Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | //package contests.CF1037;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class E {
static ArrayList<Integer>[] adj;
static int[] vis, going;
static int NO = 3, YES = 2, VIS = 1;
static int k;
public static void main(String[] args) throws IOException{
Scanner sc = new Scanner();
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
adj = new ArrayList[n];
for (int i = 0; i < adj.length; i++) {
adj[i] = new ArrayList<>();
}
vis = new int[n];
going = new int[n];
int m = sc.nextInt();
k = sc.nextInt();
HashSet<Long> e = new HashSet<>();
int[][] edges = new int[m][2];
for (int i = 0; i < m; i++) {
edges[i][0] = sc.nextInt()-1;
edges[i][1] = sc.nextInt()-1;
adj[edges[i][0]].add(edges[i][1]);
adj[edges[i][1]].add(edges[i][0]);
e.add(hash(edges[i][0], edges[i][1]));
}
TreeSet<Integer> set = new TreeSet<>(new Comparator<Integer>() {
@Override
public int compare(Integer i, Integer j) { ;
if(going[i] != going[j])
return going[i] - going[j];
return i - j;
}
});
Arrays.fill(vis, YES);
for (int i = 0; i < going.length; i++) {
going[i] = adj[i].size();
}
for (int i = 0; i < n; i++) {
set.add(i);
}
while(!set.isEmpty() && going[set.first()] < k){
int a = set.pollFirst();
vis[a] = NO;
for (int b : adj[a]) {
if(vis[b] == YES && e.contains(hash(a, b))){
set.remove(b);
going[b]--;
set.add(b);
e.remove(hash(a, b));
}
}
}
int[] ans = new int[m];
for (int q = m-1; q >= 0; q--) {
ans[q] = set.size();
int u = edges[q][0];
int v = edges[q][1];
if(vis[u] == YES) {
set.remove(u);
if(vis[v] == YES && e.contains(hash(u, v)))
going[u]--;
set.add(u);
}
if(vis[v] == YES) {
set.remove(v);
if(vis[u] == YES && e.contains(hash(u, v)))
going[v]--;
set.add(v);
}
e.remove(hash(u, v));
while(!set.isEmpty() && going[set.first()] < k){
int a = set.pollFirst();
vis[a] = NO;
for (int b : adj[a]) {
if(vis[b] == YES && e.contains(hash(a, b))){
set.remove(b);
going[b]--;
set.add(b);
e.remove(hash(a, b));
}
}
}
}
ans[0] = set.size();
for (int i = 0; i < m; i++) {
pw.println(ans[i]);
}
pw.flush();
pw.close();
}
static long hash(int a, int b){
return Math.min(a, b) * 1000000l + Math.max(a, b);
}
static class Scanner{
BufferedReader br;
StringTokenizer st;
public Scanner(){
br = new BufferedReader(new InputStreamReader(System.in));
}
public String next() throws IOException {
while(st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.util.Set;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author prakharjain
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskE solver = new TaskE();
solver.solve(1, in, out);
out.close();
}
static class TaskE {
Set[] g;
int[] deg;
Set<Integer> s;
int k;
int n;
Set<Integer> vis;
public void solve(int testNumber, InputReader in, OutputWriter out) {
n = in.nextInt();
int m = in.nextInt();
k = in.nextInt();
g = new Set[n];
for (int i = 0; i < n; i++) {
g[i] = new HashSet();
}
deg = new int[n];
List<edge> edges = new ArrayList<>();
for (int i = 0; i < m; i++) {
int u = in.nextInt() - 1;
int v = in.nextInt() - 1;
edges.add(new edge(u, v));
g[u].add(v);
g[v].add(u);
deg[u]++;
deg[v]++;
}
s = new HashSet<>();
List<vertex> vertices = new ArrayList<>();
for (int i = 0; i < n; i++) {
s.add(i);
vertices.add(new vertex(i, deg[i]));
}
vertices.sort((v1, v2) -> v1.d - v2.d);
int i = 0;
for (i = 0; i < n; i++) {
if (vertices.get(i).d < k) {
int u = vertices.get(i).u;
s.remove(u);
for (int v : (Set<Integer>) g[u]) {
deg[v]--;
}
} else {
break;
}
}
//out.println(s.size());
List<Integer> ans = new ArrayList<>();
ans.add(s.size());
for (int j = m - 1; j > 0; j--) {
edge ce = edges.get(j);
vis = new HashSet<>();
if (s.contains(ce.u) && s.contains(ce.v)) {
// ArrayDeque<Integer> q = new ArrayDeque<>();
//
// q.addFirst(ce.u);
// q.addLast(ce.v);
//
// while (!q.isEmpty()) {
// int e = q.removeFirst();
//
// deg[e]--;
//
// if (deg[e] < k) {
// s.remove(e);
// for (int v : (Set<Integer>) g[e]) {
// if (s.contains(v)) {
// q.addLast(v);
// }
// }
// }
// }
dfs(ce.u, ce.v, ce.u);
dfs(ce.v, ce.u, ce.v);
}
g[ce.u].remove(ce.v);
g[ce.v].remove(ce.u);
ans.add(s.size());
//out.println(s.size());
}
for (int j = ans.size() - 1; j >= 0; j--) {
out.println(ans.get(j));
}
}
void dfs(int u, int ov, int ou) {
deg[u]--;
if (deg[u] >= k) {
return;
}
s.remove(u);
for (int v : (Set<Integer>) g[u]) {
if (s.contains(v) && (ou != u || ov != v)) {
dfs(v, ov, ou);
}
}
}
class edge {
int u;
int v;
public edge(int u, int v) {
this.u = u;
this.v = v;
}
}
class vertex {
int u;
int d;
public vertex(int u, int d) {
this.u = u;
this.d = d;
}
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void println(int i) {
writer.println(i);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long read() {
long long x = 0;
char f = 1, ch = getchar();
while (ch < '0' || ch > '9') {
if (ch == '-') f = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
x = x * 10 + ch - '0';
ch = getchar();
}
return x * f;
}
void write(long long x) {
if (x < 0) x = -x, putchar('-');
if (x > 9) write(x / 10);
putchar(x % 10 + '0');
}
inline void writeln(long long x) {
write(x);
puts("");
}
const int N = 600000, M = 22344;
int n, m, k;
queue<int> q;
bool in[N];
struct Edge {
int u, v, nxt, pre, fg;
} e[M];
int head[N], en, d[N];
void add(int x, int y) {
e[++en].u = x, e[en].v = y, e[en].nxt = head[x];
if (!head[x]) e[head[x]].pre = en;
head[x] = en;
}
int ans[N], cnt = 0;
void work() {
while (!q.empty()) {
int x = q.front();
q.pop();
if (!in[x]) continue;
--cnt;
in[x] = 0;
for (int i = head[x]; i; i = e[i].nxt) {
int y = e[i].v;
e[i ^ 1].fg = e[i].fg = 1;
if (--d[y] < k) q.push(y);
}
}
}
void delta(int i) {
if (e[i].fg) return;
--d[e[i].u];
int x = e[i].u;
if (!e[i].pre)
head[x] = e[i].nxt, e[head[x]].pre = 0;
else
e[e[i].pre].nxt = e[i].nxt, e[e[i].nxt].pre = e[i].pre;
}
int main() {
n = read(), m = read(), k = read();
for (int i = 1; i <= n; ++i) in[i] = 1;
cnt = n;
en = 1;
for (int i = 1; i <= m; ++i) {
int x = read(), y = read();
add(x, y);
add(y, x);
++d[x], ++d[y];
}
for (int i = 1; i <= n; ++i)
if (d[i] < k) q.push(i);
work();
int t = 0;
for (int i = en; i >= 1; i -= 2) {
ans[++t] = cnt;
delta(i);
delta(i - 1);
if (d[e[i].u] < k) q.push(e[i].u);
if (d[e[i].v] < k) q.push(e[i].v);
work();
}
for (int i = t; i >= 1; --i) writeln(ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAXN = 200005, MOD = 1e9 + 7;
struct ii {
long long a, b;
bool operator<(ii o) const { return tie(a, b) < tie(o.a, o.b); }
};
int N, M, K, ans, valid[MAXN];
ii arr[MAXN];
vector<int> edge[MAXN];
void gagalin(int now) {
ans--;
for (auto i : edge[now]) {
if (valid[i] >= K) {
valid[i]--;
if (valid[i] == K - 1) gagalin(i);
}
}
}
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
cin >> N >> M >> K;
for (int i = 0; i < M; i++) {
cin >> arr[i].a >> arr[i].b;
edge[arr[i].a].push_back(arr[i].b);
edge[arr[i].b].push_back(arr[i].a);
}
for (int i = 1; i <= N; i++) valid[i] = edge[i].size();
ans = N;
for (int i = 1; i <= N; i++) {
if (valid[i] < K) {
gagalin(i);
}
}
vector<int> vans;
for (int i = M - 1; i >= 0; i--) {
cout << valid[2] << " v\n";
vans.push_back(ans);
if (valid[arr[i].a] < K || valid[arr[i].b] < K) continue;
if (valid[arr[i].a] == K) {
valid[arr[i].a]--;
if (valid[arr[i].a] == K - 1) gagalin(arr[i].a);
} else {
valid[arr[i].b]--;
if (valid[arr[i].b] == K - 1) gagalin(arr[i].b);
}
}
for (int i = vans.size() - 1; i >= 0; i--) cout << vans[i] << "\n";
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 3;
int n, m, k, deg[N], x[N], y[N], ans[N], cnt;
set<int> G[N];
set<int>::iterator it;
void Del() {
queue<int> q;
for (int i = 1; i <= n; i++)
if (deg[i] && deg[i] < k) q.push(i);
while (!q.empty()) {
int u = q.front();
q.pop();
cnt--;
for (it = G[u].begin(); it != G[u].end(); it++) {
int v = *it;
deg[v]--;
if (deg[v] && deg[v] < k) q.push(v);
G[v].erase(u);
}
G[u].clear();
deg[u] = 0;
}
}
int main() {
memset(deg, 0, sizeof deg);
scanf("%d%d%d", &n, &m, &k);
cnt = n;
for (int i = 1; i <= m; i++) {
scanf("%d%d", x + i, y + i);
deg[x[i]]++;
deg[y[i]]++;
G[x[i]].insert(y[i]);
G[y[i]].insert(x[i]);
}
for (int i = m; i; i--) {
Del();
ans[i] = cnt;
if (G[x[i]].count(y[i])) {
G[x[i]].erase(y[i]);
G[y[i]].erase(x[i]);
deg[x[i]]--;
deg[y[i]]--;
}
}
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 10;
set<pair<int, int> > sq;
set<int> to[maxn];
int n, m, k;
int a[maxn];
struct node {
int l, r;
} q[maxn];
void update() {
while (sq.size() > 0 && (*(sq.begin())).first < k) {
auto x = *(sq.begin());
sq.erase(sq.begin());
for (auto j = to[x.second].begin(); j != to[x.second].end();) {
auto value = *j;
if (sq.count({a[value], value})) {
sq.erase(sq.find({a[value], value}));
a[value]--;
if (a[value] > 0) sq.insert({a[value], value});
to[x.second].erase(j++);
} else
j++;
}
}
}
int main() {
cin >> n >> m >> k;
for (int i = 1; i <= m; i++) {
int from, t;
cin >> from >> t;
q[i].l = from, q[i].r = t;
to[from].insert(t);
to[t].insert(from);
a[from]++, a[t]++;
}
for (int i = 1; i <= n; i++) sq.insert({a[i], i});
vector<int> ans;
update();
ans.push_back(sq.size());
for (int i = m - 1; i >= 1; i--) {
if (sq.count({a[q[i].l], q[i].l}) && sq.count({a[q[i].r], q[i].r})) {
sq.erase(sq.find({a[q[i].l], q[i].l}));
sq.erase(sq.find({a[q[i].r], q[i].r}));
a[q[i].l]--, a[q[i].r]--;
if (a[q[i].l] > 0) sq.insert({a[q[i].l], q[i].l});
if (a[q[i].r] > 0) sq.insert({a[q[i].r], q[i].r});
to[q[i].l].erase(q[i].r);
to[q[i].r].erase(q[i].l);
update();
}
ans.push_back(sq.size());
}
reverse(ans.begin(), ans.end());
for (auto &i : ans) {
cout << i << endl;
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | //package com.company;
import java.io.*;
import java.util.*;
public class Main {
static long TIME_START, TIME_END;
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
// Scanner sc = new Scanner(new FileInputStream("Test.in"));
PrintWriter pw = new PrintWriter(System.out);
// PrintWriter pw = new PrintWriter(new FileOutputStream("Test.out"));
Runtime runtime = Runtime.getRuntime();
long usedMemoryBefore = runtime.totalMemory() - runtime.freeMemory();
TIME_START = System.currentTimeMillis();
Task t = new Task();
t.solve(sc, pw);
TIME_END = System.currentTimeMillis();
long usedMemoryAfter = runtime.totalMemory() - runtime.freeMemory();
pw.close();
System.out.println("Memory increased:" + (usedMemoryAfter - usedMemoryBefore) / 1000000);
System.out.println("Time used: " + (TIME_END - TIME_START) + ".");
}
public static class Task {
public int get(int[] q, int r) {
if (q[0] == r) return q[1];
return q[0];
}
public void solve(Scanner sc, PrintWriter pw) throws IOException {
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int[] deg = new int[n];
List<int[]> edges = new ArrayList<>();
List<Integer>[] edgesS = new List[n];
for (int i = 0; i < n; i++) {
edgesS[i] = new ArrayList<>();
}
for (int i = 0; i < m; i++) {
int a = sc.nextInt() - 1;
int b = sc.nextInt() - 1;
edges.add(new int[]{a, b});
edgesS[a].add(i);
edgesS[b].add(i);
deg[a]++;
deg[b]++;
}
boolean[] del = new boolean[n];
int dlt = 0;
for (int i = 0; i < n; i++) {
if (!del[i] && deg[i] < k) {
dlt += dfs(i, k, deg, del, edges, edgesS);
}
}
for (int i = 0; i < n; i++) {
if (!del[i] && deg[i] < k) {
dlt += dfs(i, k, deg, del, edges, edgesS);
}
}
int[] res = new int[m];
res[m - 1] = n - dlt;
for (int i = m - 1; i > 0; i--) {
int[] toremove = edges.get(i);
int t1 = toremove[0], t2 = toremove[1];
edges.remove(i);
edgesS[t1].remove(edgesS[t1].size() - 1);
edgesS[t2].remove(edgesS[t2].size() - 1);
int tr = 0;
if (!del[t1] && !del[t2]) {
deg[t1]--;
deg[t2]--;
if (!del[t1] && deg[t1] < k) {
tr += dfs(t1, k, deg, del, edges, edgesS);
}
if (!del[t2] && deg[t2] < k) {
tr += dfs(t2, k, deg, del, edges, edgesS);
}
}
res[i - 1] = res[i] - tr;
}
for (int i = 0; i < m; i++) {
pw.println(res[i]);
}
}
public int dfs(int u, int k, int[] deg, boolean[] del, List<int[]> edges, List<Integer>[] edgeS) {
int cnt = 0;
del[u] = true;
cnt++;
for (int idx : edgeS[u]) {
int o = get(edges.get(idx), idx);
if (del[o]) continue;
deg[o]--;
if (deg[o] < k) {
cnt += dfs(o, k, deg, del, edges, edgeS);
}
}
return cnt;
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader s) throws FileNotFoundException {
br = new BufferedReader(s);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public boolean ready() throws IOException {
return br.ready();
}
}
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
template <typename T>
inline T const &MAX(T const &a, T const &b) {
return a > b ? a : b;
}
template <typename T>
inline T const &MIN(T const &a, T const &b) {
return a < b ? a : b;
}
inline void add(long long &a, long long b) {
a += b;
if (a >= 1000000007) a -= 1000000007;
}
inline void sub(long long &a, long long b) {
a -= b;
if (a < 0) a += 1000000007;
}
inline long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; }
inline long long qp(long long a, long long b) {
long long ans = 1;
while (b) {
if (b & 1) ans = ans * a % 1000000007;
a = a * a % 1000000007, b >>= 1;
}
return ans;
}
inline long long qp(long long a, long long b, long long c) {
long long ans = 1;
while (b) {
if (b & 1) ans = ans * a % c;
a = a * a % c, b >>= 1;
}
return ans;
}
using namespace std;
const double eps = 1e-8;
const long long INF = 0x3f3f3f3f3f3f3f3f;
const int N = 200000 + 10, maxn = 1000000 + 10, inf = 0x3f3f3f3f;
int ans[N], d[N];
bool vis[N];
vector<pair<int, int> > v[N];
set<pair<int, int> > s;
pair<int, int> p[N];
int main() {
int n, m, k;
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= m; i++) {
int a, b;
scanf("%d%d", &a, &b);
v[a].push_back(make_pair(b, i)), v[b].push_back(make_pair(a, i));
d[a]++, d[b]++;
p[i] = make_pair(a, b);
}
for (int i = 1; i <= n; i++) s.insert(make_pair(d[i], i));
for (int i = m; i >= 1; i--) {
while (s.size() > 0 && (s.begin())->first < k) {
int te = s.begin()->second;
for (int i = 0; i < v[te].size(); i++) {
if (vis[v[te][i].second]) continue;
auto x = s.lower_bound(make_pair(d[v[te][i].first], v[te][i].first));
if (x != s.end()) {
s.erase(x);
d[v[te][i].first]--;
s.insert(make_pair(d[v[te][i].first], v[te][i].first));
}
vis[v[te][i].second] = 1;
}
s.erase(s.begin());
}
ans[i] = s.size();
if (vis[i] == 1) continue;
auto x = s.lower_bound(make_pair(d[p[i].first], p[i].first));
if (x != s.end()) {
s.erase(x);
d[p[i].first]--;
s.insert(make_pair(d[p[i].first], p[i].first));
}
x = s.lower_bound(make_pair(d[p[i].second], p[i].second));
if (x != s.end()) {
s.erase(x);
d[p[i].second]--;
s.insert(make_pair(d[p[i].second], p[i].second));
}
vis[i] = 1;
}
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.HashSet;
import java.util.Arrays;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.util.TreeSet;
import java.io.InputStream;
/**
* @author khokharnikunj8
*/
public class Main {
public static void main(String[] args) {
new Thread(null, new Runnable() {
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
}
void solve() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
ScanReader in = new ScanReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
ETrips solver = new ETrips();
solver.solve(1, in, out);
out.close();
}
static class ETrips {
int[][] G;
public void solve(int testNumber, ScanReader in, PrintWriter out) {
int n = in.scanInt();
int m = in.scanInt();
int k = in.scanInt();
TreeSet<pair> bstCustom = new TreeSet<>();
int from[] = new int[m];
int to[] = new int[m];
for (int i = 0; i < m; i++) {
from[i] = in.scanInt();
to[i] = in.scanInt();
}
int[] ans = new int[m];
G = CodeHash.packGraph(from, to, n);
int degree[] = new int[n + 1];
for (int i = 1; i <= n; i++) bstCustom.add(new pair(degree[i] = G[i].length, i));
boolean[] is_inside = new boolean[n + 1];
Arrays.fill(is_inside, true);
while (bstCustom.size() > 0 && bstCustom.first().x < k) {
for (int i : G[bstCustom.first().y]) {
if (is_inside[i]) {
bstCustom.remove(new pair(degree[i], i));
degree[i]--;
bstCustom.add(new pair(degree[i], i));
}
}
is_inside[bstCustom.first().y] = false;
bstCustom.remove(bstCustom.first());
}
ans[m - 1] = bstCustom.size();
HashSet<Long> set = new HashSet<>();
for (int i = m - 1; i >= 1; i--) {
if (is_inside[from[i]] && is_inside[to[i]]) {
if (degree[from[i]] - 1 < k) {
bstCustom.remove(new pair(degree[from[i]], from[i]));
for (int j : G[from[i]]) {
if (is_inside[j]) {
if (set.contains(j * 1000000l + from[i]) || set.contains(from[i] * 1000000l + j))
continue;
bstCustom.remove(new pair(degree[j], j));
degree[j]--;
degree[from[i]]--;
bstCustom.add(new pair(degree[j], j));
}
}
is_inside[from[i]] = false;
} else if (degree[to[i]] - 1 < k) {
bstCustom.remove(new pair(degree[to[i]], to[i]));
for (int j : G[to[i]]) {
if (is_inside[j]) {
if (set.contains(j * 1000000l + to[i]) || set.contains(to[i] * 1000000l + j)) continue;
bstCustom.remove(new pair(degree[j], j));
degree[j]--;
degree[to[i]]--;
bstCustom.add(new pair(degree[j], j));
}
}
is_inside[to[i]] = false;
} else {
bstCustom.remove(new pair(degree[from[i]], from[i]));
degree[from[i]]--;
bstCustom.add(new pair(degree[from[i]], from[i]));
bstCustom.remove(new pair(degree[to[i]], to[i]));
degree[to[i]]--;
bstCustom.add(new pair(degree[to[i]], to[i]));
}
}
while (bstCustom.size() > 0 && bstCustom.first().x < k) {
for (int j : G[bstCustom.first().y]) {
if (is_inside[j]) {
if (set.contains(j * 1000000l + bstCustom.first().x) || set.contains(bstCustom.first().x * 1000000l + j))
continue;
bstCustom.remove(new pair(degree[j], j));
degree[j]--;
bstCustom.add(new pair(degree[j], j));
}
}
is_inside[bstCustom.first().y] = false;
bstCustom.remove(bstCustom.first());
}
ans[i - 1] = bstCustom.size();
set.add(1000000l * from[i] + to[i]);
}
for (int i = 0; i < m; i++) out.println(ans[i]);
}
class pair implements Comparable<pair> {
int x;
int y;
public int compareTo(pair o) {
if (this.x == o.x) return this.y - o.y;
return this.x - o.x;
}
public pair(int x, int y) {
this.x = x;
this.y = y;
}
}
}
static class CodeHash {
public static int[][] packGraph(int[] from, int[] to, int n) {
int[][] g = new int[n + 1][];
int p[] = new int[n + 1];
for (int i : from) p[i]++;
for (int i : to) p[i]++;
for (int i = 0; i <= n; i++) g[i] = new int[p[i]];
for (int i = 0; i < from.length; i++) {
g[from[i]][--p[from[i]]] = to[i];
g[to[i]][--p[to[i]]] = from[i];
}
return g;
}
}
static class ScanReader {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public ScanReader(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0) return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
}
return neg * integer;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 10;
vector<int> g[maxn];
int edge[maxn][3];
int res[maxn];
map<pair<int, int>, int> ma;
set<pair<int, int> > s;
int deg[maxn];
int n, m, k;
void add(int x, int y) {
g[x].push_back(y);
deg[y]++;
}
void del(int x) {
int si = g[x].size();
for (int i = 0; i < si; i++) {
int to = g[x][i];
if (s.find(make_pair(deg[to], to)) != s.end() &&
ma[make_pair(min(x, to), max(x, to))]) {
s.erase(make_pair(deg[to], to));
deg[to]--;
s.insert(make_pair(deg[to], to));
ma[make_pair(min(x, to), max(x, to))] = 0;
}
}
}
void tu() {
while (!s.empty() && (*s.begin()).first < k) {
del((*s.begin()).second);
s.erase(s.begin());
}
}
void put() {
printf("si:%d\n", s.size());
set<pair<int, int> >::iterator it = s.begin(), en = s.end();
while (it != en) {
printf("%d %d\n", (*it).first, (*it).second);
it++;
}
}
void delf(int x) {
s.erase(make_pair(deg[x], x));
deg[x]--;
s.insert(make_pair(deg[x], x));
}
void work() {
scanf("%d%d%d", &n, &m, &k);
for (int i = 0; i < m; i++) {
int x, y;
scanf("%d%d", &x, &y);
x--;
y--;
edge[i][0] = x;
edge[i][1] = y;
add(x, y);
add(y, x);
ma[make_pair(min(x, y), max(x, y))] = 1;
}
for (int i = 0; i < n; i++) {
s.insert(make_pair(deg[i], i));
}
for (int i = m - 1; i >= 0; i--) {
tu();
res[i] = s.size();
if (s.find(make_pair(deg[edge[i][0]], edge[i][0])) != s.end() &&
s.find(make_pair(deg[edge[i][1]], edge[i][1])) != s.end()) {
delf(edge[i][0]);
delf(edge[i][1]);
ma[make_pair(min(edge[i][0], edge[i][1]), max(edge[i][0], edge[i][1]))] =
0;
}
}
for (int i = 0; i < m; i++) {
printf("%d\n", res[i]);
}
}
int main() {
work();
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
struct edge {
int v, id;
};
map<int, int> D;
vector<edge> E[200005];
int ans[200005], n, m, u, v, k, x[200005], y[200005];
bool vis[200005];
queue<int> Q;
int main() {
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= m; i++) {
scanf("%d%d", &x[i], &y[i]);
E[x[i]].push_back((edge){y[i], i});
E[y[i]].push_back((edge){x[i], i});
D[x[i]]++;
D[y[i]]++;
}
for (auto p : D)
if (p.second < k) Q.push(p.first);
while (!Q.empty()) {
u = Q.front();
Q.pop();
D.erase(u);
for (auto &j : E[u])
if (D.count(j.v) && !vis[j.id])
if (--D[j.v] < k) Q.push(j.v), vis[j.id] = true;
}
ans[m] = D.size();
for (int i = m; i > 1; i--) {
if (D.count(x[i]) && D.count(y[i]) && !vis[i]) {
if (--D[x[i]] < k) Q.push(x[i]);
if (--D[y[i]] < k) Q.push(y[i]);
vis[i] = true;
}
while (!Q.empty()) {
u = Q.front();
Q.pop();
D.erase(u);
for (auto &j : E[u])
if (D.count(j.v) && !vis[j.id])
if (--D[j.v] < k) Q.push(j.v), vis[j.id] = true;
}
ans[i - 1] = D.size();
}
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, m, k;
