
return int(fanswer)
}
// DeleteElement returns a *NEW* slice, that have the same and minimum length and capacity.
// DeleteElement makes a new slice by using easy slice literal.
func DeleteElement(s []int, i int) []int {
if i < 0 || len(s) <= i {
panic(errors.New("[index error]"))
}
// appendのみの実装
n := make([]int, 0, len(s)-1)
n = append(n, s[:i]...)
n = append(n, s[i+1:]...)
return n
}
// Concat returns a *NEW* slice, that have the same and minimum length and capacity.
func Concat(s, t []rune) []rune {
n := make([]rune, 0, len(s)+len(t))
n = append(n, s...)
n = append(n, t...)
return n
}
// sort package (snippets)
//sort.Sort(sort.IntSlice(s))
//sort.Sort(sort.Reverse(sort.IntSlice(s)))
//sort.Sort(sort.Float64Slice(s))
//sort.Sort(sort.StringSlice(s))
// copy function
//a = []int{0, 1, 2}
//b = make([]int, len(a))
//copy(b, a)
/*******************************************************************/
var n int
var A []int
func main() {
tmp := NextIntsLine()
n = tmp[0]
A = NextIntsLine()
S := make([]int, len(A))
S[0] = A[0]
for i := 1; i < len(A); i++ {
sum := S[i-1]
S[i] = sum + A[i]
}
// 最初を正とする場合と負とする場合の両方を試す
answers := []int{}
for _, firstSign := range []int{1, -1} {
comp, answer := 0, 0
if (firstSign == 1 && S[0] <= 0) || (firstSign == -1 && S[0] >= 0) {
comp = firstSign - S[0]
answer = AbsInt(comp)
}
for i := 1; i < len(S); i++ {
var befSign int
if S[i-1]+comp < 0 {
befSign = -1
} else {
befSign = 1
}
if (befSign == -1 && S[i]+comp > 0) || (befSign == 1 && S[i]+comp < 0) {
continue
}
x := -befSign - (S[i] + comp)
answer += AbsInt(x)
comp += x
}
answers = append(answers, answer)
}
fmt.Println(Min(answers...))
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | ;; -*- coding: utf-8 -*-
(eval-when (:compile-toplevel :load-toplevel :execute)
(sb-int:defconstant-eqx OPT
#+swank '(optimize (speed 3) (safety 2))
#-swank '(optimize (speed 3) (safety 0) (debug 0))
#'equal)
#+swank (ql:quickload '(:cl-debug-print :fiveam) :silent t)
#-swank (set-dispatch-macro-character
;; enclose the form with VALUES to avoid being captured by LOOP macro
#\# #\> (lambda (s c p) (declare (ignore c p)) `(values ,(read s nil nil t)))))
#+swank (cl-syntax:use-syntax cl-debug-print:debug-print-syntax)
#-swank (disable-debugger) ; for CS Academy
;; BEGIN_INSERTED_CONTENTS
(declaim (ftype (function * (values fixnum &optional)) read-fixnum))
(defun read-fixnum (&optional (in *standard-input*))
"NOTE: cannot read -2^62"
(macrolet ((%read-byte ()
`(the (unsigned-byte 8)
#+swank (char-code (read-char in nil #\Nul))
#-swank (sb-impl::ansi-stream-read-byte in nil #.(char-code #\Nul) nil))))
(let* ((minus nil)
(result (loop (let ((byte (%read-byte)))
(cond ((<= 48 byte 57)
(return (- byte 48)))
((zerop byte) ; #\Nul
(error "Read EOF or #\Nul."))
((= byte #.(char-code #\-))
(setf minus t)))))))
(declare ((integer 0 #.most-positive-fixnum) result))
(loop
(let* ((byte (%read-byte)))
(if (<= 48 byte 57)
(setq result (+ (- byte 48)
(* 10 (the (integer 0 #.(floor most-positive-fixnum 10))
result))))
(return (if minus (- result) result))))))))
(defmacro dbg (&rest forms)
#+swank
(if (= (length forms) 1)
`(format *error-output* "~A => ~A~%" ',(car forms) ,(car forms))
`(format *error-output* "~A => ~A~%" ',forms `(,,@forms)))
#-swank (declare (ignore forms)))
(defmacro define-int-types (&rest bits)
`(progn
,@(mapcar (lambda (b) `(deftype ,(intern (format nil "UINT~A" b)) () '(unsigned-byte ,b))) bits)
,@(mapcar (lambda (b) `(deftype ,(intern (format nil "INT~A" b)) () '(signed-byte ,b))) bits)))
(define-int-types 2 4 7 8 15 16 31 32 62 63 64)
(declaim (inline println))
(defun println (obj &optional (stream *standard-output*))
(let ((*read-default-float-format* 'double-float))
(prog1 (princ obj stream) (terpri stream))))
(defconstant +mod+ 1000000007)
;;;
;;; Body
;;;
(defun main ()
(let* ((n (read))
(as (make-array n :element-type 'int32)))
(dotimes (i n)
(setf (aref as i) (read-fixnum)))
(when (< (aref as 0) 0)
(setq as (map '(simple-array int32 (*)) #'- as)))
(let ((sum (aref as 0))
(res 0))
(loop for i from 1 below n
do (incf sum (aref as i))
(if (oddp i)
(when (>= sum 0)
(incf res (+ sum 1))
(setq sum -1))
(when (<= sum 0)
(incf res (- 1 sum))
(setq sum 1))))
(println res))))
#-swank (main)
;;;
;;; Test and benchmark
;;;
#+swank
(defun io-equal (in-string out-string &key (function #'main) (test #'equal))
"Passes IN-STRING to *STANDARD-INPUT*, executes FUNCTION, and returns true if
the string output to *STANDARD-OUTPUT* is equal to OUT-STRING."
(labels ((ensure-last-lf (s)
(if (eql (uiop:last-char s) #\Linefeed)
s
(uiop:strcat s uiop:+lf+))))
(funcall test
(ensure-last-lf out-string)
(with-output-to-string (out)
(let ((*standard-output* out))
(with-input-from-string (*standard-input* (ensure-last-lf in-string))
(funcall function)))))))
#+swank
(defun get-clipbrd ()
(with-output-to-string (out)
;; (run-program "C:/Windows/System32/WindowsPowerShell/v1.0/powershell.exe" '("get-clipboard") :output out)
(run-program "powershell.exe" '("-Command" "Get-Clipboard") :output out :search t)))
#+swank (defparameter *this-pathname* (uiop:current-lisp-file-pathname))
#+swank (defparameter *dat-pathname* (uiop:merge-pathnames* "test.dat" *this-pathname*))
#+swank
(defun run (&optional thing (out *standard-output*))
"THING := null | string | symbol | pathname
null: run #'MAIN using the text on clipboard as input.
string: run #'MAIN using the string as input.
symbol: alias of FIVEAM:RUN!.
pathname: run #'MAIN using the text file as input."
(let ((*standard-output* out))
(etypecase thing
(null
(with-input-from-string (*standard-input* (delete #\Return (get-clipbrd)))
(main)))
(string
(with-input-from-string (*standard-input* (delete #\Return thing))
(main)))
(symbol (5am:run! thing))
(pathname
(with-open-file (*standard-input* thing)
(main))))))
#+swank
(defun gen-dat ()
(uiop:with-output-file (out *dat-pathname* :if-exists :supersede)
(format out "")))
#+swank
(defun bench (&optional (out (make-broadcast-stream)))
(time (run *dat-pathname* out)))
;; To run: (5am:run! :sample)
#+swank
(it.bese.fiveam:test :sample
(it.bese.fiveam:is
(common-lisp-user::io-equal "4
1 -3 1 0
"
"4
"))
(it.bese.fiveam:is
(common-lisp-user::io-equal "5
3 -6 4 -5 7
"
"0
"))
(it.bese.fiveam:is
(common-lisp-user::io-equal "6
-1 4 3 2 -5 4
"
"8
")))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python2 | # -*- coding:utf-8 -*-
n = int(raw_input())
numlist = (raw_input()).split(' ')
count = 0
if (int(numlist[0]) == 0):
if (int(numlist[1]) > 0):
numlist[0] = -1
else:
numlist[0] = 1
sumlist = [int(numlist[0])]
for i in range(1, n):
sumlist.append(sumlist[i-1] + int(numlist[i]))
while (True):
if (sumlist[i-1] > 0 and sumlist[i] > 0): #i-1,i番目までのsumがともに正
#numlist[i] = int(numlist[i]) - 1
count += sumlist[i] + 1
sumlist[i] = -1
elif (sumlist[i-1] < 0 and sumlist[i] < 0): #i-1,i番目までのsumがともに負
#numlist[i] = int(numlist[i]) + 1
count += (-1)*sumlist[i] + 1
sumlist[i] = 1
elif (sumlist[i] == 0): #i番目までのsum=0
if (sumlist[i-1] > 0):
#numlist[i] = int(numlist[i]) - 1
sumlist[i] -= 1
if (sumlist[i-1] < 0):
#numlist[i] = int(numlist[i]) + 1
sumlist[i] += 1
count += 1
else:
break
#print numlist
#print sumlist
print count
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 1e9;
const int MOD = 1e9 + 7;
const long long LINF = 1e18;
long long n;
vector<long long> a;
long long count(long long sum) {
long long cnt = 0;
for (long long i = 1; i < n; ++i) {
if (sum > 0) {
sum += a[i];
if (sum >= 0) {
cnt += abs(sum) + 1;
sum = -1;
}
} else {
sum += a[i];
if (sum <= 0) {
cnt += abs(sum) + 1;
sum = 1;
}
}
}
return cnt;
}
int main() {
cin >> n;
long long ans = INF;
a.resize(n);
for (long long i = 0; i < n; ++i) {
cin >> a[i];
}
if (a[0] == 0) {
ans = min(ans, count(1) + 1);
ans = min(ans, count(-1) + 1);
} else {
long long sum = a[0];
ans = min(ans, count(sum));
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a;
cin >> a;
int sum = 0;
int x = 0;
if (a > 0) {
sum += a;
for (int t = 1; t < n; t++) {
int temp;
cin >> temp;
sum += temp;
if (t % 2 == 1 && sum >= 0) {
int s = sum + 1;
sum -= s;
x += s;
} else if (t % 2 == 0 && sum <= 0) {
int s = 1 - sum;
sum += s;
x += s;
}
}
} else {
sum += a;
for (int t = 1; t < n; t++) {
int temp;
cin >> temp;
sum += temp;
if (t % 2 == 0 && sum >= 0) {
int s = sum + 1;
sum -= s;
x += s;
} else if (t % 2 == 1 && sum <= 0) {
int s = 1 - sum;
sum += s;
x += s;
}
}
}
