Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int Int() {
int x;
scanf("%d", &x);
return x;
}
long long Long() {
long long x;
scanf("%lld", &x);
return x;
}
double Double() {
double x;
scanf("%lf", &x);
return x;
}
const int N = 2 * (int)1e5 + 5;
const long long MOD = (int)1e9 + 7;
int us[N], vs[N], ans[N], degree[N];
bool can[N];
set<pair<int, int> > trip;
vector<pair<int, int> > g[N];
int main() {
int n = Int(), m = Int(), k = Int();
memset(can, true, sizeof can);
for (int i = 1; i <= m; i++) {
us[i] = Int(), vs[i] = Int();
g[us[i]].push_back({vs[i], i});
g[vs[i]].push_back({us[i], i});
degree[us[i]]++;
degree[vs[i]]++;
}
for (int i = 1; i <= n; i++) {
trip.insert({degree[i], i});
}
while (!trip.empty() and trip.begin()->first < k) {
int u = trip.begin()->second;
for (auto j : g[u]) {
if (can[j.first]) {
trip.erase({degree[j.first], j.first});
degree[j.first]--;
trip.insert({degree[j.first], j.first});
}
}
trip.erase({degree[u], u});
can[u] = false;
}
for (int i = m; i > 0; i--) {
ans[i] = trip.size();
if (can[us[i]] and can[vs[i]]) {
trip.erase({degree[us[i]], us[i]});
degree[us[i]]--;
trip.insert({degree[us[i]], us[i]});
trip.erase({degree[vs[i]], vs[i]});
degree[vs[i]]--;
trip.insert({degree[vs[i]], vs[i]});
while (!trip.empty() and trip.begin()->first < k) {
int u = trip.begin()->second;
for (auto j : g[u]) {
if (j.second >= i) continue;
if (can[j.first]) {
trip.erase({degree[j.first], j.first});
degree[j.first]--;
trip.insert({degree[j.first], j.first});
}
}
trip.erase({degree[u], u});
can[u] = false;
}
}
}
for (int i = 1; i <= m; i++) {
cout << ans[i] << '\n';
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = double;
using pii = pair<int, int>;
using vi = vector<int>;
const int maxn = 5e5;
const int inf = 1e9;
const int mod = 1e9 + 7;
const ll inf64 = 1e18;
const ld pi = acos(-1.0);
const ld eps = 1e-6;
int n, m, k, deg[maxn];
set<int> g[maxn];
int uu[maxn], vv[maxn];
int ans[maxn];
int del[maxn];
int cur;
void go(int v) {
queue<int> q;
q.push(v);
while (!q.empty()) {
v = q.front();
q.pop();
if (del[v]) continue;
del[v] = 1;
cur--;
for (int to : g[v]) {
g[to].erase(v);
if (--deg[to] < k) q.push(to);
}
}
}
int main() {
ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cin >> n >> m >> k;
for (int i = 0; i < m; i++) {
int u, v;
cin >> u >> v;
u--;
v--;
g[u].insert(v);
g[v].insert(u);
deg[u]++;
deg[v]++;
uu[i] = u;
vv[i] = v;
}
cur = n;
for (int i = 0; i < n; i++)
if (del[i] == 0 && deg[i] < k) {
go(i);
}
for (int i = m - 1; i >= 0; i--) {
ans[i] = cur;
if (del[uu[i]] == 0 && del[vv[i]] == 0) {
deg[uu[i]]--;
deg[vv[i]]--;
g[uu[i]].erase(vv[i]);
g[vv[i]].erase(uu[i]);
if (deg[uu[i]] < k) go(uu[i]);
if (deg[vv[i]] < k) go(vv[i]);
}
}
for (int i = 0; i < m; i++) cout << ans[i] << '\n';
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxi = 1e6 + 2;
int a[maxi], b[maxi];
int res[maxi];
vector<int> v[maxi];
string s;
int n, m, k;
int ok;
int rem[maxi];
int deg[maxi];
map<pair<int, int>, int> mp;
queue<int> q;
void skloni(int poz) {
while (!q.empty()) {
int x = q.front();
deg[x] = 0;
q.pop();
for (int i : v[x]) {
if (!rem[i] && deg[i] == k && !mp[{x, i}]) {
deg[i]--;
res[poz]--;
q.push(i);
rem[i] = 1;
mp[{x, i}] = 1;
mp[{i, x}] = 1;
} else {
if (!mp[{x, i}]) deg[i]--;
mp[{x, i}] = 1;
mp[{i, x}] = 1;
}
}
}
}
int main() {
cin >> n >> m >> k;
for (int i = 1; i <= m; i++) {
int x, y;
scanf("%d%d", &x, &y);
a[i] = x;
b[i] = y;
v[x].push_back(y);
v[y].push_back(x);
deg[x]++;
deg[y]++;
}
res[m] = n;
for (int i = 1; i <= n; i++)
if (deg[i] < k) {
q.push(i);
rem[i] = 1;
res[m]--;
}
skloni(m);
for (int i = m; i >= 1; i--) {
res[i - 1] = res[i];
if (!mp[{a[i], b[i]}]) {
deg[a[i]]--;
deg[b[i]]--;
mp[{a[i], b[i]}] = 1;
mp[{b[i], a[i]}] = 1;
if (deg[a[i]] == k - 1 && !rem[a[i]]) {
rem[a[i]] = 1;
res[i - 1]--;
q.push(a[i]);
};
if (deg[b[i]] == k - 1 && !rem[b[i]]) {
rem[b[i]] = 1;
res[i - 1]--;
q.push(b[i]);
};
skloni(i - 1);
}
}
for (int i = 1; i <= m; i++) printf("%d\n", res[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, m, k;
set<int> V[200200];
pair<int, int> edges[200200];
set<int> active;
int answer[200200];
void fix(int i) {
if (active.find(i) == active.end()) return;
if (V[i].size() < k) {
for (int x : V[i]) V[x].erase(i);
for (int x : V[i]) fix(x);
active.erase(i);
}
}
int main() {
ios_base::sync_with_stdio(false);
cin >> n >> m >> k;
for (int i = 0; i < m; i++) {
int x, y;
cin >> x >> y;
edges[i].first = x;
edges[i].second = y;
V[x].insert(y);
V[y].insert(x);
}
for (int i = 1; i <= n; i++) active.insert(i);
for (int i = 1; i <= n; i++) fix(i);
for (int i = m - 1; i >= 0; i--) {
answer[i] = active.size();
int x = edges[i].first, y = edges[i].second;
V[x].erase(y);
V[y].erase(x);
fix(x);
fix(y);
}
for (int i = 0; i < m; i++) cout << answer[i] << "\n";
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, m, k;
struct edge {
int v, nxt;
} e[200005 * 2];
int cnt = 1, head[200005];
void adde(int u, int v) {
e[++cnt].v = v;
e[cnt].nxt = head[u];
head[u] = cnt;
}
int vis[200005 * 2], d[200005], ans[200005], res;
struct ege2 {
int u, v;
} edge[200005];
queue<int> q;
void solve() {
while (!q.empty()) {
int u = q.front();
q.pop();
d[u] = 0;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].v;
if (vis[i]) continue;
vis[i] = vis[i ^ 1] = 1;
d[v]--;
if (d[v] == k - 1) {
--res;
q.push(v);
}
}
}
}
int main() {
scanf("%d%d%d", &n, &m, &k);
for (int i = 1, u, v; i <= m; ++i) {
scanf("%d%d", &u, &v);
edge[i].u = u;
edge[i].v = v;
adde(u, v);
adde(v, u);
++d[u];
++d[v];
}
res = n;
for (int i = 1; i <= n; ++i)
if (d[i] < k) {
--res;
q.push(i);
}
solve();
ans[m] = res;
for (int i = m; i >= 2; --i) {
if (vis[i << 1]) {
ans[i - 1] = ans[i];
continue;
}
vis[i << 1] = vis[i << 1 | 1] = 1;
int u = edge[i].u, v = edge[i].v;
d[u]--;
d[v]--;
if (d[u] == k - 1) {
--res;
q.push(u);
}
if (d[v] == k - 1) {
--res;
q.push(v);
}
solve();
ans[i - 1] = res;
}
for (int i = 1; i <= m; ++i) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 200005;
set<int> adj[maxn];
int K;
queue<int> Q;
bool deleted[maxn];
int delc;
void del_edge(int u, int v) {
if (adj[u].count(v) != 0) {
adj[u].erase(v);
if (!deleted[u] && (int)adj[u].size() < K) {
deleted[u] = 1;
delc++;
Q.push(u);
}
}
if (adj[v].count(u) != 0) {
adj[v].erase(u);
if (!deleted[v] && (int)adj[v].size() < K) {
deleted[v] = 1;
delc++;
Q.push(v);
}
}
}
void del_vert(int u) {
vector<int> todel;
for (int v : adj[u]) {
todel.push_back(v);
}
for (int v : todel) {
del_edge(u, v);
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int vertexc, queryc;
cin >> vertexc >> queryc >> K;
vector<pair<int, int>> edges;
for (int i = 0; i < queryc; i++) {
int u, v;
cin >> u >> v;
adj[u].insert(v);
adj[v].insert(u);
edges.push_back(make_pair(u, v));
}
for (int i = 1; i <= vertexc; i++) {
if ((int)adj[i].size() < K) {
deleted[i] = 1;
delc++;
Q.push(i);
}
}
deque<int> ans;
for (int i = 0; i < queryc; i++) {
while (!Q.empty()) {
int qtop = Q.front();
Q.pop();
del_vert(qtop);
}
ans.push_front(vertexc - delc);
pair<int, int> uv = edges.back();
edges.pop_back();
if (!deleted[uv.first] && !deleted[uv.second]) {
del_edge(uv.first, uv.second);
}
}
for (int i = 0; i < (int)ans.size(); i++) {
cout << ans[i] << '\n';
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | import java.io.*;
import java.lang.reflect.Array;
import java.util.*;
public class Solution {
boolean eof;
BufferedReader br;
StringTokenizer st;
PrintWriter out;
public static void main(String[] args) throws IOException {
new Solution().run();
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return "-1";
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextToken());
}
public long nextLong() {
return Long.parseLong(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
String nextLine() throws IOException {
return br.readLine();
}
void run() throws IOException {
InputStream input = System.in;
PrintStream output = System.out;
String name = "a";
try {
File f = new File(name + ".in");
if (f.exists() && f.canRead()) {
input = new FileInputStream(f);
output = new PrintStream(name + ".out");
}
} catch (Throwable e) {
}
br = new BufferedReader(new InputStreamReader(input));
out = new PrintWriter(output);
solve();
br.close();
out.close();
}
void solve() {
int n = nextInt(), m = nextInt(), k = nextInt();
ArrayList<Integer>[] ed = new ArrayList[n];
for (int i = 0; i < n; i++) {
ed[i] = new ArrayList<>();
}
int[] edU = new int[m], edV = new int[m];
int[] frc = new int[n];
int[] eds = new int[n];
int[] ans = new int[m];
for (int i = 0; i < m; i++) {
edU[i] = nextInt() - 1;
edV[i] = nextInt() - 1;
frc[edU[i]]++;
frc[edV[i]]++;
ed[edU[i]].add(edV[i]);
ed[edV[i]].add(edU[i]);
eds[edU[i]]++;
eds[edV[i]]++;
}
int cur = n;
Queue<Integer> low = new ArrayDeque<>();
for (int i = 0; i < n; i++) {
if (frc[i] < k) {
low.add(i);
frc[i] = 0;
}
}
int u, v;
for (int i = 0; i < m; i++) {
while (!low.isEmpty()) {
u= low.poll();
cur--;
for (int j = 0; j < eds[u]; j++) {
v = ed[u].get(j);
frc[v]--;
if (frc[v] == k - 1) {
low.add(v);
}
}
}
ans[m - i - 1] = cur;
u = edU[m - i - 1];
v = edV[m - i - 1];
eds[u]--;
eds[v]--;
boolean nu1 = frc[u] >= k;
if (frc[v] >= k) {
frc[u]--;
if (frc[u] == k - 1)
low.add(u);
}
if (nu1) {
frc[v]--;
if (frc[v] == k - 1)
low.add(v);
}
}
for (int i = 0; i < m; i++) {
out.println(ans[i]);
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | python2 |
class Graph(object):
def __init__(self, n):
self.n = n
self.adj = [set() for i in xrange(n+1)]
self.rank = [0 for i in xrange(n+1)]
self.color = [True for i in xrange(n+1)]
def add_edge(self, a, b):
self.adj[a].add(b)
self.adj[b].add(a)
self.rank[a] += 1
self.rank[b] += 1
def remove_edge(self, a, b):
if b in self.adj[a]:
self.rank[a] -= 1
self.adj[a].remove(b)
if a in self.adj[b]:
self.adj[b].remove(a)
self.rank[b] -= 1
def main():
n, m, k = map(int, raw_input().strip().split(' '))
g = Graph(n)
edges = []
for i in xrange(m):
a, b = map(int, raw_input().strip().split(' '))
g.add_edge(a, b)
edges.append((a, b))
q = []
for v in range(1, n+1):
if g.rank[v] < k:
q.append(v)
def process_q():
num_removed = 0
while q:
v = q.pop()
# print 'removing', v
num_removed += 1
for u in list(g.adj[v]):
if g.rank[u] == k:
q.append(u)
g.remove_edge(u, v)
return num_removed
res = []
cur_res = n
cur_res -= process_q()
res.append(cur_res)
for a, b in reversed(edges):
# print 'process', a, b
g.remove_edge(a, b)
if g.rank[a] == k-1:
q.append(a)
if g.rank[b] == k-1:
q.append(b)
cur_res -= process_q()
res.append(cur_res)
for r in reversed(res[:-1]): print r,
print
if __name__ == '__main__':
main()
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int mod = 1e9 + 7;
int u[200050];
int v[200050];
int ans[200050];
int n, m, k;
set<int> s, num[200050];
void dfs(int u) {
if (num[u].size() < k && s.erase(u)) {
for (auto i : num[u]) {
num[i].erase(u);
dfs(i);
}
}
}
int main() {
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= m; i++) {
scanf("%d%d", &u[i], &v[i]);
num[u[i]].insert(v[i]);
num[v[i]].insert(u[i]);
}
for (int i = 1; i <= n; i++) s.insert(i);
for (int i = 1; i <= n; i++) dfs(i);
for (int i = m; i; i--) {
ans[i] = s.size();
if (s.empty()) break;
num[u[i]].erase(v[i]);
num[v[i]].erase(u[i]);
dfs(u[i]);
dfs(v[i]);
}
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
pair<int, int> v[200100];
int lv[200100];
vector<int> gr[200100];
int in[200100];
vector<int> go;
map<pair<int, int>, int> taiat;
int n, m, k, cont;
void dfs(int nod) {
in[nod] = 0;
cont--;
for (auto &x : gr[nod]) {
if (taiat[{nod, x}]) {
continue;
}
taiat[{nod, x}] = 1;
taiat[{x, nod}] = 1;
lv[x]--;
if (in[x] && lv[x] < k) {
dfs(x);
}
}
}
vector<int> ans;
int main() {
ios::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
cin >> n >> m >> k;
cont = n;
for (int i = 1; i <= m; i++) {
cin >> v[i].first >> v[i].second;
gr[v[i].first].push_back(v[i].second);
gr[v[i].second].push_back(v[i].first);
lv[v[i].first]++;
lv[v[i].second]++;
}
for (int i = 1; i <= n; i++) {
in[i] = 1;
}
for (int i = 1; i <= n; i++) {
if (lv[i] < k) {
go.push_back(i);
}
}
for (auto &x : go) {
if (in[x]) {
dfs(x);
}
}
for (int i = m; i >= 1; i--) {
ans.push_back(cont);
if (taiat[{v[i].first, v[i].second}]) {
continue;
}
taiat[{v[i].first, v[i].second}] = 1;
taiat[{v[i].second, v[i].first}] = 1;
lv[v[i].first]--;
lv[v[i].second]--;
if (lv[v[i].first] < k && in[v[i].first]) {
dfs(v[i].first);
}
if (lv[v[i].second] < k && in[v[i].second]) {
dfs(v[i].second);
}
}
reverse(ans.begin(), ans.end());
for (auto &x : ans) {
cout << x << '\n';
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | import java.io.*;
import java.util.*;
public class Test {
static int readInt() {
int ans = 0;
boolean neg = false;
try {
boolean start = false;
for (int c = 0; (c = System.in.read()) != -1; ) {
if (c == '-') {
start = true;
neg = true;
continue;
} else if (c >= '0' && c <= '9') {
start = true;
ans = ans * 10 + c - '0';
} else if (start) break;
}
} catch (IOException e) {
}
return neg ? -ans : ans;
}
static long readLong() {
long ans = 0;
boolean neg = false;
try {
boolean start = false;
for (int c = 0; (c = System.in.read()) != -1; ) {
if (c == '-') {
start = true;
neg = true;
continue;
} else if (c >= '0' && c <= '9') {
start = true;
ans = ans * 10 + c - '0';
} else if (start) break;
}
} catch (IOException e) {
}
return neg ? -ans : ans;
}
static String readString() {
StringBuilder b = new StringBuilder();
try {
boolean start = false;
for (int c = 0; (c = System.in.read()) != -1; ) {
if (c >= '0' && c <= '9') {
start = true;
b.append((char) (c));
} else if (start) break;
}
} catch (IOException e) {
}
return b.toString().trim();
}
static PrintWriter writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
void start() {
int n = readInt(), m = readInt(), k = readInt();
int[] ans = new int[m];
int[] from = new int[m], to = new int[m], deg = new int[n+1];
boolean[] alive = new boolean[m];
int[] q = new int[n];
List<int[]>[] g = new List[n+1];
for (int i = 1; i <= n; i++) g[i] = new ArrayList<>();
for (int i = 0; i < m; i++) {
int u = readInt(), v = readInt();
from[i] = u;
to[i] = v;
g[u].add(new int[]{v, i});
g[v].add(new int[]{u, i});
alive[i] = true;
}
int a = 0, b = 0;
for (int i = 1; i <= n; i++) {
deg[i] = g[i].size();
if (deg[i] < k) q[b++] = i;
}
for (int i = m - 1; i >= 0; i--) {
while (a < b) {
int u = q[a++];
for (int[] e : g[u])
if (alive[e[1]]) {
alive[e[1]] = false;
int v = e[0];
if (deg[v] == k) q[b++] = v;
deg[v]--;
}
}
ans[i] = n - b;
if (!alive[i]) continue;
alive[i] = false;
int u = from[i], v = to[i];
for (int x : new int[]{u, v}) {
if (deg[x] == k) q[b++] = x;
deg[x]--;
}
}
for (int i = 0; i < m; i++) writer.println(ans[i]);
}
public static void main(String[] args) {
Test te = new Test();
te.start();
writer.flush();
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int i, j, n, m, a, b, c, d, op, mini, mij, ls, ld, ul, timp, k, maxl, rasp;
int dp[1000005], flower[1000005], viz[1000005];
int good[1000005];
priority_queue<pair<int, int>, vector<pair<int, int> >,
greater<pair<int, int> > >
q;
int sol[1000005];
vector<pair<int, int> > muchii;
vector<pair<int, int> > v[1000005];
int gm[1000005];
int main() {
ios_base::sync_with_stdio(false), cin.tie(NULL);
cin >> n >> m >> k;
for (int i = 1; i <= m; i++) {
cin >> a >> b;
muchii.push_back({a, b});
v[a].push_back({b, i});
v[b].push_back({a, i});
gm[i] = 1;
}
for (int i = 1; i <= n; i++) {
dp[i] = v[i].size();
q.push({dp[i], i});
good[i] = 1;
}
rasp = n;
while (q.size() && (q.top().first < k || good[q.top().second] == 0)) {
pair<int, int> now = q.top();
q.pop();
if (good[now.second] == 0) continue;
good[now.second] = 0;
rasp--;
for (int i = 0; i < v[now.second].size(); i++) {
int nxt = v[now.second][i].first;
dp[nxt]--;
if (good[nxt]) q.push({dp[nxt], nxt});
}
}
vector<int> sol;
for (j = m; j; j--) {
sol.push_back(rasp);
a = muchii[j - 1].first;
b = muchii[j - 1].second;
gm[j] = 0;
if (good[a] && good[b]) {
dp[a]--;
dp[b]--;
q.push({dp[a], a});
q.push({dp[b], b});
}
while (q.size() && (q.top().first < k || good[q.top().second] == 0)) {
pair<int, int> now = q.top();
q.pop();
if (good[now.second] == 0) continue;
good[now.second] = 0;
rasp--;
for (int i = 0; i < v[now.second].size(); i++) {
if (gm[v[now.second][i].second]) {
int nxt = v[now.second][i].first;
dp[nxt]--;
if (good[nxt]) q.push({dp[nxt], nxt});
}
}
}
}
for (int i = sol.size() - 1; i >= 0; i--) cout << sol[i] << '\n';
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | python2 | n, m, k=map(int, raw_input().split())
edge=[map(int, raw_input().split()) for i in xrange(m)]
adj=[[] for i in xrange(n+1)]
deg=[0 for i in xrange(n+1)]
for x, y in edge:
adj[x]+=[y]
adj[y]+=[x]
deg[x]+=1
deg[y]+=1
q=[]
first=0
removed=set()
def bfs():
global first
while first<len(q):
cur=q[first]
first+=1
for to in adj[cur]:
if not (min(to, cur), max(to, cur)) in removed:
removed.add((min(to, cur), max(to, cur)))
deg[to]-=1
if deg[to]==k-1:
q.append(to)
for i in xrange(1, n+1):
if deg[i]<k:
q+=[i]
bfs()
result=[0]*m
for i in xrange(m-1, -1, -1):
result[i]=n-first
x, y=edge[i]
if (min(x, y), max(x, y)) not in removed:
removed.add((min(x, y), max(x, y)))
deg[x]-=1
if deg[x]==k-1:
q+=[x]
deg[y]-=1
if deg[y]==k-1:
q+=[y]
bfs()
print "\n".join(map(str, result)) |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 1;
int n, m, ans[N], cur, done[N], deg[N], k;
vector<pair<int, int> > ve[N];
pair<int, int> e[N];
void bfs(int u, int time) {
queue<int> qu;
done[u] = 1;
cur--;
qu.push(u);
int v;
while (!qu.empty()) {
u = qu.front();
qu.pop();
for (int i = 0; i < ve[u].size(); i++) {
v = ve[u][i].first;
if (done[v]) continue;
if (ve[u][i].second > time) continue;
deg[u]--;
deg[v]--;
if (deg[v] < k) {
cur--;
done[v] = 1;
qu.push(v);
}
}
}
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cin >> n >> m >> k;
cur = n;
int u, v;
for (int i = 1; i <= m; i++) {
cin >> e[i].first >> e[i].second;
u = e[i].first;
v = e[i].second;
ve[u].push_back({v, i});
ve[v].push_back({u, i});
}
for (int i = 1; i <= n; i++) deg[i] = ve[i].size();
for (int i = 1; i <= n; i++) {
if (deg[i] < k && !done[i]) {
bfs(i, m);
}
}
ans[m] = cur;
for (int i = m - 1; i >= 1; i--) {
u = e[i + 1].first;
v = e[i + 1].second;
if (!done[u] && !done[v]) {
deg[u]--;
deg[v]--;
if (deg[u] < k && !done[u]) bfs(u, i);
if (deg[v] < k && !done[v]) bfs(v, i);
}
ans[i] = cur;
}
for (int i = 1; i <= m; i++) {
cout << ans[i] << '\n';
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | //package com.company;
import java.io.*;
import java.util.*;
public class Main {
static long TIME_START, TIME_END;
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
// Scanner sc = new Scanner(new FileInputStream("Test.in"));
PrintWriter pw = new PrintWriter(System.out);
// PrintWriter pw = new PrintWriter(new FileOutputStream("Test.out"));
Runtime runtime = Runtime.getRuntime();
long usedMemoryBefore = runtime.totalMemory() - runtime.freeMemory();
TIME_START = System.currentTimeMillis();
Task t = new Task();
t.solve(sc, pw);
TIME_END = System.currentTimeMillis();
long usedMemoryAfter = runtime.totalMemory() - runtime.freeMemory();
pw.close();
System.out.println("Memory increased:" + (usedMemoryAfter - usedMemoryBefore) / 1000000);
System.out.println("Time used: " + (TIME_END - TIME_START) + ".");
}
public static class Task {
public int get(int[] q, int r) {
if (q[0] == r) return q[1];
return q[0];
}
int[] deg ;
List<int[]> edges;
List<Integer>[] edgesS ;
boolean[] del ;
boolean[] badedge ;
public void solve(Scanner sc, PrintWriter pw) throws IOException {
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
deg = new int[n];
edges = new ArrayList<>();
edgesS = new List[n];
for (int i = 0; i < n; i++) {
edgesS[i] = new ArrayList<>();
}
for (int i = 0; i < m; i++) {
int a = sc.nextInt() - 1;
int b = sc.nextInt() - 1;
edges.add(new int[]{a, b});
edgesS[a].add(i);
edgesS[b].add(i);
deg[a]++;
deg[b]++;
}
del = new boolean[n];
badedge = new boolean[m];
int dlt = 0;
for (int i = 0; i < n; i++) {
if (!del[i] && deg[i] < k) {
dlt += dfs(i, k);
}
}
Arrays.fill(deg, 0);
Arrays.fill(del, true);
for (int i = 0; i < m; i++) {
if (badedge[i]) continue;
int[] e = edges.get(i);
deg[e[0]]++;
deg[e[1]]++;
del[e[0]] = false;
del[e[1]] = false;
}
int[] res = new int[m];
res[m - 1] = n - dlt;
// for (int i = m - 1; i > 0; i--) {
// int[] toremove = edges.get(i);
// int t1 = toremove[0], t2 = toremove[1];
// edges.remove(i);
// edgesS[t1].remove(edgesS[t1].size() - 1);
// edgesS[t2].remove(edgesS[t2].size() - 1);
// int tr = 0;
// Arrays.fill(deg, 0);
// Arrays.fill(badedge, false);
// for (int j = 0; j < i; j++) {
// int[] e = edges.get(j);
// deg[e[0]]++;
// deg[e[1]]++;
// }
// Arrays.fill(del, false);
// for (int j = 0; j < n; j++) {
// if (!del[j] && deg[j] < k) {
// tr += dfs(j, k);
// }
// }
// res[i - 1] = n - tr;
// }
for (int i = m - 1; i > 0; i--) {
int[] toremove = edges.get(i);
int t1 = toremove[0], t2 = toremove[1];
edges.remove(i);
edgesS[t1].remove(edgesS[t1].size() - 1);
edgesS[t2].remove(edgesS[t2].size() - 1);
int tr = 0;
if (!badedge[i]) {
if (!del[t1] && !del[t2]) {
deg[t1]--;
deg[t2]--;
if (!del[t1] && deg[t1] < k) {
tr += dfs(t1, k);
}
if (!del[t2] && deg[t2] < k) {
tr += dfs(t2, k);
}
}
}
res[i - 1] = res[i] - tr;
}
for (int i = 0; i < m; i++) {
pw.println(res[i]);
}
}
public int dfs(int u, int k) {
int cnt = 0;
del[u] = true;
cnt++;
deg[u] = 0;
for (int idx : edgesS[u]) {
if (badedge[idx]) continue;
badedge[idx] = true;
int o = get(edges.get(idx), u);
if (del[o]) continue;
deg[o]--;
if (deg[o] < k) {
cnt += dfs(o, k);
}
}
return cnt;
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader s) throws FileNotFoundException {
br = new BufferedReader(s);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public boolean ready() throws IOException {
return br.ready();
}
}
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | import java.util.*;
import java.io.*;
public class Main
{
public static void main(String[] args)
{
FastReader reader = new FastReader();
PrintWriter writer = new PrintWriter(System.out);
int n = reader.nextInt();
int m = reader.nextInt();
int k = reader.nextInt();
Node[] graph = new Node[n];
for (int i=0; i<n; i++)
graph[i] = new Node();
int[][] edges = new int[m][2];
int[] ans = new int[m];
for (int i=0; i<m; i++)
{
edges[i][0] = reader.nextInt()-1;
edges[i][1] = reader.nextInt()-1;
graph[edges[i][0]].list.add(edges[i][1]);
