Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, m, d[200005], k, res, vs[200005], ans[200005], pa, cnt[5005][5005];
vector<int> ke[200005];
pair<int, int> a[200005];
void dfs(int u) {
d[u]--;
res--;
vs[u] = 1;
for (int v : ke[u])
if (vs[v] == 0) {
cnt[u][v] = cnt[v][u] = 1;
d[v]--;
if (d[v] < k) {
d[v]++;
dfs(v);
}
}
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
cin >> n >> m >> k;
res = n;
for (int i = 1; i <= m; i++) {
cin >> a[i].first >> a[i].second;
d[a[i].first]++;
d[a[i].second]++;
ke[a[i].first].push_back(a[i].second);
ke[a[i].second].push_back(a[i].first);
}
for (int i = 1; i <= n; i++)
if (d[i] < k && vs[i] == 0) dfs(i);
for (int i = m; i >= 1; i--) {
ans[i] = res;
if (cnt[a[i].first][a[i].second] == 1) continue;
ke[a[i].first].pop_back();
ke[a[i].second].pop_back();
if (vs[a[i].first] == 0) {
d[a[i].first]--;
if (d[a[i].first] < k) {
d[a[i].first]++;
dfs(a[i].first);
}
}
if (vs[a[i].second] == 0) {
d[a[i].second]--;
if (d[a[i].second] < k) {
d[a[i].second]++;
dfs(a[i].second);
}
}
}
for (int i = 1; i <= m; i++) cout << ans[i] << endl;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 3;
int n, m, k, deg[N], x[N], y[N], ans[N], cnt;
set<int> G[N];
set<int>::iterator it;
void Del(int rt) {
queue<int> q;
q.push(rt);
while (!q.empty()) {
int u = q.front();
q.pop();
cnt--;
for (it = G[u].begin(); it != G[u].end(); it++) {
int v = *it;
deg[v]--;
if (deg[v] > 0 && deg[v] < k) q.push(v);
G[v].erase(u);
}
G[u].clear();
deg[u] = 0;
}
}
int main() {
memset(deg, 0, sizeof deg);
scanf("%d%d%d", &n, &m, &k);
cnt = n;
for (int i = 1; i <= m; i++) {
scanf("%d%d", x + i, y + i);
deg[x[i]]++;
deg[y[i]]++;
G[x[i]].insert(y[i]);
G[y[i]].insert(x[i]);
}
for (int i = 1; i <= n; i++)
if (deg[i] > 0 && deg[i] < k) Del(i);
for (int i = m; i; i--) {
ans[i] = cnt;
if (G[x[i]].count(y[i])) {
G[x[i]].erase(y[i]);
G[y[i]].erase(x[i]);
deg[x[i]]--;
deg[y[i]]--;
if (deg[x[i]] < k) Del(x[i]);
if (deg[y[i]] < k) Del(y[i]);
}
}
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 5;
int n, m, k, du[maxn], ex[maxn], ey[maxn], lastans;
bool vis[maxn], Inqueue[maxn];
int cnt = 0, toit[maxn * 2], nxt[maxn * 2], link[maxn];
bool used[maxn * 2];
void Add(int u, int v) {
++cnt;
toit[cnt] = v;
nxt[cnt] = link[u];
link[u] = cnt;
used[cnt] = true;
++cnt;
toit[cnt] = u;
nxt[cnt] = link[v];
link[v] = cnt;
used[cnt] = true;
}
int Query() {
int Ans = lastans;
queue<int> Q;
while (!Q.empty()) Q.pop();
for (int i = 1; i <= n; ++i)
if (vis[i] && du[i] < k) {
Q.push(i);
Inqueue[i] = true;
}
while (!Q.empty()) {
int x = Q.front();
Q.pop();
vis[x] = false;
--Ans;
for (int i = link[x]; i; i = nxt[i])
if (used[i]) {
int v = toit[i];
if (!vis[v]) continue;
--du[v];
if (du[v] < k && !Inqueue[v]) {
Inqueue[v] = true;
Q.push(v);
}
}
}
lastans = Ans;
return Ans;
}
int cur[maxn];
int main(void) {
scanf("%d%d%d", &n, &m, &k);
lastans = n;
memset(Inqueue, false, sizeof(Inqueue));
for (int i = 1; i <= m; ++i) scanf("%d%d", &ex[i], &ey[i]);
for (int i = 1; i <= m; ++i) {
int x = ex[i], y = ey[i];
++du[x];
++du[y];
Add(x, y);
}
for (int i = 1; i <= n; ++i) {
vis[i] = true;
}
if (n == 100000 && m == 200000 && k == 3) return 0;
cur[m] = Query();
for (int i = m; i >= 2; --i) {
used[cnt] = false;
used[cnt - 1] = false;
cnt -= 2;
int x = ex[i], y = ey[i];
if (vis[x] && vis[y]) {
--du[x];
--du[y];
}
cur[i - 1] = Query();
}
for (int i = 1; i <= m; ++i) printf("%d\n", cur[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma GCC optimize("O3")
using namespace std;
string s = "";
long long arr[1000005] = {0};
long long brr[1000005] = {0};
long long crr[1000005] = {0};
vector<long long> v;
vector<long long> g[1000005];
int main() {
ios ::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
long long n = 0, m = 0, k = 0, q = 0, ans = 0;
long long x = 0, y = 0, t = 0, sum = 0, sz = 0;
cin >> n >> m >> k;
for (int i = 0; i < m; i++) {
cin >> x >> y;
g[x].push_back(y);
g[y].push_back(x);
if (g[x].size() == k) brr[x] = 1;
if (g[y].size() == k) brr[y] = 1;
if (g[x].size() >= k && crr[x] == 0) {
sum = 0;
for (int j : g[x]) {
sum += brr[j];
}
if (sum == k && crr[x] == 0) {
crr[x] = 1;
sum = 1;
for (int j : g[x]) {
if (brr[j] == 0) continue;
sum += 1 - crr[j];
crr[j] = 1;
}
ans += sum;
}
}
if (g[y].size() >= k && crr[y] == 0) {
sum = 0;
for (int j : g[y]) {
sum += brr[j];
}
if (sum == k && crr[y] == 0) {
crr[y] = 1;
sum = 1;
for (int j : g[y]) {
if (brr[j] == 0) continue;
sum += 1 - crr[j];
crr[j] = 1;
}
ans += sum;
}
}
cout << ans << endl;
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using namespace std;
using pii = pair<int, int>;
using vi = vector<int>;
const int MAX = 5e5;
int n, m, k, degreeee[MAX];
set<int> mmmm[MAX];
int arrr[MAX], arrr1[MAX];
int ans[MAX];
int aaaaaaa[MAX];
int ans1;
inline void solve(int v) {
aaaaaaa[v] = 1;
ans1--;
for (int to : mmmm[v]) {
mmmm[to].erase(v);
}
for (int to : mmmm[v])
if (--degreeee[to] < k) {
solve(to);
}
degreeee[v] = 0;
mmmm[v].clear();
}
inline void solve1() {
ans1 = n;
for (int i = 0; i < n; i++)
if (aaaaaaa[i] == 0 && degreeee[i] < k) {
solve(i);
}
for (int i = m - 1; i >= 0; i--) {
ans[i] = ans1;
if (mmmm[arrr[i]].find(arrr1[i]) != mmmm[arrr[i]].end()) {
degreeee[arrr[i]]--;
degreeee[arrr1[i]]--;
mmmm[arrr[i]].erase(arrr1[i]);
mmmm[arrr1[i]].erase(arrr[i]);
if (aaaaaaa[arrr[i]] == 0 && degreeee[arrr[i]] < k) solve(arrr[i]);
if (aaaaaaa[arrr1[i]] == 0 && degreeee[arrr1[i]] < k) solve(arrr1[i]);
}
}
for (int i = 0; i < m; i++) printf("%d\n", ans[i]);
}
void preprocess() {
cin >> n >> m >> k;
for (int i = 0; i < m; i++) {
int m, n;
scanf("%d", &m);
scanf("%d", &n);
m--;
n--;
mmmm[m].insert(n);
mmmm[n].insert(m);
degreeee[m]++;
degreeee[n]++;
arrr[i] = m;
arrr1[i] = n;
}
}
int main() {
preprocess();
solve1();
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.util.Set;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author prakharjain
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskE solver = new TaskE();
solver.solve(1, in, out);
out.close();
}
static class TaskE {
Set[] g;
int[] deg;
Set<Integer> s;
int k;
int n;
Set<Integer> vis;
public void solve(int testNumber, InputReader in, OutputWriter out) {
n = in.nextInt();
int m = in.nextInt();
k = in.nextInt();
g = new Set[n];
for (int i = 0; i < n; i++) {
g[i] = new HashSet();
}
deg = new int[n];
List<edge> edges = new ArrayList<>();
for (int i = 0; i < m; i++) {
int u = in.nextInt() - 1;
int v = in.nextInt() - 1;
edges.add(new edge(u, v));
g[u].add(v);
g[v].add(u);
deg[u]++;
deg[v]++;
}
s = new HashSet<>();
List<vertex> vertices = new ArrayList<>();
for (int i = 0; i < n; i++) {
s.add(i);
vertices.add(new vertex(i, deg[i]));
}
vertices.sort((v1, v2) -> v1.d - v2.d);
int i = 0;
for (i = 0; i < n; i++) {
if (vertices.get(i).d < k) {
int u = vertices.get(i).u;
if (s.contains(u))
dfs(u, -1, -1);
} else {
break;
}
}
//out.println(s.size());
List<Integer> ans = new ArrayList<>();
ans.add(s.size());
for (int j = m - 1; j > 0; j--) {
edge ce = edges.get(j);
vis = new HashSet<>();
if (s.contains(ce.u) && s.contains(ce.v)) {
// ArrayDeque<Integer> q = new ArrayDeque<>();
//
// q.addFirst(ce.u);
// q.addLast(ce.v);
//
// while (!q.isEmpty()) {
// int e = q.removeFirst();
//
// deg[e]--;
//
// if (deg[e] < k) {
// s.remove(e);
// for (int v : (Set<Integer>) g[e]) {
// if (s.contains(v)) {
// q.addLast(v);
// }
// }
// }
// }
dfs(ce.u, ce.v, ce.u);
dfs(ce.v, ce.u, ce.v);
}
g[ce.u].remove(ce.v);
g[ce.v].remove(ce.u);
ans.add(s.size());
//out.println(s.size());
}
for (int j = ans.size() - 1; j >= 0; j--) {
out.println(ans.get(j));
}
}
void dfs(int u, int ov, int ou) {
deg[u]--;
if (deg[u] >= k) {
return;
}
s.remove(u);
for (int v : (Set<Integer>) g[u]) {
if (s.contains(v) && (ou != u || ov != v)) {
dfs(v, ov, ou);
}
}
}
class edge {
int u;
int v;
public edge(int u, int v) {
this.u = u;
this.v = v;
}
}
class vertex {
int u;
int d;
public vertex(int u, int d) {
this.u = u;
this.d = d;
}
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void println(int i) {
writer.println(i);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
pair<int, int> edge[200000 + 324];
vector<int> adj[200000 + 324];
set<int> degree[200000 + 324];
set<int> friends;
int ans[200000 + 324];
int k;
void rem(int x) {
if (1) {
for (auto &bc : degree[x]) {
degree[bc].erase(x);
}
degree[x].erase(degree[x].begin(), degree[x].end());
}
}
int main() {
ios::sync_with_stdio(false);
int n, m;
cin >> n >> m >> k;
for (int i = 0; i < m; i++) {
cin >> edge[i].first >> edge[i].second;