cout << x << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N, temp;
vector<int> a;
scanf("%d", &N);
int start = 0;
bool v = false;
for (int i = 0; i < N; i++) {
scanf("%d", &temp);
if (temp == 0) {
if (!v) {
start += 1;
}
} else if (!v)
v = true;
a.push_back(temp);
}
int sum = 0, cnt = 0;
if (start != 0) {
cnt = 2 * (start - 1) + 1;
if (a[start] > 0) {
if (a[start] > 1) {
sum = a[start] - 1;
} else {
sum = 1;
cnt += 1;
}
} else {
if (a[start] < -1) {
sum = a[start] + 1;
} else {
sum = -1;
cnt += 1;
}
}
} else {
sum = a[start];
}
start++;
for (size_t i = start; i != a.size(); i++) {
if (sum + a[i] >= 0 && sum > 0) {
cnt += sum + a[i] + 1;
sum = -1;
} else if (sum + a[i] <= 0 && sum < 0) {
cnt += 1 - sum - a[i];
sum = 1;
} else {
sum += a[i];
}
}
if (sum == 0) cnt += 1;
printf("%d\n", cnt);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
uint n;
cin >> n;
vector<int> a(n, 0);
vector<int> S(n, 0);
for (size_t i = 0; i < a.size(); ++i) cin >> a[i];
int operation = 0;
S[0] = a[0];
if (S[0] == 0) {
size_t j = 0;
for (size_t i = 1; i < a.size(); ++i) {
if (a[i] != 0) {
j = i;
break;
}
}
if (j == 0) {
S[0] = 1;
++operation;
} else if (j % 2 == 0) {
S[0] = a[j] / abs(a[j]);
++operation;
} else {
S[0] = -a[j] / abs(a[j]);
++operation;
}
}
for (size_t i = 1; i < a.size(); ++i) {
S[i] = S[i - 1] + a[i];
if (S[i] == 0) {
if (S[i - 1] < 0) {
S[i] = 1;
++operation;
} else if (S[i - 1] > 0) {
S[i] = -1;
++operation;
}
} else {
if (S[i - 1] * S[i] > 0) {
if (S[i] < 0) {
operation = operation - S[i] + 1;
S[i] = 1;
} else if (S[i] > 0) {
operation = operation + S[i] + 1;
S[i] = -1;
}
}
}
}
cout << operation << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
#define rep(i,n) for(int i = 0; i < (n); ++i)
using ll = long long;
using P = pair<int, int>;
int main(){
int n;
cin >> n;
vector<int> a(n);
rep(i, n) cin >> a[i];
int sum = 0;
int sign = 1;
int cout = 0;
int ans = INT_MAX;
// if 0 +1
rep(j, 2){
if (j == 0) sign = 1;
else sign = -1;
sum = 0;
cout = 0;
rep(i, n){
sum += a[i];
if ((sign > 0) && (sum <= 0)){
cout += (1 - sum);
sum = 1;
} else if ((sign < 0) && (sum >= 0)){
cout += abs(-1 - sum);
sum = -1;
}
sign = sign == 1 ? -1 : 1;
}
if (ans > cout) ans = cout;
}
cout << ans << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, ans;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
for (int i = 0; i < n - 1; i++) {
while (a.at(i) * a.at(i + 1) >= 0) {
if (a.at(i) > 0) {
a.at(i + 1)--;
ans++;
}
if (a.at(i) < 0) {
a.at(i + 1)++;
ans++;
}
}
int p = 0;
for (int j = i + 1; j >= 0; j--) p += a.at(j);
if (p == 0) {
if (a.at(i) > 0)
a.at(i + 1)++;
else
a.at(i + 1)--;
ans++;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
long a[] = new long[n];
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
}
long total = 0;
long man = 0;
boolean iniZero = true;
int zeroCount = 0;
for (int i = 0; i < a.length; i++) {
if (iniZero) {
if (a[i] == 0) {
zeroCount++;
} else {
iniZero = false;
if (Math.abs(a[i]) == 1 && i != 0) {
total += a[i] + a[i] > 0 ? 1 : -1;
man += 1;
} else {
total += a[i];
}
}
} else {
if (total * (total + a[i]) >= 0) {
long x = Math.abs(total + a[i]) + 1;
if (total > 0) {
total += a[i] - x;
} else {
total += a[i] + x;
}
man += x;
} else {
total += a[i];
}
}
}
if (zeroCount > 0) {
man += (zeroCount - 1) * 2 + 1;
}
System.out.println(man);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long a[100001] = {};
long long s[100001] = {};
int main() {
long long n;
cin >> n;
for (long long i = 1; i < n; i++) {
long long l;
cin >> l;
a[i] = l;
s[i] = s[i - 1] + l;
}
long long cnt1 = 0;
for (long long i = 1; i <= n; i++) {
if (i % 2 == 1) {
if (s[i] <= 0) {
cnt1 += 1 - s[i];
s[i] = 1;
}
} else {
if (s[i] >= 0) {
cnt1 += 1 + s[i];
s[i] = -1;
}
}
}
long long cnt2 = 0;
for (long long i = 1; i <= n; i++) {
if (i % 2 == 1) {
} else {
}
}
cout << cnt1 << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int main(void) {
long long i, j, k, ans = 0, be, n, a;
scanf("%lld%lld", &n, &be);
for (i = 1; i < n; ++i) {
scanf("%lld", &a);
if (be > 0 && -1 < be + a)
ans += be + a + 1, be = -1;
else if (be < 0 && 1 > be + a)
ans += 1 + -be - a, be = 1;
else
be += a;
}
printf("%lld", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MOD = (int)1e9 + 7;
const int MAX = 1e6;
int arr[MAX], n;
int status(int a) {
if (a < 0)
return 1;
else if (a > 0)
return 0;
else
return 2;
}
long long int solve() {
long long int cnt = 0;
long long int sum = arr[0], f = 0;
if (arr[0] < 0)
f = 1;
else
f = 0;
for (int i = 1; i < n; i++) {
f ^= 1;
int add = arr[i];
if (status(arr[i]) != f) add = 0, cnt += abs(arr[i]);
sum += add;
if (status(sum) != f) {
cnt += abs(sum) + 1;
if (f)
sum = -1;
else
sum = 1;
}
}
return cnt;
}
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n;
for (int i = 0; i < n; i++) {
cin >> arr[i];
}
if (!arr[0]) {
arr[0] = 1;
long long int x = solve() + 1;
arr[0] = -1;
long long int y = solve() + 1;
cout << min(x, y) << endl;
} else {
long long int old = arr[0];
arr[0] = old;
long long int x = solve();
arr[0] = old * -1;
long long int y = solve();
if (old > 0)
y += old * 2;
else
x += abs(old) * 2;
cout << min(x, y) << endl;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[n];
for (int(i) = 0; (i) < (n); ++(i)) {
cin >> a[i];
}
long long ans;
long long sum[n];
bool plusSumFlg;
for (int(i) = 0; (i) < (n); ++(i)) {
sum[i] = 0;
}
ans = 0;
sum[0] = a[0];
if (sum[0] == 0) {
if (a[1] >= 0) {
ans++;
sum[0]--;
} else {
ans++;
sum[0]++;
}
}
plusSumFlg = sum[0] > 0 ? true : false;
for (int i = 1; i < n; ++i) {
sum[i] = sum[i - 1] + a[i];
if (plusSumFlg) {
plusSumFlg = false;
if (sum[i] > 0) {
ans += 1 + sum[i];
sum[i] = -1;
} else if (sum[i] == 0) {
ans++;
sum[i]++;
}
} else {
plusSumFlg = true;
if (sum[i] < 0) {
ans += 1 - sum[i];
sum[i] = 1;
} else if (sum[i] == 0) {
ans++;
sum[i]++;
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = [map(int,input().split())]
acm1 = 0
acm2 = 0
ans1 = 0
ans2 = 0
for i, a in enumerate(A):
acm1 += a
acm2 += a
if(i%2==1):
if(acm1>=0):
ans1 += acm1 + 1
acm1 = -1
if(acm2<=0):
ans2 += -acm2 + 1
acm2 = 1
else:
if(acm1<=0):
ans1 += -acm1 + 1
acm1 = 1
if(acm2>=0):
ans2 += acm2 + 1
acm2 = -1
print(min(ans1, ans2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | use proconio::input;
fn main() {
input! {
n: usize,
a: [i64; n],
};
let a_e = {
let mut res = 0_i64;
let mut sum = 0_i64;
for (i, &a_i) in a.iter().enumerate() {
sum += a_i;
if i % 2 == 0 {
if sum > 0 {
// do nothing
} else {
res += 1 - sum;
sum = 1;
}
} else {
if sum > 0 {
res += 1 + sum;
sum = -1;
} else {
// do nothing
}
}
}
res
};
let a_o = {
let mut res = 0_i64;
let mut sum = 0_i64;
for (i, &a_i) in a.iter().enumerate() {
sum += a_i;
if i % 2 == 0 {
if sum > 0 {
res += 1 + sum;
sum = -1;
} else {
// do nothing
}
} else {
if sum > 0 {
// do nothing
} else {
res += 1 - sum;
sum = 1;
}
}
}
res
};
let ans = std::cmp::min(a_e, a_o);
println!("{}", ans);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | n = gets.to_i
a = [nil] + gets.split.map(&:to_i)
r, s = 0, a[1]
(1 ... n).each do |i|
if s > 0
t = -s - 1
r += [a[i + 1] - t, 0].max
s += [a[i + 1], t].min
else
t = -s + 1
r += [t - a[i + 1], 0].max
s += [a[i + 1], t].max
end
end
puts r |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[100000];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int Mp = 0;
int Sp = 0;
int dif = 0;
for (int i = 0; i < n; i++) {
Sp += a[i];
if (i % 2 == 0) {
if (Sp <= 0) {
dif = 1 - Sp;
Mp += dif;
Sp += dif;
}
} else {
if (Sp >= 0) {
dif = Sp + 1;
Mp += dif;
Sp += -dif;
}
}
}
int Mn = 0;
int Sn = 0;
int di = 0;
for (int i = 0; i < n; i++) {
Sn += a[i];
if (i % 2 == 1) {
if (Sn <= 0) {
di = 1 - Sn;
Mn += di;
Sn += di;
}
} else {
if (Sn >= 0) {
di = Sn + 1;
Mn += di;
Sn += -di;
}
}
}
if (Mp < Mn) {
cout << Mp;
} else {
cout << Mn;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>
#include <ctype.h>
#include <stdint.h>
#include <string.h>
#include <wchar.h>
#include <math.h>
#define N_MAX (100)
#define P_MAX (100)
#define DP_ARRAY_SIZE (N_MAX * P_MAX / 32 + 1)
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define ABS(a) ((a) < 0 ? -(a) : (a))
#define ABSS(a, b) ((a) > (b) ? (a) - (b) : (b) - (a))
int compare_sz_asc(const void* a, const void* b) {
return *((size_t*)a) < *((size_t*)b) ? -1 : 1;
}
int compare_sz_desc(const void* a, const void* b) {
return *((size_t*)a) > * ((size_t*)b) ? -1 : 1;
}
int compare_i64_asc(const void* a, const void* b) {