graph[edges[i][1]].list.add(edges[i][0]);
}
Set<Integer> set = new HashSet<Integer>();
Queue<Integer> q = new LinkedList<Integer>();
for (int i=0; i<n; i++)
{
if (graph[i].list.size() < k)
{
q.add(i);
graph[i].was = true;
}
set.add(i);
}
for (int i=m-1; i>=0; i--)
{
while (!q.isEmpty())
{
int u = q.remove();
set.remove(u);
for (int v : graph[u].list)
if (set.contains(v) && !graph[v].was)
{
graph[v].list.remove(u);
if (graph[v].list.size() < k)
{
q.add(v);
graph[v].was = true;
}
}
}
ans[i] = set.size();
int u = edges[i][0];
int v = edges[i][1];
if (set.contains(u) && set.contains(v))
{
graph[v].list.remove(u);
graph[u].list.remove(v);
if (graph[u].list.size() < k)
{
q.add(u);
graph[u].was = true;
}
if (graph[v].list.size() < k)
{
q.add(v);
graph[v].was = true;
}
}
}
for (int i=0; i<m; i++)
writer.println(ans[i]);
writer.close();
}
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
}
class Node
{
boolean was = false;
Set<Integer> list = new HashSet<Integer>();
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 3e5;
int n, m, k, u[N], v[N];
int deg[N], ans[N];
vector<int> G[N], id[N];
bool ok[N];
int main() {
scanf("%d %d %d", &n, &m, &k);
for (int i = 1; i <= m; i++) {
scanf("%d %d", &u[i], &v[i]);
G[u[i]].push_back(v[i]);
G[v[i]].push_back(u[i]);
deg[u[i]]++;
deg[v[i]]++;
id[u[i]].push_back(i);
id[v[i]].push_back(i);
}
for (int i = 1; i <= n; i++) {
ok[i] = 1;
}
int c = 0;
queue<int> que;
for (int i = 1; i <= n; i++) {
if (deg[i] < k) {
ok[i] = 0;
que.push(i);
c++;
}
}
while (!que.empty()) {
int u = que.front();
que.pop();
for (int i = 0; i < G[u].size(); i++) {
int v = G[u][i];
deg[v]--;
if (ok[v] && deg[v] < k) {
ok[v] = 0;
que.push(v);
c++;
}
}
}
ans[m] = n - c;
for (int i = m - 1; i > 0; i--) {
c = 0;
int x = u[i + 1], y = v[i + 1];
if (ok[x] && ok[y]) {
deg[x]--;
deg[y]--;
if (deg[x] < k) {
ok[x] = 0;
c++;
que.push(x);
}
if (deg[y] < k) {
ok[y] = 0;
c++;
que.push(y);
}
}
while (!que.empty()) {
int z = que.front();
que.pop();
for (int j = 0; j < G[z].size(); j++) {
int w = G[z][j];
if (id[z][j] >= i + 1) continue;
deg[w]--;
if (ok[w] && deg[w] < k) {
ok[w] = 0;
que.push(w);
c++;
}
}
}
ans[i] = ans[i + 1] - c;
}
for (int i = 1; i <= m; i++) {
printf("%d\n", ans[i]);
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | import java.io.*;
import java.util.*;
public class Main {
static OutWriter out;
static InReader in;
static long X = (long) (1e7);
public static void main(String args[]) throws IOException {
in = new InReader();
out = new OutWriter();
int n = in.nextInt();
int m = in.nextInt();
int k = in.nextInt();
Edge edges[] = new Edge[m];
ArrayList<Integer> to[] = new ArrayList[n];
for (int i = 0; i < n; i++) {
to[i] = new ArrayList();
}
Vertex G[] = new Vertex[n];
for (int i = 0; i < n; i++) {
G[i] = new Vertex(i, 0);
}
for (int i = 0; i < m; i++) {
edges[i] = new Edge(in.nextInt() - 1, in.nextInt() - 1);
to[edges[i].to].add(edges[i].from);
to[edges[i].from].add(edges[i].to);
G[edges[i].from].deg++;
G[edges[i].to].deg++;
}
TreeSet<Vertex> all = new TreeSet<>();
for (int i = 0; i < n; i++) {
all.add(G[i]);
}
boolean killed[] = new boolean[n];
ArrayList<Integer> ans = new ArrayList<>();
for (int i = m - 1; i >= 0; i--) {
while (all.size() != 0 && all.first().deg < k) {
Vertex curr = all.pollFirst();
if (!killed[curr.number]) {
killed[curr.number] = true;
for (int j = 0; j < to[curr.number].size(); j++) {
int v = to[curr.number].get(j);
if (!killed[v]) {
all.remove(G[v]);
G[v].deg--;
all.add(G[v]);
}
}
}
}
ans.add(all.size());
int a = edges[i].from;
int b = edges[i].to;
all.remove(G[a]);
all.remove(G[b]);
to[a].remove(new Integer(b));
to[b].remove(new Integer(a));
if(killed[a] || killed[b]){
}else {
G[a].deg--;
G[b].deg--;
}
all.add(G[a]);
all.add(G[b]);
}
for (int i = ans.size() - 1; i >= 0; i--) {
out.println(ans.get(i));
}
out.close();
}
static class Vertex implements Comparable<Vertex> {
int number;
int deg;
Vertex(int number, int deg) {
this.number = number;
this.deg = deg;
}
@Override
public int compareTo(Vertex o) {
if (deg != o.deg) {
return deg - o.deg;
} else {
return number - o.number;
}
}
}
/* static class Vertex {
int number = -1;
int depth = 0;
boolean used2 = false;
boolean used = false;
long value = 0;
ArrayList<Edge> to = new ArrayList();
}*/
static class Edge {
int to;
int from;
Edge(int from, int to) {
this.from = from;
this.to = to;
}
}
static class InReader {
BufferedReader in;
InReader(String name) throws IOException {
in = new BufferedReader(new FileReader(name));
}
InReader() {
in = new BufferedReader(new InputStreamReader(System.in));
}
StringTokenizer token = new StringTokenizer("");
void update() throws IOException {
if (!token.hasMoreTokens()) {
String a = in.readLine();
if (a != null) {
token = new StringTokenizer(a);
}
}
}
int nextInt() throws IOException {
update();
return Integer.parseInt(token.nextToken());
}
long nextLong() throws IOException {
update();
return Long.parseLong(token.nextToken());
}
double nextDouble() throws IOException {
update();
return Double.parseDouble(token.nextToken());
}
boolean hasNext() throws IOException {
update();
return token.hasMoreTokens();
}
String next() throws IOException {
update();
return token.nextToken();
}
}
static class OutWriter {
PrintWriter out;
OutWriter() {
out = new PrintWriter(System.out);
}
OutWriter(String name) throws IOException {
out = new PrintWriter(new FileWriter(name));
}
StringBuilder cout = new StringBuilder();
<T> void print(T a) {
cout.append(a);
}
<T> void println(T a) {
cout.append(a);
cout.append('\n');
}
<T> void prints(T a) {
cout.append(a);
cout.append(' ');
}
void close() {
out.print(cout.toString());
out.close();
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 5;
int n, m, k;
int du[maxn];
set<int> g[maxn];
vector<pair<int, int> > ar;
set<pair<int, int> > st;
set<int>::iterator it;
int ans[maxn];
void dfs() {
if (st.size() == 0) return;
if (st.begin()->first < k) {
int u = st.begin()->second;
st.erase(st.begin());
for (it = g[u].begin(); it != g[u].end(); it++) {
int v = *it;
if (st.count(make_pair(du[v], v))) {
st.erase(make_pair(du[v], v));
du[v]--;
st.insert(make_pair(du[v], v));
}
}
dfs();
}
}
int main() {
int u, v;
scanf("%d%d%d", &n, &m, &k);
for (int i = 0; i < m; i++) {
scanf("%d%d", &u, &v);
du[u]++;
du[v]++;
g[u].insert(v);
g[v].insert(u);
ar.push_back(make_pair(u, v));
}
for (int i = 1; i <= n; i++) {
st.insert(make_pair(du[i], i));
}
dfs();
for (int i = m - 1; i >= 0; i--) {
ans[i] = st.size();
u = ar[i].first;
v = ar[i].second;
if (st.count(make_pair(du[u], u)) && st.count(make_pair(du[v], v))) {
st.erase(make_pair(du[u], u));
st.erase(make_pair(du[v], v));
du[u]--;
du[v]--;
st.insert(make_pair(du[u], u));
st.insert(make_pair(du[v], v));
g[u].erase(v);
g[v].erase(u);
dfs();
}
}
for (int i = 0; i < m; i++) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
#pragma warning(disable : 4996)
using namespace std;
namespace Xrocks {}
using namespace Xrocks;
namespace Xrocks {
class in {
} user_input;
class out {
} output;
in& operator>>(in& X, int& Y) {
scanf("%d", &Y);
return X;
}
in& operator>>(in& X, char* Y) {
scanf("%s", Y);
return X;
}
in& operator>>(in& X, float& Y) {
scanf("%f", &Y);
return X;
}
in& operator>>(in& X, double& Y) {
scanf("%lf", &Y);
return X;
}
in& operator>>(in& X, char& C) {
scanf("%c", &C);
return X;
}
in& operator>>(in& X, string& Y) {
cin >> Y;
return X;
}
in& operator>>(in& X, long long& Y) {
scanf("%lld", &Y);
return X;
}
template <typename T>
in& operator>>(in& X, vector<T>& Y) {
for (auto& x : Y) user_input >> x;
return X;
}
template <typename T>
out& operator<<(out& X, const T& Y) {
cout << Y;
return X;
}
template <typename T>
out& operator<<(out& X, vector<T>& Y) {
for (auto& x : Y) output << x << " ";
return X;
}
out& operator<<(out& X, const int& Y) {
printf("%d", Y);
return X;
}
out& operator<<(out& X, const char& C) {
printf("%c", C);
return X;
}
out& operator<<(out& X, const string& Y) {
printf("%s", Y.c_str());
return X;
}
out& operator<<(out& X, const long long& Y) {
printf("%lld", Y);
return X;
}
out& operator<<(out& X, const float& Y) {
printf("%f", Y);
return X;
}
out& operator<<(out& X, const double& Y) {
printf("%lf", Y);
return X;
}
out& operator<<(out& X, const char Y[]) {
printf("%s", Y);
return X;
}
template <typename T>
T max(T A) {
return A;
}
template <typename T, typename... args>
T max(T A, T B, args... S) {
return max(A > B ? A : B, S...);
}
template <typename T>
T min(T A) {
return A;
}
template <typename T, typename... args>
T min(T A, T B, args... S) {
return min(A < B ? A : B, S...);
}
template <typename T>
void vectorize(int y, vector<T>& A) {
A.resize(y);
}
template <typename T, typename... args>
void vectorize(int y, vector<T>& A, args&&... S) {
A.resize(y);
vectorize(y, S...);
}
long long fast(long long a, long long b, long long pr) {
if (b == 0) return 1 % pr;
long long ans = 1 % pr;
while (b) {
if (b & 1) ans = (ans * a) % pr;
b >>= 1;
a = (a * a) % pr;
}
return ans;
}
int readInt() {
int n = 0;
int ch = getchar_unlocked();
int sign = 1;
while (ch < '0' || ch > '9') {
if (ch == '-') sign = -1;
ch = getchar_unlocked();
}
while (ch >= '0' && ch <= '9')
n = (n << 3) + (n << 1) + ch - '0', ch = getchar_unlocked();
n = n * sign;
return n;
}
long long readLong() {
long long n = 0;
int ch = getchar_unlocked();
int sign = 1;
while (ch < '0' || ch > '9') {
if (ch == '-') sign = -1;
ch = getchar_unlocked();
}
while (ch >= '0' && ch <= '9')
n = (n << 3) + (n << 1) + ch - '0', ch = getchar_unlocked();
n = n * sign;
return n;
}
long long readBin() {
long long n = 0;
int ch = getchar_unlocked();
int sign = 1;
while (ch < '0' || ch > '1') {
if (ch == '-') sign = -1;
ch = getchar_unlocked();
}
while (ch >= '0' && ch <= '1')
n = (n << 1) + (ch - '0'), ch = getchar_unlocked();
return n;
}
long long inv_(long long val,
long long pr = static_cast<long long>(998244353)) {
return fast(val, pr - 2, pr);
}
} // namespace Xrocks
class solve {
public:
solve() {
int n, m, k;
user_input >> n >> m >> k;
vector<pair<int, int> > Edges(m);
vector<int> Ans(m);
vector<int> degree(n);
vector<vector<pair<int, int> > > adj(n);
set<pair<int, int> > Good_set;
vector<int> in_good_set(n, true);
for (int i = 0; i < m; i++) {
user_input >> Edges[i].first >> Edges[i].second;
Edges[i].first--;
Edges[i].second--;
adj[Edges[i].first].push_back({Edges[i].second, i});
adj[Edges[i].second].push_back({Edges[i].first, i});
degree[Edges[i].first]++;
degree[Edges[i].second]++;
}
for (int i = 0; i < n; i++) {
Good_set.insert({degree[i], i});
}
while (!Good_set.empty() && Good_set.begin()->first < k) {
int node = Good_set.begin()->second;
for (auto& y : adj[node]) {
int x = y.first;
if (in_good_set[x]) {
Good_set.erase({degree[x], x});
--degree[x];
Good_set.insert({degree[x], x});
}
}
Good_set.erase({degree[node], node});
in_good_set[node] = false;
}
for (int i = m - 1; i >= 0; i--) {
Ans[i] = Good_set.size();
int u = Edges[i].first, v = Edges[i].second;
if (in_good_set[u] && in_good_set[v]) {
Good_set.erase({degree[u], u});
--degree[u];
Good_set.insert({degree[u], u});
Good_set.erase({degree[v], v});
--degree[v];
Good_set.insert({degree[v], v});
while (!Good_set.empty() && Good_set.begin()->first < k) {
int node = Good_set.begin()->second;
for (auto& y : adj[node]) {
int x = y.first;
if (y.second >= i) continue;
if (in_good_set[x]) {
Good_set.erase({degree[x], x});
--degree[x];
Good_set.insert({degree[x], x});
}
}
Good_set.erase({degree[node], node});
in_good_set[node] = false;
}
}
}
for (int i = 0; i < m; i++) {
output << Ans[i] << "\n";
}
}
};
int32_t main() {
int t = 1, i = 1;
if (0 || 0) scanf("%d", &t);
while (t--) {
if (0) printf("Case #%d: ", i++);
new solve;
}
output << "\n";
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
/**
*
*/
public class E {
static ArrayList<Pair>[] g;
static int k;
static boolean[] s;
static int size;
static int[] degree;
static Queue<Integer> q = new LinkedList<>();
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(reader.readLine());
int n = Integer.parseInt(st.nextToken());
int m = Integer.parseInt(st.nextToken());
k = Integer.parseInt(st.nextToken());
s = new boolean[n];
g = new ArrayList[n];
degree = new int[n];
int[][] f = new int[m][2];
for (int i = 0; i < m; i++) {
st = new StringTokenizer(reader.readLine());
int a = Integer.parseInt(st.nextToken())-1;
int b = Integer.parseInt(st.nextToken())-1;
if (g[a] == null) {
g[a] = new ArrayList<>();
}
if (g[b] == null) {
g[b] = new ArrayList<>();
}
g[a].add(new Pair(b,i));
g[b].add(new Pair(a,i));
degree[a]++;degree[b]++;
f[i][0] = a;
f[i][1] = b;
}
for (int i = 0; i < n; i++) {
if(degree[i]>0){
if(degree[i]>=k){
s[i] = true;
size ++;
}else{
q.add(i);
}
}
}
while (!q.isEmpty()){
int v = q.poll();
for (Pair u : g[v]) {
if(s[u.a]) {
degree[u.a]--;
if (degree[u.a] < k) {
q.add(u.a);
s[u.a] = false;
size--;
}
}
}
}
int[] ans = new int[m];
for (int i = m-1; i >=0; i--) {
ans[i] = size;
int a = f[i][0];
int b = f[i][1];
if(s[a] && s[b]) {
degree[a]--;degree[b]--;
if (degree[a] < k){
q.add(a);
s[a] = false;
size--;
}
if (degree[b] < k){
q.add(b);
s[b] = false;
size--;
}
while (!q.isEmpty()){
int v = q.poll();
for (Pair u : g[v]) {
if(u.b < i && s[u.a]) {
degree[u.a]--;
if (degree[u.a] < k) {
q.add(u.a);
s[u.a] = false;
size--;
}
}
}
}
}
}
for (int i = 0; i < m; i++) {
System.out.println(ans[i]);
}
}
static class Pair{
int a;
int b;
public Pair(int a, int b) {
this.a = a;
this.b = b;
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
const int maxn = 2e5 + 10;
const int maxm = 1.5e7 + 10;
const int mod = 998244353;
using namespace std;
int n, m, k, ans;
int num[maxn], vis[maxn], sum[maxn];
pair<int, int> a[maxn];
set<int> st[maxn];
void check(int x) {
if (num[x] >= k || !vis[x]) return;
vis[x] = 0;
ans--;
queue<int> q;
q.push(x);
while (!q.empty()) {
int tmp = q.front();
q.pop();
set<int>::iterator it = st[tmp].begin();
while (it != st[tmp].end()) {
num[*it]--;
if (vis[*it] && num[*it] < k) {
q.push(*it);
vis[*it] = 0;
ans--;
}
it++;
}
}
}
int main() {
scanf("%d%d%d", &n, &m, &k);
ans = n;
for (int i = 1; i <= n; i++) vis[i] = 1;
for (int i = 0; i < m; i++) {
int x, y;
scanf("%d%d", &x, &y);
a[i].first = x, a[i].second = y;
num[x]++, num[y]++;
st[x].insert(y), st[y].insert(x);
}
for (int i = 1; i <= n; i++) check(i);
for (int i = m - 1; i >= 0; i--) {
sum[i] = ans;
if (vis[a[i].second]) num[a[i].first]--;
if (vis[a[i].first]) num[a[i].second]--;
st[a[i].first].erase(a[i].second);
st[a[i].second].erase(a[i].first);
check(a[i].first), check(a[i].second);
}
for (int i = 0; i < m; i++) printf("%d\n", sum[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 3;
int n, m, k, deg[N], x[N], y[N], ans[N], cnt;
bool del[N];
set<int> G[N];
set<int>::iterator it;
void Del(int rt) {
if (deg[rt] >= k || del[rt]) return;
queue<int> q;
q.push(rt);
del[rt] = 1;
cnt--;
while (!q.empty()) {
int u = q.front();
q.pop();
for (it = G[u].begin(); it != G[u].end(); it++) {
int v = *it;
deg[v]--;
if (deg[v] < k && !del[v]) {
del[v] = 1;
q.push(v);
cnt--;
}
}
}
}
int main() {
memset(deg, 0, sizeof deg);
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= m; i++) {
scanf("%d%d", x + i, y + i);
deg[x[i]]++;
deg[y[i]]++;
G[x[i]].insert(y[i]);
G[y[i]].insert(x[i]);
}
cnt = n;
for (int i = 1; i <= n; i++) Del(i);
for (int i = m; i; i--) {
ans[i] = cnt;
if (!del[x[i]]) deg[y[i]]--;
if (!del[y[i]]) deg[x[i]]--;
G[x[i]].erase(y[i]);
G[y[i]].erase(x[i]);
Del(x[i]);
Del(y[i]);
}
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int l[200100], r[200100];
int n, m, k;
int de[200100];
bool ex[200100];
struct ind {
int id, de;
ind(int a, int b) : id(a), de(b) {}
bool operator<(const ind &b) const {
return de != b.de ? de < b.de : id < b.id;
}
};
vector<int> pa[200100];
set<ind> S;
int fd(int id, int x) { return l[id] == x ? r[id] : l[id]; }
void erase(int x) {
if (de[x] < k) return;
S.erase(ind(x, de[x]));
de[x]--;
S.insert(ind(x, de[x]));
}
void dele(int x) {
S.erase(ind(x, de[x]));
for (auto y : pa[x])
if (!ex[y] && de[fd(y, x)] >= k) erase(fd(y, x));
}
int main() {
scanf("%d%d%d", &n, &m, &k);
int a, b;
for (int i = 1; i <= m; ++i) {
scanf("%d%d", &a, &b);
++de[a], ++de[b];
l[i] = a, r[i] = b;
pa[a].push_back(i);
pa[b].push_back(i);
}
for (int i = 1; i <= n; ++i) S.insert(ind(i, de[i]));
int as[200100];
for (int i = m; i >= 1; --i) {
while (S.size()) {
if ((*S.begin()).de < k)
dele((*S.begin()).id);
else
break;
}
as[i] = S.size();
int x = l[i], y = r[i];
if (de[x] >= k && de[y] >= k) erase(x), erase(y);
ex[i] = 1;
}
for (int i = 1; i <= m; ++i) printf("%d\n", as[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
set<int> v[200005];
int x[200005];
int y[200005];
int an[200005];
set<pair<int, int> > s;
void r(int i, int k) {
if (v[x[i]].size() >= k && v[y[i]].size() >= k) {
s.erase(pair<int, int>(v[x[i]].size(), x[i]));
s.erase(pair<int, int>(v[y[i]].size(), y[i]));
v[x[i]].erase(y[i]);
v[y[i]].erase(x[i]);
s.insert(pair<int, int>(v[x[i]].size(), x[i]));
s.insert(pair<int, int>(v[y[i]].size(), y[i]));
}
}
void solve(int k) {
if (s.empty() || s.begin()->first >= k) return;
int x = s.begin()->second;
s.erase(s.begin());
for (auto it = v[x].begin(); it != v[x].end(); it++)
if (v[*it].size() >= k) {
s.erase(pair<int, int>(v[*it].size(), *it));
v[*it].erase(x);
s.insert(pair<int, int>(v[*it].size(), *it));
}
solve(k);
}
int main() {
ios::sync_with_stdio(false);
int n, m, k;
cin >> n >> m >> k;
for (int i = 0; i < m; i++) {
cin >> x[i] >> y[i];
v[x[i]].insert(y[i]);
v[y[i]].insert(x[i]);
}
for (int i = 0; i < n; i++) {
s.insert(pair<int, int>(v[i + 1].size(), i + 1));
}
for (int i = m - 1; i >= 0; i--) {
solve(k);
an[i] = s.size();
r(i, k);
}
for (int i = 0; i < m; i++) cout << an[i] << endl;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | //package que_a;
import java.io.*;
import java.util.*;
import java.math.*;
public class utkarsh {
InputStream is;
PrintWriter out;
long mod = (long) (1e9 + 7);
boolean SHOW_TIME;
class pair implements Comparator {
int F, S;
pair(int f, int s) {
F = f; S = s;
}
@Override
public int compare(Object U, Object V) {
pair u = (pair)U;
pair v = (pair)V;
if(u.F != v.F) return u.F - v.F;
return u.S - v.S;
}
}
void solve() {
//Enter code here utkarsh
//SHOW_TIME = true;
int n = ni(), m = ni(), k = ni();
HashSet <pair> h[] = new HashSet[n];
for(int i = 0; i < n; i++) h[i] = new HashSet<>();
int deg[] = new int[n];
int ans[] = new int[m];
boolean vst[] = new boolean[m];
pair mp[] = new pair[m];
for(int i = 0; i < m; i++) {
int u = ni()-1, v = ni()-1;
h[u].add(new pair(v, i)); h[v].add(new pair(u, i));
deg[u]++;
deg[v]++;
mp[i] = new pair(u, v);
}
ArrayDeque <Integer> q = new ArrayDeque<>();
for(int i = 0; i < n; i++) {
if(deg[i] < k) q.add(i);
}
int s = n;
for(int i = m-1; i >= 0; i--) {
while(!q.isEmpty()) {
s--;
int y = q.poll();
for(pair p : h[y]) {
if(vst[p.S]) continue;
if(deg[p.F] == k) q.add(p.F);
deg[p.F]--;
vst[p.S] = true;
h[p.F].remove(new pair(y, p.S));
}
}
ans[i] = s;
if(!vst[i]) {
vst[i] = true;
if(deg[mp[i].F] == k) {
q.add(mp[i].F);
}
if(deg[mp[i].S] == k) {
q.add(mp[i].S);
}
deg[mp[i].F]--; deg[mp[i].S]--;
h[mp[i].F].remove(new pair(mp[i].S, i));
h[mp[i].S].remove(new pair(mp[i].F, i));
}
}
for(int x : ans) out.println(x);
}
//---------- I/O Template ----------
public static void main(String[] args) { new utkarsh().run(); }
void run() {
is = System.in;
out = new PrintWriter(System.out);
long start = System.currentTimeMillis();
solve();
long end = System.currentTimeMillis();
if(SHOW_TIME) out.println("\n" + (end - start) + " ms");
out.flush();
}
byte input[] = new byte[1024];
int len = 0, ptr = 0;
int readByte() {
if(ptr >= len) { ptr = 0;
try { len = is.read(input); }
catch(IOException e) { throw new InputMismatchException(); }
if(len <= 0) { return -1; }
} return input[ptr++];
}
boolean isSpaceChar(int c) { return !( c >= 33 && c <= 126 ); }
int skip() {
int b = readByte();
while(b != -1 && isSpaceChar(b)) { b = readByte(); }
return b;
}
char nc() { return (char)skip(); }
String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while(!isSpaceChar(b)) { sb.appendCodePoint(b); b = readByte(); }
return sb.toString();
}
String nLine() {
int b = skip();
StringBuilder sb = new StringBuilder();
while( !(isSpaceChar(b) && b != ' ') ) { sb.appendCodePoint(b); b = readByte(); }
return sb.toString();
}
int ni() {
int n = 0, b = readByte();
boolean minus = false;
while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); }
if(b == '-') { minus = true; b = readByte(); }
if(b == -1) { return -1; } //no input
while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); }
return minus ? -n : n;
}
long nl() {
long n = 0L; int b = readByte();
boolean minus = false;
while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); }
if(b == '-') { minus = true; b = readByte(); }
while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); }
return minus ? -n : n;
}
double nd() { return Double.parseDouble(ns()); }
float nf() { return Float.parseFloat(ns()); }
int[] na(int n) {
int a[] = new int[n];
for(int i = 0; i < n; i++) { a[i] = ni(); }
return a;
}
char[] ns(int n) {
char c[] = new char[n];
int i, b = skip();
for(i = 0; i < n; i++) {
if(isSpaceChar(b)) { break; }
c[i] = (char)b; b = readByte();
} return i == n ? c : Arrays.copyOf(c,i);
}
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int u[200005], v[200005];
int cnt[200005];
unordered_set<int> adj[200005];
unordered_set<int> take;
stack<int> ans;
queue<int> cac, toerase;
int n, m, k;
void emptycac() {
while (cac.size()) {
int node = cac.front();
cac.pop();
for (auto j : adj[node]) {
if (take.count(j)) {
adj[j].erase(node);
if (adj[j].size() < k) {
take.erase(j);
cac.push(j);
}
}
}
while (toerase.size()) {
take.erase(toerase.front());
toerase.pop();
}
}
}
signed main() {
cin >> n >> m >> k;
for (int i = 1; i <= m; i++) {
cin >> u[i] >> v[i];
adj[u[i]].insert(v[i]);
adj[v[i]].insert(u[i]);
}
for (int i = 1; i <= n; i++) {
if (adj[i].size() >= k) {
take.insert(i);
for (auto j : adj[i]) {
take.insert(j);
}
}
}
for (auto i : take) {
if (adj[i].size() < k) {
cac.push(i);
toerase.push(i);
}
}
while (toerase.size()) {
take.erase(toerase.front());
toerase.pop();
}
emptycac();
for (int i = m; i >= 1; i--) {
ans.push(take.size());
if (take.count(u[i]) && take.count(v[i])) {
adj[u[i]].erase(v[i]);
adj[v[i]].erase(u[i]);
if (adj[v[i]].size() < k) {