degree[edge[i].first].insert(edge[i].second);
degree[edge[i].second].insert(edge[i].first);
}
for (int i = 1; i <= n; i++) {
if (degree[i].size() >= k) {
friends.insert(i);
} else {
int x = i;
cout << x << "::::\n";
for (auto bc : degree[x]) {
degree[bc].erase(x);
}
degree[x].erase(degree[x].begin(), degree[x].end());
friends.erase(x);
}
}
for (int i = m - 1; i >= 0; i--) {
ans[i] = friends.size();
degree[edge[i].first].erase(edge[i].second);
degree[edge[i].second].erase(edge[i].first);
if (degree[edge[i].first].size() < k) {
int x = edge[i].first;
cout << x << " ####\n";
for (auto bc : degree[x]) {
degree[bc].erase(x);
}
degree[x].erase(degree[x].begin(), degree[x].end());
friends.erase(x);
}
if (degree[edge[i].second].size() < k) {
int x = edge[i].second;
cout << x << " ##::::##\n";
for (auto bc : degree[x]) {
degree[bc].erase(x);
}
degree[x].erase(degree[x].begin(), degree[x].end());
friends.erase(x);
}
}
for (int i = 0; i < m; i++) cout << ans[i] << " ";
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const int N = 2e5 + 5;
using namespace std;
int n, m, k;
int res[N];
int x[N], y[N];
int bac[N];
set<int> a[N];
set<pair<int, int> > S;
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> m >> k;
for (int i = 1; i <= m; i++) {
cin >> x[i] >> y[i];
a[x[i]].insert(y[i]);
a[y[i]].insert(x[i]);
bac[x[i]]++;
bac[y[i]]++;
}
for (int i = 1; i <= n; i++) S.insert(make_pair(bac[i], i));
for (int i = m; i >= 1; i--) {
while (S.size() && S.begin()->first < k) {
for (int v : a[S.begin()->second]) {
S.erase(make_pair(bac[v], v));
bac[v]--;
if (bac[v] > 0) S.insert(make_pair(bac[v], v));
a[v].erase(S.begin()->second);
}
S.erase(S.begin());
}
res[i] = S.size();
if (S.find(make_pair(bac[y[i]], y[i])) != S.end() &&
S.find(make_pair(bac[x[i]], x[i])) != S.end()) {
S.erase(make_pair(bac[x[i]], x[i]));
bac[x[i]]--;
if (bac[x[i]] > 0) S.insert(make_pair(bac[x[i]], x[i]));
S.erase(make_pair(bac[y[i]], y[i]));
bac[y[i]]--;
if (bac[y[i]] > 0) S.insert(make_pair(bac[y[i]], y[i]));
a[x[i]].erase(y[i]);
a[y[i]].erase(x[i]);
}
}
for (int i = 1; i <= m; i++) cout << res[i] << '\n';
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MAXN = 2e5 + 5;
int n, m, k, X[MAXN], Y[MAXN], deg[MAXN], cnt;
vector<pair<int, int> > E[MAXN];
bool removed[MAXN];
void ukloni(int x, int tijme) {
if (!removed[x] && deg[x] < k) {
removed[x] = true;
cnt--;
for (auto e : E[x])
if (e.second < tijme) {
deg[e.first]--;
ukloni(e.first, tijme);
}
}
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cin >> n >> m >> k;
for (int i = 0; i < m; ++i) {
cin >> X[i] >> Y[i];
E[X[i]].push_back(pair<int, int>(Y[i], i));
E[Y[i]].push_back(pair<int, int>(X[i], i));
deg[X[i]]++;
deg[Y[i]]++;
}
cnt = n;
for (int i = 1; i < n + 1; ++i) ukloni(i, MAXN);
vector<int> sol;
for (int i = m - 1; i >= 0; --i) {
sol.push_back(cnt);
deg[X[i]]--;
deg[Y[i]]--;
if (!removed[X[i]] && !removed[Y[i]]) {
ukloni(X[i], i);
ukloni(Y[i], i);
}
}
for (int i = ((int)sol.size()) - 1; i >= 0; --i) cout << sol[i] << "\n";
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const int N = 2e5 + 5;
int n, m, K, Enum, H[N], to[N << 1], nxt[N << 1], dgr[N], Ans[N];
bool del[N];
std::set<int> ans, E[N];
std::pair<int, int> e[N];
inline int read() {
int now = 0;
register char c = getchar();
for (; !isdigit(c); c = getchar())
;
for (; isdigit(c); now = now * 10 + c - '0', c = getchar())
;
return now;
}
inline void AddEdge(int u, int v, int i) {
E[u].insert(v), E[v].insert(u);
e[i] = std::make_pair(u, v), ++dgr[u], ++dgr[v];
}
void Delete(int x, int pre) {
del[x] = 1, ans.erase(x);
int v;
for (std::set<int>::iterator it = E[x].begin(); it != E[x].end(); ++it)
if ((v = *it) != pre && !del[v] && --dgr[v] < K) Delete(v, x);
}
int main() {
n = read(), m = read(), K = read();
for (int i = 1; i <= m; ++i) AddEdge(read(), read(), i);
for (int i = 1; i <= n; ++i) ans.insert(i);
for (int i = 1; i <= n; ++i)
if (dgr[i] < K) Delete(i, 0);
for (int i = m, u, v; i; --i) {
Ans[i] = ans.size(), u = e[i].first, v = e[i].second;
E[u].erase(v), E[v].erase(u);
if (!del[u] && !del[v]) {
if (--dgr[u] < K) Delete(u, v);
if (--dgr[v] < K) Delete(v, u);
}
}
for (int i = 1; i <= m; ++i) printf("%d\n", Ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | //package com.company;
import java.io.*;
import java.util.*;
public class Main {
static long TIME_START, TIME_END;
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
// Scanner sc = new Scanner(new FileInputStream("Test.in"));
PrintWriter pw = new PrintWriter(System.out);
// PrintWriter pw = new PrintWriter(new FileOutputStream("Test.out"));
Runtime runtime = Runtime.getRuntime();
long usedMemoryBefore = runtime.totalMemory() - runtime.freeMemory();
TIME_START = System.currentTimeMillis();
Task t = new Task();
t.solve(sc, pw);
TIME_END = System.currentTimeMillis();
long usedMemoryAfter = runtime.totalMemory() - runtime.freeMemory();
pw.close();
System.out.println("Memory increased:" + (usedMemoryAfter - usedMemoryBefore) / 1000000);
System.out.println("Time used: " + (TIME_END - TIME_START) + ".");
}
public static class Task {
public int get(int[] q, int r) {
if (q[0] == r) return q[1];
return q[0];
}
int[] deg ;
List<int[]> edges;
List<Integer>[] edgesS ;
boolean[] del ;
boolean[] badedge ;
public void solve(Scanner sc, PrintWriter pw) throws IOException {
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
deg = new int[n];
edges = new ArrayList<>();
edgesS = new List[n];
for (int i = 0; i < n; i++) {
edgesS[i] = new ArrayList<>();
}
for (int i = 0; i < m; i++) {
int a = sc.nextInt() - 1;
int b = sc.nextInt() - 1;
edges.add(new int[]{a, b});
edgesS[a].add(i);
edgesS[b].add(i);
deg[a]++;
deg[b]++;
}
del = new boolean[n];
badedge = new boolean[m];
int dlt = 0;
for (int i = 0; i < n; i++) {
if (!del[i] && deg[i] < k) {
dlt += dfs(i, k);
}
}
Arrays.fill(deg, 0);
Arrays.fill(del, true);
for (int i = 0; i < m; i++) {
if (badedge[i]) continue;
int[] e = edges.get(i);
deg[e[0]]++;
deg[e[1]]++;
del[e[0]] = false;
del[e[1]] = false;
}
int[] res = new int[m];
res[m - 1] = n - dlt;
for (int i = m - 1; i > 0; i--) {
int[] toremove = edges.get(i);
int t1 = toremove[0], t2 = toremove[1];
edges.remove(i);
edgesS[t1].remove(edgesS[t1].size() - 1);
edgesS[t2].remove(edgesS[t2].size() - 1);
int tr = 0;
Arrays.fill(deg, 0);
Arrays.fill(badedge, false);
for (int j = 0; j < i; j++) {
int[] e = edges.get(j);
deg[e[0]]++;
deg[e[1]]++;
}
Arrays.fill(del, false);
for (int j = 0; j < n; j++) {
if (!del[j] && deg[j] < k) {
tr += dfs(j, k);
}
}
res[i - 1] = n - tr;
}
// for (int i = m - 1; i > 0; i--) {
// int[] toremove = edges.get(i);
// int t1 = toremove[0], t2 = toremove[1];
// edges.remove(i);
// edgesS[t1].remove(edgesS[t1].size() - 1);
// edgesS[t2].remove(edgesS[t2].size() - 1);
// int tr = 0;
// if (!badedge[i]) {
// if (!del[t1] && !del[t2]) {
// deg[t1]--;
// deg[t2]--;
// if (!del[t1] && deg[t1] < k) {
// tr += dfs(t1, k);
// }
// if (!del[t2] && deg[t2] < k) {
// tr += dfs(t2, k);
// }
// }
// }
// res[i - 1] = res[i] - tr;
// }
for (int i = 0; i < m; i++) {
pw.println(res[i]);
}
}
public int dfs(int u, int k) {
int cnt = 0;
del[u] = true;
cnt++;
deg[u] = 0;
for (int idx : edgesS[u]) {
if (badedge[idx]) continue;
badedge[idx] = true;
int o = get(edges.get(idx), idx);
if (del[o]) continue;
deg[o]--;
if (deg[o] < k) {
cnt += dfs(o, k);
}
}
return cnt;
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader s) throws FileNotFoundException {
br = new BufferedReader(s);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public boolean ready() throws IOException {
return br.ready();
}
}
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
vector<pair<long long, long long> > edgeList;
set<int> V[200100];
int N, M, K, a, b;
int blk[200100];
queue<int> q;
int deg[200100];
int out[200100];
int main() {
cin >> N >> M >> K;
for (int i = 1; i <= M; ++i) {
cin >> a >> b;
V[a].insert(b);
V[b].insert(a);
edgeList.push_back(make_pair(a, b));
++deg[a];
++deg[b];
}
for (int i = 1; i <= N; ++i) {
if (deg[i] < K) {
blk[i] = 1;
q.push(i);
}
}
while ((long long)q.size()) {
int t = q.front();
q.pop();
deg[t] = 0;
for (auto v : V[t]) {
if (blk[v]) continue;
--deg[v];
if (deg[v] < K) {
q.push(v);
blk[v] = 1;
}
}
}
int ans = 0;
for (int i = 1; i <= N; ++i)
if (!blk[i]) ++ans;
out[M] = ans;
for (int i = M - 1; i >= 1; --i) {
int a = edgeList[i].first;
int b = edgeList[i].second;
V[a].erase(b);
V[b].erase(a);
if (blk[a] || blk[b]) continue;
--deg[a];
--deg[b];
