Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; set<int> tt[200005]; set<int> ans; vector<pair<int, int>> ve; int n, m, k, x, y; int temp[200005]; void del(int x) { if (tt[x].size() < k && ans.find(x) != ans.end()) { ans.erase(x); for (auto i : tt[x]) { tt[i].erase(x); del(i); } } } int main() { scanf("%d%d%d", &n, &m, &k); for (int i = 1; i <= m; i++) { scanf("%d%d", &x, &y); tt[x].insert(y); tt[y].insert(x); ve.push_back(make_pair(x, y)); } for (int i = 1; i <= n; i++) { ans.insert(i); } for (int i = 1; i <= n; i++) { del(i); } for (int i = m - 1; i >= 0; i--) { temp[i] = ans.size(); tt[ve[i].first].erase(ve[i].second); tt[ve[i].second].erase(ve[i].first); del(ve[i].first); del(ve[i].second); } for (int i = 0; i < m; i++) { printf("%d\n", temp[i]); } return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, m, k, x, y, deg[200010]; set<pair<int, int>> s; pair<int, int> p[200010]; vector<int> rez; set<int> v[200010]; map<bool, int> mp[200010]; void rem() { while (!s.empty() and s.begin()->first < k) { x = s.begin()->second; for (auto it : v[x]) { s.erase({deg[it], it}); --deg[it]; v[it].erase(x); if (deg[it] > 0) s.insert({deg[it], it}); } s.erase({deg[x], x}); deg[x] = 0; v[x].clear(); } } int main() { cin >> n >> m >> k; for (int i = 0; i < m; i++) { cin >> p[i].first >> p[i].second; deg[p[i].first]++, deg[p[i].second]++; v[p[i].first].insert(p[i].second), v[p[i].second].insert(p[i].first); } for (int i = 1; i <= n; i++) s.insert({deg[i], i}); for (int i = m - 1; i >= 0; i--) { rem(); rez.push_back((int)s.size()); x = p[i].first, y = p[i].second; if (deg[x] == 0 or deg[y] == 0) continue; v[x].erase(y), v[y].erase(x); s.erase({deg[x], x}), s.erase({deg[y], y}); --deg[x], --deg[y]; if (deg[x] > 0) s.insert({deg[x], x}); if (deg[y] > 0) s.insert({deg[y], y}); } reverse(rez.begin(), rez.end()); for (auto ans : rez) cout << ans << endl; return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class X, class Y> void amax(X& x, const Y& y) { if (x < y) x = y; } template <class X, class Y> void amin(X& x, const Y& y) { if (x > y) x = y; } const int INF = 1e9 + 10; const long long INFL = (long long)1e18 + 10; const int MAX = 2e5 + 10; int n, m, k; int cnt[MAX]; pair<int, int> ed[MAX]; bool mark[MAX], removed[MAX]; vector<pair<int, int> > es[MAX]; stack<int> st; void invalid_push(int v) { if (!mark[v] && cnt[v] < k) { mark[v] = true; st.push(v); } } void process() { cin >> n >> m >> k; for (int i = 1; i <= m; i++) { cin >> ed[i].first >> ed[i].second; cnt[ed[i].first]++; cnt[ed[i].second]++; es[ed[i].first].push_back(make_pair(ed[i].second, i)); es[ed[i].second].push_back(make_pair(ed[i].first, i)); } for (int i = 1; i <= n; i++) invalid_push(i); vector<int> ans; int res = n; for (int i = m; i >= 1; i--) { while (!st.empty()) { int u = st.top(); st.pop(); res--; for (auto e : es[u]) if (!mark[e.first] && !removed[e.second]) { removed[e.second] = true; cnt[e.first]--; invalid_push(e.first); } } ans.push_back(res); if (!removed[i]) { removed[i] = true; cnt[ed[i].first]--; cnt[ed[i].second]--; invalid_push(ed[i].first); invalid_push(ed[i].second); } } for (int i = int(ans.size()) - 1; i >= 0; i--) cout << ans[i] << '\n'; } int main() { ios_base::sync_with_stdio(false); process(); }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
java
import java.util.*; import java.io.*; public class Main { public static void main(String[] args) { FastReader reader = new FastReader(); PrintWriter writer = new PrintWriter(System.out); int n = reader.nextInt(); int m = reader.nextInt(); int k = reader.nextInt(); Node[] graph = new Node[n]; for (int i=0; i<n; i++) graph[i] = new Node(); int[][] edges = new int[m][2]; int[] ans = new int[m]; for (int i=0; i<m; i++) { edges[i][0] = reader.nextInt()-1; edges[i][1] = reader.nextInt()-1; graph[edges[i][0]].list.add(edges[i][1]); graph[edges[i][1]].list.add(edges[i][0]); } Set<Integer> set = new HashSet<Integer>(); Queue<Integer> q = new LinkedList<Integer>(); for (int i=0; i<n; i++) { set.add(i); if (graph[i].list.size() < k) { q.add(i); set.remove(i); } } for (int i=m-1; i>=0; i--) { while (!q.isEmpty()) { int u = q.remove(); //set.remove(u); for (int v : graph[u].list) if (set.contains(v)) { graph[v].list.remove(u); if (graph[v].list.size() < k) { q.add(v); set.remove(v); } } } ans[i] = set.size(); int u = edges[i][0]; int v = edges[i][1]; if (set.contains(u) && set.contains(v)) { graph[v].list.remove(u); graph[u].list.remove(v); if (graph[u].list.size() < k) { q.add(u); set.remove(u); } if (graph[v].list.size() < k) { q.add(v); set.remove(v); } } } for (int i=0; i<m; i++) writer.println(ans[i]); writer.close(); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } class Node { boolean was = false; Set<Integer> list = new HashSet<Integer>(); }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
java
//package contests.CF1037; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class E { static ArrayList<Integer>[] adj; static int[] going; static boolean in[]; static int k; public static void main(String[] args) throws IOException{ Scanner sc = new Scanner(); PrintWriter pw = new PrintWriter(System.out); int n = sc.nextInt(); adj = new ArrayList[n]; for (int i = 0; i < adj.length; i++) { adj[i] = new ArrayList<>(); } in = new boolean[n]; going = new int[n]; int m = sc.nextInt(); k = sc.nextInt(); HashSet<Long> e = new HashSet<>(); int[][] edges = new int[m][2]; for (int i = 0; i < m; i++) { edges[i][0] = sc.nextInt()-1; edges[i][1] = sc.nextInt()-1; adj[edges[i][0]].add(edges[i][1]); adj[edges[i][1]].add(edges[i][0]); e.add(hash(edges[i][0], edges[i][1])); } TreeSet<Integer> set = new TreeSet<>(new Comparator<Integer>() { @Override public int compare(Integer i, Integer j) { ; if(going[i] != going[j]) return going[i] - going[j]; return i - j; } }); Arrays.fill(in, true); for (int i = 0; i < going.length; i++) { going[i] = adj[i].size(); } for (int i = 0; i < n; i++) { set.add(i); } update(set, e); int[] ans = new int[m]; for (int q = m-1; q >= 0; q--) { ans[q] = set.size(); int u = edges[q][0]; int v = edges[q][1]; if(in[u] && in[v]) { set.remove(u); going[u]--; set.add(u); set.remove(v); going[v]--; set.add(v); e.remove(hash(u, v)); } update(set, e); } for (int i = 0; i < m; i++) { pw.println(ans[i]); } pw.flush(); pw.close(); } static void update(TreeSet<Integer> set, HashSet<Long> e){ while(!set.isEmpty() && going[set.first()] < k){ int a = set.pollFirst(); in[a] = false; for (int b : adj[a]) { if(in[b] && e.contains(hash(a, b))){ set.remove(b); going[b]--; set.add(b); e.remove(hash(a, b)); } } } } static long hash(int a, int b){ return Math.min(a, b) * 1000000l + Math.max(a, b); } static class Scanner{ BufferedReader br; StringTokenizer st; public Scanner(){ br = new BufferedReader(new InputStreamReader(System.in)); } public String next() throws IOException { while(st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } } }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; set<long long> V[400010]; long long n, m, k, D[400010], A[400010], B[400010], ans; signed main() { scanf("%lld%lld%lld", &n, &m, &k); ans = n; for (long long i = 1; i <= m; i++) { long long a, b; scanf("%lld%lld", &a, &b); A[i] = a; B[i] = b; D[a]++; D[b]++; V[a].insert(b); V[b].insert(a); } vector<long long> Tp, Ans; Ans.clear(); Tp.clear(); for (long long i = 1; i <= n; i++) if (D[i] < k) Tp.push_back(i); for (long long i = m; i >= 1; i--) { for (long long j = 0; j < Tp.size(); j++) { long long x = Tp[j]; if (D[x] <= -100000) continue; else ans--; for (set<long long>::iterator it = V[x].begin(); it != V[x].end(); it++) { V[*it].erase(x); if (--D[*it] < k) Tp.push_back(*it); } V[x].clear(); D[x] = -100000; } Ans.push_back(ans); Tp.clear(); if (!V[A[i]].count(B[i])) continue; D[A[i]]--; D[B[i]]--; V[A[i]].erase(B[i]); V[B[i]].erase(A[i]); if (D[A[i]] < k) Tp.push_back(A[i]); if (D[B[i]] < k) Tp.push_back(B[i]); } for (long long i = (long long)Ans.size() - 1; i >= 0; i--) printf("%lld\n", Ans[i]); return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 10; int ind[N], ans[N]; set<int> vec[N]; int U[N], V[N]; bool vis[N]; int n, m, K; int sum = 0; queue<int> q; void Top() { while (!q.empty()) { ++sum; int u = q.front(); q.pop(); ind[u] = 0; set<int>::iterator it; for (it = vec[u].begin(); it != vec[u].end();) { int v = *it; if (vis[v]) { it++; continue; } vec[u].erase(it++); vec[v].erase(u); ind[v]--; if (!vis[v] && ind[v] < K) { vis[v] = 1; q.push(v); } } } } int main() { scanf("%d %d %d", &n, &m, &K); for (int i = 0; i < m; ++i) { scanf("%d %d", &U[i], &V[i]); int u = U[i], v = V[i]; vec[u].insert(v); vec[v].insert(u); ind[u]++; ind[v]++; } for (int i = 1; i < n + 1; ++i) { if (ind[i] < K) { vis[i] = 1; q.push(i); } } Top(); for (int i = m - 1; i >= 0; --i) { ans[i] = n - sum; int u = U[i], v = V[i]; if (vec[u].count(v)) ind[v]--, vec[u].erase(v); if (vec[v].count(u)) ind[u]--, vec[v].erase(u); if (!vis[v] && ind[v] < K) vis[v] = 1, q.push(v); if (!vis[u] && ind[u] < K) vis[u] = 1, q.push(u); Top(); } for (int i = 0; i < m; ++i) printf("%d\n", ans[i]); return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> template <class C, class E> inline bool contains(const C& container, const E& element) { return container.find(element) != container.end(); } template <class T> inline void checkmin(T& a, T b) { if (b < a) a = b; } template <class T> inline void checkmax(T& a, T b) { if (b > a) a = b; } using namespace std; vector<pair<int, int> > fr; vector<set<int> > gr; int n, m, k; vector<bool> inTrip; int inTripCount; void Remove(int a, int b) { gr[a].erase(b); gr[b].erase(a); } int Deg(int a) { return gr[a].size(); } vector<bool> InQueue; void RemAll(queue<int>& toRemove) { while (!toRemove.empty()) { int iRem = toRemove.front(); inTrip[iRem] = false; InQueue[iRem] = false; --inTripCount; toRemove.pop(); for (int br : gr[iRem]) { gr[br].erase(iRem); if (Deg(br) < k && !InQueue[br]) { InQueue[br] = true; toRemove.push(br); } } gr[iRem].clear(); } } void Process(pair<int, int> p) { if (!contains(gr[p.first], p.second)) return; Remove(p.first, p.second); queue<int> toRemove; if (inTrip[p.first] && Deg(p.first) < k) { InQueue[p.first] = true; toRemove.push(p.first); } if (inTrip[p.second] && Deg(p.second) < k) { InQueue[p.second] = true; toRemove.push(p.second); } RemAll(toRemove); } void Init() { queue<int> toRemove; for (int i = (0), _b = ((n)-1); i <= _b; i++) { if (Deg(i) < k) { InQueue[i] = true; toRemove.push(i); } } RemAll(toRemove); } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); cout << std::setprecision(15); cout << std::fixed; cin >> n >> m >> k; fr.resize(m); gr.resize(n); InQueue.resize(n); inTrip.resize(n, true); inTripCount = n; for (int i = (0), _b = ((m)-1); i <= _b; i++) { int a, b; cin >> a >> b; --a; --b; fr[i] = make_pair(a, b); gr[a].insert(b); gr[b].insert(a); } Init(); vector<int> res; for (int i = (m - 1), _b = (0); i >= _b; i--) { res.push_back(inTripCount); if (i != 0) Process(fr[i]); } for (int i = (m - 1), _b = (0); i >= _b; i--) { cout << res[i] << endl; } return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
python2
import os import sys from atexit import register from io import BytesIO sys.stdin = BytesIO(os.read(0, os.fstat(0).st_size)) sys.stdout = BytesIO() register(lambda: os.write(1, sys.stdout.getvalue())) input = lambda: sys.stdin.readline().rstrip('\r\n') raw_input = lambda: sys.stdin.readline().rstrip('\r\n') n,m,k = map(int,raw_input().split(" ")) edges = [set([]) for i in range(n+1)] pairs = [] for i in range(m): x,y = map(int,raw_input().split(" ")) pairs.append((x,y)) edges[x].add(y) edges[y].add(x) rank = [0]*(1+n) for i in range(1,n+1): rank[i] = len(edges[i]) def check(s,tmp): while tmp: v = tmp.pop() if rank[v]<k: s.remove(v) for node in edges[v]: if not node in s: continue rank[node] -= 1 if rank[node]<k : tmp.add(node) s = set(range(1,n+1)) check(s,set(s)) ans = [len(s)] for i in range(m-1)[::-1]: x,y = pairs[i+1] if x in s and y in s: rank[x] -= 1 rank[y] -= 1 edges[x].remove(y) edges[y].remove(x) check(s,set([x,y])) ans.append(len(s)) print "\n".join(map(str,ans[::-1]))
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
java
import java.io.*; import java.util.*; /* Solution Sketch: */ public class trips { static final boolean stdin = true; static final String filename = ""; static FastScanner br; static PrintWriter pw; public static void main(String[] args) throws IOException { if (stdin) { br = new FastScanner(); pw = new PrintWriter(new OutputStreamWriter(System.out)); } else { br = new FastScanner(filename + ".in"); pw = new PrintWriter(new FileWriter(filename + ".out")); } X solver = new X(); solver.solve(br, pw); } static class X { public void solve(FastScanner br, PrintWriter pw) throws IOException { int n = br.nextInt(); int m = br.nextInt(); int k = br.nextInt(); int[] deg = new int[n]; TreeSet<Pair> s = new TreeSet<Pair>(); LinkedList<Integer>[] adj = new LinkedList[n]; LinkedList<Pair> edges = new LinkedList<Pair>(); for(int i = 0; i < adj.length; i++) { adj[i] = new LinkedList<Integer>(); } for(int i = 0; i < m; i++) { int u = br.nextInt(); int v = br.nextInt(); u--; v--; adj[u].add(v); adj[v].add(u); edges.add(new Pair(u,v)); deg[u]++; deg[v]++; } for(int i = 0; i < n; i++) { s.add(new Pair(deg[i], i)); } boolean[] vis = new boolean[n]; while(!s.isEmpty()) { // pw.println("set first: " + (s.first().f + " " + s.first().s)); if(s.first().f < k) { Pair p = s.pollFirst(); for(int e : adj[p.s]) { if(vis[e]) {continue;} s.remove(new Pair(deg[e], e)); deg[e]--; s.add(new Pair(deg[e], e)); } vis[p.s] = true; } else { break; } } TreeSet<Pair> visited = new TreeSet<Pair>(); Collections.reverse(edges); ArrayList<Integer> ans = new ArrayList<Integer>(); for(Pair pr : edges) { ans.add(s.size()); // // pw.println(); // pw.println("DEGREES b4:"); // for(int i = 0; i < n; i++){ // pw.print(deg[i] + " "); // } // pw.println("Edges: " + (pr.f+1) + " " + (pr.s+1)); if(!vis[pr.f] && !vis[pr.s]) { // pw.println("EDGE RUN"); s.remove(new Pair(deg[pr.f], pr.f)); s.remove(new Pair(deg[pr.s], pr.s)); deg[pr.f]--; deg[pr.s]--; s.add(new Pair(deg[pr.f],pr.f)); s.add(new Pair(deg[pr.s], pr.s)); // pw.println("DEGREES:"); // for(int i = 0; i < n; i++){ // pw.print(deg[i] + " "); // } // pw.println(); // pw.println("SET:"); // for(Pair curr : s) { // pw.print(curr.f + " " + curr.s + " "); // } // pw.println(); // pw.println("VISITED:"); // for(int i = 0; i < n; i++) { // pw.print(vis[i] + " "); // } while(!s.isEmpty()) { if(s.first().f < k) { Pair p = s.pollFirst(); for(int e : adj[p.s]) { if(visited.contains(new Pair(p.s, e))) { continue; } if(vis[e] || ((p.s == pr.f && e == pr.s) || (p.s == pr.s && e == pr.f))) { continue; } s.remove(new Pair(deg[e], e)); deg[e]--; s.add(new Pair(deg[e], e)); } vis[p.s] = true; } else { break; } } visited.add(new Pair(pr.f, pr.s)); visited.add(new Pair(pr.s, pr.f)); } } Collections.reverse(ans); for(int a : ans) { pw.println(a); } pw.close(); } public static class Pair implements Comparable<Pair>{ int f,s; public Pair(int f, int s) { this.f = f; this.s = s; } @Override public int compareTo(Pair o) { // TODO Auto-generated method stub if(this.f == o.f) { return this.s - o.s; } return this.f - o.f; } } } //fastscanner class public static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(String s) { try { br = new BufferedReader(new FileReader(s)); } catch (FileNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } } public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String nextToken() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(nextToken()); } long nextLong() { return Long.parseLong(nextToken()); } double nextDouble() { return Double.parseDouble(nextToken()); } } }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 7; int deg[N], del[N], u[N], v[N], aa[N], edg[N]; vector<pair<int, int> > adj[N]; int remove(queue<int> &q, int k) { int ans = 0; while (!q.empty()) { int x = q.front(); q.pop(); if (!del[x]) del[x] = 1, ans--; for (auto z : adj[x]) { int idx = z.second, y = z.first; if (edg[idx]) continue; edg[idx] = 1; deg[x]--; deg[y]--; if (deg[y] < k && !del[y]) { q.push(y); } } } return ans; } int main() { ios_base ::sync_with_stdio(0); cout.tie(0); cin.tie(0); int n, m, k; cin >> n >> m >> k; for (int i = 1; i <= m; i++) { cin >> u[i] >> v[i]; adj[u[i]].push_back({v[i], i}); adj[v[i]].push_back({u[i], i}); deg[u[i]]++; deg[v[i]]++; } int ans = n; queue<int> q; for (int i = 1; i <= n; i++) if (deg[i] < k) q.push(i); ans += remove(q, k); for (int i = m; i >= 1; i--) { aa[i] = ans; if (edg[i]) continue; deg[u[i]]--; deg[v[i]]--; edg[i] = 1; if (!del[u[i]] && deg[u[i]] < k) q.push(u[i]); if (!del[v[i]] && deg[v[i]] < k) q.push(v[i]); ans += remove(q, k); } for (int i = 1; i <= m; i++) cout << aa[i] << "\n"; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T, class U> bool cmax(T& a, const U& b) { return a < b ? a = b, 1 : 0; } template <class T, class U> bool cmin(T& a, const U& b) { return b < a ? a = b, 1 : 0; } void _BG(const char* s) { cerr << s << endl; }; template <class T, class... TT> void _BG(const char* s, T a, TT... b) { for (int c = 0; *s && (c || *s != ','); ++s) { cerr << *s; for (char x : "([{") c += *s == x; for (char x : ")]}") c -= *s == x; } cerr << " = " << a; if (sizeof...(b)) { cerr << ", "; ++s; } _BG(s, b...); } bool RD() { return 1; } bool RD(char& a) { return scanf(" %c", &a) == 1; } bool RD(char* a) { return scanf("%s", a) == 1; } bool RD(double& a) { return scanf("%lf", &a) == 1; } bool RD(int& a) { return scanf("%d", &a) == 1; } bool RD(long long& a) { return scanf("%lld", &a) == 1; } template <class T, class... TT> bool RD(T& a, TT&... b) { return RD(a) && RD(b...); } void PT(const char& a) { putchar(a); } void PT(char const* const& a) { fputs(a, stdout); } void PT(const double& a) { printf("%.16f", a); } void PT(const int& a) { printf("%d", a); } void PT(const long long& a) { printf("%lld", a); } template <char s = ' ', char e = '\n'> void PL() { if (e) PT(e); } template <char s = ' ', char e = '\n', class T, class... TT> void PL(const T& a, const TT&... b) { PT(a); if (sizeof...