return *((int64_t*)a) < *((int64_t*)b) ? -1 : 1;
}
int compare_i64_desc(const void* a, const void* b) {
return *((int64_t*)a) > * ((int64_t*)b) ? -1 : 1;
}
int compare_c_asc(const void* a, const void* b) {
return *((char*)a) < *((char*)b) ? -1 : 1;
}
int compare_c_desc(const void* a, const void* b) {
return *((char*)a) > * ((char*)b) ? -1 : 1;
}
static size_t powSz(const size_t base, const size_t exp) {
if (exp == 0) {
return 1;
}
if (exp == 1) {
return base;
}
if (exp % 2 == 0) {
return powSz(base * base, exp / 2);
}
else {
return base * powSz(base, exp - 1);
}
}
static size_t comb(const size_t n, const size_t r) {
size_t result = 1;
for (size_t i = 0; i < r; i++) {
result *= n - i;
result /= i + 1;
}
return result;
}
static uint64_t combU64(const uint64_t n, const uint64_t r) {
uint64_t result = 1;
for (uint64_t i = 0; i < r; i++) {
result *= n - i;
result /= i + 1;
}
return result;
}
static size_t gcdZu(size_t m, size_t n) {
size_t temp;
while (m % n != 0) {
temp = n;
n = m % n;
m = temp;
}
return n;
}
static uint64_t gcdU64(uint64_t m, uint64_t n)
{
uint64_t temp;
while (m % n != 0) {
temp = n;
n = m % n;
m = temp;
}
return n;
}
static int64_t a[100000];
int main(void) {
size_t n;
scanf("%zu\n", &n);
for (size_t i = 0; i < n; i++) {
scanf("%"PRId64, &a[i]);
}
size_t cnt[2] = { 0,0 };
int64_t base[2] = { 1,-1 };
int64_t sum = 0;
for (size_t i = 0; i < n; i++) {
sum += a[i];
cnt[0] += (size_t)ABSS(base[0], a[i]);
cnt[1] += (size_t)ABSS(base[1], a[i]);
base[0] = -base[0];
base[1] = -base[1];
}
printf("%zu", MIN(cnt[0], cnt[1]));
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int,input().split()))
count = 0
if A[0] == 0:
A[0] = -1 if A[1]>0 else 1
count += 1
t = A[0]
for a in A[1:]:
if t*(t+a) >= 0:
if t > 0:
count += 1+(t+a)
t = -1
else:
count += 1-(t+a)
t = 1
else:
t = t+a
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
S = 0
C = 0
S = a[0]
if S > 0:
pm = 1
elif S < 0:
pm = 0
else:
S += 1
C += 1
pm = 1
for i in range(1, n):
S += a[i]
if pm == 1 and S >= 0:
C += S + 1
S -= S + 1
elif pm == 0 and S <= 0:
C += -S + 1
S += -S + 1
pm = 1 - pm
T = 0
D = 0
T = a[0]
if T > 0:
D += T + 1
T -= T + 1
pm = 0
elif T < 0:
D += -T + 1
T += -T + 1
pm = 1
else:
T -= 1
C += 1
pm = 0
for i in range(1, n):
T += a[i]
if pm == 1 and T >= 0:
D += T + 1
T -= T + 1
elif pm == 0 and T <= 0:
D += -T + 1
T += -T + 1
pm = 1 - pm
print(min(C, D)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long long sum = a[0];
long long ans = 0;
if (sum == 0) {
sum = 1;
ans++;
}
for (int i = 1; i < n; i++) {
long long tmp = sum + a[i];
if (sum > 0 && tmp > 0) {
ans += tmp + 1;
sum = -1;
} else if (sum < 0 && tmp < 0) {
ans += -tmp + 1;
sum = 1;
} else if (tmp == 0) {
ans++;
if (sum < 0)
sum = 1;
else
sum = -1;
} else
sum = tmp;
}
sum = a[0];
long long ans2 = 0;
if (sum == 0) {
sum = 1;
ans2++;
} else {
sum = -1 * a[0] / abs(a[0]);
ans2 = abs(a[0]) + 1;
}
for (int i = 1; i < n; i++) {
long long tmp = sum + a[i];
if (sum > 0 && tmp > 0) {
ans2 += tmp + 1;
sum = -1;
} else if (sum < 0 && tmp < 0) {
ans2 += -tmp + 1;
sum = 1;
} else if (tmp == 0) {
ans2++;
if (sum < 0)
sum = 1;
else
sum = -1;
} else
sum = tmp;
}
cout << min(ans2, ans);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def m():
n = int(input())
a = list(map(int, input().split()))
even = a[1::2]
odd = a[::2]
ever_total = 0
ans = 0
if sum(even) > sum(odd):
# マイナススタート
for i in range(n):
ever_total += a[i]
if (i+2) % 2 == 0:
if ever_total <= 0:
pass
else:
ans += abs(a[i-1]) + 1
else:
if ever_total >= 0:
pass
else:
ans += abs(a[i - 1]) + 1
else:
# プラス
for i in range(n):
ever_total += a[i]
if (i+2) % 2 == 0:
if ever_total >= 0:
pass
else:
ans += abs(a[i-1]) + 1
else:
if ever_total <= 0:
pass
else:
ans += abs(a[i - 1]) + 1
return ans
print(m()) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a.at(i);
int sco = a.at(0);
int ans = 0;
for (int i = 1; i < n; i++) {
if (sco >= 0) {
int math = a.at(i) + sco;
while (math >= 0) {
math--;
ans++;
}
sco = math;
} else {
int math = a.at(i) + sco;
while (math <= 0) {
math++;
ans++;
}
sco = math;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int count = 0;
int sum = 0;
vector<int> a(n);
for (int i = 0; i < (int)(n); i++) cin >> a.at(i);
int Ah = 0;
int Bh = 0;
int sumA = 0;
int sumB = 0;
if (a.at(0) == 0) {
if (a.at(1) > 0)
a.at(0) = -1;
else
a.at(0) = 1;
count++;
}
for (int i = 0; i < n - 1; i++) {
sumA += a.at(i);
Ah = 0;
Bh = 0;
for (;;) {
sumB = sumA + a.at(i + 1);
if (sumA > 0)
Ah = 1;
else
Ah = -1;
if (sumB > 0)
Bh = 1;
else if (sumB < 0)
Bh = -1;
else
Bh = 0;
if ((Ah == 1 && Bh == -1) || (Ah == -1 && Bh == 1))
break;
else if (Ah == 1 && Bh != -1) {
a.at(i + 1) -= abs(sumB) + 1;
count += abs(sumB) + 1;
break;
} else if (Ah == -1 && Bh != 1) {
a.at(i + 1) += abs(sumB) + 1;
count += abs(sumB) + 1;
break;
}
}
}
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
long[] a=new long[n];
for(int i=0;i<n;i++)a[i]=sc.nextLong();
long sum=0;
long count=0;
for(int i=0;i<n-1;i++){
sum+=a[i];
if(sum>0){
if(sum+a[i+1]>=0){
count+=sum+a[i+1]+1;
a[i+1]-=sum+a[i+1]+1;
}
}else if(sum<0){
if(sum+a[i+1]<=0){
count+=-1*(sum+a[i+1])+1;
a[i+1]+=-1*(sum+a[i+1])+1;
}
}
}
System.out.println(count);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MAX = 1e+5;
int n;
int a[MAX + 1];
int main() {
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i];
bool plus;
int sum = a[0] + a[1];
long long ans = 0;
if (sum < 0)
plus = true;
else if (sum > 0)
plus = false;
else {
int cnt = 1;
while (sum == 0) {
sum += a[++cnt];
}
if (sum < 0) {
plus = true;
sum = 1;
} else {
plus = false;
sum = -1;
}
ans += (cnt - 2) * 2 + 1;
}
for (int i = 2; i < n; i++) {
sum += a[i];
if (plus && sum <= 0) {
ans += -sum + 1;
sum = 1;
} else if (!plus && sum >= 0) {
ans += sum + 1;
sum = -1;
}
plus = !plus;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using lli = long long int;
using ulli = unsigned long long int;
vector<lli> N, rN;
lli in, n, d = 0, dp, pm;
ulli ans = 0;
int main() {
cin >> n;
for (lli l = 0; l < n; l++) {
cin >> in;
if (l == 0) {
N.push_back(in);
} else {
N.push_back(N[l - 1] + in);
}
}
for (lli l = 1; l < (lli)N.size(); l++) {
dp = d;
std::cout << "N[l - 1] + dp"
<< ":" << N[l - 1] + dp << " ";
;
std::cout << "N[l] + dp"
<< ":" << N[l] + dp << " ";
;
if (N[l - 1] + dp < 0) {
if (N[l] + dp < 0) {
d += 1 - N[l] - dp;
ans += 1 - N[l] - dp;
} else if (N[l] + dp == 0) {
d += 1;
ans += 1;
}
} else if (N[l - 1] + dp > 0) {
if (N[l] + dp > 0) {
d -= N[l] + dp + 1;
ans += N[l] + dp + 1;
} else if (N[l] + dp == 0) {
d -= 1;
ans += 1;
}
} else {
for (lli m = l - 1; m < (lli)N.size(); m++) {
if (N[m] > 0) {
pm = (m - l) % 2;
break;
} else if (N[m] < 0) {
pm = (m - l + 1) % 2;
break;
}
if (m == (lli)N.size() - 1) {
pm = (m + 1) % 2;
break;
}
}
if (pm == 1) {
d += 1;
ans += 1;
} else if (pm == 0) {
d -= 1;
ans += 1;
}
dp = d;
if (N[l] + dp < 0) {
d += 1 - N[l] - dp;
ans += 1 - N[l] - dp;
} else if (N[l] + dp == 0) {
d += 1;
ans += 1;
} else if (N[l] + dp > 0) {
d -= N[l] + dp + 1;
ans += N[l] + dp + 1;
} else if (N[l] + dp == 0) {
d -= 1;
ans += 1;
}
}
std::cout << "N[l] + d"
<< ":" << N[l] + d << " ";
;
std::cout << "dp"
<< ":" << dp << " ";
;
std::cout << "d"
<< ":" << d << " ";
;
std::cout << "ans"
<< ":" << ans << " ";
;
std::cout << "\n";
;
}
cout << ans;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int main() {
long long int n, a[100002], i, d[100002], e[100002], b, c;
scanf("%lld", &n);
for (i = 1; i <= n; i++) {
scanf("%lld", &a[i]);
}
b = 0;
d[1] = a[1];
if (d[1] != 0) {
for (i = 2; i <= n; i++) {
d[i] = d[i - 1] + a[i];
if (d[i] * d[i - 1] >= 0) {
if (d[i - 1] < 0) {
b = b + 1 - d[i];
d[i] = 1;
}
if (d[i - 1] > 0) {
b = b + 1 + d[i];
d[i] = -1;
}
}
}
printf("%lld\n", b);
return 0;
}
if (a[1] == 0) {
b = 1;
d[1] = 1;
for (i = 2; i <= n; i++) {
d[i] = d[i - 1] + a[i];
if (d[i] * d[i - 1] >= 0) {
if (d[i - 1] < 0) {
b = b + 1 - d[i];
d[i] = 1;
}
if (d[i - 1] > 0) {
b = b + 1 + d[i];
d[i] = -1;
}
}
}
e[1] = -1;
c = 1;
for (i = 2; i <= n; i++) {
e[i] = e[i - 1] + a[i];
if (e[i] * e[i - 1] >= 0) {
if (e[i - 1] < 0) {
c = c + 1 - e[i];
e[i] = 1;
}
if (e[i - 1] > 0) {
c = c + 1 + e[i];
e[i] = -1;
}
}
}
if (b <= c) printf("%lld\n", b);
if (b > c) printf("%lld\n", c);
return 0;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # -*- coding: utf-8 -*-
n = int(input())
an = list(map(int, input().split()))
sum = an[0]
ans = 0
for i in range(1,n):