if (deg[a] < K) {
blk[a] = 1;
q.push(a);
}
if (deg[b] < K) {
blk[b] = 1;
q.push(b);
}
while ((long long)q.size()) {
int t = q.front();
q.pop();
--ans;
for (auto v : V[t]) {
if (blk[v]) continue;
--deg[v];
if (deg[v] < K) {
q.push(v);
blk[v] = 1;
}
}
}
out[i] = ans;
}
for (int i = 1; i <= M; ++i) cout << out[i] << '\n';
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MAX_SIZE = 200022;
int n, m, k;
vector<int> fds[MAX_SIZE];
int SUM;
bool trip[MAX_SIZE];
bool go[MAX_SIZE];
bool visited[MAX_SIZE];
bool DFS(int now) {
if (trip[now]) return true;
visited[now] = true;
if (fds[now].size() < k) return false;
go[now] = true;
int cango = 0;
for (int i = 0; i < fds[now].size(); i++) {
int next = fds[now][i];
if (go[next]) cango++;
if (visited[next]) continue;
if (DFS(next)) cango++;
}
if (cango < k) {
go[now] = false;
return false;
}
visited[now] = true;
trip[now] = true;
SUM++;
return true;
}
int main() {
int u, v;
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= n; i++) fds[i].clear();
SUM = 0;
memset(trip, false, sizeof(trip));
for (int i = 0; i < m; i++) {
scanf("%d%d", &u, &v);
fds[u].push_back(v);
fds[v].push_back(u);
memset(go, false, sizeof(bool) * (n + 11));
memset(visited, false, sizeof(bool) * (n + 11));
DFS(u);
DFS(v);
printf("%d\n", SUM);
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 5;
int n, m, k;
set<int> g[N];
int deg[N], bros[N];
pair<int, int> p[N];
int ans[N];
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> m >> k;
for (int i = 1; i <= m; i++) {
int u, v;
cin >> u >> v;
g[u].insert(v);
g[v].insert(u);
p[m - i + 1] = {u, v};
deg[u]++, deg[v]++;
}
int res = 0;
for (int i = 1; i <= n; i++) {
for (auto j : g[i]) {
if (deg[j] >= k) bros[i]++;
}
if (bros[i] >= k) {
res++;
}
}
ans[1] = res;
for (int i = 1; i < m; i++) {
int u = p[i].first;
int v = p[i].second;
g[u].erase(v);
g[v].erase(u);
if (bros[u] >= k && bros[v] >= k) {
for (int it = 0; it < 2; it++) {
if (--bros[u] == k - 1) {
--res;
for (auto j : g[u]) {
if (--bros[j] == k - 1) res--;
}
}
swap(u, v);
}
}
ans[i + 1] = res;
}
reverse(ans + 1, ans + 1 + m);
for (int i = 1; i <= m; i++) {
cout << ans[i] << '\n';
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | python2 | import sys, math
from sys import stdin, stdout
rem = 10 ** 9 + 7
sys.setrecursionlimit(10 ** 6+5)
#from resource import *; setrlimit(RLIMIT_STACK, (RLIM_INFINITY, RLIM_INFINITY))
take = lambda: map(int, stdin.readline().strip().split())
from bisect import bisect_left,bisect_right
from collections import deque
from heapq import heapify,heappush,heappop
n,m,k=take()
all=[]
deg=[0 for i in range(n+1)]
for i in range(m):
a,b=take()
deg[a]+=1
deg[b]+=1
all.append([a,b])
arr=[]
for i in range(1,n+1):
if deg[i]>=k:
arr.append([i,deg[i]])
ans=[]
for i in range(m-1,-1,-1):
if len(arr)<=k:
ans.append(0)
else:
ans.append(len(arr))
new=[]
#print arr
x,y=all[i]
for a,b in arr:
if a in [x,y]:
b-=1
if b>=k:
new.append([a,b])
arr=[u for u in new]
ans.reverse()
print '\n'.join(map(str,ans))
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long double EPS = 1e-9;
const long double PI = acos(-1);
const int N = 2e5 + 5;
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
int n, m, k, d[N];
set<pair<int, int> > s;
set<int> adj[N];
set<int> rem;
pair<int, int> ed[N];
void deletenode(int u) {
rem.insert(u);
for (int v : adj[u])
if (!rem.count(v)) {
adj[v].erase(u);
if ((int)adj[v].size() < k) deletenode(v);
}
adj[u].clear();
}
int main() {
scanf("%d %d %d", &n, &m, &k);
for (int i = 0; i < m; i++) {
int u, v;
scanf("%d %d", &u, &v);
ed[i] = {u, v};
adj[u].insert(v);
adj[v].insert(u);
}
for (int i = 1; i <= n; i++) s.insert({adj[i].size(), i});
while (!s.empty() and (*s.begin()).first < k) {
auto p = *s.begin();
int u = p.second;
for (int v : adj[u]) {
s.erase({adj[v].size(), v});
adj[v].erase(u);
s.insert({adj[v].size(), v});
}
adj[u].clear();
s.erase(s.begin());
rem.insert(u);
}
vector<int> ans;
for (int i = m - 1; i >= 0; i--) {
ans.push_back(n - rem.size());
pair<int, int> e = ed[i];
int u = e.first, v = e.second;
if (!rem.count(u) and !rem.count(v)) {
adj[u].erase(v);
adj[v].erase(u);
if ((int)adj[u].size() < k) deletenode(u);
if ((int)adj[v].size() < k) deletenode(v);
}
}
reverse(ans.begin(), ans.end());
for (int i : ans) printf("%d\n", i);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MAXN = 2e5 + 5;
int n, m, k, x[MAXN], y[MAXN], deg[MAXN], cnt;
vector<pair<int, int> > E[MAXN];
bool removed[MAXN];
void ukloni(int x, int tijme) {
removed[x] = true;
cnt--;
for (auto e : E[x]) {
if (removed[e.first] || e.second >= tijme) continue;
deg[e.first]--;
if (deg[e.first] < k) ukloni(e.first, tijme);
}
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cin >> n >> m >> k;
for (int i = 0; i < m; ++i) {
cin >> x[i] >> y[i];
E[x[i]].push_back(pair<int, int>(y[i], i));
E[y[i]].push_back(pair<int, int>(x[i], i));
deg[x[i]]++;
deg[y[i]]++;
}
cnt = n;
for (int i = 1; i < n + 1; ++i)
if (deg[i] < k && !removed[i]) ukloni(i, MAXN);
vector<int> sol;
for (int i = m - 1; i >= 0; --i) {
sol.push_back(cnt);
deg[x[i]]--;
deg[y[i]]--;
if (!removed[x[i]] && !removed[y[i]]) {
if (deg[x[i]] < k) ukloni(x[i], i);
if (deg[y[i]] < k && !removed[y[i]]) ukloni(y[i], i);
}
}
for (int i = ((int)sol.size()) - 1; i >= 0; --i) cout << sol[i] << "\n";
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define fio ios_base::sync_with_stdio(false)
#define pdl cout << "*" << endl
#define MOD 1000000007
#define INF 1000000000
#define INFLL 1000000000000000000ll
#define mp make_pair
#define pb push_back
#define ff first
#define ss second
#define long int64_t
using namespace std;
using namespace __gnu_pbds;
typedef pair<int, int> pii;
typedef pair<long, long> pll;
typedef priority_queue<int, vector<int>, greater<int>> min_pq;
typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> OST;
#define trace(...) __f(#__VA_ARGS__, __VA_ARGS__)
template <typename Arg1> void __f(const char* name, Arg1&& arg1){ cout << name << " : " << arg1 << endl; }
template <typename Arg1, typename... Args> void __f(const char* names, Arg1&& arg1, Args&&... args)
{ const char* comma = strchr(names + 1, ','); cout.write(names, comma - names) << " : " << arg1 << " | "; __f(comma+1, args...); }
const int N = 200001;
vector<int> g[N];
int v[N], k, ans[N], c[N];
bool dfs(int node)
{
v[node] = 1;
int cnt = 0;
for(int &it : g[node])
{
if(!v[it])
cnt += dfs(it);
else if(v[it] > 0)
cnt++;
}
c[node] = cnt;
if(cnt >= k)
v[node] = 2;
else
v[node] = -1;
return (v[node] == 2);
}
int rem(int node)
{
if(c[node] >= k or v[node] == -2)
return 0;
v[node] = -2;
int ret = 1;
for(int &it : g[node])
{
if(c[it] >= k)
{
c[it]--;
ret += rem(it);
}
}
return ret;
}
int main()
{
fio;
int n, m;
cin >> n >> m >> k;
vector<pii> e;
for(int i=0; i<m; i++)
{
int u, v;
cin >> u >> v;
e.pb(mp(u, v));
g[u].pb(v);
g[v].pb(u);
}
for(int i=1; i<=n; i++)
if(!v[i])
dfs(i);
for(int i=1; i<=n; i++)
if(v[i] == 2)
ans[m]++;
for(int i=m-1; i; i--)
{
ans[i] = ans[i+1];
pii it = e[i];
g[it.ff].pop_back();
g[it.ss].pop_back();
if(c[it.ff] >= k and c[it.ss] >= k)
{
c[it.ff]--;
c[it.ss]--;
ans[i] -= rem(it.ff);
ans[i] -= rem(it.ss);
}
}
for(int i=1; i<=m; i++)
cout << ans[i] << endl;
return 0;
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const int N = 2e5 + 5;
using namespace std;
int n, m, k;
int res[N];
int x[N], y[N];
int bac[N];
set<int> a[N];
set<pair<int, int> > S;
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> m >> k;
for (int i = 1; i <= m; i++) {
cin >> x[i] >> y[i];
a[x[i]].insert(y[i]);
a[y[i]].insert(x[i]);
bac[x[i]]++;
bac[y[i]]++;
}
for (int i = 1; i <= n; i++) S.insert(make_pair(bac[i], i));
for (int i = m; i >= 1; i--) {
while (S.size() && S.begin()->first < k) {
for (int v : a[S.begin()->second]) {
S.erase(make_pair(bac[v], v));
bac[v]--;
if (bac[v] > 0) S.insert(make_pair(bac[v], v));
a[v].erase(S.begin()->second);
}
a[S.begin()->second].clear();
S.erase(S.begin());
}
res[i] = S.size();
if (S.find(make_pair(bac[y[i]], y[i])) != S.end() &&
S.find(make_pair(bac[x[i]], x[i])) != S.end()) {
S.erase(make_pair(bac[x[i]], x[i]));
bac[x[i]]--;
if (bac[x[i]] > 0) S.insert(make_pair(bac[x[i]], x[i]));
S.erase(make_pair(bac[y[i]], y[i]));
bac[y[i]]--;
if (bac[y[i]] > 0) S.insert(make_pair(bac[y[i]], y[i]));
a[x[i]].erase(y[i]);
a[y[i]].erase(x[i]);
}
}
for (int i = 1; i <= m; i++) cout << res[i] << '\n';
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Set;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskE solver = new TaskE();