(b) && s) PT(s); PL<s, e>(b...); } const int N = 212345; int n, m, k; set<int> g[N]; pair<int, int> e[N]; bool die[N]; int ans, QAQ[N]; vector<int> rm; void chk(int v) { if (((int)(g[v]).size()) < k && !die[v]) { rm.push_back(v); die[v] = 1; --ans; } } void del(int u, int v) { g[u].erase(v); g[v].erase(u); chk(u); chk(v); } int main() { RD(n, m, k); for (int i(0); i < (m); ++i) { int u, v; RD(u, v); --u, --v; e[i] = {u, v}; g[u].insert(v); g[v].insert(u); } ans = n; for (int i(0); i < (n); ++i) chk(i); for (int i((m)-1); i >= (0); --i) { while (((int)(rm).size())) { int u = ((rm).back()); (rm).pop_back(); while (((int)(g[u]).size())) del(u, *begin(g[u])); } QAQ[i] = ans; del(e[i].first, e[i].second); } for (int i(0); i < (m); ++i) PL(QAQ[i]); }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxN = 2e5 + 11; typedef int i_N[maxN]; int N, M, K; set<int> adj[maxN]; i_N deg, mark; int ans; pair<int, int> edge[maxN]; void dfs(int u) { if (mark[u]++) return; ans--; for (set<int>::iterator it = adj[u].begin(); it != adj[u].end(); it++) { int v = *it; deg[v]--; adj[v].erase(u); if (deg[v] < K) dfs(v); } adj[u].clear(); } int main() { ios_base::sync_with_stdio(0); cin >> N >> M >> K; for (int i = 1; i <= M; i++) { int u, v; cin >> u >> v; adj[u].insert(v); adj[v].insert(u); deg[u]++; deg[v]++; edge[i] = pair<int, int>(u, v); } ans = N; for (int i = 1; i <= N; i++) if (deg[i] < K) dfs(i); vector<int> v; for (int i = M; i; i--) { v.push_back(ans); int u = edge[i].first, v = edge[i].second; if (adj[u].find(v) != adj[u].end()) { deg[u]--; deg[v]--; adj[u].erase(v); adj[v].erase(u); } if (deg[u] < K) dfs(u); if (deg[v] < K) dfs(v); } reverse(v.begin(), v.end()); for (int i = 0; i < M; i++) cout << v[i] << '\n'; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 5; int n, m, k; set<int> g[N]; pair<int, int> p[N]; set<pair<int, int>> st; bool inSet[N]; int ans[N], deg[N]; int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n >> m >> k; for (int i = 1; i <= m; i++) { int u, v; cin >> u >> v; g[u].insert(v); g[v].insert(u); deg[u]++, deg[v]++; p[i] = {u, v}; } for (int i = 1; i <= n; i++) { st.insert({deg[i], i}); inSet[i] = true; } for (int i = m; i >= 1; i--) { while (!st.empty() && st.begin()->first < k) { int x = st.begin()->second; for (auto y : g[x]) { if (inSet[y]) { st.erase({deg[y], y}); deg[y]--; st.insert({deg[y], y}); } } inSet[x] = false; st.erase({deg[x], x}); } ans[i] = st.size(); int u = p[i].first; int v = p[i].second; g[u].erase(v); g[v].erase(u); if (!inSet[u] || !inSet[v]) continue; st.erase({deg[u], u}); deg[u]--; st.insert({deg[u], u}); st.erase({deg[v], v}); deg[v]--; st.insert({deg[v], v}); } for (int i = 1; i <= m; i++) { cout << ans[i] << '\n'; } return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma warning(disable : 4996) #pragma comment(linker, "/stack:200000000") #pragma GCC optimize("Ofast") #pragma GCC optimize("-ffloat-store") using namespace std; const int MN = 200010; set<int> e[MN]; int from[MN], to[MN], deg[MN], vis[MN], res[MN]; int n, m, k, cnt; void deletev(int v) { if (deg[v] >= k || vis[v]) return; queue<int> q; q.push(v); vis[v] = 1; --cnt; while (!q.empty()) { int top = q.front(); q.pop(); for (auto& c : e[top]) { --deg[c]; if (deg[c] < k && !vis[c]) { q.push(c); vis[c] = 1; --cnt; } } } } struct E { void solve(std::istream& cin, std::ostream& cout) { cin >> n >> m >> k; memset(deg, (0), sizeof(deg)); memset(from, (0), sizeof(from)); memset(to, (0), sizeof(to)); memset(deg, (0), sizeof(deg)); memset(vis, (0), sizeof(vis)); memset(res, (0), sizeof(res)); e->clear(); for (int i = (0); i < (m); ++i) { cin >> from[i] >> to[i]; --from[i], --to[i]; ++deg[from[i]], ++deg[to[i]]; e[from[i]].insert(to[i]); e[to[i]].insert(from[i]); } cnt = n; for (int i = (0); i < (n); ++i) { deletev(i); } res[m] = cnt; for (int i = (m - 1); i >= (0); --i) { if (!vis[from[i]]) --deg[to[i]]; if (!vis[to[i]]) --deg[from[i]]; e[from[i]].erase(to[i]); e[to[i]].erase(from[i]); deletev(from[i]); deletev(to[i]); res[i] = cnt; } for (int i = (1); i <= (m); ++i) cout << res[i] << "\n"; } }; int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); E solver; std::istream& in(std::cin); std::ostream& out(std::cout); solver.solve(in, out); return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int INF = (int)1e9; long long INFINF = (long long)1e18 + 10; const long double PI = 3.14159265358979323846; long long powermodm(long long x, long long n, long long mod) { long long result = 1; while (n > 0) { if (n % 2 == 1) result = (result * x) % mod; x = (x * x) % mod; n = n / 2; } return result; } long long GCD(long long, long long); long long LCM(long long, long long); long long power(int, int); long long choose(long long, long long); int ones(long long); void extendedEuclid(long long, long long); long long MMI(long long, long long); void fastscan(int &); set<int> adj[200005]; vector<int> degree(200005); vector<int> a1(200005); vector<int> b1(200005); vector<pair<int, int> > pair1; set<pair<int, int> > set1; vector<int> vis(200005); int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); int n, m, k; cin >> n >> m >> k; vector<int> ans; for (long long i = 0; i < m; i++) { cin >> a1[i] >> b1[i]; degree[a1[i]]++; degree[b1[i]]++; adj[a1[i]].insert(b1[i]); adj[b1[i]].insert(a1[i]); } for (long long i = 0; i < n; i++) { set1.insert({degree[i + 1], i + 1}); } for (int i = m - 1; i >= 0; i--) { while (!set1.empty()) { pair<int, int> temppair; temppair = *set1.begin(); if (temppair.first < k) { int temp = temppair.second; vis[temp] = 1; degree[temp]--; set1.erase(temppair); for (auto k = adj[temp].begin(); k != adj[temp].end(); k++) { set1.erase({degree[*k], *k}); degree[*k]--; if (vis[*k] == 0) { set1.insert({degree[*k], *k}); } } adj[temp].clear(); } else { break; } } ans.push_back(set1.size()); set1.erase({degree[a1[i]], a1[i]}); set1.erase({degree[b1[i]], b1[i]}); adj[a1[i]].erase(b1[i]); adj[b1[i]].erase(a1[i]); if (vis[a1[i]] == 0) { degree[b1[i]]--; } if (vis[b1[i]] == 0) { degree[a1[i]]--; } if (vis[a1[i]] == 0) { set1.insert({degree[a1[i]], a1[i]}); } if (vis[b1[i]] == 0) { set1.insert({degree[b1[i]], b1[i]}); } } reverse(ans.begin(), ans.end()); for (long long i = 0; i < ans.size(); i++) { cout << ans[i] << endl; } return 0; } long long GCD(long long a, long long b) { if (b == 0) return a; else return GCD(b, a % b); } long long LCM(long long a, long long b) { return (max(a, b) / GCD(a, b)) * min(a, b); } long long power(int a, int n) { unsigned long long int result = 1, x = a; while (n > 0) { if (n % 2 == 1) result = result * x; x = x * x; n = n / 2; } return result; } long long choose(long long n, long long k) { if (k == 0) return 1; return (n * choose(n - 1, k - 1)) / k; } int ones(long long n) { int c = 0; while (n) { n = n & (n - 1); c++; } return c; } long long d, x, y; void extendedEuclid(long long A, long long B) { if (B == 0) { d = A; x = 1; y = 0; } else { extendedEuclid(B, A % B); int temp = x; x = y; y = temp - (A / B) * y; } } long long MMI(long long a, long long p) { extendedEuclid(a, p); if (d == 1 && p != 1) return ((x % p) + p) % p; else return -1; } void fastscan(int &number) { bool negative = false; register int c; number = 0; c = getchar(); if (c == '-') { negative = true; c = getchar(); } for (; (c > 47 && c < 58); c = getchar()) number = number * 10 + c - 48; if (negative) number *= -1; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma warning(disable : 4996) using namespace std; int n; vector<set<int> > g(200000); vector<int> used(200000); int main() { int n, m, k; cin >> n >> m >> k; vector<int> x(m); vector<int> y(m); for (int i = 0; i < m; i++) { cin >> x[i] >> y[i]; x[i]--; y[i]--; g[x[i]].insert(y[i]); g[y[i]].insert(x[i]); } set<pair<int, int> > s; vector<int> v(n); for (int i = 0; i < n; i++) { s.insert(make_pair(g[i].size(), i)); v[i] = g[i].size(); } while (s.size()) { int a = s.begin()->first; int b = s.begin()->second; if (a < k) { s.erase(make_pair(a, b)); v[b] = 0; for (auto i = g[b].begin(); i != g[b].end(); i++) if (v[*i] >= k) { s.erase(make_pair(v[*i], *i)); v[*i]--; s.insert(make_pair(v[*i], *i)); } } else break; } vector<int> ans(m); ans[m - 1] = s.size(); for (int i = m - 1; i >= 1; i--) { int fl = 0; if (s.find(make_pair(v[x[i]], x[i])) != s.end()) fl++; if (s.find(make_pair(v[y[i]], y[i])) != s.end()) fl++; if (fl != 2) ans[i - 1] = ans[i]; else { s.erase(make_pair(v[x[i]], x[i])); s.erase(make_pair(v[y[i]], y[i])); v[x[i]]--; v[y[i]]--; s.insert(make_pair(v[x[i]], x[i])); s.insert(make_pair(v[y[i]], y[i])); g[x[i]].erase(y[i]); g[y[i]].erase(x[i]); while (s.size()) { int a = s.begin()->first; int b = s.begin()->second; if (a < k) { s.erase(make_pair(a, b)); v[b] = 0; for (auto i = g[b].begin(); i != g[b].end(); i++) if (v[*i] >= k) { s.erase(make_pair(v[*i], *i)); v[*i]--; s.insert(make_pair(v[*i], *i)); } } else break; } ans[i - 1] = s.size(); } } for (int i = 0; i < m; i++) cout << ans[i] << " "; return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> inline int read() { int x = 0, f = 1; char c = getchar(); while (c < '0' || c > '9') c = getchar(); while (c <= '9' && c >= '0') x = x * 10 + c - '0', c = getchar(); return x * f; } void print(int x) { if (x < 0) { putchar('-'); x = -x; } if (x >= 10) print(x / 10); putchar(x % 10 + '0'); } const int maxn = 5000007; int n, m, k; int d[maxn]; bool del[maxn]; using namespace std; map<pair<int, int>, int> mp; struct node { int v, next; } edge[maxn]; int head[maxn], num = 0; inline void add_edge(int u, int v) { edge[++num].v = v; edge[num].next = head[u]; head[u] = num; } int ans; int u[maxn], v[maxn]; int Ans[maxn]; queue<int> q; void solve(int x) { if (d[x] >= k || del[x]) return; del[x] = 1; q.push(x); ans--; while (!q.empty()) { int U = q.front(); q.pop(); for (int i = head[U]; i; i = edge[i].next) { int V = edge[i].v; if (del[V]) continue; if (mp.count(make_pair(U, V)) == 0) d[V]--; if (d[V] < k) { del[V] = true; ans--; q.push(V); } } } } int main() { n = read(), m = read(); k = read(); for (int i = 1; i <= m; ++i) { u[i] = read(), v[i] = read(); add_edge(u[i], v[i]); add_edge(v[i], u[i]); d[v[i]]++; d[u[i]]++; } ans = n; for (int i = 1; i <= n; ++i) solve(i); mp.clear(); for (int i = m; i >= 1; --i) { Ans[i] = ans; if (!del[u[i]]) d[v[i]]--; if (!del[v[i]]) d[u[i]]--; mp[pair<int, int>(u[i], v[i])] = 1; mp[pair<int, int>(v[i], u[i])] = 1; solve(u[i]); solve(v[i]); } for (int i = 1; i <= m; ++i) print(Ans[i]), putchar('\n'); }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
java
import com.sun.org.apache.bcel.internal.generic.ALOAD; import java.io.*; import java.util.*; public class Main { public class pair implements Comparable<pair> { int i, w; pair(int x, int y) { i = x; w = y; } public int compareTo(pair p) { if (w == p.w) return i - p.i; return w - p.w; } } public class edge { int v; boolean p; edge(int y) { v = y; p = true; } } public void solve() throws IOException { int n = nextInt(); int m = nextInt(); int k = nextInt(); ArrayList<ArrayList<edge>> q = new ArrayList<>(); int[] d = new int[n]; for (int i = 0; i < n; i++) { q.add(new ArrayList<>()); } pair[] z = new pair[m]; pair[] f = new pair[m]; for (int i = 0; i < m; i++) { int x = nextInt() - 1; int y = nextInt() - 1; d[x]++; d[y]++; q.get(x).add(new edge(y)); q.get(y).add(new edge(x)); f[i] = new pair(q.get(x).size() - 1, q.get(y).size() - 1); z[i] = new pair(x, y); } TreeSet<pair> w = new TreeSet<>(); for (int i = 0; i < n; i++) { w.add(new pair(i, d[i])); } int res = n; int[] ans = new int[m]; for (int i = 0; i < m; i++) { while (w.size() > 0 && w.first().w < k) { int p = w.pollFirst().i; for (int j = 0; j < q.get(p).size(); j++) { int v = q.get(p).get(j).v; if (q.get(p).get(j).p) { q.get(p).get(j).p = false; w.remove(new pair(v, d[v])); d[v]--; w.add(new pair(v, d[v])); } } } ans[i] = w.size(); int h = m - 1 - i; int x1 = z[h].i; int y1 = z[h].w; if (q.get(x1).get(f[h].i).p && q.get(y1).get(f[h].w).p) { q.get(x1).get(f[h].i).p = false; q.get(y1).get(f[h].w).p = false; if (w.contains(new pair(x1, d[x1]))) { w.remove(new pair(x1, d[x1])); d[x1]--; w.add(new pair(x1, d[x1])); } if (w.contains(new pair(y1, d[y1]))) { w.remove(new pair(y1, d[y1])); d[y1]--; w.add(new pair(y1, d[y1])); } } } for (int i = m - 1; i >= 0; i--) { out.println(ans[i]); } } BufferedReader br; StringTokenizer sc; PrintWriter out; String nextToken() throws IOException { while (sc == null || !sc.hasMoreTokens()) { try { sc = new StringTokenizer(br.readLine()); } catch (Exception e) { sc = null; } } return sc.nextToken(); } boolean hasNext() throws IOException { while (sc == null || !sc.hasMoreTokens()) { try { sc = new StringTokenizer(br.readLine()); } catch (Exception e) { return false; } } return true; } Integer nextInt() throws IOException { return Integer.parseInt(nextToken()); } Long nextLong() throws IOException { return Long.parseLong(nextToken()); } public static void main(String[] args) throws IOException { Locale.setDefault(Locale.US); new Main().run(); } public void run() throws IOException { try { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); // br = new BufferedReader(new FileReader("advent.in")); // out = new PrintWriter(new File("advent.out")); solve(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class TH> void _dbg(const char *sdbg, TH h) { cerr << sdbg << " = " << h << endl; } template <class TH, class... TA> void _dbg(const char *sdbg, TH h, TA... a) { while (*sdbg != ',') cerr << *sdbg++; cerr << " = " << h << ", "; _dbg(sdbg + 1, a...); } const int maxn = (1e6) + 7; const int maxk = 20; const int inf = (1e9) + 7; const long long LLinf = (1e18) + 7; const long double eps = 1e-9; const long long mod = 1e9 + 7; queue<int> q; bool vis[maxn]; int res; int n, m, k; int odp[maxn]; set<int> wek[maxn]; pair<int, int> tab[maxn]; void rob() { while (((int)(q).size())) { int a = q.front(); q.pop(); if (vis[a] == 0) continue; vis[a] = 0; res--; for (auto s : wek[a]) if (vis[s] == 1) { wek[s].erase(a); if (((int)(wek[s]).size()) < k) q.push(s); } } } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n >> m >> k; res = n; for (int i = 1; i <= m; i++) { cin >> tab[i].first >> tab[i].second; wek[tab[i].first].insert(tab[i].second); wek[tab[i].second].insert(tab[i].first); } for (int i = 1; i <= n; i++) { vis[i] = 1; if (((int)(wek[i]).size()) < k) q.push(i); } rob(); odp[m] = res; for (int i = m - 1; i >= 0; i--) { wek[tab[i + 1].first].erase(tab[i + 1].second); wek[tab[i + 1].second].erase(tab[i + 1].first); if (vis[tab[i + 1].first] == 1 && ((int)(wek[tab[i + 1].first]).size()) < k) q.push(tab[i + 1].first); if (vis[tab[i + 1].second] == 1 && ((int)(wek[tab[i + 1].second]).size()) < k) q.push(tab[i + 1].second); rob(); odp[i] = res; } for (int i = 1; i <= m; i++) cout << odp[i] << "\n"; return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
java
import java.lang.*; import java.math.*; import java.util.*; import java.io.*; public class Main { void solve() { n=ni(); m=ni(); k=ni(); g=new TreeSet[n+1]; int x[]=new int[m+1]; int y[]=new int[m+1]; for(int i=1;i<=n;i++) g[i]=new TreeSet<>(); for(int i=1;i<=m;i++){ x[i]=ni();y[i]=ni(); g[x[i]].add(y[i]); g[y[i]].add(x[i]); } degree=new int[n+1]; vis=new boolean[n+1]; for(int i=1;i<=n;i++) degree[i]=g[i].size(); ans=n; build(n); int res[]=new int[m+1]; for(int i=m;i>=1;i--){ res[i]=ans; g[x[i]].remove(y[i]); g[y[i]].remove(x[i]); if(!vis[x[i]] && !vis[y[i]]){ degree[x[i]]--; degree[y[i]]--; if(degree[x[i]]<k) dfs(x[i]); if(degree[y[i]]<k && !vis[y[i]]) dfs(y[i]); } } for(int i=1;i<=m;i++) pw.println(res[i]); } int n,m,k; int degree[]; TreeSet<Integer> g[]; boolean vis[]; int ans=0; void build(int n){ for(int i=1;i<=n;i++){ if(degree[i]<k && !vis[i]) dfs(i); } } void dfs(int v){ vis[v]=true; ans--; for(int u : g[v]){ if(!vis[u]){ degree[u]--; if(degree[u]<k) dfs(u); } } } long M=(long)1e9+7; InputStream is; PrintWriter pw; String INPUT = ""; void run() throws Exception { is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes()); pw = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); pw.flush(); if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new Main().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private boolean oj = System.getProperty("ONLINE_JUDGE") != null; private void tr(Object... o) { if(INPUT.length() > 0)System.out.println(Arrays.deepToString(o)); } }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAXN = 200005; int N, M, K; int A[MAXN]; int B[MAXN]; set<int> adj[MAXN]; int deg[MAXN]; set<pair<int, int> > st; bool inGraph[MAXN]; int ans[MAXN]; void update(int x) { if (!inGraph[x]) return; set<pair<int, int> >::iterator it = st.find(make_pair(deg[x], x)); st.erase(it); deg[x]--; st.insert(make_pair(deg[x], x)); } void fix() { while (!st.empty() && st.begin()->first < K) { int cur = st.begin()->second; st.erase(st.begin()); inGraph[cur] = false; for (auto nxt : adj[cur]) { adj[nxt].erase(cur); update(nxt); } adj[cur].clear(); } } int main() { scanf("%d %d %d", &N, &M, &K); for (int i = 0; i < M; i++) { scanf("%d %d", &A[i], &B[i]); deg[A[i]]++; deg[B[i]]++; adj[A[i]].insert(B[i]); adj[B[i]].insert(A[i]); } for (int i = 1; i <= N; i++) { st.insert(make_pair(deg[i], i)); inGraph[i] = true; } for (int i = M - 1; i >= 0; i--) { fix(); ans[i] = st.size(); adj[A[i]].erase(B[i]); adj[B[i]].erase(A[i]); if (inGraph[B[i]]) update(A[i]); if (inGraph[A[i]]) update(B[i]); } for (int i = 0; i < M; i++) printf("%d\n", ans[i]); return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; template <int n, class... T> typename enable_if<(n >= sizeof...(T))>::type _ot(ostream &, tuple<T...> const &) {} template <int n, class... T> typename enable_if<(n < sizeof...(T))>::type _ot(ostream &os, tuple<T...> const &t) { os << (n == 0 ? "" : ", ") << get<n>(t); _ot<n + 1>(os, t); } template <class... T> ostream &operator<<(ostream &o, tuple<T...> const &t) { o << "("; _ot<0>(o, t); o << ")"; return o; } template <class T, class U> ostream &operator<<(ostream &o, pair<T, U> const &p) { o << "(" << p.first << ", " << p.second << ")"; return o; } template <class T, class = typename iterator_traits<typename T::iterator>::value_type, class = typename enable_if<!is_same<T, string>::value>::type> ostream &operator<<(ostream &o, const T &a) { for (auto ite = a.begin(); ite != a.end(); ++ite) o << (ite == a.begin() ? "" : " ") << *ite; return o; } const int N = 2e5; vector<pair<int, int>> g[N]; int main() { std::ios::sync_with_stdio(false), std::cin.tie(0); ll n, m, k; cin >> n >> m >> k; vector<pair<int, int>> v; vector<int> fri(n); vector<int> vfri(n); for (int i = 0; i < m; i++) { int a, b; cin >> a >> b; a--; b--; v.emplace_back(a, b); g[a].emplace_back(b, i); g[b].emplace_back(a, i); fri[a]++; fri[b]++; vfri[a]++; vfri[b]++; } vector<int> no(n); int col = 1; vector<int> used(n); ll now = n; int tim = m - 1; function<void(int)> check = [&](int i) { if (no[i]) return; if (vfri[i] < k) { no[i] = 1; now--; auto ng = g[i]; ng.clear(); for (auto p : g[i]) { int j, t; tie(j, t) = p; if (t > tim) continue; ng.emplace_back(j, t); if (!no[j]) { vfri[j]--; check(j); } } g[i] = ng; } }; for (int i = 0; i < n; i++) if (!no[i]) check(i); vector<int> ans(m); for (int i = m - 1; i >= 0; i--) { tim--; ans[i] = now; if (i == 0) break; int a, b; tie(a, b) = v[i]; fri[a]--; fri[b]--; if (!no[a]) vfri[b]--; if (!no[b]) vfri[a]--; if (!no[a]) check(a); if (!no[b]) check(b); (42); } for (int i = 0; i < m; i++) cout << ans[i] << endl; return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.util.Collection; import java.util.Set; import java.util.InputMismatchException; import java.io.IOException; import java.util.HashSet; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.Queue; import java.util.ArrayDeque; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Rustam Musin ([email protected]) */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskE solver = new TaskE(); solver.solve(1, in, out); out.close(); } static class TaskE { int n; int m; int k; Set<Integer>[] g; boolean[] removed; public void solve(int testNumber, InputReader in, OutputWriter out) { n = in.readInt(); m = in.readInt(); k = in.readInt(); g = new Set[n]; for (int i = 0; i < n; i++) { g[i] = new HashSet<>(); } int[][] queries = in.readIntTable(m, 2); for (int i = 0; i < m; i++) { MiscUtils.decreaseByOne(queries[i]); g[queries[i][0]].add(queries[i][1]); g[queries[i][1]].add(queries[i][0]); } int answer = n; removed = new boolean[n]; for (int i = 0; i < n; i++) { if (g[i].size() < k) { answer -= remove(i); } } int[] res = new int[m]; for (int i = m - 1; i >= 0; i--) { res[i] = answer; int u = queries[i][0]; int v = queries[i][1]; g[u].remove(v); g[v].remove(u); if (g[u].size() < k) { answer -= remove(u); } if (g[v].size() < k) { answer -= remove(v); } } for (int x : res) { out.printLine(x); } } int remove(int v) { if (removed[v]) { return 0; } removed[v] = true; Queue<Integer> q = new ArrayDeque<>(); q.add(v); int rem = 0; while (!q.isEmpty()) { rem++; v = q.poll(); for (int to : g[v]) { g[to].remove(v); if (!removed[to] && g[to].size() < k) { removed[to] = true; q.add(to); } } g[v].clear(); } return rem; } } static class MiscUtils { public static void decreaseByOne(int[]... arrays) { for (int[] array : arrays) { for (int i = 0; i < array.length; i++) { array[i]--; } } } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int[][] readIntTable(int rowCount, int columnCount) { int[][] table = new int[rowCount][]; for (int i = 0; i < rowCount; i++) { table[i] = readIntArray(columnCount); } return table; } public int[] readIntArray(int size) { int[] array = new int[size]; for (int i = 0; i < size; i++) { array[i] = readInt(); } return array; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void printLine(int i) { writer.println(i); } } }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
java