take.erase(v[i]);
cac.push(v[i]);
}
if (adj[u[i]].size() < k) {
take.erase(u[i]);
cac.push(u[i]);
}
emptycac();
}
}
while (ans.size()) {
cout << ans.top() << endl;
ans.pop();
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int n, m, k;
cin >> n >> m >> k;
vector<pair<int, int> > arr(m);
vector<vector<int> > G(n);
vector<int> in(n), vis(n);
for (auto& it : arr) {
int u, v;
cin >> u >> v;
in[--u]++;
in[--v]++;
it = {u, v};
G[u].push_back(v);
G[v].push_back(u);
}
queue<int> q;
for (int i = 0; i < n; i++) {
if (in[i] < k) {
q.push(i);
vis[i] = 1;
}
}
int cur = n - q.size();
set<pair<int, int> > cnt;
while (!q.empty()) {
auto x = q.front();
q.pop();
for (auto& it : G[x]) {
auto node = minmax(x, it);
if (cnt.find(node) == cnt.end()) {
cnt.insert(node);
if (!vis[it] && --in[it] < k) {
vis[it] = 1;
q.push(it);
cur--;
}
}
}
}
reverse(arr.begin(), arr.end());
vector<int> ans;
for (auto& it : arr) {
ans.push_back(cur);
auto node = minmax(it.first, it.second);
if (cnt.find(node) == cnt.end()) {
cnt.insert(node);
if (!vis[it.first] && --in[it.first] < k) {
vis[it.first] = 1;
q.push(it.first);
cur--;
}
if (!vis[it.second] && --in[it.second] < k) {
vis[it.second] = 1;
q.push(it.second);
cur--;
}
while (!q.empty()) {
auto x = q.front();
q.pop();
for (auto& jt : G[x]) {
auto node = minmax(x, jt);
if (cnt.find(node) == cnt.end()) {
cnt.insert(node);
if (!vis[jt] && --in[jt] < k) {
vis[jt] = 1;
q.push(jt);
cur--;
}
}
}
}
}
}
reverse(ans.begin(), ans.end());
for (auto& it : ans) cout << it << endl;
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 100;
vector<int> v[maxn];
pair<long long, long long> a[maxn];
long long q[maxn], siz[maxn];
bool c[maxn];
long long n, m, k;
set<pair<long long, long long> > s;
map<pair<long long, long long>, bool> mark;
int main() {
ios_base::sync_with_stdio(false);
cin >> n >> m >> k;
for (long long y = 0; y < m; y++) {
cin >> a[y].first >> a[y].second;
v[a[y].first].push_back(a[y].second), v[a[y].second].push_back(a[y].first);
siz[a[y].second]++, siz[a[y].first]++;
}
for (long long y = 1; y <= n; y++)
s.insert(pair<long long, long long>(siz[y], y));
for (long long y = m - 1; y >= 0; y--) {
if (y != m - 1 && !mark[a[y + 1]]) {
mark[pair<long long, long long>(a[y + 1].second, a[y + 1].first)] =
mark[pair<long long, long long>(a[y + 1].first, a[y + 1].second)] = 1;
long long i = a[y + 1].second;
siz[i]--;
if (c[i] == 0) {
pair<long long, long long> x =
pair<long long, long long>(siz[i] + 1, i);
s.erase(x);
x.first--;
s.insert(x);
}
i = a[y + 1].first;
siz[i]--;
if (c[i] == 0) {
pair<long long, long long> x =
pair<long long, long long>(siz[i] + 1, i);
s.erase(x);
x.first--;
s.insert(x);
}
}
while (s.size() != 0) {
pair<long long, long long> x = *s.begin();
if (x.first >= k) break;
s.erase(x);
c[x.second] = 1;
for (long long ii = 0; ii < v[x.second].size(); ii++) {
long long i = v[x.second][ii];
if (!mark[pair<long long, long long>(x.second, i)]) {
mark[pair<long long, long long>(x.second, i)] =
mark[pair<long long, long long>(i, x.second)] = 1;
siz[i]--;
siz[x.second]--;
if (!c[i]) {
pair<long long, long long> z =
pair<long long, long long>(siz[i] + 1, i);
s.erase(z);
z.first--;
s.insert(z);
}
}
}
}
q[y] = s.size();
}
for (long long y = 0; y < m; y++) cout << q[y] << endl;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MAXN = 210000;
int n, m, k;
int s[MAXN], t[MAXN];
int d[MAXN];
int ans[MAXN], vis[MAXN];
vector<int> edge[MAXN];
pair<int, int> mk(int x, int y) {
return x > y ? make_pair(y, x) : make_pair(x, y);
}
set<pair<int, int> > S;
queue<int> q;
int main() {
scanf("%d %d %d", &n, &m, &k);
for (int i = 1; i <= m; i++) {
scanf("%d %d", &s[i], &t[i]);
edge[s[i]].push_back(t[i]);
edge[t[i]].push_back(s[i]);
d[s[i]]++, d[t[i]]++;
}
int cnt = n;
for (int i = 1; i <= n; i++) {
if (d[i] < k) {
q.push(i);
vis[i] = 1;
cnt--;
}
}
while (!q.empty()) {
int now = q.front();
q.pop();
for (unsigned i = 0; i < edge[now].size(); i++) {
int v = edge[now][i];
if (S.count(mk(now, v))) continue;
S.insert(mk(now, v));
d[now]--, d[v]--;
if (d[v] < k && vis[v] == 0) {
q.push(v);
vis[v] = 1;
cnt--;
}
}
}
for (int i = m; i >= 1; --i) {
ans[i] = cnt;
if (vis[s[i]] || vis[t[i]] || S.count(mk(s[i], t[i]))) continue;
S.insert(mk(s[i], t[i]));
d[s[i]]--, d[t[i]]--;
if (d[s[i]] < k && vis[s[i]] == 0) {
q.push(s[i]);
vis[s[i]] = 1;
cnt--;
}
if (d[t[i]] < k && vis[t[i]] == 0) {
q.push(t[i]);
vis[t[i]] = 1;
cnt--;
}
while (!q.empty()) {
int now = q.front();
q.pop();
for (unsigned i = 0; i < edge[now].size(); i++) {
int v = edge[now][i];
if (S.count(mk(now, v))) continue;
d[now]--, d[v]--;
if (d[v] < k && vis[v] == 0) {
S.insert(mk(now, v));
q.push(v);
vis[v] = 1;
cnt--;
}
}
}
}
for (int i = 1; i <= m; i++) {
printf("%d\n", ans[i]);
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.OutputStream;
import java.util.Arrays;
import java.util.Iterator;
import java.io.IOException;
import java.util.AbstractSequentialList;
import java.io.InputStreamReader;
import java.io.FileNotFoundException;
import java.util.StringTokenizer;
import java.io.Writer;
import java.io.BufferedReader;
import java.util.LinkedList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Asgar Javadov
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskE solver = new TaskE();
solver.solve(1, in, out);
out.close();
}
static class TaskE {
int k;
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
int m = in.nextInt();
k = in.nextInt();
LinkedList<Integer>[] adj = new LinkedList[n];
int[] result = new int[m];
int[] degree = new int[n];
for (int i = 0; i < n; i++) {
adj[i] = new LinkedList<>();
}
int[] u = new int[m];
int[] v = new int[m];
for (int i = 0; i < m; ++i) {
u[i] = in.nextInt() - 1;
v[i] = in.nextInt() - 1;
adj[u[i]].add(i);
adj[v[i]].add(i);
degree[u[i]]++;
degree[v[i]]++;
}
IntList que = new IntList(n);
boolean[] alive = ArrayUtils.createArray(m, true);
for (int i = 0; i < n; ++i)
if (degree[i] < k) que.add(i);
int head = 0;
for (int day = m - 1; day >= 0; --day) {
while (head < que.size()) {
int id = que.get(head);
for (Iterator<Integer> it = adj[id].iterator(); it.hasNext(); ) {
int edgeId = it.next();
if (!alive[edgeId]) {
it.remove();
continue;
}
int other = u[edgeId] == id ? v[edgeId] : u[edgeId];
if (degree[other] == k) {
que.add(other);
}
degree[other]--;
degree[id]--;
alive[edgeId] = false;
it.remove();
}
++head;
}
result[day] = n - que.size();
if (alive[day]) {
if (degree[u[day]] == k)
que.add(u[day]);
if (degree[v[day]] == k)
que.add(v[day]);
degree[u[day]]--;
degree[v[day]]--;
alive[day] = false;
}
}
// while (!set.isEmpty() && set.first().first < k) {
// IntPair pair = set.first();
// for (Iterator<Integer> it = adj[pair.second].iterator(); it.hasNext(); ) {
// int edge = it.next();
// int e = v[edge] == pair.second ? u[edge] : v[edge];
// set.remove(degree[e]);
// degree[e].first--;
// set.add(degree[e]);
// it.remove();
// }
// set.remove(pair);
// alive[pair.second] = false;
// }
//
// for (int i = m - 1; i >= 0; --i) {
// result[i] = set.size();
// if (alive[u[i]] && alive[v[i]]) {
// set.remove(degree[u[i]]);
// degree[u[i]].first--;
// set.add(degree[u[i]]);
//
// set.remove(degree[v[i]]);
// degree[v[i]].first--;
// set.add(degree[v[i]]);
//
// while (!set.isEmpty() && set.first().first < k) {
// IntPair pair = set.first();
// for (Iterator<Integer> it = adj[pair.second].iterator(); it.hasNext(); ) {
// int edge = it.next();
// it.remove();
// if (edge < i) {
// int e = v[edge] == pair.second ? u[edge] : v[edge];
// if (!alive[e]) continue;
// set.remove(degree[e]);
// degree[e].first--;
// set.add(degree[e]);
// }
// }
// set.remove(pair);
// alive[pair.second] = false;
// }
// }
// }
for (int e : result)
out.println(e);
}
}
static class InputReader extends BufferedReader {
StringTokenizer tokenizer;
public InputReader(InputStream inputStream) {
super(new InputStreamReader(inputStream), 32768);
}
public InputReader(String filename) {
super(new InputStreamReader(Thread.currentThread().getContextClassLoader().getResourceAsStream(filename)));
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(readLine());
} catch (IOException e) {
throw new RuntimeException();
}
}
return tokenizer.nextToken();
}
public Integer nextInt() {
return Integer.valueOf(next());
}
}
static class OutputWriter extends PrintWriter {
public OutputWriter(OutputStream outputStream) {
super(outputStream);
}
public OutputWriter(Writer writer) {
super(writer);
}
public OutputWriter(String filename) throws FileNotFoundException {
super(filename);
}
public void close() {
super.close();
}
}
static class IntList implements Iterable<Integer> {
public static final int INITIAL_CAPACITY = 4;
private int size;
private int[] array;
public IntList() {
this(INITIAL_CAPACITY);
}
public IntList(int initialCapacity) {
this.array = new int[initialCapacity];
this.size = 0;
}
public IntList(int[] array) {
this.array = Arrays.copyOf(array, array.length);
this.size = this.array.length;
}
public void add(int value) {
if (size == array.length) {
ensureCapacity();
}
this.array[this.size++] = value;
}
public int get(int index) {
if (index < 0 || index >= size)
throw new IllegalArgumentException("Expected argument in [0, " + size + "), but found " + index);
return array[index];
}
public int size() {
return this.size;
}
private void ensureCapacity() {
if (size < array.length)
return;
this.array = Arrays.copyOf(array, array.length << 1);
}
public IntList clone() {
IntList cloned = new IntList(Math.max(1, this.size));
for (int i = 0; i < size; ++i)
cloned.add(array[i]);
return cloned;
}
public Iterator<Integer> iterator() {
return new IntListIterator();
}
private class IntListIterator implements Iterator<Integer> {
private int current;
public IntListIterator() {
this.current = 0;
}
public boolean hasNext() {
return this.current < size;
}
public Integer next() {
return array[current++];
}
}
}
static class ArrayUtils {
public static boolean[] createArray(int count, boolean value) {
boolean[] array = new boolean[count];
Arrays.fill(array, value);
return array;
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.*;
public class e{
static List<Edge> edges[];
static int[] esize;
static boolean[] stay;
static boolean[] used;
static int k;
static int[] u,v;
static int bfs(int id){
int res =0;
esize[u[id]]--;esize[v[id]]--;
used[id]=true;
Deque<Integer> que = new ArrayDeque<>();
if(esize[u[id]]<k){
que.add(u[id]);
stay[u[id]]=true;
++res;
}
if(esize[v[id]]<k){
que.add(v[id]);
stay[v[id]]=true;
++res;
}
while(!que.isEmpty()){
int p = que.poll();
esize[p]=0;
for(Edge e: edges[p])if(!used[e.id] && !stay[e.to]){
used[e.id]=true;
esize[e.to]--;
if(esize[e.to]<k){
que.add(e.to);stay[e.to]=true;
++res;
}
}
}
return res;
}
static class Edge{
int to, id;
Edge(int to, int id){this.to=to;this.id=id;}
}
static void solve(){
int n =ni(), m=ni();
k=ni();
u = new int[m];
v = new int[m];
edges = new List[n];
used = new boolean[m];
for(int i=0;i<n;++i)edges[i]=new ArrayList<>();
for(int i=0;i<m;++i){
u[i]=ni()-1;
v[i]=ni()-1;
edges[u[i]].add(new Edge(v[i], i));
edges[v[i]].add(new Edge(u[i], i));
}
int remain = n;
esize= new int[n];
for(int i=0;i<n;++i)esize[i]=edges[i].size();
stay = new boolean[n];
Deque<Integer> que = new ArrayDeque<>();
for(int i=0;i<n;++i)if(esize[i]<k){
que.add(i);
stay[i]=true;
--remain;
}
while(!que.isEmpty()){
int p = que.poll();
esize[p]=0;
for(Edge e: edges[p])if(!used[e.id] && !stay[e.to]){
esize[e.to]--;
used[e.id]=true;
if(esize[e.to]<k){
que.add(e.to);stay[e.to]=true;
--remain;
}
}
}
int[] ans = new int[m];
ans[m-1]=remain;
for(int i=m-2;i>=0;--i){
if(!stay[u[i+1]]&&!stay[v[i+1]]){
remain -= bfs(i+1);
}
ans[i]=remain;
}
for(int a: ans)out.println(a);
}
public static void main(String[] args){
solve();
out.flush();
}
private static InputStream in = System.in;
private static PrintWriter out = new PrintWriter(System.out);
private static final byte[] buffer = new byte[1<<15];
private static int ptr = 0;
private static int buflen = 0;
private static boolean hasNextByte(){
if(ptr<buflen)return true;
ptr = 0;
try{
buflen = in.read(buffer);
} catch (IOException e){
e.printStackTrace();
}
return buflen>0;
}
private static int readByte(){ if(hasNextByte()) return buffer[ptr++]; else return -1;}
private static boolean isSpaceChar(int c){ return !(33<=c && c<=126);}
private static int skip(){int res; while((res=readByte())!=-1 && isSpaceChar(res)); return res;}
private static double nd(){ return Double.parseDouble(ns()); }
private static char nc(){ return (char)skip(); }
private static String ns(){
StringBuilder sb = new StringBuilder();
for(int b=skip();!isSpaceChar(b);b=readByte())sb.append((char)b);
return sb.toString();
}
private static int[] nia(int n){
int[] res = new int[n];
for(int i=0;i<n;++i)res[i]=ni();
return res;
}
private static long[] nla(int n){
long[] res = new long[n];
for(int i=0;i<n;++i)res[i]=nl();
return res;
}
private static int ni(){
int res=0,b;
boolean minus=false;
while((b=readByte())!=-1 && !((b>='0'&&b<='9') || b=='-'));
if(b=='-'){
minus=true;
b=readByte();
}
for(;'0'<=b&&b<='9';b=readByte())res=res*10+(b-'0');
return minus ? -res:res;
}
private static long nl(){
long res=0,b;
boolean minus=false;
while((b=readByte())!=-1 && !((b>='0'&&b<='9') || b=='-'));
if(b=='-'){
minus=true;
b=readByte();
}
for(;'0'<=b&&b<='9';b=readByte())res=res*10+(b-'0');
return minus ? -res:res;
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | import java.util.*;
import java.io.*;
public class E
{
static int mod = (int) (1e9+7);
static InputReader in;
static PrintWriter out;
static class SegmentTree {
int st[][];
SegmentTree(int n) {
st = new int[4*n][2];
build(0, n - 1, 1);
}
int getMid(int s, int e) {
return (s+e)>>1;
}
int[] merge(int[] a,int[] b){
if(a[0] < b[0])
return a;
return b;
}
void update(int s, int e, int x, int y, int c, int si){
if(s == x && e == y){
st[si][0] += c;
}
else{
int mid = getMid(s, e);
if(y <= mid)
update(s, mid, x, y, c, 2*si);
else if(x > mid)
update(mid + 1, e, x ,y ,c ,2*si + 1);
else{
update(s, mid, x, mid, c, 2*si);
update(mid + 1, e, mid + 1, y, c, 2*si + 1);
}
st[si] = merge(st[2*si],st[2*si+1]);
}
}
int[] get(int s, int e, int x, int y, int si){
if(s == x && e == y){
return st[si];
}
int mid = getMid(s, e);
if(y <= mid)
return get(s, mid, x, y, 2*si);
else if(x > mid)
return get(mid + 1, e, x, y, 2*si + 1);
return merge(get(s, mid, x, mid, 2*si), get(mid + 1, e, mid + 1, y, 2*si + 1));
}
void build(int ss, int se, int si){
if (ss == se) {
st[si][1] = ss;
return;
}
int mid = getMid(ss, se);
build(ss, mid, si * 2 );
build(mid + 1, se, si * 2 + 1);
st[si] = merge(st[2*si],st[2*si+1]);
}
}
public static void main(String[] args)
{
in = new InputReader(System.in);
out = new PrintWriter(System.out);
int n = in.nextInt();
int m = in.nextInt();
int k = in.nextInt();
ArrayList<Pair>[] set = new ArrayList[n];
for(int i = 0; i < n; i++)
set[i] = new ArrayList<>();
int[] x = new int[m];
int[] y = new int[m];
for(int i = 0; i < m; i++) {
x[i] = in.nextInt() - 1;
y[i] = in.nextInt() - 1;
set[x[i]].add(new Pair(y[i], i));
set[y[i]].add(new Pair(x[i], i));
}
SegmentTree seg = new SegmentTree(n);
for(int i = 0; i < n; i++) {
seg.update(0, n - 1, i, i, set[i].size(), 1);
}
int[] ans = new int[m];
int j = m;
int cnt = n;
boolean[] vis = new boolean[m];
while(j > 0) {
j--;
while(true) {
int[] a = seg.st[1];
if(a[0] >= k) break;
cnt--;
for(Pair p : set[a[1]]) {
if(vis[p.y]) continue;
seg.update(0, n - 1, p.x, p.x, -1, 1);
vis[p.y] = true;
}
seg.update(0, n - 1, a[1], a[1], -a[0] + Integer.MAX_VALUE, 1);
}
// debug(j,vis);
ans[j] = cnt;
if(vis[j]) continue;
seg.update(0, n - 1, x[j], x[j], -1, 1);
seg.update(0, n - 1, y[j], y[j], -1, 1);
vis[j] = true;
}
for(int i : ans)
out.println(i);
out.close();
}
static void debug(Object... o)
{
System.out.println(Arrays.deepToString(o));
}
static class Pair implements Comparable<Pair>
{
int x,y;
Pair(int x, int y){
this.x = x;
this.y = y;
}
public int compareTo(Pair o)
{
if(this.x == o.x)
return -Integer.compare(this.y, o.y);
return Integer.compare(this.x, o.x);
}
public boolean equals(Object o)
{
if (o instanceof Pair)
{
Pair p = (Pair)o;
return p.x == x && p.y==y;
}
return false;
}
@Override
public String toString()
{
return x + " "+ y;
}
public int hashCode()
{
return new Long(x).hashCode() * 31 + new Long(y).hashCode();
}
}
static long gcd(long x, long y) {
if (y == 0) {
return x;
} else {
return gcd(y, x % y);
}
}
static int gcd(int x, int y) {
if (y == 0) {
return x;
} else {
return gcd(y, x % y);
}
}
static long pow(long n, long p, long m) {
long result = 1;
if (p == 0) {
return 1;
}
while (p != 0) {
if (p % 2 == 1) {
result *= n;
}
if (result >= m) {
result %= m;
}
p >>= 1;
n *= n;
if (n >= m) {
n %= m;
}
}
return result;
}
static long pow(long n, long p) {
long result = 1;
if (p == 0) {
return 1;
}
while (p != 0) {
if (p % 2 == 1) {
result *= n;
}
p >>= 1;
n *= n;
}
return result;
}
static class InputReader
{
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int snext()
{
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars)
{
curChar = 0;
try
{
snumChars = stream.read(buf);
} catch (IOException e)
{
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
int res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n)
{
int a[] = new int[n];
for (int i = 0; i < n; i++)
{
a[i] = nextInt();
}
return a;
}
public long[] nextLongArray(int n)
{
long a[] = new long[n];
for (int i = 0; i < n; i++)
{
a[i] = nextLong();
}
return a;
}
public String readString()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine()
{
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c)
{
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | //package manthan2018;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.ArrayDeque;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.util.Queue;
import java.util.Random;
public class E2 {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni(), m = ni(), K = ni();
int[] from = new int[m];
int[] to = new int[m];
for(int i = 0;i < m;i++){
from[i] = ni()-1;
to[i] = ni()-1;
}
int[][] g = packU(n, from, to);
Random gen = new Random();
for(int i = 0;i < n;i++){
shuffle(g[i], gen);
Arrays.sort(g[i]);
}
int[] deg = new int[n];
for(int i = 0;i < n;i++)deg[i] = g[i].length;
boolean[][] con = new boolean[n][];
for(int i = 0;i < n;i++){
con[i] = new boolean[g[i].length];
Arrays.fill(con[i], true);
}
Queue<Integer> q = new ArrayDeque<>();
for(int i = 0;i < n;i++)q.add(i);
int non = n;
boolean[] on = new boolean[n];
Arrays.fill(on, true);
while(!q.isEmpty()){
int cur = q.poll();
if(on[cur] && deg[cur] < K){
on[cur] = false;
non--;
for(int j = 0;j < g[cur].length;j++){
int e = g[cur][j];
if(!con[cur][j])continue;
con[cur][Arrays.binarySearch(g[cur], e)] = false;
con[e][Arrays.binarySearch(g[e], cur)] = false;
deg[e]--;
q.add(e);
}
}
}
int[] anss = new int[m];
for(int i = m-1;i >= 0;i--){
anss[i] = non;
int f = from[i], t = to[i];
if(!con[f][Arrays.binarySearch(g[f], t)])continue;
deg[f]--;
deg[t]--;
con[f][Arrays.binarySearch(g[f], t)] = false;
con[t][Arrays.binarySearch(g[t], f)] = false;
q.add(f);
q.add(t);
while(!q.isEmpty()){
int cur = q.poll();
if(on[cur] && deg[cur] < K){
on[cur] = false;
non--;
for(int j = 0;j < g[cur].length;j++){
int e = g[cur][j];
if(!con[cur][j])continue;
con[cur][Arrays.binarySearch(g[cur], e)] = false;
con[e][Arrays.binarySearch(g[e], cur)] = false;
deg[e]--;
q.add(e);
}
}
}
}
for(int v : anss){
out.println(v);
}
}
public static int[] shuffle(int[] a, Random gen){ for(int i = 0, n = a.length;i < n;i++){ int ind = gen.nextInt(n-i)+i; int d = a[i]; a[i] = a[ind]; a[ind] = d; } return a; }
static int[][] packU(int n, int[] from, int[] to) {
int[][] g = new int[n][];
int[] p = new int[n];
for (int f : from)
p[f]++;
for (int t : to)
p[t]++;
for (int i = 0; i < n; i++)
g[i] = new int[p[i]];
for (int i = 0; i < from.length; i++) {
g[from[i]][--p[from[i]]] = to[i];
g[to[i]][--p[to[i]]] = from[i];
}
return g;
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new E2().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 200010, M = 400010, mod = 1e9 + 7;
int n, m, k;
int h[N], e[M], ne[M], idx;
int a[N], b[N], ans[N];
int ind[N], oud[N], cnt;
bool stn[N], stm[M];
struct Edge {
int a, b;
} edge[M];
void add(int a, int b) { e[idx] = b, ne[idx] = h[a], h[a] = idx++; }
queue<int> q;
void delet_node() {
while (!q.empty()) {
int t = q.front();
q.pop();
for (int i = h[t]; ~i; i = ne[i]) {
if (stm[i]) continue;
int j = e[i];
ind[j]--;
if (ind[j] < k && !stn[j]) {
q.push(j), stn[j] = 1, cnt--;
}
}
}
}
void topsort() {
for (int i = 1; i <= n; i++) {
if (ind[i] < k) q.push(i), cnt--, stn[i] = 1;
}
delet_node();
for (int i = m; i >= 1; i--) {
ans[i] = cnt;
int a = edge[i].a, b = edge[i].b;
if (!stn[a] && !stn[b]) ind[a]--, ind[b]--;
stm[--idx] = 1, stm[--idx] = 1;
if (ind[a] < k && !stn[a]) q.push(a), stn[a] = 1, cnt--;
if (ind[b] < k && !stn[b]) q.push(b), stn[b] = 1, cnt--;
delet_node();
}
for (int i = 1; i <= m; i++) cout << ans[i] << endl;
}
int main() {
memset(h, -1, sizeof h);
scanf("%d%d%d", &n, &m, &k);
cnt = n;
for (int i = 1; i <= m; i++) {
int a, b;
scanf("%d%d", &a, &b);
edge[i] = {a, b};
add(a, b), add(b, a);
ind[a]++, ind[b]++;
}
topsort();
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | //package contests.CF1037;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class E {
static ArrayList<Integer>[] adj;
static int[] vis, going;
static int NO = 3, YES = 2, VIS = 1;
static int k;
public static void main(String[] args) throws IOException{
Scanner sc = new Scanner();
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
adj = new ArrayList[n];
for (int i = 0; i < adj.length; i++) {
adj[i] = new ArrayList<>();
}
vis = new int[n];
going = new int[n];
int m = sc.nextInt();
k = sc.nextInt();
HashSet<Long> e = new HashSet<>();
int[][] edges = new int[m][2];
for (int i = 0; i < m; i++) {
edges[i][0] = sc.nextInt()-1;
edges[i][1] = sc.nextInt()-1;
adj[edges[i][0]].add(edges[i][1]);
adj[edges[i][1]].add(edges[i][0]);
e.add(hash(edges[i][0], edges[i][1]));
}
TreeSet<Integer> set = new TreeSet<>(new Comparator<Integer>() {
@Override
public int compare(Integer i, Integer j) { ;
if(going[i] != going[j])
return going[i] - going[j];
return i - j;
}
});
Arrays.fill(vis, YES);
for (int i = 0; i < going.length; i++) {
going[i] = adj[i].size();
}
for (int i = 0; i < n; i++) {
set.add(i);