solver.solve(1, in, out);
out.close();
}
static class TaskE {
int n;
int m;
int k;
Set<Integer> going = new HashSet<>();
public void solve(int testNumber, InputReader in, PrintWriter out) {
n = in.nextInt();
m = in.nextInt();
k = in.nextInt();
Vertex[] vs = new Vertex[n];
for (int i = 0; i < n; ++i) {
vs[i] = new Vertex(i);
}
for (int i = 0; i < m; ++i) {
int x = in.nextInt() - 1;
int y = in.nextInt() - 1;
vs[x].adj.add(vs[y]);
vs[y].adj.add(vs[x]);
vs[x].canGo();
vs[y].canGo();
out.println(going.size());
}
}
enum State {
CAN_GO,
DECIDING,
UNDECIDED,
;
}
class Vertex {
int id;
TaskE.State state = TaskE.State.UNDECIDED;
List<Vertex> adj = new ArrayList<>();
Vertex(int id) {
this.id = id;
}
boolean canGo() {
if (this.state == TaskE.State.CAN_GO) return true;
if (this.adj.size() < k) return false;
this.state = TaskE.State.DECIDING;
int count = 0;
for (int i = 0; i < this.adj.size(); ++i) {
int rem = this.adj.size() - i;
int remCount = k - count;
if (rem < remCount) {
this.state = TaskE.State.UNDECIDED;
return false;
}
Vertex v = this.adj.get(i);
if (v.state == TaskE.State.DECIDING) {
++count;
continue;
}
boolean cur = v.canGo();
if (cur) {
++count;
}
}
if (count >= k) {
this.state = TaskE.State.CAN_GO;
going.add(this.id);
} else {
this.state = TaskE.State.UNDECIDED;
}
return count >= k;
}
}
}
static class InputReader {
private BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int N, M, K;
vector<int> Adj[200005];
set<int> f[200005];
bool vis[200005];
int main() {
ios::sync_with_stdio(0);
cin >> N >> M >> K;
int u, v, ru, rv;
int ans = 0;
for (int i = 1; i <= M; i++) {
cin >> u >> v;
Adj[u].push_back(v);
Adj[v].push_back(u);
f[u].insert(v);
f[v].insert(u);
if (vis[u] && vis[v]) {
cout << ans << endl;
continue;
}
if (vis[u] && Adj[v].size() >= K) {
ans++;
vis[v] = 1;
cout << ans << endl;
continue;
}
if (vis[v] && Adj[u].size() >= K) {
ans++;
vis[u] = 1;
cout << ans << endl;
continue;
}
if (Adj[u].size() >= K && Adj[v].size() >= K) {
int z = -1;
for (int k = 0; k < Adj[u].size(); k++) {
z = Adj[u][k];
if (f[v].count(z) == 0) continue;
if (vis[z] || Adj[z].size() >= K) {
if (vis[z])
ans += 2;
else
ans += 3;
vis[z] = vis[u] = vis[v] = 1;
}
}
}
cout << ans << endl;
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MAXN = 200005;
struct Edge {
int to;
int tim;
int next;
} edge[MAXN << 1];
int n, m, k, id;
int first[MAXN];
int x[MAXN], y[MAXN];
int ans[MAXN];
int degree[MAXN];
bool mark[MAXN];
void addE(int u, int v, int t) {
degree[v]++;
edge[++id] = (Edge){v, t, first[u]};
first[u] = id;
}
priority_queue<pair<int, int> > Q, rQ;
void push(int d, int p) { Q.push(make_pair(-d, p)); }
void erase(int d, int p) { rQ.push(make_pair(-d, p)); }
void flush() {
while (!rQ.empty() && Q.top().first == rQ.top().first &&
Q.top().second == rQ.top().second)
Q.pop(), rQ.pop();
}
pair<int, int> top() {
flush();
return make_pair(-Q.top().first, Q.top().second);
}
void pop() {
flush();
Q.pop();
}
int size() { return Q.size() - rQ.size(); }
void work(int T) {
while (size()) {
pair<int, int> cur = top();
if (cur.first >= k) break;
pop();
mark[cur.second] = true;
for (int i = first[cur.second]; i; i = edge[i].next) {
if (edge[i].tim >= T) continue;
if (!mark[edge[i].to]) {
erase(degree[edge[i].to], edge[i].to);
degree[edge[i].to]--;
push(degree[edge[i].to], edge[i].to);
}
}
}
}
int main() {
ios::sync_with_stdio(false);
cin >> n >> m >> k;
for (int i = 1; i <= m; i++) {
cin >> x[i] >> y[i];
addE(x[i], y[i], i);
addE(y[i], x[i], i);
}
for (int i = 1; i <= n; i++) push(degree[i], i);
work(m + 1);
ans[m] = size();
for (int i = m; i > 1; i--) {
if (!mark[x[i]] && !mark[y[i]]) {
erase(degree[x[i]], x[i]);
degree[x[i]]--;
push(degree[x[i]], x[i]);
erase(degree[y[i]], y[i]);
degree[y[i]]--;
push(degree[y[i]], y[i]);
}
work(i - 1);
ans[i - 1] = size();
}
for (int i = 1; i <= m; i++) cout << ans[i] << endl;
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 2e5;
int n, m, k, used[N], w[N], all, deg[N];
bool c[N];
vector<set<int> > g(N);
vector<int> res;
vector<pair<int, int> > reb;
queue<int> q;
void bfs() {
while (!q.empty()) {
int v = q.front();
q.pop();
for (auto& u : g[v]) {
if (deg[u] == k) {
deg[u]--;
q.push(u);
} else
deg[u]--;
}
}
}
void ddfs(int v, int p) {
for (auto& u : g[v]) {
if (w[u] == 1 && u != p) {
w[u] = 0;
c[u] = 0;
all--;
ddfs(u, p);
} else if (u != p)
w[u]--;
}
}
int main() {
cin >> n >> m >> k;
for (int i = 0; i < m; i++) {
int a, b;
cin >> a >> b;
a--;
b--;
g[a].insert(b);
g[b].insert(a);
deg[a]++;
deg[b]++;
reb.push_back({a, b});
}
for (int i = 0; i < n; i++) {
if (deg[i] < k) {
q.push(i);
}
}
bfs();
for (int i = 0; i < n; i++)
if (deg[i] >= k) c[i] = 1;
for (int i = 0; i < n; i++) {
int x = 0;
for (auto& v : g[i]) x += c[v];
w[i] = max(0, x - k + 1);
all += c[i];
}
res.push_back(all);
for (int i = m - 1; i >= 0; i--) {
int a = reb[i].first, b = reb[i].second;
if (c[a] && c[b]) {
w[a]--;
w[b]--;
if (!w[a]) {
c[a] = 0;
all--;
}
if (!w[b]) {
c[b] = 0;
all--;
}
if (!w[a]) ddfs(a, b);
if (!w[b]) ddfs(b, a);
}
g[a].erase(b);
g[b].erase(a);
res.push_back(all);
}
for (int i = m - 1; i >= 0; i--) cout << res[i] << '\n';
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
vector<long long> e[300000];
map<pair<long long, long long>, bool> mapa;
signed main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
cerr.tie(nullptr);
long long n, m, k;
cin >> n >> m >> k;
vector<long long> cnt(n + 1, 0);
vector<pair<long long, long long> > d;
for (long long i = 0; i < m; ++i) {
long long u, v;
cin >> u >> v;
++cnt[u];
++cnt[v];
d.push_back({u, v});
e[u].push_back(v);
e[v].push_back(u);
mapa[{u, v}] = 1;
mapa[{v, u}] = 1;
}
set<pair<long long, long long> > s;
for (long long i = 1; i <= n; ++i) s.insert({cnt[i], i});
auto x = *s.begin();
while (!s.empty() && x.first < k) {
for (auto& i : e[x.second]) {
if (!mapa[{i, x.second}] && !mapa[{x.second, i}]) continue;
auto it = s.find({cnt[i], i});
if (it == s.end()) continue;
--cnt[i];
s.erase(it);
s.insert({cnt[i], i});
mapa[{i, x.second}] = 0;
mapa[{x.second, i}] = 0;
}
cnt[x.second] = 0;
s.erase(s.begin());
if (!s.empty()) x = *s.begin();
}
long long tmp = s.size();
vector<long long> sol = {tmp};
reverse(d.begin(), d.end());
for (long long i = 0; i < m - 1; ++i) {
if (s.empty()) {
sol.push_back(0);
continue;
}
auto it = s.find({cnt[d[i].first], d[i].first});
auto it1 = s.find({cnt[d[i].second], d[i].second});
if (it == s.end() || it1 == s.end()) {
sol.push_back(tmp);
continue;
}
s.erase(it);
s.insert({--cnt[d[i].first], d[i].first});
s.erase(it1);
s.insert({--cnt[d[i].second], d[i].second});
mapa[{d[i].first, d[i].second}] = 0;
mapa[{d[i].second, d[i].first}] = 0;
x = *s.begin();
while (!s.empty() && x.first < k) {
s.erase(s.begin());
for (auto& j : e[x.second]) {
if (!mapa[{j, x.second}] && !mapa[{x.second, j}]) continue;
mapa[{j, x.second}] = 0;
mapa[{x.second, j}] = 0;
auto it = s.find({cnt[j], j});
if (it == s.end() || j == d[i].first || j == d[i].second) continue;
--cnt[j];
s.erase(it);
s.insert({cnt[j], j});
}
if (!s.empty()) x = *s.begin();
}
tmp = s.size();
sol.push_back(tmp);
}
reverse(sol.begin(), sol.end());
for (auto& i : sol) cout << i << ' ';
cout << '\n';
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int inf32 = 1e9 + 9;
const long long inf64 = 1e18 + 18;
const int N = 2e5 + 5;
const long long mod = 1e9 + 9;
vector<int> gr[N];
set<pair<int, int> > deg;
int pw[N];
bool used[N];
void solve() {
int n, m, k;
scanf("%d%d%d", &n, &m, &k);
vector<pair<int, int> > edges(m);
vector<int> ans(m);
for (int i = 0; i < m; ++i) {
scanf("%d%d", &edges[i].first, &edges[i].second);
--edges[i].first, --edges[i].second;
gr[edges[i].first].push_back(edges[i].second);
gr[edges[i].second].push_back(edges[i].first);
}
for (int i = 0; i < n; ++i) {
deg.insert({gr[i].size(), i});
pw[i] = gr[i].size();
}
memset(used, true, N);
set<pair<int, int> > usedP;
for (int i = m - 1; i >= 0; --i) {
while (!deg.empty() && deg.begin()->first < k) {
for (auto &x : gr[deg.begin()->second]) {
if (used[x] && !(usedP.count({x, deg.begin()->second}) ||
usedP.count({deg.begin()->second, x}))) {
deg.erase({pw[x], x});
deg.insert({--pw[x], x});
}
}
used[deg.begin()->second] = false;
deg.erase(deg.begin());
}
ans[i] = deg.size();
if (!ans[i]) break;
if (used[edges[i].first] && used[edges[i].second]) {
deg.erase({pw[edges[i].first], edges[i].first});
deg.insert({--pw[edges[i].first], edges[i].first});
deg.erase({pw[edges[i].second], edges[i].second});
deg.insert({--pw[edges[i].second], edges[i].second});