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.HashSet; import java.util.StringTokenizer; import java.util.TreeSet; public class E { static TreeSet<Node> allNodes=new TreeSet<>(); static Node[] nodes; public static void main(String[] args) { FastScanner fs=new FastScanner(); int n=fs.nextInt(), m=fs.nextInt(), k=fs.nextInt(); nodes=new Node[n]; for (int i=0; i<n; i++) nodes[i]=new Node(i); Edge[] edges=new Edge[m]; for (int i=0; i<m; i++) { int a=fs.nextInt()-1, b=fs.nextInt()-1; edges[i]=new Edge(a, b); nodes[a].adj.add(b); nodes[b].adj.add(a); nodes[a].degree++; nodes[b].degree++; } for (Node nn:nodes) { allNodes.add(nn); } int[] answers=new int[m]; while (!allNodes.isEmpty()&&allNodes.first().degree<k) { Node toRemove=allNodes.first(); allNodes.remove(toRemove); for (int nIndex:toRemove.adj) { Node nn=nodes[nIndex]; if (allNodes.contains(nn)) { allNodes.remove(nn); nn.degree--; allNodes.add(nn); } } } for (int i=m-1; i>=0; i--) { answers[i]=allNodes.size(); Edge e=edges[i]; Node a=nodes[e.from], b=nodes[e.to]; if (allNodes.contains(a)&&allNodes.contains(b)) { allNodes.remove(a); allNodes.remove(b); a.degree--; b.degree--; a.adj.remove(e.to); b.adj.remove(e.from); allNodes.add(a); allNodes.add(b); } while (!allNodes.isEmpty()&&allNodes.first().degree<k) { Node toRemove=allNodes.first(); allNodes.remove(toRemove); for (int nIndex:toRemove.adj) { Node nn=nodes[nIndex]; if (allNodes.contains(nn)) { allNodes.remove(nn); nn.degree--; allNodes.add(nn); } } } } PrintWriter out=new PrintWriter(System.out); for (int i=0; i<m; i++) { out.println(answers[i]); } out.close(); } static class Edge { int from, to; public Edge(int from, int to) { this.from=from; this.to=to; } } static class Node implements Comparable<Node> { int degree=0; int index; HashSet<Integer> adj=new HashSet<>(); public Node(int index) { this.index=index; } public int compareTo(Node o) { int degDiff=Integer.compare(degree, o.degree); return degDiff==0?Integer.compare(index, o.index):degDiff; } public int hashcode() { return index; } } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); public String next() { while (!st.hasMoreElements()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) { a[i]=nextInt(); } return a; } public double nextDouble() { return Double.parseDouble(next()); } } }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Vadim Semenov */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskE solver = new TaskE(); solver.solve(1, in, out); out.close(); } static final class TaskE { public void solve(int __, InputReader in, PrintWriter out) { int vertices = in.nextInt(); int edges = in.nextInt(); int threshold = in.nextInt(); int[] u = new int[edges]; int[] v = new int[edges]; int[] degree = new int[vertices]; for (int edge = 0; edge < edges; ++edge) { u[edge] = in.nextInt() - 1; v[edge] = in.nextInt() - 1; degree[u[edge]]++; degree[v[edge]]++; } int[][] graph = new int[vertices][]; Arrays.setAll(graph, vertex -> new int[degree[vertex]]); Arrays.fill(degree, 0); for (int edge = 0; edge < edges; ++edge) { graph[u[edge]][degree[u[edge]]++] = edge; graph[v[edge]][degree[v[edge]]++] = edge; } int[] queue = new int[vertices]; int head = 0; int tail = 0; for (int vertex = 0; vertex < vertices; ++vertex) { if (degree[vertex] < threshold) { queue[tail++] = vertex; } } int[] answer = new int[edges]; boolean[] removed = new boolean[edges]; for (int day = edges; day-- > 0; ) { while (head < tail) { int vertex = queue[head++]; for (int edge : graph[vertex]) { if (removed[edge]) continue; removed[edge] = true; int next = vertex ^ u[edge] ^ v[edge]; if (degree[next] == threshold) { queue[tail++] = next; } degree[next]--; } } answer[day] = vertices - tail; if (!removed[day]) { removed[day] = true; if (degree[v[day]] == threshold) { queue[tail++] = v[day]; } if (degree[u[day]] == threshold) { queue[tail++] = u[day]; } degree[u[day]]--; degree[v[day]]--; } } for (int ans : answer) { out.println(ans); } } } static class InputReader { private final BufferedReader reader; private StringTokenizer tokenizer; public InputReader(InputStream in) { reader = new BufferedReader(new InputStreamReader(in)); } public int nextInt() { return Integer.parseInt(next()); } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(readLine()); } return tokenizer.nextToken(); } public String readLine() { String line; try { line = reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } return line; } } }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> const int maxn = 2e5 + 3; int n, m, k, rest, eu[maxn], ev[maxn], ans[maxn]; std::set<int> G[maxn]; bool poped[maxn]; std::queue<int> q; void delEdge(int u, int v) { G[u].erase(v); G[v].erase(u); if (G[u].size() < k && !poped[u]) { poped[u] = true; --rest; q.push(u); } if (G[v].size() < k && !poped[v]) { poped[v] = true; --rest; q.push(v); } } void erase() { while (!q.empty()) { int u = q.front(); q.pop(); std::set<int> E = G[u]; for (const auto v : E) { delEdge(u, v); } } } int main() { scanf("%d%d%d", &n, &m, &k); for (int i = 0; i < m; ++i) { scanf("%d%d", eu + i, ev + i); G[eu[i]].insert(ev[i]); G[ev[i]].insert(eu[i]); } rest = n; for (int i = 1; i <= n; ++i) { if (G[i].size() < k) { poped[i] = true; --rest; q.push(i); } } erase(); for (int i = m - 1; i >= 0; --i) { ans[i] = rest; delEdge(eu[i], ev[i]); erase(); } for (int i = 0; i < m; ++i) printf("%d\n", ans[i]); return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, m, i, k, u; scanf("%d", &n); scanf("%d", &m); scanf("%d", &k); vector<pair<int, int> > adj[n + 5]; pair<int, int> edges[m + 5]; set<pair<int, int> > degree_set; set<pair<int, int> >::iterator it; bool isthere[n + 5]; int deg[n + 5]; int ans[m + 5]; memset(ans, 0, sizeof(ans)); memset(deg, 0, sizeof(deg)); memset(isthere, true, sizeof(isthere)); for (i = 0; i < m; i++) { scanf("%d", &edges[i].first); scanf("%d", &edges[i].second); adj[edges[i].first].push_back({edges[i].second, i}); adj[edges[i].second].push_back({edges[i].first, i}); ++deg[edges[i].first]; degree_set.insert({deg[edges[i].first], edges[i].first}); degree_set.erase({deg[edges[i].first] - 1, edges[i].first}); ++deg[edges[i].second]; degree_set.insert({deg[edges[i].second], edges[i].second}); degree_set.erase({deg[edges[i].second] - 1, edges[i].second}); } for (i = m - 1; i >= 0; i--) { while (!degree_set.empty() && (*(degree_set.begin())).first < k) { u = (*(degree_set.begin())).second; for (auto k1 : adj[u]) { if (isthere[k1.first] == true && k1.second <= i) { degree_set.erase({deg[k1.first], k1.first}); deg[k1.first]--; degree_set.insert({deg[k1.first], k1.first}); } } degree_set.erase({deg[u], u}); isthere[u] = false; } ans[i] = degree_set.size(); if (isthere[edges[i].first] == true && isthere[edges[i].second] == true) { degree_set.erase({deg[edges[i].first], edges[i].first}); deg[edges[i].first]--; degree_set.insert({deg[edges[i].first], edges[i].first}); degree_set.erase({deg[edges[i].second], edges[i].second}); deg[edges[i].second]--; degree_set.insert({deg[edges[i].second], edges[i].second}); } } for (i = 0; i < m; i++) { printf("%d\n", ans[i]); } return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct P { int x, y, z; bool operator<(const P &a) const { return x < a.x; } }; vector<int> v[222228]; int a, c, i, b, n, m, k, d; int o[221111]; int l[221111]; int j[1111][9]; int e; int dx[10] = {0, 1, 0, -1, 1, 1, -1, -1}, dy[10] = {1, 0, -1, 0, 1, -1, 1, -1}, dz[10] = {0, 0, 0, 0, 1, -1}; long long x, y, mod = 1000000007, mod2 = 1000000009, mod3 = 2017; long long z; double pi = 3.14159265; P u[222221]; stack<int> s; queue<int> q, q1; map<int, int> p[222222]; char r[13]; bool as(P a, P b) { return a.x > b.x; } int main() { scanf("%d %d %d", &a, &b, &c); for (int t = 1; t <= b; t++) { scanf("%d %d", &n, &m); u[t] = {n, m}; p[min(n, m)][max(m, n)] = 1; v[n].push_back(m); v[m].push_back(n); o[n]++; o[m]++; } k = a; for (int t = 1; t <= a; t++) if (o[t] < c) { k--; l[t] = 1; q.push(t); } for (; q.size(); q.pop()) for (int h = 0; h < v[q.front()].size(); h++) if (!l[v[q.front()][h]]) { o[v[q.front()][h]]--; if (o[v[q.front()][h]] < c) { k--; l[v[q.front()][h]] = 1; q.push(v[q.front()][h]); } } s.push(k); for (int t = b; t > 1; t--) if (l[u[t].y] == 0 && !l[u[t].x] && p[min(u[t].x, u[t].y)][max(u[t].x, u[t].y)]) { p[min(u[t].x, u[t].y)][max(u[t].x, u[t].y)] = 0; o[u[t].x]--; o[u[t].y]--; if (l[u[t].x] == 0 && o[u[t].x] < c) { k--; l[u[t].x] = 1; q.push(u[t].x); } if (l[u[t].y] == 0 && o[u[t].y] < c) { k--; l[u[t].y] = 1; q.push(u[t].y); } for (; q.size(); q.pop()) for (int h = 0; h < v[q.front()].size(); h++) if (!l[v[q.front()][h]] && p[min(q.front(), v[q.front()][h])] [max(q.front(), v[q.front()][h])]) { p[min(q.front(), v[q.front()][h])] [max(q.front(), v[q.front()][h])] = 0; o[v[q.front()][h]]--; if (o[v[q.front()][h]] < c) { k--; l[v[q.front()][h]] = 1; q.push(v[q.front()][h]); } } s.push(k); } else s.push(k); for (; s.size(); s.pop()) printf("%d\n", s.top()); }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma comment(linker, "/stack:200000000") using namespace std; int32_t main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); ; long long n, m, k; cin >> n >> m >> k; vector<set<long long>> g(n + 1); vector<long long> deg(n + 1, 0); vector<pair<long long, long long>> v(m); for (long long i = 0; i < m; i++) { long long a, b; cin >> a >> b; g[a].insert(b); g[b].insert(a); deg[a]++; deg[b]++; v[i].first = a; v[i].second = b; } long long ans = n; queue<long long> q; vector<long long> vis(n + 1, 0); for (long long i = 1; i <= n; i++) { if (deg[i] < k) { q.push(i); vis[i] = 1; } } while (!q.empty()) { long long d = q.front(); q.pop(); ans--; for (auto it : g[d]) { g[it].erase(d); deg[it]--; if (deg[it] == k - 1) q.push(it); } g[d].clear(); } vector<long long> fans(m); for (long long i = m - 1; i >= 0; i--) { fans[i] = ans; long long a = v[i].first; long long b = v[i].second; if (g[a].find(b) != g[a].end()) { g[a].erase(b); deg[a]--; if (deg[a] == k - 1) q.push(a); } if (g[b].find(a) != g[b].end()) { g[b].erase(a); deg[b]--; if (deg[b] == k - 1) q.push(b); } while (!q.empty()) { long long d = q.front(); q.pop(); ans--; for (auto it : g[d]) { g[it].erase(d); deg[it]--; if (deg[it] == k - 1) q.push(it); } g[d].clear(); } } for (long long i = 0; i < m; i++) { cout << fans[i] << "\n"; } return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long MOD = 1e9 + 7; const long long N = 3e5 + 10; long long x[N], y[N], deg[N]; vector<long long> vp[N]; long long removed[N]; int32_t main() { ios_base::sync_with_stdio(false); cin.tie(0); long long n, m, k; cin >> n >> m >> k; for (long long i = 1; i <= m; i++) { cin >> x[i] >> y[i]; vp[x[i]].push_back(y[i]); vp[y[i]].push_back(x[i]); deg[x[i]]++; deg[y[i]]++; } set<pair<long long, long long> > s; for (long long i = 1; i <= n; i++) { s.insert({deg[i], i}); } long long ans = n; set<pair<long long, long long> > ae; vector<long long> v; for (long long i = m; i >= 1; i--) { while (s.size() > 0) { auto it = *s.begin(); s.erase(it); if (it.first >= k) break; removed[it.second] = 1; for (auto it1 : vp[it.second]) { if (ae.find({it1, it.second}) == ae.end()) { ae.insert({it1, it.second}); ae.insert({it.second, it1}); if (!removed[it1]) { s.erase({deg[it1], it1}); deg[it1]--; s.insert({deg[it1], it1}); } } } ans--; } if (ae.find({x[i], y[i]}) == ae.end()) { ae.insert({x[i], y[i]}); ae.insert({y[i], x[i]}); s.erase({deg[x[i]], x[i]}); s.erase({deg[y[i]], y[i]}); if (!removed[x[i]]) { deg[x[i]]--; s.insert({deg[x[i]], x[i]}); } if (!removed[y[i]]) { deg[y[i]]--; s.insert({deg[y[i]], y[i]}); } } v.push_back(ans); } reverse(v.begin(), v.end()); for (auto it : v) { cout << it << "\n"; } }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 2e5 + 10; set<pair<int, int> > sq; set<int> to[maxn]; int n, m, k; int a[maxn]; struct node { int l, r; } q[maxn]; void update() { while (sq.size() > 0 && (*(sq.begin())).first < k) { auto x = *(sq.begin()); sq.erase(sq.begin()); for (auto j = to[x.second].begin(); j != to[x.second].end();) { auto value = *j; if (sq.count({a[value], value})) { sq.erase(sq.find({a[value], value})); a[value]--; if (a[value] > 0) sq.insert({a[value], value}); to[x.second].erase(j++); } else j++; } } } int main() { cin >> n >> m >> k; for (int i = 1; i <= m; i++) { int from, t; cin >> from >> t; q[i].l = from, q[i].r = t; to[from].insert(t); to[t].insert(from); a[from]++, a[t]++; } for (int i = 1; i <= n; i++) sq.insert({a[i], i}); vector<int> ans; for (int i = m; i >= 1; i--) { update(); ans.push_back(sq.size()); if (sq.count({a[q[i].l], q[i].l}) && sq.count({a[q[i].r], q[i].r})) { sq.erase(sq.find({a[q[i].l], q[i].l})); sq.erase(sq.find({a[q[i].r], q[i].r})); a[q[i].l]--, a[q[i].r]--; if (a[q[i].l] > 0) sq.insert({a[q[i].l], q[i].l}); if (a[q[i].r] > 0) sq.insert({a[q[i].r], q[i].r}); to[q[i].l].erase(q[i].r); to[q[i].r].erase(q[i].l); } } reverse(ans.begin(), ans.end()); for (auto &i : ans) { cout << i << endl; } return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int max6 = 1e6 + 6; const int oo = 2e9 + 9; const long long inf = 2e18 + 18; vector<pair<int, int> > g[max6]; pair<int, int> a[max6]; int q[max6]; int block[max6]; int deg[max6]; int del[max6]; int res[max6]; int n, m, need; int main() { cin >> n >> m >> need; for (int i = 1; i <= m; ++i) { int u, v; cin >> u >> v; g[u].push_back({v, i}); g[v].push_back({u, i}); a[i] = {u, v}; deg[u]++, deg[v]++; } int l = 1, r = 0; for (int i = 1; i <= n; ++i) if (deg[i] < need) q[++r] = i, del[i] = 1; int maxMem = n; for (int i = m; i >= 1; --i) { while (l <= r) { int u = q[l++]; maxMem--; for (auto it : g[u]) { int id = it.second; int v = it.first; if (block[id]) continue; if (del[v]) continue; block[id] = 1; deg[v]--; if (deg[v] < need) { del[v] = 1; q[++r] = v; } } } res[i] = maxMem; int u = a[i].first; int v = a[i].second; if (del[u] || del[v]) continue; deg[u]--; deg[v]--; block[i] = 1; if (deg[u] < need) { q[++r] = u; del[u] = 1; } if (deg[v] < need) { q[++r] = v; del[v] = 1; } } for (int i = 1; i <= m; ++i) cout << res[i] << "\n"; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int get() { char ch; while (ch = getchar(), (ch < '0' || ch > '9') && ch != '-') ; if (ch == '-') { int s = 0; while (ch = getchar(), ch >= '0' && ch <= '9') s = s * 10 + ch - '0'; return -s; } int s = ch - '0'; while (ch = getchar(), ch >= '0' && ch <= '9') s = s * 10 + ch - '0'; return s; } const int N = 2e5 + 5; struct edge { int x, nxt; } e[N * 2]; int h[N], tot; int d[N]; struct EDGE { int x, y; } ed[N]; int n, m, k; int ans[N]; int cnt; bool bz[N]; bool er[N]; int update(int &now) { for (; now && er[now / 2]; now = e[now].nxt) ; return now; } void del(int x) { if (bz[x]) return; bz[x] = 1; cnt--; for (; update(h[x]);) { int p = h[x]; d[x]--, d[e[p].x]--; er[p / 2] = 1; if (d[e[p].x] < k) del(e[p].x); } } void inse(int x, int y) { e[++tot].x = y; e[tot].nxt = h[x]; h[x] = tot; } int main() { n = get(); m = get(); k = get(); tot = 1; for (int i = 1; i <= m; i++) { ed[i].x = get(); ed[i].y = get(); inse(ed[i].x, ed[i].y); inse(ed[i].y, ed[i].x); d[ed[i].x]++, d[ed[i].y]++; } cnt = n; for (int i = 1; i <= n; i++) if (d[i] < k) del(i); for (int i = m; i >= 1; i--) { int x = ed[i].x, y = ed[i].y; ans[i] = cnt; if (er[i]) ; else { er[i] = 1; d[x]--, d[y]--; if (d[x] < k) del(x); if (d[y] < k) del(y); } } for (int i = 1; i <= m; i++) printf("%d\n", ans[i]); return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.List; import java.util.Arrays; import java.util.InputMismatchException; import java.io.IOException; import java.util.ArrayList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Pradyumn */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastReader in = new FastReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskE solver = new TaskE(); solver.solve(1, in, out); out.close(); } static class TaskE { public void solve(int testNumber, FastReader in, PrintWriter out) { int n = in.nextInt(); int m = in.nextInt(); int K = in.nextInt(); List<int[]>[] g = new List[n]; int[] from = new int[m]; int[] to = new int[m]; for (int i = 0; i < n; ++i) g[i] = new ArrayList<>(); for (int i = 0; i < m; ++i) { from[i] = in.nextInt() - 1; to[i] = in.nextInt() - 1; g[from[i]].add(new int[]{to[i], i}); g[to[i]].add(new int[]{from[i], i}); } boolean[] alive = new boolean[m]; ArrayUtils.fill(alive, true); int[] deg = new int[n]; int[] queue = new int[n]; int sizeQ = 0; int ptr = 0; for (int i = 0; i < n; ++i) { deg[i] = g[i].size(); if (deg[i] < K) { queue[sizeQ++] = i; } } int[] ans = new int[m]; for (int i = m - 1; i >= 0; --i) { while (ptr < sizeQ) { int cur = queue[ptr++]; for (int[] edge : g[cur]) { if (!alive[edge[1]]) continue; alive[edge[1]] = false; if (deg[edge[0]] == K) { queue[sizeQ++] = edge[0]; } --deg[edge[0]]; --deg[cur]; } } ans[i] = n - sizeQ; if (alive[i]) { if (deg[from[i]] == K) queue[sizeQ++] = from[i]; if (deg[to[i]] == K) queue[sizeQ++] = to[i]; --deg[from[i]]; --deg[to[i]]; alive[i] = false; } } for (int aa : ans) out.println(aa); } } static class FastReader { private InputStream stream; private byte[] buf = new byte[8192]; private int curChar; private int pnumChars; public FastReader(InputStream stream) { this.stream = stream; } private int pread() { if (pnumChars == -1) { throw new InputMismatchException(); } if (curChar >= pnumChars) { curChar = 0; try { pnumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (pnumChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = pread(); while (isSpaceChar(c)) c = pread(); int sgn = 1; if (c == '-') { sgn = -1; c = pread(); } int res = 0; do { if (c == ',') { c = pread(); } if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = pread(); } while (!isSpaceChar(c)); return res * sgn; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } static class ArrayUtils { public static void fill(boolean[] array, boolean value) { Arrays.fill(array, value); } } }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, m, k; int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n >> m >> k; vector<set<int>> g(n); vector<int> deg(n); set<pair<int, int>> cur; vector<pair<int, int>> edges; for (int i = 0; i < m; i++) { int a, b; cin >> a >> b; a--; b--; deg[a]++; deg[b]++; edges.emplace_back(a, b); g[a].insert(b); g[b].insert(a); } for (int i = 0; i < n; i++) cur.insert(make_pair(deg[i], i)); auto solve = [&]() { while (true) { if (cur.empty()) break; auto u = cur.begin(); vector<int> rev; if (u->first < k) { for (int i : g[u->second]) { rev.push_back(i); } cur.erase(u); for (int i : rev) { if (cur.find(make_pair(deg[i], i)) != cur.end()) { cur.erase(make_pair(deg[i], i)); cur.insert(make_pair(deg[i] - 1, i)); } deg[i]--; } } else break; } }; solve(); vector<int> ans; ans.push_back(cur.size()); for (int i = m - 1; i > -1; i--) { int u = edges[i].first, v = edges[i].second; if (cur.find(make_pair(deg[u], u)) != cur.end() && cur.find(make_pair(deg[v], v)) != cur.end()) { cur.erase(make_pair(deg[u], u)); deg[u]--; cur.insert(make_pair(deg[u], u)); cur.erase(make_pair(deg[v], v)); deg[v]--; cur.insert(make_pair(deg[v], v)); } g[u].erase(v); g[v].erase(u); solve(); ans.push_back(cur.size()); } ans.pop_back(); reverse(ans.begin(), ans.end()); for (int i : ans) cout << i << endl; return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, m; cin >> n >> m; int k; cin >> k; vector<set<int>> g(n); vector<int> x(m), y(m); for (int i = 0; i < m; i++) { cin >> x[i] >> y[i], x[i]--, y[i]--; g[x[i]].emplace(y[i]); g[y[i]].emplace(x[i]); } int ans = n; queue<int> que; vector<int> alive(n, true); for (int i = 0; i < n; i++) if ((int)g[i].size() < k) { que.emplace(i), alive[i] = false, ans--; } vector<int> res(m); for (int i = m - 1; i >= 0; i--) { while (!que.empty()) { int u = que.front(); que.pop(); for (int v : g[u]) g[v].erase(u); for (int v : g[u]) if (alive[v] && (int)g[v].size() < k) { que.emplace(v), alive[v] = false, ans--; } g[u].clear(); } res[i] = ans; int u = x[i], v = y[i]; g[u].erase(v), g[v].erase(u); if (alive[u] && (int)g[u].size() < k) { que.emplace(u), alive[u] = false, ans--; } if (alive[v] && (int)g[v].size() < k) { que.emplace(v), alive[v] = false, ans--; } } for (int e : res) cout << e << endl; return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ld = double; using pll = pair<ll, ll>; using vll = vector<ll>; using vpll = vector<pll>; using vvll = vector<vll>; stack<ll> st; vector<ll> deg; vector<vector<ll>> g; vector<pair<ll, ll>> e; ll k; set<pair<ll, ll>> deleted; ll fixStuff() { ll del = 0; while (!st.empty()) { ll i = st.top(); st.pop(); if (deg[i] < 0) continue; deg[i] = -1; del++; for (ll j = 0; j < (ll)g[i].size(); ++j) { if (deleted.count(make_pair(i, g[i][j]))) continue; if (deleted.count(make_pair(g[i][j], i))) continue; deg[g[i][j]]--; if (deg[g[i][j]] < k) { st.push(g[i][j]); } } } return del; } int main() { ios::sync_with_stdio(0); cout.tie(0); cin.tie(0); ll n, m; cin >> n >> m >> k; deg = vector<ll>(n); g = vector<vector<ll>>(n); e = vector<pair<ll, ll>>(m); for (ll i = 0; i < (ll)m; ++i) { ll u, v; cin >> u >> v; u--; v--; g[u].push_back(v); g[v].push_back(u); deg[u]++; deg[v]++; e[i].first = u; e[i].second = v; } for (ll i = 0; i < (ll)n; ++i) if (deg[i] < k) st.push(i); vector<ll> res; ll cnt = n - fixStuff(); for (ll i = m - 1; i >= (ll)0; --i) { res.push_back(cnt); if (deg[e[i].first] < 0 || deg[e[i].second] < 0) continue; deg[e[i].first]--; deg[e[i].second]--; deleted.insert(make_pair(e[i].first, e[i].second)); if ((deg[e[i].first] < k && deg[e[i].first] >= 0)) st.push(e[i].first); if ((deg[e[i].second] < k && deg[e[i].second] >= 0)) st.push(e[i].second); if (!st.empty()) cnt -= fixStuff(); } reverse(res.begin(), res.end()); for (ll i = 0; i < (ll)res.size(); ++i) cout << res[i] << endl; return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.io.BufferedInputStream; import java.util.TreeSet; import java.util.ArrayList; import java.util.HashSet; import java.io.FilterInputStream; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Jenish */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; ScanReader in = new ScanReader(inputStream); PrintWriter out = new PrintWriter(outputStream); ETrips solver = new ETrips(); solver.solve(1, in, out); out.close(); } static class ETrips { int[] degree; ArrayList<Integer>[] arrayList; public void solve(int testNumber, ScanReader in, PrintWriter out) { int n = in.scanInt(); int m = in.scanInt(); int k = in.scanInt(); degree = new int[n + 1]; arrayList = new ArrayList[n + 1]; for (int i = 0; i <= n; i++) { arrayList[i] = new ArrayList<>(); } int edges[][] = new int[m][2]; for (int i = 0; i < m; i++) { int x = in.scanInt(); int y = in.scanInt(); edges[i][0] = x; edges[i][1] = y; degree[x]++; degree[y]++; arrayList[x].add(y); arrayList[y].add(x); } TreeSet<pair> treeSet = new TreeSet<>(); HashSet<Long> set = new HashSet<>(); for (int i = 1; i <= n; i++) { treeSet.add(new pair(degree[i], i)); } boolean inside[] = new boolean[n + 1]; Arrays.fill(inside, true); while (!treeSet.isEmpty() && treeSet.first().degree < k) { pair temp = treeSet.first(); for (int i = 0; i < arrayList[temp.index].size(); i++) { int adj = arrayList[temp.index].get(i); if (!inside[adj]) continue; if (set.contains(adj * 1000000000l + temp.index) || set.contains(temp.index * 1000000000l + adj)) continue; treeSet.remove(new pair(degree[adj], adj)); degree[adj]--; degree[temp.index]--; treeSet.add(new pair(degree[adj], adj)); set.add(adj * 1000000000l + temp.index); } inside[temp.index] = false; treeSet.remove(temp); } long ans[] = new long[m]; ans[m - 1] = treeSet.size(); for (int i = m - 1; i > 0; i--) { int x = edges[i][0]; int y = edges[i][1]; if (inside[x] && inside[y]) { treeSet.remove(new pair(degree[x], x)); degree[x]--; treeSet.add(new