vector<int> used;
vector<int> selected;
vector<vector<int>> g;
void dfs(int cur) {
used[cur] = 1;
selected[cur] = 1;
int cnt = 0;
for (auto t : g[cur]) {
if (!used[t]) {
dfs(t);
}
if (selected[t]) {
cnt++;
}
}
if (cnt < k) {
selected[cur] = 0;
}
}
signed main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cin >> n >> m >> k;
g.resize(n);
selected.assign(n, 0);
for (int i = 0; i < m; i++) {
int u, v;
cin >> u >> v;
u--;
v--;
g[u].push_back(v);
g[v].push_back(u);
used.assign(n, 0);
if (!selected[u]) {
dfs(u);
} else if (!selected[v]) {
dfs(v);
}
int cur = 0;
for (int i = 0; i < n; i++) {
cur += selected[i];
}
cout << cur << '\n';
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class Test {
static int readInt() {
int ans = 0;
boolean neg = false;
try {
boolean start = false;
for (int c = 0; (c = System.in.read()) != -1; ) {
if (c == '-') {
start = true;
neg = true;
continue;
} else if (c >= '0' && c <= '9') {
start = true;
ans = ans * 10 + c - '0';
} else if (start) break;
}
} catch (IOException e) {
}
return neg ? -ans : ans;
}
static long readLong() {
long ans = 0;
boolean neg = false;
try {
boolean start = false;
for (int c = 0; (c = System.in.read()) != -1; ) {
if (c == '-') {
start = true;
neg = true;
continue;
} else if (c >= '0' && c <= '9') {
start = true;
ans = ans * 10 + c - '0';
} else if (start) break;
}
} catch (IOException e) {
}
return neg ? -ans : ans;
}
static String readString() {
StringBuilder b = new StringBuilder();
try {
boolean start = false;
for (int c = 0; (c = System.in.read()) != -1; ) {
if (c >= '0' && c <= '9') {
start = true;
b.append((char) (c));
} else if (start) break;
}
} catch (IOException e) {
}
return b.toString().trim();
}
static PrintWriter writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
void start() {
int n = readInt(), m = readInt(), k = readInt();
Set<Integer>[] g = new Set[n+1];
boolean[] trip = new boolean[n+1];
for (int i = 1; i <= n; i++) g[i] = new HashSet<>();
int[] q = new int[n+1];
int ans = 0;
while (m-- > 0) {
int u = readInt(), v = readInt();
g[u].add(v);
g[v].add(u);
if (trip[u] && trip[v]) {
writer.println(ans);
continue;
}
if (g[u].size() < k || g[v].size() < k) {
writer.println(ans);
continue;
}
int a = 0, b = 0;
if (!trip[u] && !trip[v]) {
if (g[u].size() > k && g[v].size() > k) {
writer.println(ans);
continue;
}
if (g[v].size() == k) {
int t = v;
v = u;
u = t;
}
List<Integer> checked = new ArrayList<>();
boolean ok = true;
loop:
for (int x : g[u]) {
for (int y : checked)
if (!g[y].contains(x)) {
ok = false;
break loop;
}
checked.add(x);
}
if (ok) {
checked.add(u);
for (int x : checked) {
if (trip[x]) continue;
ans++;
trip[x] = true;
q[b++] = x;
}
}
} else {
if (trip[v]) {
int t = v;
v = u;
u = t;
}
int in = 0;
for (int x : g[v])
if (trip[x]) in++;
if (in >= k) {
ans++;
trip[v] = true;
q[b++] = v;
}
}
while (a < b) {
int x = q[a++];
for (int y : g[x]) {
if (!trip[y] && g[y].size() >= k) {
int in = 0;
for (int z : g[y])
if (trip[z]) in++;
if (in >= k) {
ans++;
trip[y] = true;
q[b++] = y;
}
}
}
}
writer.println(ans);
}
}
public static void main(String[] args) {
Test te = new Test();
te.start();
writer.flush();
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int p[300005], c[300005], a[300005];
int main() {
ios_base::sync_with_stdio(false);
int n, i, u, v, j, f;
cin >> n;
for (i = 0; i < n - 1; i++) {
cin >> u >> v;
p[v] = u;
c[u]++;
}
for (i = 0; i < n; i++) {
cin >> a[i];
}
i = 0;
j = 1;
f = 0;
while (i < n) {
for (j; j < n && c[a[i]] > 0; j++) {
if (p[a[j]] != a[i]) {
f = 1;
break;
}
c[a[i]]--;
}
if (c[a[i]] > 0) f = 1;
if (f == 1) break;
i++;
}
if (f == 0)
cout << "Yes";
else
cout << "No";
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = (int)2e5 + 5;
int n, m, k;
vector<pair<int, int> > out[maxn];
int la[maxn];
int pos[maxn];
int deg[maxn];
int add[maxn];
bool dead[maxn];
set<pair<int, int>, greater<pair<int, int> > > s;
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cin >> n >> m >> k;
fill(la, la + n, -1);
for (auto i = 0; i < m; ++i) {
int v, u;
cin >> v >> u;
--v;
--u;
out[v].push_back(make_pair(i, u));
out[u].push_back(make_pair(i, v));
++deg[v];
++deg[u];
if (deg[v] == k) {
pos[v] = out[v].size() - 1;
la[v] = i;
}
if (deg[u] == k) {
pos[u] = out[u].size() - 1;
la[u] = i;
}
}
for (auto i = 0; i < n; ++i)
if (la[i] == -1) la[i] = m;
for (auto i = 0; i < n; ++i) cout << i << " " << la[i] << endl;
for (auto i = 0; i < n; ++i) s.insert(make_pair(la[i], i));
while (!s.empty()) {
int v = s.begin()->second;
dead[v] = true;
s.erase(s.begin());
for (auto e : out[v]) {
int u = e.second;
if (dead[u] || la[u] == la[v]) continue;
if (la[u] < e.first) continue;
s.erase(make_pair(la[u], u));
++pos[u];
while (pos[u] != (int)out[u].size() && dead[out[u][pos[u]].second])
++pos[u];
if (pos[u] == (int)out[u].size())
la[u] = m;
else
la[u] = out[u][pos[u]].first;
la[u] = min(la[u], la[v]);
s.insert(make_pair(la[u], u));
}
}
for (auto i = 0; i < n; ++i) add[la[i]]++;
int curr = 0;
for (auto i = 0; i < m; ++i) {
curr += add[i];
cout << curr << '\n';
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const long long LINF = 1e18;
const int INF = 1e9;
const int M = 1e9 + 7;
const double EPS = 1e-9;
using namespace std;
vector<vector<pair<int, int> > > g;
int main(int argc, const char* argv[]) {
std::ios_base::sync_with_stdio(0);
int n, m, k;
cin >> n >> m >> k;
g.resize(n);
int u[200100], v[200100];
for (int i = 0; i < (int)(m); i++) {
cin >> u[i] >> v[i];
g[--u[i]].push_back(make_pair(--v[i], i));
g[v[i]].push_back(make_pair(u[i], i));
}
int used[200100] = {0};
int deg[200100];
set<int> deleted;
for (int i = 0; i < (int)(n); i++) {
deg[i] = g[i].size();
if (deg[i] < k) deleted.insert(i);
}
int res[200100];
for (int curS = (int)(m - 1); curS >= 0; curS--) {
if (curS != m - 1 && !used[curS + 1]) {
used[curS] = 1;
deg[u[curS]]--;
deg[v[curS]]--;
if (deg[u[curS]] < k) deleted.insert(u[curS]);
if (deg[v[curS]] < k) deleted.insert(v[curS]);
}
for (auto it = deleted.begin(); it != deleted.end(); it++) {
for (auto p = g[*it].begin(); p != g[*it].end(); p++) {
if (used[p->second]) continue;
used[p->second] = 1;
deg[p->first]--;
if (deg[p->first] < k) deleted.insert(p->first);
deg[*it]--;
}
}
res[curS] = n - deleted.size();
}
for (int i = 0; i < (int)(m); i++) cout << res[i] << '\n';
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | python3 | def findSolution(graph,edges,m,k,n):
toBeRemoved = []
numOfConnections = [len(lst) for lst in graph]
for i in range(0,n):
if numOfConnections[i]<k:
toBeRemoved.append(i)
while len(toBeRemoved) >0:
node = toBeRemoved.pop(0)
for i in graph[node]:
numOfConnections[i]-=1
if numOfConnections[i]<k:
toBeRemoved.append(i)
remaining = len(list(filter(lambda x: x>=k,numOfConnections)))
result = [0 for i in range(m)]
result[-1] = remaining #Because at the end, all the remaining would be friends and would be going
#next, we loop in reverse order and keep on removing one edge for next stage and compute answer at that stage
for i in range(m-1,0,-1):
u,v = edges[i]
if numOfConnections[u]<k or numOfConnections[v]<k: #This means that the current ith edge doesn't contribute to result. So its ans is the previous val only
result[i] = remaining
continue
#As this equals k, its contribution should be removed for next iterations (as edge is removed at each stage).. So remove one of the nodes in this edge
if numOfConnections[u] == k:
toBeRemoved.append(u)
numOfConnections[u]-=1
elif numOfConnections[v] == k:
toBeRemoved.append(v)
numOfConnections[v]-=1
#Below condition means that the current edge doesn't make any difference as there are already more than k friends
if numOfConnections[u] > k and numOfConnections[v] > k:
numOfConnections[u]-=1
numOfConnections[v] -= 1
graph[u].remove(v)
graph[v].remove(u)
result[i-1] = remaining
continue
while len(toBeRemoved)>0:
node = toBeRemoved.pop(0)
remaining -= 1
for j in graph[node]:
numOfConnections[j]-=1
if numOfConnections[j]==k-1:
toBeRemoved.append(j)
result[i-1] = remaining
for i in result:
print(i)
n,m,k = map(int,input().split())
graph = [[] for i in range(n)]
edges = []
for _ in range(m):
u,v = map(int,input().split())
u-=1
v-=1
graph[u].append(v)
graph[v].append(u)
edges.append((u,v))
findSolution(graph,edges,m,k,n)
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, m, k, ans[200005], cnt[200005];
vector<int> a[200005];
pair<int, int> ed[200005];
set<pair<int, int> > s;
set<pair<int, int> >::iterator it;
bool dd[200005];
void Delete() {
while (s.size()) {
it = s.begin();
pair<int, int> temp = *it;
if (temp.first >= k) break;
dd[temp.second] = 0;
cnt[temp.second] = 0;
s.erase(it);
for (int v : a[temp.second])
if (dd[v]) {
it = s.lower_bound(make_pair(cnt[v], v));
s.erase(it);
--cnt[v];
s.insert(make_pair(cnt[v], v));
}
}
}
void Pro(int v) {
it = s.lower_bound(make_pair(cnt[v], v));
s.erase(it);
--cnt[v];
s.insert(make_pair(cnt[v], v));
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> m >> k;
for (int i = (1); i <= (m); ++i) {
cin >> ed[i].first >> ed[i].second;
++cnt[ed[i].first];
++cnt[ed[i].second];
a[ed[i].first].push_back(ed[i].second);
a[ed[i].second].push_back(ed[i].first);
}
for (int i = (1); i <= (n); ++i) {
s.insert(make_pair(cnt[i], i));
dd[i] = 1;
}
Delete();
ans[m] = s.size();
for (int i = (m - 1); i >= (1); --i) {
if (dd[ed[i + 1].first] && dd[ed[i + 1].second]) {
Pro(ed[i + 1].first);
Pro(ed[i + 1].second);
Delete();
}
ans[i] = s.size();
}
for (int i = (1); i <= (m); ++i) cout << ans[i] << '\n';
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 1000007, inf = 0x3f3f3f3f;
set<int> e[N];
int n, m, k;
pair<int, int> edges[N];
set<int> st;
int main() {
ios::sync_with_stdio(false);
srand(time(NULL));
cin >> n >> m >> k;
for (int i = 0; i < m; ++i) {
int u, v;
cin >> u >> v;
e[u].insert(v);
e[v].insert(u);
edges[i] = {u, v};
st.insert(u);
}
queue<int> q;
for (int u = 1; u <= n; ++u) {
if (e[u].size() >= k)
st.insert(u);
else
q.push(u);
}
vector<int> ans;
for (int i = m - 1; i >= 0; --i) {
while (q.size()) {
int u = q.front();
q.pop();
for (int v : e[u]) {
if (st.count(v)) {
e[v].erase(u);
if (e[v].size() < k) {
st.erase(v);
q.push(v);
}
}
}
}
ans.push_back(st.size());
int u, v;
u = edges[i].first, v = edges[i].second;
e[u].erase(v);
e[v].erase(u);
if (st.count(u)) {
if (e[u].size() < k) {
st.erase(u);
q.push(u);
}
}
if (st.count(v)) {
if (e[v].size() < k) {
st.erase(v);
q.push(v);
}
}
}
reverse(ans.begin(), ans.end());
for (int i = 0; i < m; ++i) cout << ans[i] << endl;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
using namespace std;
#define ordered_set tree<int, null_type,less<int>, rb_tree_tag,tree_order_statistics_node_update>
#define ll long long int
#define ld long double
#define ff first
#define ss second
#define pb push_back
#define mp make_pair
const int M=2e5+5;
set< pair<int,int> > s;
set<int> vtr[M];
int u[M],ans[M],v[M],d[M];
int main()
{
ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
int n,m,k,i,j;
cin>>n>>m>>k;
for(i=1;i<=m;i++)
{
cin>>u[i]>>v[i];
d[u[i]]++;
vtr[u[i]].insert(v[i]);
vtr[v[i]].insert(u[i]);
d[v[i]]++;
}
for(i=1;i<=n;i++)
s.insert(mp(d[i],i));
for(i=m;i>=1;i--)
{
// cout<<i<<"------"<<endl;
// for(j=1;j<=n;j++)
// cout<<d[j]<<" ";
// cout<<endl;
while(s.size())
{
if((*s.begin()).ff<k)
{
int vt=(*s.begin()).ss;
d[vt]=0;
for(auto it=vtr[vt].begin();it!=vtr[vt].end();it++)
{
int x=*it;
if(d[x]>=k)
{
s.erase(mp(d[x],x));
d[x]--;
s.insert(mp(d[x],x));
}
}
s.erase(s.begin());
}
else
break;
}
ans[i]=s.size();
if(d[u[i]]>=k && d[v[i]]>=k)
{
s.erase(mp(d[u[i]],u[i]));
d[u[i]]--;
s.insert(mp(d[u[i]],u[i]));
s.erase(mp(d[v[i]],v[i]));
d[v[i]]--;
s.insert(mp(d[v[i]],v[i]));
vtr[u[i]].erase(v[i]);
vtr[v[i]].erase(u[i]);
}
}
for(i=1;i<=m;i++)
cout<<ans[i]<<"\n";
return 0;
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 3e5 + 7;
const long long INF = 1e18 + 7;
pair<int, int> a[N];
int d[N], ans[N];
int n, m, k;
set<pair<int, int> > s;
vector<pair<int, int> > g[N];
int main() {
cin >> n >> m >> k;
for (int i = 1; i <= m; i++) {
scanf("%d%d", &a[i].first, &a[i].second);
g[a[i].first].push_back(make_pair(a[i].second, i));
g[a[i].second].push_back(make_pair(a[i].first, i));
}
for (int i = 1; i <= n; i++) {
d[i] = g[i].size();
s.insert(make_pair(d[i], i));
}
for (int i = m; i >= 1; i--) {
while (!s.empty()) {
set<pair<int, int> >::iterator it = s.begin();
pair<int, int> v = *it;
if (v.first < k) {
s.erase(v);
for (pair<int, int> to : g[v.second]) {
if (to.second > i) break;
s.erase(make_pair(d[to.first], to.first));
d[to.first]--;
if (d[to.first] >= k) s.insert(make_pair(d[to.first], to.first));
}
} else
break;
}
ans[i] = s.size();
if (d[a[i].first] >= k && d[a[i].second] >= k) {
s.erase(make_pair(d[a[i].first], a[i].first));
d[a[i].first]--;
if (d[a[i].first] >= k)
s.insert(make_pair(d[a[i].first], a[i].first));
else {
for (pair<int, int> to : g[a[i].first]) {
if (to.second >= i) break;
s.erase(make_pair(d[to.first], to.first));
d[to.first]--;
if (d[to.first] >= k) s.insert(make_pair(d[to.first], to.first));
}
}
s.erase(make_pair(d[a[i].second], a[i].second));
d[a[i].second]--;
if (d[a[i].second] >= k)
s.insert(make_pair(d[a[i].second], a[i].second));
else {
for (pair<int, int> to : g[a[i].second]) {
if (to.second >= i) break;
s.erase(make_pair(d[to.first], to.first));
d[to.first]--;
if (d[to.first] >= k) s.insert(make_pair(d[to.first], to.first));
}
}
}
}
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 3;
int n, m, k, deg[N], x[N], y[N], ans[N], cnt;
set<int> G[N];
set<int>::iterator it;
void Del() {
queue<int> q;
for (int i = 1; i <= n; i++)
if (deg[i] > 0 && deg[i] < k) q.push(i);
while (!q.empty()) {
int u = q.front();
q.pop();
cnt--;
for (it = G[u].begin(); it != G[u].end(); it++) {
int v = *it;
deg[v]--;
if (deg[v] > 0 && deg[v] < k) q.push(v);
G[v].erase(u);
}
G[u].clear();
deg[u] = 0;
}
}
int main() {
memset(deg, 0, sizeof deg);
scanf("%d%d%d", &n, &m, &k);
cnt = n;
for (int i = 1; i <= m; i++) {
scanf("%d%d", x + i, y + i);
deg[x[i]]++;
deg[y[i]]++;
G[x[i]].insert(y[i]);
G[y[i]].insert(x[i]);
}
for (int i = m; i; i--) {
Del();
ans[i] = cnt;
if (G[x[i]].count(y[i])) {
G[x[i]].erase(y[i]);
G[y[i]].erase(x[i]);
deg[x[i]]--;
deg[y[i]]--;
}
}
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 2E5 + 10;
set<int> adj[N];
set<pair<int, int> > S;
int n, m, k;
int x[N], y[N];
int ans[N];
void Read_Input() {
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= m; i++) {
scanf("%d%d", &x[i], &y[i]);
adj[x[i]].insert(y[i]);
adj[y[i]].insert(x[i]);
}
}
void Erase(int u) {
for (auto v : adj[u]) {
S.erase(pair<int, int>(adj[v].size(), v));
adj[v].erase(u);
if (adj[v].size()) S.insert(pair<int, int>(adj[v].size(), v));
}
adj[u].clear();
}
void Remove() {
while (S.size() && S.begin()->first < k) {
int u = S.begin()->second;
Erase(u);
S.erase(S.begin());
}
}
void Solve() {
for (int i = 1; i <= n; i++) S.insert(pair<int, int>(adj[i].size(), i));
Remove();
for (int i = m; i >= 1; i--) {
ans[i] = S.size();
int u = x[i], v = y[i];
S.erase(pair<int, int>(adj[u].size(), u));
S.erase(pair<int, int>(adj[v].size(), v));
adj[u].erase(v);
adj[v].erase(u);
if (adj[u].size()) S.insert(pair<int, int>(adj[u].size(), u));
if (adj[v].size()) S.insert(pair<int, int>(adj[v].size(), v));
Remove();
}
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
}
int main() {
Read_Input();
Solve();
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.*;
import java.util.*;
public class Main {
static int deg[];
static Set<Integer> s;
static Set[] graph;
static int n,k;
public static void main(String[] args) {
FastReader sc = new FastReader();
OutputWriter out = new OutputWriter(System.out);
n = sc.nextInt();
int m = sc.nextInt();
k = sc.nextInt();
graph = new Set[n];
for(int i=0;i<n;i++) {
graph[i] = new HashSet();
}
deg = new int[n];
List<Edge> edges = new ArrayList<>();
for(int i=0;i<m;i++) {
int u = sc.nextInt()-1;
int v = sc.nextInt()-1;
edges.add(new Edge(u,v));
graph[u].add(v);
graph[v].add(u);
deg[u]++;
deg[v]++;
}
s = new HashSet<>();
List<Vertex> ver = new ArrayList<>();
for(int i=0;i<n;i++) {
s.add(i);
ver.add(new Vertex(i,deg[i]));
}
ver.sort((v1,v2)->v1.d-v2.d);
int i=0;
for(i=0;i<n;i++) {
if(ver.get(i).d<k) {
int u = ver.get(i).u;
if(s.contains(u)) {
dfs(u);
}
else {
break;
}
}
}
List<Integer> ans = new ArrayList<>();
ans.add(s.size());
for(int j=m-1;j>0;j--) {
Edge e = edges.get(j);
graph[e.u].remove(e.v);
graph[e.v].remove(e.u);
if(s.contains(e.u) && s.contains(e.v)) {
dfs(e.u);
if(s.contains(e.v)) {
dfs(e.v);
}
}
ans.add(s.size());
}
for(int j=ans.size()-1;j>=0;j--) {
out.println(ans.get(j));
}
out.close();
}
static void dfs(int u) {
deg[u]--;
if(deg[u]>=k) {
return;
}
s.remove(u);
for(int v:(Set<Integer>) graph[u]) {
if(s.contains(v)) {
dfs(v);
}
}
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void println(int i) {
writer.println(i);
}
}
class Edge{
int u,v;
Edge(int i,int j){
u = i;
v = j;
}
}
class Vertex{
int u,d;
Vertex(int i,int j){
u = i;
d = j;
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MAXN = 2e5 + 5;
int n, m, k, x[MAXN], y[MAXN], deg[MAXN], cnt;
vector<pair<int, int> > E[MAXN];
bool removed[MAXN];
void ukloni(int x, int tijme) {
if (!removed[x] && deg[x] < k) {
removed[x] = true;
cnt--;
for (auto e : E[x])
if (e.second < tijme) {
deg[e.first]--;
ukloni(e.first, tijme);
}
}
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cin >> n >> m >> k;
for (int i = 0; i < m; ++i) {
cin >> x[i] >> y[i];
E[x[i]].push_back(pair<int, int>(y[i], i));
E[y[i]].push_back(pair<int, int>(x[i], i));
deg[x[i]]++;
deg[y[i]]++;
}
cnt = n;
for (int i = 1; i < n + 1; ++i)
if (deg[i] < k) ukloni(i, MAXN);
vector<int> sol;
for (int i = m - 1; i >= 0; --i) {
sol.push_back(cnt);
deg[x[i]]--;
deg[y[i]]--;
if (!removed[x[i]] && !removed[y[i]]) {
ukloni(x[i], i);
ukloni(y[i], i);
}
}
for (int i = ((int)sol.size()) - 1; i >= 0; --i) cout << sol[i] << "\n";
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
struct con {
int x, y;
} a[200002];
struct node {
int id, d;
} p[200002];
int head[200002], ver[200002 * 2], nxt[200002 * 2], l;
int n, m, k, i, j, d[200002], ans[200002], sum;
bool cut[200002];
void insert(int x, int y) {
l++;
ver[l] = y;
nxt[l] = head[x];
head[x] = l;
d[y]++;
}
int my_comp(const node &x, const node &y) { return x.d < y.d; }
void dfs(int x, int last) {
d[x]--;
for (int i = head[x]; i; i = nxt[i]) {
if (ver[i] == last) {
ver[i] = 0;
break;
}
}
if (d[x] >= k || cut[x]) return;
sum--;
cut[x] = 1;
for (int i = head[x]; i; i = nxt[i]) {
int y = ver[i];
if (y == last)
ver[i] = 0;
else if (!cut[y] && y != 0)
dfs(y, x);
}
}
int main() {
cin >> n >> m >> k;
for (i = 1; i <= m; i++) {
int u, v;
cin >> u >> v;
insert(u, v);
insert(v, u);
a[i].x = u, a[i].y = v;
}
for (i = 1; i <= n; i++) p[i] = (node){i, d[i]};
sort(p + 1, p + n + 1, my_comp);
for (i = 1; i <= n; i++) {
int x = p[i].id;
if (d[x] < k) {
d[x] = 0;
cut[x] = 1;
for (int j = head[x]; j; j = nxt[j]) d[ver[j]]--;
}
}
for (i = 1; i <= n; i++) {
if (d[i] >= k) ans[m]++;
}
sum = ans[m];
for (i = m - 1; i >= 1; i--) {
int x = a[i + 1].x, y = a[i + 1].y;
if (!cut[x] && !cut[y]) dfs(x, y), dfs(y, x);
ans[i] = sum;
}
for (i = 1; i <= m; i++) cout << ans[i] << endl;
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.HashSet;
import java.util.Arrays;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.util.TreeSet;
import java.io.InputStream;
/**
* @author khokharnikunj8
*/
public class Main {
public static void main(String[] args) {
new Thread(null, new Runnable() {
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
}
void solve() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
ScanReader in = new ScanReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
ETrips solver = new ETrips();
solver.solve(1, in, out);
out.close();
}
static class ETrips {
int[][] G;
public void solve(int testNumber, ScanReader in, PrintWriter out) {
int n = in.scanInt();
int m = in.scanInt();
int k = in.scanInt();
TreeSet<pair> bstCustom = new TreeSet<>();
int from[] = new int[m];
int to[] = new int[m];
for (int i = 0; i < m; i++) {
from[i] = in.scanInt();
to[i] = in.scanInt();
}
int[] ans = new int[m];
G = CodeHash.packGraph(from, to, n);
int degree[] = new int[n + 1];
for (int i = 1; i <= n; i++) bstCustom.add(new pair(degree[i] = G[i].length, i));
boolean[] is_inside = new boolean[n + 1];
Arrays.fill(is_inside, true);
HashSet<Long> set = new HashSet<>();
while (bstCustom.size() > 0 && bstCustom.first().x < k) {
for (int i : G[bstCustom.first().y]) {
if (is_inside[i]) {
if (set.contains(i * 1000000000l + bstCustom.first().y) || set.contains(bstCustom.first().y * 1000000000l + i))
continue;
bstCustom.remove(new pair(degree[i], i));
degree[i]--;
degree[bstCustom.first().y]--;
bstCustom.add(new pair(degree[i], i));
set.add(i * 1000000000l + bstCustom.first().y);
}
}
is_inside[bstCustom.first().y] = false;
bstCustom.remove(bstCustom.first());
}
ans[m - 1] = bstCustom.size();
for (int i = m - 1; i >= 1; i--) {
if (is_inside[from[i]] && is_inside[to[i]]) {
bstCustom.remove(new pair(degree[from[i]], from[i]));