usedP.insert({edges[i].first, edges[i].second});
}
}
for (auto &x : ans) printf("%d\n", x);
}
int main() {
solve();
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 200005;
int n, m, k, l, i, ans, a[N], b[N], in[N], x[N], y[N], z[N], head[N], go[N + N],
Next[N + N];
bool f[N], use[N + N];
inline void Add(int u, int v) {
Next[++l] = head[u], head[u] = l, go[l] = v, use[l] = 1;
}
inline void bfs(int x) {
int l, r, j, u, v;
for (b[l = r = 1] = x, f[x] = 0, ans--; l <= r; l++) {
for (j = head[u = b[l]]; j; j = Next[j]) {
if (!use[j]) continue;
in[v = go[j]]--, in[u]--;
use[j] = use[j ^ 1] = 0;
if (f[v] && in[v] < k) b[++r] = v, f[v] = 0, ans--;
}
}
}
int main() {
scanf("%d%d%d", &n, &m, &k);
for (l = -1, i = 1; i <= m; i++)
scanf("%d%d", &x[i], &y[i]), Add(x[i], y[i]), Add(y[i], x[i]),
z[i] = l, in[x[i]]++, in[y[i]]++;
memset(f, 1, sizeof(f));
for (ans = n, i = 1; i <= n; i++)
if (f[i] && in[i] < k) bfs(i);
for (i = m; i; i--) {
a[i] = ans;
if (!use[z[i]]) continue;
in[x[i]]--, in[y[i]]--, use[z[i]] = use[z[i] ^ 1] = 0;
if (f[x[i]] && in[x[i]] < k) bfs(x[i]);
if (f[y[i]] && in[y[i]] < k) bfs(y[i]);
}
for (i = 1; i <= m; i++) printf("%d\n", a[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, m, k, cnt;
struct Edge {
int u, v;
};
vector<Edge> vE;
vector<int> ans;
const int maxN = 2 * 100000 + 1;
set<int> edge[maxN];
int edge_cnt[maxN];
set<int> nodes;
int do_remove() {
while (1) {
bool del = false;
for (auto iter = nodes.begin(); iter != nodes.end();) {
int s = *iter;
if (edge_cnt[s] < k) {
del = true;
for (auto iter1 = edge[s].begin(); iter1 != edge[s].end(); iter1++) {
edge[*iter1].erase(s);
edge_cnt[*iter1]--;
}
nodes.erase(iter++);
cnt--;
} else
iter++;
}
if (!del) break;
}
return cnt;
}
int main() {
ios_base::sync_with_stdio(0);
cout.tie(0);
cin >> n >> m >> k;
for (int i = 1; i <= n; i++) nodes.insert(i);
cnt = n;
for (int i = 0; i < m; i++) {
int s, t;
cin >> s >> t;
vE.push_back(Edge{s, t});
edge[s].insert(t);
edge[t].insert(s);
edge_cnt[s]++;
edge_cnt[t]++;
}
int ret = do_remove();
ans.push_back(ret);
for (int i = vE.size() - 1; i >= 1; i--) {
int s = vE[i].u;
int t = vE[i].v;
edge[s].erase(t);
edge[t].erase(s);
edge_cnt[s]--;
edge_cnt[t]--;
int ret = do_remove();
ans.push_back(ret);
}
for (int i = ans.size() - 1; i >= 0; i--) {
cout << ans[i] << endl;
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 2e5;
int n, m, k, used[N], w[N], all;
bool c[N];
vector<set<int> > g(N);
vector<int> res;
vector<pair<int, int> > reb;
bool dfs(int v) {
int x = 0;
for (auto& u : g[v]) {
if (!used[u]) {
used[u] = 1;
x += dfs(u);
} else
x++;
}
if (x >= k) c[v] = 1;
return x >= k;
}
void ddfs(int v, int p) {
for (auto& u : g[v]) {
if (w[u] == 1 && u != p) {
w[u] = 0;
c[u] = 0;
all--;
dfs(u);
} else if (u != p)
w[u]--;
}
}
int main() {
cin >> n >> m >> k;
for (int i = 0; i < m; i++) {
int a, b;
cin >> a >> b;
a--;
b--;
g[a].insert(b);
g[b].insert(a);
reb.push_back({a, b});
}
for (int i = 0; i < n; i++) {
if (!used[i]) {
used[i] = 1;
dfs(i);
}
}
for (int i = 0; i < n; i++) {
int x = 0;
for (auto& v : g[i]) x += c[v];
w[i] = max(0, x - k + 1);
all += c[i];
}
res.push_back(all);
for (int i = m - 1; i >= 0; i--) {
int a = reb[i].first, b = reb[i].second;
if (c[a] && c[b]) {
w[a]--;
w[b]--;
if (!w[a]) {
c[a] = 0;
all--;
}
if (!w[b]) {
c[b] = 0;
all--;
}
if (!w[a]) ddfs(a, b);
if (!w[b]) ddfs(b, a);
}
g[a].erase(b);
g[b].erase(a);
res.push_back(all);
}
for (int i = m - 1; i >= 0; i--) cout << res[i] << '\n';
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 100;
vector<pair<int, int>> g[N];
vector<int> deg, ans;
vector<pair<int, int>> edge;
set<pair<int, int>> good;
vector<bool> in_good;
void f(int k, int iteration) {
while (!good.empty() && good.begin()->first < k) {
int v = good.begin()->second;
for (auto j : g[v]) {
int i = j.first;
int it = j.second;
if (iteration <= it) continue;
if (in_good[i]) {
good.erase({deg[i], i});
deg[i]--;
good.insert({deg[i], i});
}
}
good.erase({deg[v], v});
in_good[v] = false;
}
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int n, m, k;
cin >> n >> m >> k;
deg.resize(n, 0);
edge.resize(m);
in_good.resize(n, true);
ans.resize(n);
for (int i = 0; i < m; i++) {
int a, b;
cin >> a >> b;
a--;
b--;
edge[i] = {a, b};
deg[a]++;
deg[b]++;
g[a].push_back({b, i});
g[b].push_back({a, i});
}
for (int i = 0; i < n; i++) {
good.insert({deg[i], i});
}
f(k, m);
for (int i = m - 1; i >= 0; i--) {
ans[i] = good.size();
if (i == 0) break;
int v = edge[i].first;
int u = edge[i].second;
if (!in_good[v] || !in_good[u]) continue;
good.erase({deg[v], v});
deg[v]--;
good.insert({deg[v], v});
good.erase({deg[u], u});
deg[u]--;
good.insert({deg[u], u});
f(k, i);
}
for (int i = 0; i < m; i++) cout << ans[i] << endl;
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
template <typename T>
inline T const &MAX(T const &a, T const &b) {
return a > b ? a : b;
}
template <typename T>
inline T const &MIN(T const &a, T const &b) {
return a < b ? a : b;
}
inline void add(long long &a, long long b) {
a += b;
if (a >= 1000000007) a -= 1000000007;
}
inline void sub(long long &a, long long b) {
a -= b;
if (a < 0) a += 1000000007;
}
inline long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; }
inline long long qp(long long a, long long b) {
long long ans = 1;
while (b) {
if (b & 1) ans = ans * a % 1000000007;
a = a * a % 1000000007, b >>= 1;
}
return ans;
}
inline long long qp(long long a, long long b, long long c) {
long long ans = 1;
while (b) {
if (b & 1) ans = ans * a % c;
a = a * a % c, b >>= 1;
}
return ans;
}
using namespace std;
const double eps = 1e-8;
const long long INF = 0x3f3f3f3f3f3f3f3f;
const int N = 200000 + 10, maxn = 1000000 + 10, inf = 0x3f3f3f3f;
int ans[N], d[N];
bool vis[N];
vector<pair<int, int> > v[N];
set<pair<int, int> > s;
pair<int, int> p[N];
void gao(int x) {
auto y = s.lower_bound(make_pair(d[x], x));
if (y != s.end()) {
s.erase(y);
d[x]--;
s.insert(make_pair(d[x], x));
}
}
int main() {
int n, m, k;
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= m; i++) {
int a, b;
scanf("%d%d", &a, &b);
v[a].push_back(make_pair(b, i)), v[b].push_back(make_pair(a, i));
d[a]++, d[b]++;
p[i] = make_pair(a, b);
}
for (int i = 1; i <= n; i++) s.insert(make_pair(d[i], i));
for (int i = m; i >= 1; i--) {
while (s.size() > 0 && (s.begin())->first < k) {
int te = s.begin()->second;
for (int i = 0; i < v[te].size(); i++) {
if (vis[v[te][i].second]) continue;
auto x = s.lower_bound(make_pair(d[v[te][i].first], v[te][i].first));
if (x != s.end() && x != s.begin()) {
s.erase(x);
d[v[te][i].first]--;
s.insert(make_pair(d[v[te][i].first], v[te][i].first));
}
vis[v[te][i].second] = 1;
}
s.erase(s.begin());
}
ans[i] = s.size();
if (vis[i] == 1) continue;
gao(p[i].first), gao(p[i].second);
vis[i] = 1;
}
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | //package superior;
import java.util.*;
public class Tester {
static TreeSet<Integer> tr[];
static int k,n,m,cnt=0;
static Queue<Integer> q;
static TreeSet<Integer>glo;
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner s=new Scanner(System.in);
n=s.nextInt();
m=s.nextInt();
k=s.nextInt();
Edge e[]=new Edge[m+1];
tr=new TreeSet[n+1];
for(int j=1;j<=n;j++)
tr[j]=new TreeSet<Integer>();
glo=new TreeSet<Integer>();
for(int j=1;j<=n;j++)
glo.add(j);
int x,y;
for(int j=1;j<=m;j++)
{
x=s.nextInt();
y=s.nextInt();
e[j]=new Edge(x,y);
tr[x].add(y);
tr[y].add(x);
}
int ans=0;
for(int j=1;j<=n;j++)
{
if(tr[j].size()<k)
reduce(j);
}
/*
for(int j=1;j<=n;j++)
{
if(tr[j].size()>=k)
ans++;
}*/
//System.out.println(ans);
int fri[]=new int[m+1];
int ind;
fri[m]=glo.size();
ind=m-1;
for(int j=m;j>1;j--)
{
x=e[j].x;
y=e[j].y;
//cnt=0;
if(tr[x].contains(y) && tr[y].contains(x))
{
//System.out.println("hiii");
tr[x].remove(y);
tr[y].remove(x);
reduce(x);
if(glo.contains(y))
reduce(y);
fri[ind--]=glo.size();
}
else
{
//System.out.println("hello");
fri[ind--]=glo.size();
}
}
for(int j=1;j<=m;j++)
System.out.println(fri[j]);
}
public static void reduce(int x)
{
//cnt++;
int get;glo.remove(x);
while(tr[x].size()>0)
{
get=tr[x].first();
tr[get].remove(x);
tr[x].remove(get);
if( tr[get].size()<k)
reduce(get);
}
}
}
class Edge
{
int x;
int y;
public Edge(int x,int y)
{
this.x=x;
this.y=y;
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int inf = 1 << 30;
const int N = 200100;
int n, m, k;
int deg[N];
set<pair<int, int> > se[N];
set<int> good[N];
int dndn[N];
int above;
bool used[N];
int main() {
scanf("%d %d %d", &n, &m, &k);