pair(degree[x], x)); treeSet.remove(new pair(degree[y], y)); degree[y]--; treeSet.add(new pair(degree[y], y)); set.add(1000000000l * x + y); } while (!treeSet.isEmpty() && treeSet.first().degree < k) { pair temp = treeSet.first(); for (int j = 0; j < arrayList[temp.index].size(); j++) { int adj = arrayList[temp.index].get(j); if (!inside[adj]) continue; if (set.contains(adj * 1000000000l + temp.index) || set.contains(temp.index * 1000000000l + adj)) continue; treeSet.remove(new pair(degree[adj], adj)); degree[adj]--; degree[temp.index]--; treeSet.add(new pair(degree[adj], adj)); set.add(adj * 1000000000l + temp.index); } inside[temp.index] = false; treeSet.remove(temp); } ans[i - 1] = treeSet.size(); } for (int i = 0; i < m; i++) { out.println(ans[i]); } } class pair implements Comparable<pair> { int degree; int index; public pair(int degree, int index) { this.degree = degree; this.index = index; } public int compareTo(pair o) { if (this.degree == o.degree) return this.index - o.index; return this.degree - o.degree; } } } static class ScanReader { private byte[] buf = new byte[4 * 1024]; private int INDEX; private BufferedInputStream in; private int TOTAL; public ScanReader(InputStream inputStream) { in = new BufferedInputStream(inputStream); } private int scan() { if (INDEX >= TOTAL) { INDEX = 0; try { TOTAL = in.read(buf); } catch (Exception e) { e.printStackTrace(); } if (TOTAL <= 0) return -1; } return buf[INDEX++]; } public int scanInt() { int I = 0; int n = scan(); while (isWhiteSpace(n)) n = scan(); int neg = 1; if (n == '-') { neg = -1; n = scan(); } while (!isWhiteSpace(n)) { if (n >= '0' && n <= '9') { I *= 10; I += n - '0'; n = scan(); } } return neg * I; } private boolean isWhiteSpace(int n) { if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true; else return false; } } }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; const long long LINF = 0x3f3f3f3f3f3f3f3f; const int MOD = 1e9 + 7; int dir[8][2] = {-1, 0, 1, 0, 0, -1, 0, 1, -1, -1, -1, 1, 1, -1, 1, 1}; template <typename S, typename T> ostream &operator<<(ostream &os, const pair<S, T> x) { os << "(" << x.first << ", " << x.second << ")"; return os; } template <typename S, typename T> inline bool Min(S &a, const T &b) { return a > b ? a = b, true : false; } template <typename S, typename T> inline bool Max(S &a, const T &b) { return a < b ? a = b, true : false; } template <typename S, typename T> inline void Adm(S &a, const T &b) { a = (a + b) % MOD; if (a < 0) a += MOD; } template <typename T> inline bool IsPri(T x) { if (x < 2) return false; for (T i = 2; i * i <= x; ++i) if (x % i == 0) return false; return true; } template <typename T> inline T _Gcd(T a, T b) { while (b) { T t = b; b = a % b; a = t; } return a; } template <typename T> inline int _BitCnt(T x) { int cnt = 0; while (x) ++cnt, x &= x - 1; return cnt; } inline long long Pow(long long a, long long n) { long long t = 1; a %= MOD; while (n > 0) { if (n & 1) t = t * a % MOD; a = a * a % MOD, n >>= 1; } return t % MOD; } inline int read() { static char buf[1000000], *p1 = buf, *p2 = buf; register int x = false; register char ch = p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1000000, stdin), p1 == p2) ? EOF : *p1++; ; register bool sgn = false; while (ch != '-' && (ch < '0' || ch > '9')) ch = p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1000000, stdin), p1 == p2) ? EOF : *p1++; ; if (ch == '-') sgn = true, ch = p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1000000, stdin), p1 == p2) ? EOF : *p1++; ; while (ch >= '0' && ch <= '9') x = (x << 1) + (x << 3) + (ch ^ 48), ch = p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1000000, stdin), p1 == p2) ? EOF : *p1++; ; return sgn ? -x : x; } const int N = 2e5 + 100; int d[N], del[N]; vector<pair<int, int> > e[N]; int u[N], v[N], ans[N]; int main() { int n, m, k; cin >> n >> m >> k; for (int i = 1; i <= m; ++i) { scanf("%d%d", &u[i], &v[i]); e[u[i]].push_back({v[i], i}), e[v[i]].push_back({u[i], i}); ++d[u[i]], ++d[v[i]]; } set<pair<int, int> > st; for (int i = 1; i <= n; ++i) st.insert({d[i], i}); for (int i = m; i >= 1; --i) { while (!st.empty() && st.begin()->first < k) { int u = st.begin()->second; st.erase(st.begin()), del[u] = 1; for (auto it : e[u]) { int v = it.first, id = it.second; if (!del[v] && id <= i) st.erase({d[v], v}), st.insert({--d[v], v}); } } ans[i] = ((int)(st).size()); if (!del[u[i]] && !del[v[i]]) { st.erase({d[u[i]], u[i]}), st.insert({--d[u[i]], u[i]}); st.erase({d[v[i]], v[i]}), st.insert({--d[v[i]], v[i]}); } } for (int i = 1; i <= m; ++i) printf("%d\n", ans[i]); return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long N = 201102; vector<long long> g[N]; set<pair<long long, long long> > s; long long n, m, k, v, u, d[N], a[N], b[N], ans[N]; pair<long long, long long> x; set<pair<long long, long long> >::iterator it; map<long long, bool> e[N]; int main() { scanf("%lld%lld%lld", &n, &m, &k); for (long long i = 1; i <= m; i++) { scanf("%lld%lld", &v, &u); d[v]++, d[u]++; g[v].push_back(u), g[u].push_back(v); a[i] = v, b[i] = u; } for (long long i = 1; i <= n; i++) s.insert({d[i], i}); for (long long i = m + 1; i >= 1 and s.size(); i--) { v = a[i]; if (e[a[i]][b[i]]) { ans[i] = s.size(); continue; } e[b[i]][a[i]] = e[a[i]][b[i]] = 1; if (d[v] >= k) { s.erase({d[v], v}); d[v]--; s.insert({d[v], v}); } v = b[i]; if (d[v] >= k) { s.erase({d[v], v}); d[v]--; s.insert({d[v], v}); } while (s.size()) { v = (*s.begin()).second; if (d[v] >= k) break; s.erase({d[v], v}); d[v] = 0; for (long long j = 0; j < g[v].size(); j++) { u = g[v][j]; if (d[u] < k or e[u][v] or s.find({d[u], u}) == s.end()) continue; e[u][v] = e[v][u] = 1; s.erase({d[u], u}); d[u]--; s.insert({d[u], u}); } } ans[i] = s.size(); } for (long long i = 2; i <= m + 1; i++) printf("%lld\n", ans[i]); }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T1, class T2> inline void upd1(T1& a, const T2& b) { a = a < b ? a : b; } template <class T1, class T2> inline void upd2(T1& a, const T2& b) { a = a > b ? a : b; } template <class T> inline bool equ(const T& a, const T& b) { return !memcmp(&a, &b, sizeof a); } long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } struct ano { operator long long() { long long x = 0, y = 0, c = getchar(); while (c < 48) y = c == 45, c = getchar(); while (c > 47) x = x * 10 + c - 48, c = getchar(); return y ? -x : x; } } buf; const int N = 2e5 + 5; set<int> t[N]; int d[N], f[N]; int main() { int n = buf, m = buf, k = buf; vector<array<int, 2>> e; set<array<int, 2>> c; for (int i = 0; i < m; ++i) { int u = buf, v = buf; if (u > v) swap(u, v); c.insert({u, v}); e.push_back({u, v}); t[u].insert(v); t[v].insert(u); ++d[u]; ++d[v]; } queue<int> q; for (int i = 1; i <= n; ++i) if (d[i] < k) q.push(i); int s = n; for (int i = m - 1; ~i; --i) { while (q.size()) { int u = q.front(); q.pop(); for (int v : t[u]) { c.erase({min(u, v), max(u, v)}); t[v].erase(u); if (d[v]-- == k) q.push(v); } --s; } f[i] = s; if (c.count(e[i])) { int u = e[i][0], v = e[i][1]; t[u].erase(v); t[v].erase(u); if (d[u]-- == k) q.push(u); if (d[v]-- == k) q.push(v); } } for (int i = 0; i < m; ++i) printf("%d\n", f[i]); }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAXN = 2e5 + 5; vector<pair<int, int> > e; set<pair<int, int> > f; vector<int> adj[MAXN]; int n, m, k, deg[MAXN], num; bool kicked[MAXN]; vector<int> ans; int main() { scanf("%d %d %d", &n, &m, &k); for (int i = 0; i < m; ++i) { int u, v; scanf("%d %d", &u, &v); e.push_back(pair<int, int>(u, v)); f.insert(pair<int, int>(u, v)); adj[u].push_back(v); adj[v].push_back(u); deg[u]++; deg[v]++; } num = n; queue<int> q; for (int i = 1; i <= n; ++i) { if (deg[i] < k) { q.push(i); } } while (!q.empty()) { int top = q.front(); q.pop(); if (kicked[top]) continue; kicked[top] = true; num--; for (int j : adj[top]) if (f.count(pair<int, int>(top, j)) + f.count(pair<int, int>(j, top)) == 1) { deg[j]--; f.erase(pair<int, int>(j, top)); f.erase(pair<int, int>(top, j)); if (deg[j] < k) { q.push(j); } } } reverse(e.begin(), e.end()); for (pair<int, int> i : e) { ans.push_back(num); if (f.count(i) == 0) continue; deg[i.first]--; deg[i.second]--; f.erase(i); queue<int> q; if (deg[i.first] < k && !kicked[i.first]) q.push(i.first); if (deg[i.second] < k && !kicked[i.second]) q.push(i.second); while (!q.empty()) { int top = q.front(); q.pop(); if (kicked[top]) continue; kicked[top] = true; num--; for (int j : adj[top]) if (f.count(pair<int, int>(top, j)) + f.count(pair<int, int>(j, top)) == 1) { deg[j]--; f.erase(pair<int, int>(j, top)); f.erase(pair<int, int>(top, j)); if (deg[j] < k) { q.push(j); } } } } reverse(ans.begin(), ans.end()); for (int i : ans) printf("%d\n", i); }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 200005; set<int> e[N]; int deg[N], x[N], y[N], ans[N], q[N], del[N]; int n, m, k, tail = 0, head = 1; void delv(int u) { if (deg[u] >= k || del[u]) return; del[u] = 1; q[++tail] = u; } int main() { scanf("%d%d%d", &n, &m, &k); for (int i = 1; i <= m; ++i) { scanf("%d%d", x + i, y + i); e[x[i]].insert(y[i]); e[y[i]].insert(x[i]); ++deg[x[i]], ++deg[y[i]]; } for (int i = 1; i <= n; ++i) delv(i); for (int i = m; i >= 1; --i) { while (head <= tail) { int u = q[head++]; for (auto &v : e[u]) { --deg[v]; delv(v); e[v].erase(u); } } ans[i] = n - tail; if (!del[x[i]] && !del[y[i]]) { --deg[x[i]], --deg[y[i]]; delv(x[i]), delv(y[i]); e[x[i]].erase(y[i]); e[y[i]].erase(x[i]); } } for (int i = 1; i <= m; ++i) printf("%d%c", ans[i], " \n"[i == m]); return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct DATA { int first, second; }; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int n, m, k; cin >> n >> m >> k; vector<vector<int>> adj(n + 1); vector<int> degree(n + 1, 0); set<pair<int, int>> good_set; vector<bool> check(n + 1, true); vector<int> ans(m + 1, true); vector<DATA> edge(m + 1); check[0] = false; for (int i = 1; i <= m; ++i) { cin >> edge[i].first >> edge[i].second; adj[edge[i].first].push_back(edge[i].second); adj[edge[i].second].push_back(edge[i].first); degree[edge[i].first]++; degree[edge[i].second]++; } for (int i = 1; i <= n; ++i) { good_set.insert(pair<int, int>(degree[i], i)); } while (!good_set.empty() && good_set.begin()->first < k) { int node = good_set.begin()->second; for (int i = 0; i < adj[node].size(); ++i) { int v = adj[node][i]; if (check[v]) { good_set.erase(pair<int, int>(degree[v], v)); --degree[v]; good_set.insert(pair<int, int>(degree[v], v)); } } good_set.erase(pair<int, int>(degree[node], node)); check[node] = false; } ans[m] = good_set.size(); for (int i = m; i > 1; --i) { int x = edge[i].first; int y = edge[i].second; if (check[x] && check[y]) { good_set.erase(pair<int, int>(degree[x], x)); degree[x]--; good_set.insert(pair<int, int>(degree[x], x)); good_set.erase(pair<int, int>(degree[y], y)); degree[y]--; good_set.insert(pair<int, int>(degree[y], y)); adj[x].erase(std::remove(adj[x].begin(), adj[x].end(), y), adj[x].end()); adj[y].erase(std::remove(adj[y].begin(), adj[y].end(), x), adj[y].end()); while (!good_set.empty() && good_set.begin()->first < k) { int node = good_set.begin()->second; for (int j = 0; j < adj[node].size(); ++j) { int v = adj[node][j]; if (check[v]) { good_set.erase(pair<int, int>(degree[v], v)); --degree[v]; good_set.insert(pair<int, int>(degree[v], v)); } } good_set.erase(pair<int, int>(degree[node], node)); check[node] = false; } } ans[i - 1] = good_set.size(); } for (int i = 1; i <= m; ++i) cout << ans[i] << endl; return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 200005; int n, m, k, l, i, ans, a[N], b[N], in[N], x[N], y[N], z[N], head[N], go[N + N], Next[N + N]; bool f[N], use[N + N]; inline void Add(int u, int v) { Next[++l] = head[u], head[u] = l, go[l] = v, use[l] = 1; } inline void bfs(int x) { int l, r, j, u, v; if (in[x] >= k || !f[x]) return; for (b[l = r = 1] = x, f[x] = 0, ans--; l <= r; l++) { for (j = head[u = b[l]]; j; j = Next[j]) { if (!use[j]) continue; in[v = go[j]]--, in[u]--; use[j] = use[j ^ 1] = 0; if (f[v] && in[v] < k) b[++r] = v, f[v] = 0, ans--; } } } int main() { scanf("%d%d%d", &n, &m, &k); for (l = 1, i = 1; i <= m; i++) scanf("%d%d", &x[i], &y[i]), Add(x[i], y[i]), Add(y[i], x[i]), z[i] = l, in[x[i]]++, in[y[i]]++; memset(f, 1, sizeof(f)); for (ans = n, i = 1; i <= n; i++) bfs(i); for (i = m; i; i--) { a[i] = ans; if (!use[z[i]]) continue; in[x[i]]--, in[y[i]]--, use[z[i]] = use[z[i] ^ 1] = 0; bfs(x[i]), bfs(y[i]); } for (i = 1; i <= m; i++) printf("%d\n", a[i]); return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, m, k, cnt; struct Edge { int u, v; }; vector<Edge> vE; vector<int> ans; const int maxN = 2 * 100000 + 1; set<int> edge[maxN]; set<int> nodes; queue<int> Q; int do_remove() { while (!Q.empty()) { int s = Q.front(); Q.pop(); if (edge[s].size() < k) { for (auto iter1 = edge[s].begin(); iter1 != edge[s].end(); iter1++) { int t = *iter1; edge[t].erase(s); if (edge[t].size() < k) Q.push(t); } edge[s].clear(); auto iter = nodes.find(s); if (iter != nodes.end()) nodes.erase(iter); }; } return nodes.size(); } int main() { ios_base::sync_with_stdio(0); cout.tie(0); cin >> n >> m >> k; for (int i = 1; i <= n; i++) nodes.insert(i); cnt = n; for (int i = 0; i < m; i++) { int s, t; cin >> s >> t; vE.push_back(Edge{s, t}); edge[s].insert(t); edge[t].insert(s); } for (int i = 1; i <= n; i++) if (edge[i].size() < k) Q.push(i); int ret = do_remove(); ans.push_back(ret); for (int i = vE.size() - 1; i >= 1; i--) { int s = vE[i].u; int t = vE[i].v; edge[s].erase(t); edge[t].erase(s); Q.push(s); Q.push(t); int ret = do_remove(); ans.push_back(ret); } for (int i = ans.size() - 1; i >= 0; i--) { cout << ans[i] << endl; } return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MN = 2e5 + 5; int n, m, k, x, y; set<int> al[MN], t; vector<pair<int, int> > el; void del(int u) { if (!t.count(u) || al[u].size() >= k) return; t.erase(u); for (int v : al[u]) al[v].erase(u); for (int v : al[u]) if (al[v].size() < k) del(v); } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cin >> n >> m >> k; for (int i = 0; i < m; i++) { cin >> x >> y; el.push_back(pair<int, int>(x, y)); al[x].insert(y); al[y].insert(x); } for (int i = 1; i <= n; i++) t.insert(i); for (int i = 1; i <= n; i++) del(i); int res[m + 1]; for (int i = el.size() - 1; i >= 0; i--) { res[i] = t.size(); pair<int, int> e = el[i]; int x = e.first, y = e.second; al[x].erase(y); al[y].erase(x); del(x); del(y); } for (int i = 0; i < m; i++) { cout << res[i] << "\n"; } return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC target("avx2") #pragma GCC optimization("O3") #pragma GCC optimization("unroll-loops") using namespace std; const int MAX = 200005; int ans[MAX]; vector<int> P[MAX]; pair<int, int> edges[MAX]; bool O[MAX]; int SZ[MAX]; set<pair<int, int> > wziete; int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); ; int n, m, k; cin >> n >> m >> k; int akt = 0; for (int i = 1; i <= m; i++) { int a, b; cin >> a >> b; SZ[a]++; SZ[b]++; edges[i] = make_pair(a, b); P[a].push_back(b); P[b].push_back(a); } queue<int> Q; for (int i = 1; i <= n; i++) { if (O[i]) continue; if (P[i].size() < k) { O[i] = true; Q.push(i); } } while (!Q.empty()) { int aktuell = Q.front(); Q.pop(); for (auto it : P[aktuell]) { int l1 = it; int l2 = aktuell; if (l1 > l2) swap(l1, l2); if (wziete.find(make_pair(l1, l2)) != wziete.end()) continue; if (!O[it] && SZ[it] - 1 < k) { O[it] = true; Q.push(it); } SZ[it]--; wziete.insert(make_pair(l1, l2)); } } for (int i = 1; i <= n; i++) if (!O[i]) akt++; ans[m] = akt; for (int i = m; i >= 2; i--) { int a = edges[i].first; int b = edges[i].second; if (a > b) swap(a, b); if (wziete.find(make_pair(a, b)) != wziete.end()) { ans[i - 1] = akt; continue; } wziete.insert(make_pair(a, b)); SZ[a]--; SZ[b]--; if (!O[a] && SZ[a] < k) { O[a] = true; Q.push(a); akt--; } if (!O[b] && SZ[b] < k) { O[b] = true; Q.push(b); akt--; } while (!Q.empty()) { int aktuell = Q.front(); Q.pop(); for (auto it : P[aktuell]) { int l1 = it; int l2 = aktuell; if (l1 > l2) swap(l1, l2); if (wziete.find(make_pair(l1, l2)) != wziete.end()) continue; if (!O[it] && SZ[it] - 1 < k) { O[it] = true; Q.push(it); akt--; } SZ[it]--; wziete.insert(make_pair(l1, l2)); } } ans[i - 1] = akt; } for (int i = 1; i <= m; i++) cout << ans[i] << "\n"; return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
java
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; /** * */ public class E { static LinkedList<Pair>[] g; static int k; static boolean[] s; static int size; static int[] degree; static Queue<Integer> q = new ArrayDeque<>(); public static void main(String[] args) throws IOException { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(reader.readLine()); int n = Integer.parseInt(st.nextToken()); int m = Integer.parseInt(st.nextToken()); k = Integer.parseInt(st.nextToken()); s = new boolean[n]; g = new LinkedList[n]; degree = new int[n]; int[][] f = new int[m][2]; for (int i = 0; i < m; i++) { st = new StringTokenizer(reader.readLine()); int a = Integer.parseInt(st.nextToken())-1; int b = Integer.parseInt(st.nextToken())-1; if (g[a] == null) { g[a] = new LinkedList<>(); } if (g[b] == null) { g[b] = new LinkedList<>(); } g[a].add(new Pair(b,i)); g[b].add(new Pair(a,i)); degree[a]++;degree[b]++; f[i][0] = a; f[i][1] = b; } for (int i = 0; i < n; i++) { if(degree[i]>0){ if(degree[i]>=k){ s[i] = true; size ++; }else{ q.add(i); } } } while (!q.isEmpty()){ int v = q.poll(); for (Pair u : g[v]) { if(s[u.a]) { degree[u.a]--; if (degree[u.a] < k) { q.add(u.a); s[u.a] = false; size--; } } } } int[] ans = new int[m]; for (int i = m-1; i >=0; i--) { ans[i] = size; int a = f[i][0]; int b = f[i][1]; if(s[a] && s[b]) { degree[a]--;degree[b]--; if (degree[a] < k){ q.add(a); s[a] = false; size--; } if (degree[b] < k){ q.add(b); s[b] = false; size--; } while (!q.isEmpty()){ int v = q.poll(); for (Pair u : g[v]) { if(u.b < i && s[u.a]) { degree[u.a]--; if (degree[u.a] < k) { q.add(u.a); s[u.a] = false; size--; } } } } } } for (int i = 0; i < m; i++) { System.out.println(ans[i]); } } static class Pair{ int a; int b; public Pair(int a, int b) { this.a = a; this.b = b; } } }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.util.Set; import java.util.InputMismatchException; import java.io.IOException; import java.util.ArrayList; import java.util.HashSet; import java.util.List; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author prakharjain */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskE solver = new TaskE(); solver.solve(1, in, out); out.close(); } static class TaskE { Set[] g; int[] deg; Set<Integer> s; int k; int n; public void solve(int testNumber, InputReader in, OutputWriter out) { n = in.nextInt(); int m = in.nextInt(); k = in.nextInt(); g = new Set[n]; for (int i = 0; i < n; i++) { g[i] = new HashSet(); } deg = new int[n]; List<edge> edges = new ArrayList<>(); for (int i = 0; i < m; i++) { int u = in.nextInt() - 1; int v = in.nextInt() - 1; edges.add(new edge(u, v)); g[u].add(v); g[v].add(u); deg[u]++; deg[v]++; } s = new HashSet<>(); List<vertex> vertices = new ArrayList<>(); for (int i = 0; i < n; i++) { s.add(i); vertices.add(new vertex(i, deg[i])); } vertices.sort((v1, v2) -> v1.d - v2.d); int i = 0; for (i = 0; i < n; i++) { if (vertices.get(i).d < k) { int u = vertices.get(i).u; if (s.contains(u)) dfs(u, -1, -1); } else { break; } } //out.println(s.size()); List<Integer> ans = new ArrayList<>(); ans.add(s.size()); for (int j = m - 1; j > 0; j--) { edge ce = edges.get(j); g[ce.u].remove(ce.v); g[ce.v].remove(ce.u); if (s.contains(ce.u) && s.contains(ce.v)) { // ArrayDeque<Integer> q = new ArrayDeque<>(); // // q.addFirst(ce.u); // q.addLast(ce.v); // // while (!q.isEmpty()) { // int e = q.removeFirst(); // // deg[e]--; // // if (deg[e] < k) { // s.remove(e); // for (int v : (Set<Integer>) g[e]) { // if (s.contains(v)) { // q.addLast(v); // } // } // } // } dfs(ce.u, ce.v, ce.u); if (s.contains(ce.v)) dfs(ce.v, ce.u, ce.v); } ans.add(s.size()); //out.println(s.size()); } for (int j = ans.size() - 1; j >= 0; j--) { out.println(ans.get(j)); } } void dfs(int u, int ov, int ou) { deg[u]--; if (deg[u] >= k) { return; } s.remove(u); for (int v : (Set<Integer>) g[u]) { if (s.contains(v)) { dfs(v, ov, ou); } } } class edge { int u; int v; public edge(int u, int v) { this.u = u; this.v = v; } } class vertex { int u; int d; public vertex(int u, int d) { this.u = u; this.d = d; } } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void println(int i) { writer.println(i); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, m, k, cnt[222222], x[222222], y[222222], all, idx[222222], idy[222222], ans[222222]; bool used[222222]; vector<pair<int, int> > g[222222]; void upd(int i) { used[i] = 1; all--; for (int j = 0; j < g[i].size(); j++) { if (!g[i][j].second) continue; cnt[g[i][j].first]--; if (used[g[i][j].first]) continue; if (cnt[g[i][j].first] < k) upd(g[i][j].first); } } int main() { scanf("%d%d%d", &n, &m, &k); for (int i = 1; i <= m; i++) { scanf("%d%d", &x[i], &y[i]); idx[i] = g[x[i]].size(); idy[i] = g[y[i]].size(); g[x[i]].push_back(make_pair(y[i], 1)); g[y[i]].push_back(make_pair(x[i], 1)); } all = n; for (int i = 1; i <= n; i++) cnt[i] = g[i].size(); for (int i = 1; i <= n; i++) { if (!used[i] && cnt[i] < k) upd(i); } ans[m] = all; for (int i = m; i >= 2; i--) { g[x[i]][idx[i]].second = 0; g[y[i]][idy[i]].second = 0; if (used[x[i]] | used[y[i]]) { ans[i - 1] = all; continue; } cnt[x[i]]--; cnt[y[i]]--; if (cnt[x[i]] < k) upd(x[i]); if (!used[y[i]] && cnt[y[i]] < k) upd(y[i]); ans[i - 1] = all; } for (int i = 1; i <= m; i++) printf("%d\n", ans[i]); return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mx = 2e5 + 10, cut = 700; int n, m, k, cnt[mx], lv, x[mx], y[mx], dead[mx]; vector<pair<int, int> > adj[mx]; vector<int> res; void er(int a, int b) { auto it = lower_bound(adj[a].begin(), adj[a].end(), make_pair(b, 0)); if (it->second) return; it->second = 1; cnt[a]--; } void f(int h) { if (cnt[h] >= k || dead[h]) return; dead[h] = 1; lv--; for (auto &it : adj[h]) if (!it.second) er(it.first, h); for (auto &it : adj[h]) if (!it.second) f(it.first); } int main() { scanf("%d%d%d", &n, &m, &k); if (k > cut) { for (int i = 0; i < m; i++) puts("0"); return 0; } for (int i = 0; i < m; i++) { scanf("%d%d", x + i, y + i); cnt[x[i]]++; cnt[y[i]]++; adj[x[i]].push_back({y[i], 0}); adj[y[i]].push_back({x[i], 0}); } for (int i = 1; i <= n; i++) sort(adj[i].begin(), adj[i].end()); lv = n; for (int i = 1; i <= n; i++) f(i); for (int i = m; i--;) { res.push_back(lv); er(x[i], y[i]); er(y[i], x[i]); f(x[i]); f(y[i]); } reverse(res.begin(), res.end()); for (auto &it : res) printf("%d\n", it); return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> template <class T> using MinHeap = std::priority_queue<T, std::vector<T>, std::greater<T>>; const int MAX_N = 2e5 + 7; struct bg_edge { int a, b; } edges[MAX_N]; struct bg_state { int node; long unsigned int deg; bool operator>(const bg_state& o) const { return deg > o.deg; } }; static inline void setio(void); int n, m; long unsigned int k; std::set<int> gr[MAX_N]; int ans[MAX_N], in[MAX_N]; int main(void) { setio(); memset(in, 1, sizeof(in)); std::cin >> n >> m >> k; for (int i = 0, a, b; i < m; ++i) { std::cin >> a >> b; --a; --b; gr[a].insert(b); gr[b].insert(a); edges[i] = {a, b}; } MinHeap<bg_state> pq; for (int i = 0; i < n; ++i) pq.push(bg_state{i, gr[i].size()}); std::function<int(void)> doit = [&](void) { int rem = 0; while (pq.size() && pq.top().deg < k) { bg_state now = pq.top(); pq.pop(); if (now.deg != gr[now.node].size() || !in[now.node]) continue; ++rem; in[now.node] = false; for (const auto& nei : gr[now.node]) { gr[nei].erase(now.node); pq.push(bg_state{nei, gr[nei].size()}); } } return rem; }; ans[m] = n; for (int i = m; i > 0; --i) { if (i < m) { gr[edges[i].a].erase(edges[i].b); gr[edges[i].b].erase(edges[i].a); pq.push(bg_state{edges[i].a, gr[edges[i].a].size()}); pq.push(bg_state{edges[i].b, gr[edges[i].b].size()}); } ans[i - 1] = ans[i] - doit(); } for (int i = 0; i < m; ++i) std::cout << ans[i] << "\n"; return 0; } static inline void setio(void) { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout.precision(10); std::cout << std::fixed; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 7; int n, m, k, deg[N], ans[N], s[N], t[N]; map<int, bool> adj[N]; vector<int> g[N]; bool alive[N]; void solve() { priority_queue<pair<int, int>, vector<pair<int, int> >, greater<pair<int, int> > > q; memset(alive, 1, sizeof(alive)); for (int u = 1; u <= n; u++) q.push(make_pair(deg[u], u)); while (q.size()) { pair<int, int> now = q.top(); if (now.first >= k) break; q.pop(); if (!alive[now.second]) continue; alive[now.second] = 0; for (int &v : g[now.second]) { deg[v]--; if (alive[v]) q.push(make_pair(deg[v], v)); } } int res = 0; for (int u = 1; u <= n; u++) res += alive[u]; ans[m] = res; for (int i = m; i >= 1; i--) { if (alive[s[i]] && alive[t[i]]) { deg[s[i]]--; deg[t[i]]--; adj[s[i]][t[i]] = 0; adj[t[i]][s[i]] = 0; q.push(make_pair(deg[s[i]], s[i])); q.push(make_pair(deg[t[i]], t[i])); pair<int, int> now = q.top(); while (q.size()) { pair<int, int> now = q.top(); if (now.first >= k) break; q.pop(); if (!alive[now.second]) continue; --res; alive[now.second] = 0; for (int &v : g[now.second]) { if (!adj[now.second][v]) continue; --deg[v]; if (alive[v]) q.push(make_pair(deg[v], v)); } } } ans[i - 1] = res; } for (int i = 1; i <= m; i++) printf("%d\n ", ans[i]); } int main() { scanf("%d %d %d ", &n, &m, &k); for (int i = 1; i <= m; i++) { scanf("%d %d ", &s[i], &t[i]); deg[s[i]]++; deg[t[i]]++; adj[s[i]][t[i]] = adj[t[i]][s[i]] = 1; g[s[i]].push_back(t[i]); g[t[i]].push_back(s[i]); } solve(); }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; pair<int, int> edge[200009]; set<int> g[200009]; int vis[200009]; int ar[200009]; int ans; int n, m, k; void dfs(int v) { if (g[v].size() >= k || vis[v] == 1) return; --ans; vis[v] = 1; for (auto u : g[v]) { g[u].erase(v); dfs(u); } } int main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); cin >> n >> m >> k; int x, y; ans = n; for (int i = 0; i < m; ++i) { cin >> x >> y; edge[i] = {x, y}; g[x].insert(y); g[y].insert(x); } for (int i = 1; i <= n; ++i) dfs(i); for (int i = m - 1; i >= 0; --i) { ar[i] = ans; g[edge[i].first].erase(edge[i].second); g[edge[i].second].erase(edge[i].first); dfs(edge[i].first); dfs(edge[i].second); } for (int i = 0; i < m; ++i) cout << ar[i] << "\n"; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, m, fs; std::vector<int> yol[200005]; pair<int, int> o[200005]; int ans, yaz[200005], say[200005], del[200005]; map<pair<int, int>, int> mp; void sil(int k) { if (del[k] == 1) return; del[k] = 1; ans--; for (int i = 0; i < yol[k].size(); ++i) { if (mp[make_pair(k, yol[k][i])] || mp[make_pair(yol[k][i], k)]) continue; say[yol[k][i]]--; if (say[yol[k][i]] < fs && del[yol[k][i]] == 0) sil(yol[k][i]); } } int main() { scanf("%d %d %d", &n, &m, &fs); ans = n; for (int i = 0; i < m; ++i) { scanf("%d %d", &o[i].first, &o[i].second); yol[o[i].first].push_back(o[i].second); yol[o[i].second].push_back(o[i].first); say[o[i].first]++; say[o[i].second]++; } for (int i = 1; i <= n; ++i) { if (say[i] < fs) { sil(i); } } for (int i = m - 1; i >= 0; --i) { yaz[i] = ans; if (del[o[i].first] == 0 && del[o[i].second] == 0) { say[o[i].first]--; say[o[i].second]--; mp[o[i]] = 1; } if (say[o[i].first] < fs) sil(o[i].first); if (say[o[i].second] < fs) sil(o[i].second); } for (int i = 0; i < m; ++i) printf("%d\n", yaz[i]); }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void del(int edge, vector<set<int>>& g, map<int, int>& degr, int k) { degr.erase(degr.find(edge)); for (auto neigh : g[edge]) { g[neigh].erase(edge); auto it = degr.find(neigh); if (it != degr.end()) { if (--degr[neigh] < k) { del(neigh, g, degr, k); } } } g[edge].clear(); } int main() { int n, m, k; ios_base::sync_with_stdio(false); cin.tie(NULL); cin >> n >> m >> k; vector<set<int>> g(n); vector<pair<int, int>> edges; map<int, int> degr; for (int i = 0; i < m; ++i) { int a, b; cin >> a >> b; a--; b--; g[a].insert(b); g[b].insert(a); edges.push_back({a, b}); degr[a]++; degr[b]++; } for (int i = 0; i < n; i++) { if (degr.find(i) != degr.end() && degr[i] < k) { del(i, g, degr, k); } } std::list<int> answ; for (int i = m - 1; i >= 0; i--) { answ.push_front(degr.size()); auto edge = edges[i]; if (g[edge.second].find(edge.first) != g[edge.second].end()) { g[edge.second].erase(edge.first); if (--degr[edge.first] < k) del(edge.first, g, degr, k); } if (g[edge.first].find(edge.second) != g[edge.first].end()) { g[edge.first].erase(edge.second); if (--degr[edge.second] < k) del(edge.second, g, degr, k); } } for (auto a : answ) { cout << a << "\n"; } return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, m, k; while (cin >> n >> m >> k) { set<pair<int, int> > st; vector<vector<int> > G(n + 1); vector<int> deg(n + 1), vis(n + 1), x(m), y(m), ans(m); for (int i = 0; i < m; i++) { cin >> x[i] >> y[i]; deg[x[i]]++; deg[y[i]]++; G[x[i]].push_back(y[i]); G[y[i]].push_back(x[i]); } queue<int> q; for (int i = 1; i <= n; i++) { if (deg[i] < k) { vis[i] = true; q.push(i); } } for (int cnt = n, day = m - 1; day >= 0; day--) { if (day != m - 1) { int u = x[day + 1], v = y[day + 1]; if (!st.count(make_pair(u, v))) { st.insert(make_pair(u, v)); st.insert(make_pair(v, u)); if (--deg[u] < k && !vis[u]) { vis[u] = true; q.push(u); } if (--deg[v] < k && !vis[v]) { vis[v] = true; q.push(v); } } } while (!q.empty()) { int u = q.front(); q.pop(); cnt--; for (int i = 0; i < G[u].size(); i++) { int v = G[u][i]; if (!st.count(make_pair(u, v))) { st.insert(make_pair(u, v)); st.insert(make_pair(v, u)); if (--deg[v] < k && !vis[v]) { vis[v] = true; q.push(v); } } } } ans[day] = cnt; } for (int i = 0; i < m; i++) { cout << ans[i] << endl; } } return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long MAXN = 1123456; template <typename T> T sqr(T x) { return x * x; } template <typename T> void vout(T s) { cout << s << endl; exit(0); } long long bp(long long a, long long n) { long long res = 1; while (n) { if (n % 2) res *= a; a *= a; n >>= 1; } return res; } set<long long> s[MAXN]; long long n, m, k; long long kol[MAXN]; long long ans; bool fl[MAXN]; pair<long long, long long> a[MAXN]; queue<long long> q; void add(long long x) { if (fl[x]) return; ans--; fl[x] = 1; q.push(x); } int main() { ios_base ::sync_with_stdio(0); cin.tie(0); cin >> n >> m >> k; ans = n; vector<long long> res(m); for (int i = 0; i < m; i++) { cin >> a[i].first >> a[i].second; kol[a[i].first]++; kol[a[i].second]++; s[a[i].first].insert(a[i].second); s[a[i].second].insert(a[i].first); } for (int i = 1; i <= n; i++) if (!fl[i] && kol[i] < k) { add(i); while (!q.empty()) { long long x = q.front(); q.pop(); for (auto i : s[x]) { kol[i]--; if (kol[i] < k) add(i); } } } for (int i = m - 1; i >= 0; i--) { res[i] = ans; if (!fl[a[i].first] && !fl[a[i].second]) { kol[a[i].first]--; kol[a[i].second]--; s[a[i].first].erase(a[i].second); s[a[i].second].erase(a[i].first); if (kol[a[i].first] < k) add(a[i].first); if (kol[a[i].second] < k) add(a[i].second); while (!q.empty()) { long long x = q.front(); q.pop(); for (auto i : s[x]) { kol[i]--; if (kol[i] < k) add(i); } } } } for (auto i : res) cout << i << "\n"; return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, m, k, a, b, x; vector<int> edge[200005]; pair<int, int> amie[200005]; int deg[200005], ans[200005]; set<pair<int, int> > s, r; void go(int y, int z) { while (!s.empty() && s.begin()->first < k) { a = s.begin()->second; b = (int)edge[a].size(); s.erase(s.begin()); for (int i = 0; i < b; ++i) { if ((a == y && edge[a][i] == z) || (a == z && edge[a][i] == y)) continue; if (s.find(pair<int, int>(deg[edge[a][i]], edge[a][i])) != s.end() && r.find(pair<int, int>(a, edge[a][i])) == r.end() && r.find(pair<int, int>(edge[a][i], a)) == r.end()) { s.erase(s.find(pair<int, int>(deg[edge[a][i]], edge[a][i]))); deg[edge[a][i]]--; s.insert(pair<int, int>(deg[edge[a][i]], edge[a][i])); } } } } int main() { scanf("%d%d%d", &n, &m, &k); for (int i = 0; i < m; ++i) { scanf("%d%d", &amie[i].first, &amie[i].second); edge[amie[i].first].push_back(amie[i].second); edge[amie[i].second].push_back(amie[i].first); deg[amie[i].first]++; deg[amie[i].second]++; } for (int i = 1; i <= n; ++i) s.insert(pair<int, int>(deg[i], i)); go(-1, -1); for (int i = m - 1; i >= 0; --i) { ans[i] = (int)s.size(); if (s.find(pair<int, int>(deg[amie[i].first], amie[i].first)) != s.end() && s.find(pair<int, int>(deg[amie[i].second], amie[i].second)) != s.end()) { s.erase(s.find(pair<int, int>(deg[amie[i].first], amie[i].first))); s.erase(s.find(pair<int, int>(deg[amie[i].second], amie[i].second))); deg[amie[i].first]--; deg[amie[i].second]--; s.insert(pair<int, int>(deg[amie[i].first], amie[i].first)); s.insert(pair<int, int>(deg[amie[i].second], amie[i].second)); r.insert(amie[i]); go(amie[i].first, amie[i].second); } } for (int i = 0; i < m; ++i) { printf("%d\n", ans[i]); } return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, m, k; struct Node { int x, y; } a[200010]; int deg[200010]; bool fl[200010]; set<int> v[200010]; int ans; int ans1[200010]; int pos[200010]; void solve(int x) { if (deg[x] >= k || !fl[x]) { return; } queue<int> q; q.push(x); fl[x] = 0; ans--; while (!q.empty()) { int y = q.front(); q.pop(); for (auto to : v[y]) { deg[to]--; if (deg[to] < k && fl[to]) { fl[to] = 0; q.push(to); ans--; } } } } int main(int argc, char const *argv[]) { scanf("%d%d%d", &n, &m, &k); memset(fl, 1, sizeof(fl)); for (int i = 1; i <= m; i++) { scanf("%d%d", &a[i].x, &a[i].y); deg[a[i].x]++; deg[a[i].y]++; v[a[i].x].insert(a[i].y); v[a[i].y].insert(a[i].x); } ans = n; for (int i = 1; i <= n; i++) { solve(i); } for (int i = m; i; i--) { ans1[i] = ans; if (fl[a[i].y]) { deg[a[i].x]--; } if (fl[a[i].x]) { deg[a[i].y]--; } v[a[i].x].erase(a[i].y); v[a[i].y].erase(a[i].x); solve(a[i].x); solve(a[i].y); } for (int i = 1; i <= m; i++) { printf("%d\n", ans1[i]); } return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int max_N = 2e5 + 10; int x[max_N], y[max_N]; set<int> E[max_N]; void remove(int u); int N, M, K; int ans = 0; int active[max_N]; int main() { cin >> N >> M >> K; for (int i = 1; i <= M; ++i) { cin >> x[i] >> y[i]; E[x[i]].insert(y[i]); E[y[i]].insert(x[i]); } for (int i = 1; i <= N; ++i) { active[i] = 1; } ans = N; for (int i = 1; i <= N; ++i) { remove(i); } vector<int> ans; for (int i = M; i >= 1; --i) { ans.push_back(::ans); int u = x[i], v = y[i]; E[u].erase(v); E[v].erase(u); remove(u); remove(v); } reverse(ans.begin(), ans.end()); for (auto &x : ans) { cout << x << '\n'; } } void remove(int u) { if (E[u].size() >= K || !active[u]) { return; } active[u] = 0; ans--; for (auto &v : E[u]) { E[v].erase(u); remove(v); } }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; vector<vector<pair<int, int> > > g; set<pair<int, int> > good; vector<char> very_good; vector<int> d; int k; void check(long long int i) { while (!good.empty() && good.begin()->first < k) { int v = good.begin()->second; for (auto &y : g[v]) { int x = y.first; if (y.second >= i) continue; if (very_good[x]) { good.erase(make_pair(d[x], x)); d[x]--; good.insert(make_pair(d[x], x)); } } good.erase(make_pair(d[v], v)); very_good[v] = false; } } int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); int n, m; cin >> n >> m >> k; g.resize(n); d.resize(n); vector<pair<int, int> > f(m); for (int i = 0; i < m; ++i) { cin >> f[i].first >> f[i].second; f[i].first--, f[i].second--; g[f[i].first].push_back(make_pair(f[i].second, i)); g[f[i].second].push_back(make_pair(f[i].first, i)); d[f[i].first]++; d[f[i].second]++; } for (int i = 0; i < n; ++i) { good.insert(make_pair(d[i], i)); } very_good.assign(n, true); check(1e18); vector<int> ans(m); for (int i = m - 1; i >= 0; --i) { ans[i] = good.size(); int v = f[i].first, u = f[i].second; if (very_good[v] && very_good[u]) { good.erase(make_pair(d[v], v)); d[v]--; good.insert(make_pair(d[v], v)); good.erase(make_pair(d[u], u)); d[u]--; good.insert(make_pair(d[u], u)); check(i); } } for (int i = 0; i < m; ++i) cout << ans[i] << '\n'; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
python3
from collections import deque def solve(adj, m, k, uv): n = len(adj) nn = [len(a) for a in adj] q = deque() for i in range(n): if nn[i] < k: q.append(i) while q: v = q.popleft() for u in adj[v]: nn[u] -= 1 if nn[u] == k-1: q.append(u) res = [0]*m nk = len([1 for i in nn if i >= k]) res[-1] = nk for i in range(m-1, 0, -1): u1, v1 = uv[i] if nn[u1] < k or nn[v1] < k: res[i - 1] = nk continue if nn[u1] == k: q.append(u1) nn[u1] -= 1 if not q and nn[v1] == k: q.append(v1) nn[v1] -= 1 if not q: nn[u1] -= 1 nn[v1] -= 1 adj[u1].remove(v1) adj[v1].remove(u1) while q: v = q.popleft() nk -= 1 for u in adj[v]: nn[u] -= 1 if nn[u] == k - 1: q.append(u) res[i - 1] = nk return res n, m, k = map(int, input().split()) a = [set() for i in range(n)] uv = [] for i in range(m): u, v = map(int, input().split()) a[u - 1].add(v - 1) a[v - 1].add(u - 1) uv.append((u-1, v-1)) res = solve(a, m, k, uv) print(str(res)[1:-1].replace(' ', '').replace(',', '\n'))
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> int dr[] = {2, 2, -2, -2, 1, -1, 1, -1}; int dc[] = {1, -1, 1, -1, 2, 2, -2, -2}; int dr1[] = {0, 0, 1, 1, 1, -1, -1, -1}; int dc1[] = {1, -1, 1, 0, -1, 0, 1, -1}; int dr2[] = {0, 0, 1, -1}; int dc2[] = {1, -1, 0, 0}; using namespace std; long long a[200005], b[200005], deg[200005]; vector<long long> adj[200005]; long long ans[200005], mark[200005]; int main() { long long n, m, k, i, j; ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); while (cin >> n >> m >> k) { set<pair<long long, long long> > s; set<pair<long long, long long> >::iterator it; for (i = 1; i <= m; i++) { cin >> a[i] >> b[i]; deg[a[i]]++; deg[b[i]]++; adj[a[i]].push_back(b[i]); adj[b[i]].push_back(a[i]); } for (i = 1; i <= n; i++) { mark[i] = 1; s.insert(make_pair(deg[i], i)); } map<pair<long long, long long>, long long> mp; for (i = m; i >= 1; i--) { for (j = 1;; j++) { if (s.size() == 0) break; it = s.begin(); long long x = it->first; long long y = it->second; if (x >= k) break; mark[y] = 0; s.erase(s.find({deg[y], y})); for (j = 0; j < adj[y].size(); j++) { long long p = adj[y][j]; if (mp[{y, p}] == 1) continue; s.erase(s.find({deg[p], p})); deg[p]--; s.insert({deg[p], p}); mp[{y, p}] = mp[{p, y}] = 1; } } ans[i] = s.size(); long long x = a[i]; long long y = b[i]; if (mp[{x, y}] == 1) continue; mp[{x, y}] = mp[{y, x}] = 1; s.erase(s.find({deg[x], x})); deg[x]--; s.insert({deg[x], x}); s.erase(s.find({deg[y], y})); deg[y]--; s.insert({deg[y], y}); } for (i = 1; i <= m; i++) cout << ans[i] << endl; } return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(int argc, char const *argv[]) { int n, m, k; cin >> n >> m >> k; vector<vector<int> > edges(m, vector<int>(2)); vector<vector<int> > graph(n + 1); vector<int> degrees(n + 1, 0); for (int i = 0; i < m; ++i) { scanf("%d %d", &edges[i][0], &edges[i][1]); degrees[edges[i][0]]++; degrees[edges[i][1]]++; graph[edges[i][0]].push_back(edges[i][1]); graph[edges[i][1]].push_back(edges[i][0]); } map<pair<int, int>, bool> sorted; for (int i = 0; i < n; ++i) sorted.insert(make_pair(make_pair(degrees[i + 1], i + 1), 1)); vector<int> ans(m); for (int i = m - 1; i >= 0; --i) { while ((!sorted.empty()) and sorted.begin()->first.first < k) { int temp = sorted.begin()->first.second; sorted.erase(sorted.begin()); degrees[temp] = 0; for (int i = 0; i < graph[temp].size(); ++i) { auto it = sorted.find(make_pair(degrees[graph[temp][i]], graph[temp][i])); degrees[graph[temp][i]]--; if (it != sorted.end()) { sorted.erase(it); if (degrees[graph[temp][i]] >= 0) sorted.insert(make_pair( make_pair(degrees[graph[temp][i]], graph[temp][i]), 1)); } } } ans[i] = sorted.size(); graph[edges[i][0]].pop_back(); graph[edges[i][1]].pop_back(); if (degrees[edges[i][0]] >= k and degrees[edges[i][1]] >= k) { auto it1 = sorted.find(make_pair(degrees[edges[i][0]], edges[i][0])); auto it2 = sorted.find(make_pair(degrees[edges[i][1]], edges[i][1])); degrees[edges[i][0]]--; degrees[edges[i][1]]--; if (it1 != sorted.end()) { sorted.erase(it1); sorted.insert( make_pair(make_pair(degrees[edges[i][0]], edges[i][0]), 1)); } if (it2 != sorted.end()) { sorted.erase(it2); sorted.insert( make_pair(make_pair(degrees[edges[i][1]], edges[i][1]), 1)); } } } for (int i = 0; i < m; ++i) printf("%d\n", ans[i]); return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
java