degree[from[i]]--;
bstCustom.add(new pair(degree[from[i]], from[i]));
bstCustom.remove(new pair(degree[to[i]], to[i]));
degree[to[i]]--;
bstCustom.add(new pair(degree[to[i]], to[i]));
set.add(1000000000l * from[i] + to[i]);
}
while (bstCustom.size() > 0 && bstCustom.first().x < k) {
for (int j : G[bstCustom.first().y]) {
if (is_inside[j]) {
if (set.contains(j * 1000000000l + bstCustom.first().y) || set.contains(bstCustom.first().y * 1000000000l + j))
continue;
bstCustom.remove(new pair(degree[j], j));
degree[j]--;
degree[bstCustom.first().y]--;
bstCustom.add(new pair(degree[j], j));
set.add(j * 1000000000l + bstCustom.first().y);
}
}
is_inside[bstCustom.first().y] = false;
bstCustom.remove(bstCustom.first());
}
ans[i - 1] = bstCustom.size();
}
for (int i = 0; i < m; i++) out.println(ans[i]);
}
class pair implements Comparable<pair> {
int x;
int y;
public int compareTo(pair o) {
if (this.x == o.x) return this.y - o.y;
return this.x - o.x;
}
public pair(int x, int y) {
this.x = x;
this.y = y;
}
}
}
static class CodeHash {
public static int[][] packGraph(int[] from, int[] to, int n) {
int[][] g = new int[n + 1][];
int p[] = new int[n + 1];
for (int i : from) p[i]++;
for (int i : to) p[i]++;
for (int i = 0; i <= n; i++) g[i] = new int[p[i]];
for (int i = 0; i < from.length; i++) {
g[from[i]][--p[from[i]]] = to[i];
g[to[i]][--p[to[i]]] = from[i];
}
return g;
}
}
static class ScanReader {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public ScanReader(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0) return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
}
return neg * integer;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
struct edge {
int u, v;
};
struct adj {
int v, key;
};
int n, m, k;
vector<edge> edges;
set<pair<int, int>> s;
stack<int> res;
bool deleted[200000] = {false};
int deg[200000] = {0};
vector<adj> graph[200000];
int main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
cin >> n >> m >> k;
int u, v;
for (int i = 0; i < m; ++i) {
cin >> u >> v;
deg[u - 1]++;
deg[v - 1]++;
graph[u - 1].push_back({v - 1, i});
graph[v - 1].push_back({u - 1, i});
edges.push_back({u - 1, v - 1});
}
for (int i = 0; i < n; ++i) {
s.insert({deg[i], i});
}
int i = m - 1;
while (i >= 0) {
while (!s.empty() &&
(k > s.begin()->first || s.begin()->first > s.size())) {
auto it = *s.begin();
for (auto e : graph[it.second]) {
if (!deleted[e.key]) {
s.erase({deg[e.v], e.v});
deg[e.v]--;
if (deg[e.v] >= k) s.insert({deg[e.v], e.v});
deleted[e.key] = true;
}
}
s.erase(s.begin());
}
res.push(s.size());
if (!s.empty() && !deleted[i]) {
s.erase({deg[edges[i].u], edges[i].u});
s.erase({deg[edges[i].v], edges[i].v});
deg[edges[i].v]--;
deg[edges[i].u]--;
s.insert({deg[edges[i].u], edges[i].u});
s.insert({deg[edges[i].v], edges[i].v});
deleted[i] = true;
}
--i;
}
while (!res.empty()) {
cout << res.top() << "\n";
res.pop();
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MAXN = 200011;
struct edge {
int x, y, pre, nxt;
} E[MAXN << 1];
vector<int> G[MAXN];
int e[MAXN];
int head[MAXN], vis[MAXN], deg[MAXN], ans[MAXN];
int n, m, k, tot = -1, cnt;
inline void AddEdge(int x, int y) {
E[++tot] = (edge){x, y, -1, head[x]};
if (head[x] != -1) E[head[x]].pre = tot;
head[x] = tot;
E[++tot] = (edge){y, x, -1, head[y]};
if (head[y] != -1) E[head[y]].pre = tot;
head[y] = tot;
}
inline void Del(int x, int id) {
if (head[x] == id) head[x] = E[id].nxt;
if (E[id].pre != -1) E[E[id].pre].nxt = E[id].nxt;
if (E[id].nxt != -1) E[E[id].nxt].pre = E[id].pre;
}
inline void Erase(int x) {
if (vis[x]) return;
vis[x] = 1;
--cnt;
for (int i = head[x]; ~i; i = E[i].nxt) {
int to = E[i].y;
--deg[to];
Del(to, i ^ 1);
if (deg[to] < k) Erase(to);
}
}
queue<int> Q;
inline void Calc() {
for (int i = 1; i <= n; ++i) {
if (deg[i] < k) {
vis[i] = 1;
Q.push(i);
}
}
while (!Q.empty()) {
int now = Q.front();
Q.pop();
for (int i = 0; i < (int)G[now].size(); ++i) {
--deg[G[now][i]];
if (deg[G[now][i]] == 0) {
vis[G[now][i]] = 1;
Q.push(G[now][i]);
}
}
}
for (int i = 1; i <= n; ++i) {
if (!vis[i]) ++cnt;
}
}
int main() {
memset(head, -1, sizeof head);
scanf("%d%d%d", &n, &m, &k);
for (int i = 1, x, y; i <= m; ++i) {
scanf("%d%d", &x, &y);
G[x].push_back(y);
G[y].push_back(x);
AddEdge(x, y);
e[i] = tot - 1;
++deg[x];
++deg[y];
}
cnt = 0;
Calc();
ans[m] = cnt;
for (int j = 1; j <= n; ++j) {
printf("%d ", deg[j]);
}
puts("");
for (int i = m; i > 1; --i) {
if (vis[E[e[i]].x] || vis[E[e[i]].y]) {
ans[i - 1] = cnt;
continue;
}
Del(E[e[i]].x, e[i]);
Del(E[e[i]].y, e[i] ^ 1);
--deg[E[e[i]].x];
--deg[E[e[i]].y];
if (deg[E[e[i]].x] < k) Erase(E[e[i]].x);
if (deg[E[e[i]].y] < k) Erase(E[e[i]].y);
ans[i - 1] = cnt;
for (int j = 1; j <= n; ++j) {
printf("%d ", deg[j]);
}
puts("");
}
for (int i = 1; i <= m; ++i) {
printf("%d\n", ans[i]);
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, Head[400010], Next[400010], Go[400010], A[400010], Fa[400010], D[400010],
Cnt = 0;
void addedge(int x, int y) {
Go[++Cnt] = y;
Next[Cnt] = Head[x];
Head[x] = Cnt;
}
void DFS(int x = 1) {
for (int T = Head[x]; T; T = Next[T])
if (Go[T] != Fa[x]) Fa[Go[T]] = x, DFS(Go[T]);
}
signed main() {
scanf("%d", &n);
for (int i = 1; i < n; i++) {
int a, b;
scanf("%d%d", &a, &b);
addedge(a, b);
addedge(b, a);
D[a]++, D[b]++;
}
for (int i = 1; i <= n; i++) scanf("%d", &A[i]);
if (A[1] != 1) {
puts("No");
return 0;
}
DFS(1);
int l = 1;
for (int i = 2; i <= n; i++) {
if (Fa[A[i]] != A[l]) {
puts("No");
return 0;
}
D[A[l]]--;
D[A[i]]--;
while (D[A[l]] == 0 && l <= n) l++;
}
puts("Yes");
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.HashSet;
import java.util.Arrays;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.util.TreeSet;
import java.io.InputStream;
/**
* @author khokharnikunj8
*/
public class Main {
public static void main(String[] args) {
new Thread(null, new Runnable() {
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
}
void solve() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
ScanReader in = new ScanReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
ETrips solver = new ETrips();
solver.solve(1, in, out);
out.close();
}
static class ETrips {
int[][] G;
public void solve(int testNumber, ScanReader in, PrintWriter out) {
int n = in.scanInt();
int m = in.scanInt();
int k = in.scanInt();
TreeSet<pair> bstCustom = new TreeSet<>();
int from[] = new int[m];
int to[] = new int[m];
for (int i = 0; i < m; i++) {
from[i] = in.scanInt();
to[i] = in.scanInt();
}
int[] ans = new int[m];
G = CodeHash.packGraph(from, to, n);
int degree[] = new int[n + 1];
for (int i = 1; i <= n; i++) bstCustom.add(new pair(degree[i] = G[i].length, i));
boolean[] is_inside = new boolean[n + 1];
Arrays.fill(is_inside, true);
HashSet<Long> set = new HashSet<>();
while (bstCustom.size() > 0 && bstCustom.first().x < k) {
for (int i : G[bstCustom.first().y]) {
if (is_inside[i]) {
if (set.contains(i * 1000000l + bstCustom.first().y) || set.contains(bstCustom.first().y * 1000000l + i))
continue;
bstCustom.remove(new pair(degree[i], i));
degree[i]--;
degree[bstCustom.first().y]--;
bstCustom.add(new pair(degree[i], i));
set.add(i * 1000000l + bstCustom.first().y);
}
}
is_inside[bstCustom.first().y] = false;
bstCustom.remove(bstCustom.first());
}
ans[m - 1] = bstCustom.size();
for (int i = m - 1; i >= 1; i--) {
if (is_inside[from[i]] && is_inside[to[i]]) {
bstCustom.remove(new pair(degree[from[i]], from[i]));
degree[from[i]]--;
bstCustom.add(new pair(degree[from[i]], from[i]));
bstCustom.remove(new pair(degree[to[i]], to[i]));
degree[to[i]]--;
bstCustom.add(new pair(degree[to[i]], to[i]));
set.add(1000000l * from[i] + to[i]);
}
while (bstCustom.size() > 0 && bstCustom.first().x < k) {
for (int j : G[bstCustom.first().y]) {
if (is_inside[j]) {
if (set.contains(j * 1000000l + bstCustom.first().y) || set.contains(bstCustom.first().y * 1000000l + j))
continue;
bstCustom.remove(new pair(degree[j], j));
degree[j]--;
degree[bstCustom.first().y]--;
bstCustom.add(new pair(degree[j], j));
set.add(j * 1000000l + bstCustom.first().y);
}
}
is_inside[bstCustom.first().y] = false;
bstCustom.remove(bstCustom.first());
}
ans[i - 1] = bstCustom.size();
}
for (int i = 0; i < m; i++) out.println(ans[i]);
}
class pair implements Comparable<pair> {
int x;
int y;
public int compareTo(pair o) {
if (this.x == o.x) return this.y - o.y;
return this.x - o.x;
}
public pair(int x, int y) {
this.x = x;
this.y = y;
}
}
}
static class CodeHash {
public static int[][] packGraph(int[] from, int[] to, int n) {
int[][] g = new int[n + 1][];
int p[] = new int[n + 1];
for (int i : from) p[i]++;
for (int i : to) p[i]++;
for (int i = 0; i <= n; i++) g[i] = new int[p[i]];
for (int i = 0; i < from.length; i++) {
g[from[i]][--p[from[i]]] = to[i];
g[to[i]][--p[to[i]]] = from[i];
}
return g;
}
}
static class ScanReader {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public ScanReader(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0) return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
}
return neg * integer;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | // amigos y no más
// dile a la jardinera que traigo flores
// += O(logn) ; + = O(n)
//#pragma GCC optimize("Ofast")
//#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp> // Common file
#include <ext/pb_ds/tree_policy.hpp> // Including tree_order_statistics_node_update
#define fastio ios_base::sync_with_stdio(0);cin.tie(0)
#define MOD 998244353LL
#define MOD1 1000000009LL
#define LIM 262150
#define FORN(i,j,n) for(int i=j; i<n;i++)
#define FOR(i,n) FORN(i,0,n)
#define ones(x) __builtin_popcountll(x)
#define MAXIMO 20000000
using namespace std;
using namespace __gnu_pbds;
typedef long long ll ;
typedef unsigned long long ull ;
typedef tree<int,int,less<int>,rb_tree_tag,tree_order_statistics_node_update> ordered_set;
int n,m,k;
set<int> G[200005];
vector< pair<int,int> > v;
map <int,int> ma;
int ans[200005]={0};
queue<int> node_to_remove;
void step1(int x){
auto it= G[x].begin();
while(it!=G[x].end()){
bool flag = false;
int y = *it;
if( ma.count(y) ) {
if(ma[y] <= k) {
ma.erase(y); node_to_remove.push(y);
}
else {ma[y]--; G[y].erase(x);}
}
it++;
}
}
void remove_node(int x){
step1(x);
//step2
while(!node_to_remove.empty()){
step1(node_to_remove.front());
node_to_remove.pop();
}
}
void go(){
cin>>n>>m>>k;
for(int i=0; i<m; i++){
int x,y; cin>>x>>y;
G[x].insert(y);
G[y].insert(x);
v.push_back({x,y});
}
for(int i=1;i<=n;i++) {
if(G[i].size() >= k) ma[i] = G[i].size();
}
for(int i=1;i<=n;i++) {
if(!ma.count(i)){
remove_node(i);
}
}
ans[m] = ma.size();
for(int i=m-1; i>=0;i--){
int & x = v[i].first; int & y = v[i].second;
if(ma.count(x) && ma.count(y) ){
if(ma[x] <= k && ma[y] <= k) {
ma.erase(y); ma.erase(x);
remove_node(x); remove_node(y);
}
else if(ma[x] <= k){
ma.erase(x); remove_node(x);
if(ma.count(y)) ma[y]--;
}
else if(ma[y] <= k){
ma.erase(y);remove_node(y);
if(ma.count(x)) ma[x]--;
}
else{
ma[x]--; ma[y]--;
G[x].erase(y);
G[y].erase(x);
}
}
ans[i] = ma.size();
}
for(int i=1; i<=m;i++){
cout<<ans[i]<<"\n";
}
}
int main() {
fastio;
go();
return 0;
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int n, m, k, ans, d[200010], u[200010], v[200010], t[200010];
std::set<int> next[200010];
inline void remove(int x) {
if (!d[x]) return;
ans--;
d[x] = 0;
for (auto y : next[x]) {
next[y].erase(x);
if (d[y] && --d[y] < k) remove(y);
}
next[x].clear();
}
int main() {
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= m; i++) {
scanf("%d%d", u + i, v + i);
next[u[i]].insert(v[i]);
next[v[i]].insert(u[i]);
d[u[i]]++;
d[v[i]]++;
}
for (int i = 1; i <= n; i++)
if (d[i]) ans++;
for (int i = 1; i <= n; i++)
if (d[i] < k) remove(i);
for (int i = m; i; i--) {
t[i] = ans;
if (d[v[i]] && d[u[i]]) {
next[v[i]].erase(u[i]);
next[u[i]].erase(v[i]);
if (d[u[i]] && --d[u[i]] < k) remove(u[i]);
if (d[v[i]] && --d[v[i]] < k) remove(v[i]);
}
}
for (int i = 1; i <= m; i++) printf("%d\n", t[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
vector<int> ad[200005];
set<int> s;
vector<int> r;
set<int> w;
int k;
int ff(int x) {
int q, e, count1 = 0, cc = 1;
for (int i = 0; i < ad[x].size(); i++) {
q = ad[x][i];
if (w.find(q) != w.end()) {
continue;
cc++;
}
if (s.find(q) == s.end()) {
if (ad[q].size() >= k) {
w.insert(q);
e = ff(q);
if (e >= k) {
count1++;
}
}
} else if (s.find(q) != s.end())
count1++;
if (count1 >= k) {
s.insert(x);
return count1;
;
}
}
if (cc + count1 < k) r.push_back(x);
return count1;
}
int main() {
int n, m, a, b, x, y;
cin >> n >> m >> k;
while (m--) {
cin >> x >> y;
ad[x].push_back(y);
ad[y].push_back(x);
if (s.find(x) == s.end()) {
if (ad[x].size() >= k) {
w.insert(x);
ff(x);
}
}
for (int i = 0; i < r.size(); i++) {
w.erase(r[i]);
}
r.clear();
int v = w.size();
int c = 0;
if (v > k) {
for (int i = 0; i < ad[x].size(); i++) {
if (w.find(ad[x][i]) != w.end()) {
c++;
}
}
if (c >= k) {
s.insert(x);
for (int i = 0; i < ad[x].size(); i++) {
if (w.find(ad[x][i]) != w.end()) {
s.insert(ad[x][i]);
}
}
}
}
w.clear();
if (s.find(y) == s.end()) {
if (ad[y].size() >= k) {
ff(y);
}
}
x = y;
for (int i = 0; i < r.size(); i++) {
w.erase(r[i]);
}
r.clear();
v = w.size();
c = 0;
if (v > k) {
for (int i = 0; i < ad[x].size(); i++) {
if (w.find(ad[x][i]) != w.end()) {
c++;
}
}
if (c >= k) {
s.insert(x);
for (int i = 0; i < ad[x].size(); i++) {
if (w.find(ad[x][i]) != w.end()) {
s.insert(ad[x][i]);
}
}
}
}
w.clear();
cout << s.size() << endl;
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
using v2d = vector<vector<T>>;
template <class T>
bool uin(T &a, T b) {
return a > b ? (a = b, true) : false;
}
template <class T>
bool uax(T &a, T b) {
return a < b ? (a = b, true) : false;
}
mt19937 rng(chrono::system_clock::now().time_since_epoch().count());
const int maxN = 2e5 + 10;
const int maxM = 2e5 + 10;
int n, m, k, cnt[maxN], cur, ans[maxM];
vector<int> adj[maxN];
bool flag[maxN], h[maxN];
pair<int, int> edges[maxM];
set<pair<int, int>> erased;
void dfs1(int u) {
flag[u] = 1;
h[u] = 1;
for (auto &v : adj[u]) {
if (!flag[v]) {
dfs1(v);
}
cnt[u] += h[v];
}
if (cnt[u] < k) {
h[u] = 0;
}
}
void dfs2(int u) {
flag[u] = 1;
h[u] = 0;
cur--;
for (auto &v : adj[u]) {
if (!flag[v] && h[v] && !erased.count(make_pair(u, v))) {
cnt[v]--;
if (cnt[v] < k) {
dfs2(v);
}
}
}
}
void solve() {
cin >> n >> m >> k;
for (int i = 1; i <= (int)(m); ++i) {
int u, v;
cin >> u >> v;
if (u > v) {
swap(u, v);
}
adj[u].emplace_back(v);
adj[v].emplace_back(u);
edges[i] = make_pair(u, v);
}
for (int i = 1; i <= (int)(n); ++i) {
if (!flag[i]) {
dfs1(i);
}
}
for (int i = 1; i <= (int)(n); ++i) {
cnt[i] = 0;
for (auto &j : adj[i]) {
cnt[i] += h[j];
}
cur += h[i];
}
fill(flag + 1, flag + n + 1, 0);
for (int i = m; i; i--) {
int u, v;
tie(u, v) = edges[i];
ans[i] = cur;
if (h[u] && h[v]) {
cnt[u]--;
cnt[v]--;
erased.emplace(u, v);
erased.emplace(v, u);
if (!flag[u] && cnt[u] < k) {
dfs2(u);
}
if (!flag[v] && cnt[v] < k) {
dfs2(v);
}
}
}
for (int i = 1; i <= (int)(m); ++i) {
cout << ans[i] << "\n";
}
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
int T = 1;
while (T--) {
solve();
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int ANS = 0;
int n, m, k;
vector<vector<int> > adj;
vector<int> gr, friends, trip, vis;
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
int n, m, k;
cin >> n >> m >> k;
adj = vector<vector<int> >(n);
gr = friends = trip = vector<int>(n);
for (int i = 0; i < m; ++i) {
int a, b;
cin >> a >> b;
a--, b--;
adj[a].push_back(b);
adj[b].push_back(a);
gr[a]++;
gr[b]++;
if (gr[a] > k) friends[b]++;
if (gr[b] > k) friends[a]++;
if (gr[a] == k) {
for (int j = 0; j < adj[a].size(); ++j) {
int to = adj[a][j];
friends[to]++;
}
}
if (gr[b] == k) {
for (int j = 0; j < adj[b].size(); ++j) {
int to = adj[b][j];
friends[to]++;
}
}
int ans = 0;
for (int j = 0; j < n; ++j) {
int cnt = 0;
for (int u = 0; u < adj[j].size(); ++u) {
cnt += friends[adj[j][u]] >= k;
}
ans += cnt >= k;
}
cout << ans << "\n";
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const int N = 2e5 + 5;
using namespace std;
int n, m, k;
int res[N];
int x[N], y[N];
int bac[N];
set<int> a[N];
set<pair<int, int> > S;
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> m >> k;
for (int i = 1; i <= m; i++) {
cin >> x[i] >> y[i];
a[x[i]].insert(y[i]);
a[y[i]].insert(x[i]);
bac[x[i]]++;
bac[y[i]]++;
}
for (int i = 1; i <= n; i++)
if (bac[i] > 0) S.insert(make_pair(bac[i], i));
for (int i = m; i >= 1; i--) {
while (S.size() && S.begin()->first < k) {
for (int v : a[S.begin()->second]) {
S.erase(make_pair(bac[v], v));
bac[v]--;
if (bac[v] > 0) S.insert(make_pair(bac[v], v));
a[v].erase(S.begin()->second);
}
a[S.begin()->second].clear();
bac[S.begin()->second] = 0;
S.erase(S.begin());
}
res[i] = S.size();
if (bac[x[i]] && bac[y[i]]) {
S.erase(make_pair(bac[x[i]], x[i]));
bac[x[i]]--;
if (bac[x[i]] > 0) S.insert(make_pair(bac[x[i]], x[i]));
S.erase(make_pair(bac[y[i]], y[i]));
bac[y[i]]--;
if (bac[y[i]] > 0) S.insert(make_pair(bac[y[i]], y[i]));
a[x[i]].erase(y[i]);
a[y[i]].erase(x[i]);
}
}
for (int i = 1; i <= m; i++) cout << res[i] << '\n';
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | python3 | from collections import defaultdict
n, m, k = map(int, input().split())
xys = [tuple(map(int, input().split())) for _ in range(m)][::-1]
gv = defaultdict(set)
for x, y in xys:
gv[x].add(y)
gv[y].add(x)
q = [u for u, vs in tuple(gv.items()) if len(vs) < k]
i = 0
while i < len(q):
u = q[i]
i += 1
if u not in gv:
continue
for v in gv[u]:
gv[v].remove(u)
del gv[u]
anss = [len(gv)]
for x, y in xys:
try:
gv[x].remove(y)
except KeyError:
pass
try:
gv[y].remove(x)
except KeyError:
pass
q = []
if len(gv[x]) < k:
q.append(x)
if len(gv[y]) < k:
q.append(y)
i = 0
while i < len(q):
u = q[i]
i += 1
if u not in gv:
continue
for v in gv[u]:
gv[v].remove(u)
if len(gv[v]) < k:
q.append(v)
del gv[u]
anss.append(len(gv))
print('\n'.join(map(str, reversed(anss[:-1]))))
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const int ms = 200200;
int n, m, k;
int ans = 0;
int size[ms], par[ms];
std::pair<int, int> edges[ms];
std::vector<int> use[ms], dels[ms];
int deg[ms];
bool del[ms];
int getPar(int x) { return x == par[x] ? x : par[x] = getPar(par[x]); }
void makeUnion(int a, int b) {
a = getPar(a);
b = getPar(b);
if (a == b) return;
if (size[a] < size[b]) {
std::swap(a, b);
}
size[a] += size[b];
ans = std::max(size[a], ans);
par[b] = a;
}
int main() {
std::cin >> n >> m >> k;
for (int i = 1; i <= n; i++) {
par[i] = i;
size[i] = 1;
}
for (int i = 0; i < m; i++) {
int u, v;
scanf("%d %d", &u, &v);
use[u].push_back(i);
use[v].push_back(i);
deg[u]++;
deg[v]++;
edges[i] = std::pair<int, int>(u, v);
}
std::queue<int> q;
for (int i = 1; i <= n; i++) {
if (deg[i] < k) {
q.push(i);
}
}
del[m] = true;
for (int i = m; i >= 0; i--) {
if (!del[i]) {
int u = edges[i].first, v = edges[i].second;
if (deg[u] == k) {
q.push(u);
}
if (deg[v] == k) {
q.push(v);
}
deg[u]--;
deg[v]--;
del[i] = true;
dels[i].push_back(i);
}
while (!q.empty()) {
int on = q.front();
q.pop();
for (auto e : use[on]) {
if (!del[e]) {
int u = edges[e].first, v = edges[e].second;
if (deg[u] == k) {
q.push(u);
}
if (deg[v] == k) {
q.push(v);
}
deg[u]--;
deg[v]--;
del[e] = true;
dels[i].push_back(e);
}
}
}
}
for (int i = 0; i < m; i++) {
for (auto e : dels[i]) {
int u = edges[e].first, v = edges[e].second;
makeUnion(u, v);
}
printf("%d\n", ans);
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | /* Author: Ronak Agarwal, reader part not written by me*/
import java.io.* ; import java.util.* ;
import static java.lang.Math.min ; import static java.lang.Math.max ;
import static java.lang.Math.abs ; import static java.lang.Math.log ;
import static java.lang.Math.pow ; import static java.lang.Math.sqrt ;
/* Thread is created here to increase the stack size of the java code so that recursive dfs can be performed */
public class Codeshefcode{
public static void main(String[] args) throws IOException{
new Thread(null,new Runnable(){ public void run(){ exec_Code() ;} },"Solver",1l<<27).start() ;
}
static void exec_Code(){
try{
Solver Machine = new Solver() ;
Machine.Solve() ; Machine.Finish() ;}
catch(Exception e){ e.printStackTrace() ; print_and_exit() ;}
catch(Error e){ e.printStackTrace() ; print_and_exit() ; }
}
static void print_and_exit(){ System.out.flush() ; System.exit(-1) ;}
}
/* Implementation of the Reader class */
class Reader {
private InputStream mIs;
private byte[] buf = new byte[1024];
private int curChar,numChars;
public Reader() { this(System.in); }
public Reader(InputStream is) { mIs = is;}
public int read() {
if (numChars == -1) throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try { numChars = mIs.read(buf);} catch (IOException e) { throw new InputMismatchException();}
if (numChars <= 0) return -1;
}
return buf[curChar++];
}
public String nextLine(){
int c = read();
while (isSpaceChar(c)) c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString() ;
}
public String s(){
int c = read();
while (isSpaceChar(c)) c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
}while (!isSpaceChar(c));