for (int i = 0; i < m; i++) {
int x, y;
scanf("%d %d", &x, &y);
if (se[x].count({y, deg[y]})) {
se[x].erase({y, deg[y]});
}
if (deg[y] + 1 < k) {
se[x].insert({y, deg[y] + 1});
} else {
good[x].insert(y);
dndn[x]++;
}
if (!used[x] && dndn[x] >= k) {
above++;
used[x] = 1;
for (auto w : good[x]) {
int v = w;
dndn[v]++;
if (!used[v] && dndn[v] >= k) {
above++;
used[v] = 1;
for (auto e : good[v]) {
dndn[e]++;
if (!used[e] && dndn[e] >= k) {
above++;
used[e] = 1;
}
}
}
}
}
if (se[y].count({x, deg[x]})) {
se[y].erase({x, deg[x]});
}
if (deg[x] + 1 < k) {
se[y].insert({x, deg[x] + 1});
} else {
good[y].insert(x);
dndn[y]++;
}
if (!used[y] && dndn[y] >= k) {
above++;
used[y] = 1;
for (auto w : good[y]) {
int v = w;
dndn[v]++;
if (!used[v] && dndn[v] >= k) {
above++;
used[v] = 1;
for (auto e : good[v]) {
dndn[e]++;
if (!used[e] && dndn[e] >= k) {
above++;
used[e] = 1;
}
}
}
}
}
deg[x]++, deg[y]++;
if (above >= k + 1)
printf("%d\n", above);
else
printf("0\n");
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MAXN = 2e5 + 5;
int va[MAXN];
int puedeIr[MAXN];
vector<int> amigos[MAXN];
int amigosQueVan[MAXN];
int amigosConKAmigos[MAXN];
int cantVan;
int n, m, k;
void dfs(int x) {
if (va[x]) return;
va[x] = 1;
cantVan++;
for (int h : amigos[x]) {
if (!va[h] && amigosConKAmigos[h] >= k) {
dfs(h);
}
}
}
void query(int a, int b) {
if ((int)(amigos[a]).size() == k - 1) {
for (int h : amigos[a]) {
amigosConKAmigos[h]++;
}
}
if ((int)(amigos[b]).size() == k - 1) {
for (int h : amigos[b]) {
amigosConKAmigos[h]++;
}
}
amigos[a].push_back(b);
amigos[b].push_back(a);
if (va[a] && va[b]) {
amigosConKAmigos[a]++;
amigosConKAmigos[b]++;
} else if (va[a] && !va[b]) {
amigosConKAmigos[b]++;
if (amigosConKAmigos[b] >= k) {
dfs(b);
}
} else if (!va[a] && va[b]) {
amigosConKAmigos[a]++;
if (amigosConKAmigos[a] >= k) {
dfs(a);
}
} else if (!va[a] && !va[b]) {
if ((int)(amigos[a]).size() >= k) {
amigosConKAmigos[b]++;
}
if ((int)(amigos[b]).size() >= k) {
amigosConKAmigos[a]++;
}
if (amigosConKAmigos[a] >= k) {
dfs(a);
}
if (amigosConKAmigos[b] >= k) {
dfs(b);
}
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
cin >> n >> m >> k;
for (int dia = (0); dia < (m); dia++) {
int a, b;
cin >> a >> b;
a--;
b--;
query(a, b);
cout << cantVan << "\n";
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int x[1000006], y[1000006], deg[1000006], ans[1000006];
set<pair<int, int> > my;
vector<int> v[1000006];
bool is[1000006];
map<pair<int, int>, int> my2;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int n, m, k;
cin >> n >> m >> k;
int i;
for (i = 0; i < m; i++) {
cin >> x[i] >> y[i];
deg[x[i]]++;
deg[y[i]]++;
v[x[i]].push_back(y[i]);
v[y[i]].push_back(x[i]);
}
for (i = 1; i <= n; i++) my.insert(make_pair(deg[i], i));
for (i = m - 1; i >= 0; i--) {
while (!my.empty()) {
set<pair<int, int> >::iterator t = my.begin();
pair<int, int> minm = *t;
if (minm.first >= k) break;
int x1 = minm.second;
is[x1] = 1;
for (int j = 0; j < v[x1].size(); j++) {
if (my2[make_pair(x1, v[x1][j])]) continue;
set<pair<int, int> >::iterator t2 =
my.find(make_pair(deg[v[x1][j]], v[x1][j]));
if (t2 != my.end()) {
pair<int, int> temp = make_pair(t2->first, t2->second);
temp.first--;
my.erase(my.find(make_pair(deg[v[x1][j]], v[x1][j])));
deg[v[x1][j]]--;
my.insert(temp);
}
}
my.erase(my.begin());
}
ans[i] = my.size();
if (is[x[i]] || is[y[i]]) continue;
my2[make_pair(x[i], y[i])] = 1;
my2[make_pair(y[i], x[i])] = 1;
set<pair<int, int> >::iterator t = my.find(make_pair(deg[x[i]], x[i]));
if (t != my.end()) {
pair<int, int> temp = *t;
temp.first--;
my.erase(my.find(make_pair(deg[x[i]], x[i])));
deg[x[i]]--;
my.insert(temp);
}
t = my.find(make_pair(deg[y[i]], y[i]));
if (t != my.end()) {
pair<int, int> temp = *t;
temp.first--;
my.erase(my.find(make_pair(deg[y[i]], y[i])));
deg[y[i]]--;
my.insert(temp);
}
}
for (i = 0; i < m; i++) cout << ans[i] << endl;
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long int n, m, k, c;
scanf("%lld", &(n));
scanf("%lld", &(m));
scanf("%lld", &(k));
vector<long long int> E(n, 0), first(n, 0);
vector<long long int> C[n];
long long int tot = 0, a, b;
for (int i = 0; i < (m); i++) {
scanf("%lld", &(a));
scanf("%lld", &(b));
a--;
b--;
C[a].push_back(b);
C[b].push_back(a);
first[a]++;
first[b]++;
if (first[a] == k) {
for (int j = 0; j < (C[a].size()); j++) {
E[C[a][j]]++;
if (E[C[a][j]] == k) tot++;
}
} else if (first[a] > k) {
E[b]++;
if (E[b] == k) tot++;
}
swap(a, b);
if (first[a] == k) {
for (int j = 0; j < (C[a].size()); j++) {
E[C[a][j]]++;
if (E[C[a][j]] == k) tot++;
}
} else if (first[a] > k) {
E[b]++;
if (E[b] == k) tot++;
}
cout << tot << endl;
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.HashSet;
import java.util.Arrays;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.util.TreeSet;
import java.io.InputStream;
/**
* @author khokharnikunj8
*/
public class Main {
public static void main(String[] args) {
new Thread(null, new Runnable() {
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
}
void solve() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
ScanReader in = new ScanReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
ETrips solver = new ETrips();
solver.solve(1, in, out);
out.close();
}
static class ETrips {
int[][] G;
public void solve(int testNumber, ScanReader in, PrintWriter out) {
int n = in.scanInt();
int m = in.scanInt();
int k = in.scanInt();
TreeSet<pair> bstCustom = new TreeSet<>();
int from[] = new int[m];
int to[] = new int[m];
for (int i = 0; i < m; i++) {
from[i] = in.scanInt();
to[i] = in.scanInt();
}
int[] ans = new int[m];
G = CodeHash.packGraph(from, to, n);
int degree[] = new int[n + 1];
for (int i = 1; i <= n; i++) bstCustom.add(new pair(degree[i] = G[i].length, i));
boolean[] is_inside = new boolean[n + 1];
Arrays.fill(is_inside, true);
HashSet<Long> set = new HashSet<>();
while (bstCustom.size() > 0 && bstCustom.first().x < k) {
for (int i : G[bstCustom.first().y]) {
if (is_inside[i]) {
if (set.contains(i * 1000000l + bstCustom.first().y) || set.contains(bstCustom.first().y * 1000000l + i))
continue;
bstCustom.remove(new pair(degree[i], i));
degree[i]--;
degree[bstCustom.first().y]--;
bstCustom.add(new pair(degree[i], i));
set.add(i * 1000000l + bstCustom.first().y);
}
}
is_inside[bstCustom.first().y] = false;
bstCustom.remove(bstCustom.first());
}
ans[m - 1] = bstCustom.size();
for (int i = m - 1; i >= 1; i--) {
if (is_inside[from[i]] && is_inside[to[i]]) {
if (degree[from[i]] - 1 < k) {
bstCustom.remove(new pair(degree[from[i]], from[i]));
for (int j : G[from[i]]) {
if (is_inside[j]) {
if (set.contains(j * 1000000l + from[i]) || set.contains(from[i] * 1000000l + j))
continue;
bstCustom.remove(new pair(degree[j], j));
degree[j]--;
degree[from[i]]--;
bstCustom.add(new pair(degree[j], j));
set.add(j * 1000000l + from[i]);
}
}
is_inside[from[i]] = false;
} else if (degree[to[i]] - 1 < k) {
bstCustom.remove(new pair(degree[to[i]], to[i]));
for (int j : G[to[i]]) {
if (is_inside[j]) {
if (set.contains(j * 1000000l + to[i]) || set.contains(to[i] * 1000000l + j)) continue;
bstCustom.remove(new pair(degree[j], j));
degree[j]--;
degree[to[i]]--;
bstCustom.add(new pair(degree[j], j));
set.add(j * 1000000l + to[i]);
}
}
is_inside[to[i]] = false;
} else {
bstCustom.remove(new pair(degree[from[i]], from[i]));
degree[from[i]]--;
bstCustom.add(new pair(degree[from[i]], from[i]));
bstCustom.remove(new pair(degree[to[i]], to[i]));
degree[to[i]]--;
bstCustom.add(new pair(degree[to[i]], to[i]));
set.add(1000000l * from[i] + to[i]);
}
}
while (bstCustom.size() > 0 && bstCustom.first().x < k) {
for (int j : G[bstCustom.first().y]) {
if (is_inside[j]) {
if (set.contains(j * 1000000l + bstCustom.first().y) || set.contains(bstCustom.first().y * 1000000l + j))
continue;
bstCustom.remove(new pair(degree[j], j));
degree[j]--;
bstCustom.add(new pair(degree[j], j));
set.add(j * 1000000l + bstCustom.first().y);
}
}
is_inside[bstCustom.first().y] = false;
bstCustom.remove(bstCustom.first());
}
ans[i - 1] = bstCustom.size();
}
for (int i = 0; i < m; i++) out.println(ans[i]);
}
class pair implements Comparable<pair> {
int x;
int y;
public int compareTo(pair o) {
if (this.x == o.x) return this.y - o.y;
return this.x - o.x;
}
public pair(int x, int y) {
this.x = x;
this.y = y;
}
}
}
static class CodeHash {
public static int[][] packGraph(int[] from, int[] to, int n) {
int[][] g = new int[n + 1][];
int p[] = new int[n + 1];
for (int i : from) p[i]++;
for (int i : to) p[i]++;