import java.io.*; import java.util.*; import static java.lang.Math.*; import static java.util.Arrays.*; public class cf1037e { public static void main(String[] args) throws IOException { int n = rni(), m = ni(), k = ni(), deg[] = new int[n]; List<p> e = new ArrayList<>(); TreeSet<p> set = new TreeSet<>((a, b) -> a.a == b.a ? a.b - b.b : a.a - b.a); Graph g = graph(n); for (int i = 0; i < m; ++i) { p ed = new p(rni() - 1, ni() - 1); g.c(ed.a, ed.b); e.add(ed); ++deg[ed.a]; ++deg[ed.b]; } for (int i = 0; i < n; ++i) { set.add(new p(deg[i], i)); } while (!set.isEmpty() && set.first().a < k) { p p = set.first(); set.remove(p); for (int i : g.get(p.b)) { if (deg[i] >= k) { set.remove(new p(deg[i], i)); set.add(new p(--deg[i], i)); } } } int ans[] = new int[m]; ans[m - 1] = set.size(); for (int i = m - 1; i > 0; --i) { int a = e.get(i).a, b = e.get(i).b; boolean del_a = deg[a] >= k, del_b = deg[b] >= k; g.get(a).remove(b); g.get(b).remove(a); if (del_a && del_b) { set.remove(new p(deg[a], a)); set.add(new p(--deg[a], a)); set.remove(new p(deg[b], b)); set.add(new p(--deg[b], b)); while (!set.isEmpty() && set.first().a < k) { p p = set.first(); set.remove(p); for (int j : g.get(p.b)) { if (deg[j] >= k) { set.remove(new p(deg[j], j)); set.add(new p(--deg[j], j)); } } } } ans[i - 1] = set.size(); } for (int i = 0; i < m; ++i) { prln(ans[i]); } close(); } static Graph graph(int n) { Graph g = new Graph(); for (int i = 0; i < n; ++i) { g.add(new HashSet<>()); } return g; } static Graph graph(int n, int m) throws IOException { Graph g = graph(n); for (int i = 0; i < m; ++i) { g.c(rni() - 1, ni() - 1); } return g; } static Graph tree(int n) throws IOException { return graph(n, n - 1); } static class Graph extends ArrayList<Set<Integer>> { void cto(int u, int v) { get(u).add(v); } void c(int u, int v) { cto(u, v); cto(v, u); } boolean is_leaf(int i) { return get(i).size() == 1; } } static class p { int a, b; p(int a_, int b_) { a = a_; b = b_; } @Override public String toString() { return "Pair{" + "a = " + a + ", b = " + b + '}'; } public boolean asymmetricEquals(Object o) { p p = (p) o; return a == p.a && b == p.b; } public boolean symmetricEquals(Object o) { p p = (p) o; return a == p.a && b == p.b || a == p.b && b == p.a; } @Override public boolean equals(Object o) { return asymmetricEquals(o); } public int asymmetricHashCode() { return Objects.hash(a, b); } public int symmetricHashCode() { return Objects.hash(a, b) + Objects.hash(b, a); } @Override public int hashCode() { return asymmetricHashCode(); } } static BufferedReader __in = new BufferedReader(new InputStreamReader(System.in)); static PrintWriter __out = new PrintWriter(new OutputStreamWriter(System.out)); static StringTokenizer input; static Random __rand = new Random(); // references // IBIG = 1e9 + 7 // IMAX ~= 2e9 // LMAX ~= 9e18 // constants static final int IBIG = 1000000007; static final int IMAX = 2147483647; static final int IMIN = -2147483648; static final long LMAX = 9223372036854775807L; static final long LMIN = -9223372036854775808L; // math util static int minof(int a, int b, int c) {return min(a, min(b, c));} static int minof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); int min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;} static long minof(long a, long b, long c) {return min(a, min(b, c));} static long minof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); long min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;} static int maxof(int a, int b, int c) {return max(a, max(b, c));} static int maxof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); int max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;} static long maxof(long a, long b, long c) {return max(a, max(b, c));} static long maxof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); long max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;} static int powi(int a, int b) {if (a == 0) return 0; int ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;} static long powl(long a, int b) {if (a == 0) return 0; long ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;} static int fli(double d) {return (int) d;} static int cei(double d) {return (int) ceil(d);} static long fll(double d) {return (long) d;} static long cel(double d) {return (long) ceil(d);} static int gcf(int a, int b) {return b == 0 ? a : gcf(b, a % b);} static long gcf(long a, long b) {return b == 0 ? a : gcf(b, a % b);} static int lcm(int a, int b) {return a * b / gcf(a, b);} static long lcm(long a, long b) {return a * b / gcf(a, b);} static int randInt(int min, int max) {return __rand.nextInt(max - min + 1) + min;} static long mix(long x) {x += 0x9e3779b97f4a7c15L; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9L; x = (x ^ (x >> 27)) * 0x94d049bb133111ebL; return x ^ (x >> 31);} // array util static void reverse(int[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {int swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void reverse(long[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {long swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void reverse(double[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {double swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void reverse(char[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {char swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void shuffle(int[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); int swap = a[i]; a[i] = a[ind]; a[ind] = swap;}} static void shuffle(long[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); long swap = a[i]; a[i] = a[ind]; a[ind] = swap;}} static void shuffle(double[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); double swap = a[i]; a[i] = a[ind]; a[ind] = swap;}} static void rsort(int[] a) {shuffle(a); sort(a);} static void rsort(long[] a) {shuffle(a); sort(a);} static void rsort(double[] a) {shuffle(a); sort(a);} static int[] copy(int[] a) {int[] ans = new int[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} static long[] copy(long[] a) {long[] ans = new long[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} static double[] copy(double[] a) {double[] ans = new double[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} static char[] copy(char[] a) {char[] ans = new char[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} // input static void r() throws IOException {input = new StringTokenizer(rline());} static int ri() throws IOException {return Integer.parseInt(rline());} static long rl() throws IOException {return Long.parseLong(rline());} static double rd() throws IOException {return Double.parseDouble(rline());} static int[] ria(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni(); return a;} static int[] riam1(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni() - 1; return a;} static long[] rla(int n) throws IOException {long[] a = new long[n]; r(); for (int i = 0; i < n; ++i) a[i] = nl(); return a;} static double[] rda(int n) throws IOException {double[] a = new double[n]; r(); for (int i = 0; i < n; ++i) a[i] = nd(); return a;} static char[] rcha() throws IOException {return rline().toCharArray();} static String rline() throws IOException {return __in.readLine();} static String n() {return input.nextToken();} static int rni() throws IOException {r(); return ni();} static int ni() {return Integer.parseInt(n());} static long rnl() throws IOException {r(); return nl();} static long nl() {return Long.parseLong(n());} static double rnd() throws IOException {r(); return nd();} static double nd() {return Double.parseDouble(n());} // output static void pr(int i) {__out.print(i);} static void prln(int i) {__out.println(i);} static void pr(long l) {__out.print(l);} static void prln(long l) {__out.println(l);} static void pr(double d) {__out.print(d);} static void prln(double d) {__out.println(d);} static void pr(char c) {__out.print(c);} static void prln(char c) {__out.println(c);} static void pr(char[] s) {__out.print(new String(s));} static void prln(char[] s) {__out.println(new String(s));} static void pr(String s) {__out.print(s);} static void prln(String s) {__out.println(s);} static void pr(Object o) {__out.print(o);} static void prln(Object o) {__out.println(o);} static void prln() {__out.println();} static void pryes() {prln("yes");} static void pry() {prln("Yes");} static void prY() {prln("YES");} static void prno() {prln("no");} static void prn() {prln("No");} static void prN() {prln("NO");} static boolean pryesno(boolean b) {prln(b ? "yes" : "no"); return b;}; static boolean pryn(boolean b) {prln(b ? "Yes" : "No"); return b;} static boolean prYN(boolean b) {prln(b ? "YES" : "NO"); return b;} static void prln(int... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();} static void prln(long... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();} static void prln(double... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();} static <T> void prln(Collection<T> c) {int n = c.size() - 1; Iterator<T> iter = c.iterator(); for (int i = 0; i < n; pr(iter.next()), pr(' '), ++i); if (n >= 0) prln(iter.next()); else prln();} static void h() {prln("hlfd"); flush();} static void flush() {__out.flush();} static void close() {__out.close();} }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using std::queue; const int N = 2e5 + 6; template <class T> inline void read(T &x) { T f = 1; x = 0; char s = getchar(); while (s < '0' || s > '9') { if (s == '-') f = -1; s = getchar(); } while (s >= '0' && s <= '9') { x = x * 10 + s - '0'; s = getchar(); } x *= f; } struct Edge { int u, v, id; } e[N << 1]; int head[N], ecnt; inline void addedge(int u, int v, int id) { e[++ecnt].v = v; e[ecnt].u = head[u]; head[u] = ecnt; e[ecnt].id = id; } inline void add(int u, int v, int id) { addedge(u, v, id); addedge(v, u, id); } int n, m, k, du[N], a[N], b[N], del[N], u, ans, inq[N], Ans[N], len; queue<int> q; signed main() { read(n); read(m); read(k); for (int i = 1; i <= m; i++) { read(a[i]); read(b[i]); du[a[i]]++; du[b[i]]++; add(a[i], b[i], i); } for (int i = 1; i <= n; i++) if (du[i] < k) q.push(i), inq[i] = 1; ans = n; while (!q.empty()) { u = q.front(); q.pop(); ans--; du[u] = 0; for (int i = head[u], v; i && (v = e[i].v); i = e[i].u) { if (inq[v]) continue; if (del[e[i].id]) continue; du[v]--; del[e[i].id] = 1; if (du[v] < k) q.push(v), inq[v] = 1; } } for (int i = m; i >= 1; i--) { Ans[++len] = ans; if (del[i]) continue; du[a[i]]--; du[b[i]]--; del[i] = 1; if (!inq[a[i]] && du[a[i]] < k) q.push(a[i]), inq[a[i]] = 1; if (!inq[b[i]] && du[b[i]] < k) q.push(b[i]), inq[b[i]] = 1; while (!q.empty()) { u = q.front(); q.pop(); ans--; du[u] = 0; for (int i = head[u], v; i && (v = e[i].v); i = e[i].u) { if (inq[v]) continue; if (del[e[i].id]) continue; du[v]--; del[e[i].id] = 1; if (du[v] < k) q.push(v), inq[v] = 1; } } } for (int i = m; i >= 1; i--) printf("%d\n", Ans[i]); }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long n, m, k, r[200005], redd[200005], t, xx[200005], yy[200005], ans[200005]; vector<pair<long long, long long> > v[200005]; void red(long long x, long long time) { if (time == 5) { } redd[x] = 1; t++; for (int i = 0; i < v[x].size(); i++) { if (v[x][i].first > time) break; r[v[x][i].second]--; if (r[v[x][i].second] < k && redd[v[x][i].second] == 0) { red(v[x][i].second, time); } } } int main() { cin >> n >> m >> k; for (int i = 1; i <= m; i++) { cin >> xx[i] >> yy[i]; v[xx[i]].push_back(make_pair(i, yy[i])); r[xx[i]]++; v[yy[i]].push_back(make_pair(i, xx[i])); r[yy[i]]++; } for (int i = 1; i <= n; i++) sort(v[i].begin(), v[i].end()); ans[m] = n; for (int i = 1; i <= n; i++) { if (r[i] < k && redd[i] == 0) { t = 0; red(i, m); ans[m] -= t; } } for (int i = m; i >= 2; i--) { for (int j = 1; j <= n; j++) { } if (redd[yy[i]] == 0) r[xx[i]]--; t = 0; if (r[xx[i]] < k && redd[xx[i]] == 0) { red(xx[i], i); ans[i - 1] = ans[i] - t; continue; } if (redd[xx[i]] == 0) r[yy[i]]--; if (r[yy[i]] < k && redd[yy[i]] == 0) { if (xx[i] == 5) { } r[xx[i]]++; red(yy[i], i); } ans[i - 1] = ans[i] - t; } for (int i = 1; i <= m; i++) { cout << ans[i] << endl; } return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
java
import java.util.*; import java.io.*; import java.math.*; public class G { public static void main(String[] args) throws IOException { //PrintWriter out = new PrintWriter(new File("out.txt")); PrintWriter out = new PrintWriter(System.out); //Reader in = new Reader(new FileInputStream("in.txt")); Reader in = new Reader(); G solver = new G(); solver.solve(out, in); out.flush(); out.close(); } static int maxn = (int)1e4+5; static long mod=(int)1e9+7; static int n, m, t, k; static ArrayList<Edge> adj[]; static boolean[] vis; static int[] lvl; void solve(PrintWriter out, Reader in) throws IOException{ n = in.nextInt(); m = in.nextInt(); k = in.nextInt(); lvl = new int[n+1]; vis = new boolean[n+1]; adj = new ArrayList[n+1]; for (int i = 1; i <= n; i++) adj[i] = new ArrayList<Edge>(); int[][] edge = new int[m][2]; int u,v; for (int i = 0; i < m; i++) { u = in.nextInt(); v = in.nextInt(); edge[i][0] = u; edge[i][1] = v; lvl[u]++; lvl[v]++; adj[u].add(new Edge(v, i)); adj[v].add(new Edge(u, i)); } TreeSet<Node> pq = new TreeSet<>(); for (int i = 1; i <= n; i++) pq.add(new Node(lvl[i], i)); Node elm; int[] ans = new int[m]; for (int i = m-1; i >= 0; i--) { while (pq.size()!= 0 && pq.first().lvl < k) { elm = pq.pollFirst(); vis[elm.id] = true; for (Edge e:adj[elm.id]) { if (!vis[e.to] && e.id <= i) { pq.remove(new Node(lvl[e.to], e.to)); lvl[e.to]--; pq.add( new Node(lvl[e.to], e.to)); } } } u = edge[i][0]; v = edge[i][1]; if (!vis[u] && !vis[v]) { pq.remove(new Node(lvl[u], u)); lvl[u]--; pq.add(new Node(lvl[u], u)); pq.remove(new Node(lvl[v], v)); lvl[v]--; pq.add(new Node(lvl[v], v)); } ans[i] = pq.size(); } for (int i = 0; i < m; i++) { out.println(ans[i]); } } //<> static class Node implements Comparable<Node> { int lvl, id; Node (int lvl, int id) { this.lvl = lvl; this.id = id; } public int compareTo(Node o) { if (this.lvl != o.lvl) return this.lvl - o.lvl; return this.id - o.id; } } static class Edge { int to, id; Edge(int to, int id) { this.to = to; this.id = id; } } static class Reader { private InputStream mIs; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public Reader() { this(System.in); } public Reader(InputStream is) { mIs = is; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = mIs.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public String nextLine() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } public String next() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } double nextDouble() { return Double.parseDouble(next()); } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } } }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.List; import java.util.Arrays; import java.util.InputMismatchException; import java.io.IOException; import java.util.ArrayList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Pradyumn */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastReader in = new FastReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskE solver = new TaskE(); solver.solve(1, in, out); out.close(); } static class TaskE { public void solve(int testNumber, FastReader in, PrintWriter out) { int n = in.nextInt(); int m = in.nextInt(); int K = in.nextInt(); List<int[]>[] g = new List[n]; for (int i = 0; i < n; ++i) g[i] = new ArrayList<>(); int[] from = new int[m]; int[] to = new int[m]; for (int i = 0; i < m; ++i) { int u = in.nextInt() - 1; int v = in.nextInt() - 1; g[u].add(new int[]{v, i}); g[v].add(new int[]{u, i}); from[i] = u; to[i] = v; } int[] deg = new int[n]; int[] ans = new int[m]; int[] queue = new int[n]; int sizeQ = 0; int ptr = 0; boolean[] alive = new boolean[m]; Arrays.fill(alive, true); for (int i = 0; i < n; ++i) { deg[i] = g[i].size(); if (deg[i] < K) { queue[sizeQ++] = i; } } for (int step = m - 1; step >= 0; --step) { while (ptr < sizeQ) { int cur = queue[ptr++]; for (int[] edge : g[cur]) { if (!alive[edge[1]]) continue; alive[edge[1]] = false; if (deg[edge[0]] == K) queue[sizeQ++] = edge[0]; --deg[edge[0]]; --deg[cur]; } } ans[step] = n - sizeQ; if (alive[step]) { int cur = from[step]; int next = to[step]; if (deg[cur] == K) queue[sizeQ++] = cur; if (deg[next] == K) queue[sizeQ++] = next; --deg[cur]; --deg[next]; alive[step] = false; } } for (int aa : ans) out.println(aa); } } static class FastReader { private InputStream stream; private byte[] buf = new byte[8192]; private int curChar; private int pnumChars; public FastReader(InputStream stream) { this.stream = stream; } private int pread() { if (pnumChars == -1) { throw new InputMismatchException(); } if (curChar >= pnumChars) { curChar = 0; try { pnumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (pnumChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = pread(); while (isSpaceChar(c)) c = pread(); int sgn = 1; if (c == '-') { sgn = -1; c = pread(); } int res = 0; do { if (c == ',') { c = pread(); } if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = pread(); } while (!isSpaceChar(c)); return res * sgn; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 5; int m, n, k, d[N]; set<int> ad[N]; int ans[N], dd[N]; pair<int, int> ed[N]; int main() { ; ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0); cin >> n >> m >> k; for (int i = 1; i <= m; ++i) { int u, v; cin >> u >> v; ad[u].insert(v); ad[v].insert(u); d[u]++; d[v]++; ed[i] = {u, v}; } queue<int> q; for (int i = 1; i <= n; ++i) if (d[i] < k) q.push(i), dd[i] = 1; ans[m] = n; while (!q.empty()) { int uu = q.front(); q.pop(); for (auto &vv : ad[uu]) { d[vv]--; ad[vv].erase(uu); if (d[vv] < k && !dd[vv]) { dd[vv] = 1; q.push(vv); } } ans[m]--; d[uu] = 0; ad[uu].clear(); } for (int i = m - 1; i >= 1; --i) { ans[i] = ans[i + 1]; if (dd[ed[i + 1].first] || dd[ed[i + 1].second]) continue; int u = ed[i + 1].first, v = ed[i + 1].second; ad[u].erase(v); ad[v].erase(u); d[u]--; d[v]--; if (d[u] < k && !dd[u]) q.push(u), dd[u] = 1; if (d[v] < k && !dd[v]) q.push(v), dd[v] = 1; while (!q.empty()) { int uu = q.front(); q.pop(); for (auto &vv : ad[uu]) { d[vv]--; ad[vv].erase(uu); if (d[vv] < k && !dd[vv]) { dd[vv] = 1; q.push(vv); } } ans[i]--; d[uu] = 0; ad[uu].clear(); } } for (int i = 1; i <= m; ++i) cout << ans[i] << '\n'; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; signed main() { ios_base::sync_with_stdio(false); cin.tie(NULL); long long n, m, k; cin >> n >> m >> k; vector<vector<pair<long long, long long> > > friends(n); vector<long long> pointers(n); for (long long i = 0; i < m; i++) { long long a, b; cin >> a >> b; friends[a - 1].push_back(make_pair(b - 1, i)); friends[b - 1].push_back(make_pair(a - 1, i)); } queue<long long> q; set<pair<long long, long long> > good; for (long long i = 0; i < n; i++) { if (friends[i].size() >= k) { good.insert(make_pair(friends[i][k - 1].second, i)); pointers[i] = k - 1; } else { pointers[i] = -1; q.push(i); } } long long u = m; vector<long long> ans(m); fill(ans.begin(), ans.end(), 0); vector<bool> used(n); fill(used.begin(), used.end(), false); while (good.size()) { while (q.size()) { long long V = q.front(); q.pop(); used[V] = true; for (long long i = 0; i < friends[V].size(); i++) { long long to = friends[V][i].first, tm = friends[V][i].second; if (pointers[to] == -1) continue; long long T = friends[to][pointers[to]].second; if (tm > T) continue; pointers[to]++; while (pointers[to] < friends[to].size()) { long long K = friends[to][pointers[to]].first; if (used[K] || friends[to][pointers[to]].second >= u) pointers[to]++; else break; } if (pointers[to] >= friends[to].size()) { good.erase(good.find(make_pair(T, to))); pointers[to] = -1; q.push(to); } else { good.erase(good.find(make_pair(T, to))); T = friends[to][pointers[to]].second; good.insert(make_pair(T, to)); } } } long long S = good.size(); if (S == 0) break; set<pair<long long, long long> >::iterator it = good.end(); it--; pair<long long, long long> P = *it; long long tt = P.first; for (long long i = tt; i < u; i++) ans[i] = S; u = tt; while (good.size()) { set<pair<long long, long long> >::iterator it = good.end(); it--; pair<long long, long long> P = *it; long long ttt = P.first; if (tt != ttt) { break; } good.erase(it); pointers[P.second] = -1; q.push(P.second); } } for (long long i = 0; i < m; i++) cout << ans[i] << "\n"; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> const int N = 200005; using namespace std; int n, m, k, deg[N], ans[N]; set<pair<int, int> > st; vector<pair<int, int> > g[N], h; int main() { ios_base::sync_with_stdio(0); cout.tie(0); cin.tie(0); cin >> n >> m >> k; for (int i = 0; i < m; i++) { int u, v; cin >> u >> v; h.push_back({u, v}); g[u].push_back({v, i}); g[v].push_back({u, i}); deg[u]++; deg[v]++; } for (int i = 1; i <= n; i++) st.insert({deg[i], i}); while (st.size() && (*(st.begin())).first < k) { pair<int, int> e = *st.begin(); st.erase(e); int u = e.second; for (auto E : g[u]) { int el = E.first; if (st.count({deg[el], el})) { st.erase({deg[el], el}); deg[el]--; st.insert({deg[el], el}); } } } for (int i = m - 1; i >= 0; i--) { ans[i] = st.size(); int u = h[i].first, v = h[i].second; if (st.count({deg[u], u}) && st.count({deg[v], v})) { st.erase({deg[u], u}); deg[u]--; st.insert({deg[u], u}); st.erase({deg[v], v}); deg[v]--; st.insert({deg[v], v}); while (st.size() && (*(st.begin())).first < k) { pair<int, int> e = *st.begin(); st.erase(e); int u = e.second; for (auto E : g[u]) { int el = E.first; if (E.second >= i) continue; if (st.count({deg[el], el})) { st.erase({deg[el], el}); deg[el]--; st.insert({deg[el], el}); } } } } } for (int i = 0; i < m; i++) cout << ans[i] << '\n'; return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int deg[200005]; vector<pair<int, int> > g[200005]; bool notInSet[200005]; int main() { int n, m, k, x, y, i; cin >> n >> m >> k; vector<pair<int, int> > v; for (i = 0; i < m; i++) { cin >> x >> y; v.push_back({x, y}); deg[x]++, deg[y]++; g[x].push_back({y, i}); g[y].push_back({x, i}); } set<pair<int, int> > s; for (i = 1; i <= n; i++) { s.insert({deg[i], i}); } while (!s.empty() && deg[s.begin()->second] < k) { int u = s.begin()->second; for (auto it : g[u]) { int x = it.first; if (!notInSet[x]) { s.erase(s.find({deg[x], x})); deg[x]--; s.insert({deg[x], x}); } } s.erase({deg[u], u}); notInSet[u] = 1; } vector<int> res(m); for (i = m - 1; i >= 0; i--) { res[i] = s.size(); x = v[i].first, y = v[i].second; if (!notInSet[x] && !notInSet[y]) { s.erase(s.find({deg[x], x})); s.erase(s.find({deg[y], y})); deg[x]--, deg[y]--; s.insert({deg[y], y}); s.insert({deg[x], x}); while (!s.empty() && deg[s.begin()->second] < k) { int u = s.begin()->second; for (auto it : g[u]) { int x = it.first; int y = it.second; if (y >= i) continue; if (!notInSet[x]) { s.erase(s.find({deg[x], x})); deg[x]--; s.insert({deg[x], x}); } } s.erase({deg[u], u}); notInSet[u] = 1; } } } for (i = 0; i < m; i++) cout << res[i] << endl; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAXN = 200005; int d[MAXN]; int a[MAXN], b[MAXN], f[MAXN], ans[MAXN]; int n, m, k; int q[MAXN], fr, re; vector<int> E[MAXN]; set<long