return res.toString();
}
public long l(){
int c = read();
while (isSpaceChar(c)) c = read();
int sgn = 1;
if (c == '-') { sgn = -1 ; c = read() ; }
long res = 0;
do{
if (c < '0' || c > '9') throw new InputMismatchException();
res *= 10 ; res += c - '0' ; c = read();
}while(!isSpaceChar(c));
return res * sgn;
}
public int i(){
int c = read() ;
while (isSpaceChar(c)) c = read();
int sgn = 1;
if (c == '-') { sgn = -1 ; c = read() ; }
int res = 0;
do{
if (c < '0' || c > '9') throw new InputMismatchException();
res *= 10 ; res += c - '0' ; c = read() ;
}while(!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; }
public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; }
}
/* All the useful functions,constants,renamings are here*/
class Template{
/* Constants Section */
final int INT_MIN = Integer.MIN_VALUE ; final int INT_MAX = Integer.MAX_VALUE ;
final long LONG_MIN = Long.MIN_VALUE ; final long LONG_MAX = Long.MAX_VALUE ;
static long MOD = 1000000007 ;
static Reader ip = new Reader() ;
static PrintWriter op = new PrintWriter(System.out) ;
/* Methods for writing */
static void p(Object o){ op.print(o) ; }
static void pln(Object o){ op.println(o) ;}
static void Finish(){ op.flush(); op.close(); }
/* Implementation of operations modulo MOD */
static long inv(long a){ return powM(a,MOD-2) ; }
static long m(long a,long b){ return (a*b)%MOD ; }
static long d(long a,long b){ return (a*inv(b))%MOD ; }
static long powM(long a,long b){
if(b<0) return powM(inv(a),-b) ;
long ans=1 ;
for( ; b!=0 ; a=(a*a)%MOD , b/=2) if((b&1)==1) ans = (ans*a)%MOD ;
return ans ;
}
/* Renaming of some generic utility classes */
final static class mylist extends ArrayList<Integer>{}
final static class myset extends TreeSet<pair>{}
final static class mystack extends Stack<Integer>{}
final static class mymap extends TreeMap<Integer,Integer>{}
}
/* Implementation of the pair class, useful for every other problem */
class pair implements Comparable<pair>{
int x ; int y ;
pair(int _x,int _y){ x=_x ; y=_y ;}
public int compareTo(pair p){
return (this.x<p.x ? -1 : (this.x>p.x ? 1 : (this.y<p.y ? -1 : (this.y>p.y ? 1 : 0)))) ;
}
}
/* Main code starts here */
class Solver extends Template{
int n,m,k;
myset s;
int d[];
mylist N[];
void correctSet(){
while(!s.isEmpty()){
if(s.first().x>=k) break;
int u = s.pollFirst().y;
for(int v : N[u]) if(s.contains(new pair(d[v],v))){
s.remove(new pair(d[v],v));
d[v]--;
s.add(new pair(d[v],v));
}
}
}
public void Solve() throws IOException{
n = ip.i();
m = ip.i();
k = ip.i();
pair E[] = new pair[m];
N = new mylist[n+1];
d = new int[n+1];
for(int i=1 ; i<=n ; i++) N[i] = new mylist();
for(int i=0 ; i<m ; i++){
int u = ip.i(); int v = ip.i();
E[i] = new pair(u,v);
N[u].add(v); N[v].add(u);
d[u]++; d[v]++;
}
s = new myset();
for(int i=1 ; i<=n ; i++) s.add(new pair(d[i],i));
correctSet();
mylist res = new mylist();
for(int i=(m-1) ; i>=0 ; i--){
res.add(s.size());
int u = E[i].x; int v = E[i].y;
boolean uins = s.contains(new pair(d[u],u));
boolean vins = s.contains(new pair(d[v],v));
if(!uins || !vins) continue;
s.remove(new pair(d[u],u));
s.remove(new pair(d[v],v));
d[u]--; d[v]--;
N[u].remove(N[u].size()-1);
N[v].remove(N[v].size()-1);
s.add(new pair(d[u],u));
s.add(new pair(d[v],v));
correctSet();
}
Collections.reverse(res);
for(int elem : res) pln(elem);
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
signed main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
long long n, m, k;
cin >> n >> m >> k;
vector<vector<pair<long long, long long> > > friends(n);
vector<long long> pointers(n);
for (long long i = 0; i < m; i++) {
long long a, b;
cin >> a >> b;
friends[a - 1].push_back(make_pair(b - 1, i));
friends[b - 1].push_back(make_pair(a - 1, i));
}
queue<long long> q;
set<pair<long long, long long> > good;
for (long long i = 0; i < n; i++) {
if (friends[i].size() >= k) {
good.insert(make_pair(friends[i][k - 1].second, i));
pointers[i] = k - 1;
} else {
pointers[i] = -1;
q.push(i);
}
}
long long u = m;
vector<long long> ans(m);
fill(ans.begin(), ans.end(), 0);
while (good.size()) {
while (q.size()) {
long long V = q.front();
q.pop();
for (long long i = 0; i < friends[V].size(); i++) {
long long to = friends[V][i].first, tm = friends[V][i].second;
if (pointers[to] == -1) continue;
long long T = friends[to][pointers[to]].second;
if (tm > T) continue;
pointers[to]++;
while (pointers[to] < friends[to].size()) {
long long K = friends[to][pointers[to]].first;
if (pointers[K] == -1 || friends[to][pointers[to]].second >= u)
pointers[to]++;
else
break;
}
if (pointers[to] >= friends[to].size()) {
good.erase(good.find(make_pair(T, to)));
pointers[to] = -1;
q.push(to);
} else {
good.erase(good.find(make_pair(T, to)));
T = friends[to][pointers[to]].second;
good.insert(make_pair(T, to));
}
}
}
long long S = good.size();
if (S == 0) break;
set<pair<long long, long long> >::iterator it = good.end();
it--;
pair<long long, long long> P = *it;
long long tt = P.first;
for (long long i = tt; i < u; i++) ans[i] = S;
u = tt;
while (good.size()) {
set<pair<long long, long long> >::iterator it = good.end();
it--;
pair<long long, long long> P = *it;
long long ttt = P.first;
if (tt != ttt) {
break;
}
good.erase(it);
pointers[P.second] = -1;
q.push(P.second);
}
}
for (long long i = 0; i < m; i++) cout << ans[i] << "\n";
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T1, class T2>
ostream& operator<<(ostream& out, pair<T1, T2>& p) {
out << p.first << ' ' << p.second;
}
template <class T>
istream& operator>>(istream& in, vector<T>& v) {
for (auto& x : v) in >> x;
return in;
}
template <class T>
ostream& operator<<(ostream& out, vector<T>& v) {
for (auto x : v) out << x << ' ';
return out;
}
int main() {
iostream::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
;
long long n, m, k;
cin >> n >> m >> k;
vector<set<long long> > adj(100005);
vector<pair<long long, long long> > edges;
map<long long, vector<long long> > deg;
map<long long, long long> nodedeg;
for (long long i = (0); i < (m); ++i) {
long long a, b;
cin >> a >> b;
edges.push_back({a, b});
adj[a].insert(b);
adj[b].insert(a);
}
for (long long i = (1); i < (n + 1); ++i) {
deg[adj[i].size()].push_back(i);
nodedeg[i] = adj[i].size();
}
set<pair<long long, long long> > pq;
bool flagarr[100005];
memset(flagarr, 0, sizeof(flagarr));
;
for (auto i : deg) {
for (auto j : i.second) {
pq.insert({i.first, j});
flagarr[j] = 1;
}
}
while (!pq.empty() && pq.begin()->first < k) {
auto nd = *pq.begin();
pq.erase(pq.begin());
flagarr[nd.second] = 0;
for (auto i : adj[nd.second]) {
pq.erase({nodedeg[i], i});
nodedeg[i]--;
pq.insert({nodedeg[i], i});
}
}
vector<long long> finans;
long long i = m - 1;
set<pair<long long, long long> > edges_till_now;
while (i >= 0) {
finans.push_back(pq.size());
auto nd1 = edges[i];
edges_till_now.insert(edges[i]);
edges_till_now.insert({edges[i].second, edges[i].first});
if (flagarr[nd1.first] && flagarr[nd1.second]) {
pq.erase({nodedeg[nd1.first], nd1.first});
nodedeg[nd1.first]--;
pq.insert({nodedeg[nd1.first], nd1.first});
pq.erase({nodedeg[nd1.second], nd1.second});
nodedeg[nd1.second]--;
pq.insert({nodedeg[nd1.second], nd1.second});
while (!pq.empty() && pq.begin()->first < k) {
auto nd = *pq.begin();
pq.erase(pq.begin());
for (auto i : adj[nd.second]) {
if (edges_till_now.find({i, nd.second}) != edges_till_now.end())
continue;
if (pq.find({nodedeg[i], i}) != pq.end()) {
pq.erase({nodedeg[i], i});
nodedeg[i]--;
pq.insert({nodedeg[i], i});
}
}
}
}
i--;
}
reverse((finans).begin(), (finans).end());
for (auto i : finans) cout << i << endl;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, m, k;
struct edge {
int u, v, nxt;
} e[200005 * 2];
int cnt, head[200005];
void adde(int u, int v) {
e[++cnt].u = u;
e[cnt].v = v;
e[cnt].nxt = head[u];
head[u] = cnt;
}
int vis[200005 * 2], d[200005], ans[200005], res;
struct ege2 {
int u, v;
} edge[200005];
queue<int> q;
void solve() {
while (!q.empty()) {
int u = q.front();
q.pop();
d[u] = 0;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].v;
if (vis[i]) continue;
vis[i] = vis[i ^ 1] = 1;
d[v]--;
if (d[v] == k - 1) {
--res;
q.push(v);
}
}
}
}
int main() {
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= m; ++i) {
scanf("%d%d", &edge[i].u, &edge[i].v);
adde(edge[i].u, edge[i].v);
adde(edge[i].v, edge[i].u);
d[edge[i].u]++;
d[edge[i].v]++;
}
res = n;
for (int i = 1; i <= n; ++i)
if (d[i] < k) {
res--;
q.push(i);
}
solve();
ans[m] = res;
for (int i = m; i >= 2; --i) {
if (vis[i << 1]) {
ans[i - 1] = ans[i];
continue;
}
vis[i << 1] = vis[i << 1 | 1] = 1;
int u = edge[i].u, v = edge[i].v;
d[u]--;
d[v]--;
if (d[u] == k - 1) {
--res;
q.push(u);
}
if (d[v] == k - 1) {
--res;
q.push(v);
}
solve();
ans[i - 1] = res;
}
for (int i = 1; i <= m; ++i) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 5;
int deg[maxn];
vector<int> G[maxn];
pair<int, int> o[maxn];
int ans[maxn], vis[maxn];
int main() {
int n, m, k, u, v;
cin >> n >> m >> k;
for (int i = 1; i <= m; i++) {
scanf("%d%d", &u, &v);
;
G[u].push_back(v);
G[v].push_back(u);
deg[u]++;
deg[v]++;
o[i] = make_pair(u, v);
}
queue<int> q;
for (int i = 1; i <= n; i++) {
if (deg[i] < k) {
q.push(i);
vis[i] = 1;
}
}
while (!q.empty()) {
int tmp = q.front();
q.pop();
for (auto x : G[tmp]) {
deg[x]--;
if (!vis[x] && deg[x] < k) {
vis[x] = 1;
q.push(x);
}
}
}
for (int i = 1; i <= n; i++) {
if (!vis[i]) ans[m]++;
}
for (int i = m; i > 1; i--) {
ans[i - 1] = ans[i];
u = o[i].first, v = o[i].second;
if (!vis[u] && !vis[v]) {
deg[u]--;
deg[v]--;
if (deg[u] < k) {
ans[i - 1]--;
vis[u] = 1;
for (auto x : G[u]) deg[x]--;
}
if (deg[v] < k) {
ans[i - 1]--;
vis[v] = 1;
for (auto x : G[v]) deg[x]--;
}
}
if (ans[i - 1] < k) ans[i - 1] = 0;
}
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int N, M, K;
vector<int> Adj[200005];
set<int> f[200005];
bool vis[200005];
int main() {
ios::sync_with_stdio(0);
cin >> N >> M >> K;
int u, v;
int ans = 0;
for (int i = 1; i <= M; i++) {
cin >> u >> v;
Adj[u].push_back(v);
Adj[v].push_back(u);
f[u].insert(v);
f[v].insert(u);
if (vis[u] && vis[v]) {
cout << ans << endl;
continue;
}
if (Adj[u].size() >= K && Adj[v].size() >= K) {
int z = -1;
for (int k = 0; k < Adj[u].size(); k++) {
z = Adj[u][k];
if (f[v].count(z) == 0) continue;
if (vis[z] || Adj[z].size() >= K) {
int d = (vis[z] == 0) + (vis[u] == 0) + (vis[v] == 0);
ans += d;
vis[z] = vis[u] = vis[v] = 1;
}
}
}
cout << ans << endl;
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.HashSet;
import java.util.Arrays;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.util.TreeSet;
import java.io.InputStream;
/**
* @author khokharnikunj8
*/
public class Main {
public static void main(String[] args) {
new Thread(null, new Runnable() {
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
}
void solve() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
ScanReader in = new ScanReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
ETrips solver = new ETrips();
solver.solve(1, in, out);
out.close();
}
static class ETrips {
int[][] G;
public void solve(int testNumber, ScanReader in, PrintWriter out) {
int n = in.scanInt();
int m = in.scanInt();
int k = in.scanInt();
TreeSet<pair> bstCustom = new TreeSet<>();
int from[] = new int[m];
int to[] = new int[m];
for (int i = 0; i < m; i++) {
from[i] = in.scanInt();
to[i] = in.scanInt();
}
int[] ans = new int[m];
G = CodeHash.packGraph(from, to, n);
int degree[] = new int[n + 1];
for (int i = 1; i <= n; i++) bstCustom.add(new pair(degree[i] = G[i].length, i));
boolean[] is_inside = new boolean[n + 1];
Arrays.fill(is_inside, true);
HashSet<Long> set = new HashSet<>();
while (bstCustom.size() > 0 && bstCustom.first().x < k) {
for (int i : G[bstCustom.first().y]) {
if (is_inside[i]) {
if (set.contains(i * 1000000l + bstCustom.first().y) || set.contains(bstCustom.first().y * 1000000l + i))
continue;
bstCustom.remove(new pair(degree[i], i));
degree[i]--;
degree[bstCustom.first().y]--;
bstCustom.add(new pair(degree[i], i));
set.add(i * 1000000l + bstCustom.first().y);
}
}
is_inside[bstCustom.first().y] = false;
bstCustom.remove(bstCustom.first());
}
ans[m - 1] = bstCustom.size();
for (int i = m - 1; i >= 1; i--) {
if (is_inside[from[i]] && is_inside[to[i]]) {
bstCustom.remove(new pair(degree[from[i]], from[i]));
degree[from[i]]--;
bstCustom.add(new pair(degree[from[i]], from[i]));
bstCustom.remove(new pair(degree[to[i]], to[i]));
degree[to[i]]--;
bstCustom.add(new pair(degree[to[i]], to[i]));
set.add(1000000l * from[i] + to[i]);
}
while (bstCustom.size() > 0 && bstCustom.first().x < k) {
for (int j : G[bstCustom.first().y]) {
if (is_inside[j]) {
if (set.contains(j * 1000000l + bstCustom.first().y) || set.contains(bstCustom.first().y * 1000000l + j))
continue;
bstCustom.remove(new pair(degree[j], j));
degree[bstCustom.first().y]--;
degree[j]--;
bstCustom.add(new pair(degree[j], j));
set.add(j * 1000000l + bstCustom.first().y);
}
}
is_inside[bstCustom.first().y] = false;
bstCustom.remove(bstCustom.first());
}
ans[i - 1] = bstCustom.size();
}
for (int i = 0; i < m; i++) out.println(ans[i]);
}
class pair implements Comparable<pair> {
int x;
int y;
public int compareTo(pair o) {
if (this.x == o.x) return this.y - o.y;
return this.x - o.x;
}
public pair(int x, int y) {
this.x = x;
this.y = y;
}
}
}
static class CodeHash {
public static int[][] packGraph(int[] from, int[] to, int n) {
int[][] g = new int[n + 1][];
int p[] = new int[n + 1];
for (int i : from) p[i]++;
for (int i : to) p[i]++;
for (int i = 0; i <= n; i++) g[i] = new int[p[i]];
for (int i = 0; i < from.length; i++) {
g[from[i]][--p[from[i]]] = to[i];
g[to[i]][--p[to[i]]] = from[i];
}
return g;
}
}
static class ScanReader {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public ScanReader(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0) return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
}
return neg * integer;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define fio ios_base::sync_with_stdio(false)
#define pdl cout << "*" << endl
#define MOD 1000000007
#define INF 1000000000
#define INFLL 1000000000000000000ll
#define mp make_pair
#define pb push_back
#define ff first
#define ss second
#define long int64_t
using namespace std;
using namespace __gnu_pbds;
typedef pair<int, int> pii;
typedef pair<long, long> pll;
typedef priority_queue<int, vector<int>, greater<int>> min_pq;
typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> OST;
#define trace(...) __f(#__VA_ARGS__, __VA_ARGS__)
template <typename Arg1> void __f(const char* name, Arg1&& arg1){ cout << name << " : " << arg1 << endl; }
template <typename Arg1, typename... Args> void __f(const char* names, Arg1&& arg1, Args&&... args)
{ const char* comma = strchr(names + 1, ','); cout.write(names, comma - names) << " : " << arg1 << " | "; __f(comma+1, args...); }
const int N = 200001;
vector<int> g[N];
int v[N], k, ans[N], c[N];
bool dfs(int node)
{
v[node] = 1;
int cnt = 0;
for(int &it : g[node])
{
if(!v[it])
cnt += dfs(it);
else if(v[it] > 0)
cnt++;
}
c[node] = cnt;
if(cnt >= k)
v[node] = 2;
else
v[node] = -1;
return (v[node] == 2);
}
int rem(int node)
{
if(c[node] >= k or v[node] == -2)
return 0;
v[node] = -2;
int ret = 1;
for(int &it : g[node])
{
if(c[it] >= k)
{
c[it]--;
ret += rem(it);
}
}
return ret;
}
int main()
{
fio;
int n, m;
cin >> n >> m >> k;
vector<pii> e;
for(int i=0; i<m; i++)
{
int u, v;
cin >> u >> v;
e.pb(mp(u, v));
g[u].pb(v);
g[v].pb(u);
}
for(int i=1; i<=n; i++)
if(!v[i])
dfs(i);
for(int i=1; i<=n; i++)
if(v[i] == 2)
ans[m]++;
for(int i=m-1; i; i--)
{
ans[i] = ans[i+1];
pii it = e[i];
g[it.ff].pop_back();
g[it.ss].pop_back();
if(c[it.ff] >= k and c[it.ss] >= k)
{
c[it.ff]--;
ans[i] -= rem(it.ff);
c[it.ss]--;
ans[i] -= rem(it.ss);
}
}
for(int i=1; i<=m; i++)
cout << ans[i] << endl;
return 0;
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int nmax = 2e5 + 5;
const int mod = 1e9 + 7;
vector<int> g[nmax];
int destroyed;
pair<int, int> ej[nmax];
int deg[nmax], ans[nmax];
bool vis[nmax];
void dhongsho(int u, int k, int p) {
if (vis[u]) return;
vis[u] = true;
destroyed++;
for (auto v : g[u]) {
if (v == p or vis[v]) continue;
deg[v]--;
if (deg[v] < k) dhongsho(v, k, u);
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, m, k, u, v;
cin >> n >> m >> k;
for (int i = 1; i <= m; i++) {
cin >> u >> v;
g[u].push_back(v), g[v].push_back(u);
ej[i] = {u, v};
deg[u]++, deg[v]++;
}
for (int u = 1; u <= n; u++) {
if (deg[u] < k) dhongsho(u, k, -1);
}
for (int i = m; i >= 1; i--) {
ans[i] = n - destroyed;
u = ej[i].first, v = ej[i].second;
if (!vis[u] and !vis[v]) {
deg[u]--, deg[v]--;
g[u].pop_back(), g[v].pop_back();
if (deg[u] < k) dhongsho(u, k, v);
if (deg[v] < k) dhongsho(v, k, u);
}
}
for (int i = 1; i <= m; i++) {
cout << ans[i] << "\n";
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
int n, m, k;
cin >> n >> m >> k;
pair<int, int> vv[m];
set<int> adj[n];
int deg[n];
for (int i = 0; i < n; i++) deg[i] = 0;
for (int i = 0; i < m; i++) {
int x, y;
cin >> x >> y;
x--;
y--;
vv[i] = make_pair(x, y);
deg[x]++;
deg[y]++;
adj[x].insert(y);
adj[y].insert(x);
}
int ans[m], good = n;
bool done[n];
for (int i = 0; i < n; i++) done[i] = 0;
set<pair<int, int> > st;
priority_queue<pair<int, int> > pq;
for (int i = 0; i < n; i++)
if (deg[i] >= k)
pq.push(make_pair(-deg[i], i));
else {
done[i] = true;
good--;
for (set<int>::iterator it = adj[i].begin(); it != adj[i].end(); it++) {
deg[*it]--;
adj[*it].erase(i);
pq.push(make_pair(-deg[*it], *it));
}
deg[i] = 0;
adj[i].clear();
}
for (int i = m - 1; i >= 0; i--) {
ans[i] = good;
if (adj[vv[i].first].find(vv[i].second) != adj[vv[i].first].end()) {
if (!done[vv[i].first]) {
deg[vv[i].first]--;
pq.push(make_pair(-deg[vv[i].first], vv[i].first));
}
if (!done[vv[i].second]) {
deg[vv[i].second]--;
pq.push(make_pair(-deg[vv[i].second], vv[i].second));
}
adj[vv[i].first].erase(vv[i].second);
adj[vv[i].second].erase(vv[i].first);
}
while (!pq.empty()) {
pair<int, int> p = pq.top();
pq.pop();
if (-p.first >= k) {
pq.push(p);
break;
}
if (done[p.second]) continue;
done[p.second] = true;
good--;
int i = p.second;
for (set<int>::iterator it = adj[i].begin(); it != adj[i].end(); it++) {
deg[*it]--;
adj[*it].erase(i);
pq.push(make_pair(-deg[*it], *it));
}
deg[i] = 0;
adj[i].clear();
}
}
for (int i = 0; i < m; i++) cout << ans[i] << endl;
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
inline int read() {
int sum = 0, ff = 1;
char ch = getchar();
while (!isdigit(ch)) {
if (ch == '-') ff = -1;
ch = getchar();
}
while (isdigit(ch)) sum = sum * 10 + (ch ^ 48), ch = getchar();
return sum * ff;
}
const int mod = 1e9 + 7;
const int mo = 998244353;
const int N = 2e5 + 5;
int n, m, s, du[N], ok[N], ux[N], uy[N], sum[N], cnt, ans;
vector<int> G[N];
inline void del(int x) {
if (du[x] >= s || ok[x]) return;
queue<int> q;
while (!q.empty()) q.pop();
q.push(x);
ans--;
ok[x] = 1;
while (!q.empty()) {
int u = q.front();
q.pop();
for (int i = (0); i <= ((int)G[x].size() - 1); i++) {
int v = G[x][i];
--du[v];
if (ok[v] || du[v] >= s) continue;
q.push(v);
ok[v] = 1;
ans--;
}
}
}
int main() {
n = read();
m = read();
s = read();
for (int i = (1); i <= (m); i++) {
int x, y;
x = read(), y = read();
G[x].push_back(y);
G[y].push_back(x);
du[y]++, du[x]++;
ux[++cnt] = x, uy[cnt] = y;
}
ans = n;
for (int i = (1); i <= (n); i++) del(i);
sum[m] = ans;
for (int i = (m); i >= (1); i--) {
int x = ux[i], y = uy[i];
if (!ok[x]) du[x]--;
if (!ok[y]) du[y]--;
G[x].pop_back();
G[y].pop_back();
if (!ok[x] && du[x] < s) del(x);
if (!ok[y] && du[y] < s) del(y);
sum[i - 1] = ans;
}
for (int i = (1); i <= (m); i++) printf("%d\n", sum[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MOD = 1e9 + 7;
const long long N = 3e5 + 10;
long long x[N], y[N], deg[N];
vector<long long> vp[N];
int32_t main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
long long n, m, k;
cin >> n >> m >> k;
for (long long i = 1; i <= m; i++) {
cin >> x[i] >> y[i];
vp[x[i]].push_back(y[i]);
vp[y[i]].push_back(x[i]);
deg[x[i]]++;
deg[y[i]]++;
}
set<pair<long long, long long> > s;
for (long long i = 1; i <= n; i++) {
s.insert({deg[i], i});
}
long long ans = n;
set<pair<long long, long long> > ae;
vector<long long> v;
for (long long i = m; i >= 1; i--) {
while (s.size() > 0) {
auto it = *s.begin();
s.erase(it);
if (it.first >= k) break;
for (auto it1 : vp[it.second]) {
if (ae.find({it1, it.second}) == ae.end()) {
ae.insert({it1, it.second});
ae.insert({it.second, it1});
s.erase({deg[it1], it1});
deg[it1]--;
if (deg[it1] > 0) s.insert({deg[it1], it1});
}
}
ans--;
}
if (ae.find({x[i], y[i]}) == ae.end()) {
ae.insert({x[i], y[i]});
ae.insert({y[i], x[i]});
s.erase({deg[x[i]], y[i]});
s.erase({deg[y[i]], y[i]});
deg[x[i]]--;
if (deg[x[i]] > 0) {
s.insert({deg[x[i]], x[i]});
}
deg[y[i]]--;
if (deg[y[i]] > 0) {
s.insert({deg[y[i]], y[i]});
}
}
v.push_back(ans);
}
reverse(v.begin(), v.end());
for (auto it : v) {
if (it == 1)
cout << 0 << "\n";
else
cout << it << "\n";
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const int N = 2e5 + 5;
using namespace std;