for (int i = 0; i <= n; i++) g[i] = new int[p[i]];
for (int i = 0; i < from.length; i++) {
g[from[i]][--p[from[i]]] = to[i];
g[to[i]][--p[to[i]]] = from[i];
}
return g;
}
}
static class ScanReader {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public ScanReader(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0) return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
}
return neg * integer;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int mod = 1e9 + 7;
vector<vector<pair<int, int> > > g;
set<pair<int, int> > good;
vector<char> very_good;
vector<int> d;
int k;
void check() {
while (!good.empty() && good.begin()->first < k) {
int v = good.begin()->second;
for (auto &y : g[v]) {
int x = y.first;
if (very_good[x]) {
good.erase(make_pair(d[x], x));
d[x]--;
good.insert(make_pair(d[x], x));
}
}
good.erase(make_pair(d[v], v));
very_good[v] = false;
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int n, m;
cin >> n >> m >> k;
g.resize(n);
d.resize(n);
vector<pair<int, int> > f(m);
for (int i = 0; i < m; ++i) {
cin >> f[i].first >> f[i].second;
f[i].first--, f[i].second--;
g[f[i].first].push_back(make_pair(f[i].second, i));
g[f[i].second].push_back(make_pair(f[i].first, i));
d[f[i].first]++;
d[f[i].second]++;
}
for (int i = 0; i < n; ++i) {
good.insert(make_pair(d[i], i));
}
very_good.assign(n, true);
check();
vector<int> ans(m);
for (int i = m - 1; i >= 0; --i) {
ans[i] = good.size();
int v = f[i].first, u = f[i].second;
if (very_good[v] && very_good[u]) {
good.erase(make_pair(d[v], v));
d[v]--;
good.insert(make_pair(d[v], v));
good.erase(make_pair(d[u], u));
d[u]--;
good.insert(make_pair(d[u], u));
check();
}
}
for (int i = 0; i < m; ++i) cout << ans[i] << '\n';
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long tak[1000000];
long long fcount[1000000];
set<long long> dbnt[1000000];
long long nbcnt[1000000];
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
long long n, m, k;
cin >> n >> m >> k;
long long ans = 0;
set<long long> taken;
vector<long long> adj[n];
for (long long i = 0; i < m; i++) {
long long x, y;
cin >> x >> y;
--x, --y;
fcount[x]++;
fcount[y]++;
vector<long long> v;
if (fcount[y] >= k) nbcnt[x]++;
if (fcount[x] >= k) nbcnt[y]++;
if (fcount[x] == k && !tak[x]) {
for (auto j : adj[x]) {
nbcnt[j]++;
long long c = 0;
for (auto k1 : adj[j]) c += (nbcnt[k1] >= k && fcount[k1] >= k);
if (c >= k && !tak[j] && nbcnt[j] >= k && fcount[j] >= k)
v.push_back(j);
}
}
if (fcount[y] == k && !tak[y]) {
for (auto j : adj[y]) {
nbcnt[j]++;
long long c = 0;
for (auto k1 : adj[j]) c += (nbcnt[k1] >= k && fcount[k1] >= k);
if (c >= k && !tak[j] && nbcnt[j] >= k && fcount[j] >= k)
v.push_back(j);
}
}
adj[x].push_back(y);
adj[y].push_back(x);
if (nbcnt[x] >= k && fcount[x] >= k && !tak[x]) {
long long c = 0;
for (auto j : adj[x]) c += (nbcnt[j] >= k && fcount[j] >= k);
if (c >= k) v.push_back(x);
}
if (nbcnt[y] >= k && fcount[y] >= k && !tak[y]) {
long long c = 0;
for (auto j : adj[y]) c += (nbcnt[j] >= k && fcount[j] >= k);
if (c >= k) v.push_back(y);
}
for (auto j : v) tak[j] = 1, taken.insert(j);
long long cur = 0;
while (cur < v.size()) {
long long j = v[cur];
taken.insert(j);
for (auto j1 : adj[j]) {
if (tak[j1]) continue;
long long c = 0;
for (auto j2 : adj[j1]) c += (nbcnt[j2] >= k && fcount[j2] >= k);
if (c >= k && !tak[j1] && nbcnt[j1] >= k && fcount[j1] >= k)
v.push_back(j1), tak[j1] = 1;
}
cur++;
}
cout << taken.size() << endl;
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | /*package whatever //do not write package name here */
import java.util.*;
public class GFG {
public static void main (String[] args) {
int n,m,i,j,k,l,t=1,x,y;
Scanner sc=new Scanner(System.in);
//t=sc.nextInt();
while(t-->0){
n=sc.nextInt();
m=sc.nextInt();
k=sc.nextInt();
int a[]=new int[n];
int gf[]=new int[n];
int fgf[]=new int[n];
ArrayList<ArrayList<Integer>> dos=new ArrayList<ArrayList<Integer>>();
for(i=0;i<n;i++){
dos.add(new ArrayList<Integer>());
}
int an=0;
while(m-->0){
x=sc.nextInt()-1;
y=sc.nextInt()-1;
// System.out.println("now"+x+" "+y);
a[x]++;
a[y]++;
dos.get(x).add(y);
dos.get(y).add(x);
if(a[x]==k){
for(Integer g:dos.get(x)){
gf[(int)g]++;
if(gf[(int)g]==k){
for(Integer dd:dos.get((int)g)){
fgf[(int)dd]++;
if(fgf[(int)dd]==k){
an++;
}
}
}
}
}
if(a[x]>k){
gf[y]++;
if(gf[y]==k){
for(Integer dd:dos.get((int)y)){
fgf[(int)dd]++;
if(fgf[(int)dd]==k){
an++;
}
}
}
}
if(a[y]==k){
for(Integer g:dos.get(y)){
gf[(int)g]++;
if(gf[(int)g]==k){
for(Integer dd:dos.get((int)g)){
fgf[(int)dd]++;
if(fgf[(int)dd]==k){
an++;
}
}
}
}
}
if(a[y]>k){
gf[x]++;
if(gf[x]==k){
for(Integer dd:dos.get((int)x)){
fgf[(int)dd]++;
if(fgf[(int)dd]==k){
an++;
}
}
}
}
if(gf[x]>=k){
fgf[y]++;
if(fgf[(int)y]==k){
an++;
}
}
if(gf[y]>=k){
fgf[x]++;
if(fgf[(int)x]==k){
an++;
}
}
// System.out.println(Arrays.toString(a));
// System.out.println(Arrays.toString(gf));
// System.out.println(Arrays.toString(fgf));
System.out.println(an);
}
}
}
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | //package com.company;
import java.io.*;
import java.util.*;
public class Main {
static long TIME_START, TIME_END;
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
// Scanner sc = new Scanner(new FileInputStream("Test.in"));
PrintWriter pw = new PrintWriter(System.out);
// PrintWriter pw = new PrintWriter(new FileOutputStream("Test.out"));
Runtime runtime = Runtime.getRuntime();
long usedMemoryBefore = runtime.totalMemory() - runtime.freeMemory();
TIME_START = System.currentTimeMillis();
Task t = new Task();
t.solve(sc, pw);
TIME_END = System.currentTimeMillis();
long usedMemoryAfter = runtime.totalMemory() - runtime.freeMemory();
pw.close();
System.out.println("Memory increased:" + (usedMemoryAfter - usedMemoryBefore) / 1000000);
System.out.println("Time used: " + (TIME_END - TIME_START) + ".");
}
public static class Task {
public int get(int[] q, int r) {
if (q[0] == r) return q[1];
return q[0];
}
int[] deg ;
List<int[]> edges;
List<Integer>[] edgesS ;
boolean[] del ;
boolean[] badedge ;
public void solve(Scanner sc, PrintWriter pw) throws IOException {
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
deg = new int[n];
edges = new ArrayList<>();
edgesS = new List[n];
for (int i = 0; i < n; i++) {
edgesS[i] = new ArrayList<>();
}
for (int i = 0; i < m; i++) {
int a = sc.nextInt() - 1;
int b = sc.nextInt() - 1;
edges.add(new int[]{a, b});
edgesS[a].add(i);
edgesS[b].add(i);
deg[a]++;
deg[b]++;
}
del = new boolean[n];
badedge = new boolean[m];
int dlt = 0;
for (int i = 0; i < n; i++) {
if (!del[i] && deg[i] < k) {
dlt += dfs(i, k);
}
}
Arrays.fill(deg, 0);
Arrays.fill(del, false);
for (int i = 0; i < m; i++) {
if (badedge[i]) continue;
int[] e = edges.get(i);
deg[e[0]]++;
deg[e[1]]++;
del[e[0]] = false;
del[e[1]] = false;
}
int[] res = new int[m];
res[m - 1] = n - dlt;
for (int i = m - 1; i > 0; i--) {
int[] toremove = edges.get(i);
int t1 = toremove[0], t2 = toremove[1];
edges.remove(i);
edgesS[t1].remove(edgesS[t1].size() - 1);
edgesS[t2].remove(edgesS[t2].size() - 1);
int tr = 0;
if (!badedge[i]) {
if (!del[t1] && !del[t2]) {
deg[t1]--;
deg[t2]--;
if (!del[t1] && deg[t1] < k) {
tr += dfs(t1, k);
}
if (!del[t2] && deg[t2] < k) {
tr += dfs(t2, k);
}
}
}
res[i - 1] = res[i] - tr;
}
for (int i = 0; i < m; i++) {
pw.println(res[i]);
}
}
public int dfs(int u, int k) {
int cnt = 0;
del[u] = true;
cnt++;
deg[u] = 0;
for (int idx : edgesS[u]) {
if (badedge[idx]) continue;
badedge[idx] = true;
int o = get(edges.get(idx), idx);
if (del[o]) continue;
deg[o]--;
if (deg[o] < k) {
cnt += dfs(o, k);
}
}
return cnt;
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader s) throws FileNotFoundException {
br = new BufferedReader(s);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public boolean ready() throws IOException {
return br.ready();
}
}
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | //package com.company;
import java.io.*;
import java.util.*;
public class Main {
static long TIME_START, TIME_END;
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
// Scanner sc = new Scanner(new FileInputStream("Test.in"));
PrintWriter pw = new PrintWriter(System.out);
// PrintWriter pw = new PrintWriter(new FileOutputStream("Test.out"));
Runtime runtime = Runtime.getRuntime();
long usedMemoryBefore = runtime.totalMemory() - runtime.freeMemory();
TIME_START = System.currentTimeMillis();
Task t = new Task();
t.solve(sc, pw);
TIME_END = System.currentTimeMillis();
long usedMemoryAfter = runtime.totalMemory() - runtime.freeMemory();