long> S; int main() { scanf("%d%d%d", &n, &m, &k); for (int i = 0; i < m; ++i) { scanf("%d%d", a + i, b + i); d[a[i]]++, d[b[i]]++; E[a[i]].push_back(b[i]); E[b[i]].push_back(a[i]); } for (int i = 1; i <= n; ++i) { if (d[i] < k) { f[i] = 1; q[re++] = i; } } ans[m] = n; while (fr < re) { int u = q[fr++]; ans[m]--; for (int i = 0; i < E[u].size(); ++i) { int v = E[u][i]; if (f[v]) continue; if (--d[v] < k) { q[re++] = v; f[v] = 1; } } } for (int i = m - 1; i >= 0; --i) { ans[i] = ans[i + 1]; int u1 = a[i], u2 = b[i]; if (f[u1] || f[u2]) continue; S.insert((long long)u1 * n + u2); S.insert((long long)u2 * n + u1); d[u1]--, d[u2]--; if (d[u1] < k) { fr = re = 0; q[re++] = u1; f[u1] = 1; while (fr < re) { int u = q[fr++]; ans[i]--; for (int i = 0; i < E[u].size(); ++i) { int v = E[u][i]; if (f[v] || S.find((long long)u * n + v) != S.end()) continue; if (--d[v] < k) { f[v] = 1; q[re++] = v; } } } } if (!f[u2] && d[u2] < k) { fr = re = 0; q[re++] = u2; f[u2] = 1; while (fr < re) { int u = q[fr++]; ans[i]--; for (int i = 0; i < E[u].size(); ++i) { int v = E[u][i]; if (f[v] || S.find((long long)u * n + v) != S.end()) continue; if (--d[v] < k) { f[v] = 1; q[re++] = v; } } } } } for (int i = 1; i <= m; ++i) printf("%d\n", ans[i]); return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int max_n = 200005; struct edge { int u, v, next; } G[max_n * 2]; int head[max_n]; int total; bool visit[max_n * 2]; int in[max_n]; set<pair<int, int> > s; int n, m, k; int u, v; int ans[max_n]; void add_edge(int u, int v) { G[total].u = u; G[total].v = v; G[total].next = head[u]; head[u] = total++; } int main() { scanf("%d%d%d", &n, &m, &k); total = 0; memset(head, -1, sizeof(head)); for (int i = 0; i < m; i++) { scanf("%d%d", &u, &v); add_edge(u, v); add_edge(v, u); in[u]++; in[v]++; } for (int i = 1; i <= n; i++) s.insert(pair<int, int>(in[i], i)); pair<int, int> p; for (int i = 2 * m - 1; i >= 0; i -= 2) { while (!s.empty()) { p = *s.begin(); if (p.first < k) { s.erase(p); for (int j = head[p.second]; ~j; j = G[j].next) { if (!visit[j]) { v = G[j].v; s.erase(pair<int, int>(in[v], v)); in[v]--; s.insert(pair<int, int>(in[v], v)); visit[j] = visit[j ^ 1] = true; } } } else break; } ans[i / 2] = s.size(); if (!visit[i]) { u = G[i].u; v = G[i].v; s.erase(pair<int, int>(in[u], u)); in[u]--; s.insert(pair<int, int>(in[u], u)); s.erase(pair<int, int>(in[v], v)); in[v]--; s.insert(pair<int, int>(in[v], v)); visit[i] = visit[i ^ 1] = true; } } for (int i = 0; i < m; i++) printf("%d\n", ans[i]); return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct edge { int u, v; }; int n, m, k, f[1000000 + 1], ans[1000000 + 1], q[1000000 + 1], lq = 0, rq = -1, cur; edge b[1000000 + 1]; vector<int> a[1000000 + 1], e[1000000 + 1]; bool remoed[1000000 + 1], removeti[1000000 + 1]; void removequeue() { int x, y; while (lq <= rq) { x = q[lq]; lq++; cur--; for (int i = 0; i < a[x].size(); i++) { y = a[x][i]; if (remoed[e[x][i]] == false) { remoed[e[x][i]] = true; f[y]--; if (f[y] < k && removeti[y] == false) { rq++; q[rq] = y; removeti[y] = true; } } } } } void removemany() { for (int i = 1; i <= n; i++) { if (f[i] < k) { rq++; q[rq] = i; removeti[i] = true; } } removequeue(); } void solve() { removemany(); for (int i = m - 1; i >= 0; i--) { ans[i] = cur; if (remoed[i] == false) { remoed[i] = true; f[b[i].u]--; f[b[i].v]--; if (f[b[i].u] < k && removeti[b[i].u] == false) { rq++; q[rq] = b[i].u; removeti[b[i].u] = true; } if (f[b[i].v] < k && removeti[b[i].v] == false) { rq++; q[rq] = b[i].v; removeti[b[i].v] = true; } } removequeue(); } for (int i = 0; i < m; i++) cout << ans[i] << "\n"; } void readit() { cin >> n >> m >> k; for (int i = 0; i < m; i++) { cin >> b[i].u >> b[i].v; a[b[i].u].push_back(b[i].v); a[b[i].v].push_back(b[i].u); e[b[i].u].push_back(i); e[b[i].v].push_back(i); f[b[i].u]++; f[b[i].v]++; } cur = n; } int main() { readit(); solve(); return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.util.HashMap; import java.util.InputMismatchException; import java.io.IOException; import java.util.TreeSet; import java.util.ArrayList; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author BSRK Aditya */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); ETrips solver = new ETrips(); solver.solve(1, in, out); out.close(); } static class ETrips { public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.readInt(), m = in.readInt(), k = in.readInt(); ArrayList<Integer>[] adj = new ArrayList[n]; HashMap<P, Boolean> edgeMap = new HashMap<>(); P[] edges = new P[m]; for (int i = 0; i < n; ++i) adj[i] = new ArrayList<>(); for (int i = 0; i < m; ++i) { int x = in.readInt() - 1, y = in.readInt() - 1; P e = new P(Integer.min(x, y), Integer.max(x, y)); edges[i] = e; edgeMap.put(e, true); adj[x].add(y); adj[y].add(x); } //PriorityQueue<P> vertices = new PriorityQueue<>(); TreeSet<P> vertices = new TreeSet<>(); HashMap<Integer, Integer> vc = new HashMap<>(); for (int i = 0; i < n; ++i) { vertices.add(new P(adj[i].size(), i)); vc.put(i, adj[i].size()); } int count = n; while (!vertices.isEmpty() && vertices.first().x < k) { count--; P p = vertices.pollFirst(); int v1 = p.y; for (int v2 : adj[v1]) { P e = new P(Integer.min(v1, v2), Integer.max(v1, v2)); if (edgeMap.get(e)) { edgeMap.put(e, false); int v2c = vc.get(v2); vertices.remove(new P(v2c, v2)); vertices.add(new P(v2c - 1, v2)); vc.put(v2, v2c - 1); } } } int[] ans = new int[m]; ans[m - 1] = count; for (int i = m - 2; i >= 0; i--) { P e = edges[i + 1]; if (edgeMap.get(e)) { edgeMap.put(e, false); int v1 = e.x, v2 = e.y; int v1c = vc.get(v1), v2c = vc.get(v2); vertices.remove(new P(v1c, v1)); vertices.add(new P(v1c - 1, v1)); vc.put(v1, v1c - 1); vertices.remove(new P(v2c, v2)); vertices.add(new P(v2c - 1, v2)); vc.put(v2, v2c - 1); while (!vertices.isEmpty() && vertices.first().x < k) { count--; P p = vertices.pollFirst(); int v3 = p.y; for (int v4 : adj[v3]) { P e2 = new P(Integer.min(v3, v4), Integer.max(v3, v4)); if (edgeMap.get(e2)) { edgeMap.put(e2, false); int v4c = vc.get(v4); vertices.remove(new P(v4c, v4)); vertices.add(new P(v4c - 1, v4)); vc.put(v4, v4c - 1); } } } } ans[i] = count; } for (int i = 0; i < m; ++i) out.printLine(ans[i]); } class P implements Comparable<P> { final int x; final int y; P(int x, int y) { this.x = x; this.y = y; } public int compareTo(P o) { int v1 = Integer.compare(x, o.x); if (v1 != 0) return v1; else return Integer.compare(y, o.y); } public boolean equals(Object obj) { P p = (P) obj; return x == p.x && y == p.y; } public int hashCode() { return x + 3 * y; } } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(0); int n, m, k; cin >> n >> m >> k; pair<int, int> vv[m]; set<int> adj[n]; int deg[n]; for (int i = 0; i < n; i++) deg[i] = 0; for (int i = 0; i < m; i++) { int x, y; cin >> x >> y; x--; y--; vv[i] = make_pair(x, y); deg[x]++; deg[y]++; adj[x].insert(y); adj[y].insert(x); } int ans[m], good = n; bool done[n]; for (int i = 0; i < n; i++) done[i] = 0; set<pair<int, int> > st; priority_queue<pair<int, int> > pq; for (int i = 0; i < n; i++) pq.push(make_pair(-deg[i], i)); for (int i = m - 1; i >= 0; i--) { while (!pq.empty()) { pair<int, int> p = pq.top(); pq.pop(); if (-p.first >= k) { pq.push(p); break; } if (done[p.second]) continue; done[p.second] = true; good--; int ix = p.second; for (set<int>::iterator it = adj[ix].begin(); it != adj[ix].end(); it++) { deg[*it]--; adj[*it].erase(ix); pq.push(make_pair(-deg[*it], *it)); } deg[ix] = 0; adj[ix].clear(); } ans[i] = good; if (adj[vv[i].first].find(vv[i].second) != adj[vv[i].first].end()) { deg[vv[i].first]--; pq.push(make_pair(-deg[vv[i].first], vv[i].first)); deg[vv[i].second]--; pq.push(make_pair(-deg[vv[i].second], vv[i].second)); adj[vv[i].first].erase(vv[i].second); adj[vv[i].second].erase(vv[i].first); } } for (int i = 0; i < m; i++) cout << ans[i] << endl; return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAXN = 2e5 + 5; int n, m, k, X[MAXN], Y[MAXN], deg[MAXN], cnt; vector<pair<int, int> > E[MAXN]; bool removed[MAXN]; void ukloni(int x, int tijme) { if (!removed[x] && deg[x] < k) { removed[x] = true; cnt--; for (auto e : E[x]) if (e.second < tijme) { deg[e.first]--; ukloni(e.first, tijme); } } } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cin >> n >> m >> k; for (int i = 0; i < m; ++i) { cin >> X[i] >> Y[i]; E[X[i]].push_back(pair<int, int>(Y[i], i)); E[Y[i]].push_back(pair<int, int>(X[i], i)); deg[X[i]]++; deg[Y[i]]++; } cnt = n; for (int i = 1; i < n + 1; ++i) ukloni(i, MAXN); vector<int> sol; for (int i = m - 1; i >= 0; --i) { sol.push_back(cnt); if (!removed[X[i]] && !removed[Y[i]]) { deg[X[i]]--; deg[Y[i]]--; ukloni(X[i], i); ukloni(Y[i], i); } } for (int i = ((int)sol.size()) - 1; i >= 0; --i) cout << sol[i] << "\n"; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long M = 2e5 + 10; vector<long long> v[200009], deg(M), vis(M); map<pair<long long, long long>, long long> ed; void dfs(long long s, long long k, long long p, long long &ans) { vis[s] = 1; ans--; for (auto u : v[s]) { pair<long long, long long> p1; p1.first = u; p1.second = s; if (u != p && ed.find(p1) == ed.end()) { deg[u]--; deg[s]--; ed[make_pair(u, s)] = 1; ed[make_pair(s, u)] = 1; } if (vis[u] == 0 && deg[u] < k) { dfs(u, k, s, ans); } } return; } int main() { long long n, m, k; cin >> n >> m >> k; vector<pair<long long, long long> > edge; for (long long i = 0; i < m; i++) { long long a, b; scanf("%lld%lld", &a, &b); v[a].push_back(b); v[b].push_back(a); edge.push_back(make_pair(a, b)); deg[a]++; deg[b]++; } long long ans = n; vector<long long> ans1(m); vis[0] = 1; for (long long i = 1; i <= n; i++) { if (deg[i] < k && vis[i] == 0) { dfs(i, k, 0, ans); } } for (long long i = m - 1; i >= 0; i--) { ans1[i] = ans; long long a = edge[i].first; long long b = edge[i].second; if (vis[a] == 0 && vis[b] == 0 && ed.find(make_pair(a, b)) == ed.end()) { deg[a]--; deg[b]--; ed[make_pair(a, b)] = 1; ed[make_pair(b, a)] = 1; } if (deg[a] < k && vis[a] == 0) { dfs(a, k, b, ans); } if (deg[b] < k && vis[b] == 0) { dfs(b, k, a, ans); } } for (long long i = 0; i < m; i++) { printf("%lld\n", ans1[i]); } return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int inf = 0x3f3f3f3f; const int maxn = 1e6 + 5; struct edge { int u, v, ne, num; } e[maxn]; int n, m, k, sum; int d[maxn], no[maxn], vis[maxn]; int head[maxn], len; int ans[maxn]; void add(int u, int v, int num) { e[len].u = u; e[len].v = v; e[len].num = num; e[len].ne = head[u]; head[u] = len++; } void del(int x) { sum--; no[x] = 1; for (int i = head[x]; i != -1; i = e[i].ne) { int v = e[i].v; if (no[v] || vis[e[i].num]) continue; vis[e[i].num] = 1; d[v]--; if (d[v] < k) del(v); } return; } int main() { memset(head, -1, sizeof(head)); cin >> n >> m >> k; for (int i = 1, x, y; i <= m; i++) { scanf("%d %d", &x, &y); add(x, y, i); add(y, x, i); d[x]++; d[y]++; } sum = n; for (int i = 1; i <= n; i++) { if (d[i] >= k || no[i]) continue; del(i); } ans[m] = sum; for (int i = len - 1; i > 0; i -= 2) { int u = e[i].u, v = e[i].v; if (!vis[e[i].num]) { vis[e[i].num] = 1; if (!no[u]) { d[u]--; if (d[u] < k) del(u); } if (!no[v]) { d[v]--; if (d[v] < k) del(v); } } ans[(i + 1) / 2 - 1] = sum; } for (int i = 1; i <= m; i++) printf("%d\n", ans[i]); return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 2e5; int n, m, k, used[N], w[N], all, deg[N]; bool c[N]; vector<set<int> > g(N); vector<int> res; vector<pair<int, int> > reb; queue<int> q; void bfs() { while (!q.empty()) { int v = q.front(); q.pop(); for (auto& u : g[v]) { if (deg[u] == k) { deg[u]--; q.push(u); } else deg[u]--; } } } void ddfs(int v) { for (auto& u : g[v]) { if (w[u] == 1) { w[u] = 0; c[u] = 0; all--; ddfs(u); } else w[u]--; } } int main() { cin >> n >> m >> k; for (int i = 0; i < m; i++) { int a, b; cin >> a >> b; a--; b--; g[a].insert(b); g[b].insert(a); deg[a]++; deg[b]++; reb.push_back({a, b}); } for (int i = 0; i < n; i++) { if (deg[i] < k) { q.push(i); } } bfs(); for (int i = 0; i < n; i++) if (deg[i] >= k) c[i] = 1; for (int i = 0; i < n; i++) { int x = 0; for (auto& v : g[i]) x += c[v]; w[i] = max(0, x - k + 1); all += c[i]; } res.push_back(all); for (int i = m - 1; i >= 0; i--) { int a = reb[i].first, b = reb[i].second; if (c[a] && c[b]) { if (w[a] == 1) { w[a] = 0; all--; c[a] = 0; ddfs(a); } else if (w[b] == 1) { w[b] = 0; all--; c[b] = 0; ddfs(b); } else { w[a]--; w[b]--; } } g[a].erase(b); g[b].erase(a); res.push_back(all); } for (int i = m - 1; i >= 0; i--) cout << res[i] << '\n'; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct Edge { int t, id, next; Edge() {} Edge(int a, int b, int c) : t(a), id(b), next(c) {} }; Edge e[400005]; int head[200005], ans[200005], k; int cur; int d[200005], sum; bool col[200005]; void dfs(int x) { col[x] = 0; sum--; for (int i = head[x]; i; i = e[i].next) if (col[e[i].t] && e[i].id < cur) { int u = e[i].t; d[u]--; if (d[u] < k) dfs(u); } } pair<int, int> a[200005]; int main() { int n, m; scanf("%d%d%d", &n, &m, &k); for (int i = 1; i <= m; i++) { int x, y; scanf("%d%d", &x, &y); e[2 * i - 1] = Edge(y, i, head[x]); head[x] = 2 * i - 1; e[2 * i] = Edge(x, i, head[y]); head[y] = 2 * i; d[x]++; d[y]++; a[i] = pair<int, int>(x, y); } for (int i = 1; i <= n; i++) col[i] = 1; sum = n; cur = m + 1; for (int i = 1; i <= n; i++) if (col[i] && d[i] < k) dfs(i); for (int i = m; i > 0; i--) { ans[i] = sum; int x = a[i].first, y = a[i].second; cur--; if (col[x] && col[y]) { d[x]--; d[y]--; if (col[x] && d[x] < k) dfs(x); if (col[y] && d[y] < k) dfs(y); } } for (int i = 1; i <= m; i++) printf("%d\n", ans[i]); return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mod = 1000000007; int n, m, k, indi[(int)5e5 + 110]; set<int> gra[(int)5e5 + 110]; int arr[(int)5e5 + 110], bra[(int)5e5 + 110], result[(int)5e5 + 110], donno[(int)5e5 + 110]; int track; void funck(int u) { queue<int> pq; pq.push(u); while (!pq.empty()) { u = pq.front(); pq.pop(); if (donno[u]) continue; donno[u] = 1; track--; for (int go : gra[u]) { gra[go].erase(u); if (--indi[go] < k) pq.push(go); } } } int main() { cin >> n >> m >> k; for (int i = 0; i < m; ++i) { int u, v; cin >> u >> v; u--; v--; gra[u].insert(v); gra[v].insert(u); indi[u]++; indi[v]++; arr[i] = u; bra[i] = v; } track = n; for (int i = 0; i < n; ++i) { if (donno[i] == 0 and indi[i] < k) { funck(i); } } for (int i = m - 1; i >= 0; i--) { result[i] = track; if (donno[arr[i]] == 0 and donno[bra[i]] == 0) { indi[arr[i]]--; indi[bra[i]]--; gra[arr[i]].erase(bra[i]); gra[bra[i]].erase(arr[i]); if (indi[arr[i]] < k) funck(arr[i]); if (indi[bra[i]] < k) funck(bra[i]); } } for (int i = 0; i < m; ++i) { cout << result[i] << endl; } return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
java
/** * Created by Baelish on 9/2/2018. */ import java.io.*; import java.util.*; import static java.lang.Math.*; public class E { public static void main(String[] args) throws Exception { FastReader in = new FastReader(System.in); PrintWriter pw = new PrintWriter(System.out); n = in.nextInt(); m = in.nextInt(); k = in.nextInt(); g = genList(n); int u[] = new int[m], v[] = new int[m]; degree = new int[n]; dead = new boolean[n]; for (int i = 0; i < m; i++) { u[i] = in.nextInt()-1; v[i] = in.nextInt()-1; g[u[i]].add(v[i]); g[v[i]].add(u[i]); degree[u[i]]++; degree[v[i]]++; } for (int i = 0; i < n; i++) { if(degree[i] < k) dfs(i); } int ans[] = new int[m]; ans[m-1] = n - count; for (int i = m-1; i >= 1; i--) { if(removedEdge.add( getHash(v[i], u[i]))) { degree[u[i]]--; degree[v[i]]--; dfs(u[i]); dfs(v[i]); } ans[i-1] = n - count; if(ans[i-1] == 0) break; } for(int i : ans) pw.println(i); pw.close(); } static List<Integer> g[]; static boolean dead[]; static int count = 0, n, m, k; static int degree[]; static HashSet<Long> removedEdge = new HashSet<>(); static long getHash(long u, long v){ return (min(u, v) << 30) | max(u, v); } static void dfs(int u){ if(dead[u] || degree[u] >= k) return; count++; dead[u] = true; for(int v : g[u]){ if(!removedEdge.add( getHash(v, u))) continue; degree[u]--; degree[v]--; dfs(v); } } static <T>List<T>[] genList(int n){ List<T> list[] = new List[n]; for(int i = 0; i < n; i++) list[i] = new ArrayList<T>(); return list; } static void debug(Object... obj) { System.err.println(Arrays.deepToString(obj)); } static class FastReader { InputStream is; private byte[] inbuf = new byte[1024]; private int lenbuf = 0, ptrbuf = 0, charArrayLength = (int) 1e3; public FastReader(InputStream is) { this.is = is; } public FastReader(InputStream is, int charArrayLength) { this.is = is; this.charArrayLength = charArrayLength; } public int readByte() { if (lenbuf == -1) throw new InputMismatchException(); if (ptrbuf >= lenbuf) { ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if (lenbuf <= 0) return -1; } return inbuf[ptrbuf++]; } public boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } public int skip() { int b; while ((b = readByte()) != -1 && isSpaceChar(b)) ; return b; } public String next() { int b = skip(); StringBuilder sb = new StringBuilder(); while (!(isSpaceChar(b))) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public String nextLine() { int b = readByte(); StringBuilder sb = new StringBuilder(); while (b != '\n' || b != '\r') { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public int nextInt() { int num = 0, b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = (num << 3) + (num << 1) + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } public long nextLong() { long num = 0; int b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = (num << 3) + (num << 1) + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } public double nextDouble() { return Double.parseDouble(next()); } public char[] next(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while (p < n && !(isSpaceChar(b))) { buf[p++] = (char) b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } public char nextChar() { return (char) skip(); } private char buff[]; public char[] nextCharArray() { if (buff == null) buff = new char[charArrayLength]; int b = skip(), p = 0; while (!