}
while(!set.isEmpty() && going[set.first()] < k){
int a = set.pollFirst();
vis[a] = NO;
for (int b : adj[a]) {
if(vis[b] == YES && e.contains(hash(a, b))){
set.remove(b);
going[b]--;
set.add(b);
e.remove(hash(a, b));
}
}
}
int[] ans = new int[m];
for (int q = m-1; q >= 0; q--) {
ans[q] = set.size();
int u = edges[q][0];
int v = edges[q][1];
if(vis[u] == YES) {
set.remove(u);
if(vis[v] == YES && e.contains(hash(u, v)))
going[u]--;
set.add(u);
}
if(vis[v] == YES) {
set.remove(v);
if(vis[u] == YES && e.contains(hash(u, v)))
going[v]--;
set.add(v);
}
e.remove(hash(u, v));
while(!set.isEmpty() && going[set.first()] < k){
int a = set.pollFirst();
vis[a] = NO;
for (int b : adj[a]) {
if(vis[b] == YES && e.contains(hash(a, b))){
set.remove(b);
going[b]--;
set.add(b);
e.remove(hash(a, b));
}
}
}
}
for (int i = 0; i < m; i++) {
pw.println(ans[i]);
}
pw.flush();
pw.close();
}
static long hash(int a, int b){
return Math.min(a, b) * 1000000l + Math.max(a, b);
}
static class Scanner{
BufferedReader br;
StringTokenizer st;
public Scanner(){
br = new BufferedReader(new InputStreamReader(System.in));
}
public String next() throws IOException {
while(st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const double EPS = 1e-9;
const long long MOD = 1e9 + 7;
pair<int, int> es[200000];
vector<pair<int, int> > g[200000];
int degree[200000];
set<pair<int, int> > st;
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int n, m, k;
scanf("%d%d%d", &n, &m, &k);
for (long long i = 0; i < m; i++) {
scanf("%d%d", &es[i].first, &es[i].second);
es[i].first--, es[i].second--;
g[es[i].first].push_back({es[i].second, i});
g[es[i].second].push_back({es[i].first, i});
degree[es[i].first]++, degree[es[i].second]++;
}
reverse(es, es + m);
for (long long i = 0; i < n; i++) st.insert({degree[i], i});
while (!st.empty() && st.begin()->first < k) {
auto v = st.begin();
for (pair<int, int> &i : g[v->second]) {
int to = i.first;
if (st.find({degree[to], to}) != st.end()) {
st.erase({degree[to], to});
degree[to]--;
st.insert({degree[to], to});
}
}
st.erase(v);
}
vector<int> out;
for (long long j = 0; j < m; j++) {
out.push_back(st.size());
int u = es[j].first, v = es[j].second;
if (st.find({degree[u], u}) != st.end() &&
st.find({degree[v], v}) != st.end()) {
st.erase({degree[u], u});
degree[u]--;
st.insert({degree[u], u});
st.erase({degree[v], v});
degree[v]--;
st.insert({degree[v], v});
while (!st.empty() && st.begin()->first < k) {
auto v = st.begin();
for (pair<int, int> &i : g[v->second]) {
if (i.second >= m - j - 1) continue;
int to = i.first;
if (st.find({degree[to], to}) != st.end()) {
st.erase({degree[to], to});
degree[to]--;
st.insert({degree[to], to});
}
}
st.erase(v);
}
}
}
reverse(begin(out), end(out));
for (int i : out) printf("%d\n", i);
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T, typename Pr = less<T>>
using pq = priority_queue<T, vector<T>, Pr>;
using i64 = long long int;
using ii = pair<int, int>;
using ii64 = pair<i64, i64>;
set<int> adj[200005];
bool removed[200005];
int main() {
int n, m, k;
scanf("%d %d %d", &n, &m, &k);
vector<ii> edges(m);
for (int i = 0; i < m; i++) {
scanf("%d %d", &edges[i].first, &edges[i].second);
adj[edges[i].first].insert(edges[i].second);
adj[edges[i].second].insert(edges[i].first);
}
set<ii> nodes;
for (int i = 1; i <= n; i++) nodes.emplace(adj[i].size(), i);
reverse((edges).begin(), (edges).end());
vector<int> ans(m);
for (int i = 0; i < m; i++) {
while (!nodes.empty() && nodes.begin()->first < k) {
auto x = nodes.begin()->second;
removed[x] = true;
nodes.erase(nodes.begin());
for (auto& e : adj[x]) {
nodes.erase(ii(adj[e].size(), e));
adj[e].erase(x);
nodes.emplace(adj[e].size(), e);
}
}
ans[m - 1 - i] = nodes.size();
auto& [x, y] = edges[i];
if (removed[x] || removed[y]) continue;
nodes.erase(ii(adj[x].size(), x));
nodes.erase(ii(adj[y].size(), y));
adj[x].erase(y);
adj[y].erase(x);
nodes.emplace(adj[x].size(), x);
nodes.emplace(adj[y].size(), y);
}
for (auto& ai : ans) printf("%d\n", ai);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T>
void maxtt(T& t1, T t2) {
t1 = max(t1, t2);
}
template <typename T>
void mintt(T& t1, T t2) {
t1 = min(t1, t2);
}
bool debug = 0;
int n, m, k;
int dx[4] = {0, 1, 0, -1}, dy[4] = {1, 0, -1, 0};
string direc = "RDLU";
long long ln, lk, lm;
void etp(bool f = 0) {
puts(f ? "YES" : "NO");
exit(0);
}
void addmod(long long& x, long long y, long long mod = 998244353) {
assert(y >= 0);
x += y;
if (x >= mod) x -= mod;
assert(x >= 0 && x < mod);
}
void et(int x = -1) {
printf("%d\n", x);
exit(0);
}
long long fastPow(long long x, long long y, long long mod = 998244353) {
long long ans = 1;
while (y > 0) {
if (y & 1) ans = (x * ans) % mod;
x = x * x % mod;
y >>= 1;
}
return ans;
}
long long gcd1(long long x, long long y) { return y ? gcd1(y, x % y) : x; }
vector<pair<int, int> > mp[200105];
int u[200105], v[200105], d[200105], ans[200105];
bool vis[200105], del[200105];
void fmain(int ID) {
scanf("%d%d%d", &n, &m, &k);
for (int(i) = 1; (i) <= (int)(m); (i)++) {
scanf("%d%d", u + i, v + i);
d[u[i]]++;
d[v[i]]++;
mp[u[i]].push_back({v[i], i});
mp[v[i]].push_back({u[i], i});
}
set<pair<int, int> > q;
for (int(i) = 1; (i) <= (int)(n); (i)++) q.insert({d[i], i});
int sz = n;
for (int i = m; i; i--) {
while (!q.empty() && q.begin()->first < k) {
int x = q.begin()->second;
q.erase(q.begin());
del[x] = 1;
sz--;
for (auto cp : mp[x])
if (!vis[cp.second] && !del[cp.first]) {
vis[cp.second] = 1;
int y = cp.first;
q.erase({d[y], y});
d[y]--;
q.insert({d[y], y});
}
}
ans[i] = sz;
if (vis[i]) continue;
vis[i] = 1;
int y = u[i];
q.erase({d[y], y});
d[y]--;
q.insert({d[y], y});
y = v[i];
q.erase({d[y], y});
d[y]--;
q.insert({d[y], y});
}
for (int(i) = 1; (i) <= (int)(m); (i)++) printf("%d\n", ans[i]);
}
int main() {
int t = 1;
for (int(i) = 1; (i) <= (int)(t); (i)++) {
fmain(i);
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.HashSet;
import java.util.StringTokenizer;
import java.util.Set;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskE solver = new TaskE();
solver.solve(1, in, out);
out.close();
}
static class TaskE {
int n;
int m;
int k;
Set<Integer> going = new HashSet<>();
Vertex[] vs;
public void solve(int testNumber, InputReader in, PrintWriter out) {
n = in.nextInt();
m = in.nextInt();
k = in.nextInt();
vs = new Vertex[n];
for (int i = 0; i < n; ++i) {
vs[i] = new Vertex(i);
going.add(i);
}
int[] res = new int[m];
Edge[] edges = new Edge[m];
for (int i = 0; i < m; ++i) {
int x = in.nextInt() - 1;
int y = in.nextInt() - 1;
vs[x].adj.add(y);
vs[y].adj.add(x);
edges[i] = new Edge(x, y);
}
for (int i = 0; i < n; ++i) {
vs[i].erase();
}
for (int i = m - 1; i >= 0; --i) {
res[i] = going.size();
int from = edges[i].from;
int to = edges[i].to;
vs[from].adj.remove(to);
vs[to].adj.remove(from);
vs[from].erase();
vs[to].erase();
}
for (int i = 0; i < m; ++i) {
out.println(res[i]);
}
}
class Edge {
int from;
int to;
public Edge(int from, int to) {
this.from = from;
this.to = to;
}
}
class Vertex {
int id;
boolean marked;
Set<Integer> adj = new HashSet<>();
Vertex(int id) {
this.id = id;
}
void erase() {
this.marked = true;
if (this.adj.size() < k && going.contains(this.id)) {
going.remove(this.id);
for (int vId : this.adj) {
if (vs[vId].marked) continue;
vs[vId].adj.remove(this.id);
vs[vId].erase();
}
}
this.marked = false;
}
}
}
static class InputReader {
private BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 10;
set<int> st[N], s;
int ans[N], x[N], y[N];
int n, m, k;
void dfs(int v) {
if (st[v].size() >= k || !s.count(v)) return;
s.erase(v);
for (auto u : st[v]) {
st[u].erase(v);
if (s.count(u) && st[u].size() < k) {
dfs(u);
}
}
}
int main() {
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= m; i++) {
scanf("%d%d", &x[i], &y[i]);
st[x[i]].insert(y[i]);
st[y[i]].insert(x[i]);
}
for (int i = 1; i <= n; ++i) s.insert(i);
for (int i = 1; i <= n; i++) {
if (st[i].size() < k) {
dfs(i);
}
}
ans[m] = s.size();
for (int i = m; i > 1; i--) {
st[x[i]].erase(y[i]);
st[y[i]].erase(x[i]);
if (st[x[i]].size() < k) dfs(x[i]);
if (st[y[i]].size() < k) dfs(y[i]);
ans[i - 1] = s.size();
}
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int mxn = 2e5 + 9;
set<int> g[mxn];
int k;
set<int> se;
void can_now(int u) {
if (g[u].size() < k && se.find(u) != se.end()) {
se.erase(u);
for (auto &v : g[u]) {
g[v].erase(u);
can_now(v);
}
}
}
int res[mxn];
pair<int, int> e[mxn];
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int i, j, n, m, t, u, v;
cin >> n >> m >> k;
for (i = 1; i <= m; i++) {
cin >> u >> v;
g[u].insert(v);
g[v].insert(u);
e[i] = {u, v};
}
for (i = 1; i <= n; i++) se.insert(i);
for (i = 1; i <= n; i++) can_now(i);
for (i = m; i >= 1; i--) {
res[i] = se.size();
u = e[i].first, v = e[i].second;
g[u].erase(v);
g[v].erase(u);
can_now(u);
can_now(v);
}
for (i = 1; i <= m; i++) cout << res[i] << endl;
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.List;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskE solver = new TaskE();
solver.solve(1, in, out);
out.close();
}
static class TaskE {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.readInt();
int m = in.readInt();
int k = in.readInt();
int[] to = new int[m];
int[] from = new int[m];
int[] degree = new int[n];
boolean[] alive = new boolean[m];
Arrays.fill(alive, true);
List<Integer>[] edges = new ArrayList[n];
for (int i = 0; i < n; ++i) {
edges[i] = new ArrayList<>();
}
for (int i = 0; i < m; ++i) {
to[i] = in.readInt() - 1;
from[i] = in.readInt() - 1;
degree[to[i]]++;
degree[from[i]]++;
edges[to[i]].add(i);
edges[from[i]].add(i);
}
int[] q = new int[n];
int back = 0;
int front = 0;
for (int i = 0; i < n; i++) {
if (degree[i] < k) {
q[front++] = i;
}
}
int[] res = new int[m];
for (int i = m - 1; i >= 0; --i) {
while (back < front) {
int cur = q[back++];
for (int edge : edges[cur]) {
if (alive[edge]) {
int other = to[edge] + from[edge] - cur;
alive[edge] = false;
if (degree[other] == k) {
q[front++] = other;
}
degree[other]--;
degree[cur]--;
}
}
}
res[i] = n - front;
if (alive[i]) {
if (degree[from[i]] == k) {
q[front++] = from[i];
}
if (degree[to[i]] == k) {
q[front++] = to[i];
}
degree[from[i]]--;
degree[to[i]]--;
alive[i] = false;
}
}
for (int i = 0; i < m; i++) {
out.println(res[i]);
}
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
// InputMismatchException -> UnknownError
if (numChars == -1)
throw new UnknownError();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new UnknownError();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
} else if (c == '+') {
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public static boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.List;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastReader in = new FastReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskE solver = new TaskE();
solver.solve(1, in, out);
out.close();
}
static class TaskE {
public void solve(int testNumber, FastReader in, PrintWriter out) {
int n = in.nextInt();
int m = in.nextInt();
int K = in.nextInt();
List<int[]>[] g = new List[n];
for (int i = 0; i < n; ++i) g[i] = new ArrayList<>();
int[] from = new int[m];
int[] to = new int[m];
int[] deg = new int[n];
for (int i = 0; i < m; ++i) {
int u = in.nextInt() - 1;
int v = in.nextInt() - 1;
from[i] = u;
to[i] = v;
g[u].add(new int[]{v, i});
g[v].add(new int[]{u, i});
++deg[u];
++deg[v];
}
int[] queue = new int[n];
int sizeQ = 0;
for (int i = 0; i < n; ++i) {
if (deg[i] < K) {
queue[sizeQ++] = i;
}
}
int ptr = 0;
int[] ans = new int[m];
boolean[] dead = new boolean[m];
for (int step = m - 1; step >= 0; --step) {
while (ptr < sizeQ) {
int cur = queue[ptr];
for (int[] v : g[cur]) {
int next = v[0];
int id = v[1];
if (dead[id]) continue;
dead[id] = true;
if (deg[next] == K) queue[sizeQ++] = next;
--deg[next];
--deg[cur];
}
++ptr;
}
ans[step] = n - sizeQ;
if (!dead[step]) {
if (deg[from[step]] == K) queue[sizeQ++] = from[step];
if (deg[to[step]] == K) queue[sizeQ++] = to[step];
--deg[from[step]];
--deg[to[step]];
dead[step] = true;
}
}
for (int aa : ans) out.println(aa);
}
}
static class FastReader {
private InputStream stream;
private byte[] buf = new byte[8192];
private int curChar;
private int pnumChars;
public FastReader(InputStream stream) {
this.stream = stream;
}
private int pread() {
if (pnumChars == -1) {
throw new InputMismatchException();
}
if (curChar >= pnumChars) {
curChar = 0;
try {
pnumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (pnumChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = pread();
while (isSpaceChar(c))
c = pread();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = pread();
}
int res = 0;
do {
if (c == ',') {
c = pread();
}
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = pread();
} while (!isSpaceChar(c));
return res * sgn;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, m, k;
int a[200010], b[200010];
vector<pair<int, int> > G[200010];
int deg[200010];
int ans[200010], cnt;
queue<int> q;
inline void spfa(int x) {
while (!q.empty()) {
int u = q.front();
q.pop();
for (int i = 0; i < G[u].size(); i++) {
int v = G[u][i].first;
int s = G[u][i].second;
if (s >= x) continue;
if (deg[v] >= k) {
deg[v]--;
if (deg[v] < k) {
q.push(v);
cnt--;
}
}
}
}
}
int main() {
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= m; i++) {
scanf("%d%d", a + i, b + i);
deg[a[i]]++;
deg[b[i]]++;
G[a[i]].push_back(pair<int, int>(b[i], i));
G[b[i]].push_back(pair<int, int>(a[i], i));
}
cnt = n;
for (int i = 1; i <= n; i++)
if (deg[i] < k) q.push(i), cnt--;
spfa(m + 1);
ans[m + 1] = cnt;
for (int i = m; i > 1; i--) {
if (deg[a[i]] >= k && deg[b[i]] >= k) {
deg[a[i]]--;
deg[b[i]]--;
if (deg[a[i]] < k) q.push(a[i]), cnt--;
if (deg[b[i]] < k) q.push(b[i]), cnt--;
}
spfa(i);
ans[i] = cnt;
}
for (int i = 2; i <= m + 1; i++) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
#pragma GCC optimize(3)
#pragma GCC optimize(2)
using namespace std;
const int maxn = 2e5 + 10;
int N, M, K;
set<int> g[maxn];
set<pair<int, int> > person;
int deg[maxn];
int ans[maxn];
pair<int, int> edges[maxn];
int main() {
scanf("%d %d %d", &N, &M, &K);
for (int i = 1; i <= M; ++i) {
scanf("%d %d", &edges[i].first, &edges[i].second);
g[edges[i].first].insert(edges[i].second);
g[edges[i].second].insert(edges[i].first);
++deg[edges[i].first];
++deg[edges[i].second];
}
for (int i = 1; i <= N; ++i) {
person.insert(make_pair(deg[i], i));
}
for (int i = M; i >= 1; --i) {
int x = edges[i].first, y = edges[i].second;
while (!person.empty()) {
auto it = person.begin();
if (it->first >= K) {
break;
}
int v = it->second;
for (int u : g[v]) {
person.erase(make_pair(deg[u], u));
if (deg[u]) person.insert(make_pair(--deg[u], u));
g[u].erase(v);
}
g[v].clear();
person.erase(make_pair(deg[v], v));
deg[v] = 0;
}
ans[i] = person.size();
if (g[x].find(y) != g[x].end()) {
person.erase(make_pair(deg[x], x));
person.erase(make_pair(deg[y], y));
g[y].erase(x);
g[x].erase(y);
if (deg[x]) person.insert(make_pair(--deg[x], x));
if (deg[y]) person.insert(make_pair(--deg[y], y));
}
}
for (int i = 1; i <= M; ++i) {
printf("%d\n", ans[i]);
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
map<long long int, long long int> m1, m2;
const long long int N = 3 * 1e5;
vector<long long int>::iterator itr, itr1;
int main() {
int n, m, k;
cin >> n >> m >> k;
vector<pair<int, int> > Edges(m);
vector<int> Ans(m);
vector<int> degree(n);
vector<vector<pair<int, int> > > adj(n);
set<pair<int, int> > Good_set;
vector<int> in_good_set(n, true);
for (int i = 0; i < m; i++) {
cin >> Edges[i].first >> Edges[i].second;
Edges[i].first--;
Edges[i].second--;
adj[Edges[i].first].push_back({Edges[i].second, i});
adj[Edges[i].second].push_back({Edges[i].first, i});
degree[Edges[i].first]++;
degree[Edges[i].second]++;
}
for (int i = 0; i < n; i++) {
Good_set.insert({degree[i], i});
}
while (!Good_set.empty() && Good_set.begin()->first < k) {
int node = Good_set.begin()->second;
for (auto &y : adj[node]) {
int x = y.first;
if (in_good_set[x]) {
Good_set.erase({degree[x], x});
--degree[x];
Good_set.insert({degree[x], x});
}
}
Good_set.erase({degree[node], node});
in_good_set[node] = false;
}
for (int i = m - 1; i >= 0; i--) {
Ans[i] = Good_set.size();
int u = Edges[i].first, v = Edges[i].second;
if (in_good_set[u] && in_good_set[v]) {
Good_set.erase({degree[u], u});
--degree[u];
Good_set.insert({degree[u], u});
Good_set.erase({degree[v], v});
--degree[v];
Good_set.insert({degree[v], v});
while (!Good_set.empty() && Good_set.begin()->first < k) {
int node = Good_set.begin()->second;
for (auto &y : adj[node]) {
int x = y.first;
if (y.second >= i) continue;
if (in_good_set[x]) {
Good_set.erase({degree[x], x});
--degree[x];
Good_set.insert({degree[x], x});
}
}
Good_set.erase({degree[node], node});
in_good_set[node] = false;
}
}
}
for (int i = 0; i < m; i++) {
cout << Ans[i] << "\n";
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
void err(istream_iterator<string> it) {}
template <typename T, typename... Args>
void err(istream_iterator<string> it, T a, Args... args) {
cerr << *it << " = " << a << "\n";
err(++it, args...);
}
vector<pair<int, int> > edge(200003);
vector<vector<pair<int, int> > > ad(200003);
int sz[200003];
stack<int> pq;
int node;
int process(int k, int j) {
int i, x, a, s;
while (!pq.empty()) {
s = pq.top();
pq.pop();
node--;
sz[s] = 0;
x = ad[s].size();
for (i = 0; i < x; i++) {
a = ad[s][i].first;
if (ad[s][i].second <= j) {
sz[a]--;
if (sz[a] == k - 1) pq.push(a);
}
}
}
return node;
}
int main() {
int n, m, k, i, a, b;
scanf("%d%d%d", &n, &m, &k);
for (i = 0; i < m; i++) {
scanf("%d%d", &a, &b);
a--, b--;
ad[a].emplace_back(b, i);
ad[b].emplace_back(a, i);
sz[a]++, sz[b]++;
edge[i] = {a, b};
}
vector<int> ans(m);
for (i = 0; i < n; i++)
if (sz[i] < k) pq.push(i);
node = n;
int j;
for (i = m - 1; i >= 0; i--) {
ans[i] = process(k, i);
tie(a, b) = edge[i];
if (sz[a] > 0 && sz[b] > 0) {
if (sz[a] == k) pq.push(a);
if (sz[b] == k) pq.push(b);
sz[a]--, sz[b]--;
}
}
for (i = 0; i < m; i++) printf("%d\n", ans[i]);
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int N, M, K;
int xList[200005], yList[200005];
int deg[200005], ans[200005];
set<int> Adj[200005];
set<pair<int, int> > s;
set<pair<int, int> >::iterator p;
void work(int u) {
s.erase(make_pair(deg[u], u));
int v;
set<int>::iterator k;
for (k = Adj[u].begin(); k != Adj[u].end(); k++) {
v = (*k);
if (!s.count(make_pair(deg[v], v))) {
deg[v]--;
continue;
}
s.erase(make_pair(deg[v], v));
deg[v]--;
if (deg[v] >= K)
s.insert(make_pair(deg[v], v));
else
work(v);
}
}
int main() {
scanf("%d%d%d", &N, &M, &K);
int u, v;
for (int i = 1; i <= M; i++) {
scanf("%d%d", &u, &v);
Adj[u].insert(v);
Adj[v].insert(u);
deg[u]++;
deg[v]++;
xList[i] = u;
yList[i] = v;
}
for (int i = 1; i <= N; i++) {
s.insert(make_pair(deg[i], i));
}
while (!s.empty()) {
p = s.begin();
if (p->first < K)
work(p->second);
else
break;
}
ans[M] = s.size();
for (int i = M; i >= 1; i--) {
u = xList[i];
v = yList[i];
ans[i - 1] = s.size();
if (!s.count(make_pair(deg[u], u)) || !s.count(make_pair(deg[v], v)))
continue;
Adj[u].erase(v);
Adj[v].erase(u);
if (s.count(make_pair(deg[u], u))) {
s.erase(make_pair(deg[u], u));
deg[u]--;
s.insert(make_pair(deg[u], u));
}
if (s.count(make_pair(deg[v], v))) {
s.erase(make_pair(deg[v], v));
deg[v]--;
s.insert(make_pair(deg[v], v));
}
while (!s.empty()) {
p = s.begin();
if (p->first < K)
work(p->second);
else
break;
}
ans[i - 1] = s.size();
}
for (int i = 1; i <= M; i++) printf("%d\n", ans[i]);
getchar();
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
struct edge {
int from, to, vis, next;
} e[400020];
int top, head[200020];
vector<int> g[200020];
int in[200020], gg[200020];
int n, m, k;
int ans[200020], cnt;
void add_edge(int from, int to) {
e[++top].to = to;
e[top].from = from;
e[top].next = head[from];
head[from] = top;
}
void add(int from, int to) {
add_edge(from, to);
add_edge(to, from);
}
queue<int> q;
void del(int pos) {
if (!gg[pos]) cnt--;
q.push(pos);
gg[pos] = 1;
while (!q.empty()) {
int now = q.front();
q.pop();
for (int i = head[now]; ~i; i = e[i].next) {
if (e[i].vis || gg[e[i].to]) continue;
in[e[i].to]--;
e[i].vis = 1;
e[i ^ 1].vis = 1;
if (in[e[i].to] < k) {
cnt--;
gg[e[i].to] = 1;
q.push(e[i].to);
}
}
}
}
int main() {
scanf("%d%d%d", &n, &m, &k);
cnt = n;
top = -1;
memset(head, -1, sizeof(head));
int from, to;
for (int i = 1; i <= m; i++) {
scanf("%d%d", &from, &to);
in[from]++, in[to]++;
add(from, to);
}
for (int i = 1; i <= n; i++) {
if (head[i] == -1) cnt--, gg[i] = 1;
}
for (int i = 1; i <= n; i++) {
if (in[i] < k && !gg[i]) del(i);
}
int ttt = m;
for (int i = 2 * m - 1; i >= 1; i -= 2) {
ans[ttt--] = cnt;
if (e[i].vis) continue;
in[e[i].from]--;
in[e[i].to]--;
e[i].vis = e[i ^ 1].vis = 1;
if (!gg[e[i].from] && in[e[i].from] < k) del(e[i].from);
if (!gg[e[i].to] && in[e[i].to] < k) del(e[i].to);
}
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | python2 | from collections import defaultdict
n, m, k = map(int, raw_input().split())
xys = [map(int, raw_input().split()) for _ in range(m)][::-1]
gv = defaultdict(set)
for x, y in xys:
gv[x].add(y)
gv[y].add(x)
q = [u for u, vs in tuple(gv.items()) if len(vs) < k]
i = 0
while i < len(q):
u = q[i]
i += 1
if u not in gv:
continue
for v in gv[u]:
try:
gv[v].remove(u)
except KeyError:
pass
if len(gv[v]) < k:
q.append(v)
del gv[u]
anss = [len(gv)]
for x, y in xys:
try:
gv[x].remove(y)
except KeyError:
pass
try:
gv[y].remove(x)
except KeyError:
pass
q = []
if len(gv[x]) < k:
q.append(x)
if len(gv[y]) < k:
q.append(y)
i = 0
while i < len(q):
u = q[i]
i += 1
if u not in gv:
continue
for v in gv[u]:
try:
gv[v].remove(u)
except KeyError:
pass
if len(gv[v]) < k:
q.append(v)
del gv[u]
anss.append(len(gv))
print('\n'.join(map(str, reversed(anss[:-1]))))
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | import java.io.*;
import java.util.*;
import java.math.BigInteger;
import java.util.Map.Entry;
import static java.lang.Math.*;
public class E extends PrintWriter {
class Node {
final int id;
final Map<Node, Edge> edges = new HashMap<>();
boolean use = true;
public Node(int id) {
this.id = id;
}
}
class Edge {
final Node u, v;
boolean use = true;
public Edge(Node u, Node v) {
this.u = u;
this.v = v;
}
}
void run() {
int n = nextInt(), m = nextInt(), k = nextInt();
Node[] nodes = new Node[n];
for (int i = 0; i < n; i++) {