int n, m, k;
int res[N];
int x[N], y[N];
int bac[N];
set<int> a[N];
set<pair<int, int> > S;
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> m >> k;
for (int i = 1; i <= m; i++) {
cin >> x[i] >> y[i];
a[x[i]].insert(y[i]);
a[y[i]].insert(x[i]);
bac[x[i]]++;
bac[y[i]]++;
}
for (int i = 1; i <= n; i++) S.insert(make_pair(bac[i], i));
for (int i = m; i >= 1; i--) {
while (S.size() && S.begin()->first < k) {
for (int v : a[S.begin()->second]) {
S.erase(make_pair(bac[v], v));
bac[v]--;
if (bac[v] > 0) S.insert(make_pair(bac[v], v));
a[v].erase(S.begin()->second);
}
a[S.begin()->second].clear();
S.erase(S.begin());
}
res[i] = S.size();
if (a[x[i]].size() && a[y[i]].size()) {
S.erase(make_pair(bac[x[i]], x[i]));
bac[x[i]]--;
if (bac[x[i]] > 0) S.insert(make_pair(bac[x[i]], x[i]));
S.erase(make_pair(bac[y[i]], y[i]));
bac[y[i]]--;
if (bac[y[i]] > 0) S.insert(make_pair(bac[y[i]], y[i]));
a[x[i]].erase(y[i]);
a[y[i]].erase(x[i]);
}
}
for (int i = 1; i <= m; i++) cout << res[i] << '\n';
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long getBit(long long num, int idx) { return ((num >> idx) & 1ll) == 1ll; }
long long setBit1(long long num, int idx) { return num or (1ll << idx); }
long long setBit0(long long num, int idx) { return num & ~(1ll << idx); }
long long flipBit(long long num, int idx) { return num ^ (1ll << idx); }
const int mod = 1000000007;
long long n, m, k, indeg[(int)5e5 + 10];
set<long long> graph[(int)5e5 + 10];
long long ara[(int)5e5 + 10], bara[(int)5e5 + 10], ans[(int)5e5 + 10],
rev[(int)5e5 + 10], track;
void funck(long long v) {
rev[v] = 1;
track--;
for (long long to : graph[v]) {
graph[to].erase(v);
}
for (long long to : graph[v]) {
if (--indeg[to] < k) {
funck(to);
}
}
indeg[v] = 0;
graph[v].clear();
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(NULL);
cin >> n >> m >> k;
for (int i = 0; i < m; ++i) {
long long u, v;
cin >> u >> v;
u--;
v--;
indeg[u]++;
indeg[v]++;
ara[i] = u;
bara[i] = v;
graph[u].insert(v);
graph[v].insert(u);
}
track = n;
for (int i = 0; i < n; ++i) {
if (rev[i] == 0 && indeg[i] < k) {
funck(i);
}
}
for (long long i = m - 1; i >= 0; i--) {
ans[i] = track;
if (graph[ara[i]].find(bara[i]) != graph[ara[i]].end()) {
indeg[ara[i]]--;
indeg[bara[i]]--;
graph[ara[i]].erase(bara[i]);
graph[bara[i]].erase(ara[i]);
if (rev[ara[i]] == 0 && indeg[ara[i]] < k) funck(ara[i]);
if (rev[bara[i]] == 0 && indeg[bara[i]] < k) funck(bara[i]);
}
}
for (int i = 0; i < m; ++i) cout << ans[i] << endl;
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const int ms = 200200;
int n, m, k;
int ans = 0;
int size[ms], par[ms];
int getPar(int x) { return x == par[x] ? x : getPar(par[x]); }
void makeUnion(int a, int b) {
a = getPar(a);
b = getPar(b);
if (a == b) return;
size[a] += size[b];
ans = std::max(size[a], ans);
par[b] = a;
}
int deg[ms], when[ms];
std::vector<int> edges[ms], times[ms];
struct Edge {
int u, v, t;
};
bool operator<(Edge a, Edge b) { return a.t < b.t; }
int main() {
std::cin >> n >> m >> k;
for (int i = 1; i <= n; i++) {
par[i] = i;
size[i] = 1;
when[i] = (int)1e8;
}
std::vector<Edge> gen;
for (int i = 0; i < m; i++) {
int u, v;
scanf("%d %d", &u, &v);
Edge cur;
cur.u = u;
cur.v = v;
cur.t = i;
gen.push_back(cur);
deg[u]++;
deg[v]++;
if (deg[u] == k) {
when[u] = i;
}
if (deg[v] == k) {
when[v] = i;
}
edges[u].push_back(v);
edges[v].push_back(u);
times[u].push_back(i);
times[v].push_back(i);
}
for (int i = 1; i <= n; i++) {
for (auto j = 0; j < (int)edges[i].size(); j++) {
edges[i][j] = std::max(times[i][j], when[edges[i][j]]);
}
std::sort(edges[i].begin(), edges[i].end());
}
for (int i = 1; i <= n; i++) {
if ((int)edges[i].size() < k || edges[i][k - 1] > m) {
when[i] = m + 1;
} else {
when[i] = std::max(when[i], edges[i][k - 1]);
}
}
for (int i = 0; i < m; i++) {
int u = gen[i].u;
int v = gen[i].v;
gen[i].t = std::max(gen[i].t, std::max(when[u], when[v]));
}
std::sort(gen.begin(), gen.end());
for (int i = 0, j = 0; i < m; i++) {
while (j < (int)gen.size() && gen[j].t == i) {
makeUnion(gen[j].u, gen[j].v);
j++;
}
printf("%d\n", ans);
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const int N = 2e5 + 5;
using namespace std;
int n, m, k;
int res[N];
int x[N], y[N];
int bac[N];
set<int> a[N];
set<pair<int, int> > S;
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> m >> k;
for (int i = 1; i <= m; i++) {
cin >> x[i] >> y[i];
a[x[i]].insert(y[i]);
a[y[i]].insert(x[i]);
bac[x[i]]++;
bac[y[i]]++;
}
for (int i = 1; i <= n; i++)
if (bac[i] > 0) S.insert(make_pair(bac[i], i));
for (int i = m; i >= 1; i--) {
while (S.size() && S.begin()->first < k) {
for (int v : a[S.begin()->second]) {
S.erase(make_pair(bac[v], v));
bac[v]--;
if (bac[v] > 0) S.insert(make_pair(bac[v], v));
a[v].erase(S.begin()->second);
}
a[S.begin()->second].clear();
bac[S.begin()->second] = 0;
S.erase(S.begin());
}
res[i] = S.size();
if (a[x[i]].find(y[i]) != a[x[i]].end()) {
S.erase(make_pair(bac[x[i]], x[i]));
bac[x[i]]--;
if (bac[x[i]] > 0) S.insert(make_pair(bac[x[i]], x[i]));
S.erase(make_pair(bac[y[i]], y[i]));
bac[y[i]]--;
if (bac[y[i]] > 0) S.insert(make_pair(bac[y[i]], y[i]));
a[x[i]].erase(y[i]);
a[y[i]].erase(x[i]);
}
}
for (int i = 1; i <= m; i++) cout << res[i] << '\n';
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.*;
import java.util.*;
public class Trips {
public static void main(String[] args) {
FastScanner scan=new FastScanner();
PrintWriter out=new PrintWriter(System.out);
int n=scan.nextInt(), m=scan.nextInt();
k=scan.nextInt();
deg=new int[n];
a=new ArrayList[n];
for(int i=0;i<n;i++) a[i]=new ArrayList<>();
int[] u=new int[m], v=new int[m];
for(int i=0;i<m;i++) {
u[i]=scan.nextInt()-1;
v[i]=scan.nextInt()-1;
a[u[i]].add(new edge(i,v[i]));
a[v[i]].add(new edge(i,u[i]));
deg[u[i]]++;
deg[v[i]]++;
}
left=n;
ind=m;
bad=new boolean[n];
for(int i=0;i<n;i++) {
if(deg[i]<k) {
go(i);
}
}
// System.out.println(Arrays.toString(deg));
int[] res=new int[m];
res[m-1]=left;
for(ind=m-1;ind>0;ind--) {
if(!bad[v[ind]]) deg[u[ind]]--;
if(!bad[u[ind]]) deg[v[ind]]--;
if(!bad[v[ind]]&°[v[ind]]<k) {
go(v[ind]);
}
if(!bad[u[ind]]&°[u[ind]]<k) {
go(u[ind]);
}
res[ind-1]=left;
// System.out.println(Arrays.toString(deg));
}
for(int i:res) out.println(i);
out.close();
}
static int left,ind;
static boolean[] bad;
static int[] deg;
static ArrayList<edge>[] a;
static int k;
public static void go(int at) {
bad[at]=true;
ArrayDeque<Integer> q=new ArrayDeque<>();
q.offer(at);
while(!q.isEmpty()) {
int c=q.poll();
left--;
for(edge nxt:a[c]) {
if(nxt.id>=ind) continue;
if(!bad[nxt.v]&&--deg[nxt.v]<k) {
q.offer(nxt.v);
bad[nxt.v]=true;
}
}
}
}
static class edge {
int id,v;
edge(int id, int v) {
this.id=id;
this.v=v;
}
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e){e.printStackTrace();}
}
public String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {st = new StringTokenizer(br.readLine());}
catch (Exception e) {e.printStackTrace();}
return st.nextToken();
}
public int nextInt() {return Integer.parseInt(next());}
public long nextLong() {return Long.parseLong(next());}
public double nextDouble() {return Double.parseDouble(next());}
public String nextLine() {
String line = "";
if(st.hasMoreTokens()) line = st.nextToken();
else try {return br.readLine();}catch(IOException e){e.printStackTrace();}
while(st.hasMoreTokens()) line += " "+st.nextToken();
return line;
}
}
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
vector<int> v, graph[200005];
vector<pair<long long, long long> > ed;
set<int> s;
multiset<int> s2;
int deg[200005], cnt[200005], ans[200005], vis[200005], out[200005];
map<pair<long long, long long>, int> mp;
void dfs(int u) {
vis[u] = 1;
v.push_back(u);
for (int j = 0; j < graph[u].size(); j++) {
int v = graph[u][j];
if (vis[v]) {
continue;
}
dfs(v);
}
}
void f(int k, int y = -1) {
while (s.size()) {
int z = *s.begin();
s.erase(s.begin());
for (int j = 0; j < graph[z].size(); j++) {
int u = graph[z][j];
if (mp.count({min(z, u), max(z, u)})) continue;
deg[u]--;
mp[{min(z, u), max(z, u)}] = 1;
if (deg[u] == k - 1) {
s.insert(u);
cnt[out[u]]--;
out[u] = -1;
}
}
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, m, k, i, j;
cin >> n >> m >> k;
for (i = 1; i <= m; i++) {
int x, y;
cin >> x >> y;
ed.push_back(pair<long long, long long>(x, y));
graph[x].push_back(y);
graph[y].push_back(x);
deg[x]++;
deg[y]++;
}
int ct = 0;
for (i = 1; i <= n; i++) {
if (!vis[i]) {
ct++;
v.clear();
s.clear();
dfs(i);
cnt[ct] = v.size();
for (j = 0; j < v.size(); j++) {
out[v[j]] = ct;
}
for (j = 0; j < v.size(); j++) {
if (deg[v[j]] < k) {
s.insert(v[j]);
out[v[j]] = -1;
cnt[ct]--;
}
}
f(k);
s2.insert(cnt[ct]);
ans[m - 1] = max(ans[m - 1], cnt[ct]);
}
}
for (i = (int)ed.size() - 2; i >= 0; i--) {
int x = ed[i + 1].first;
int y = ed[i + 1].second;
ans[i] = ans[i + 1];
if (mp.count({min(x, y), max(x, y)})) continue;
mp[{min(x, y), max(x, y)}] = 1;
deg[x]--;
deg[y]--;
s.clear();
s2.erase(s2.find(cnt[out[x]]));
int zz = out[x];
if (deg[x] == k - 1) {
s.insert(x);
cnt[out[x]]--;
out[x] = -1;
}
if (deg[y] == k - 1) {
if (i == 1) cout << "^^^^^^^^^" << endl;
s.insert(y);
cnt[out[y]]--;
out[y] = -1;
}
f(k, 2);
s2.insert(cnt[zz]);
ans[i] = *s2.rbegin();
}
for (i = 0; i < m; i++) cout << ans[i] << "\n";
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | //package superior;
import java.util.*;
public class Tester {
static TreeSet<Integer> tr[];
static int k,n,m,cnt=0;
static Queue<Integer> q;
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner s=new Scanner(System.in);
n=s.nextInt();
m=s.nextInt();
k=s.nextInt();
Edge e[]=new Edge[m+1];
tr=new TreeSet[n+1];
for(int j=1;j<=n;j++)
tr[j]=new TreeSet<Integer>();
int x,y;
for(int j=1;j<=m;j++)
{
x=s.nextInt();
y=s.nextInt();
e[j]=new Edge(x,y);
tr[x].add(y);
tr[y].add(x);
}
int ans=0;
for(int j=1;j<=n;j++)
{
if(tr[j].size()<k)
reduce(j);
}
for(int j=1;j<=n;j++)
{
if(tr[j].size()>=k)
ans++;
}
//System.out.println(ans);
int fri[]=new int[m+1];
int ind;
fri[m]=ans;
ind=m-1;
for(int j=m;j>1;j--)
{
x=e[j].x;
y=e[j].y;
cnt=0;
if(tr[x].contains(y) && tr[y].contains(x))
{
//System.out.println("hiii");
tr[x].remove(y);
tr[y].remove(x);
if(tr[x].size()<k)
{
reduce(x);
ans-=cnt;
fri[ind--]=ans;
//System.out.println(ans+" "+cnt);
continue;
}
if(tr[y].size()<k)
{
reduce(y);
ans-=cnt;
fri[ind--]=ans;
//System.out.println(ans+" "+cnt);
continue;
}
fri[ind--]=ans;
}
else
{
//System.out.println("hello");
fri[ind--]=ans;
}
}
for(int j=1;j<=m;j++)
System.out.println(fri[j]);
}
public static void reduce(int x)
{
cnt++;int get;
while(tr[x].size()>0)
{
get=tr[x].first();
tr[get].remove(x);
tr[x].remove(get);
if(tr[get].size()<k)
reduce(get);
}
}
}
class Edge
{
int x;
int y;
public Edge(int x,int y)
{
this.x=x;
this.y=y;
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma comment(linker, "/stack:200000000")
#pragma GCC optimize("Ofast")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#pragma GCC optimize("unroll-loops")
using namespace std;
const long long INF = 1000LL * 1000 * 1000 * 1000 * 1000 * 1000;
const int inf = 1000 * 1000 * 1000;
const long double PI = acos(-1.0);
const long long mod1 = inf + 7;
const long long mod2 = inf + 9;
const int MAXN = 200001;
const long double EPS = 1e-9;
int hp = 179;
int main() {
ios_base::sync_with_stdio(0);
cout.tie(0);
cin.tie(0);
srand(time(NULL));
;
int n, m, k;
cin >> n >> m >> k;
vector<vector<pair<int, int>>> g(n + 1);
vector<pair<int, int>> ribs;
vector<int> d(n + 1);
for (int i = 0; i < m; ++i) {
int a, b;
cin >> a >> b;
g[a].push_back({b, i});
g[b].push_back({a, i});
d[a]++;
d[b]++;
ribs.push_back({a, b});
}
set<pair<int, int>> s;
for (int i = 1; i <= n; ++i) {
s.insert({g[i].size(), i});
}
vector<int> ans;
while (s.size() && s.begin()->first < k) {
int v = s.begin()->second;
for (int j = 0; j < g[v].size(); ++j) {
int u = g[v][j].first;
if (s.find({d[u], u}) != s.end()) {
s.erase({d[u], u});
d[u]--;
s.insert({d[u], u});
}
}
s.erase({d[v], v});
}
for (int i = m - 1; i >= 0; --i) {
ans.push_back(s.size());
int v = ribs[i].first, u = ribs[i].second;
if (s.find({d[v], v}) != s.end() && s.find({d[u], u}) != s.end()) {
s.erase({d[u], u});
d[u]--;
s.insert({d[u], u});
s.erase({d[v], v});
d[v]--;
s.insert({d[v], v});
while (s.size() && s.begin()->first < k) {
v = s.begin()->second;
for (int j = 0; j < g[v].size(); ++j) {
u = g[v][j].first;
if (g[v][j].second >= i) {
continue;
}
if (s.find({d[u], u}) != s.end()) {
s.erase({d[u], u});
d[u]--;
s.insert({d[u], u});
}
}
s.erase({d[v], v});
}
}
}
for (int i = 0; i < ans.size(); ++i) cout << ans[i] << "\n";
;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 100;
int d[N], w[N];
vector<int> v[N];
int n, m, k, ans = 0;
void addW(int x) {
for (int to : v[x]) {
w[to]++;
if (w[to] == k) ans++;
}
}
void addD(int x) {
for (int to : v[x]) {
d[to]++;
if (d[to] == k) {
addW(to);
}
}
}
int main() {
scanf("%d%d%d", &n, &m, &k);
for (int i = 0; i < m; i++) {
int x, y;
scanf("%d%d", &x, &y);
x--, y--;
v[x].push_back(y);
v[y].push_back(x);
if (v[x].size() > k) {
d[y]++;
if (d[x] >= k) {
w[y]++;
if (w[y] == k) ans++;
}
}
if (v[y].size() > k) {
d[x]++;
if (d[y] >= k) {
w[x]++;
if (w[x] == k) ans++;
}
}
if (v[x].size() == k) {
addD(x);
if (d[x] == k) addW(x);
}
if (v[y].size() == k) {
addD(y);
if (d[y] == k) addW(y);
}
printf("%d\n", ans);
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 2e5;
int vis[N + 2];
vector<int> com[N + 2];
map<int, int> mp[N + 2];
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
int n, m, k;
cin >> n >> m >> k;
for (int i = 1; i <= n; i++) com[i].push_back(i);
int ans = 0;
while (m--) {
int u, v;
cin >> u >> v;
mp[u][v] = 1, mp[v][u] = 1;
if (vis[u] & vis[v])
;
else {
int cnt = 0;
for (auto x : com[u]) cnt += mp[v].count(x);
if (cnt >= k || cnt == com[u].size()) {
com[u].push_back(v);
if (com[u].size() > k + 1)
ans += (vis[v] ^ 1), vis[v] = 1;
else if (com[u].size() == k + 1) {
for (auto x : com[u]) ans += (vis[x] ^ 1), vis[x] = 1;
}
}
cnt = 0;
swap(u, v);
for (auto x : com[u]) cnt += mp[v].count(x);
if (cnt >= k || cnt == com[u].size()) {
com[u].push_back(v);
if (com[u].size() > k + 1)
ans += (vis[v] ^ 1), vis[v] = 1;
else if (com[u].size() == k + 1) {
for (auto x : com[u]) ans += (vis[x] ^ 1), vis[x] = 1;
}
}
}
cout << ans << "\n";
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.Set;
import java.util.StringTokenizer;
public class Main {
static int deg[];
static Set<Integer> s;
static Set<Integer>[] graph;
static int n,m,k;
public static void main(String[] args) {
FastReader sc = new FastReader();
n = sc.nextInt();
m = sc.nextInt();
k = sc.nextInt();
graph = new Set[n];
for(int i=0;i<n;i++) {
graph[i] = new HashSet<>();
}
deg = new int[n+1];
ArrayList<Edge> edges = new ArrayList<Edge>();
for(int i=0;i<m;i++) {
int u = sc.nextInt()-1;
int v = sc.nextInt()-1;
edges.add(new Edge(u,v));
graph[u].add(v);
graph[v].add(u);
deg[u]++;
deg[v]++;
}
s = new HashSet<Integer>();
ArrayList<Vertex> ver = new ArrayList<>();
for(int i=0;i<n;i++) {
s.add(i);
ver.add(new Vertex(i,deg[i]));
}
ver.sort((v1,v2)->v1.d-v2.d);
int i=0;
for(i=0;i<n;i++) {
if(ver.get(i).d<k) {
int u = ver.get(i).u;
if(s.contains(u)) {
dfs(u);
}
else {
break;
}
}
}
ArrayList<Integer> ans = new ArrayList<>();
ans.add(s.size());
for(int j=m-1;j>=0;j--) {
Edge e = edges.get(j);
graph[e.u].remove(e.v);
graph[e.v].remove(e.u);
if(s.contains(e.u) && s.contains(e.v)) {
dfs(e.u);
if(s.contains(e.v)) {
dfs(e.v);
}
}
ans.add(s.size());
}
for(int j=ans.size()-1;j>=0;j--) {
System.out.println(ans.get(j));
}
}
static void dfs(int u) {
deg[u]--;
if(deg[u]>=k) {
return;
}
s.remove(u);
for(int v:(Set<Integer>) graph[u]) {
if(s.contains(v)) {
dfs(v);
}
}
}
}
class Edge{
int u,v;
Edge(int i,int j){
u = i;
v = j;
}
}
class Vertex{
int u,d;
Vertex(int i,int j){
u = i;
d = j;
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | python2 | '''input
8 12 3
1 2
1 3
2 3
3 4
2 4
1 4
5 6
6 7
5 7
4 5
1 5
2 5
'''
n,m,k=[int(x) for x in raw_input().split()]
F=[0]*n
E=[0]*n
C=[set() for x in range(n)]
tot=0
M=[]
for i in range(m):
a,b=[int(x)-1 for x in raw_input().split()]
C[a].add(b)
C[b].add(a)
F[a]+=1
F[b]+=1
M.append((a,b))
M=M[::-1]
for i in range(n):
if F[i]>=k:
for j in C[i]:
E[j]+=1
for i in E:
if i>=k:
tot+=1
#print E,F
ans=[]
#print F
for a,b in M:
ans.append(tot)
F[a]-=1
F[b]-=1
if F[a]==k-1:
for j in C[a]:
E[j]-=1
if E[j]==k-1:
tot-=1
a,b=b,a
if F[a]==k-1:
for j in C[a]:
E[j]-=1
if E[j]==k-1:
tot-=1
C[a].discard(b)
C[b].discard(a)
#ans.append(tot)
#print F,E
ans=ans[::-1]
for i in ans:
print i |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n, m, k;
cin >> n >> m >> k;
vector<int> from(m), to(m);
vector<vector<pair<int, int> > > adj(n);
for (int i = (int)(0); i < (int)(m); ++i) {
cin >> from[i] >> to[i];
from[i]--, to[i]--;
adj[from[i]].emplace_back(to[i], i);
adj[to[i]].emplace_back(from[i], i);
}
vector<int> alive(m, 1);
vector<int> deg(n);
set<pair<int, int> > g;
for (int i = (int)(0); i < (int)(n); ++i) {
deg[i] = adj[i].size();
if (deg[i]) g.emplace(deg[i], i);
}
vector<int> ans(m);
for (int i = (int)(m - 1); i >= (int)(0); --i) {
while (g.size() && g.begin()->first < k) {
for (auto &p : adj[g.begin()->second]) {
if (alive[p.second]) {
alive[p.second] = 0;
g.erase({deg[p.first], p.first});
g.emplace(--deg[p.first], p.first);
}
}
g.erase(g.begin());
}
ans[i] = g.size();
if (alive[i]) {
int u = from[i], v = to[i];
g.erase({deg[u], u});
g.emplace(--deg[u], u);
g.erase({deg[v], v});
g.emplace(--deg[v], v);
alive[i] = 0;
}
}
for (int i = (int)(0); i < (int)(m); ++i) cout << ans[i] << "\n";
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | python2 | '''input
4 4 2
2 3
1 2
1 3
1 4
'''
n,m,k=[int(x) for x in raw_input().split()]
F=[0]*n
E=[0]*n
C=[[] for x in range(n)]
tot=0
for i in range(m):
a,b=[int(x)-1 for x in raw_input().split()]
C[a].append(b)
C[b].append(a)
F[a]+=1
F[b]+=1
if F[a]==k:
for j in C[a]:
E[j]+=1
if E[j]==k:
tot+=1
elif F[a]>k:
E[b]+=1
if E[b]==k:
tot+=1
a,b=b,a
if F[a]==k:
for j in C[a]:
E[j]+=1
if E[j]==k:
tot+=1
elif F[a]>k:
E[b]+=1
if E[b]==k:
tot+=1
print tot |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | //package superior;
import java.util.*;
public class Tester {
static TreeSet<Integer> tr[];
static int k,n,m,cnt=0;
static Queue<Integer> q;
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner s=new Scanner(System.in);
n=s.nextInt();
m=s.nextInt();
k=s.nextInt();
Edge e[]=new Edge[m+1];
tr=new TreeSet[n+1];
for(int j=1;j<=n;j++)
tr[j]=new TreeSet<Integer>();
int x,y;
for(int j=1;j<=m;j++)
{
x=s.nextInt();
y=s.nextInt();
e[j]=new Edge(x,y);
tr[x].add(y);
tr[y].add(x);
}
int ans=0;
for(int j=1;j<=n;j++)
{
if(tr[j].size()<k)
reduce(j);
}
for(int j=1;j<=n;j++)
{
if(tr[j].size()>=k)
ans++;
}
//System.out.println(ans);
int fri[]=new int[m+1];
int ind;
fri[m]=ans;
ind=m-1;
for(int j=m;j>1;j--)
{
x=e[j].x;
y=e[j].y;
cnt=0;
if(tr[x].contains(y) && tr[y].contains(x))
{
//System.out.println("hiii");
tr[x].remove(y);
tr[y].remove(x);
if(tr[x].size()>0 && tr[x].size()<k)
{
reduce(x);
ans-=cnt;
if(ans<=0)
break;
//fri[ind--]=ans;
//System.out.println(ans+" "+cnt);
//continue;
}
if(tr[y].size()>0 && tr[y].size()<k)
{
reduce(y);
ans-=cnt;
if(ans<=0)
break;
//fri[ind--]=ans;
//System.out.println(ans+" "+cnt);
//continue;
}
fri[ind--]=ans;
}
else
{
//System.out.println("hello");
fri[ind--]=ans;
}
}
for(int j=1;j<=m;j++)
System.out.println(fri[j]);
}
public static void reduce(int x)
{
cnt++;int get;
while(tr[x].size()>0)
{
get=tr[x].first();
tr[get].remove(x);
tr[x].remove(get);
if( tr[get].size()<k)
reduce(get);
}
}
}
class Edge
{
int x;
int y;
public Edge(int x,int y)
{
this.x=x;
this.y=y;
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long mod = 1e9 + 7, inf = 1e9 + 3;
void update(int a, vector<set<int> >& g, set<pair<int, int> >& s, int k) {
for (int v : g[a]) {
s.erase({g[v].size(), v});
g[v].erase(a);
if (g[v].size() >= k) {
s.insert({g[v].size(), v});
}
}
}
int main() {
cin.tie(0), cout.tie(0), ios_base::sync_with_stdio(0);
int n, m, k;
cin >> n >> m >> k;
set<pair<int, int> > s;
vector<int> ans(m, 0);
vector<set<int> > g(n + 1, set<int>());
vector<pair<int, int> > q;
for (int i = 0; i < m; ++i) {
int a, b;
cin >> a >> b;
q.push_back({a, b});
g[a].insert(b), g[b].insert(a);
}
for (int v = 1; v <= n; ++v) {
s.insert({g[v].size(), v});
}
for (int i = m - 1; i >= 0; --i) {
while (s.size() > 0 && (*s.begin()).first < k) {
update((*s.begin()).second, g, s, k);
s.erase(s.begin());
}
ans[i] = s.size();
int a = q[i].first, b = q[i].second;
s.erase({g[a].size(), a}), s.erase({g[b].size(), b});
g[a].erase(b), g[b].erase(a);
s.insert({g[a].size(), a}), s.insert({g[b].size(), b});
}
for (int x : ans) cout << x << "\n";
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | // clang-format off
// very important, much wow, such don't touch this
#define protected public
using iii = int; using yeee = iii;
#ifdef LOCAL
const iii DEBUG = 10;
#else
const iii DEBUG = -1;
#endif
#define DBG(x) if(DEBUG >= x)
#include <bits/stdc++.h>
using namespace std;
#define FOR(i, lo, hi) for(ll i = ll(lo); i < ll(hi); ++i)