(isSpaceChar(b))) { buff[p++] = (char) b; b = readByte(); } return Arrays.copyOf(buff, p); } } }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void func(void) { freopen("input.c", "r", stdin); freopen("output.c", "w", stdout); } void print(vector<long long> &v) { cout << v.size() << endl; for (int i = 0; i < v.size(); i++) { printf("%lld ", v[i]); } printf("\n"); } void print(vector<pair<long long, long long> > &v) { cout << v.size() << endl; for (int i = 0; i < v.size(); i++) { printf("%lld %lld\n", v[i].first, v[i].second); } } void print(double d) { cout << fixed << setprecision(10) << d << endl; } void print(string s, double d) { cout << s << " "; cout << fixed << setprecision(10) << d << endl; } const int N = 2e5 + 100; set<int> s[N]; set<pair<int, int> > keep; int in[N]; vector<pair<int, int> > v; int answer[N]; void setAnswer(int x, int i, int n) { answer[i] = x; } void finIt(int n) { for (int i = 0; i < n; i++) { if (answer[i] == -1) answer[i] = 0; } } int getAnswer(int k) { while (keep.size()) { auto it = keep.begin(); pair<int, int> x = *it; if (x.first >= k) break; int y = x.second; keep.erase(it); for (auto it1 = s[y].begin(); it1 != s[y].end(); it1++) { int z = *it1; keep.erase(keep.find({in[z], z})); in[z]--; keep.insert({in[z], z}); s[z].erase(y); } s[y].clear(); } return keep.size(); } int main() { int n, q, i, j = 0, temp, t, k, ans = 0, sum = 0, x, y, z, cnt = 0, m, fg = 0, mx = 0, mx1 = 0; scanf("%d %d %d", &n, &m, &k); for (int i = 0; i < m; i++) { scanf("%d %d", &x, &y); s[x].insert(y); s[y].insert(x); v.push_back({x, y}); in[x]++; in[y]++; } for (int i = 1; i <= n; i++) { keep.insert({in[i], i}); } int nowAnswer = getAnswer(k); answer[m - 1] = nowAnswer; for (int i = v.size() - 1; i >= 1; i--) { int x = v[i].first; int y = v[i].second; if (s[x].find(y) == s[x].end()) { answer[i - 1] = nowAnswer; continue; } keep.erase(keep.find({in[x], x})); keep.erase(keep.find({in[y], y})); in[x]--; in[y]--; keep.insert({in[x], x}); keep.insert({in[y], y}); s[x].erase(y); s[y].erase(x); nowAnswer = getAnswer(k); answer[i - 1] = nowAnswer; } for (int i = 0; i < m; i++) { printf("%d\n", answer[i]); } }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 10; vector<int> adj[N]; int deg[N], ans[N]; pair<int, int> ed[N]; queue<int> lazy; bool rem_e[N], rem_v[N]; int k, tot; void erase(int i) { if (rem_e[i]) return; rem_e[i] = true; for (int u : {ed[i].first, ed[i].second}) { if (deg[u] == k) { lazy.push(u); } deg[u]--; } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int n, m; cin >> n >> m >> k; tot = n; for (int i = 0; i < m; i++) { int u, v; cin >> u >> v; ed[i] = {u, v}; adj[u].push_back(i); deg[u]++; adj[v].push_back(i); deg[v]++; } for (int i = 1; i <= n; i++) if (deg[i] < k) lazy.push(i); for (int i = m - 1; i >= 0; i--) { while (!lazy.empty()) { int u = lazy.front(); lazy.pop(); if (rem_v[u]) continue; rem_v[u] = true; tot--; for (int i : adj[u]) erase(i); } ans[i] = tot; erase(i); } for (int i = 0; i < m; i++) { cout << ans[i] << ' '; } cout << '\n'; return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.util.Arrays; import java.io.BufferedWriter; import java.util.Random; import java.util.InputMismatchException; import java.io.IOException; import java.util.ArrayList; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.InputStream; /** * Built using CHelper plug-in Actual solution is at the top * * @author ilyakor */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskE solver = new TaskE(); solver.solve(1, in, out); out.close(); } static class TaskE { int k; ArrayList<ii>[] g; int[] q; int[] deg; boolean[] alive; int T; int cur; public void solve(int testNumber, InputReader in, OutputWriter out) { Random random = new Random(0xdead); int n = in.nextInt(); int m = in.nextInt(); k = in.nextInt(); // int n = 1000, m = 10000; // k = 10; g = new ArrayList[n]; for (int i = 0; i < n; ++i) { g[i] = new ArrayList<>(); } ArrayList<ii> edges = new ArrayList<>(); for (int i = 0; i < m; ++i) { int x = in.nextInt() - 1; int y = in.nextInt() - 1; // int x = random.nextInt(n); // int y; // do { // y = random.nextInt(n); // } while (y == x); g[x].add(new ii(y, i)); g[y].add(new ii(x, i)); edges.add(new ii(x, y)); } deg = new int[n]; for (int i = 0; i < n; ++i) { deg[i] = g[i].size(); } T = m - 1; cur = n; alive = new boolean[n]; q = new int[2 * n + 10]; Arrays.fill(alive, true); for (int i = 0; i < n; ++i) { update(i); } int[] res = new int[m]; for (int i = m - 1; i >= 0; --i) { res[i] = cur; int x = edges.get(i).first, y = edges.get(i).second; --T; if (alive[x]) { --deg[y]; } if (alive[y]) { --deg[x]; } update(x); update(y); } for (int i = 0; i < m; ++i) { out.printLine(res[i]); } } private void update(int x) { if (!alive[x]) { return; } int ql = 0, qr = 0; q[ql++] = x; while (ql > qr) { x = q[qr++]; if (!alive[x]) { continue; } Assert.assertTrue(g[x].size() >= deg[x]); if (deg[x] >= k) { while (g[x].get(g[x].size() - 1).second > T) { g[x].remove(g[x].size() - 1); } } else { for (ii e : g[x]) { int y = e.first; if (alive[y] && deg[y] >= k && e.second <= T) { --deg[y]; if (deg[y] < k) { q[ql++] = y; } } } g[x].clear(); deg[x] = 0; alive[x] = false; --cur; } } } } static class Assert { public static void assertTrue(boolean flag) { // if (!flag) // while (true); if (!flag) { throw new AssertionError(); } } } static class ii implements Comparable<ii> { public int first; public int second; public ii() { } public ii(int first, int second) { this.first = first; this.second = second; } public boolean equals(Object o) { if (this == o) { return true; } if (o == null || getClass() != o.getClass()) { return false; } ii ii = (ii) o; if (first != ii.first) { return false; } if (second != ii.second) { return false; } return true; } public int hashCode() { int result = first; result = 31 * result + second; return result; } public int compareTo(ii o) { if (first != o.first) { return first < o.first ? -1 : 1; } if (second != o.second) { return second < o.second ? -1 : 1; } return 0; } public String toString() { return "{" + "first=" + first + ", second=" + second + '}'; } } static class InputReader { private InputStream stream; private byte[] buffer = new byte[10000]; private int cur; private int count; public InputReader(InputStream stream) { this.stream = stream; } public static boolean isSpace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public int read() { if (count == -1) { throw new InputMismatchException(); } try { if (cur >= count) { cur = 0; count = stream.read(buffer); if (count <= 0) { return -1; } } } catch (IOException e) { throw new InputMismatchException(); } return buffer[cur++]; } public int readSkipSpace() { int c; do { c = read(); } while (isSpace(c)); return c; } public int nextInt() { int sgn = 1; int c = readSkipSpace(); if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res = res * 10 + c - '0'; c = read(); } while (!isSpace(c)); res *= sgn; return res; } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } } }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INFTY = 20000000; const int MAX = 500100; const int MOD = 10000000; void coutTab(int* tab, int n) { for (int i = 0; i < n; i++) { cout << tab[i] << " "; } cout << "\n"; } int n, m, k; vector<set<int> > G(MAX); int s[MAX]; bool was[MAX]; pair<int, int> E[MAX]; int res[MAX]; void addToQueue(queue<int>& Q, int i) { if (s[i] < k && !was[i]) { was[i] = 1; Q.push(i); } } int main() { ios_base::sync_with_stdio(0); cin >> n >> m >> k; for (int i = 0; i < m; i++) { cin >> E[i].first >> E[i].second; E[i].first--; E[i].second--; G[E[i].first].insert(E[i].second); G[E[i].second].insert(E[i].first); } for (int i = 0; i < n; i++) s[i] = (G[i]).size(); queue<int> Q; int cur = n; for (int i = 0; i < n; i++) addToQueue(Q, i); for (int i = 0; i < m; i++) { while (!Q.empty()) { int j = Q.front(); Q.pop(); for (auto l : G[j]) { s[l]--; addToQueue(Q, l); } cur--; } res[i] = cur; pair<int, int> lst = E[m - i - 1]; G[lst.first].erase(lst.second); G[lst.second].erase(lst.first); if (!was[lst.second]) s[lst.first]--; if (!was[lst.first]) s[lst.second]--; addToQueue(Q, lst.first); addToQueue(Q, lst.second); } reverse(res, res + m); for (int i = 0; i < m; i++) cout << res[i] << "\n"; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; const long long LINF = 0x3f3f3f3f3f3f3f3fLL; const double PI = acos(-1.0); const double EPS = 1e-8; const int MOD = 998244353; template <typename T> void cmin(T &x, T y) { if (y < x) x = y; } template <typename T> void cmax(T &x, T y) { if (y > x) x = y; } long long qpow(long long x, long long n, long long mod = MOD) { long long res = 1; while (n) { if (n & 1) res = res * x % mod; x = x * x % mod; n >>= 1; } return res; } namespace Solver { void InitOnce() {} int n, m, k; int u[200005]; int v[200005]; int deg[200005]; vector<pair<int, int> > G[200005]; void Read() { int res = scanf("%d%d%d", &n, &m, &k); if (res == -1) exit(0); for (int i = 1; i <= n; ++i) G[i].clear(); for (int i = 1; i <= m; ++i) { scanf("%d%d", &u[i], &v[i]); G[u[i]].emplace_back(v[i], i); G[v[i]].emplace_back(u[i], i); } for (int i = 1; i <= n; ++i) deg[i] = G[i].size(); } bool vis[200005]; int ans[200005]; bool inQ[200005]; queue<int> Q; void delEdge(int u, int v, int id) { if (vis[id]) return; vis[id] = 1; --deg[u]; --deg[v]; if (inQ[v] == 0 && deg[v] < k) { Q.push(v); inQ[v] = 1; } } void delEdge2(int u, int v, int id) { if (vis[id]) return; vis[id] = 1; --deg[u]; --deg[v]; if (inQ[u] == 0 && deg[u] < k) { Q.push(u); inQ[u] = 1; } if (inQ[v] == 0 && deg[v] < k) { Q.push(v); inQ[v] = 1; } } void Solve() { memset(vis, 0, sizeof(vis)); memset(ans, 0, sizeof(ans)); memset(inQ, 0, sizeof(inQ)); for (int i = 1; i <= n; ++i) { if (deg[i] < k) { Q.push(i); inQ[i] = 1; } } int cur = n; while (!Q.empty()) { int u = Q.front(); Q.pop(); --cur; for (pair<int, int> &p : G[u]) { int v = p.first, id = p.second; delEdge(u, v, id); } } for (int i = 1; i <= n; ++i) { if (deg[i]) assert(deg[i] >= k); } ans[m] = cur; for (int i = m - 1; i >= 0; --i) { int de = i + 1; delEdge2(u[de], v[de], de); while (!Q.empty()) { int u = Q.front(); Q.pop(); --cur; for (pair<int, int> &p : G[u]) { int v = p.first, id = p.second; delEdge(u, v, id); } } ans[i] = cur; } for (int i = 1; i <= n; ++i) { assert(deg[i] == 0); assert(inQ[i] == 1); } for (int i = 1; i <= m; ++i) assert(vis[i] == 1); for (int i = 1; i <= m; ++i) printf("%d\n", ans[i]); return; } } // namespace Solver int main() { Solver::InitOnce(); while (true) { Solver::Read(); Solver::Solve(); } return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, m, k; cin >> n >> m >> k; vector<pair<int, int> > arr(m); vector<vector<int> > G(n); vector<int> in(n), vis(n); for (auto& it : arr) { int u, v; cin >> u >> v; in[--u]++; in[--v]++; it = {u, v}; G[u].push_back(v); G[v].push_back(u); } queue<int> q; for (int i = 0; i < n; i++) { if (in[i] < k) { q.push(i); vis[i] = 1; } } int cur = n - q.size(); set<pair<int, int> > cnt; while (!q.empty()) { auto x = q.front(); q.pop(); for (auto& it : G[x]) { auto node = minmax(x, it); if (cnt.find(node) == cnt.end()) { cnt.insert(node); if (!vis[it] && --in[it] < k) { vis[it] = 1; q.push(it); cur--; } } } } reverse(arr.begin(), arr.end()); vector<int> ans; for (auto& it : arr) { ans.push_back(cur); auto node = minmax(it.first, it.second); if (cnt.find(node) == cnt.end()) { cnt.insert(node); if (!vis[it.first] && --in[it.first] < k) { vis[it.first] = 1; q.push(it.first); cur--; } if (!vis[it.second] && --in[it.second] < k) { vis[it.second] = 1; q.push(it.second); cur--; } while (!q.empty()) { auto x = q.front(); q.pop(); for (auto& jt : G[x]) { auto node = minmax(x, jt); if (cnt.find(node) == cnt.end()) { cnt.insert(node); if (!vis[jt] && --in[jt] < k) { vis[jt] = 1; q.push(jt); cur--; } } } } } } reverse(ans.begin(), ans.end()); for (auto& it : ans) cout << it << endl; return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
java
//package Cf.Codefest18; import java.io.*; import java.util.*; /** * Author : NoRainInNorthrend * Date: 2018/9/3 18:51 */ public class E { public static int n, m, k; public static List<Pair>[] g; public static int[] degree; public static int[] from, to; public static void main(String[] args) throws IOException { FastScanner scanner = new FastScanner(System.in); PrintWriter out = new PrintWriter(System.out); n = scanner.nextInt(); m = scanner.nextInt(); k = scanner.nextInt(); degree = new int[n + 1]; from = new int[m + 1]; to = new int[m + 1]; g = new List[n + 1]; Set<Pair> treeSet = new TreeSet<>(); boolean[] inSet = new boolean[n + 1]; for(int i = 0; i <= n; i++) g[i] = new ArrayList<>(); for(int i = 0; i < m; i++){ from[i] = scanner.nextInt(); to[i] = scanner.nextInt(); g[from[i]].add(new Pair(to[i], i)); g[to[i]].add(new Pair(from[i], i)); degree[from[i]]++; degree[to[i]]++; } for(int i = 1; i <= n; i++){ treeSet.add(new Pair(degree[i], i)); inSet[i] = true; } Iterator iterator; while(true){ iterator = treeSet.iterator(); if(!iterator.hasNext()) break; Pair front = (Pair)iterator.next(); if(front.first < k){ int u = front.second; for(Pair pair : g[u]){ int v = pair.first; if(inSet[v]){ treeSet.remove(new Pair(degree[v], v)); treeSet.add(new Pair(--degree[v] , v)); } } inSet[u] = false; treeSet.remove(front); }else { break; } } int[] ans = new int[m]; for(int i = m - 1; i >= 0; i--){ ans[i] = treeSet.size(); int x = from[i], y = to[i]; if(inSet[x] && inSet[y]){ treeSet.remove(new Pair(degree[x], x)); treeSet.add(new Pair(--degree[x], x)); treeSet.remove(new Pair(degree[y], y)); treeSet.add(new Pair(--degree[y], y)); while(true){ iterator = treeSet.iterator(); if(!iterator.hasNext()) break; Pair front = (Pair)iterator.next(); if(front.first < k){ int u = front.second; for(Pair pair : g[u]){ if(pair.second >= i) continue; int v = pair.first; if(inSet[v]){ treeSet.remove(new Pair(degree[v], v)); treeSet.add(new Pair(--degree[v] , v)); } } inSet[u] = false; treeSet.remove(front); }else { break; } } } } for(int i = 0; i < m; i++) out.println(ans[i]); out.flush(); } static class Pair implements Comparable<Pair>{ public int first; public int second; public Pair(int first, int second) { this.first = first; this.second = second; } @Override public int compareTo(Pair o) { if(this.first == o.first){ if(this.second == o.second){ return 0; }else{ return this.second > o.second ? 1 : -1; } }else{ return this.first > o.first ? 1 : -1; } } } private static class FastScanner { StringTokenizer st; BufferedReader br; public FastScanner(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } public String nextLine() throws IOException { return br.readLine(); } public int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(next()); } public long nextLong() throws NumberFormatException, IOException { return Long.parseLong(next()); } public double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(next()); } } }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
java
import java.io.*; import java.util.*; public class e { public static void main(String[] args) { JS in = new JS(); int n = in.nextInt(); int m = in.nextInt(); int k = in.nextInt(); HashSet<Integer> adj[] = new HashSet[n]; for(int i = 0; i < n; i++) adj[i] = new HashSet<>(); int friends[] = new int[n]; Stack<Integer> ans = new Stack<>(), uq = new Stack<>(), vq = new Stack<>(); for(int i = 0; i < m; i++ ){ int u = in.nextInt()-1; int v = in.nextInt()-1; adj[u].add(v); adj[v].add(u); uq.add(u); vq.add(v); friends[u]++; friends[v]++; } int a = n; ArrayDeque<Integer> q= new ArrayDeque<>(); boolean good[] = new boolean[n]; Arrays.fill(good, true); for(int i = 0; i < n; i++) { if(friends[i] < k) { q.add(i); good[i] = false; a--; } } while(!q.isEmpty()) { int u = q.poll(); for(int v : adj[u]) { friends[v]--; if(good[v] && friends[v] < k) { good[v] = false; a--; q.add(v); } } } ans.add(a); for(int i = 0; i < m; i++) { int u = uq.pop(); int v = vq.pop(); if(good[u] && good[v]) { friends[v]--; friends[u]--; adj[u].remove(v); adj[v].remove(u); if(friends[v] < k) { a--; q.add(v); good[v] = false; } if(friends[u] < k){ a--; q.add(u); good[u] = false; } while(!q.isEmpty()) { int uu = q.poll(); for(int vv : adj[uu]) { friends[vv]--; if(good[vv] && friends[vv] < k) { good[vv] = false; a--; q.add(vv); } } } } ans.add(a); } ans.pop(); PrintWriter out = new PrintWriter(System.out); for(int i = 0; i < m; i++) { out.println(ans.pop()); } out.close(); } static class JS { public int BS = 1<<16; public char NC = (char)0; byte[] buf = new byte[BS]; int bId = 0, size = 0; char c = NC; double num = 1; BufferedInputStream in; public JS() { in = new BufferedInputStream(System.in, BS); } public JS(String s) throws FileNotFoundException { in = new BufferedInputStream(new FileInputStream(new File(s)), BS); } public char nextChar(){ while(bId==size) { try { size = in.read(buf); }catch(Exception e) { return NC; } if(size==-1)return NC; bId=0; } return (char)buf[bId++]; } public int nextInt() { return (int)nextLong(); } public long nextLong() { num=1; boolean neg = false; if(c==NC)c=nextChar(); for(;(c<'0' || c>'9'); c = nextChar()) { if(c=='-')neg=true; } long res = 0; for(; c>='0' && c <='9'; c=nextChar()) { res = (res<<3)+(res<<1)+c-'0'; num*=10; } return neg?-res:res; } public double nextDouble() { double cur = nextLong(); return c!='.' ? cur:cur+nextLong()/num; } public String next() { StringBuilder res = new StringBuilder(); while(c<=32)c=nextChar(); while(c>32) { res.append(c); c=nextChar(); } return res.toString(); } public String nextLine() { StringBuilder res = new StringBuilder(); while(c<=32)c=nextChar(); while(c!='\n') { res.append(c); c=nextChar(); } return res.toString(); } public boolean hasNext() { if(c>32)return true; while(true) { c=nextChar(); if(c==NC)return false; else if(c>32)return true; } } } }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline long long read() { long long x = 0, f = 1; char c = getchar(); while (c > '9' || c < '0') { if (c == '-') f = -1; c = getchar(); } while (c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); } return x * f; } long long n, tot = 1, ans, m, k; long long head[400005], d[400005], pr[400005], v[400005], vi[400005], vdel[400005], num[400005]; struct node { long long u, v; } g[400005]; struct ed { long long next, to; } e[400005 * 2]; void ad(long long x, long long y) { e[++tot].to = y; e[tot].next = head[x]; head[x] = tot; } void del(long long x) { if (vdel[x]) return; ans--; vdel[x] = 1; for (int i = head[x]; i; i = e[i].next) { int tt = e[i].to; bool flag = 0; if (d[tt] >= k) flag = 1; if (vi[i]) continue; d[tt]--; if (flag && d[tt] < k) del(tt); } } void dfs(long long x) { v[x] = 1; ans++; for (int i = head[x]; i; i = e[i].next) { int tt = e[i].to; if (v[tt] || vi[i]) continue; dfs(tt); } if (d[x] < k) del(x); } int main() { n = read(), m = read(), k = read(); for (int i = 1; i <= m; i++) { g[i].u = read(), g[i].v = read(); num[i] = tot + 1; ad(g[i].u, g[i].v); ad(g[i].v, g[i].u); d[g[i].u]++; d[g[i].v]++; } for (int i = 1; i <= n; i++) { if (!v[i]) dfs(i); } for (int i = m; i >= 1; i--) { pr[i] = ans; long long u = g[i].u, v = g[i].v; vi[num[i]] = vi[num[i] ^ 1] = 1; if (d[u] >= k && d[v] >= k) { d[u]--; d[v]--; if (d[u] < k) del(u); if (d[v] < k) del(v); } else if (d[u] >= k) d[v]--; else if (d[v] >= k) d[u]--; } for (int i = 1; i <= m; i++) cout << pr[i] << endl; return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct Edge { int u, v, nxt; } e[400010]; int tot; int first[200010]; int d[200010]; void build(int u, int v) { e[++tot] = (Edge){u, v, first[u]}; first[u] = tot; d[u]++; return; } int ans[200010]; bool book[200010]; bool is[200010]; int n, m, k; queue<int> q; void getans(int w) { if (w < m) { ans[w] = ans[w + 1]; int u = e[(w + 1) * 2].u, v = e[(w + 1) * 2].v; if (book[w + 1]) return; d[u]--; d[v]--; book[w + 1] = true; if (!is[u] && d[u] < k) q.push(u), ans[w]--, is[u] = true; if (!is[v] && d[v] < k) q.push(v), ans[w]--, is[v] = true; } else { ans[w] = n; for (int i = 1; i <= n; i++) if (d[i] < k) q.push(i), ans[w]--, is[i] = true; } while (!q.empty()) { int now = q.front(); q.pop(); for (int i = first[now]; i; i = e[i].nxt) { if (book[(i + 1) / 2]) continue; if (is[e[i].v]) continue; book[(i + 1) / 2] = true; d[e[i].v]--; if (d[e[i].v] < k) { q.push(e[i].v); ans[w]--; is[e[i].v] = true; } } } return; } int main() { scanf("%d %d %d", &n, &m, &k); for (int i = 1; i <= m; i++) { int u, v; scanf("%d %d", &u, &v); build(u, v); build(v, u); } for (int i = m; i >= 1; i--) getans(i); for (int i = 1; i <= m; i++) printf("%d\n", ans[i]); return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC target("avx2") #pragma GCC optimization("O3") #pragma GCC optimization("unroll-loops") using namespace std; template <typename T> void DBG(const char* name, T&& H) { cerr << name << " = " << H << ')' << '\n'; } template <typename T, typename... Args> void DBG(const char* names, T&& H, Args&&... args) { const char* NEXT = strchr(names + 1, ','); cerr.write(names, NEXT - names) << " = " << H << " |"; DBG(NEXT + 1, args...); } using ll = long long; using ld = long double; const ll mod1 = 1e9 + 7; const ld PI = acos(-1.0); const ll maxN = 1e6 + 1; const ll INF = 1e18; void Solve() { int n, m, k; cin >> n >> m >> k; vector<int> deg(n + 1, 0); vector<pair<int, int>> friendship(m); vector<set<int>> graph(n + 1); for (int i = 0; i < m; i++) { int a, b; cin >> a >> b; deg[a]++, deg[b]++; graph[a].insert(b); graph[b].insert(a); friendship[i] = {a, b}; } set<pair<int, int>> q; for (int i = 1; i <= n; i++) { q.insert({deg[i], i}); } vector<int> ans(m, 0); for (int i = m - 1; i >= 0; i--) { while (q.size() && ((*q.begin()).first < k)) { int ver = (*q.begin()).second; for (auto j : graph[ver]) { graph[j].erase(ver); q.erase({deg[j], j}); q.insert({deg[j] - 1, j}); deg[j]--; } q.erase({deg[ver], ver}); } ans[i] = q.size(); int a = friendship[i].first; int b = friendship[i].second; if (q.count({deg[a], a}) && q.count({deg[b], b})) { q.erase({deg[a], a}); q.erase({deg[b], b}); graph[a].erase(b); graph[b].erase(a); deg[a]--; deg[b]--; q.insert({deg[a], a}); q.insert({deg[b], b}); } } for (auto i : ans) cout << i << '\n'; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); int tt = 1; while (tt--) { Solve(); } return 0; }
1037_E. Trips
There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7.
{ "input": [ "4 4 2\n2 3\n1 2\n1 3\n1 4\n", "5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n", "5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n" ], "output": [ "0\n0\n3\n3\n", "0\n0\n0\n3\n3\n4\n4\n5\n", "0\n0\n0\n0\n3\n4\n4\n" ] }
{ "input": [ "16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n", "2 1 1\n2 1\n" ], "output": [ "0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n", "2\n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long double Pi = 3.14159265359; const long long MOD = (long long)1e9 + 7; const long long MAXN = (long long)2e5 + 10; const long long INF = (long long)9223372036854775; const long double EPS = (long double)1e-8; set<long long> ans; set<long long> g[MAXN]; vector<pair<long long, long long> > q; vector<long long> anss; queue<long long> bfsq; long long vis[MAXN]; int main() { long long n, m, k, u, v; scanf("%lld", &n); scanf("%lld", &m); scanf("%lld", &k); long long an = n; for (int i = 0; i < m; i++) { scanf("%lld", &u); scanf("%lld", &v); u--; v--; g[u].insert(v); g[v].insert(u); q.push_back(make_pair(u, v)); } for (int i = 0; i < n; i++) ans.insert(i); for (int i = 0; i < n; i++) { if (g[i].size() < k) { bfsq.push(i); vis[i] = 1; } } while (bfsq.size() != 0) { for (auto adj : g[bfsq.front()]) { g[adj].erase(bfsq.front()); if (g[adj].size() < k) { if (vis[adj] == 0) bfsq.push(adj); vis[adj] = 1; } } ans.erase(bfsq.front()); bfsq.pop(); an--; } anss.push_back(an); for (int i = 0; i < m; i++) { u = q.back().first; v = q.back().second; if ((vis[u] == 1) or (vis[v] == 1)) { anss.push_back(an); q.pop_back(); continue; } g[u].erase(v); g[v].erase(u); if (g[u].size() < k) { bfsq.push(u); vis[u] = 1; } if (g[v].size() < k) { bfsq.push(v); vis[v] = 1; } while (bfsq.size() != 0) { for (auto adj : g[bfsq.front()]) { g[adj].erase(bfsq.front()); if (g[adj].size() < k) { if (vis[adj] == 0) bfsq.push(adj); vis[adj] = 1; } } ans.erase(bfsq.front()); bfsq.pop(); an--; } anss.push_back(an); q.pop_back(); } anss.pop_back(); for (int i = 0; i < m; i++) { printf("%lld\n", anss.back()); anss.pop_back(); } return 0; }