nodes[i] = new Node(i);
}
Edge[] edges = new Edge[m];
for (int j = 0; j < m; j++) {
Node u = nodes[nextInt() - 1], v = nodes[nextInt() - 1];
edges[j] = new Edge(u, v);
u.edges.put(v, edges[j]);
v.edges.put(u, edges[j]);
}
Queue<Node> bad = new ArrayDeque<>(n);
int cnt = n;
int[] ans = new int[m + 1];
for (int j = m; j >= 0; j--) {
ans[j] = cnt;
if (j == m) {
for (Node node : nodes) {
if (node.edges.size() < k) {
node.use = false;
bad.add(node);
}
}
} else {
if (edges[j].use) {
edges[j].use = false;
Node u = edges[j].u;
Node v = edges[j].v;
if (u.use) {
u.edges.remove(v);
if (u.edges.size() < k) {
u.use = false;
bad.add(u);
}
}
if (v.use) {
v.edges.remove(u);
if (v.edges.size() < k) {
v.use = false;
bad.add(v);
}
}
}
}
while (!bad.isEmpty()) {
Node u = bad.poll();
--cnt;
for (Iterator<Entry<Node, Edge>> it = u.edges.entrySet().iterator(); it.hasNext();) {
Entry<Node, Edge> entry = it.next();
Node v = entry.getKey();
Edge edge = entry.getValue();
if (edge.use) {
edge.use = false;
if (v.use) {
v.edges.remove(u);
if (v.edges.size() < k) {
v.use = false;
bad.add(v);
}
}
}
it.remove();
}
}
}
for (int j = 0; j < m; j++) {
println(ans[j]);
}
}
void skip() {
while (hasNext()) {
next();
}
}
int[][] nextMatrix(int n, int m) {
int[][] matrix = new int[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
matrix[i][j] = nextInt();
return matrix;
}
String next() {
while (!tokenizer.hasMoreTokens())
tokenizer = new StringTokenizer(nextLine());
return tokenizer.nextToken();
}
boolean hasNext() {
while (!tokenizer.hasMoreTokens()) {
String line = nextLine();
if (line == null) {
return false;
}
tokenizer = new StringTokenizer(line);
}
return true;
}
int[] nextArray(int n) {
int[] array = new int[n];
for (int i = 0; i < n; i++) {
array[i] = nextInt();
}
return array;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
try {
return reader.readLine();
} catch (IOException err) {
return null;
}
}
public E(OutputStream outputStream) {
super(outputStream);
}
static BufferedReader reader;
static StringTokenizer tokenizer = new StringTokenizer("");
static Random rnd = new Random();
static boolean OJ;
public static void main(String[] args) throws IOException {
OJ = System.getProperty("ONLINE_JUDGE") != null;
E solution = new E(System.out);
if (OJ) {
reader = new BufferedReader(new InputStreamReader(System.in));
solution.run();
} else {
reader = new BufferedReader(new FileReader(new File(E.class.getName() + ".txt")));
long timeout = System.currentTimeMillis();
while (solution.hasNext()) {
solution.run();
solution.println();
solution.println("----------------------------------");
}
solution.println("time: " + (System.currentTimeMillis() - timeout));
}
solution.close();
reader.close();
}
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, k, m;
int u[200005], v[200005];
set<int> e[200005];
int deg[200005];
bool alive[200005];
int alc;
queue<int> delet;
void del(int x) {
alive[x] = false;
alc--;
for (int y : e[x]) {
if (alive[y]) {
deg[y]--;
if (deg[y] == k - 1) {
delet.push(y);
}
}
}
}
void peck(int x) {
deg[x]--;
if (deg[x] == k - 1) {
delet.push(x);
}
}
void clearq() {
while (delet.size()) {
int x = delet.front();
delet.pop();
del(x);
}
}
int ans[200005];
int main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
cerr.tie(nullptr);
cin >> n >> m >> k;
for (int i = 0; i < m; i++) {
cin >> u[i] >> v[i];
u[i]--;
v[i]--;
deg[u[i]]++;
deg[v[i]]++;
e[u[i]].insert(v[i]);
e[v[i]].insert(u[i]);
}
fill(alive, alive + n, true);
alc = n;
for (int i = 0; i < n; i++)
if (deg[i] < k) delet.push(i);
for (int i = m - 1; i >= 0; i--) {
clearq();
ans[i] = alc;
e[u[i]].erase(v[i]);
e[v[i]].erase(u[i]);
if (alive[u[i]] && alive[v[i]]) {
peck(u[i]);
peck(v[i]);
}
}
for (int i = 0; i < m; i++) cout << ans[i] << '\n';
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
struct edge {
int to, net;
};
int head[2000000];
int e_n;
edge edges[2000000];
int deg[2000000];
bool sd[2000000];
int v1[2000000], v2[2000000];
set<pair<int, int> > help;
set<pair<int, int> > tt;
void Init() {
help.clear();
e_n = 0;
memset(sd, 0, sizeof(sd));
memset(deg, 0, sizeof(deg));
memset(head, -1, sizeof(head));
}
void add(int f, int t) {
int tmp = head[f];
edges[e_n++] = edge{t, tmp};
head[f] = e_n - 1;
}
int main(void) {
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
int n, m, k;
Init();
cin >> n >> m >> k;
int i, j, x, y;
for (i = 1; i <= m; i++) {
cin >> x >> y;
v1[i] = x, v2[i] = y;
add(x, y);
add(y, x);
++deg[x], ++deg[y];
}
for (i = 1; i <= n; i++) {
help.insert(make_pair(deg[i], i));
}
list<int> res;
for (i = m; i >= 1; i--) {
while (!help.empty() && help.begin()->first < k) {
int cur = help.begin()->second;
sd[cur] = 1;
help.erase(help.begin());
for (j = head[cur]; j != -1; j = edges[j].net) {
int t = edges[j].to;
if (!tt.count(make_pair(cur, t))) {
help.erase(help.find(make_pair(deg[t], t)));
deg[t]--;
help.insert(make_pair(deg[t], t));
tt.insert(make_pair(cur, t));
tt.insert(make_pair(t, cur));
}
}
}
res.push_front(help.size());
if (sd[v1[i]] == 0 && sd[v2[i]] == 0) {
help.erase(help.find(make_pair(deg[v1[i]], v1[i])));
help.insert(make_pair(--deg[v1[i]], v1[i]));
help.erase(help.find(make_pair(deg[v2[i]], v2[i])));
help.insert(make_pair(--deg[v2[i]], v2[i]));
}
tt.insert(make_pair(v1[i], v2[i]));
tt.insert(make_pair(v2[i], v1[i]));
}
for (auto a : res) cout << a << "\n";
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = (int)2e5 + 5;
int n, m, k;
vector<pair<int, int> > out[maxn];
int la[maxn];
int pos[maxn];
int deg[maxn];
int add[maxn];
bool dead[maxn];
set<pair<int, int>, greater<pair<int, int> > > s;
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cin >> n >> m >> k;
fill(la, la + n, -1);
for (auto i = 0; i < m; ++i) {
int v, u;
cin >> v >> u;
--v;
--u;
out[v].push_back(make_pair(i, u));
out[u].push_back(make_pair(i, v));
++deg[v];
++deg[u];
if (deg[v] == k) {
pos[v] = out[v].size() - 1;
la[v] = i;
}
if (deg[u] == k) {
pos[u] = out[u].size() - 1;
la[u] = i;
}
}
for (auto i = 0; i < n; ++i)
if (la[i] == -1) la[i] = m;
for (auto i = 0; i < n; ++i) s.insert(make_pair(la[i], i));
while (!s.empty()) {
int v = s.begin()->second;
dead[v] = true;
s.erase(s.begin());
for (auto e : out[v]) {
int u = e.second;
if (dead[u] || la[u] == la[v]) continue;
if (la[u] < e.first) continue;
s.erase(make_pair(la[u], u));
++pos[u];
while (pos[u] != (int)out[u].size() && dead[out[u][pos[u]].second])
++pos[u];
if (pos[u] == (int)out[u].size())
la[u] = m;
else
la[u] = out[u][pos[u]].first;
la[u] = min(la[u], la[v]);
s.insert(make_pair(la[u], u));
}
}
for (auto i = 0; i < n; ++i) add[la[i]]++;
int curr = 0;
for (auto i = 0; i < m; ++i) {
curr += add[i];
cout << curr << '\n';
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java |
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.lang.reflect.Array;
import java.nio.charset.Charset;
import java.util.*;
public class CFContest {
public static void main(String[] args) throws Exception {
boolean local = System.getProperty("ONLINE_JUDGE") == null;
boolean async = false;
Charset charset = Charset.forName("ascii");
FastIO io = local ? new FastIO(new FileInputStream("E:\\DATABASE\\TESTCASE\\CFContest.in"), System.out, charset) : new FastIO(System.in, System.out, charset);
Task task = new Task(io);
if (async) {
Thread t = new Thread(null, task, "dalt", 1 << 27);
t.setPriority(Thread.MAX_PRIORITY);
t.start();
t.join();
} else {
task.run();
}
if (local) {
io.cache.append("\n\n--memory -- \n" + ((Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory()) >> 20) + "M");
}
io.flush();
}
public static class Task implements Runnable {
final FastIO io;
public Task(FastIO io) {
this.io = io;
}
@Override
public void run() {
solve();
}
public void solve() {
int n = io.readInt();
int m = io.readInt();
int k = io.readInt();
Node[] nodes = new Node[n + 1];
for (int i = 1; i <= n; i++) {
nodes[i] = new Node();
nodes[i].id = i;
}
int[][] edge = new int[m][2];
for (int i = 0; i < m; i++) {
edge[i][0] = io.readInt();
edge[i][1] = io.readInt();
Node a = nodes[edge[i][0]];
Node b = nodes[edge[i][1]];
a.set.add(b);
b.set.add(a);
}
TreeSet<Node> nodeTreeSet = new TreeSet<>(new Comparator<Node>() {
@Override
public int compare(Node o1, Node o2) {
int d = o1.set.size() - o2.set.size();
return d == 0 ? o1.id - o2.id : d;
}
});
for (int i = 1; i <= n; i++) {
nodeTreeSet.add(nodes[i]);
}
checkSet(nodeTreeSet, k);
int[] result = new int[m];
result[m - 1] = nodeTreeSet.size();
for (int i = m - 1; i >= 1; i--) {
Node a = nodes[edge[i][0]];
Node b = nodes[edge[i][1]];
if (a.throwAway || b.throwAway) {
result[i - 1] = nodeTreeSet.size();
continue;
}
nodeTreeSet.remove(a);
nodeTreeSet.remove(b);
a.set.remove(b);
b.set.remove(a);
nodeTreeSet.add(a);
nodeTreeSet.add(b);
checkSet(nodeTreeSet, k);
result[i - 1] = nodeTreeSet.size();
}
for (int i = 0; i < m; i++) {
io.cache.append(result[i]).append('\n');
}
}
public static void checkSet(TreeSet<Node> nodeTreeSet, int k) {
while (!nodeTreeSet.isEmpty()) {
Node min = nodeTreeSet.first();
if (min.set.size() >= k) {
break;
}
nodeTreeSet.remove(min);
min.throwAway = true;
for (Node nearBy : min.set) {
nodeTreeSet.remove(nearBy);
nearBy.set.remove(min);
nodeTreeSet.add(nearBy);
}
}
}
}
public static class Randomized {
static Random random = new Random();
public static double nextDouble(double min, double max) {
return random.nextDouble() * (max - min) + min;
}
public static void randomizedArray(int[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
int tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static void randomizedArray(long[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
long tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static void randomizedArray(double[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
double tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static void randomizedArray(float[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
float tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static <T> void randomizedArray(T[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
T tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static int nextInt(int l, int r) {
return random.nextInt(r - l + 1) + l;
}
}
public static class Node {
Set<Node> set = new HashSet<>();
int id;
boolean throwAway;
@Override
public String toString() {
return "" + id;
}
}
public static class FastIO {
private final InputStream is;
private final OutputStream os;
private final Charset charset;
private StringBuilder defaultStringBuf = new StringBuilder(1 << 8);
public final StringBuilder cache = new StringBuilder();
private byte[] buf = new byte[1 << 13];
private int bufLen;
private int bufOffset;
private int next;
public FastIO(InputStream is, OutputStream os, Charset charset) {
this.is = is;
this.os = os;
this.charset = charset;
}
private int read() {
while (bufLen == bufOffset) {
bufOffset = 0;
try {
bufLen = is.read(buf);
} catch (IOException e) {
throw new RuntimeException(e);
}
if (bufLen == -1) {
return -1;
}
}
return buf[bufOffset++];
}
public void skipBlank() {
while (next >= 0 && next <= 32) {
next = read();
}
}
public int readInt() {
int sign = 1;
skipBlank();
if (next == '+' || next == '-') {
sign = next == '+' ? 1 : -1;
next = read();
}
int val = 0;
if (sign == 1) {
while (next >= '0' && next <= '9') {
val = val * 10 + next - '0';
next = read();
}
} else {
while (next >= '0' && next <= '9') {
val = val * 10 - next + '0';
next = read();
}
}
return val;
}
public long readLong() {
int sign = 1;
skipBlank();
if (next == '+' || next == '-') {
sign = next == '+' ? 1 : -1;
next = read();
}
long val = 0;
if (sign == 1) {
while (next >= '0' && next <= '9') {
val = val * 10 + next - '0';
next = read();
}
} else {
while (next >= '0' && next <= '9') {
val = val * 10 - next + '0';
next = read();
}
}
return val;
}
public double readDouble() {
long num = readLong();
if (next != '.') {
return num;
}
next = read();
long divisor = 1;
long later = 0;
while (next >= '0' && next <= '9') {
divisor = divisor * 10;
later = later * 10 + next - '0';
next = read();
}
if (num >= 0) {
return num + (later / (double) divisor);
} else {
return num - (later / (double) divisor);
}
}
public String readString(StringBuilder builder) {
skipBlank();
while (next > 32) {
builder.append((char) next);
next = read();
}
return builder.toString();
}
public String readString() {
defaultStringBuf.setLength(0);
return readString(defaultStringBuf);
}
public int readString(char[] data, int offset) {
skipBlank();
int originalOffset = offset;
while (next > 32) {
data[offset++] = (char) next;
next = read();
}
return offset - originalOffset;
}
public int readString(byte[] data, int offset) {
skipBlank();
int originalOffset = offset;
while (next > 32) {
data[offset++] = (byte) next;
next = read();
}
return offset - originalOffset;
}
public void flush() {
try {
os.write(cache.toString().getBytes(charset));
os.flush();
cache.setLength(0);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
public boolean hasMore() {
skipBlank();
return next != -1;
}
}
public static class Memory {
public static <T> void swap(T[] data, int i, int j) {
T tmp = data[i];
data[i] = data[j];
data[j] = tmp;
}
public static <T> void swap(int[] data, int i, int j) {
int tmp = data[i];
data[i] = data[j];
data[j] = tmp;
}
public static <T> void swap(char[] data, int i, int j) {
char tmp = data[i];
data[i] = data[j];
data[j] = tmp;
}
public static <T> int min(T[] data, int from, int to, Comparator<T> cmp) {
int m = from;
for (int i = from + 1; i < to; i++) {
if (cmp.compare(data[m], data[i]) > 0) {
m = i;
}
}
return m;
}
public static <T> void move(T[] data, int from, int to, int step) {
int len = to - from;
step = len - (step % len + len) % len;
Object[] buf = new Object[len];
for (int i = 0; i < len; i++) {
buf[i] = data[(i + step) % len + from];
}
System.arraycopy(buf, 0, data, from, len);
}
public static <T> void reverse(T[] data, int f, int t) {
int l = f, r = t - 1;
while (l < r) {
swap(data, l, r);
l++;
r--;
}
}
public static void copy(Object[] src, Object[] dst, int srcf, int dstf, int len) {
if (len < 8) {
for (int i = 0; i < len; i++) {
dst[dstf + i] = src[srcf + i];
}
} else {
System.arraycopy(src, srcf, dst, dstf, len);
}
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
const int N = 200005;
int n, m, k, ans[N], in[N], cnt;
std::map<int, bool> vis[N];
std::vector<int> G[N];
std::vector<std::pair<int, int> > e;
std::queue<int> q;
void topo() {
while (!q.empty()) {
int u = q.front();
q.pop();
in[u] = 0;
for (int i = 0; i < (signed)G[u].size(); i++) {
int v = G[u][i];
if (vis[u][v]) continue;
vis[u][v] = vis[v][u] = 1, in[v]--;
if (in[v] == k - 1) cnt--, q.push(v);
}
}
}
int main() {
scanf("%d%d%d", &n, &m, &k);
for (int i = 1, x, y; i <= m; i++) {
scanf("%d%d", &x, &y);
e.push_back(std::make_pair(x, y));
G[x].push_back(y), G[y].push_back(x);
in[x]++, in[y]++;
}
cnt = n;
for (int i = 1; i <= n; i++)
if (in[i] < k) cnt--, q.push(i);
topo(), ans[m] = cnt;
for (int i = m; i >= 2; i--) {
int u = e[i - 1].first, v = e[i - 1].second;
if (vis[u][v]) {
ans[i - 1] = ans[i];
continue;
}
vis[u][v] = vis[v][u] = 1;
in[u]--, in[v]--;
if (in[u] == k - 1) cnt--, q.push(u);
if (in[v] == k - 1) cnt--, q.push(v);
topo(), ans[i - 1] = cnt;
}
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int inf32 = 1e9 + 9;
const long long inf64 = 1e18 + 18;
const int N = 2e5 + 5;
const long long mod = 1e9 + 9;
vector<int> gr[N];
set<pair<int, int> > deg;
int pw[N];
bool used[N];
void solve() {
int n, m, k;
scanf("%d%d%d", &n, &m, &k);
vector<pair<int, int> > edges(m);
vector<int> ans(m);
for (int i = 0; i < m; ++i) {
scanf("%d%d", &edges[i].first, &edges[i].second);
--edges[i].first, --edges[i].second;
gr[edges[i].first].push_back(edges[i].second);
gr[edges[i].second].push_back(edges[i].first);
}
for (int i = 0; i < n; ++i) {
deg.insert({gr[i].size(), i});
pw[i] = gr[i].size();
}
memset(used, true, N);
set<pair<int, int> > usedP;
for (int i = m - 1; i >= 0; --i) {
while (!deg.empty() && deg.begin()->first < k) {
pair<int, int> p = *deg.begin();
used[deg.begin()->second] = false;
deg.erase(deg.begin());
for (auto &x : gr[p.second]) {
if (used[x] &&
!(usedP.count({x, p.second}) || usedP.count({p.second, x}))) {
deg.erase({pw[x], x});
deg.insert({--pw[x], x});
}
}
}
ans[i] = deg.size();
if (!ans[i]) break;
if (used[edges[i].first] && used[edges[i].second]) {
deg.erase({pw[edges[i].first], edges[i].first});
deg.insert({--pw[edges[i].first], edges[i].first});
deg.erase({pw[edges[i].second], edges[i].second});
deg.insert({--pw[edges[i].second], edges[i].second});
usedP.insert({edges[i].first, edges[i].second});
}
}
for (auto &x : ans) printf("%d\n", x);
}
int main() {
solve();
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
struct pnt {
int hd;
int ind;
bool ded;
} p[1000000];
struct ent {
int twd;
int lst;
} e[1000000];
int cnt;
int n, m, k;
int lft;
int ans[1000000];
int u[1000000], v[1000000];
void ade(int f, int t) {
cnt++;
e[cnt].twd = t;
e[cnt].lst = p[f].hd;
p[f].hd = cnt;
p[f].ind++;
return;
}
void Delete(int x) {
if (p[x].ded) return;
p[x].ded = true;
lft--;
for (int i = p[x].hd; i; i = e[i].lst) {
int to = e[i].twd;
p[to].ind--;
if (p[to].ind < k) Delete(to);
}
return;
}
int main() {
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= m; i++) {
scanf("%d%d", &u[i], &v[i]);
ade(u[i], v[i]);
ade(v[i], u[i]);
}
lft = n;
for (int i = 1; i <= n; i++) {
if (p[i].ind < k) {
Delete(i);
}
}
for (int i = m; i; i--) {
ans[i] = lft;
p[u[i]].hd = e[p[u[i]].hd].lst;
p[v[i]].hd = e[p[v[i]].hd].lst;
if (!p[v[i]].ded) p[u[i]].ind--;
if (!p[u[i]].ded) p[v[i]].ind--;
if (p[v[i]].ind < k) Delete(v[i]);
if (p[u[i]].ind < k) Delete(u[i]);
}
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.Reader;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.StringTokenizer;
import java.util.TreeSet;
public class E {
static final long MODULO = (long) (1e9 + 7);
public static void main(String[] args) {
BufferedScanner scanner = new BufferedScanner();
PrintWriter writer = new PrintWriter(new BufferedOutputStream(System.out));
int t = 1;//scanner.nextInt();
for (int tc = 0; tc < t; tc++) {
int n = scanner.nextInt();
int m = scanner.nextInt();
int k = scanner.nextInt();
int[][] edges = new int[m][];
SetInt[] adj = new SetInt[n];
for (int i = 0; i < n; i++) {
adj[i] = new SetInt();
}
for (int i = 0; i < m; i++) {
int a = scanner.nextInt() - 1;
int b = scanner.nextInt() - 1;
adj[a].add(b);
adj[b].add(a);
edges[i] = new int[]{a, b};
}
TreeSet<Item> s = new TreeSet<>();
for (int i = 0; i < n; i++) {
s.add(new Item(i, adj[i].size()));
}
// adjust(k, adj, s, deg);
// System.err.println("s.size=" + s.size());
int[] ans = new int[m];
for (int i = m - 1; i >= 0; i--) {
adjust(k, adj, s);
ans[i] = s.size();
// for (Item item : s) {
// System.err.print((item.node + 1) + " ");
// }
// System.err.println();
// System.err.println("s[0]=(node=" + s.first().node + ",deg=" + s.first().deg + ")");
Item a = new Item(edges[i][0], adj[edges[i][0]].size());
if (!s.contains(a)) {
continue;
}
Item b = new Item(edges[i][1], adj[edges[i][1]].size());
if (!s.contains(b)) {
continue;
}
s.remove(a);
adj[a.node].remove(b.node);
a.deg = adj[a.node].size();
if (a.deg >= k) {
s.add(a);
} else {
adjustDeg(s, adj, a.node);
}
b = new Item(edges[i][1], adj[edges[i][1]].size());
s.remove(b);
adj[b.node].remove(a.node);
b.deg = adj[b.node].size();
if (b.deg >= k) {
s.add(b);
} else {
adjustDeg(s, adj, b.node);
}
}
for (int each : ans) {
writer.println(each);
}
}
scanner.close();
writer.flush();
writer.close();
}
private static void adjust(int k, SetInt[] adj, TreeSet<Item> s) {
while (!s.isEmpty() && adj[s.first().node].size() < k) {
int node = s.pollFirst().node;
adjustDeg(s, adj, node);
// System.err.println((node + 1) + " removed, deg=" + adj[node].size());
}
}
private static void adjustDeg(TreeSet<Item> s, SetInt[] adj, int node) {
for (int friend : adj[node]) {
Item target = new Item(friend, adj[friend].size());
if (s.remove(target)) {
adj[friend].remove(node);
target.deg = adj[friend].size();
s.add(target);
}
}
}
static class Item implements Comparable<Item> {
int node, deg;
Item(int node, int deg) {
this.node = node;
this.deg = deg;
}
@Override
public int compareTo(Item o) {
if (deg != o.deg) {
return deg - o.deg;
} else {
return node - o.node;
}
}
}
static class SetInt extends HashSet<Integer> {}
static class ListInt extends ArrayList<Integer> {}
public static class BufferedScanner {
BufferedReader br;
StringTokenizer st;
public BufferedScanner(Reader reader) {
br = new BufferedReader(reader);
}
public BufferedScanner() {
this(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
void close() {
try {
br.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
static long gcd(long a, long b) {
if (a < b) {
return gcd(b, a);
}
while (b > 0) {
long tmp = b;
b = a % b;
a = tmp;
}
return a;
}
static long inverse(long a, long m) {
long[] ans = extgcd(a, m);
return ans[0] == 1 ? (ans[1] + m) % m : -1;
}
private static long[] extgcd(long a, long m) {
if (m == 0) {
return new long[]{a, 1, 0};
} else {
long[] ans = extgcd(m, a % m);
long tmp = ans[1];
ans[1] = ans[2];
ans[2] = tmp;
ans[2] -= ans[1] * (a / m);
return ans;
}
}
static long add(long a, long b) {
a += b;
if (a >= MODULO) {
a -= MODULO;
}
return a;
}
static long sub(long a, long b) {
a -= b;
if (a < 0) {
a += MODULO;
}
return a;
}
static long mul(long a, long b) {
return a * b % MODULO;
}
static long div(long a, long b) {
return a * inverse(b, MODULO) % MODULO;
}
static class Comb {
final long modulo;
final long[] fac, fnv;
Comb(int limit, long modulo) {
fac = new long[limit + 1];
fnv = new long[limit + 1];
fac[0] = 1;
fnv[0] = 1;
for (int i = 1; i <= limit; i++) {
fac[i] = mul(fac[i - 1], i);
fnv[i] = div(fnv[i - 1], i);
}
this.modulo = modulo;
}
long c(int total, int choose) {
if (total < choose) {
return 0;
}
if (total == 0 || total == choose) {
return 1;
}
return mul(mul(fac[total], fnv[choose]), fnv[total - choose]);
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, m, k;
int x[202020];
int y[202020];
set<int> v[202020];
int d[202020];
int z[202020];
vector<int> q;
int c;
vector<int> r;
int p[202020];
void lol() {
for (int i = 0; i < q.size(); i++) {
int x = q[i];
if (!z[x]) continue;
z[x] = 0;
c--;
for (auto y : v[x]) {
d[y]--;
if (d[y] < k) {
if (p[y]) continue;