if sum * (sum + an[i]) < 0:
sum += an[i]
else:
if sum > 0:
ans += abs(sum + an[i] + 1)
sum = -1
else:
ans += abs(sum + an[i] - 1)
sum = 1
ans1 = ans
if an[0] > 0:
sum = -1
else:
sum = 1
ans = abs(an[0])+1
for i in range(1, n):
if sum * (sum + an[i]) < 0:
sum += an[i]
else:
if sum > 0:
ans += abs(sum + an[i] + 1)
sum = -1
else:
ans += abs(sum + an[i] - 1)
sum = 1
# print(ans1, ans)
print(min([ans1, ans]))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
wa=a[0]
ans1,ans2=0,0
for i in range(1,n):
# print(wa)
if wa>=0:
if wa+a[i]<0:
wa+=a[i]
else:
ans1+=abs(wa+a[i])+1
wa=-1
else:
if wa+a[i]>0:
wa+=a[i]
else:
ans1+=abs(wa+a[i])+1
wa=1
if a[0]>0:
ans2+=a[0]+1
wa=-1
else:
ans2+=-a[0]+1
wa=1
for i in range(1,n):
if wa>0:
if wa+a[i]<0:
wa+=a[i]
else:
ans2+=abs(wa+a[i])+1
wa=-1
else:
if wa+a[i]>0:
wa+=a[i]
else:
ans2+=abs(wa+a[i])+1
wa=1
print(min(ans1,ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
using unsi = unsigned;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using pii = pair<int, int>;
using db = double;
using plex = complex<double>;
using vs = vector<string>;
template <class T>
inline bool amax(T &a, const T &b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
inline bool amin(T &a, const T &b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
struct aaa {
aaa() {
cin.tie(0);
ios::sync_with_stdio(0);
cout << fixed << setprecision(20);
};
} aaaaaaa;
const int INF = 1001001001;
const ll LINF = 1001001001001001001ll;
const int MOD = 1e9 + 7;
const db EPS = 1e-9;
const int dx[] = {1, 1, 0, -1, -1, -1, 0, 1},
dy[] = {0, 1, 1, 1, 0, -1, -1, -1};
signed main() {
int n;
cin >> n;
int odd{};
int ans{};
int even{};
vector<int> a(n);
for (auto i = 0; i != n; ++i) {
cin >> a.at(i);
}
if (a[0] < 0) {
for (auto i = 0; odd < n; ++i) {
odd = 2 * i + 1;
while (a[odd] <= 0) {
++a[odd];
++ans;
}
}
for (auto i = 1; even < n; ++i) {
even = 2 * i;
while (a[even] >= 0) {
--a[even];
++ans;
}
}
}
if (a[0] = 0) {
++a[0];
}
if (a[0] > 0) {
for (auto i = 0; odd < n; ++i) {
odd = 2 * i + 1;
while (a[odd] >= 0) {
--a[odd];
++ans;
}
}
for (auto i = 1; even < n; ++i) {
even = 2 * i;
while (a[even] <= 0) {
++a[even];
++ans;
}
}
}
cout << ans;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, count = 0;
cin >> n;
long long a;
cin >> a;
long long sum = a, pre_sum;
for (int i = 1; i < n; ++i) {
cin >> a;
pre_sum = sum;
sum += a;
while (sum * pre_sum >= 0) {
if (pre_sum < 0)
sum++;
else
sum--;
++count;
}
}
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int64_t n;
cin >> n;
int64_t Acount = 0;
int64_t Bcount = 0;
int64_t sum = 0;
vector<int> a(n);
for (int i = 0; i < (int)(n); i++) cin >> a.at(i);
int Ah = 0;
int Bh = 0;
int64_t sumA = 0;
int64_t sumB = 0;
for (int i = 0; i < n - 1; i++) {
if (i % 2 == 0) {
sumA += a.at(i);
if (sumA >= 1)
;
else {
sumA += abs(a.at(i)) + 1;
Acount += abs(a.at(i)) + 1;
}
cout << i << endl;
} else {
sumA += a.at(i);
if (sum <= -1)
;
else {
sumA -= abs(a.at(i)) + 1;
Acount += abs(a.at(i)) + 1;
}
cout << i << endl;
}
}
cout << Acount << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
n_list = list(map(int, input().split()))
count = 0
prev_sum = n_list[0]
for i in n_list[1:]:
if prev_sum < 0:
if -prev_sum >= i:
count += abs((-prev_sum + 1) - i)
i = -prev_sum + 1
else:
if -prev_sum <= i:
count += abs((-prev_sum - 1) - i)
i = -prev_sum - 1
prev_sum += i
print(count)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
vector<int> rev_a = a;
int result = 0;
bool isPlus = a[0] > 0 ? true : false;
int sum = a[0];
for (int i = 1; i < n; i++) {
int temp_sum = sum + a[i];
if (isPlus) {
if (temp_sum >= 0) {
result += temp_sum + 1;
a[i] -= temp_sum + 1;
}
} else {
if (temp_sum <= 0) {
result += -temp_sum + 1;
a[i] += -temp_sum + 1;
}
}
isPlus = !isPlus;
sum += a[i];
}
sum = 0;
int rev_result = 0;
isPlus = rev_a[0] > 0 ? true : false;
if (isPlus) {
rev_result += rev_a[0] + 1;
rev_a[0] -= rev_a[0] + 1;
isPlus = !isPlus;
}
for (int i = 1; i < n; i++) {
int temp_sum = sum + rev_a[i];
if (isPlus) {
if (temp_sum >= 0) {
rev_result += temp_sum + 1;
rev_a[i] -= temp_sum + 1;
}
} else {
if (temp_sum <= 0) {
rev_result += -temp_sum + 1;
rev_a[i] += -temp_sum + 1;
}
}
isPlus = !isPlus;
sum += rev_a[i];
}
if (rev_result < result)
cout << rev_result << endl;
else
cout << result << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java |
import java.util.*;
import java.io.*;
import java.math.BigInteger;
public class Main{
private static final int mod =(int)1e9+7;
public static void main(String[] args) throws Exception {
Scanner sc=new Scanner(System.in);
PrintWriter out=new PrintWriter(System.out);
int n=sc.nextInt();
int a[]=new int[n];
for(int i=0;i<n;i++) {
a[i]=sc.nextInt();
}
long sum=a[0];
long operations=0;
if(a.length==1) {
if(a[0]!=0) {
System.out.println(0);
}else {
System.out.println(1);
}
}else {
if(sum==0) {
if(a.length>=2&&sum+a[1]>0)
sum--;
else
sum++;
operations++;
}
for(int i=1;i<n;i++) {
if(sum>0) {
if(sum+a[i]<0) {
sum+=a[i];
}else {
if(sum+a[i]==0) {
sum+=a[i]-1;
operations++;
}else {
long req=-1-1*sum;
sum=-1;
operations+=(-1*req+a[i]);
}
}
}else {
if(sum+a[i]>0) {
sum+=a[i];
}else {
if(sum+a[i]==0) {
sum+=a[i]+1;
operations++;
}else {
long req=1+-1*sum;
sum=1;
operations+=(req-a[i]);
}
}
}
}
System.out.println(operations);
}
}
static boolean vis[]=new boolean[10001];
static int gcd(int a, int b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
// Function to find gcd of array of
// numbers
static int f(int arr[], int n)
{
int result = n;
int max=-1;
int ans=0;
for (int element: arr){
if(vis[element]==false)
result = gcd(n, element);
if(result>max) {
max=result;
ans=element;
}
}
return ans;
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[100001];
long long sum1 = 0;
long long sum2 = 0;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int ans1 = 0;
int ans2 = 0;
for (int i = 0; i < n; i++) {
sum1 += a[i];
if (i % 2 == 0 && sum1 <= 0) {
ans1 += (1 - sum1);
sum1 += (1 - sum1);
if (sum1 == 0) {
sum1++;
ans1++;
}
} else if (i % 2 == 1 && sum1 >= 0) {
ans1 += (sum1 + 1);
sum1 -= (1 + sum1);
if (sum1 == 0) {
sum1--;
ans1++;
}
}
}
for (int i = 0; i < n; i++) {
sum2 += a[i];
if (i % 2 == 0 && sum2 >= 0) {
ans2 += (sum2 + 1);
sum2 -= (1 + sum2);
if (sum2 == 0) {
sum2--;
ans2++;
}
} else if (i % 2 == 1 && sum2 <= 0) {
ans2 += (1 - sum2);
sum2 += (1 - sum2);
if (sum2 == 0) {
sum2++;
ans2++;
}
}
}
if (sum2 == 0) ans2++;
if (ans1 >= ans2)
cout << ans2 << endl;
else
cout << ans1 << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def resolve(SL):
# L[0]!=0を起点とする
cnt = 0
for i in range(len(SL)-1):
s0 = SL[i]
s1 = SL[i+1]
if(s0>0 and s1>=0):
SL[(i+1):] = [s-(s1+1) for s in SL[(i+1):]]
cnt += (s1+1)
elif(s0<0 and s1<=0):
SL[(i+1):] = [s+(-s1+1) for s in SL[(i+1):]]
cnt += (-s1+1)
print(SL)
return cnt
def ans(L):
SL = [sum(L[:(i+1)]) for i in range(len(L))]
c0,c1=0,0
if (L[0]>0):
c0 = resolve(SL)
c1 = (L[0]+1) + resolve(list(map(lambda x:x-(L[0]+1), SL)))
elif (L[0]<0):
c0 = resolve(SL)
c1 = (-L[0]+1) + resolve(list(map(lambda x:x+(-L[0]+1), SL)))
else:
c0 = 1 + resolve(list(map(lambda x:x+1, SL)))
c1 = 1 + resolve(list(map(lambda x:x-1, SL)))
return(min(c0,c1))
N = int(input())
L = [int(x) for x in input().split(' ')]
print(ans(L)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 1 << 29;
inline int two(int n) { return 1 << n; }
inline int test(int n, int b) { return (n >> b) & 1; }
inline void set_bit(int &n, int b) { n |= two(b); }
inline void unset_bit(int &n, int b) { n &= ~two(b); }
const long long mod = 1e9 + 7;
const int N = 1e6 + 9;
long long a[N];
vector<long long> v[N];
long long modexp(long long a, long long n) {
long long r = 1;
while (n) {
if (n & 1) r = (r * a) % mod;
a = (a * a) % mod;
n >>= 1;
}
return r;
}
bool cmp(const pair<double, long long> &a, const pair<double, int> &b) {
if (a.first == b.first) {
return a.second < b.second;
} else
return a.first > b.first;
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
long long n, k = 0;
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long sum = a[0], ans = 0;
if (sum >= 0) {
k = 1;
}
for (int i = 1; i < n; i++) {
sum += a[i];
if (k == 1) {
if (sum >= 0) {
ans += sum + 1;
sum = -1;
}
} else {
if (sum <= 0) {
ans += (-1 * sum) + 1;
sum = 1;
}
}
if (k == 0)
k = 1;
else
k = 0;
}
long long kk = 1;
long long su = a[0], an = 0;
if (su >= 0) {
kk = 0;
an += su + 1;
}
for (int i = 1; i < n; i++) {
su += a[i];
if (kk == 1) {