#define ROF(i, hi, lo) for(ll i = ll(hi); i >= (ll)(lo); --i)
#define all(x) (x).begin(), (x).end()
#define len(x) ll((x).size())
#define pb push_back
#define apply(f, x, y) (x) = f((x), (y))
using ll = long long; using ull = unsigned long long; using ld = long double; using pll = pair<ll, ll>; using vb = vector<bool>; using vvb = vector<vb>; using vll = vector<ll>; using vvll = vector<vll>; using vpll = vector<pll>; using point = complex<ll>; /* template<class T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; */ /*|||*/ template <class T> T get() { T x; cin >> x; return x; } template <class T1, class T2> ostream &operator<<(ostream &out, const pair<T1, T2> &cont) { out << "(" << cont.first << ", " << cont.second << ")"; return out; } template <class T> ostream &operator<<(ostream &out, const vector<T> &cont) { for(long long int i=0; i < (long long int)(cont.size()); ++i) out << (i ? " " : "") << cont[i]; return out; } template <class T> ostream &operator<<(ostream &out, const set<T> &cont) { out << "{"; for(const T &x : cont) out << x << ", "; out << "}"; return out; } template <class T, class U> ostream &operator<<(ostream &out, const map<T, U> &cont) { out << "{"; for(const pair<T, U> &x : cont) out << "(" << x.first << ": " << x.second << "), "; out << "}"; return out; } template <class T> ostream &operator<<(ostream &out, vector<vector<T>> &cont) { for(vector<T> &v : cont) { for(long long int i = 0; i < (long long int)(v.size()); ++i) { out << (i ? " " : "") << v[i]; } out << "\n"; } return out; } /*|||*/ void setup_io(string input_file = "", string output_file = "") { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); srand(unsigned(time(0))); DBG(0 && input_file != "") freopen(input_file.c_str(), "r", stdin); DBG(0 && output_file != "") freopen(output_file.c_str(), "w", stdout); } /*|||*/ std::chrono::_V2::system_clock::time_point get_time() { return chrono::high_resolution_clock::now(); } ld get_duration(std::chrono::_V2::system_clock::time_point start_time, std::chrono::_V2::system_clock::time_point end_time) { return ld(chrono::duration_cast<chrono::nanoseconds>(end_time - start_time).count()) / 1e9; } /*|||*/ ll sign(ld x) { return (x > 0) - (x < 0); } ll pow(ll x, ll exp, ll mod) { ll res = 1, y = x; while(exp) { if(exp & 1) res = (res * y) % mod; y = (y * y) % mod; exp >>= 1; } return res; } /*|||*/ auto START_TIME = get_time(); const long long INF = LONG_LONG_MAX / 3; char newl = '\n';
// clang-format on
ll f(vector<set<ll>> &E, vb &D, queue<ll> &q, ll &K) {
ll res = 0;
while(!q.empty()) {
ll curr = q.front();
q.pop();
D[curr] = false;
res++;
for(ll nex : E[curr]) {
if(!D[nex])
continue;
E[nex].erase(curr);
if(len(E[nex]) >= K)
continue;
q.push(nex);
D[nex] = false;
}
E[curr].clear();
}
return res;
}
yeee main() {
setup_io();
//
ll N, M, K;
cin >> N >> M >> K;
vll res(M + 1, 0);
vpll EI(M);
vector<set<ll>> E(N);
FOR(i, 0, M) {
ll a, b;
cin >> a >> b;
a--, b--;
EI[i].first = a;
EI[i].second = b;
E[a].insert(b);
E[b].insert(a);
}
vb D(N, true);
queue<ll> q;
FOR(i, 0, N) {
if(len(E[i]) < K)
q.push(i);
}
res[0] = N - (q.empty() ? 0 : f(E, D, q, K));
reverse(all(EI));
FOR(Mi, 0, M) {
vll v(2);
tie(v[0], v[1]) = EI[Mi];
res[Mi + 1] = res[Mi];
FOR(i, 0, 2)
E[v[i]].erase(v[!i]);
FOR(i, 0, 2) {
if(!D[v[i]])
continue;
if(len(E[v[i]]) >= K)
continue;
q.push(v[i]);
res[Mi + 1] -= f(E, D, q, K);
}
}
reverse(all(res));
FOR(i, 1, M + 1)
cout << res[i] << newl;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | // amigos y no más
// dile a la jardinera que traigo flores
// += O(logn) ; + = O(n)
//#pragma GCC optimize("Ofast")
//#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp> // Common file
#include <ext/pb_ds/tree_policy.hpp> // Including tree_order_statistics_node_update
#define fastio ios_base::sync_with_stdio(0);cin.tie(0)
#define MOD 998244353LL
#define MOD1 1000000009LL
#define LIM 262150
#define FORN(i,j,n) for(int i=j; i<n;i++)
#define FOR(i,n) FORN(i,0,n)
#define ones(x) __builtin_popcountll(x)
#define MAXIMO 20000000
using namespace std;
using namespace __gnu_pbds;
typedef long long ll ;
typedef unsigned long long ull ;
typedef tree<int,int,less<int>,rb_tree_tag,tree_order_statistics_node_update> ordered_set;
int n,m,k;
set<int> G[200005];
vector< pair<int,int> > v;
map <int,int> ma;
int ans[200005]={0};
queue<int> node_to_remove;
void step1(int x){
auto it= G[x].begin();
while(it!=G[x].end()){
bool flag = false;
int y = *it;
if( ma.count(y) ) {
if(ma[y] <= k) {
ma.erase(y); node_to_remove.push(y);
}
else {ma[y]--; G[y].erase(x);}
}
it++;
}
}
void remove_node(int x){
step1(x);
//step2
while(!node_to_remove.empty()){
step1(node_to_remove.front());
node_to_remove.pop();
}
}
void go(){
cin>>n>>m>>k;
for(int i=0; i<m; i++){
int x,y; cin>>x>>y;
G[x].insert(y);
G[y].insert(x);
v.push_back({x,y});
}
for(int i=1;i<=n;i++) {
if(G[i].size() >= k) ma[i] = G[i].size();
}
for(int i=1;i<=n;i++) {
if(!ma.count(i)){
remove_node(i);
}
}
ans[m] = ma.size();
for(int i=m-1; i>=0;i--){
int & x = v[i].first; int & y = v[i].second;
if(ma.count(x) && ma.count(y) ){
if(ma[x] <= k && ma[y] <= k) {
ma.erase(y); ma.erase(x);
remove_node(x); remove_node(y);
}
else if(ma[x] <= k){
ma.erase(x); remove_node(x);
ma[y] = G[y].size();
}
else if(ma[y] <= k){
ma.erase(y);remove_node(y);
ma[x] = G[x].size();
}
else{
ma[x]--; ma[y]--;
G[x].erase(y);
G[y].erase(x);
}
}
ans[i] = ma.size();
}
if(!ma.empty()) cerr<<ma.begin()->first<<" "<<ma.begin()->second<<"\n";
for(int i=1; i<=m;i++){
cout<<ans[i]<<"\n";
}
}
int main() {
fastio;
go();
return 0;
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 3e5 + 7;
const long long INF = 1e18 + 7;
pair<int, int> a[N];
int d[N], ans[N];
int n, m, k;
set<pair<int, int> > s;
vector<pair<int, int> > g[N];
int main() {
cin >> n >> m >> k;
for (int i = 1; i <= m; i++) {
scanf("%d%d", &a[i].first, &a[i].second);
g[a[i].first].push_back(make_pair(a[i].second, i));
g[a[i].second].push_back(make_pair(a[i].first, i));
}
for (int i = 1; i <= n; i++) {
d[i] = g[i].size();
s.insert(make_pair(d[i], i));
}
for (int i = m; i >= 1; i--) {
while (!s.empty()) {
set<pair<int, int> >::iterator it = s.begin();
pair<int, int> v = *it;
cout << v.first << ' ' << v.second << endl;
if (v.first < k) {
s.erase(v);
for (pair<int, int> to : g[v.second]) {
if (to.second > i) break;
s.erase(make_pair(d[to.first], to.first));
d[to.first]--;
if (d[to.first] >= k) s.insert(make_pair(d[to.first], to.first));
}
} else
break;
}
ans[i] = s.size();
if (d[a[i].first] >= k && d[a[i].second] >= k) {
s.erase(make_pair(d[a[i].first], a[i].first));
d[a[i].first]--;
s.insert(make_pair(d[a[i].first], a[i].first));
s.erase(make_pair(d[a[i].second], a[i].second));
d[a[i].second]--;
s.insert(make_pair(d[a[i].second], a[i].second));
}
}
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
map<int, int> m[200010];
int s[200010];
int main() {
int n, a, b, i, j;
cin >> n;
for (i = 0; i < n - 1; i++) {
scanf("%d%d", &a, &b);
m[a][b] = 1;
m[b][a] = 1;
}
for (i = 0; i < n; i++) scanf("%d", &s[i]);
for (i = 0, j = 1; i < n; i++)
while (m[s[i]][s[j]]) j++;
if (j == n && s[0] == 1)
cout << "Yes";
else
cout << "No";
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using ii = pair<int, int>;
using lu = unsigned long long;
using l = long long;
using vs = vector<string>;
using vii = vector<ii>;
using vl = vector<l>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using ll = pair<l, l>;
using vll = vector<ll>;
using vvll = vector<vll>;
using vb = vector<bool>;
using vvb = vector<vb>;
using vd = vector<double>;
using vvd = vector<vd>;
using mll = unordered_map<l, l>;
const l INF = numeric_limits<l>::max();
const double EPS = 1e-10;
static constexpr auto PI = 3.1415926;
const l e0 = 1, e3 = 1000, e5 = 100000, e6 = 10 * e5, e7 = 10 * e6,
e8 = 10 * e7, e9 = 10 * e8;
const char lf = '\n';
const l MOD = e9 + 7;
struct Edge {
l to;
l from;
l id;
};
l MAXC = 1000;
struct Graph {
l v, e;
vector<vector<Edge>> adj;
vvl counter;
l k;
l good;
Graph(l n, l k) : v(n), e(0), k(k), good(0) {
adj.resize(v);
counter.resize(v, vl(MAXC));
}
l add_node() {
adj.resize(++v);
return v - 1;
}
void add_simple(l a, l b) {
Edge ab;
ab.to = b;
adj[a].emplace_back(ab);
e++;
}
void add_undirected(l a, l b) {
Edge ab;
ab.id = e;
ab.from = a;
ab.to = b;
adj[a].emplace_back(ab);
Edge ba;
ba.id = e;
ba.from = b;
ba.to = a;
adj[b].emplace_back(ba);
e++;
for (l i = l(0); i < l(MAXC - 1); i++)
if (counter[a][i] == k) inc(b, i + 1);
for (l i = l(0); i < l(MAXC - 1); i++)
if (counter[b][i] == k) inc(a, i + 1);
inc(a, 0);
inc(b, 0);
}
void inc(l a, int j) {
if (counter[a][j] == k) return;
counter[a][j]++;
if (counter[a][j] != k) return;
if (j + 1 == MAXC) {
good++;
} else {
for (auto edge : adj[a]) inc(edge.to, j + 1);
}
}
void add_directed(l a, l b) {
Edge ab;
ab.id = e;
ab.from = a;
ab.to = b;
adj[a].emplace_back(ab);
e++;
}
};
void solve(istream& in, ostream& out) {
l n, m, k;
in >> n >> m >> k;
MAXC = e5 / n;
(MAXC);
Graph g(n, k);
for (l i = l(0); i < l(m); i++) {
l a, b;
in >> a >> b;
a--;
b--;
g.add_undirected(a, b);
out << g.good << lf;
}
}
int main(int argc, char** argv) {
ios_base::sync_with_stdio(false);
cin.tie(0);
cout << fixed << setprecision(15);
solve(cin, cout);
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | //package superior;
import java.util.*;
public class Tester {
static TreeSet<Integer> tr[];
static int k,n,m,cnt=0;
static Queue<Integer> q;
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner s=new Scanner(System.in);
n=s.nextInt();
m=s.nextInt();
k=s.nextInt();
Edge e[]=new Edge[m+1];
tr=new TreeSet[n+1];
for(int j=1;j<=n;j++)
tr[j]=new TreeSet<Integer>();
int x,y;
for(int j=1;j<=m;j++)
{
x=s.nextInt();
y=s.nextInt();
e[j]=new Edge(x,y);
tr[x].add(y);
tr[y].add(x);
}
int ans=0;
for(int j=1;j<=n;j++)
{
if(tr[j].size()<k)
reduce(j);
}
for(int j=1;j<=n;j++)
{
if(tr[j].size()>=k)
ans++;
}
//System.out.println(ans);
int fri[]=new int[m+1];
int ind;
fri[m]=ans;
ind=m-1;
for(int j=m;j>1;j--)
{
x=e[j].x;
y=e[j].y;
cnt=0;
if(tr[x].contains(y) && tr[y].contains(x))
{
//System.out.println("hiii");
tr[x].remove(y);
tr[y].remove(x);
if(tr[x].size()<k)
{
reduce(x);
ans-=cnt;
if(ans<=0)
break;
//fri[ind--]=ans;
//System.out.println(ans+" "+cnt);
//continue;
}
if(tr[y].size()<k)
{
reduce(y);
ans-=cnt;
if(ans<=0)
break;
//fri[ind--]=ans;
//System.out.println(ans+" "+cnt);
//continue;
}
fri[ind--]=ans;
}
else
{
//System.out.println("hello");
fri[ind--]=ans;
}
}
for(int j=1;j<=m;j++)
System.out.println(fri[j]);
}
public static void reduce(int x)
{
cnt++;int get;
while(tr[x].size()>0)
{
get=tr[x].first();
tr[get].remove(x);
tr[x].remove(get);
if(tr[get].size()<k)
reduce(get);
}
}
}
class Edge
{
int x;
int y;
public Edge(int x,int y)
{
this.x=x;
this.y=y;
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.Set;
import java.util.StringTokenizer;
public class Main {
static int deg[];
static Set<Integer> s;
static Set<Integer>[] graph;
static int n,m,k;
public static void main(String[] args) {
FastReader sc = new FastReader();
n = sc.nextInt();
m = sc.nextInt();
k = sc.nextInt();
graph = new Set[n];
for(int i=0;i<n;i++) {
graph[i] = new HashSet<>();
}
deg = new int[n+1];
ArrayList<Edge> edges = new ArrayList<Edge>();
for(int i=0;i<m;i++) {
int u = sc.nextInt()-1;
int v = sc.nextInt()-1;
edges.add(new Edge(u,v));
graph[u].add(v);
graph[v].add(u);
deg[u]++;
deg[v]++;
}
s = new HashSet<Integer>();
ArrayList<Vertex> ver = new ArrayList<>();
for(int i=0;i<n;i++) {
s.add(i);
ver.add(new Vertex(i,deg[i]));
}
ver.sort((v1,v2)->v1.d-v2.d);
int i=0;
for(i=0;i<n;i++) {
if(ver.get(i).d<k) {
int u = ver.get(i).u;
if(s.contains(u)) {
dfs(u);
}
else {
break;
}
}
}
ArrayList<Integer> ans = new ArrayList<>();
ans.add(s.size());
for(int j=m-1;j>0;j--) {
Edge e = edges.get(j);
graph[e.u].remove(e.v);
graph[e.v].remove(e.u);
if(s.contains(e.u) && s.contains(e.v)) {
dfs(e.u);
if(s.contains(e.v)) {
dfs(e.v);
}
}
ans.add(s.size());
}
for(int j=ans.size()-1;j>=0;j--) {
System.out.println(ans.get(j));
}
}
static void dfs(int u) {
deg[u]--;
if(deg[u]>=k) {
return;
}
s.remove(u);
for(int v:(Set<Integer>) graph[u]) {
if(s.contains(v)) {
dfs(v);
}
}
}
}
class Edge{
int u,v;
Edge(int i,int j){
u = i;
v = j;
}
}
class Vertex{
int u,d;
Vertex(int i,int j){
u = i;
d = j;
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, m, k, ANS[200005];
set<int> v[200005];
pair<int, int> q[200005];
set<int> s;
void remove(int u) {
if (v[u].size() < k && s.erase(u))
for (auto &i : v[u]) {
v[i].erase(u);
remove(i);
}
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> m >> k;
for (int d = 1; d <= m; ++d) {
cin >> q[d].first >> q[d].second;
v[q[d].first].insert(q[d].second);
v[q[d].second].insert(q[d].first);
}
for (int d = m, x, y; d; --d) {
ANS[d] = s.size();
tie(x, y) = q[d];
v[x].erase(y);
v[y].erase(x);
remove(x);
remove(y);
}
for (int i = 1; i <= m; cout << ANS[i++] << '\n')
;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int u[400100], v[400100], fir[200100], nxt[400100], cnt = 0, n, m, k;
int dis[200100], ans = 0;
void addedge(int ui, int vi) {
++cnt;
u[cnt] = ui;
v[cnt] = vi;
nxt[cnt] = fir[ui];
fir[ui] = cnt;
}
void dfs(int u) {
for (int i = fir[u]; i; i = nxt[i]) {
if (!dis[v[i]]) {
dis[v[i]] = dis[u] + 1;
dfs(v[i]);
} else {
ans = max(ans, abs(dis[u] - dis[v[i]]) + 1);
}
}
}
void findmax(void) {
memset(dis, 0, sizeof(dis));
ans = 1;
for (int i = 1; i <= n; i++)
if (!dis[i]) dfs(i);
}
int main() {
scanf("%d %d %d", &n, &m, &k);
for (int i = 1; i <= m; i++) {
int a, b;
scanf("%d %d", &a, &b);
addedge(a, b);
addedge(b, a);
findmax();
if (ans > k) {
printf("%d\n", ans);
} else {
printf("0\n");
}
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int res[200010], x[200010], y[200010];
vector<int> v;
set<int> a[200010];
bool vis[200010];
int main() {
int n, m, k;
while (cin >> n >> m >> k) {
for (int i = 1; i <= m; ++i) {
cin >> x[i] >> y[i];
a[x[i]].insert(y[i]);
a[y[i]].insert(x[i]);
}
int ans = n;
for (int i = 1; i <= n; ++i) {
if (a[i].size() < k) {
v.push_back(i);
vis[i] = 1;
--ans;
}
}
int tmp;
for (int h = 0; h < v.size(); ++h) {
tmp = v[h];
for (auto it : a[tmp]) {
if (a[it].find(tmp) != a[it].end()) a[it].erase(a[it].find(tmp));
if (a[it].size() < k && !vis[it]) {
v.push_back(it);
vis[it] = 1;
--ans;
}
}
a[tmp].clear();
}
v.clear();
res[m] = ans;
for (int i = m; i > 1; --i) {
if (a[x[i]].find(y[i]) != a[x[i]].end())
a[x[i]].erase(a[x[i]].find(y[i]));
if (a[y[i]].find(x[i]) != a[y[i]].end())
a[y[i]].erase(a[y[i]].find(x[i]));
if (!vis[x[i]] && a[x[i]].size() < k) {
v.push_back(x[i]);
vis[x[i]] = 1;
--ans;
}
if (!vis[y[i]] && a[y[i]].size() < k) {
v.push_back(y[i]);
vis[y[i]] = 1;
--ans;
}
while (v.size()) {
tmp = v.back();
for (auto it : a[tmp]) {
a[it].erase(a[it].find(tmp));
if (a[it].size() < k && !vis[it]) {
v.push_back(it);
vis[it] = 1;
--ans;
}
}
a[tmp].clear();
v.pop_back();
}
res[i - 1] = ans;
}
for (int i = 1; i <= m; ++i) {
cout << res[i] << endl;
}
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T, typename Pr = less<T>>
using pq = priority_queue<T, vector<T>, Pr>;
using i64 = long long int;
using ii = pair<int, int>;
using ii64 = pair<i64, i64>;
vector<int> edge[200005];
int deg[200005];
int degk[200005];
int degkk[200005];
int ans = 0;
int k;
void addkk(int x) {
degkk[x]++;
if (degkk[x] == k) ans++;
}
void addk(int x) {
degk[x]++;
if (degk[x] == k)
for (auto& e : edge[x]) addkk(e);
}
void add(int x) {
deg[x]++;
if (deg[x] == k)
for (auto& e : edge[x]) addk(e);
}
void merge(int x, int y) {
edge[x].push_back(y);
edge[y].push_back(x);
if (degk[y] >= k) addkk(x);
if (degk[x] >= k) addkk(y);
if (deg[y] >= k) addk(x);
if (deg[x] >= k) addk(y);
add(x);
add(y);
}
int main() {
int n, m;
scanf("%d %d %d", &n, &m, &k);
for (int i = 0; i < m; i++) {
int x, y;
scanf("%d %d", &x, &y);
merge(x, y);
printf("%d\n", ans);
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const int N = 2e5 + 5;
using namespace std;
int n, m, k;
int res[N];
int x[N], y[N];
int bac[N];
set<int> a[N];
set<pair<int, int> > S;
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> m >> k;
for (int i = 1; i <= m; i++) {
cin >> x[i] >> y[i];
a[x[i]].insert(y[i]);
a[y[i]].insert(x[i]);
bac[x[i]]++;
bac[y[i]]++;
}
for (int i = 1; i <= n; i++)
if (bac[i] > 0) S.insert(make_pair(bac[i], i));
for (int i = m; i >= 1; i--) {
while (S.size() && S.begin()->first < k) {
for (int v : a[S.begin()->second]) {
S.erase(make_pair(bac[v], v));
bac[v]--;
if (bac[v] > 0) S.insert(make_pair(bac[v], v));
a[v].erase(S.begin()->second);
}
a[S.begin()->second].clear();
bac[S.begin()->second] = 0;
S.erase(S.begin());
}
res[i] = S.size();
if (a[x[i]].find(y[i]) != a[x[i]].end() && bac[x[i]] && bac[y[i]]) {
S.erase(make_pair(bac[x[i]], x[i]));
bac[x[i]]--;
if (bac[x[i]] > 0) S.insert(make_pair(bac[x[i]], x[i]));
S.erase(make_pair(bac[y[i]], y[i]));
bac[y[i]]--;
if (bac[y[i]] > 0) S.insert(make_pair(bac[y[i]], y[i]));
a[x[i]].erase(y[i]);
a[y[i]].erase(x[i]);
}
}
for (int i = 1; i <= m; i++) cout << res[i] << '\n';
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | python3 | maxN =200005
G = [None] * maxN
s = set()
k = [0] * 1
def delete(v):
if len(G[v]) < k[0] and (v in s):
s.remove(v)
for u in G[v]:
G[u].discard(v)
delete(u)
def main():
n,m,k[0] = map(int,input().split())
edges = [None] * (m + 1)
ans = [0] * m
for i in range(m):
u,v = map(int,input().split())
if G[u] is None:
G[u] = set()
if G[v] is None:
G[v] = set()
G[u].add(v)
G[v].add(u)
edges[i+1] = (u,v)
for i in range(1,n+1):
s.add(i)
for i in range(1,n+1):
delete(i)
i = m
while i > 0:
ans[i-1] = len(s)
e = edges[i]
G[e[0]].discard(e[1])
G[e[1]].discard(e[0])
delete(e[0])
delete(e[1])
i-=1
print(str(ans)[1:-1].replace(' ', '').replace(',', '\n'))
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int Max = 2e5 + 3;
vector<int> adj[Max];
set<int> adjNew[Max];
int cnt[Max] = {0}, degree[Max] = {0};
bool visited[Max] = {0}, going[Max] = {0};
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int n, m, k;
cin >> n >> m >> k;
int u, v;
vector<pair<int, int> > edges(m);
for (int i = 0; i < m; ++i) {
cin >> u >> v;
adj[u].push_back(v);
adj[v].push_back(u);
degree[u]++;
degree[v]++;
edges[i] = {u, v};
}
queue<int> q;
for (int i = 1; i <= n; ++i) {
if (degree[i] < k) {
visited[i] = true;
q.push(i);
}
}
while (!q.empty()) {
int node = q.front();
q.pop();
for (int to : adj[node]) {
degree[to]--;
}
for (int to : adj[node]) {
if (!visited[to] && degree[to] < k) {
q.push(to);
visited[to] = true;
}
}
}
for (int i = 1; i <= n; ++i) {
adj[i].clear();
degree[i] = 0;
}
for (int i = 0; i < m; ++i) {
u = edges[i].first;
v = edges[i].second;
if (visited[u]) continue;
if (visited[v]) continue;
adj[u].push_back(v);
adj[v].push_back(u);
}
int res = 0;
for (int i = 0; i < m; ++i) {
u = edges[i].first;
v = edges[i].second;
if (visited[u] || visited[v]) {
cout << res << '\n';
continue;
}
degree[u]++;
degree[v]++;
adjNew[u].insert(v);
adjNew[v].insert(u);
if (degree[u] == k) {
int numGoing = 0;
for (int to : adj[u]) {
if (adjNew[to].count(u)) {
cnt[to]++;
if (cnt[to] >= k) {
numGoing++;
}
}
}
if (numGoing >= k) {
if (!going[u]) {
res++;
going[u] = true;
}
for (int to : adj[u]) {
if (!going[to] && cnt[to] >= k) {
res++;
going[to] = true;
}
}
}
}
if (degree[v] == k) {
int numGoing = 0;
for (int to : adj[v]) {
if (adjNew[to].count(v)) {
cnt[to]++;
if (cnt[to] >= k) {
numGoing++;
}
}
}
if (numGoing >= k) {
if (!going[v]) {
res++;
going[v] = true;
}
for (int to : adj[v]) {
if (!going[to] && cnt[to] >= k) {
res++;
going[to] = true;
}
}
}
}
cout << res << '\n';
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma GCC optimize("unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
using namespace std;
typedef long long ll;
typedef double lf;
typedef pair<int,int> ii;
#define REP(i,n) for(int i=0;i<n;i++)
#define REP1(i,n) for(ll i=1;i<=n;i++)
#define RST(i,n) memset(i,n,sizeof i)
#define SZ(a) (int)a.size()
#define ALL(a) a.begin(),a.end()
#define X first
#define Y second
#define mkp make_pair
#define pb push_back
#define eb emplace_back
#define pob pop_back
#ifdef cold66
#define debug(...) do{\
fprintf(stderr,"%s - %d (%s) = ",__PRETTY_FUNCTION__,__LINE__,#__VA_ARGS__);\
_do(__VA_ARGS__);\
}while(0)
template<typename T>void _do(T &&_x){cerr<<_x<<endl;}
template<typename T,typename ...S> void _do(T &&_x,S &&..._t){cerr<<_x<<" ,";_do(_t...);}
template<typename _a,typename _b> ostream& operator << (ostream &_s,const pair<_a,_b> &_p){return _s<<"("<<_p.X<<","<<_p.Y<<")";}
template<typename It> ostream& _OUTC(ostream &_s,It _ita,It _itb)
{
_s<<"{";
for(It _it=_ita;_it!=_itb;_it++)
{
_s<<(_it==_ita?"":",")<<*_it;
}
_s<<"}";
return _s;
}
template<typename _a> ostream &operator << (ostream &_s,vector<_a> &_c){return _OUTC(_s,ALL(_c));}
template<typename _a> ostream &operator << (ostream &_s,set<_a> &_c){return _OUTC(_s,ALL(_c));}
template<typename _a,typename _b> ostream &operator << (ostream &_s,map<_a,_b> &_c){return _OUTC(_s,ALL(_c));}
template<typename _t> void pary(_t _a,_t _b){_OUTC(cerr,_a,_b);cerr<<endl;}
#define IOS()
#else
#define debug(...)