p[y] = 1;
q.push_back(y);
}
}
}
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cin >> n >> m >> k;
for (int i = 1; i <= n; i++) z[i] = 1;
for (int i = 1; i <= m; i++) {
cin >> x[i] >> y[i];
v[x[i]].insert(y[i]);
d[x[i]]++;
v[y[i]].insert(x[i]);
d[y[i]]++;
}
c = n;
for (int i = 1; i <= n; i++) {
if (d[i] < k) q.push_back(i);
}
lol();
r.push_back(c);
for (int i = m; i >= 1; i--) {
q.clear();
if (z[x[i]] && z[y[i]]) {
v[x[i]].erase(y[i]);
v[y[i]].erase(x[i]);
d[x[i]]--;
d[y[i]]--;
if (d[x[i]] < k) q.push_back(x[i]);
if (d[y[i]] < k) q.push_back(y[i]);
lol();
}
if (i != 1) r.push_back(c);
}
reverse(r.begin(), r.end());
for (auto x : r) cout << x << "\n";
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Queue;
import java.util.StringTokenizer;
import java.util.TreeSet;
public class E {
public static final long MOD = 998244353l;
public static class Pair{
int l;
int r;
Pair(int a,int b){
l=a;
r=b;
}
}
public static void main(String[] args) throws Exception{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
StringTokenizer st = new StringTokenizer(br.readLine());
int n = (int) Long.parseLong(st.nextToken());
int m = (int) Long.parseLong(st.nextToken());
int k = Integer.parseInt(st.nextToken());
ArrayList<TreeSet<Integer>> graph = new ArrayList<TreeSet<Integer>>();
for(int i=0;i<n;++i){
graph.add(new TreeSet<Integer>());
}
Pair[] edges = new Pair[m];
int[] ecs = new int[n];
for(int j=0;j<m;++j){
st = new StringTokenizer(br.readLine());
int a = Integer.parseInt(st.nextToken())-1;
int b = Integer.parseInt(st.nextToken())-1;
graph.get(a).add(b);
graph.get(b).add(a);
++ecs[a];
++ecs[b];
edges[j] = new Pair(a,b);
}
//boolean cleared = false;
Queue<Integer> toClear = new ArrayDeque<Integer>();
//boolean[] valid = new boolean[n];
//int inGru=0;
boolean[] inQ = new boolean[n];
for(int i=0;i<n;++i){
if(graph.get(i).size()<k){
toClear.add(i);
//valid[i]=false;
inQ[i]=true;
}
}
while(!toClear.isEmpty()){
int x = toClear.poll();
ecs[x]=0;
if(graph.get(x)==null)continue;
for(int y : graph.get(x)){
graph.get(y).remove(x);
--ecs[y];
if(ecs[y]<k){
if(!inQ[y]){
toClear.add(y);
inQ[y]=true;
}
}
}
graph.set(x, null);
//System.err.println("BYE "+x);
}
int valid = 0;
for(int j=0;j<n;++j){
if(ecs[j]>=k){
++valid;
}
else if(ecs[j]!=0){
//System.err.println("FUU");
//we failed
}
}
int[] max = new int[m+1];
max[m]= valid;
for(int i=m-1;i>0;--i){
int l = edges[i].l;
int r = edges[i].r;
if(graph.get(l)!=null && graph.get(r)!=null){
--ecs[l];
--ecs[r];
graph.get(l).remove(r);
graph.get(r).remove(l);
if(ecs[l]<k){
toClear.add(l);
}
if(ecs[r]<k){
toClear.add(r);
}
while(!toClear.isEmpty()){
int x = toClear.poll();
if(graph.get(x)==null)continue;
--valid;
ecs[x]=0;
//System.err.println("Removing " + x);
for(int y : graph.get(x)){
graph.get(y).remove(x);
--ecs[y];
if(ecs[y]<k){
if(!inQ[y]){
toClear.add(y);
inQ[y]=true;
}
}
}
graph.set(x, null);
}
}
max[i]=valid;
}
for(int j=1;j<=m;++j){
bw.write(max[j]+"\n");
}
bw.flush();
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MAXN = 2e5 + 5;
int N, M, K;
int x[MAXN], y[MAXN];
unordered_set<int> adj[MAXN];
int ans[MAXN];
struct cmp {
bool operator()(const int &lhs, const int &rhs) const {
if (adj[lhs].size() != adj[rhs].size())
return adj[lhs].size() < adj[rhs].size();
return lhs < rhs;
}
};
set<int, cmp> in;
void load() {
scanf("%d%d%d", &N, &M, &K);
for (int i = 0; i < M; i++) scanf("%d%d", x + i, y + i);
}
void reduce() {
if (in.empty()) return;
int x = *in.begin();
if (adj[x].size() >= K) return;
in.erase(x);
for (auto it : adj[x])
if (in.count(it)) {
in.erase(it);
adj[it].erase(x);
in.insert(it);
}
reduce();
}
void solve() {
for (int i = 0; i < M; i++) {
adj[x[i]].insert(y[i]);
adj[y[i]].insert(x[i]);
}
for (int i = 1; i <= N; i++) in.insert(i);
reduce();
for (int i = M - 1; i >= 0; i--) {
ans[i] = in.size();
if (in.count(x[i]) && in.count(y[i])) {
in.erase(x[i]);
in.erase(y[i]);
adj[x[i]].erase(y[i]);
adj[y[i]].erase(x[i]);
in.insert(x[i]);
in.insert(y[i]);
reduce();
}
}
for (int i = 0; i < M; i++) printf("%d\n", ans[i]);
}
int main() {
load();
solve();
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | import java.io.*;
import java.util.*;
import java.math.*;
import java.lang.*;
import static java.lang.Math.*;
public class Main implements Runnable {
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
}
catch (IOException e) {
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int nextInt() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
public static void main(String args[]) throws Exception {
new Thread(null, new Main(),"Main",1<<26).start();
}
class Edge {
int u, v;
Edge(int a, int b) {
u = a;
v = b;
}
}
int friends[];
int selected[];
int cans = 0;
public void run() {
InputReader sc = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int deg[] = new int[n];
int ptr[] = new int[n];
Edge edge[] = new Edge[m];
for(int i = 0; i < m; ++i) {
int u = sc.nextInt() - 1;
int v = sc.nextInt() - 1;
edge[i] = new Edge(u, v);
deg[u]++;
deg[v]++;
}
HashSet<Integer> adj[] = new HashSet[n];
for(int i = 0; i < n; ++i)
adj[i] = new HashSet<>();
for(int i = 0; i < m; ++i) {
int u = edge[i].u;
int v = edge[i].v;
adj[u].add(v);
adj[v].add(u);
}
PriorityQueue<Pair> queue = new PriorityQueue<>(new Comparator<Pair>() {
public int compare(Pair p1, Pair p2) {
if(p1.deg < p2.deg)
return -1;
if(p1.deg > p2.deg)
return 1;
return 0;
}
});
int vis[] = new int[n];
selected = new int[n];
for(int i = 0; i < n; ++i)
queue.add(new Pair(i, deg[i]));
int curDeg[] = new int[n];
for(int i = 0; i < n; ++i)
curDeg[i] = deg[i];
while(!queue.isEmpty()) {
Pair cur = queue.poll();
int ind = cur.ind;
if(vis[ind] == 1)
continue;
int cdeg = cur.deg;
vis[ind] = 1;
if(cdeg >= k) {
selected[ind] = 1;
cans++;
continue;
}
for(int j : adj[ind]) {
if(vis[j] == 0) {
curDeg[j]--;
queue.add(new Pair(j, curDeg[j]));
}
}
}
friends = new int[n];
for(int i = 0; i < n; ++i) {
if(selected[i] == 1) {
for(int j : adj[i]) {
if(selected[j] == 1)
friends[i]++;
}
}
}
int ans[] = new int[m];
ans[m - 1] = cans;
for(int i = m - 1; i >= 1; --i) {
int u = edge[i].u;
int v = edge[i].v;
adj[u].remove(v);
adj[v].remove(u);
if(selected[u] == 1 && selected[v] == 1) {
friends[u]--;
friends[v]--;
Queue<Integer> cqueue = new LinkedList<>();
if(friends[u] < k) {
cqueue.add(u);
selected[u] = 0;
cans--;
}
if(friends[v] < k) {
cqueue.add(v);
selected[v] = 0;
cans--;
}
while(!cqueue.isEmpty()) {
int cur = cqueue.poll();
for(int j : adj[cur]) {
if(selected[j] == 1) {
friends[j]--;
if(friends[j] < k) {
selected[j] = 0;
cans--;
cqueue.add(j);
}
}
}
}
}
ans[i - 1] = cans;
}
for(int i = 0; i < m; ++i)
w.println(ans[i]);
w.close();
}
}
class Pair {
int ind, deg;
Pair(int a, int b) {
ind = a;
deg = b;
}
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 200010;
int ans[N];
int deg[N];
bool trip[N];
set<int> g[N];
int cnt, k;
void remove(int u) {
if (!trip[u]) return;
queue<int> q;
q.push(u);
trip[u] = false;
while (!q.empty()) {
u = q.front();
q.pop();
cnt--;
for (int v : g[u]) {
deg[v]--;
g[v].erase(u);
if (trip[v] and deg[v] < k) {
trip[v] = false;
q.push(v);
}
}
g[u].clear();
}
}
int main() {
int n, m;
scanf("%d %d %d", &n, &m, &k);
vector<pair<int, int> > e;
cnt = n;
for (int i = 0; i < m; i++) {
int x, y;
scanf("%d %d", &x, &y);
deg[x]++;
deg[y]++;
e.emplace_back(x, y);
g[x].insert(y);
g[y].insert(x);
}
for (int i = 1; i <= n; i++) trip[i] = true;
for (int i = 1; i <= n; i++) {
if (trip[i] and deg[i] < k) remove(i);
}
ans[m - 1] = cnt;
for (int i = m - 2; i >= 0; i--) {
int a = e[i + 1].first, b = e[i + 1].second;
if (!trip[a] or !trip[b]) {
ans[i] = cnt;
continue;
}
deg[a]--;
deg[b]--;
g[a].erase(b);
g[b].erase(a);
if (deg[a] < k) remove(a);
if (deg[b] < k) remove(b);
ans[i] = cnt;
}
for (int i = 0; i < m; i++) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int nmax = 2e5 + 5;
const int mod = 1e9 + 7;
vector<int> g[nmax];
int destroyed;
pair<int, int> ej[nmax];
int deg[nmax], ans[nmax];
bool vis[nmax];
map<pair<int, int>, int> mp;
void dhongsho(int u, int k, int p) {
if (vis[u]) return;
vis[u] = true;
destroyed++;
for (auto v : g[u]) {
if (v == p or vis[v]) continue;
if (mp[{u, v}] == 0) continue;
deg[v]--;
if (deg[v] < k) dhongsho(v, k, u);
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, m, k, u, v;
cin >> n >> m >> k;
for (int i = 1; i <= m; i++) {
cin >> u >> v;
g[u].push_back(v), g[v].push_back(u);
ej[i] = {u, v};
mp[{u, v}] = mp[{v, u}] = 1;
deg[u]++, deg[v]++;
}
for (int u = 1; u <= n; u++) {
if (deg[u] < k) dhongsho(u, k, -1);
}
for (int i = m; i >= 1; i--) {
ans[i] = n - destroyed;
u = ej[i].first, v = ej[i].second;
if (!vis[u] and !vis[v]) {
deg[u]--, deg[v]--;
mp[{u, v}] = mp[{v, u}] = 0;
if (deg[u] < k) dhongsho(u, k, v);
if (deg[v] < k) dhongsho(v, k, u);
}
}
for (int i = 1; i <= m; i++) {
cout << ans[i] << "\n";
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
;
long long int n, m, k;
cin >> n >> m >> k;
vector<pair<long long int, long long int> > edges(m);
set<long long int> adj[n];
for (int i = 0; i < m; ++i) {
long long int u, v;
cin >> u >> v;
u--;
v--;
adj[u].insert(v);
adj[v].insert(u);
edges[i].first = u;
edges[i].second = v;
}
set<pair<long long int, long long int> > myset;
set<pair<long long int, long long int> >::iterator it;
for (int i = 0; i < n; ++i) {
myset.insert({adj[i].size(), i});
}
set<long long int>::iterator itt;
vector<long long int> ans(m, 0);
for (int i = m - 1; i > -1; --i) {
while (!myset.empty() && myset.begin()->first < k) {
long long int ind = myset.begin()->second;
myset.erase(myset.begin());
for (auto v : adj[ind]) {
it = myset.find({adj[v].size(), v});
itt = adj[v].find(ind);
if (it != myset.end() && itt != adj[v].end()) {
myset.erase(it);
adj[v].erase(itt);
myset.insert({adj[v].size(), v});
}
}
}
ans[i] = myset.size();
long long int u = edges[i].first, v = edges[i].second;
it = myset.find({adj[u].size(), u});
itt = adj[u].find(v);
if (it != myset.end() && itt != adj[u].end()) {
myset.erase(it);
adj[u].erase(itt);
myset.insert({adj[u].size(), u});
}
it = myset.find({adj[v].size(), v});
itt = adj[v].find(u);
if (it != myset.end() && itt != adj[v].end()) {
myset.erase(it);
adj[v].erase(itt);
myset.insert({adj[v].size(), v});
}
}
for (int i = 0; i < m; ++i) {
cout << ans[i] << "\n";
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
vector<set<int> > g;
int n, m, k;
vector<pair<int, int> > q;
set<int> s;
void remove(int v) {
if (g[v].size() < k && s.erase(v)) {
for (auto to : g[v]) g[to].erase(v), remove(to);
}
}
int main() {
ios_base::sync_with_stdio(0);
cin >> n >> m >> k;
q.resize(m);
g.resize(n);
for (int i = 0; i < m; ++i) {
int x, y;
cin >> x >> y;
x--, y--;
g[x].insert(y), g[y].insert(x);
q.push_back(make_pair(x, y));
}
for (int i = 0; i < n; ++i) s.insert(i);
for (int i = 0; i < n; ++i) remove(i);
vector<int> ans;
for (int i = 0; i < m; ++i) {
ans.push_back(s.size());
auto cur = q.back();
q.pop_back();
g[cur.first].erase(cur.second);
g[cur.second].erase(cur.first);
remove(cur.first);
remove(cur.second);
}
for (int i = 0; i < m; ++i) cout << ans[m - i - 1] << '\n';
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 5;
vector<int> p[maxn];
int vis[maxn];
int ans[maxn];
int num[maxn];
int v[maxn], w[maxn];
int now;
int n, m, k;
void dfs(int j, int v) {
ans[j]--;
for (int i = 0; i < p[v].size(); i++) {
num[p[v][i]]--;
if (vis[p[v][i]] == 1) {
if (num[p[v][i]] < k) {
vis[p[v][i]] = 0;
dfs(j, p[v][i]);
}
}
}
vis[v] = -1;
}
int main() {
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= m; i++) {
scanf("%d%d", &v[i], &w[i]);
p[v[i]].push_back(w[i]);
p[w[i]].push_back(v[i]);
}
for (int i = 1; i <= n; i++) {
num[i] = p[i].size();
if (p[i].size() >= k) vis[i] = 1;
}
ans[m] = n;
for (int i = 1; i <= n; i++) {
if (vis[i] == 0) dfs(m, i);
}
for (int i = m; i >= 2; i--) {
p[v[i]].pop_back();
p[w[i]].pop_back();
if (vis[v[i]] == 1) num[w[i]]--;
if (vis[w[i]] == 1) num[v[i]]--;
ans[i - 1] = ans[i];
if (vis[w[i]] == 1 && num[w[i]] < k) {
vis[w[i]] = 0;
dfs(i - 1, w[i]);
}
if (vis[v[i]] == 1 && num[v[i]] < k) {
vis[v[i]] = 0;
dfs(i - 1, v[i]);
}
}
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 10;
vector<int> G[N];
int n, m, k;
int qu[N], qv[N], vis[N], du[N], ans[N], res;
void dfs(int u) {
if (vis[u]) return;
if (du[u] < k) {
vis[u] = 1;
for (int v : G[u])
if (!vis[v]) du[v]--;
for (int v : G[u]) {
if (!vis[v]) {
dfs(v);
}
}
res--;
}
}
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> m >> k;
for (int i = 1; i <= m; i++) {
cin >> qu[i] >> qv[i];
G[qu[i]].push_back(qv[i]);
G[qv[i]].push_back(qu[i]);
du[qu[i]]++;
du[qv[i]]++;
}
res = n;
for (int i = 1; i <= n; i++) {
dfs(i);
}
ans[m] = res;
for (int i = m; i >= 1; i--) {
if (!vis[qu[i]] && !vis[qv[i]]) {
if (du[qu[i]] - 1 < k) {
du[qu[i]]--;
dfs(qu[i]);
} else if (du[qv[i]] - 1 < k) {
du[qv[i]]--;
dfs(qv[i]);
} else {
du[qu[i]]--;
du[qv[i]]--;
}
}
G[qu[i]].pop_back();
G[qv[i]].pop_back();
ans[i - 1] = res;
}
for (int i = 1; i <= m; i++) {
cout << ans[i] << endl;
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 200005;
int n, m, k, sum;
int x[N], y[N];
vector<int> Edge[N];
int del[N], deg[N];
int ans[N];
inline int read() {
int x = 0, f = 1;
char ch = getchar();
while (!isdigit(ch)) {
if (ch == '-') f = -1;
ch = getchar();
}
while (isdigit(ch)) {
x = x * 10 + ch - '0';
ch = getchar();
}
return x * f;
}
queue<int> Q;
inline void Topsort(int Start) {
if (del[Start] || deg[Start] >= k) return;
while (!Q.empty()) Q.pop();
Q.push(Start);
del[Start] = 1, --sum;
while (!Q.empty()) {
int x = Q.front();
Q.pop();
for (vector<int>::iterator it = Edge[x].begin(); it != Edge[x].end();
++it) {
int v = *it;
if (del[v]) continue;
--deg[v];
if (deg[v] < k) del[v] = 1, --sum, Q.push(v);
}
}
}
int main() {
n = read(), m = read(), k = read();
for (int i = 1; i <= m; ++i) {
x[i] = read(), y[i] = read();
Edge[x[i]].push_back(y[i]), ++deg[x[i]];
Edge[y[i]].push_back(x[i]), ++deg[y[i]];
}
sum = n;
for (int i = 1; i <= n; ++i) Topsort(i);
ans[m] = sum;
for (int i = m; i >= 2; --i) {
Edge[x[i]].pop_back();
if (!del[y[i]]) --deg[x[i]];
Edge[y[i]].pop_back();
if (!del[x[i]]) --deg[y[i]];
Topsort(x[i]), Topsort(y[i]);
ans[i - 1] = sum;
}
for (int i = 1; i <= m; ++i) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | import java.io.*;
import java.util.*;
public class A {
FastScanner in;
PrintWriter out;
void solve() {
int n = in.nextInt();
int m = in.nextInt();
int k = in.nextInt();
int[] fr = new int[m];
int[] to = new int[m];
List<Integer>[] g = new ArrayList[n];
for (int i = 0; i < n; i++) {
g[i] = new ArrayList<>();
}
for (int i = 0; i < m; i++) {
fr[i] = in.nextInt() - 1;
to[i] = in.nextInt() - 1;
g[fr[i]].add(i);
g[to[i]].add(i);
}
boolean[] can = new boolean[n];
Arrays.fill(can, true);
int[] cntNeigh = new int[n];
List<Integer> toRemove = new ArrayList<>();
for (int i = 0; i < n; i++) {
cntNeigh[i] = g[i].size();
if (cntNeigh[i] < k) {
toRemove.add(i);
can[i] = false;
}
}
int res = n;
int[] f = new int[m];
for (int i = m - 1; i >= 0; i--) {
while (toRemove.size() > 0) {
int v = toRemove.get(toRemove.size() - 1);
toRemove.remove(toRemove.size() - 1);
res--;
for (int id : g[v]) {
if (id > i) {
break;
}
int toC = fr[id] + to[id] - v;
if (can[toC]) {
cntNeigh[toC]--;
if (cntNeigh[toC] < k) {
toRemove.add(toC);
can[toC] = false;
}
}
}
}
f[i] = res;
if (can[fr[i]] && can[to[i]]) {
for (int v : new int[]{fr[i], to[i]}) {
cntNeigh[v]--;
if (cntNeigh[v] < k && can[v]) {
can[v] = false;
toRemove.add(v);
}
}
}
}
for (int x : f) {
out.println(x);
}
}
void run() {
try {
in = new FastScanner(new File("A.in"));
out = new PrintWriter(new File("A.out"));
solve();
out.close();
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
void runIO() {
in = new FastScanner(System.in);
out = new PrintWriter(System.out);
solve();
out.close();
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public FastScanner(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
String next() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return null;
st = new StringTokenizer(s);
}
return st.nextToken();
}
boolean hasMoreTokens() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return false;
st = new StringTokenizer(s);
}
return true;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
public static void main(String[] args) {
new A().runIO();
}
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 5;
set<int> s, G[N];
int n, m, k;
int U[N], V[N], ans[N];
void check(int u) {
if (G[u].size() < k && s.erase(u)) {
for (auto v : G[u]) {
G[v].erase(u);
check(v);
}
}
}
int main() {
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= n; i++) s.insert(i);
for (int i = 1; i <= m; i++) {
scanf("%d%d", &U[i], &V[i]);
G[U[i]].insert(V[i]);
G[V[i]].insert(U[i]);
}
for (int i = 1; i <= n; i++) check(i);
for (int i = m; i >= 1; --i) {
ans[i] = s.size();
G[U[i]].erase(V[i]);
G[V[i]].erase(U[i]);
check(U[i]);
check(V[i]);
}
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 200010;
pair<int, int> edge[maxn];
int deg[maxn], ans[maxn];
bool del[maxn], vis[maxn];
set<pair<int, int> > dic;
vector<pair<int, int> > g[maxn];
int main() {
int n, m, k, u, v;
scanf("%d%d%d", &n, &m, &k);
for (int i = 0; i < m; i++) {
scanf("%d%d", &u, &v);
g[u].push_back(pair<int, int>(v, i));
g[v].push_back(pair<int, int>(u, i));
deg[u]++, deg[v]++;
edge[i] = pair<int, int>(u, v);
}
for (int v = 1; v <= n; v++) dic.insert(pair<int, int>(deg[v], v));
while (!dic.empty() && dic.begin()->first < k) {
int v = dic.begin()->second;
dic.erase(dic.begin());
del[v] = true;
for (int i = 0; i < (int)g[v].size(); i++) {
int adj = g[v][i].first;
if (del[adj]) continue;
dic.erase(pair<int, int>(deg[adj], adj));
dic.insert(pair<int, int>(--deg[adj], adj));
}
}
for (int i = m - 1; i >= 0; i--) {
ans[i] = dic.size();
u = edge[i].first, v = edge[i].second;
if (!del[u] && !del[v] && !vis[i]) {
dic.erase(pair<int, int>(deg[u], u));
dic.insert(pair<int, int>(--deg[u], u));
dic.erase(pair<int, int>(deg[v], v));
dic.insert(pair<int, int>(--deg[v], v));
vis[i] = true;
}
while (!dic.empty() && dic.begin()->first < k) {
int v = dic.begin()->second;
dic.erase(dic.begin());
del[v] = true;
for (int i = 0; i < (int)g[v].size(); i++) {
int adj = g[v][i].first;
if (del[adj] || vis[g[v][i].second]) continue;
dic.erase(pair<int, int>(deg[adj], adj));
dic.insert(pair<int, int>(--deg[adj], adj));
vis[g[v][i].second] = true;
}
}
}
for (int i = 0; i < m; i++) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
template <typename T>
inline T const &MAX(T const &a, T const &b) {
return a > b ? a : b;
}
template <typename T>
inline T const &MIN(T const &a, T const &b) {
return a < b ? a : b;
}
inline void add(long long &a, long long b) {
a += b;
if (a >= 1000000007) a -= 1000000007;
}
inline void sub(long long &a, long long b) {
a -= b;
if (a < 0) a += 1000000007;
}
inline long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; }
inline long long qp(long long a, long long b) {
long long ans = 1;
while (b) {
if (b & 1) ans = ans * a % 1000000007;
a = a * a % 1000000007, b >>= 1;
}
return ans;
}
inline long long qp(long long a, long long b, long long c) {
long long ans = 1;
while (b) {
if (b & 1) ans = ans * a % c;
a = a * a % c, b >>= 1;
}
return ans;
}
using namespace std;
const double eps = 1e-8;
const long long INF = 0x3f3f3f3f3f3f3f3f;
const int N = 200000 + 10, maxn = 1000000 + 10, inf = 0x3f3f3f3f;
int ans[N], d[N];
bool vis[N];
vector<pair<int, int> > v[N];
set<pair<int, int> > s;
pair<int, int> p[N];
void gao(int x) {
auto y = s.lower_bound(make_pair(d[x], x));
if (y != s.end()) {
s.erase(y);
d[x]--;
s.insert(make_pair(d[x], x));
}
}
int main() {
int n, m, k;
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= m; i++) {
int a, b;
scanf("%d%d", &a, &b);
v[a].push_back(make_pair(b, i)), v[b].push_back(make_pair(a, i));
d[a]++, d[b]++;
p[i] = make_pair(a, b);
}
for (int i = 1; i <= n; i++) s.insert(make_pair(d[i], i));
for (int i = m; i >= 1; i--) {
while (s.size() > 0 && (s.begin())->first < k) {
int te = s.begin()->second;
s.erase(s.begin());
for (int i = 0; i < v[te].size(); i++) {
if (vis[v[te][i].second]) continue;
gao(v[te][i].first);
vis[v[te][i].second] = 1;
}
}
ans[i] = s.size();
if (vis[i] == 1) continue;
gao(p[i].first), gao(p[i].second);
vis[i] = 1;
}
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
set<int> trip;
set<int> vec[200010];
struct node {
int u, v;
} mf[200010];
int n, m, k;
int ans[200010];
void remove(int x) {
set<int>::iterator it;
if (vec[x].size() < k && trip.count(x)) {
trip.erase(x);
for (it = vec[x].begin(); it != vec[x].end(); it++) {
int i = *it;
vec[i].erase(x);
remove(i);
}
}
}
int main() {
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= m; i++) {
int u, v;
scanf("%d%d", &u, &v);
vec[u].insert(v);
vec[v].insert(u);
mf[i] = node{u, v};
}
for (int i = 1; i <= n; i++) trip.insert(i);
for (int i = 1; i <= n; i++) remove(i);
for (int i = m; i > 0; i--) {
ans[i] = trip.size();
int u = mf[i].u, v = mf[i].v;
vec[u].erase(v);
vec[v].erase(u);
remove(u);
remove(v);
}
for (int i = 1; i <= m; i++) {
printf("%d\n", ans[i]);
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | import java.math.*;
import java.util.*;
import java.util.stream.*;
public class E {
public Object solve() {
int N = sc.nextInt(), M = sc.nextInt(), K = sc.nextInt();
int [][] E = dec(sc.nextInts(M));
int [][] G = graph(N, E);
PriorityQueue<int[]> Q = new PriorityQueue<>(by(1));
boolean [] W = new boolean [N];
int [] L = new int [N];
for (int i : rep(N))
Q.add(new int [] { i, L[i] = G[i].length });
HashSet<Long> H = new HashSet<>();
long P = BigInteger.probablePrime(30, new Random()).longValue();
int [] res = new int [M]; int R = N;
for (int j : sep(M)) {
while (!Q.isEmpty() && Q.peek()[1] < K) {
int [] m = Q.poll();
int i = m[0];
if (W[i])
continue;
for (int n : G[i])
if (!W[n] && !H.contains(P*i + n) && !H.contains(P*n + i))
Q.add(new int [] { n, --L[n] });
W[i] = true;
--R;
}
res[j] = R;
int x = E[j][0], y = E[j][1];
if (!W[x] && !W[y]) {
Q.add(new int [] { x, --L[x] });
Q.add(new int [] { y, --L[y] });
H.add(P*x + y); H.add(P*y + x);
}
}
for (int i : rep(M))
print(res[i]);
return null;
}
private static final boolean ONE_TEST_CASE = true;
private static void init() {
}
private static final int INF = (int) 1e9 + 10;
private static Comparator<int[]> by (final int ... J) { return new Comparator<int[]>() { @Override