if (su >= 0) {
an += su + 1;
su = -1;
}
} else {
if (su <= 0) {
an += (-1 * su) + 1;
su = 1;
}
}
if (kk == 0)
kk = 1;
else
kk = 0;
}
cout << min(ans, an) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a_list = [int(i) for i in input().split(' ')]
total = [a_list[0]]
counter = 0
for a in a_list[1:]:
total.append(total[-1] + a)
if total[0]==0:
total = map(lambda n: n-int(total[1]/abs(total[1])), total)
for i in range(1,n):
if total[i-1]<0 and total[i]<=0:
counter += abs(total[i])+1
total[i:] = list(map(lambda n: n-(total[i])+1, total[i:]))
elif total[i-1]>0 and total[i]>=0:
counter += abs(total[i])+1
total[i:] = list(map(lambda n: n-(total[i])-1, total[i:]))
else:
continue
print(counter) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [] * n
a = list(map(int, input().split()))
if a[0] > 0:
symbol = "plus"
elif a[0] < 0:
symbol = "minus"
sum1 = a[0]
count = 0
for i in range(1, n):
sum1 += a[i]
if symbol == "plus" and sum1 >= 0:
operation = sum1 + 1
count += operation
sum1 = -1
elif symbol == "minus" and sum1 <= 0:
operation = abs(sum1) + 1
count += operation
sum1 = 1
if symbol == "plus":
symbol = "minus"
else:
symbol = "plus"
print(count)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
seq = [int(x) for x in input().split()]
a_sum = seq[0]
op = 0
for a in seq[1:]:
tmp = a_sum + a
if tmp * a_sum < 0:
a_sum = tmp
elif a_sum < 0:
diff = 1 - a_sum - a
a_sum = 1
op += abs(diff)
elif a_sum > 0:
diff = -1 - a_sum - a
a_sum = -1
op += abs(diff)
print(op) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int dx[4] = {1, 0, 0, -1};
int dy[4] = {0, 1, -1, 0};
using namespace std;
bool cmp_P(const pair<long long int, long long int> &a,
const pair<long long int, long long int> &b) {
return a.second < b.second;
}
int main() {
long long int n, sum = 0, v, res = 0;
cin >> n;
vector<long long int> a(n + 1);
for (int i = 0; i < (int)(n); i++) cin >> a[i];
v = abs(a[0]) / a[0];
sum = a[0];
for (int i = 1; i < n; i++) {
if (v == -1) {
if (a[i] + sum <= 0) {
res += abs(1 - a[i] - sum);
sum = 1;
} else {
sum += a[i];
}
} else {
if (a[i] + sum >= 0) {
res += abs(-1 - a[i] - sum);
sum = -1;
} else {
sum += a[i];
}
}
v = -v;
}
cout << res << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
int a[100010];
int a1[10010];
int a2[10010];
long long sum1[100010] = {0};
long long sum2[100010] = {0};
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
a1[i] = a[i];
a2[i] = a[i];
}
int ans1 = 0;
int ans2 = 0;
for (int i = 0; i < n; i++) {
int j = i;
while (j >= 0) {
sum1[i] += a1[j];
j--;
}
if (i % 2 == 0 && sum1[i] <= 0) {
a1[i] += 1 - sum1[i];
sum1[i] += 1 - sum1[i];
ans1 += 1 - sum1[i];
} else if (i % 2 == 1 && sum1[i] >= 0) {
a1[i] -= (sum1[i] + 1);
ans1 += (sum1[i] + 1);
}
}
if (sum1[n - 1] == 0) ans1++;
for (int i = 0; i < n; i++) {
int j = i;
while (j >= 0) {
sum2[i] += a2[j];
j--;
}
if (i % 2 == 0 && sum2[i] >= 0) {
a2[i] -= (1 + sum2[i]);
sum2[i] -= (1 + sum2[i]);
ans2 += (sum2[i] + 1);
} else if (i % 2 == 1 && sum2[i] <= 0) {
a2[i] += (1 - sum2[i]);
sum2[i] += (1 - sum2[i]);
ans2 += (1 - sum2[i]);
}
}
if (sum2[n - 1] == 0) ans2++;
int ans = ans1 >= ans2 ? ans2 : ans1;
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int j = 0; j < n; j++) {
cin >> a[j];
}
int ans = 0;
int sum = a[0];
int ans1;
int ans2;
int ans3;
int ans4;
if (a[0] != 0) {
for (int i = 1; i < n; i++) {
int sum_old = sum;
sum = sum + a[i];
if (sum * sum_old < 0) {
} else {
ans = ans + abs(sum) + 1;
sum = (sum_old / abs(sum_old)) * -1;
}
}
ans1 = ans;
ans = abs(a[0]) + 1;
sum = (a[0] / abs(a[0]) * -1);
for (int i = 1; i < n; i++) {
int sum_old = sum;
sum = sum + a[i];
if (sum * sum_old < 0) {
} else {
ans = ans + abs(sum) + 1;
sum = (sum_old / abs(sum_old)) * -1;
}
}
ans2 = ans;
ans = min(ans1, ans2);
} else {
sum = 1;
ans = 1;
for (int i = 1; i < n; i++) {
int sum_old = sum;
sum = sum + a[i];
if (sum * sum_old < 0) {
} else {
ans = ans + abs(sum) + 1;
sum = (sum_old / abs(sum_old)) * -1;
}
}
ans3 = ans;
sum = -1;
ans = 1;
for (int i = 1; i < n; i++) {
int sum_old = sum;
sum = sum + a[i];
if (sum * sum_old < 0) {
} else {
ans = ans + abs(sum) + 1;
sum = (sum_old / abs(sum_old)) * -1;
}
}
ans4 = ans;
ans = min(ans3, ans4);
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
def f(first, m):
now = first
result = 0
for i, v in enumerate(a[1:]):
tmp = now * -1
if m < 0:
tmp += 1
if tmp < v:
now += v
else:
result += tmp - v
now = 1
else:
tmp -= 1
if tmp > v:
now += v
else:
result += v - tmp
now = -1
m *= -1
return result
m = a[0] < 0 and -1 or 1
print(min((f(a[0], m), f(m * -1, m * -1)))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = input()
a = list(map(int, input().split()))
def f(x):
cnt = 0
cur = 0
for ai in a:
cur += ai
cur *= x
if cur <= 0:
cnt += 1 - cur
cur = 1
x *= -1
return cnt
print(min(f(1), f(-1))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(lambda x: int(x), input().split()))
idx=0
ans=0
sum_last=0
for i in a:
if i!=0:
break
idx+=1
ans=idx
if idx==len(a):
pass
elif idx>0:
if a[idx]>0:
sum_last=-1
else:
sum_last=1
else:
sum_last=a[0]
idx+=1
for i in a[idx:]:
sum_cur=sum_last+i
if sum_cur*sum_last>=0:
ans+=abs(sum_cur)+1
if sum_last>0:
sum_last=-1
else:
sum_last=1
else:
sum_last=sum_cur
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, flag, ans, sum, tt, MAX;
int a[100005];
int main() {
MAX = 100000000;
tt = 0;
sum = 0;
ans = 0;
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
if (a[1] > 0) flag = 1;
if (a[1] < 0) flag = 0;
sum += a[1];
if (flag == 1) {
for (int i = 2; i <= n; i++) {
if (i % 2 == 0 && sum + a[i] >= 0) {
a[i] -= abs(sum + a[i]) + 1;
sum -= abs(sum + a[i]) + 1;
ans += abs(sum + a[i]) + 1;
} else if (i % 2 == 1 && sum + a[i] <= 0) {
a[i] += abs(sum + a[i]) + 1;
sum += abs(sum + a[i]) + 1;
ans += abs(sum + a[i]) + 1;
}
}
printf("%d\n", ans);
} else if (flag == 0) {
for (int i = 2; i <= n; i++) {
if (i % 2 == 1 && sum + a[i] >= 0) {
a[i] -= abs(sum + a[i]) + 1;
sum -= abs(sum + a[i]) + 1;
ans += abs(sum + a[i]) + 1;
} else if (i % 2 == 0 && sum + a[i] <= 0) {
a[i] += abs(sum + a[i]) + 1;
sum += abs(sum + a[i]) + 1;
ans += abs(sum + a[i]) + 1;
}
}
printf("%d\n", ans);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> a(N);
for (int i = 0; i < N; i++) cin >> a.at(i);
bool fla = false;
int t = 0, res1 = 0, res2 = 0;
for (int i = 0; i < N; i++) {
int b = a.at(i);
if (fla) {
if (t + b <= 0) {
b = t * -1 + 1;
res1 += b - a.at(i);
}
} else {
if (t + b >= 0) {
b = t * -1 - 1;
res1 += abs(b - a.at(i));
}
}
t += b;
fla = !fla;
}
t = 0;
fla = false;
for (int i = 0; i < N; i++) {
int b = a.at(i);
if (!fla) {
if (t + b <= 0) {
b = t * -1 + 1;
res2 += b - a.at(i);
}
} else {
if (t + b >= 0) {
b = t * -1 - 1;
res2 += abs(b - a.at(i));
}
}
t += b;
fla = !fla;
}
int res = min(res1, res2);
cout << res << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(System.in);
int N = sc.nextInt();
long ans = 0;
long ai = sc.nextLong();
for (int i = 1; i < N; i++) {
long a = sc.nextLong();
long total = ai + a;
if (ai > 0) {
if (total < 0) {
ai = total;
continue;
} else {
long tmp = total + 1;
ans += Math.abs(tmp);
ai = -1;
}
} else if(ai < 0) {
if (total > 0) {
ai = total;
continue;
} else {
long tmp = total - 1;
ans += Math.abs(tmp);
ai = 1;
}
}
}
System.out.println(ans);
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int N = sc.nextInt();
int[] A = new int[N + 1];
for (int i = 1; i <= N; ++i) {
A[i] = sc.nextInt();
}
sc.close();
int sum1 = 0;
int sum2 = 0;
int ans1 = 0;
int ans2 = 0;
for (int i = 1; i <= N; ++i) {
sum1 += A[i];
if (i % 2 == 0 && sum1 >= 0) {
ans1 += sum1 +1;
sum1 = -1;
} else if (i % 2 != 0 && sum1 <= 0) {
ans1 += Math.abs(sum1) + 1;
sum1 = 1;
}
}
for (int i = 1; i <= N; ++i) {
sum2 += A[i];
if (i % 2 == 0 && sum2 <= 0) {
ans2 += Math.abs(sum2) +1;
sum2 = 1;
} else if (i % 2 != 0 && sum2 >= 0) {
ans2 += Math.abs(sum2) + 1;
sum2 = -1;
}
}
System.out.println(Math.min(ans1, ans2));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
inline bool feq(const double& a, const double& b) {
return fabs(a - b) < 1e-10;
}
inline int gcd(int a, int b) {
if (b == 0) return a;
return a < b ? gcd(b, a) : gcd(b, a % b);
}
long long mo = 1000000007;
const long long INF = 1e18;
bool f(pair<long long, long long> p1, pair<long long, long long> p2) {
return p1.first < p2.first;
}
int main() {
int n;
cin >> n;
long long cnt = 0;
long long sum = 0;
cin >> sum;
for (int i = 0; i < n - 1; ++i) {
long long a;
cin >> a;