#define pary(...)
#define endl '\n'
#define IOS() ios_base::sync_with_stdio(0);cin.tie(0);
#endif // cold66
//}
template<class T> inline bool chkmax(T &a, const T &b) { return b > a ? a = b, true : false; }
template<class T> inline bool chkmin(T &a, const T &b) { return b < a ? a = b, true : false; }
template<class T> using MaxHeap = priority_queue<T>;
template<class T> using MinHeap = priority_queue<T, vector<T>, greater<T>>;
const ll MAXn=2e5+5,MAXlg=__lg(MAXn)+2;
const ll MOD=1000000007;
const ll INF=0x3f3f3f3f;
int n,m,k;
int deg[MAXn],vis[MAXn],t;
bool ok[MAXn];
vector<int> e[MAXn];
ii dfs(int x){
if( vis[x]==t ) return mkp(0,-INF);
int cnt=0,ct=1;
vis[x] = t;
for( auto i:e[x] ){
if( deg[i]<k ) continue;
if( vis[i]==t || ok[i] ) cnt++;
else{
ii tmp = dfs(i);
cnt+=tmp.X;
if( tmp.X ) ct+=tmp.Y;
ok[x]|=ok[i];
}
}
if( x==2 ) debug(cnt,ct);
if( cnt>=k ){
ok[x] = true;
debug(ct);
if( ct>0 ) return mkp(1,ct);
else return mkp(0,-INF);
}
else return mkp(0,-INF);
}
int main(){
IOS();
cin>>n>>m>>k;
int ans=0;
REP(T,m){
int a,b;
cin>>a>>b;
a--,b--;
if( ans==n ){
cout<<ans<<endl;
continue;
}
deg[a]++,deg[b]++;
e[a].eb(b);
e[b].eb(a);
if( ok[a]|ok[b] ){
if( ok[a]&ok[b] );
else{
t++;
if( !ok[a] ) swap(a,b);
if( deg[b]>=k ){
debug(b);
ii tmp = dfs(b);
debug(tmp);
if( tmp.X ) ans+=tmp.Y;
}
}
}
else{
t++;
ii ta = dfs(a);
ii tb = dfs(b);
debug(ta,tb);
if( ta.X ) ans+=ta.Y;
if( tb.X ) ans+=tb.Y;
}
cout<<ans<<endl;
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int x[1000006], y[1000006], deg[1000006], ans[1000006];
set<pair<int, int> > my;
vector<int> v[1000006];
bool is[1000006];
map<pair<int, int>, int> my2;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int n, m, k;
cin >> n >> m >> k;
int i;
for (i = 0; i < m; i++) {
cin >> x[i] >> y[i];
deg[x[i]]++;
deg[y[i]]++;
v[x[i]].push_back(y[i]);
v[y[i]].push_back(x[i]);
}
for (i = 1; i <= n; i++) my.insert(make_pair(deg[i], i));
for (i = m - 1; i >= 0; i--) {
while (!my.empty()) {
set<pair<int, int> >::iterator t = my.begin();
pair<int, int> minm = *t;
if (minm.first >= k) break;
int x1 = minm.second;
is[x1] = 1;
for (int j = 0; j < v[x1].size(); j++) {
if (my2[make_pair(x1, v[x1][j])] || is[v[x1][j]]) continue;
set<pair<int, int> >::iterator t2 =
my.find(make_pair(deg[v[x1][j]], v[x1][j]));
if (t2 != my.end()) {
pair<int, int> temp = make_pair(t2->first, t2->second);
temp.first--;
my.erase(my.find(make_pair(deg[v[x1][j]], v[x1][j])));
deg[v[x1][j]]--;
my.insert(temp);
}
}
my.erase(my.begin());
}
ans[i] = my.size();
if (is[x[i]] || is[y[i]]) continue;
my2[make_pair(x[i], y[i])] = 1;
my2[make_pair(y[i], x[i])] = 1;
set<pair<int, int> >::iterator t = my.find(make_pair(deg[x[i]], x[i]));
if (t != my.end()) {
pair<int, int> temp = *t;
temp.first--;
my.erase(my.find(make_pair(deg[x[i]], x[i])));
deg[x[i]]--;
my.insert(temp);
}
t = my.find(make_pair(deg[y[i]], y[i]));
if (t != my.end()) {
pair<int, int> temp = *t;
temp.first--;
my.erase(my.find(make_pair(deg[y[i]], y[i])));
deg[y[i]]--;
my.insert(temp);
}
}
for (i = 0; i < m; i++) cout << ans[i] << endl;
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int N, M, K;
int X[200001], Y[200001];
vector<int> adj[200001];
set<int> adj2[200001];
int goadj[200001];
bool going[200001];
set<pair<int, int>> st;
int ans = 0;
vector<int> ants;
void dfs(int node) {
going[node] = false;
queue<int> todo;
ans--;
for (set<int>::iterator it = adj2[node].begin(); it != adj2[node].end();
it++) {
goadj[*it]--;
adj2[*it].erase(node);
if (going[*it] && goadj[*it] < K) {
todo.push(*it);
}
}
adj2[node].clear();
while (!todo.empty()) {
if (going[todo.front()] && goadj[todo.front()] < K) dfs(todo.front());
todo.pop();
}
}
int main() {
scanf("%d%d%d", &N, &M, &K);
for (int i = 0; i < M; i++) {
scanf("%d%d", &X[i], &Y[i]);
goadj[X[i]]++;
goadj[Y[i]]++;
adj[X[i]].push_back(Y[i]);
adj[Y[i]].push_back(X[i]);
}
for (int i = 1; i <= N; i++) st.insert({goadj[i], i});
while (st.size() >= 1) {
int x = st.begin()->first;
int y = st.begin()->second;
if (x >= K) break;
st.erase(*st.begin());
for (int i = 0; i < adj[y].size(); i++) {
goadj[adj[y][i]]--;
if (st.count({goadj[adj[y][i]] + 1, adj[y][i]}) == 1) {
st.erase({goadj[adj[y][i]] + 1, adj[y][i]});
st.insert({goadj[adj[y][i]], adj[y][i]});
}
}
}
for (set<pair<int, int>>::iterator it = st.begin(); it != st.end(); it++) {
going[it->second] = true;
ans++;
}
for (int i = 0; i < M; i++)
if (going[X[i]] && going[Y[i]]) {
adj2[X[i]].insert(Y[i]);
adj2[Y[i]].insert(X[i]);
}
ants.push_back(ans);
for (int i = M - 1; i > 0; i--) {
if (going[X[i]] && going[Y[i]]) {
goadj[X[i]]--;
goadj[Y[i]]--;
adj2[X[i]].erase(Y[i]);
adj2[Y[i]].erase(X[i]);
if (goadj[X[i]] == K - 1) dfs(X[i]);
if (goadj[Y[i]] == K - 1) dfs(Y[i]);
}
ants.push_back(ans);
}
for (int i = ants.size() - 1; i >= 0; i--) cout << ants[i] << endl;
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.lang.reflect.Array;
import java.nio.charset.Charset;
import java.util.*;
public class CFContest {
public static void main(String[] args) throws Exception {
boolean local = System.getProperty("ONLINE_JUDGE") == null;
boolean async = false;
Charset charset = Charset.forName("ascii");
FastIO io = local ? new FastIO(new FileInputStream("E:\\DATABASE\\TESTCASE\\CFContest.in"), System.out, charset) : new FastIO(System.in, System.out, charset);
Task task = new Task(io);
if (async) {
Thread t = new Thread(null, task, "dalt", 1 << 27);
t.setPriority(Thread.MAX_PRIORITY);
t.start();
t.join();
} else {
task.run();
}
if (local) {
io.cache.append("\n\n--memory -- \n" + ((Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory()) >> 20) + "M");
}
io.flush();
}
public static class Task implements Runnable {
final FastIO io;
public Task(FastIO io) {
this.io = io;
}
@Override
public void run() {
solve();
}
public void solve() {
int n = io.readInt();
Node[] nodes = new Node[n + 1];
for (int i = 0; i <= n; i++) {
nodes[i] = new Node();
nodes[i].id = i;
}
for (int i = 1; i < n; i++) {
Node a = nodes[io.readInt()];
Node b = nodes[io.readInt()];
a.set.add(b);
b.set.add(a);
}
int[] seq = new int[n + 1];
for (int i = 1; i <= n; i++) {
int v = io.readInt();
seq[i] = v;
if (v <= 0 || v > n) {
io.cache.append("No");
return;
}
if (nodes[v].seq != -1) {
io.cache.append("No");
return;
}
nodes[v].seq = i;
}
if(seq[1] != 1)
{
io.cache.append("No");
return;
}
Node root = nodes[seq[1]];
Deque<Node> deque = new ArrayDeque<>(n);
deque.add(root);
int offset = 2;
while (!deque.isEmpty()) {
Node head = deque.removeFirst();
int allowRange = offset + head.set.size();
for (; offset < allowRange; offset++) {
Node next = nodes[seq[offset]];
if (!head.set.contains(next)) {
io.cache.append("No");
return;
}
next.set.remove(head);
deque.add(next);
}
}
io.cache.append("Yes");
return;
}
}
public static class Randomized {
static Random random = new Random();
public static double nextDouble(double min, double max) {
return random.nextDouble() * (max - min) + min;
}
public static void randomizedArray(int[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
int tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static void randomizedArray(long[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
long tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static void randomizedArray(double[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
double tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static void randomizedArray(float[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
float tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static <T> void randomizedArray(T[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
T tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static int nextInt(int l, int r) {
return random.nextInt(r - l + 1) + l;
}
}
public static class Node {
Set<Node> set = new HashSet<>();
int seq = -1;
int id;
@Override
public String toString() {
return "" + id;
}
}
public static class FastIO {
private final InputStream is;
private final OutputStream os;
private final Charset charset;
private StringBuilder defaultStringBuf = new StringBuilder(1 << 8);
public final StringBuilder cache = new StringBuilder();
private byte[] buf = new byte[1 << 13];
private int bufLen;
private int bufOffset;
private int next;
public FastIO(InputStream is, OutputStream os, Charset charset) {
this.is = is;
this.os = os;
this.charset = charset;
}
private int read() {
while (bufLen == bufOffset) {
bufOffset = 0;
try {
bufLen = is.read(buf);
} catch (IOException e) {
throw new RuntimeException(e);
}
if (bufLen == -1) {
return -1;
}
}
return buf[bufOffset++];
}
public void skipBlank() {
while (next >= 0 && next <= 32) {
next = read();
}
}
public int readInt() {
int sign = 1;
skipBlank();
if (next == '+' || next == '-') {
sign = next == '+' ? 1 : -1;
next = read();
}
int val = 0;
if (sign == 1) {
while (next >= '0' && next <= '9') {
val = val * 10 + next - '0';
next = read();
}
} else {
while (next >= '0' && next <= '9') {
val = val * 10 - next + '0';
next = read();
}
}
return val;
}
public long readLong() {
int sign = 1;
skipBlank();
if (next == '+' || next == '-') {
sign = next == '+' ? 1 : -1;
next = read();
}
long val = 0;
if (sign == 1) {
while (next >= '0' && next <= '9') {
val = val * 10 + next - '0';
next = read();
}
} else {
while (next >= '0' && next <= '9') {
val = val * 10 - next + '0';
next = read();
}
}
return val;
}
public double readDouble() {
long num = readLong();
if (next != '.') {
return num;
}
next = read();
long divisor = 1;
long later = 0;
while (next >= '0' && next <= '9') {
divisor = divisor * 10;
later = later * 10 + next - '0';
next = read();
}
if (num >= 0) {
return num + (later / (double) divisor);
} else {
return num - (later / (double) divisor);
}
}
public String readString(StringBuilder builder) {
skipBlank();
while (next > 32) {
builder.append((char) next);
next = read();
}
return builder.toString();
}
public String readString() {
defaultStringBuf.setLength(0);
return readString(defaultStringBuf);
}
public int readString(char[] data, int offset) {
skipBlank();
int originalOffset = offset;
while (next > 32) {
data[offset++] = (char) next;
next = read();
}
return offset - originalOffset;
}
public int readString(byte[] data, int offset) {
skipBlank();
int originalOffset = offset;
while (next > 32) {
data[offset++] = (byte) next;
next = read();
}
return offset - originalOffset;
}
public void flush() {
try {
os.write(cache.toString().getBytes(charset));
os.flush();
cache.setLength(0);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
public boolean hasMore() {
skipBlank();
return next != -1;
}
}
public static class Memory {
public static <T> void swap(T[] data, int i, int j) {
T tmp = data[i];
data[i] = data[j];
data[j] = tmp;
}
public static <T> void swap(int[] data, int i, int j) {
int tmp = data[i];
data[i] = data[j];
data[j] = tmp;
}
public static <T> void swap(char[] data, int i, int j) {
char tmp = data[i];
data[i] = data[j];
data[j] = tmp;
}
public static <T> int min(T[] data, int from, int to, Comparator<T> cmp) {
int m = from;
for (int i = from + 1; i < to; i++) {
if (cmp.compare(data[m], data[i]) > 0) {
m = i;
}
}
return m;
}
public static <T> void move(T[] data, int from, int to, int step) {
int len = to - from;
step = len - (step % len + len) % len;
Object[] buf = new Object[len];
for (int i = 0; i < len; i++) {
buf[i] = data[(i + step) % len + from];
}
System.arraycopy(buf, 0, data, from, len);
}
public static <T> void reverse(T[] data, int f, int t) {
int l = f, r = t - 1;
while (l < r) {
swap(data, l, r);
l++;
r--;
}
}
public static void copy(Object[] src, Object[] dst, int srcf, int dstf, int len) {
if (len < 8) {
for (int i = 0; i < len; i++) {
dst[dstf + i] = src[srcf + i];
}
} else {
System.arraycopy(src, srcf, dst, dstf, len);
}
}
}
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long const MAXN = 200005;
vector<long long> v[MAXN];
set<long long> g[MAXN];
long long deg[MAXN];
set<pair<long long, long long>> st;
pair<long long, long long> edge[MAXN];
long long ans[MAXN];
bool used[MAXN];
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
long long n, m, k;
cin >> n >> m >> k;
for (long long i = 0; i < m; i++) {
long long a, b;
cin >> a >> b;
a--, b--;
edge[i] = make_pair(a, b);
g[a].insert(b);
g[b].insert(a);
deg[a]++, deg[b]++;
}
if ((double)clock() / CLOCKS_PER_SEC > 0.01) {
return 0;
}
for (long long i = 0; i < n; i++) {
st.insert(make_pair(deg[i], i));
used[i] = 1;
}
while ((*(st.begin())).first < k) {
long long a = (*(st.begin())).second;
st.erase(st.begin());
used[a] = 0;
deg[a]--;
for (auto v : g[a]) {
st.erase(make_pair(deg[v], v));
deg[v]--;
st.insert(make_pair(deg[v], v));
g[v].erase(a);
}
}
for (long long i = m - 1; i >= 0; i--) {
if (st.size() == 0) break;
ans[i] = st.size();
long long a = edge[i].first;
long long b = edge[i].second;
if (used[a] && used[b]) {
st.erase(make_pair(deg[a], a));
deg[a]--;
st.insert(make_pair(deg[a], a));
st.erase(make_pair(deg[b], b));
deg[b]--;
st.insert(make_pair(deg[b], b));
g[a].erase(b);
g[b].erase(a);
while (st.size() && (*(st.begin())).first < k) {
long long c = (*(st.begin())).second;
st.erase(st.begin());
used[c] = 0;
deg[c]--;
for (auto v : g[c]) {
st.erase(make_pair(deg[v], v));
deg[v]--;
st.insert(make_pair(deg[v], v));
g[v].erase(c);
}
}
}
}
for (long long i = 0; i < m; i++) {
cout << ans[i] << '\n';
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int toNumber(string s) {
int Number;
if (!(istringstream(s) >> Number)) Number = 0;
return Number;
}
string toString(int number) {
ostringstream ostr;
ostr << number;
return ostr.str();
}
long long ele(long long a, long long b) {
if (b == 0) return 1;
if (b % 2 == 0) {
return ele((a * a), b / 2);
} else {
return a * ele((a * a), b / 2);
}
}
long long mcd(long long a, long long b) {
if (a == 0) return b;
return mcd(b % a, a);
}
double d_abs(long a, long b) {
if (a > b) {
return a - b;
}
return b - a;
}
bool isPal(string x) {
for (int i = 0; i < (int)(x.size()); i++) {
if (x[i] != x[x.size() - i - 1]) return false;
}
return true;
}
vector<vector<int> > gr(200003);
set<int> pueden;
vector<pair<int, int> > aristas;
int n, k;
vector<bool> mire(200003, false);
vector<int> cant(200003, 0);
queue<int> q;
void calc() {
while (!q.empty()) {
int t = q.front();
q.pop();
pueden.erase(t);
for (int j = 0; j < (int)(gr[t].size()); j++) {
if (pueden.find(gr[t][j]) == pueden.end()) continue;
if (mire[gr[t][j]]) continue;
cant[gr[t][j]]--;
if (cant[gr[t][j]] < k) {
mire[gr[t][j]] = true;
q.push(gr[t][j]);
}
}
}
}
void sacarArista(int u, int v) {
gr[u].pop_back();
gr[v].pop_back();
cant[u]--;
cant[v]--;
if (pueden.find(u) == pueden.end() || pueden.find(v) == pueden.end()) return;
if (cant[u] < k) {
q.push(u);
mire[u] = true;
}
if (cant[v] < k) {
q.push(v);
mire[v] = true;
}
calc();
}
void solve(int caso) {
int m;
cin >> n >> m >> k;
for (int i = 0; i < (int)(m); i++) {
int a, b;
cin >> a >> b;
a--;
b--;
cant[a]++;
cant[b]++;
gr[a].push_back(b);
gr[b].push_back(a);
aristas.push_back(make_pair(a, b));
}
for (int i = 0; i < (int)(n); i++) {
pueden.insert(i);
if (cant[i] < k) {
q.push(i);
mire[i] = true;
}
}
calc();
vector<int> ans(m);
ans[m - 1] = pueden.size();
for (int i = 0; i < (int)(m - 1); i++) {
pair<int, int> uv = aristas[m - 1 - i];
sacarArista(uv.first, uv.second);
ans[m - 2 - i] = pueden.size();
}
for (int i = 0; i < (int)(m); i++) cout << ans[i] << "\n";
}
int main() {
int T;
T = 1;
for (int caso = 0; caso < (int)(T); caso++) {
solve(caso);
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
struct P {
int x, y, z;
bool operator<(const P &a) const { return x < a.x; }
};
vector<int> v[2];
int a, c, i, b, n, m, k, d;
int o[222111];
int l[111];
int j[11111];
int e;
int dx[10] = {0, 1, 0, -1, 1, 1, -1, -1}, dy[10] = {1, 0, -1, 0, 1, -1, 1, -1},
dz[10] = {0, 0, 0, 0, 1, -1};
long long x, y, mod = 998244353, mod2 = 1000000009, mod3 = 2017;
long long z;
double pi = 3.14159265;
P u[211111];
stack<int> s[222222], s1;
queue<int> q;
char r[1113];
bool as(P a, P b) {
if (a.x != b.x) return a.x < b.x;
return a.y < b.y;
}
int main() {
scanf("%d %d %d", &a, &b, &c);
for (int t = 1; t <= b; t++) {
scanf("%d %d", &u[t].x, &u[t].y);
s[u[t].x].push(u[t].y);
s[u[t].y].push(u[t].x);
o[u[t].x]++;
o[u[t].y]++;
}
k = a;
for (int t = 1; t <= a; t++)
if (o[t] < c) q.push(t);
for (; q.size(); k--, q.pop()) {
for (; s[q.front()].size(); s[q.front()].pop()) {
o[s[q.front()].top()]--;
if (o[s[q.front()].top()] < c && o[s[q.front()].top()] >= 0) {
q.push(s[q.front()].top());
o[s[q.front()].top()] = -1;
}
}
}
s1.push(k);
for (int t = b; t > 1; t--) {
if (s[u[t].x].size() && s[u[t].x].top() == u[t].y && s[u[t].y].size() &&
s[u[t].y].top() == u[t].x) {
o[u[t].x]--;
o[u[t].y]--;
s[u[t].x].pop();
s[u[t].y].pop();
if (o[u[t].x] == c - 1) q.push(u[t].x);
if (o[u[t].y] == c - 1) q.push(u[t].y);
for (; q.size(); k--, q.pop()) {
for (; s[q.front()].size(); s[q.front()].pop()) {
o[s[q.front()].top()]--;
if (o[s[q.front()].top()] == c - 1) q.push(s[q.front()].top());
}
}
} else {
if (s[u[t].x].size() && s[u[t].x].top() == u[t].y) s[u[t].x].pop();
if (s[u[t].y].size() && s[u[t].y].top() == u[t].x) s[u[t].y].pop();
}
s1.push(k);
}
for (; s1.size(); s1.pop()) printf("%d\n", s1.top());
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MAXN = 2e5 + 5;
vector<pair<int, int> > e;
set<pair<int, int> > f;
vector<int> adj[MAXN];
int n, m, k, deg[MAXN], num;
bool kicked[MAXN];
vector<int> ans;
int main() {
scanf("%d %d %d", &n, &m, &k);
for (int i = 0; i < m; ++i) {
int u, v;
scanf("%d %d", &u, &v);
e.push_back(pair<int, int>(u, v));
f.insert(pair<int, int>(u, v));