public int compare(int[] x, int[] y) { for (int i : J) if (x[i] != y[i]) return x[i] - y[i]; return 0; }}; }
private static int [][] dec (int [] ... E) { return dec(E, INF); }
private static int [][] dec (int [][] E, int N) { for (int [] e : E) for (int i = 0; i < e.length && i < N; ++i) --e[i]; return E; }
private static int [][][] dwgraph (int N, int [][] E) {
int [] D = new int [N];
for (int [] e : E)
++D[e[0]];
int [][][] res = new int [2][N][];
for (int i = 0; i < 2; ++i)
for (int j = 0; j < N; ++j)
res[i][j] = new int [D[j]];
D = new int [N];
for (int [] e : E) {
int x = e[0], y = e[1], z = e.length > 2 ? e[2] : 1;
res[0][x][D[x]] = y;
res[1][x][D[x]] = z;
++D[x];
}
return res;
}
private static int [][] dup (int [][] E) {
int [][] res = new int [2*E.length][];
for (int i = 0; i < E.length; ++i) {
res[2*i] = E[i].clone();
res[2*i+1] = E[i].clone();
res[2*i+1][0] = E[i][1]; res[2*i+1][1] = E[i][0];
}
return res;
}
private static int [][] graph (int N, int [][] E) { return wgraph(N, E)[0]; }
private static IntStream range(int N) { return IntStream.range(0, N); }
private static Iterable<Integer> rep (int N) { return rep(0, N); }
private static Iterable<Integer> rep (final int S, final int T) { return new Iterable<Integer>() { @Override
public Iterator<Integer> iterator() { return S < T ? java.util.stream.IntStream.range(S, T).iterator() : Collections.emptyIterator(); } }; }
private static Iterable<Integer> sep (int N) { return sep(0, N); }
private static Iterable<Integer> sep (final int S, final int T) { return new Iterable<Integer>() { @Override
public Iterator<Integer> iterator() { return S < T ? java.util.stream.IntStream.range(S, T).map(i -> (T - 1) - (i - S)).iterator() : Collections.emptyIterator(); } }; }
private static int [][][] wgraph (int N, int [][] E) { return dwgraph(N, dup(E)); }
////////////////////////////////////////////////////////////////////////////////////
private static IOUtils.MyScanner sc = new IOUtils.MyScanner();
private static Object print (Object o, Object ... A) { IOUtils.print(o, A); return null; }
private static class IOUtils {
public static class MyScanner {
public String next() { newLine(); return line[index++]; }
public int nextInt() { return Integer.parseInt(next()); }
public String nextLine() { line = null; return readLine(); }
public String [] nextStrings() { return split(nextLine()); }
public int[] nextInts() { return nextStream().mapToInt(Integer::parseInt).toArray(); }
public int[][] nextInts(int N) { return range(N).mapToObj(i -> nextInts()).toArray(int[][]::new); }
//////////////////////////////////////////////
private boolean eol() { return index == line.length; }
private String readLine() {
try {
return r.readLine();
} catch (Exception e) {
throw new Error (e);
}
}
private final java.io.BufferedReader r;
private MyScanner () { this(new java.io.BufferedReader(new java.io.InputStreamReader(System.in))); }
private MyScanner (java.io.BufferedReader r) {
try {
this.r = r;
while (!r.ready())
Thread.sleep(1);
start();
} catch (Exception e) {
throw new Error(e);
}
}
private String [] line;
private int index;
private void newLine() {
if (line == null || eol()) {
line = split(readLine());
index = 0;
}
}
private java.util.stream.Stream<String> nextStream() { return java.util.Arrays.stream(nextStrings()); }
private String [] split(String s) { return s.length() > 0 ? s.split(" ") : new String [0]; }
}
private static String build(Object o, Object ... A) { return buildDelim(" ", o, A); }
private static String buildDelim(String delim, Object o, Object ... A) {
StringBuilder b = new StringBuilder();
append(b, o, delim);
for (Object p : A)
append(b, p, delim);
return b.substring(delim.length());
}
//////////////////////////////////////////////////////////////////////////////////
private static final java.text.DecimalFormat formatter = new java.text.DecimalFormat("#.#########");
private static void start() { if (t == 0) t = millis(); }
private static void append(java.util.function.Consumer<Object> f, java.util.function.Consumer<Object> g, final Object o) {
if (o.getClass().isArray()) {
int len = java.lang.reflect.Array.getLength(o);
for (int i = 0; i < len; ++i)
f.accept(java.lang.reflect.Array.get(o, i));
}
else if (o instanceof Iterable<?>)
((Iterable<?>)o).forEach(f::accept);
else
g.accept(o instanceof Double ? formatter.format(o) : o);
}
private static void append(final StringBuilder b, Object o, final String delim) {
append(x -> { append(b, x, delim); }, x -> b.append(delim).append(x), o);
}
private static java.io.PrintWriter pw = new java.io.PrintWriter(System.out);
private static Object print(Object o, Object ... A) { pw.println(build(o, A)); return null; }
private static void err(Object o, Object ... A) { System.err.println(build(o, A)); }
private static boolean PRINT;
private static void write(Object o) {
err(o, '(', time(), ')');
if (PRINT)
pw.println(o);
}
private static void exit() {
IOUtils.pw.close();
System.out.flush();
err("------------------");
err(time());
System.exit(0);
}
private static long t;
private static long millis() { return System.currentTimeMillis(); }
private static String time() { return "Time: " + (millis() - t) / 1000.0; }
private static void run(int N) {
try { PRINT = System.getProperties().containsKey("PRINT"); }
catch (Throwable t) {}
for (int n = 1; n <= N; ++n) {
Object res = new E().solve();
if (res != null)
write("Case #" + n + ": " + build(res));
}
exit();
}
}
public static void main(String[] args) {
init();
int N = ONE_TEST_CASE ? 1 : sc.nextInt();
IOUtils.run(N);
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
/**
*
*/
public class E {
static LinkedList<Pair>[] g;
static int k;
static Set<Integer> s;
static int[] degree;
static Queue<Integer> q = new LinkedList<>();
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(reader.readLine());
int n = Integer.parseInt(st.nextToken());
int m = Integer.parseInt(st.nextToken());
k = Integer.parseInt(st.nextToken());
s = new HashSet<>(2*m);
g = new LinkedList[n];
degree = new int[n];
int[][] f = new int[m][2];
for (int i = 0; i < m; i++) {
st = new StringTokenizer(reader.readLine());
int a = Integer.parseInt(st.nextToken())-1;
int b = Integer.parseInt(st.nextToken())-1;
if (g[a] == null) {
g[a] = new LinkedList<>();
}
if (g[b] == null) {
g[b] = new LinkedList<>();
}
g[a].add(new Pair(b,i));
g[b].add(new Pair(a,i));
degree[a]++;degree[b]++;
f[i][0] = a;
f[i][1] = b;
}
for (int i = 0; i < n; i++) {
if(degree[i]>0){
if(degree[i]>=k){
s.add(i);
}else{
q.add(i);
}
}
}
while (!q.isEmpty()){
int v = q.poll();
for (Pair u : g[v]) {
if(s.contains(u.a)) {
degree[u.a]--;
if (degree[u.a] < k) {
q.add(u.a);
s.remove(u.a);
}
}
}
}
int[] ans = new int[m];
for (int i = m-1; i >=0; i--) {
ans[i] = s.size();
int a = f[i][0];
int b = f[i][1];
if(s.contains(a) && s.contains(b)) {
degree[a]--;degree[b]--;
if (degree[a] < k){
q.add(a);
s.remove(a);
}
if (degree[b] < k){
q.add(b);
s.remove(b);
}
while (!q.isEmpty()){
int v = q.poll();
for (Pair u : g[v]) {
if(u.b < i && s.contains(u.a)) {
degree[u.a]--;
if (degree[u.a] < k) {
q.add(u.a);
s.remove(u.a);
}
}
}
}
}
}
for (int i = 0; i < m; i++) {
System.out.println(ans[i]);
}
}
static class Pair{
int a;
int b;
public Pair(int a, int b) {
this.a = a;
this.b = b;
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | import java.io.*;
import java.util.*;
public class Main implements Runnable {
FastReader scn;
PrintWriter out;
String INPUT = "";
void solve() {
int n = scn.nextInt(), m = scn.nextInt(), k = scn.nextInt();
int[] from = new int[m], to = new int[m], w = new int[m];
for(int i = m - 1; i >= 0; i--) {
from[i] = scn.nextInt() - 1;
to[i] = scn.nextInt() - 1;
w[i] = i;
}
int[][][] g = packWU(n, from, to, w);
int[] deg = new int[n], q = new int[n];
int end = 0, start = 0;
for(int i = 0; i < n; i++) {
deg[i] = g[i].length;
if(deg[i] < k) {
q[end++] = i;
}
}
boolean[] done = new boolean[m];
int[] ans = new int[m];
for(int i = 0; i < m; i++) {
while(start < end) {
for(int[] v : g[q[start]]) {
if(!done[v[1]]) {
done[v[1]] = true;
if(deg[v[0]] == k) {
q[end++] = v[0];
}
deg[v[0]]--;
deg[q[start]]--;
}
}
start++;
}
ans[m - i - 1] = n - end;
if(!done[i]) {
done[i] = true;
if(deg[from[i]] == k) {
q[end++] = from[i];
}
if(deg[to[i]] == k) {
q[end++] = to[i];
}
deg[from[i]]--;
deg[to[i]]--;
}
}
for(int a : ans) {
out.println(a);
}
}
int[][][] packWU(int n, int[] from, int[] to, int[] w) {
int[][][] g = new int[n][][];
int[] p = new int[n];
for (int f : from)
p[f]++;
for (int t : to)
p[t]++;
for (int i = 0; i < n; i++)
g[i] = new int[p[i]][2];
for (int i = 0; i < from.length; i++) {
--p[from[i]];
g[from[i]][p[from[i]]][0] = to[i];
g[from[i]][p[from[i]]][1] = w[i];
--p[to[i]];
g[to[i]][p[to[i]]][0] = from[i];
g[to[i]][p[to[i]]][1] = w[i];
}
return g;
}
public void run() {
long time = System.currentTimeMillis();
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
out = new PrintWriter(System.out);
scn = new FastReader(oj);
solve();
out.flush();
if (!oj) {
System.out.println(Arrays.deepToString(new Object[] { System.currentTimeMillis() - time + " ms" }));
}
}
public static void main(String[] args) {
new Thread(null, new Main(), "Main", 1 << 26).start();
}
class FastReader {
InputStream is;
public FastReader(boolean onlineJudge) {
is = onlineJudge ? System.in : new ByteArrayInputStream(INPUT.getBytes());
}
public FastReader() {
is = System.in;
}
byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
int readByte() {
if (lenbuf == -1)
throw new InputMismatchException();
if (ptrbuf >= lenbuf) {
ptrbuf = 0;
try {
lenbuf = is.read(inbuf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0)
return -1;
}
return inbuf[ptrbuf++];
}
boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
int skip() {
int b;
while ((b = readByte()) != -1 && isSpaceChar(b))
;
return b;
}
double nextDouble() {
return Double.parseDouble(next());
}
char nextChar() {
return (char) skip();
}
String next() {
int b = skip();
StringBuilder sb = new StringBuilder();
while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
String nextLine() {
int b = skip();
StringBuilder sb = new StringBuilder();
while ((!isSpaceChar(b) || b == ' ')) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
char[] next(int n) {
char[] buf = new char[n];
int b = skip(), p = 0;
while (p < n && !(isSpaceChar(b))) {
buf[p++] = (char) b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
int nextInt() {
int num = 0, b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
long nextLong() {
long num = 0;
int b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
char[][] nextMatrix(int n, int m) {
char[][] map = new char[n][];
for (int i = 0; i < n; i++)
map[i] = next(m);
return map;
}
int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
int[][] IndIntArray(int n) {
int[][] a = new int[n][];
for (int i = 0; i < n; i++)
a[i] = new int[] { nextInt(), i };
return a;
}
long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
int[][] next2DInt(int n, int m) {
int[][] arr = new int[n][];
for (int i = 0; i < n; i++) {
arr[i] = nextIntArray(m);
}
return arr;
}
long[][] next2DLong(int n, int m) {
long[][] arr = new long[n][];
for (int i = 0; i < n; i++) {
arr[i] = nextLongArray(m);
}
return arr;
}
int[] shuffle(int[] arr) {
Random r = new Random();
for (int i = 1, j; i < arr.length; i++) {
j = r.nextInt(i);
int c = arr[i];
arr[i] = arr[j];
arr[j] = c;
}
return arr;
}
long[] shuffle(long[] arr) {
Random r = new Random();
for (int i = 1, j; i < arr.length; i++) {
j = r.nextInt(i);
long c = arr[i];
arr[i] = arr[j];
arr[j] = c;
}
return arr;
}
int[] uniq(int[] arr) {
arr = scn.shuffle(arr);
Arrays.sort(arr);
int[] rv = new int[arr.length];
int pos = 0;
rv[pos++] = arr[0];
for (int i = 1; i < arr.length; i++) {
if (arr[i] != arr[i - 1]) {
rv[pos++] = arr[i];
}
}
return Arrays.copyOf(rv, pos);
}
long[] uniq(long[] arr) {
arr = scn.shuffle(arr);
Arrays.sort(arr);
long[] rv = new long[arr.length];
int pos = 0;
rv[pos++] = arr[0];
for (int i = 1; i < arr.length; i++) {
if (arr[i] != arr[i - 1]) {
rv[pos++] = arr[i];
}
}
return Arrays.copyOf(rv, pos);
}
int[] reverse(int[] arr) {
int l = 0, r = arr.length - 1;
while (l < r) {
arr[l] = arr[l] ^ arr[r];
arr[r] = arr[l] ^ arr[r];
arr[l] = arr[l] ^ arr[r];
l++;
r--;
}
return arr;
}
long[] reverse(long[] arr) {
int l = 0, r = arr.length - 1;
while (l < r) {
arr[l] = arr[l] ^ arr[r];
arr[r] = arr[l] ^ arr[r];
arr[l] = arr[l] ^ arr[r];
l++;
r--;
}
return arr;
}
int[] compress(int[] arr) {
int n = arr.length;
int[] rv = Arrays.copyOf(arr, n);
rv = uniq(rv);
for (int i = 0; i < n; i++) {
arr[i] = Arrays.binarySearch(rv, arr[i]);
}
return arr;
}
long[] compress(long[] arr) {
int n = arr.length;
long[] rv = Arrays.copyOf(arr, n);
rv = uniq(rv);
for (int i = 0; i < n; i++) {
arr[i] = Arrays.binarySearch(rv, arr[i]);
}
return arr;
}
}
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, m, k;
int a[200005];
int b[200005];
vector<int> adj[200005];
bool removed[200005];
int nc[200005];
int ans[200005];
set<pair<int, int>> remedges;
int main() {
ios::sync_with_stdio(false);
scanf("%d %d %d", &n, &m, &k);
for (int i = 0; i < m; i++) {
scanf("%d %d", &a[i], &b[i]);
}
for (int i = 0; i < m; i++) {
adj[a[i]].push_back(b[i]);
adj[b[i]].push_back(a[i]);
nc[a[i]]++;
nc[b[i]]++;
}
int cans = n;
for (int i = 1; i <= n; i++) {
if (!removed[i]) {
if (nc[i] < k) {
removed[i] = true;
cans--;
queue<int> q;
q.push(i);
while (!q.empty()) {
int cur = q.front();
q.pop();
for (int j = 0; j < adj[cur].size(); j++) {
int x = adj[cur][j];
if (!removed[x]) {
nc[x]--;
if (nc[x] < k) {
removed[x] = true;
cans--;
q.push(x);
}
}
}
}
}
}
}
ans[m - 1] = cans;
for (int cm = m - 1; cm >= 0; cm--) {
int ca = a[cm];
int cb = b[cm];
if (!removed[ca] && !removed[cb]) {
nc[ca]--;
nc[cb]--;
remedges.insert(make_pair(ca, cb));
remedges.insert(make_pair(cb, ca));
if (nc[ca] < k) {
removed[ca] = true;
cans--;
queue<int> q;
q.push(ca);
while (!q.empty()) {
int cur = q.front();
q.pop();
for (int j = 0; j < adj[cur].size(); j++) {
int x = adj[cur][j];
if (remedges.find(make_pair(cur, x)) != remedges.end()) {
continue;
}
if (!removed[x]) {
nc[x]--;
if (nc[x] < k) {
removed[x] = true;
cans--;
q.push(x);
}
}
}
}
}
if (nc[cb] < k && !removed[cb]) {
removed[cb] = true;
cans--;
queue<int> q;
q.push(cb);
while (!q.empty()) {
int cur = q.front();
q.pop();
for (int j = 0; j < adj[cur].size(); j++) {
int x = adj[cur][j];
if (remedges.find(make_pair(cur, x)) != remedges.end()) {
continue;
}
if (!removed[x]) {
nc[x]--;
if (nc[x] < k) {
removed[x] = true;
cans--;
q.push(x);
}
}
}
}
}
}
if (cm > 0) {
ans[cm - 1] = cans;
}
}
for (int i = 0; i < m; i++) {
printf("%d\n", ans[i]);
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.*;
public class A {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni(), m = ni(), k = ni();
ArrayList<Integer> adj[] = (ArrayList<Integer>[]) new ArrayList[n];
for(int i=0;i<n;i++) adj[i] = new ArrayList<>();
int u[] = new int[m]; int v[] = new int[m];
int degree[] = new int[n];
for(int i=0;i<m;i++){
int a = ni() - 1, b = ni() - 1;
u[i] = a; v[i] = b;
adj[a].add(i); adj[b].add(i);
degree[a]++; degree[b]++;
}
ArrayList<Integer> q = new ArrayList<>();
int head = 0;
boolean alive[] = new boolean[m];
Arrays.fill(alive, true);
for(int i=0;i<n;i++){
if(degree[i] < k) q.add(i);
}
int ans[] = new int[m];
for(int day=m-1;day>=0;day--){
while(head < q.size()){
int id = q.get(head);
for(int edgeId: adj[id]){
if(!alive[edgeId]) continue;
int other = u[edgeId] == id ? v[edgeId] : u[edgeId];
if(degree[other]==k){
q.add(other);
}
degree[other]--;
degree[id]--;
alive[edgeId] = false;
}
head++;
}
ans[day] = n - q.size();
if (alive[day]) {
if (degree[u[day]] == k) q.add(u[day]);
if (degree[v[day]] == k) q.add(v[day]);
degree[u[day]]--;
degree[v[day]]--;
alive[day] = false;
}
}
for(int ai: ans) out.println(ai);
}
void run() throws Exception
{
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new A().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private static void tr(Object... o) { System.out.println(Arrays.deepToString(o)); }
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int M = 1e9 + 7;
long long powmod(long long a, long long b, long long mod) {
long long res = 1;
a %= mod;
assert(b >= 0);
for (; b; b >>= 1) {
if (b & 1) res = res * a % mod;
a = a * a % mod;
}
return res % mod;
}
const int N = 2e5 + 10;
int degree[N];
vector<pair<int, int> > v[N];
bool mark[N];
set<pair<int, int> > s;
int main() {
memset(mark, 1, sizeof mark);
int n, m, k;
cin >> n >> m >> k;
vector<pair<int, int> > edges(m);
for (int i = 0; i < m; ++i) {
int a, b;
scanf("%d %d", &a, &b);
a--, b--;
edges[i].first = a;
edges[i].second = b;
degree[a]++;
degree[b]++;
v[a].push_back(make_pair(b, i));
v[b].push_back(make_pair(a, i));
}
for (int i = 0; i < n; ++i) {
s.insert(make_pair(degree[i], i));
}
while (!s.empty() && s.begin()->first < k) {
int u = s.begin()->second;
for (int i = 0; i < v[u].size(); ++i) {
int ch = v[u][i].first;
if (mark[ch]) {
s.erase(make_pair(degree[ch], ch));
degree[ch]--;
s.insert(make_pair(degree[ch], ch));
}
}
s.erase(make_pair(degree[u], u));
mark[u] = 0;
}
vector<int> ans;
for (int i = m - 1; i >= 0; --i) {
ans.push_back(s.size());
int a = edges[i].first, b = edges[i].second;
if (mark[a] && mark[b]) {
s.erase(make_pair(degree[a], a));
degree[a]--;
s.insert(make_pair(degree[a], a));
s.erase(make_pair(degree[b], b));
degree[b]--;
s.insert(make_pair(degree[b], b));
while (!s.empty() && (s.begin()->first < k)) {
int u = s.begin()->second;
for (int j = 0; j < v[u].size(); ++j) {
int ch = v[u][j].first, id = v[u][j].second;
if (id >= i) continue;
if (mark[ch]) {
s.erase(make_pair(degree[ch], ch));
degree[ch]--;
s.insert(make_pair(degree[ch], ch));
}
}
s.erase(make_pair(degree[u], u));
mark[u] = 0;
}
}
}
for (int i = ans.size() - 1; i >= 0; --i) {
printf("%d\n", ans[i]);
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MOD = 1e9 + 7;
string to_string(string s) { return '"' + s + '"'; }
string to_string(char s) { return string(1, s); }
string to_string(const char *s) { return to_string((string)s); }
string to_string(bool b) { return (b ? "true" : "false"); }
template <typename A>
string to_string(A);
template <typename A, typename B>
string to_string(pair<A, B> p) {
return "(" + to_string(p.first) + ", " + to_string(p.second) + ")";
}
template <typename A>
string to_string(A v) {
bool f = 1;
string r = "{";
for (const auto &x : v) {
if (!f) r += ", ";
f = 0;
r += to_string(x);
}
return r + "}";
}
void debug_out() { cout << endl; }
template <typename Head, typename... Tail>
void debug_out(Head H, Tail... T) {
cout << " " << to_string(H);
debug_out(T...);
}
inline int add(int a, int b) {
a += b;
if (a >= MOD) a -= MOD;
return a;
}
inline int sub(int a, int b) {
a -= b;
if (a < 0) a += MOD;
return a;
}
inline int mul(int a, int b) { return (int)((long long)a * b % MOD); }
inline int binpow(int a, int b) {
int res = 1;
while (b > 0) {
if (b & 1) res = mul(res, a);
a = mul(a, a);
b /= 2;
}
return res;
}
inline int inv(int a) { return binpow(a, MOD - 2); }
int gcd(int a, int b, int &x, int &y) {
if (a == 0) {
x = 0, y = 1;
return b;
}
int x1, y1;
int d = gcd(b % a, a, x1, y1);
x = y1 - (b / a) * x1;
y = x1;
return d;
}
const int N = 2e5 + 5;
int n, m, k, deg[N], ans[N];
vector<pair<int, int> > edges;
set<int> g[N];
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> m >> k;
for (int i = 0; i < m; ++i) {
int x, y;
cin >> x >> y;
edges.push_back({x, y});
deg[x]++;
deg[y]++;
g[x].insert(y);
g[y].insert(x);
}
int rem = n;
queue<int> q;
for (int i = 1; i <= n; ++i)
if (deg[i] < k) {
q.push(i);
rem--;
}
for (int i = m - 1; i >= 0; --i) {
while (!q.empty()) {
int v = q.front();
q.pop();
for (int u : g[v]) {
deg[u]--;
g[u].erase(v);
if (deg[u] == k - 1) {
q.push(u);
rem--;
}
}
deg[v] = 0;
g[v].clear();
}
ans[i] = rem;
int x = edges[i].first, y = edges[i].second;
if (!g[x].count(y)) continue;
deg[x]--;
deg[y]--;
g[x].erase(y);
g[y].erase(x);
if (deg[x] == k - 1) {
q.push(x);
rem--;
}
if (deg[y] == k - 1) {
q.push(y);
rem--;
}
}
for (int i = 0; i < m; ++i) cout << ans[i] << "\n";
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.BufferedInputStream;
import java.util.Iterator;
import java.util.Set;
import java.util.TreeSet;
import java.util.Stack;
import java.util.HashSet;
import java.io.FilterInputStream;
import java.util.Vector;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author nirav
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scan in = new Scan(inputStream);
PrintWriter out = new PrintWriter(outputStream);
ETrips solver = new ETrips();
solver.solve(1, in, out);
out.close();
}
static class ETrips {
public void solve(int testNumber, Scan in, PrintWriter out) {
int n = in.scanInt();
int m = in.scanInt();
int k = in.scanInt();
int degree[] = new int[n + 1];
Set<Integer>[] graph = new Set[n + 1];
for (int i = 1; i <= n; i++) graph[i] = new HashSet<>();
TreeSet<ETrips.pair> queue = new TreeSet<>();
int array[][] = new int[m + 1][2];
for (int i = 0; i < m; i++) {
int a = in.scanInt();
int b = in.scanInt();
degree[a]++;
degree[b]++;
graph[a].add(b);
graph[b].add(a);
array[i + 1][0] = a;
array[i + 1][1] = b;
}
Stack<Integer> ans = new Stack<>();
for (int i = 1; i <= n; i++) {
queue.add(new ETrips.pair(degree[i], i));
}
for (int i = m; i > 0; i--) {
while (!queue.isEmpty() && queue.first().a < k) {
ETrips.pair g = queue.first();
queue.remove(queue.first());
Iterator<Integer> it = graph[g.b].iterator();
while (it.hasNext()) {
int f = it.next();
graph[f].remove(g.b);
queue.remove(new ETrips.pair(degree[f], f));
degree[f]--;
queue.add(new ETrips.pair(degree[f], f));
}
degree[g.b] = 0;
graph[g.b] = new HashSet<>();
}
ans.add(queue.size());
if (!graph[array[i][0]].isEmpty() && graph[array[i][0]].contains(array[i][1])) {
queue.remove(new ETrips.pair(degree[array[i][0]], array[i][0]));
degree[array[i][0]]--;
queue.add(new ETrips.pair(degree[array[i][0]], array[i][0]));
}
graph[array[i][0]].remove(array[i][1]);
if (!graph[array[i][1]].isEmpty() && graph[array[i][1]].contains(array[i][0])) {
queue.remove(new ETrips.pair(degree[array[i][1]], array[i][1]));
degree[array[i][1]]--;
queue.add(new ETrips.pair(degree[array[i][1]], array[i][1]));
}
graph[array[i][1]].remove(array[i][0]);
}
while (!ans.isEmpty()) {
out.println(ans.pop());
}
}
static class pair implements Comparable<ETrips.pair> {