a += sum;
if ((sum < 0 && a > 0) || (sum > 0 && a < 0)) {
sum = a;
} else {
cnt += (abs(a) + 1);
sum = (-1) * (sum > 0 ? 1 : -1);
}
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(a) for a in input().split()]
def f(times, prefix_sum):
for i in range(1, n):
if prefix_sum < 0:
if prefix_sum + a[i] > 0:
prefix_sum += a[i]
else:
times += 1 - (prefix_sum + a[i])
prefix_sum = 1
elif prefix_sum > 0:
if prefix_sum + a[i] < 0:
prefix_sum += a[i]
else:
times += abs(-1 - (prefix_sum + a[i]))
prefix_sum = -1
return times
t1 = 0
p1 = a[0]
t1 = f(t1, p1)
t2 = 0
if a[0] > 0:
t2 += abs(-1 - a[0])
p2 = -1
else:
t2 += 1 - a[0]
p2 = 1
t2 = f(t2, p2)
print(min(t1, t2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using lli = long long int;
using ulli = unsigned long long int;
vector<lli> N, rN;
lli in, n, d = 0, dp, pm;
ulli ans = 0;
int main() {
cin >> n;
for (lli l = 0; l < n; l++) {
cin >> in;
if (l == 0) {
N.push_back(in);
} else {
N.push_back(N[l - 1] + in);
}
}
for (lli l = 1; l < (lli)N.size(); l++) {
dp = d;
if (N[l - 1] + dp < 0) {
if (N[l] + dp < 0) {
d += 1 - N[l] - dp;
ans += 1 - N[l] - dp;
} else if (N[l] + dp == 0) {
d += 1;
ans += 1;
}
} else if (N[l - 1] + dp > 0) {
if (N[l] + dp > 0) {
d -= N[l] + dp + 1;
ans += N[l] + dp + 1;
} else if (N[l] + dp == 0) {
d -= 1;
ans += 1;
}
} else {
for (lli m = l; m < (lli)N.size(); m++) {
if (N[m] > 0) {
pm = (m - l) % 2;
break;
} else if (N[m] < 0) {
pm = (m - l + 1) % 2;
break;
}
if (m == (lli)N.size() - 1) {
pm = (m + 1) % 2;
break;
}
}
if (pm == 1) {
d += 1;
ans += 1;
} else if (pm == 0) {
d -= 1;
ans += 1;
}
}
}
cout << ans;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | #!usr/bin/env python3
from collections import defaultdict
from collections import deque
from heapq import heappush, heappop
import sys
import math
import bisect
import random
import itertools
sys.setrecursionlimit(10**5)
stdin = sys.stdin
bisect_left = bisect.bisect_left
bisect_right = bisect.bisect_right
def LI(): return list(map(int, stdin.readline().split()))
def LF(): return list(map(float, stdin.readline().split()))
def LI_(): return list(map(lambda x: int(x)-1, stdin.readline().split()))
def II(): return int(stdin.readline())
def IF(): return float(stdin.readline())
def LS(): return list(map(list, stdin.readline().split()))
def S(): return list(stdin.readline().rstrip())
def IR(n): return [II() for _ in range(n)]
def LIR(n): return [LI() for _ in range(n)]
def FR(n): return [IF() for _ in range(n)]
def LFR(n): return [LI() for _ in range(n)]
def LIR_(n): return [LI_() for _ in range(n)]
def SR(n): return [S() for _ in range(n)]
def LSR(n): return [LS() for _ in range(n)]
mod = 1000000007
inf = float('INF')
#A
def A():
a = input().split()
a = list(map(lambda x: x.capitalize(), a))
a,b,c = a
print(a[0]+b[0]+c[0])
return
#B
def B():
a = II()
b = II()
if a > b:
print("GREATER")
if a < b:
print("LESS")
if a == b:
print("EQUAL")
return
#C
def C():
n = II()
a = LI()
if a[0] == 0:
suma = 1
b = 1
else:
suma = a[0]
b = 0
for i in a[1:]:
if (suma + i) * suma < 0:
suma += i
continue
b += abs(suma + i) + 1
suma = -1 * (suma > 0) or 1
ans = b
if a[0] == 0:
suma = -1
b = 1
else:
suma = -a[0]
b = 2 * abs(a[0])
for i in a[1:]:
if (suma + i) * suma < 0:
suma += i
continue
b += abs(suma + i) + 1
suma = -1 * (suma > 0) or 1
print(min(ans, b))
return
#D
def D():
s = S()
for i in range(len(s) - 1):
if s[i] == s[i+1]:
print(i + 1, i + 2)
return
for i in range(len(s) - 2):
if s[i] == s[i + 2]:
print(i + 1, i + 3)
return
print(-1, -1)
return
#Solve
if __name__ == '__main__':
C()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
import java.util.Arrays;
public class Main {
public static void main(String[] args) {
new Main().solve();
}
void solve() {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long[] a = new long[n];
long A = 0;
long ans = 0;
long q = 1;
a[0] = sc.nextLong();
A = a[0];
if (a[0] < 0) {
q = -1;
}
for (int i = 1; i < n; i++) {
a[i] = sc.nextLong();
A += a[i];
q = q * -1;
if (A <= 0 && q == 1) {
ans += Math.abs(A - 1);
A += Math.abs(A - 1);
} else if (A >= 0 && q == -1) {
ans += Math.abs(A + 1);
A -= Math.abs(A + 1);
}
}
System.out.println(ans);
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long dptemp[100010];
long long s1[100010], dp[100010];
int main() {
long long mi = 9223372036854775807, n, a, sum, pri1, pri2, all;
scanf("%lld", &n);
dp[0] = 0;
for (a = 1; a <= n; a++) {
scanf("%lld", &s1[a]);
dp[a] = s1[a] + dp[a - 1];
dptemp[a] = dp[a];
}
if (dp[1] == 0) {
dp[1]++;
all = 1;
for (a = 2; a <= n; a++) {
dp[a] = (dp[a - 1] + s1[a]);
if (dp[a - 1] > 0) {
if (dp[a] >= 0) {
all += (dp[a] + 1);
dp[a] = -1;
}
} else {
if (dp[a] <= 0) {
all += (-dp[a] + 1);
dp[a] = 1;
}
}
}
if (all < mi) mi = all;
for (a = 1; a <= n; a++) dp[a] = dptemp[a];
dp[1]--;
all = 1;
for (a = 2; a <= n; a++) {
dp[a] = (dp[a - 1] + s1[a]);
if (dp[a - 1] > 0) {
if (dp[a] >= 0) {
all += (dp[a] + 1);
dp[a] = -1;
}
} else {
if (dp[a] <= 0) {
all += (-dp[a] + 1);
dp[a] = 1;
}
}
}
if (all < mi) mi = all;
} else if (dp[1] > 0) {
all = 0;
for (a = 1; a <= n; a++) dp[a] = dptemp[a];
for (a = 2; a <= n; a++) {
dp[a] = (dp[a - 1] + s1[a]);
if (dp[a - 1] > 0) {
if (dp[a] >= 0) {
all += (dp[a] + 1);
dp[a] = -1;
}
} else {
if (dp[a] <= 0) {
all += (-dp[a] + 1);
dp[a] = 1;
}
}
}
if (all < mi) mi = all;
} else {
sum = 0;
all = 0;
for (a = 1; a <= n; a++) dp[a] = dptemp[a];
for (a = 2; a <= n; a++) {
dp[a] = (dp[a - 1] + s1[a]);
if (dp[a - 1] > 0) {
if (dp[a] >= 0) {
all += (dp[a] + 1);
dp[a] = -1;
}
} else {
if (dp[a] <= 0) {
all += (-dp[a] + 1);
dp[a] = 1;
}
}
}
if (all < mi) mi = all;
}
printf("%lld\n", mi);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n;
cin >> n;
vector<long long> v(n);
for (__typeof(n) i = (0) - ((0) > (n)); i != (n) - ((0) > (n));
i += 1 - 2 * ((0) > (n)))
cin >> v[i];
long long res1 = 0, res2 = 0;
long long som = v[0];
if (som > 0) {
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 1)
if (som < 0)
continue;
else {
res1 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res1 += 1 - som;
som = 1;
}
}
res2 = som + 1;
som = -1;
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 0)
if (som < 0)
continue;
else {
res2 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res2 += 1 - som;
som = 1;
}
}
} else {
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 0)
if (som < 0)
continue;
else {
res1 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res1 += 1 - som;
som = 1;
}
}
res2 = 1 - som;
som = 1;
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 1)
if (som < 0)
continue;
else {
res2 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res2 += 1 - som;
som = 1;
}
}
}
cout << min(res1, res2);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Numerics;
using System.Text;
using System.Threading.Tasks;
namespace AtCorder
{
public class Program
{
const long MOD = 1000000007;
static void Main(string[] args)
{
var cin = new Scanner2();
int n = cin.Int();
long[] a = cin.ArrayLong(n);
long current = a[0];
if (current == 0) {
current = 1;
}
long ans1 = 0;
for (int i = 1; i < n; i++) {
long next = current + a[i];
if (current * next < 0) {
current = next;
continue;
}
long temp = current * a[i];
if (temp > 0) {
ans1 += Math.Abs(a[i]) + Math.Abs(current) + 1;
current = current > 0 ? - 1 : 1;
} else if (temp < 0) {
ans1 += Math.Abs(current + a[i]) + 1;
current = current > 0 ? -1 : 1;
} else {
ans1 += Math.Abs(current) + 1;
current = current > 0 ? -1 : 1;
}
}
current = a[0];
if (current == 0) {
current = -1;
}
long ans2 = 0;
for (int i = 1; i < n; i++) {
long next = current + a[i];
if (current * next < 0) {
current = next;
continue;
}
long temp = current * a[i];
if (temp > 0) {
ans2 += Math.Abs(a[i]) + Math.Abs(current) + 1;
current = current > 0 ? -1 : 1;
} else if (temp < 0) {
ans2 += Math.Abs(current + a[i]) + 1;
current = current > 0 ? -1 : 1;
} else {
ans2 += Math.Abs(current) + 1;
current = current > 0 ? -1 : 1;
}
}
Console.WriteLine(Math.Min(ans1, ans2));
}
}
public class Scanner2
{
private readonly char[] delimiter_ = new char[] { ' ' };
private readonly string filePath_;
private string[] buf_;
private int index_;
Func<string> reader_;
public Scanner2(string file = "")
{
if (string.IsNullOrWhiteSpace(file)) {
reader_ = Console.ReadLine;
} else {
filePath_ = file;
var fs = new StreamReader(file);
reader_ = fs.ReadLine;
}
buf_ = new string[0];
index_ = 0;
}
public string Next()