adj[u].push_back(v);
adj[v].push_back(u);
deg[u]++;
deg[v]++;
}
num = n;
queue<int> q;
for (int i = 1; i <= n; ++i) {
if (deg[i] < k) {
q.push(i);
}
}
while (!q.empty()) {
int top = q.front();
q.pop();
if (kicked[top]) continue;
kicked[top] = true;
num--;
for (int j : adj[top])
if (f.count(pair<int, int>(top, j)) + f.count(pair<int, int>(j, top)) ==
1) {
deg[j]--;
f.erase(pair<int, int>(j, top));
f.erase(pair<int, int>(top, j));
if (deg[j] < k) {
printf("Unfriending %d %d\n", top, j);
q.push(j);
}
}
}
reverse(e.begin(), e.end());
for (pair<int, int> i : e) {
ans.push_back(num);
if (f.count(i) == 0) continue;
deg[i.first]--;
deg[i.second]--;
printf("Unfriend %d %d\n", i.first, i.second);
f.erase(i);
queue<int> q;
if (deg[i.first] < k && !kicked[i.first]) q.push(i.first);
if (deg[i.second] < k && !kicked[i.second]) q.push(i.second);
while (!q.empty()) {
int top = q.front();
q.pop();
if (kicked[top]) continue;
kicked[top] = true;
num--;
for (int j : adj[top])
if (f.count(pair<int, int>(top, j)) + f.count(pair<int, int>(j, top)) ==
1) {
deg[j]--;
f.erase(pair<int, int>(j, top));
f.erase(pair<int, int>(top, j));
if (deg[j] < k) {
printf("Unfriending %d %d\n", top, j);
q.push(j);
}
}
}
}
reverse(ans.begin(), ans.end());
for (int i : ans) printf("%d\n", i);
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
inline int read() {
int k = 1, sum = 0;
char c = getchar();
for (; c < '0' || c > '9'; c = getchar())
if (c == '-') k = -1;
for (; c >= '0' && c <= '9'; c = getchar()) sum = sum * 10 + c - '0';
return sum * k;
}
int n, m, k;
int in[200000 + 10];
set<int> son[200000 + 10];
int ans[200000 + 10];
int tmp;
bool del[200000 + 10];
int x[200000 + 10], y[200000 + 10];
inline void Delete(int x) {
if (in[x] >= k || del[x]) return;
queue<int> Q;
Q.push(x);
del[x] = 1;
--tmp;
while (!Q.empty()) {
int t = Q.front();
del[t] = 1;
Q.pop();
for (register set<int>::iterator it = son[t].begin(); it != son[t].end();
++it) {
int y = *it;
--in[y];
if (in[y] < k && !del[y]) {
Q.push(y);
--tmp;
}
}
}
}
int main() {
n = read();
m = read();
k = read();
for (register int i = 0; i < m; ++i) {
x[i] = read(), y[i] = read();
in[x[i]]++;
in[y[i]]++;
son[x[i]].insert(y[i]);
son[y[i]].insert(x[i]);
}
tmp = n;
for (register int i = 1; i <= n; ++i) Delete(i);
ans[m] = tmp;
for (register int i = m - 1; i >= 0; --i) {
if (!del[y[i]]) --in[x[i]];
if (!del[x[i]]) --in[y[i]];
son[x[i]].erase(y[i]);
son[y[i]].erase(x[i]);
Delete(x[i]);
Delete(y[i]);
ans[i] = tmp;
}
for (register int i = 1; i <= m; ++i) cout << ans[i] << endl;
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
signed main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
long long n, m, k;
cin >> n >> m >> k;
vector<vector<pair<long long, long long> > > friends(n);
vector<long long> pointers(n);
for (long long i = 0; i < m; i++) {
long long a, b;
cin >> a >> b;
friends[a - 1].push_back(make_pair(b - 1, i));
friends[b - 1].push_back(make_pair(a - 1, i));
}
queue<long long> q;
set<pair<long long, long long> > good;
for (long long i = 0; i < n; i++) {
if (friends[i].size() >= k) {
good.insert(make_pair(friends[i][k - 1].second, i));
pointers[i] = k - 1;
} else {
pointers[i] = -1;
q.push(i);
}
}
long long u = m;
vector<long long> ans(m);
fill(ans.begin(), ans.end(), 0);
while (good.size()) {
while (q.size()) {
long long V = q.front();
q.pop();
for (long long i = 0; i < friends[V].size(); i++) {
long long to = friends[V][i].first, tm = friends[V][i].second;
if (pointers[to] == -1) continue;
long long T = friends[to][pointers[to]].second;
if (tm > T) continue;
pointers[to]++;
while (pointers[to] < friends[to].size()) {
long long K = friends[to][pointers[to]].first;
if (pointers[K] == -1)
pointers[to]++;
else
break;
}
if (pointers[to] >= friends[to].size()) {
good.erase(good.find(make_pair(T, to)));
pointers[to] = -1;
q.push(to);
} else {
good.erase(good.find(make_pair(T, to)));
T = friends[to][pointers[to]].second;
good.insert(make_pair(T, to));
}
}
}
long long S = good.size();
if (S == 0) break;
set<pair<long long, long long> >::iterator it = good.end();
it--;
pair<long long, long long> P = *it;
long long tt = P.first;
for (long long i = tt; i < u; i++) ans[i] = S;
u = tt;
while (good.size()) {
set<pair<long long, long long> >::iterator it = good.end();
it--;
pair<long long, long long> P = *it;
long long ttt = P.first;
if (tt != ttt) {
break;
}
good.erase(it);
pointers[P.second] = -1;
q.push(P.second);
}
}
for (long long i = 0; i < m; i++) cout << ans[i] << "\n";
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 10;
set<pair<int, int> > sq;
set<int> to[maxn];
int n, m, k;
int a[maxn];
struct node {
int l, r;
} q[maxn];
void update() {
while (sq.size() > 0 && (*(sq.begin())).first < k) {
auto x = *(sq.begin());
sq.erase(sq.begin());
for (auto j = to[x.second].begin(); j != to[x.second].end();) {
auto value = *j;
if (sq.count({a[value], value})) {
sq.erase(sq.find({a[value], value}));
a[value]--;
if (a[value] > 0) sq.insert({a[value], value});
to[x.second].erase(j++);
} else
j++;
}
}
}
int main() {
cin >> n >> m >> k;
for (int i = 1; i <= m; i++) {
int from, t;
cin >> from >> t;
q[i].l = from, q[i].r = t;
to[from].insert(t);
to[t].insert(from);
a[from]++, a[t]++;
}
for (int i = 1; i <= n; i++) sq.insert({a[i], i});
vector<int> ans;
for (int i = m; i >= 1; i--) {
update();
ans.push_back(sq.size());
if (sq.count({a[q[i].l], q[i].l}) && sq.count({a[q[i].r], q[i].r})) {
sq.erase(sq.find({a[q[i].l], q[i].l}));
sq.erase(sq.find({a[q[i].r], q[i].r}));
a[q[i].l]--, a[q[i].r]--;
if (a[q[i].l] > 0) sq.insert({a[q[i].l], q[i].l});
if (a[q[i].r] > 0) sq.insert({a[q[i].r], q[i].r});
to[q[i].l].erase(q[i].r);
to[q[i].r].erase(q[i].l);
}
}
reverse(ans.begin(), ans.end());
for (auto &i : ans) {
cout << i << endl;
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
vector<vector<int> > G;
set<pair<int, int> > S;
stack<int> results;
vector<pair<int, int> > E;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int n, m, k;
cin >> n >> m >> k;
G.resize(n);
for (int i = 0; i < m; i++) {
int u, v;
cin >> u >> v;
u--, v--;
E.push_back(make_pair(u, v));
G[u].push_back(v);
G[v].push_back(u);
}
vector<set<pair<int, int> >::iterator> iterators(n);
for (int i = 0; i < n; i++) {
pair<set<pair<int, int> >::iterator, bool> ret =
S.insert(make_pair(G[i].size(), i));
iterators[i] = ret.first;
}
for (int i = m - 1; i >= 0; i--) {
set<pair<int, int> >::iterator it = S.begin();
int dv = it->first, v = it->second;
while (S.size() > 0 && dv < k) {
S.erase(it);
for (int i = 0; i < G[v].size(); i++) {
set<pair<int, int> >::iterator neighbor = iterators[G[v][i]];
pair<int, int> p = make_pair(neighbor->first - 1, neighbor->second);
pair<int, int> orig = make_pair(neighbor->first, neighbor->second);
int neighbor_index = neighbor->second;
if (S.count(orig) > 0) {
S.erase(neighbor);
pair<set<pair<int, int> >::iterator, bool> ret = S.insert(p);
iterators[neighbor_index] = ret.first;
}
}
if (S.size() > 0) {
it = S.begin();
dv = it->first, v = it->second;
}
}
results.push(S.size());
pair<int, int> edge = E[i];
vector<int>::iterator pos;
for (pos = G[edge.first].begin(); pos != G[edge.first].end(); pos++)
if ((*pos) == edge.second) break;
G[edge.first].erase(pos);
for (pos = G[edge.second].begin(); pos != G[edge.second].end(); pos++)
if ((*pos) == edge.first) break;
G[edge.second].erase(pos);
set<pair<int, int> >::iterator it1, it2;
it1 = iterators[edge.first];
it2 = iterators[edge.second];
pair<int, int> p1 = make_pair(it1->first, it1->second);
pair<int, int> p2 = make_pair(it2->first, it2->second);
if (S.count(p1) > 0 && S.count(p2) > 0) {
S.erase(it1);
S.erase(it2);
pair<set<pair<int, int> >::iterator, bool> ret1 =
S.insert(make_pair(p1.first - 1, p1.second));
pair<set<pair<int, int> >::iterator, bool> ret2 =
S.insert(make_pair(p2.first - 1, p2.second));
iterators[p1.second] = ret1.first;
iterators[p2.second] = ret2.first;
}
}
while (!results.empty()) {
cout << results.top() << endl;
results.pop();
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, m, k;
struct edge {
int u, v, nxt;
} e[200005 * 2];
int cnt, head[200005];
void adde(int u, int v) {
e[++cnt].u = u;
e[cnt].v = v;
e[cnt].nxt = head[u];
head[u] = cnt;
}
int vis[200005 * 2], d[200005], ans[200005], res;
struct ege2 {
int u, v;
} edge[200005];
queue<int> q;
void solve() {
while (!q.empty()) {
int u = q.front();
q.pop();
d[u] = 0;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].v;
if (vis[i]) continue;
vis[i] = vis[i ^ 1] = 1;
d[v]--;
if (d[v] == k - 1) {
--res;
q.push(v);
}
}
}
}
int main() {
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= m; ++i) {
scanf("%d%d", &edge[i].u, &edge[i].v);
adde(edge[i].u, edge[i].v);
adde(edge[i].v, edge[i].u);
d[edge[i].u]++;
d[edge[i].v]++;
}
res = n;
for (int i = 1; i <= n; ++i)
if (d[i] < k) {
--res;
q.push(i);
}
solve();
ans[m] = res;
for (int i = m; i >= 2; --i) {
if (vis[i << 1]) {
ans[i - 1] = ans[i];
continue;
}
vis[i << 1] = vis[i << 1 | 1] = 1;
int u = edge[i].u, v = edge[i].v;
d[u]--;
d[v]--;
printf("%d %d ", u, v);
if (d[u] == k - 1) {
--res;
q.push(u);
}
if (d[v] == k - 1) {
--res;
q.push(v);
}
solve();
ans[i - 1] = res;
}
for (int i = 1; i <= m; ++i) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, m, k;
vector<int> used;
vector<int> selected;
vector<vector<int>> g;
bool dfs(int cur) {
used[cur] = 1;
selected[cur] = 1;
int cnt = 0;
for (auto t : g[cur]) {
if (!used[t]) {
dfs(t);
}
if (selected[t]) {
cnt++;
}
}
if (cnt < k) {
selected[cur] = 0;
}
return cnt > k;
}
signed main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cin >> n >> m >> k;
g.resize(n);
for (int i = 0; i < m; i++) {
int u, v;
cin >> u >> v;
u--;
v--;
g[u].push_back(v);
g[v].push_back(u);
used.assign(n, 0);
selected.assign(n, 0);
dfs(0);
int cur = 0;
for (int i = 0; i < n; i++) {
cur += selected[i];
}
cout << cur << '\n';
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, m, d[200005], k, res, vs[200005], ans[200005], pa;
map<int, int> cnt[200005];
vector<int> ke[200005];
pair<int, int> a[200005];
void dfs(int u) {
d[u]--;
res--;
vs[u] = 1;
for (int v : ke[u])
if (vs[v] == 0) {
cnt[u][v] = cnt[v][u] = 1;
d[v]--;
if (d[v] < k) {
d[v]++;
dfs(v);
}
}
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
cin >> n >> m >> k;
res = n;
for (int i = 1; i <= m; i++) {
cin >> a[i].first >> a[i].second;
d[a[i].first]++;
d[a[i].second]++;
ke[a[i].first].push_back(a[i].second);
ke[a[i].second].push_back(a[i].first);
}
for (int i = 1; i <= n; i++)
if (d[i] < k && vs[i] == 0) dfs(i);
for (int i = m; i >= 1; i--) {
ans[i] = res;
if (cnt[a[i].first][a[i].second] == 1) continue;
ke[a[i].first].pop_back();
ke[a[i].second].pop_back();
if (vs[a[i].first] == 0) {
d[a[i].first]--;
if (d[a[i].first] < k) {
d[a[i].first]++;
dfs(a[i].first);
}
}
if (vs[a[i].second] == 0) {
d[a[i].second]--;
if (d[a[i].second] < k) {
d[a[i].second]++;
dfs(a[i].second);
}
}
}
for (int i = 1; i <= m; i++) cout << ans[i] << '\n';
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 212345;
int n, m, k;
vector<int> g[N];
set<pair<int, int> > st;
int deg[N];
int main(void) {
ios_base::sync_with_stdio(false);
cin >> n >> m >> k;
vector<pair<int, int> > edg;
set<pair<int, int> > act;
for (int i = 0; i < m; i++) {
int a, b;
cin >> a >> b;
g[a].emplace_back(b);
g[b].emplace_back(a);
edg.emplace_back(a, b);
act.emplace(min(a, b), max(a, b));
}
for (int i = 1; i <= n; i++) {
st.emplace(g[i].size(), i);
deg[i] = g[i].size();
}
vector<int> ans;
for (int i = m - 1; i >= 0; i--) {
while (st.size() and (*st.begin()).first < k) {
int d, u;
tie(d, u) = *st.begin();
st.erase(st.begin());
deg[u] = 0;
for (int v : g[u]) {
if (!act.count(pair<int, int>(min(u, v), max(u, v)))) continue;
act.erase(pair<int, int>(min(u, v), max(u, v)));
st.erase(pair<int, int>(deg[v], v));
deg[v]--;
st.emplace(pair<int, int>(deg[v], v));
}
}
int a, b;
tie(a, b) = edg[i];
ans.emplace_back(st.size());
if (act.count(pair<int, int>(a, b))) {
act.erase(pair<int, int>(a, b));
st.erase(pair<int, int>(deg[a], a));
deg[a]--;
st.emplace(pair<int, int>(deg[a], a));
st.erase(pair<int, int>(deg[b], b));
deg[b]--;
st.emplace(pair<int, int>(deg[b], b));
}
}
for (int i = ans.size() - 1; i >= 0; i--) cout << ans[i] << endl;
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
template <class C, class E>
inline bool contains(const C& container, const E& element) {
return container.find(element) != container.end();
}
template <class T>
inline void checkmin(T& a, T b) {
if (b < a) a = b;
}
template <class T>
inline void checkmax(T& a, T b) {
if (b > a) a = b;
}
using namespace std;
vector<pair<int, int> > fr;
vector<set<int> > gr;
int n, m, k;
vector<bool> inTrip;
vector<int> deg;
int inTripCount;
void Remove(int a, int b) {
gr[a].erase(b);
gr[b].erase(a);
--deg[a];
--deg[b];
}
vector<bool> visited;
void RemAll(queue<int>& toRemove) {
while (!toRemove.empty()) {
int iRem = toRemove.front();
inTrip[iRem] = false;
--inTripCount;
toRemove.pop();
vector<int> rem2;
for (int br : gr[iRem]) {
--deg[br];
gr[br].erase(iRem);
if (deg[br] < k && !visited[br]) {
rem2.push_back(br);
visited[br] = true;
toRemove.push(br);
}
}
gr[iRem].clear();
deg[iRem] = 0;
}
}
void Process(pair<int, int> p) {
if (!contains(gr[p.first], p.second)) return;
Remove(p.first, p.second);
queue<int> toRemove;
if (inTrip[p.first] && deg[p.first] < k) toRemove.push(p.first);
if (inTrip[p.second] && deg[p.second] < k) toRemove.push(p.second);
RemAll(toRemove);
}
void Init() {
queue<int> toRemove;
for (int i = (0), _b = ((n)-1); i <= _b; i++) {
if (deg[i] < k) toRemove.push(i);
}
RemAll(toRemove);
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
cout << std::setprecision(15);
cout << std::fixed;
cin >> n >> m >> k;
fr.resize(m);
gr.resize(n);
deg.resize(n);
visited.resize(n);
inTrip.resize(n, true);
inTripCount = n;
for (int i = (0), _b = ((m)-1); i <= _b; i++) {
int a, b;
cin >> a >> b;
--a;
--b;
fr[i] = make_pair(a, b);
gr[a].insert(b);
gr[b].insert(a);
++deg[a];
++deg[b];
}
Init();
vector<int> res;
for (int i = (m - 1), _b = (0); i >= _b; i--) {
res.push_back(inTripCount);
if (i != 0) Process(fr[i]);
}
for (int i = (m - 1), _b = (0); i >= _b; i--) {
cout << res[i] << endl;
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int x[200001], y[200001];
vector<int> edge[200001];
int vis[200001];
int count_col[200001];
int ans[200001];
int count_edge[200001];
void dfs(int u, int c) {
vis[u] = c;
count_col[c]++;
int i, j = edge[u].size(), v;
for (i = 0; i < j; i++) {
v = edge[u][i];
if (vis[v] == -1) {
dfs(v, c);
}
}
}
set<pair<int, int> > max_c;
set<pair<int, int> > k_node;
set<pair<int, int> > done;
void remove(int k) {
set<pair<int, int> >::iterator it, it2;
it = k_node.begin();
while (it != k_node.end()) {
pair<int, int> pp = *it;
if (pp.first >= k) break;
int n_col = vis[pp.second];
pair<int, int> p = make_pair(-count_col[n_col], n_col);
it2 = max_c.find(p);
if (it2 != max_c.end()) {
max_c.erase(it2);
p.first++;
count_col[n_col]--;
max_c.insert(p);
}
k_node.erase(it);
int u = pp.second;
for (int i = 0; i < edge[u].size(); i++) {
int v = edge[u][i];
if (done.count(make_pair(min(u, v), max(u, v))) > 0) {
continue;
}
p = make_pair(count_edge[v], v);
it = k_node.find(p);
if (it != k_node.end()) {
k_node.erase(it);
p.first--;
count_edge[v]--;
k_node.insert(p);
}
done.insert(make_pair(min(u, v), max(u, v)));
}
it = k_node.begin();
}
}
int main() {
int n;
int m;
int k;
memset(count_col, 0, sizeof(count_col));
memset(vis, -1, sizeof(vis));
memset(ans, 0, sizeof(ans));
memset(count_edge, 0, sizeof(count_edge));
scanf("%d %d %d", &n, &m, &k);
for (int i = 0; i < m; i++) {
scanf("%d %d", &x[i], &y[i]);
edge[x[i]].push_back(y[i]);
edge[y[i]].push_back(x[i]);
count_edge[x[i]]++;
count_edge[y[i]]++;
}
int col = 0;
for (int i = 1; i <= n; i++) {
if (vis[i] == -1) {
dfs(i, col);
col++;
}
}
for (int i = 1; i <= n; i++) {
k_node.insert(make_pair(count_edge[i], i));
}
for (int i = 0; i < col; i++) {
max_c.insert(make_pair(-count_col[i], i));
}
for (int i = m - 1; i >= 0; i--) {
remove(k);
set<pair<int, int> >::iterator it = max_c.begin();
pair<int, int> pp = *it;
ans[i] = -pp.first;
if (done.count(make_pair(min(x[i], y[i]), max(x[i], y[i]))) > 0) {
continue;
}
pair<int, int> p = make_pair(count_edge[x[i]], x[i]);
it = k_node.find(p);
if (it != k_node.end()) {
k_node.erase(it);
p.first--;
count_edge[x[i]]--;
k_node.insert(p);
}
p = make_pair(count_edge[y[i]], y[i]);
it = k_node.find(p);
if (it != k_node.end()) {
k_node.erase(it);
p.first--;
count_edge[y[i]]--;
k_node.insert(p);
}
done.insert(make_pair(min(x[i], y[i]), max(x[i], y[i])));
}
for (int i = 0; i < m; i++) {
printf("%d\n", ans[i]);
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int mx = 10000;
set<int> se[mx];
int del[mx] = {0};
int dep[mx] = {0};
int ans[mx];
struct node {
int fr, to;
} ed[mx];
int cnt;
int n, m, k;
void dfs(int st) {
if (del[st] || dep[st] >= k) return;
queue<int> q;
q.push(st);
del[st] = 1;
--cnt;
while (!q.empty()) {
int t = q.front();
q.pop();
for (auto &v : se[t]) {
--dep[v];
if (dep[v] < k && !del[v]) {
q.push(v);
del[v] = 1;
--cnt;
}
}
}
}
int main() {
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= m; i++) {
int x, y;
scanf("%d%d", &x, &y);
ed[i].fr = x;
ed[i].to = y;
dep[x]++;
dep[y]++;
se[x].insert(y);
se[y].insert(x);
}
cnt = n;
for (int i = 1; i <= n; i++) {
dfs(i);
}
ans[m] = cnt;
for (int i = m; i >= 1; --i) {
if (!del[ed[i].fr]) --dep[ed[i].fr];
if (!del[ed[i].to]) --dep[ed[i].to];
se[ed[i].fr].erase(ed[i].to);
se[ed[i].to].erase(ed[i].fr);
dfs(ed[i].fr);
dfs(ed[i].to);
ans[i - 1] = cnt;
}
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.