int a;
int b;
pair(int x, int y) {
a = x;
b = y;
}
public int compareTo(ETrips.pair o) {
if (this.a != o.a) {
return this.a - o.a;
} else {
return this.b - o.b;
}
}
}
}
static class Scan {
private byte[] buf = new byte[4 * 1024];
private int INDEX;
private BufferedInputStream in;
private int TOTAL;
public Scan(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (INDEX >= TOTAL) {
INDEX = 0;
try {
TOTAL = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (TOTAL <= 0) return -1;
}
return buf[INDEX++];
}
public int scanInt() {
int I = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
I *= 10;
I += n - '0';
n = scan();
}
}
return neg * I;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int mxN = 2e5;
int n, m, k, eu[mxN], ev[mxN], ans[mxN];
set<int> adj[mxN];
bool a[mxN];
vector<int> tp;
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cin >> n >> m >> k;
for (int i = 0; i < m; ++i) {
cin >> eu[i] >> ev[i], --eu[i], --ev[i];
adj[eu[i]].insert(i);
adj[ev[i]].insert(i);
a[i] = 1;
}
for (int i = 0; i < n; ++i)
if (adj[i].size() < k) tp.push_back(i);
for (int i = m - 1; i >= 0; --i) {
ans[i] = i < m - 1 ? ans[i + 1] : n;
for (int j = 0; j < tp.size(); ++j) {
for (int e : adj[tp[j]]) {
adj[eu[e] ^ ev[e] ^ tp[j]].erase(e);
if (adj[eu[e] ^ ev[e] ^ tp[j]].size() == k - 1)
tp.push_back(eu[e] ^ ev[e] ^ tp[j]);
a[e] = 0;
}
adj[tp[j]].clear();
--ans[i];
}
tp.clear();
if (a[i]) {
adj[eu[i]].erase(i);
if (adj[eu[i]].size() < k) tp.push_back(eu[i]);
adj[ev[i]].erase(i);
if (adj[ev[i]].size() < k) tp.push_back(ev[i]);
a[i] = 0;
}
}
for (int i = 0; i < m; ++i) cout << ans[i] << "\n";
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, m, d[200005], k, res, vs[200005], ans[200005], pa;
map<int, int> cnt[200005];
vector<int> ke[200005];
pair<int, int> a[200005];
void dfs(int u) {
d[u]--;
res--;
vs[u] = 1;
for (int v : ke[u])
if (vs[v] == 0) {
cnt[u][v] = cnt[v][u] = 1;
d[v]--;
if (d[v] < k) {
d[v]++;
dfs(v);
}
}
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
cin >> n >> m >> k;
res = n;
for (int i = 1; i <= m; i++) {
cin >> a[i].first >> a[i].second;
d[a[i].first]++;
d[a[i].second]++;
ke[a[i].first].push_back(a[i].second);
ke[a[i].second].push_back(a[i].first);
}
for (int i = 1; i <= n; i++)
if (d[i] < k && vs[i] == 0) dfs(i);
for (int i = m; i >= 1; i--) {
ans[i] = res;
ke[a[i].first].pop_back();
ke[a[i].second].pop_back();
if (cnt[a[i].first][a[i].second] == 1) continue;
if (vs[a[i].first] == 0) {
d[a[i].first]--;
if (d[a[i].first] < k) {
d[a[i].first]++;
dfs(a[i].first);
}
}
if (vs[a[i].second] == 0) {
d[a[i].second]--;
if (d[a[i].second] < k) {
d[a[i].second]++;
dfs(a[i].second);
}
}
}
for (int i = 1; i <= m; i++) cout << ans[i] << '\n';
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class CF1037_E {
public static void main(String[] args) throws Throwable {
MyScanner sc = new MyScanner();
PrintWriter pw = new PrintWriter(System.out);
n = sc.nextInt();
adj = new HashSet[n];
for (int i = 0; i < n; i++)
adj[i] = new HashSet<>();
int m = sc.nextInt();
int k = sc.nextInt();
int[] deg = new int[n];
int[] ans = new int[m];
int[] x = new int[m];
int[] y = new int[m];
for (int i = 0; i < m; i++) {
x[i] = sc.nextInt() - 1;
y[i] = sc.nextInt() - 1;
adj[x[i]].add(y[i]);
adj[y[i]].add(x[i]);
deg[x[i]]++;
deg[y[i]]++;
}
int cnt = n;
Queue<Integer> q = new LinkedList<>();
for (int i = 0; i < n; i++)
if (deg[i] < k)
q.add(i);
while (!q.isEmpty()) {
cnt--;
int u = q.poll();
for (int v : adj[u]) {
deg[v]--;
if (deg[v] == k - 1)
q.add(v);
adj[v].remove(u);
}
}
for (int i = m - 1; i >= 0; i--) {
ans[i] = cnt;
if (deg[x[i]] < k || deg[y[i]] < k)
continue;
adj[y[i]].remove(x[i]);
adj[x[i]].remove(y[i]);
deg[x[i]]--;
deg[y[i]]--;
q.clear();
if (deg[x[i]] == k - 1)
q.add(x[i]);
if (deg[y[i]] == k - 1)
q.add(y[i]);
while (!q.isEmpty()) {
cnt--;
int u = q.poll();
for (int v : adj[u]) {
deg[v]--;
if (deg[v] == k - 1)
q.add(v);
adj[v].remove(u);
}
}
}
for (int i = 0; i < m; i++)
pw.println(ans[i]);
pw.flush();
pw.close();
}
static int n;
static HashSet<Integer>[] adj;
static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MAXN = 2e5;
set<int> g[MAXN];
int n, m, k;
int result = 0;
bool removed[MAXN];
int c[MAXN];
int edges[MAXN][2];
queue<int> q;
void remove_item(int m) {
result--;
q.push(m);
removed[m] = true;
}
void clear_queue() {
while (!q.empty()) {
auto to = q.front();
q.pop();
for (auto u : g[to]) {
c[u]--;
if (c[u] < k && !removed[u]) remove_item(u);
}
}
}
void remove_edge(int a, int b) {
g[a].erase(b);
g[b].erase(a);
}
int main() {
scanf("%d %d %d", &n, &m, &k);
for (int i = 0; i < m; i++) {
int a, b;
scanf("%d %d", &a, &b);
a--;
b--;
edges[i][0] = a;
edges[i][1] = b;
g[a].insert(b);
g[b].insert(a);
c[a]++;
c[b]++;
}
for (int i = 0; i < n; i++) {
if (c[i] < k) remove_item(i);
}
clear_queue();
vector<int> result_reversed;
result_reversed.push_back(n + result);
for (int i = m - 1; i > 0; i--) {
int a = edges[i][0];
int b = edges[i][1];
if (removed[a] || removed[b]) {
result_reversed.push_back(n + result);
continue;
}
c[a]--;
c[b]--;
g[a].erase(b);
g[b].erase(a);
if (c[a] < k) remove_item(a);
if (c[b] < k && !removed[b]) remove_item(b);
clear_queue();
result_reversed.push_back(n + result);
}
for (int i = m - 1; i >= 0; i--) {
printf("%d\n", result_reversed[i]);
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int deg[200010];
vector<vector<int> > graph(200010);
map<pair<int, int>, int> edgeNum;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
int tt = 1;
while (tt--) {
int n, m, k;
cin >> n >> m >> k;
int x[m], y[m];
for (int i = 0; i < m; i++) {
cin >> x[i] >> y[i];
edgeNum[{x[i], y[i]}] = i;
edgeNum[{y[i], x[i]}] = i;
graph[x[i]].push_back(y[i]);
graph[y[i]].push_back(x[i]);
deg[x[i]]++;
deg[y[i]]++;
}
set<pair<int, int> > s;
for (int i = 1; i <= n; i++) {
s.insert({deg[i], i});
}
set<int> removed;
while (!s.empty()) {
pair<int, int> tmp = *s.begin();
s.erase(tmp);
int ver = tmp.second;
if (tmp.first >= k) {
s.insert(tmp);
break;
}
for (int i = 0; i < graph[ver].size(); i++) {
if (removed.count(edgeNum[{graph[ver][i], ver}]) == 1) continue;
removed.insert(edgeNum[{graph[ver][i], ver}]);
s.erase({deg[graph[ver][i]], graph[ver][i]});
deg[graph[ver][i]]--;
s.insert({deg[graph[ver][i]], graph[ver][i]});
}
}
int ans[m];
for (int ii = m - 1; ii >= 0; --ii) {
ans[ii] = s.size();
if (s.count({deg[x[ii]], x[ii]}) == 0 ||
s.count({deg[y[ii]], y[ii]}) == 0)
continue;
s.erase({deg[x[ii]], x[ii]});
s.erase({deg[y[ii]], y[ii]});
deg[x[ii]]--;
deg[y[ii]]--;
removed.insert(edgeNum[{x[ii], y[ii]}]);
s.insert({deg[x[ii]], x[ii]});
s.insert({deg[y[ii]], y[ii]});
while (!s.empty() && ((*s.begin()).first) < k) {
pair<int, int> tmp = *s.begin();
s.erase(tmp);
int ver = tmp.second;
if (tmp.first >= k) {
s.insert(tmp);
break;
}
for (int i = 0; i < graph[ver].size(); i++) {
if (removed.count(edgeNum[{graph[ver][i], ver}]) == 1) continue;
s.erase({deg[graph[ver][i]], graph[ver][i]});
removed.insert(edgeNum[{graph[ver][i], ver}]);
deg[graph[ver][i]]--;
s.insert({deg[graph[ver][i]], graph[ver][i]});
}
}
}
for (int i = 0; i < m; i++) {
cout << ans[i] << '\n';
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 10;
const int maxm = 2e5 + 10;
const int INF = 0x3f3f3f3f;
struct Edge {
int v, next, id;
} edge[maxm * 2];
int n, m, k, res;
int U[maxn], V[maxn], du[maxn], Ans[maxn];
int head[maxn], cnt;
queue<int> q;
bool vis[maxn];
bool ok[maxn];
void add(int u, int v, int id) {
edge[cnt].next = head[u];
edge[cnt].v = v;
edge[cnt].id = id;
head[u] = cnt++;
}
void Bfs(int zz) {
while (!q.empty()) {
int x = q.front();
q.pop();
for (int i = head[x]; i != -1; i = edge[i].next) {
int v = edge[i].v;
if (vis[edge[i].id]) continue;
du[v]--;
vis[edge[i].id] = 1;
if (du[v] < k) {
if (!ok[v]) {
q.push(v);
Ans[zz]--;
ok[v] = 1;
}
}
}
}
}
int main() {
while (scanf("%d%d%d", &n, &m, &k) != EOF) {
memset(du, 0, sizeof(du));
memset(ok, 0, sizeof(ok));
memset(vis, 0, sizeof(vis));
memset(head, -1, sizeof(head));
cnt = 0;
while (!q.empty()) q.pop();
for (int i = 1; i <= m; i++) {
scanf("%d%d", U + i, V + i);
du[U[i]]++;
du[V[i]]++;
add(U[i], V[i], i);
add(V[i], U[i], i);
}
for (int i = 1; i <= n; i++) {
if (du[i] < k) {
q.push(i);
ok[i] = 1;
}
}
Bfs(m);
Ans[m] = 0;
for (int i = 1; i <= n; i++)
if (!ok[i]) Ans[m]++;
for (int i = m; i >= 1; i--) {
Ans[i - 1] = Ans[i];
if (vis[i]) {
continue;
}
du[U[i]]--;
du[V[i]]--;
vis[i] = 1;
if (du[U[i]] < k) {
if (!ok[U[i]]) {
q.push(U[i]);
Ans[i - 1]--;
ok[U[i]] = 1;
}
}
if (du[V[i]] < k) {
if (!ok[V[i]]) {
q.push(V[i]);
Ans[i - 1]--;
ok[V[i]] = 1;
}
}
Bfs(i - 1);
}
for (int i = 1; i <= m; i++) printf("%d\n", Ans[i]);
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | python2 | import sys
range = xrange
n,m,k = [int(x) for x in sys.stdin.readline().split()]
inp = [int(x)-1 for line in sys.stdin for x in line.split()]
ii = 0
coupl = [[] for _ in range(n)]
time = [[] for _ in range(n)]
nfr = [0]*n
for i in range(m):
a,b = inp[ii],inp[ii+1]
ii += 2
coupl[a].append(b)
coupl[b].append(a)
time[a].append(i)
time[b].append(i)
nfr[a] += 1
nfr[b] += 1
notf = 0
rem = [i for i in range(n) if nfr[i]<k]
while rem:
node = rem.pop()
notf += 1
for nei in coupl[node]:
if nfr[nei]==k:
rem.append(nei)
nfr[nei]-=1
out = []
for j in reversed(range(m)):
out.append(n-notf)
a,b = inp[j*2],inp[j*2+1]
nfra = nfr[a]
nfrb = nfr[b]
if nfra>=k:
if nfrb==k:
rem.append(b)
nfr[b]-=1
if nfrb>=k:
if nfra==k:
rem.append(a)
nfr[a]-=1
while rem:
node = rem.pop()
notf += 1
for i in range(len(coupl[node])):
nei = coupl[node][i]
t = time[node][i]
if t<j:
if nfr[nei]==k:
rem.append(nei)
nfr[nei]-=1
print '\n'.join(str(x) for x in reversed(out))
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | python2 |
import sys
range = xrange
n,m,k = [int(x) for x in sys.stdin.readline().split()]
inp = [int(x)-1 for line in sys.stdin.read().split('\n') for x in line.split()]
ii = 0
coupl = [[] for _ in range(n)]
time = [[] for _ in range(n)]
nfr = [0]*n
for i in range(m):
a,b = inp[ii],inp[ii+1]
ii += 2
coupl[a].append(b)
coupl[b].append(a)
time[a].append(i)
time[b].append(i)
nfr[a] += 1
nfr[b] += 1
notf = 0
rem = [i for i in range(n) if nfr[i]<k]
while rem:
node = rem.pop()
notf += 1
for nei in coupl[node]:
if nfr[nei]==k:
rem.append(nei)
nfr[nei]-=1
out = []
for j in reversed(range(m)):
out.append(n-notf)
a,b = inp[j*2],inp[j*2+1]
nfra = nfr[a]
nfrb = nfr[b]
if nfra>=k:
if nfrb==k:
rem.append(b)
nfr[b]-=1
if nfrb>=k:
if nfra==k:
rem.append(a)
nfr[a]-=1
while rem:
node = rem.pop()
notf += 1
for i in range(len(coupl[node])):
nei = coupl[node][i]
t = time[node][i]
if t<j:
if nfr[nei]==k:
rem.append(nei)
nfr[nei]-=1
print '\n'.join(str(x) for x in reversed(out)) |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | CORRECT | java | import java.util.*;
import java.io.*;
public class Trips {
public static void main(String[] args) {
FastScanner sc = new FastScanner();
StringBuilder sb = new StringBuilder();
ArrayDeque<Integer> out = new ArrayDeque<>();
ArrayDeque<Pair> edges = new ArrayDeque<>();
ArrayDeque<Integer> q = new ArrayDeque<>();
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int curSize = n;
ArrayList<Integer> graph[] = new ArrayList[n+1];
int size[] = new int[n+1];
int nEdges[] = new int[n+1];
for (int i = 0; i< n+1; i++) {
graph[i] = new ArrayList();
}
for (int i = 0; i < m;i++) {
int p1 = sc.nextInt();
int p2 = sc.nextInt();
graph[p1].add(p2);
graph[p2].add(p1);
size[p1]++;
nEdges[p1]++;
size[p2]++;
nEdges[p2]++;
edges.push(new Pair(p1, p2));
}
for(int i = 1; i < n+1; i++) {
if (size[i] < k) {
q.offer(i);
size[i] = 0;
}
}
while(!edges.isEmpty()) {
while(!q.isEmpty()) {
int curRem = q.poll();
curSize--;
for(int i = 0; i < nEdges[curRem]; i++) {
int node = graph[curRem].get(i);
size[node]--;
if (size[node] == k-1) {
q.add(node);
//size[node] = 0;
}
}
}
out.push(curSize);
Pair edge = edges.pop();
int node1 = edge.a;
int node2 = edge.b;
nEdges[node1]--;
nEdges[node2]--;
//size[node1]--;
//size[node2]--;
boolean temp = size[node1] >= k;
if (size[node2] >= k) {
size[node1]--;
if(size[node1] == k-1) {q.add(node1);}
}
if (temp) {
size[node2]--;
if(size[node2] == k-1) {q.add(node2);}
}
}
while(!out.isEmpty()) {
sb.append(out.pop());
sb.append('\n');
}
System.out.print(sb.toString());
}
public static class Pair{
int a,b;
public Pair(int a, int b) {this.a=a;this.b=b;}
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(Reader in) {
br = new BufferedReader(in);
}
public FastScanner() {
this(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String readNextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
int[] readIntArray(int n) {
int[] a = new int[n];
for (int idx = 0; idx < n; idx++) {
a[idx] = nextInt();
}
return a;
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, m, k;
int res = 0;
int U[200003], V[200003];
bool bol[200003];
queue<int> q;
set<int> vec[200003];
vector<int> ans;
void kill(int x) {
q.push(x);
while (q.size()) {
int curr = q.front();
q.pop();
res--;
bol[curr] = 0;
for (auto it : vec[curr]) {
vec[it].erase(vec[it].find(curr));
if (vec[it].size() < k) q.push(it);
}
vec[curr].clear();
}
}
int main() {
scanf("%d %d %d", &n, &m, &k);
for (int i = 1; i <= m; i++) {
int u, v;
scanf("%d %d", &u, &v);
vec[u].insert(v);
vec[v].insert(u);
U[i] = u;
V[i] = v;
}
for (int i = 1; i <= n; i++) bol[i] = 1;
res = n;
for (int i = 1; i <= n; i++) {
if (bol[i] && vec[i].size() < k) kill(i);
}
for (int i = m; i >= 1; i--) {
ans.push_back(res);
int u = U[i], v = V[i];
if (bol[u] && bol[v]) {
vec[u].erase(vec[u].find(v));
if (vec[v].find(u) != vec[v].end()) vec[v].erase(vec[v].find(u));
if (bol[u] && vec[u].size() < k) kill(u);
if (bol[v] && vec[v].size() < k) kill(v);
}
}
while (ans.size()) printf("%d\n", ans.back()), ans.pop_back();
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma warning(disable : 4996)
#pragma comment(linker, "/stack:200000000")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("-ffloat-store")
using namespace std;
const int MN = 200010;
set<int> e[MN];
int from[MN], to[MN], deg[MN], vis[MN], res[MN];
int n, m, k, cnt;
void deletev(int v) {
if (deg[v] >= k || vis[v]) return;
queue<int> q;
q.push(v);
vis[v] = 1;
--cnt;
while (!q.empty()) {
int top = q.front();
q.pop();
for (auto& c : e[top]) {
--deg[c];
if (deg[c] < k && !vis[c]) {
q.push(c);
vis[c] = 1;
--cnt;
}
}
}
}
struct E {
void solve(std::istream& cin, std::ostream& cout) {
cin >> n >> m >> k;
memset(deg, (0), sizeof(deg));
memset(from, (0), sizeof(from));
memset(to, (0), sizeof(to));
memset(deg, (0), sizeof(deg));
memset(vis, (0), sizeof(vis));
memset(res, (0), sizeof(res));
e->clear();
for (int i = (0); i < (m); ++i) {
cin >> from[i] >> to[i];
--from[i], --to[i];
++deg[from[i]], ++deg[to[i]];
e[from[i]].insert(to[i]);
e[to[i]].insert(from[i]);
}
cnt = n;
for (int i = (0); i < (n); ++i) {
deletev(i);
}
cout << deg[0] << "\n";
res[m] = cnt;
for (int i = (m - 1); i >= (0); --i) {
if (!vis[from[i]]) --deg[to[i]];
if (!vis[to[i]]) --deg[from[i]];
e[from[i]].erase(to[i]);
e[to[i]].erase(from[i]);
deletev(from[i]);
deletev(to[i]);
res[i] = cnt;
}
}
};
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
E solver;
std::istream& in(std::cin);
std::ostream& out(std::cout);
solver.solve(in, out);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long m, k, du[500000], tot, book[500000], n, cnt, ans[500000],
ask[500000][3];
vector<long long> edge[500000];
void bfs(long long u) {
queue<long long> q;
book[u] = 1;
q.push(u);
cnt--;
while (q.size()) {
long long x = q.front();
q.pop();
long long k = edge[x].size();
for (long long i = 0; i <= k - 1; i++) {
long long y = edge[x][i];
if (book[y]) continue;
du[y]--;
if (du[y] < k) {
q.push(y);
cnt--;
book[y] = 1;
}
}
}
}
int main() {
cin >> n >> m >> k;
cnt = n;
for (long long i = 1; i <= m; i++) {
long long x, y;
scanf("%lld%lld", &x, &y);
ask[i][1] = x;
ask[i][2] = y;
du[x]++;
du[y]++;
edge[x].push_back(y);
edge[y].push_back(x);
}
for (long long i = 1; i <= n; i++)
if (du[i] < k && !book[i]) {
bfs(i);
}
ans[m] = cnt;
for (long long i = m; i >= 1; i--) {
long long x = ask[i][1], y = ask[i][2];
if (!book[x]) du[y]--;
if (!book[y]) du[x]--;
edge[x].pop_back();
edge[y].pop_back();
if (du[x] < k && !book[x]) bfs(x);
if (du[y] < k && !book[y]) bfs(y);
ans[i - 1] = cnt;
}
for (long long i = 1; i <= m; i++) printf("%lld\n", ans[i]);
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
vector<pair<int, int> > v[500001];
int flag[500001], ct[500001];
int visited[500001], st[500001];
int ans, k;
void dfs(int i) {
if (st[i] == -1) return;
st[i] = -1;
for (int j = 0; j < v[i].size(); ++j) {
if (flag[v[i][j].second] == 0) {
flag[v[i][j].second] = 1;
--ct[v[i][j].first];
if (st[v[i][j].first] == 0 && ct[v[i][j].first] == k - 1) {
--ans;
dfs(v[i][j].first);
}
}
}
}
void dfs3(int i) {
if (st[i] == -1) return;
st[i] = -1;
for (int j = 0; j < v[i].size(); ++j) {
if (flag[v[i][j].second] == 1) continue;
if (visited[v[i][j].first] != 3) {
flag[v[i][j].second] = 1;
--ct[v[i][j].first];
if (ct[v[i][j].first] == k - 1) dfs3(v[i][j].first);
}
}
visited[i] = 3;
}
void dfs2(int i) {
int ct2 = 0;
visited[i] = 1;
for (int j = 0; j < v[i].size(); ++j) {
if (flag[v[i][j].second] == 1) continue;
if (visited[v[i][j].first] == 0) {
dfs2(v[i][j].first);
if (st[v[i][j].first] == 0) {
++ct[i];
++ct2;
} else {
flag[v[i][j].second] = 1;
}
} else if (st[v[i][j].first] == -1)
continue;
else {
++ct[i];
++ct2;
}
}
if (ct2 < k) {
st[i] = -1;
dfs3(i);
}
visited[i] = 2;
}
vector<pair<int, int> > v2;
int main() {
std::ios::sync_with_stdio(false);
int T;
T = 1;
while (T--) {
int n, i, j, m, a, b;
cin >> n >> m >> k;
for (i = 1; i <= m; ++i) {
cin >> a >> b;
v[a].push_back({b, i});
v[b].push_back({a, i});
v2.push_back({a, b});
}
for (i = 1; i <= n; ++i) {
if (visited[i] == 0) dfs2(i);
}
for (i = 1; i <= n; ++i) {
if (st[i] == 0) ++ans;
}
vector<int> v3;
v3.push_back(ans);
for (i = m; i >= 1; --i) {
if (i == 1) break;
if (flag[i] == 1 || st[v2[i - 1].first] == -1 ||
st[v2[i - 1].second] == -1) {
v3.push_back(ans);
continue;
}
--ct[v2[i - 1].first];
--ct[v2[i - 1].second];
flag[i] = 1;
if (ct[v2[i - 1].first] == k - 1) --ans;
if (ct[v2[i - 1].second] == k - 1) --ans;
if (ct[v2[i - 1].first] == k - 1 && st[v2[i - 1].first] == 0) {
dfs(v2[i - 1].first);
}
if (ct[v2[i - 1].second] == k - 1 && st[v2[i - 1].second] == 0) {
dfs(v2[i - 1].second);
}
v3.push_back(ans);
}
for (i = v3.size() - 1; i >= 0; --i) {
cout << v3[i] << endl;
}
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.*;
import java.util.*;
public class Main {
static int deg[];
static Set<Integer> s;
static Set[] graph;
static int n,k;
public static void main(String[] args) throws Exception {
FastReader sc = new FastReader();
OutputWriter out = new OutputWriter(System.out);
n = sc.nextInt();
int m = sc.nextInt();
k = sc.nextInt();
graph = new Set[n];
for(int i=0;i<n;i++) {
graph[i] = new HashSet();
}
deg = new int[n];
List<Edge> edges = new ArrayList<>();
for(int i=0;i<m;i++) {
int u = sc.nextInt()-1;
int v = sc.nextInt()-1;
edges.add(new Edge(u,v));
graph[u].add(v);
graph[v].add(u);
deg[u]++;
deg[v]++;
}
s = new HashSet<>();
List<Vertex> ver = new ArrayList<>();
for(int i=0;i<n;i++) {
s.add(i);
ver.add(new Vertex(i,deg[i]));
}
ver.sort((v1,v2)->v1.d-v2.d);
int i=0;
for(i=0;i<n;i++) {
if(ver.get(i).d<k) {
int u = ver.get(i).u;
if(s.contains(u)) {
dfs(u,-1,-1);
}
else {
break;
}
}
}
List<Integer> ans = new ArrayList<>();
ans.add(s.size());
for(int j=m-1;j>0;j--) {
Edge e = edges.get(j);
if(s.contains(e.u) && s.contains(e.v)) {
graph[e.u].remove(e.v);
graph[e.v].remove(e.u);
dfs(e.u,e.v,e.u);
if(s.contains(e.v)) {
dfs(e.v,e.u,e.v);
}
}
ans.add(s.size());
}
for(int j=ans.size()-1;j>=0;j--) {
out.println(ans.get(j));
}
out.close();
}
static void dfs(int u,int lv,int lu) {
deg[u]--;
if(deg[u]>=k) {
return;
}
s.remove(u);
for(int v:(Set<Integer>) graph[u]) {
//graph[u].remove(v);
//graph[v].remove(u);
if(s.contains(v)) {
dfs(v,lv,lu);
}
}
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void println(int i) {
writer.println(i);
}
}
class Edge{
int u,v;
Edge(int i,int j){
u = i;
v = j;
}
}
class Vertex{
int u,d;
Vertex(int i,int j){
u = i;
d = j;
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const int N = 2e5 + 5;
using namespace std;
int n, m, k;
int res[N];
int x[N], y[N];
int bac[N];
set<int> a[N];
set<pair<int, int> > S;
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> m >> k;
for (int i = 1; i <= m; i++) {
cin >> x[i] >> y[i];
a[x[i]].insert(y[i]);
a[y[i]].insert(x[i]);
bac[x[i]]++;
bac[y[i]]++;
}
for (int i = 1; i <= n; i++)
if (bac[i] > 0) S.insert(make_pair(bac[i], i));
for (int i = m; i >= 1; i--) {
while (S.size() && S.begin()->first < k) {
for (int v : a[S.begin()->second]) {
S.erase(make_pair(bac[v], v));
bac[v]--;
if (bac[v] > 0) S.insert(make_pair(bac[v], v));
a[v].erase(S.begin()->second);
}
a[S.begin()->second].clear();
bac[S.begin()->second] = 0;
S.erase(S.begin());
}
res[i] = S.size();
if (res[i] == 1) {
cout << S.begin()->first << ' ' << S.begin()->second << endl;
return 0;
}
if (a[x[i]].find(y[i]) != a[x[i]].end() && bac[x[i]] && bac[y[i]]) {
S.erase(make_pair(bac[x[i]], x[i]));
bac[x[i]]--;
if (bac[x[i]] > 0) S.insert(make_pair(bac[x[i]], x[i]));
S.erase(make_pair(bac[y[i]], y[i]));
bac[y[i]]--;
if (bac[y[i]] > 0) S.insert(make_pair(bac[y[i]], y[i]));
a[x[i]].erase(y[i]);
a[y[i]].erase(x[i]);
}
}
for (int i = 1; i <= m; i++) cout << res[i] << '\n';
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
pair<int, int> edge[200000 + 324];
vector<int> adj[200000 + 324];
set<int> degree[200000 + 324];
set<int> friends;
int ans[200000 + 324];
int k;
void rem(int x) {
if (degree[x].size() < k && friends.erase(x)) {
for (auto &bc : degree) {
bc.erase(x);
}
}
}
int main() {
ios::sync_with_stdio(false);
int n, m;
cin >> n >> m >> k;
for (int i = 0; i < m; i++) {
cin >> edge[i].first >> edge[i].second;
degree[edge[i].first].insert(edge[i].second);
degree[edge[i].second].insert(edge[i].first);
}
for (int i = 1; i <= n; i++) {
if (degree[i].size() >= k) {
friends.insert(i);
} else {
for (auto &bc : degree) {
bc.erase(i);
}
}
}
for (int i = m - 1; i >= 0; i--) {
ans[i] = friends.size();
degree[edge[i].first].erase(edge[i].second);
degree[edge[i].second].erase(edge[i].first);
rem(edge[i].first);
rem(edge[i].second);
}
for (int i = 0; i < m; i++) cout << ans[i] << " ";
return 0;
}
|
Subsets and Splits