{
if (index_ < buf_.Length) {
return buf_[index_++];
}
string st = reader_();
while (st == "") {
st = reader_();
}
buf_ = st.Split(delimiter_, StringSplitOptions.RemoveEmptyEntries);
if (buf_.Length == 0) {
return Next();
}
index_ = 0;
return buf_[index_++];
}
public int Int() => int.Parse(Next());
public long Long() => long.Parse(Next());
public double Double() => double.Parse(Next());
public int[] ArrayInt(int N, int add = 0)
{
int[] Array = new int[N];
for (int i = 0; i < N; i++) {
Array[i] = Int() + add;
}
return Array;
}
public long[] ArrayLong(int N, long add = 0)
{
long[] Array = new long[N];
for (int i = 0; i < N; i++) {
Array[i] = Long() + add;
}
return Array;
}
public double[] ArrayDouble(int N, double add = 0)
{
double[] Array = new double[N];
for (int i = 0; i < N; i++) {
Array[i] = Double() + add;
}
return Array;
}
public void Save(string text)
{
if (string.IsNullOrWhiteSpace(filePath_)) {
return;
}
File.WriteAllText(filePath_ + "_output.txt", text);
}
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 999999999;
const int MOD = 1e9 + 7;
const double pi = 3.141592653589793238;
long long n, k[100005], ans, cou, cou2;
int main() {
cin >> n;
for (int i = 0; i < n; ++i) {
cin >> k[i];
}
for (int i = 0; i < n; ++i) {
ans += k[i];
if (i % 2 == 0 && cou <= 0) {
cou += 1 - ans;
ans = 1;
}
if (i % 2 == 1 && ans >= 0) {
cou += ans + 1;
ans = -1;
}
}
ans = 0;
for (int i = 0; i < n; ++i) {
ans += k[i];
if (i % 2 == 1 && ans <= 0) {
cou2 += 1 - ans;
ans = 1;
}
if (i % 2 == 0 && ans >= 0) {
cou2 += ans + 1;
ans = -1;
}
}
cout << min(cou, cou2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | import java.util.*
fun main(args: Array<String>) {
val sc = Scanner(System.`in`)
val n = sc.nextInt()
val a = (0 until n).map { sc.next().toLong() }
println(problem059c(n, a))
}
fun problem059c(n: Int, a: List<Long>): Long {
val count1 = compute(n, a)
val a = a.toMutableList()
var a0 = a[0]
var count = 0L
if (a0 > 0) {
val tmp = a0 + 1
a[0] = a0 - tmp
count += tmp
} else {
val tmp = a0 - 1
a[0] = a0 - tmp
count -= tmp
}
val count2 = compute(n, a) + count
return Math.min(count1, count2)
}
fun compute(n: Int, a: List<Long>): Long {
val a = a.toMutableList()
var count = 0L
for (i in 0 until n) {
val ai = a[i]
val sum = a.take(i).sum() + ai
if (sum == 0L) {
break
}
if (i >= n - 1) {
continue
}
val sum2 = sum + a[i + 1]
if (sum * sum2 < 0) {
continue
} else {
if (sum > 0) {
val tmp = sum2 + 1
a[i + 1] = sum2 - tmp
count += tmp
} else {
val tmp = sum2 - 1
a[i + 1] = sum2 - tmp
count -= tmp
}
}
}
return count
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long long ans = 0;
for (int i = 1; i < n; i++) {
a[i] += a[i - 1];
if (a[i] >= 0 && a[i - 1] > 0) {
ans += abs(a[i] + 1);
a[i] = -1;
} else if (a[i] <= 0 && a[i - 1] < 0) {
ans += abs(a[i] - 1);
a[i] = 1;
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long int;
const ll INF = (1LL << 32);
const ll MOD = (ll)1e9 + 7;
const double EPS = 1e-9;
ll dx[8] = {1, 0, -1, 0, 1, -1, -1, 1};
ll dy[8] = {0, 1, 0, -1, 1, 1, -1, -1};
ll n;
ll solve(vector<ll> a) {
ll sum = a[0];
ll ans = 0;
for (ll i = (1); i < (n); i++) {
if (sum >= 0 and (sum + a[i]) >= 0) {
while (sum + a[i] != -1) {
a[i]--;
ans++;
}
} else if (sum < 0 and (sum + a[i]) < 0) {
while (sum + a[i] != 1) {
a[i]++;
ans++;
}
}
sum += a[i];
}
if (sum == 0) ans++;
return ans;
}
signed main() {
ios::sync_with_stdio(false);
cin >> n;
vector<ll> a;
for (ll i = 0; i < n; i++) {
ll x;
cin >> x;
a.push_back(x);
}
ll start = a[0];
auto ac = a;
ll fa1 = solve(a);
ac[0] = ac[0] *= -1;
ll fa2 = solve(ac);
fa2 += start + 1;
cout << min(fa1, fa2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
long calc(long *A, long N, long start) {
long s = A[0];
long count = 0;
if (s == 0) {
count++;
s = start;
}
for (int i = 1; i < N; i++) {
s += A[i];
if (i % 2 == (start == 1 ? 0 : 1)) {
if (s <= 0) {
count += 1 - s;
s = 1;
}
} else {
if (s >= 0) {
count += s + 1;
s = -1;
}
}
}
return count;
}
int main() {
long N;
scanf("%ld", &N);
long *A = (long *)malloc(N * sizeof(long));
long n;
long i = 0;
while (scanf("%ld", &n) != EOF) {
A[i] = n;
i++;
}
printf("%ld", ((calc(A, N, 1)) < (calc(A, N, -1)) ? (calc(A, N, 1))
: (calc(A, N, -1))));
free(A);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int sign(int a) {
if (a > 0)
return 1;
else if (a < 0)
return -1;
else
return 0;
}
int main(void) {
int n;
cin >> n;
int sum = 0, s = 1;
int num = 0;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
for (int i = 0; i < n; i++) {
sum += a[i];
if (i != 0 && (sign(s) == sign(sum) || sum == 0)) {
num += abs(sum) + 1;
sum = sign(s) * -1;
s *= -1;
} else {
s = sign(sum);
}
}
int m = num;
sum = 0;
num = 0;
num += abs(a[0]) + 1;
if (a[0] > 0)
sum = -1;
else
sum = 1;
for (int i = 1; i < n; i++) {
sum += a[i];
if (i != 0 && (sign(s) == sign(sum) || sum == 0)) {
num += abs(sum) + 1;
sum = sign(s) * -1;
s *= -1;
} else {
s = sign(sum);
}
}
m = min(num, m);
cout << m << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
s = list(map(int,input().split()))
temp = s[0]
ans = 0
#第一項が正ならば
if temp > 0:
for i in range(1,n):
temp += s[i]
if i%2 == 0:#正になってほしい
if temp <= 0:
ans += abs(temp-1)
temp = 1
else:#負になって欲しい
if temp >= 0:
ans += abs(temp+1)
temp = -1
if temp < 0:
for i in range(1,n):
temp += s[i]
if i%2 == 0:
if temp >= 0:
ans += abs(temp+1)
temp = -1
else:
if temp <= 0:
ans += abs(temp-1)
temp = 1
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | n = gets.to_i
digits = gets.split.map(&:to_i)
sum = digits[0]
cnt = 0
(1...digits.size).each do |i|
sum1 = sum
sum2 = sum1 + digits[i]
if sum1 * sum2 >= 0
target = sum1 > 0 ? -1 : 1
diff = target - sum2
cnt += diff.abs
sum += diff
end
sum += digits[i]
end
puts cnt
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma GCC optimize("O3,no-stack-protector")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("avx")
using namespace std;
using Graph = vector<vector<int64_t>>;
const double pi = M_PI;
const int64_t MOD = 1000000007;
int64_t calc(const vector<int64_t> &a, int64_t n, int64_t tem) {
int64_t ans = 0;
if (tem == 0) {
if (0 <= a[1]) {
tem = -1;
ans++;
} else {
tem = 1;
ans++;
}
}
for (int i = 1; i < n; i++) {
if ((0 < tem + a[i] && tem < 0) || (tem + a[i] < 0 && 0 < tem)) {
tem += a[i];
} else {
if (0 <= tem + a[i] && 0 <= tem) {
ans += abs(-1 - (tem + a[i]));
tem = -1;
} else {
ans += abs(1 - (tem + a[i]));
tem = 1;
}
}
}
return ans;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int64_t n;
cin >> n;
vector<int64_t> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int64_t aa, bb, ansdelb, ansdela;
if (abs(a[0]) != 1) {
aa = 1;
ansdela = abs(a[0]) - 1;
} else {
ansdela = 0;
}
if (0 <= a[0]) {
bb = -1;
} else {
bb = 1;
}
ansdelb = abs(a[0]) + 1;
int64_t ans = min(calc(a, n, aa) + ansdela, calc(a, n, bb) + ansdelb);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
now = a[0]
m = now < 0 and -1 or 1
result = 0
for i, v in enumerate(a[1:]):
tmp = now * -1
if m < 0:
tmp += 1
if tmp < v:
now += v
else:
result += tmp - v
now = 1
else:
tmp -= 1
if tmp > v:
now += v
else:
result += v - tmp
now = -1
m *= -1
print(result)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
long long sum = 0, ans = 0;
bool isPlus;
for (int i = 0; i < n; i++) {
cin >> a[i];
sum += a[i];
if (i == 0) {
isPlus = a[i] > 0 ? true : false;
} else {
isPlus = !isPlus;
}
if (isPlus) {
if (sum <= 0) {
ans += abs(1 - sum);
sum = 1;
}
} else {
if (sum >= 0) {
ans += abs(sum + 1);
sum = -1;
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
lis=[]
now=0
for num in a:
now+=num
lis.append(now)
ans=10**20
cnt=0
sm=0
for i in range(len(lis)):
if i%2==0:
if lis[i]+sm >= 0:
add = lis[i]+sm+1
cnt+= add
sm=-add
else:
if lis[i]+sm <= 0:
add = abs(1-lis[i]-sm)
cnt+= add
sm=add
ans=min(ans,cnt)
cnt=0
sm=0
for i in range(len(lis)):
if i%2==1:
if lis[i]+sm >= 0:
add = lis[i]+sm+1
cnt+= add
sm=-add
else:
if lis[i]+sm <= 0:
add = abs(1-lis[i]-sm)
cnt+= add
sm=add
ans=min(ans,cnt)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 1001001000;
const int mINF = -1001001000;
const long long LINF = 1010010010010010000;
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < (n); ++i) {
cin >> a[i];
}
long long ans = INF;
int flip = 0;
for (int si = 0; si < (2); ++si) {
int f = flip;
long long cnt = 0;
long long sum = 0;
for (int i = 0; i < (n); ++i) {
if (f) {
if (sum + a[i] <= 0) {
cnt += 1 - (sum + a[i]);
sum = 1;
} else {
sum = sum + a[i];
}
} else {
if (sum + a[i] >= 0) {
cnt += sum + a[i] + 1;
sum = -1;
} else {
sum = sum + a[i];
}
}
f = f ^ 1;
}
ans = min(ans, cnt);
flip ^= 1;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
int ans = 0, sum = 0;
vector<int> a(N);
for (int i = 0; i < N; i++) cin >> a[i];
if (a[0] > 0) {
for (int i = 0, tmp = 1; i < N; i++, tmp *= -1) {
if (a[i] * a[i + 1] > 0) {
sum += a[i];
ans += abs(sum - tmp);
sum = tmp;
}
}
sum = 0;
} else if (a[0] < 0) {
for (int i = 0, tmp = -1; i < N; i++, tmp *= -1) {
if (a[i] * a[i + 1] > 0) {
sum += a[i];
ans += abs(sum - tmp);
sum = tmp;
}
}
} else {
a[0] += 1;
for (int i = 0, tmp = 1; i < N; i++, tmp *= -1) {
if (a[i] * a[i + 1] > 0) {
sum += a[i];
ans += abs(sum - tmp);
sum = tmp;
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int sum = 0;
int cnt1 = 0, cnt2 = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0 && sum <= 0) {
cnt1 += 1 - sum;
sum = 1;
} else if (i % 2 == 1 && sum >= 0) {
cnt1 += 1 + sum;
sum = -1;
}
}
sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 1 && sum <= 0) {
cnt2 += 1 - sum;
sum = 1;
} else if (i % 2 == 0 && sum >= 0) {
cnt2 += 1 + sum;
sum = -1;
}
}
cout << min(cnt1, cnt2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using ll = long long;
int main() {
int n;
std::cin >> n;
std::vector<int> a(n);
for (int i = 0; i < n; i++) {
std::cin >> a[i];
}
std::vector<int> dp(n, 0);
ll sum1 = 0, sum2 = a[0];
for (int i = 0; i < n - 1; i++) {
sum1 = sum2;
sum2 += a[i + 1];
if (sum1 * sum2 < 0) {
dp[i + 1] = dp[i];
continue;
}
if (sum1 > 0) {
dp[i + 1] = dp[i] + sum2 + 1;
a[i + 1] -= sum2 + 1;
sum2 = -1;
} else {
dp[i + 1] = dp[i] + 1 - sum2;
a[i + 1] += 1 - sum2;
sum2 = 1;
}
}
std::cout << dp[n - 1] << std::endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
ans=10**10
s=0
cnt=0
for i in range(n):
s+=a[i]
if i%2==0:
if s>=0:
cnt+=1+s
s=-1
else:
if s<=0:
cnt+=1-s
s=1
ans=min(ans,cnt)
s=0
cnt=0
for i in range(n):
s+=a[i]
if i%2==1:
if s>=0:
cnt+=1+s
s=-1
else:
if s<=0:
cnt+=1-s
s=1
ans=min(ans,cnt)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, flag = 0;
cin >> n;
vector<long long int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long int ans = 0, sum = a[0];
if (sum > 0) {
flag = 1;
} else if (sum < 0) {
flag = 0;
} else if (sum == 0 && a[1] > 0) {
sum = -1;
ans++;
flag = 0;
} else if (sum == 0 && a[1] < 0) {
sum = 1;
ans++;
flag = 1;
} else if (sum == 0) {
sum++;
ans++;
flag = 1;
}
for (int i = 1; i < n; i++) {
sum += a[i];
if ((flag == 1 && sum < 0) || (flag == 0 && sum > 0)) {
flag = 1 - flag;
continue;
} else if (sum == 0) {
if (i + 1 == n) {
ans++;
} else if (a[i + 1] >= 0) {
sum = -1;
ans++;
flag = 0;
} else if (a[i + 1] < 0) {
sum = 1;
ans++;
flag = 1;
}
} else {
ans += (1 + abs(sum));
if (sum > 0) {
sum = -1;
flag = 0;
} else {
sum = 1;
flag = 1;
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long ans=0;
//long ans2=0;
int[] f = new int[n];
for(int i=0;i<n;i++) f[i] = sc.nextInt();
sc.close();
long sum1 = f[0];
long sum2 = f[0];
for(int i=0;i<n-1;i++) {
sum2 += f[i+1];
if(sum1*sum2 > 0) {
ans += Math.abs(sum2)+1;
if(sum1 >0) sum2 = -1;
else sum2 = 1;
}else if(sum2 == 0) {
ans += 1;
if(sum1 > 0) sum2 = -1;
else sum2 = 1;
}
sum1 = sum2;
}
System.out.println(ans);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int x = 0, sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0) {
if (sum < 1) {
x += 1 - sum;
sum = 1;
}
} else {
if (sum > -1) {
x += 1 + sum;
sum = -1;
}
}
}
int y = 0, sum2 = 0;
for (int i = 0; i < n; i++) {
sum2 += a[i];
if (i % 2 == 0) {
if (sum2 > -1) {
y += (1 + sum2);
sum2 = -1;
}
} else {
if (sum2 < 1) {
y += (1 - sum2);
sum2 = 1;
}
}
if (y >= x) {
break;
}
}
cout << min(x, y) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
l = len(a)
cnt = 0
a_ = 0
x = -1
# -から
for i in range(l):
a_ += a[i]
if x == -1:
if a_ > x:
cnt += a_ -x
a_ = -1
else:
if a_ < x:
cnt += x-a_
a_ = 1
x *= -1
cnt1 = 0
x1 = 1
# +から
for i in range(l):
a_ += a[i]
if x1 == -1:
if a_ > x1:
cnt += a_ -x
a_ = -1
else:
if a_ < x1:
cnt += x1-a_
a_ = 1
x1 *= -1
print(min(x, x1)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
arr = list(map(int, input().split()))
c = 0
prev = 0
for i in range(n):
flag = False
s = sum(arr[:i+1])
if i > 0:
if prev > 0 and s >= 0:
diff = s + 1
c += diff
arr[i] -= diff
elif prev < 0 and s <= 0:
diff = -1 * s + 1
c += diff
arr[i] += diff
else:
flag = True
prev = s if flag else sum(arr[:i+1])
print(c) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T = int>
T in() {
T x;
cin >> x;
return x;
}
int main() {
int N = in();
vector<int> a(N);
for (int i = 0; i < (N); i++) a[i] = in();
int prev = a[0];
int sum = 0;
for (int i = 1; i < N; i++) {
int curr = prev + a[i];
;
;
if (prev < 0 && curr < 0) {
sum += abs(curr) + 1;
curr = 1;
} else if (prev > 0 && curr > 0) {
sum += abs(curr) + 1;
curr = -1;
} else if (prev > 0 && curr == 0) {
curr -= 1;
sum++;
} else if (prev < 0 && curr == 0) {
curr += 1;
sum++;
}
prev = curr;
;
}
cout << sum << '\n';
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N, a[100000];
cin >> N;
for (int i = 0; i < N; ++i) cin >> a[i];
int counter = 0;
long long sum = 0;
if (a[0] >= 0) {
for (int i = 0; i < N; ++i) {
sum += a[i];
if (i % 2 == 0) {
while (sum <= 0) {
++a[i];
++sum;
++counter;
}
} else {
while (sum >= 0) {
--a[i];
--sum;
++counter;
}
}
}
} else {
for (int i = 0; i < N; ++i) {
sum += a[i];
if (i % 2 == 0) {
while (sum >= 0) {
--a[i];
--sum;
++counter;
}
} else {
while (sum <= 0) {
++a[i];
++sum;
++counter;
}
}
}
}
cout << counter << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(i) for i in input().split()]
sumi = a[0]
sumi1 = a[0]
ans = 0
for i in range(n-1):
sumi1 = sumi + a[i+1]
if sumi*sumi1 < 0:
sumi += a[i+1]
continue
else:
if sumi < 0:
v = 1 - sumi
ans += v-a[i+1]
a[i+1] = v
elif sumi > 0:
v = - 1 - sumi
ans += a[i+1] - v
a[i+1] = v
sumi += a[i+1]
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, a[1000000];
int even() {
int res = 0;
int sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0) {
if (sum <= 0) {
res += -sum + 1;
sum = 1;
}
} else {
if (sum >= 0) {
res += sum + 1;
sum = -1;
}
}
}
return res;
}
int odd() {
int res = 0;
int sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0) {
if (sum >= 0) {
res += sum + 1;
sum = -1;
}
} else {
if (sum <= 0) {
res += -sum + 1;
sum = 1;
}
}
}
return res;
}
int main() {
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
cout << min(even(), odd()) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
cnt = 0
s = 0
for i in range(n):
if i == 0:
s += a[i]
if s == 0:
s = 1
cnt += 1
else:
if s > 0:
if s < -a[i]:
s += a[i]
else:
cnt += (s + a[i]) + 1
s = -1
else:
if s + a[i] > 0:
s += a[i]
else:
cnt += -(s + a[i]) + 1
s = 1
print(cnt)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
bool debug = false;
int main() {
int n;
long long a[100005];
long long cnt = 0;
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i];
long long sum = a[0] + a[1];
if (sum <= 0) {
cnt += abs(sum) + 1;
sum = 1;
}
bool plus = true;
for (int i = 2; i < n; i++) {
sum += a[i];
if (debug) cout << "sum:" << sum << endl;
if (plus) {
if (sum >= 0) {
cnt += sum + 1;
sum = -1;
}
plus = false;
} else {
if (sum <= 0) {
cnt += abs(sum) + 1;
sum = 1;
}
plus = true;
}
}
if (sum == 0) cnt += 1;
int tmp = cnt;
sum = a[0] + a[1];
cnt = 0;
if (sum >= 0) {
cnt += sum + 1;
sum = -1;
}
plus = false;
for (int i = 2; i < n; i++) {
sum += a[i];
if (debug) cout << "sum:" << sum << endl;
if (plus) {
if (sum >= 0) {
cnt += sum + 1;
sum = -1;
}
plus = false;
} else {
if (sum <= 0) {
cnt += abs(sum) + 1;
sum = 1;
}
plus = true;
}
}
if (sum == 0) cnt += 1;
cout << min(int(cnt), int(tmp)) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int N;
cin >> N;
vector<int> A(N);
for (long long i = 0; i < long long(N); i++) {
cin >> A[i];
}
int ansA = 0;
int sumA = 0;
for (long long i = 0; i < long long(N); i++) {
sumA += A[i];
if (i % 2 == 0) {
if (sumA <= 0) {
sumA += (abs(sumA) + 1);
ansA += (abs(sumA) + 1);
}
} else {
if (sumA >= 0) {
sumA -= (abs(sumA) + 1);
ansA += (abs(sumA) + 1);
}
}
}
int ansB = 0;
int sumB = 0;
for (long long i = 0; i < long long(N); i++) {
sumB += A[i];
if (i % 2 != 0) {
if (sumB <= 0) {
sumB += (abs(sumB) + 1);
ansB += (abs(sumB) + 1);
}
} else {
if (sumB >= 0) {
sumB -= (abs(sumB) + 1);
ansB += (abs(sumB) + 1);
}
}
}
cout << min(ansA, ansB) << endl;
return 0;
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.