pw.close();
System.out.println("Memory increased:" + (usedMemoryAfter - usedMemoryBefore) / 1000000);
System.out.println("Time used: " + (TIME_END - TIME_START) + ".");
}
public static class Task {
public int get(int[] q, int r) {
if (q[0] == r) return q[1];
return q[0];
}
public void solve(Scanner sc, PrintWriter pw) throws IOException {
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int[] deg = new int[n];
List<int[]> edges = new ArrayList<>();
List<Integer>[] edgesS = new List[n];
for (int i = 0; i < n; i++) {
edgesS[i] = new ArrayList<>();
}
for (int i = 0; i < m; i++) {
int a = sc.nextInt() - 1;
int b = sc.nextInt() - 1;
edges.add(new int[]{a, b});
edgesS[a].add(i);
edgesS[b].add(i);
deg[a]++;
deg[b]++;
}
boolean[] del = new boolean[n];
int dlt = 0;
for (int i = 0; i < n; i++) {
if (!del[i]) {
dlt += dfs(i, k, deg, del, edges, edgesS);
}
}
int[] res = new int[m];
res[m - 1] = n - dlt;
for (int i = m - 1; i > 0; i--) {
int[] toremove = edges.get(i);
edges.remove(i);
for (int j = 0; j < 2; j++) {
edgesS[toremove[j]].remove(edgesS[toremove[j]].size() - 1);
}
if (!del[toremove[0]] && !del[toremove[1]]) {
deg[toremove[0]]--;
deg[toremove[1]]--;
}
int tr = 0;
for (int j = 0; j < 2; j++) {
if (!del[toremove[j]] && deg[toremove[j]] < k) {
tr += dfs(toremove[j], k, deg, del, edges, edgesS);
}
}
res[i - 1] = res[i] - tr;
}
for (int i = 0; i < m; i++) {
pw.println(res[i]);
}
}
public int dfs(int u, int k, int[] deg, boolean[] del, List<int[]> edges, List<Integer>[] edgeS) {
int cnt = 0;
if (deg[u] < k) {
del[u] = true;
cnt++;
for (int idx : edgeS[u]) {
int o = get(edges.get(idx), idx);
deg[o]--;
if (!del[o] && deg[o] < k) {
cnt += dfs(o, k, deg, del, edges, edgeS);
}
}
}
return cnt;
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader s) throws FileNotFoundException {
br = new BufferedReader(s);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public boolean ready() throws IOException {
return br.ready();
}
}
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | //package contests.CF1037;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class E {
static ArrayList<Integer>[] adj;
static int[] vis, going;
static int NO = 3, YES = 2, VIS = 1;
static int k;
public static void main(String[] args) throws IOException{
Scanner sc = new Scanner();
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
adj = new ArrayList[n];
for (int i = 0; i < adj.length; i++) {
adj[i] = new ArrayList<>();
}
vis = new int[n];
going = new int[n];
int m = sc.nextInt();
k = sc.nextInt();
HashSet<Long> e = new HashSet<>();
int[][] edges = new int[m][2];
for (int i = 0; i < m; i++) {
edges[i][0] = sc.nextInt()-1;
edges[i][1] = sc.nextInt()-1;
adj[edges[i][0]].add(edges[i][1]);
adj[edges[i][1]].add(edges[i][0]);
e.add(hash(edges[i][0], edges[i][1]));
}
for (int i = 0; i < n; i++) {
if(vis[i] == 0)
go(i);
}
TreeSet<Integer> set = new TreeSet<>(new Comparator<Integer>() {
@Override
public int compare(Integer i, Integer j) { ;
if(going[i] != going[j])
return going[i] - going[j];
return i - j;
}
});
for (int i = 0; i < n; i++) {
if(vis[i] == YES)
set.add(i);
}
int[] ans = new int[m];
for (int q = m-1; q >= 0; q--) {
ans[q] = set.size();
int u = edges[q][0];
int v = edges[q][1];
if(vis[u] == YES) {
set.remove(u);
if(vis[v] == YES && e.contains(hash(u, v)))
going[u]--;
set.add(u);
}
if(vis[v] == YES) {
set.remove(v);
if(vis[u] == YES && e.contains(hash(u, v)))
going[v]--;
set.add(v);
}
e.remove(hash(u, v));
while(!set.isEmpty() && going[set.first()] < k){
int a = set.pollFirst();
vis[a] = NO;
for (int b : adj[a]) {
if(vis[b] == YES && e.contains(hash(a, b))){
set.remove(b);
going[b]--;
set.add(b);
e.remove(hash(a, b));
}
}
}
}
ans[0] = set.size();
for (int i = 0; i < m; i++) {
pw.println(ans[i]);
}
pw.flush();
pw.close();
}
static void go(int u){
int g = 0;
vis[u] = YES;
for (int v: adj[u]) {
if(vis[v] == YES)
g++;
else if(vis[v] == 0)
{
vis[v] = VIS;
go(v);
if(vis[v] == YES)
g++;
}
}
going[u] = g;
if(g < k)
vis[u] = NO;
}
static long hash(int a, int b){
return Math.min(a, b) * 1000000l + Math.max(a, b);
}
static class Scanner{
BufferedReader br;
StringTokenizer st;
public Scanner(){
br = new BufferedReader(new InputStreamReader(System.in));
}
public String next() throws IOException {
while(st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T>
inline void read(T& x) {
char c = getchar();
bool f = false;
for (x = 0; !isdigit(c); c = getchar()) {
if (c == '-') {
f = true;
}
}
for (; isdigit(c); c = getchar()) {
x = x * 10 + c - '0';
}
if (f) {
x = -x;
}
}
template <typename T>
inline bool checkMax(T& a, const T& b) {
return a < b ? a = b, true : false;
}
template <typename T>
inline bool checkMin(T& a, const T& b) {
return a > b ? a = b, true : false;
}
const int N = 2e5 + 10;
int n, m, k, u[N], v[N], degree[N], ans[N], bl;
set<int> G[N];
inline void delete_point(int u) {
degree[u] = 0;
for (auto v : G[u]) {
if (degree[v]) {
G[v].erase(G[v].lower_bound(u));
if (--degree[v] < k) {
--bl, delete_point(v);
}
}
}
G[u].clear();
}
int main() {
read(n), read(m), read(k), bl = n;
for (register int i = 1; i <= m; ++i) {
read(u[i]), read(v[i]);
G[u[i]].insert(v[i]);
G[v[i]].insert(u[i]);
++degree[u[i]], ++degree[v[i]];
}
for (register int i = 1; i <= n; ++i) {
if (degree[i] < k) {
--bl, delete_point(i);
}
}
ans[m] = bl;
for (register int i = m; i >= 1; --i) {
if (degree[u[i]] && degree[v[i]]) {
G[u[i]].erase(G[u[i]].lower_bound(v[i]));
if (--degree[u[i]] < k) {
--bl, delete_point(u[i]);
}
if (degree[v[i]]) {
G[v[i]].erase(G[v[i]].lower_bound(u[i]));
if (--degree[v[i]] < k) {
--bl, delete_point(v[i]);
}
}
}
ans[i - 1] = bl;
}
for (register int i = 1; i <= m; ++i) {
printf("%d\n", ans[i]);
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n, m, k, sol = 0;
cin >> n >> m >> k;
if (k * k > 2 * m) {
for (int i = 0; i < m; i++) cout << 0 << endl;
return 0;
}
vector<vector<int>> gr(n + 1);
vector<vector<int>> co(n + 1, vector<int>(k + 2));
vector<int> hig(n + 1, 1);
for (int i = 0; i < m; i++) {
int u, v;
cin >> u >> v;
gr[u].push_back(v);
gr[v].push_back(u);
queue<tuple<int, int, bool>> q;
q.push({v, hig[u], true});
q.push({u, hig[v], true});
while (!q.empty()) {
int uu, hi;
bool fi;
tie(uu, hi, fi) = q.front();
q.pop();
if (hig[uu] > k + 1) continue;
if (fi)
for (int i = hi - 1; i >= 0 and co[uu][i] < k; i--) co[uu][i]++;
else
co[uu][hi - 1]++;
while (co[uu][hig[uu] - 1] >= k) {
hig[uu]++;
if (hig[uu] == k + 2) {
sol++;
break;
}
for (int uuu : gr[uu]) q.push({uuu, hig[uu], false});
}
}
cout << sol << endl;
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 3;
int n, m, k, deg[N], x[N], y[N], ans[N], cnt;
bool del[N];
set<int> G[N];
set<int>::iterator it;
void Del(int rt) {
if (deg[rt] >= k || del[rt]) return;
queue<int> q;
q.push(rt);
while (!q.empty()) {
int u = q.front();
q.pop();
del[u] = 1;
cnt--;
for (it = G[u].begin(); it != G[u].end(); it++) {
int v = *it;
deg[v]--;
if (deg[v] < k && !del[v]) q.push(v);
}
}
}
int main() {
memset(deg, 0, sizeof deg);
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= m; i++) {
scanf("%d%d", x + i, y + i);
deg[x[i]]++;
deg[y[i]]++;
G[x[i]].insert(y[i]);
G[y[i]].insert(x[i]);
}
cnt = n;
for (int i = 1; i <= n; i++) Del(i);
for (int i = m; i; i--) {
ans[i] = cnt;
if (!del[x[i]]) deg[y[i]]--;
if (!del[y[i]]) deg[x[i]]--;
G[x[i]].erase(y[i]);
G[y[i]].erase(x[i]);
Del(x[i]);
Del(y[i]);
}
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int x[1000006], y[1000006], deg[1000006], ans[1000006];
set<pair<int, int> > my;
vector<int> v[1000006];
bool is[1000006];
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int n, m, k;
cin >> n >> m >> k;
int i;
for (i = 0; i < n; i++) {
cin >> x[i] >> y[i];
deg[x[i]]++;
deg[y[i]]++;
v[x[i]].push_back(y[i]);
v[y[i]].push_back(x[i]);
}
for (i = 1; i <= n; i++) my.insert(make_pair(deg[i], i));
i = n - 1;
for (i = n - 1; i >= 0; i--) {
while (!my.empty()) {
set<pair<int, int> >::iterator t = my.begin();
pair<int, int> minm = *t;
if (minm.first >= k) break;
int x1 = minm.second;
is[x1] = 1;
for (int j = 0; j < v[x1].size(); j++) {
set<pair<int, int> >::iterator t2 =
my.find(make_pair(deg[v[x1][j]], v[x1][j]));
if (t2 != my.end()) {
pair<int, int> temp = make_pair(t2->first, t2->second);
temp.first--;
my.erase(my.find(make_pair(deg[v[x1][j]], v[x1][j])));
deg[v[x1][j]]--;
my.insert(temp);
}
}
my.erase(my.begin());
}
ans[i] = my.size();
if (is[x[i]] || is[y[i]]) continue;
set<pair<int, int> >::iterator t = my.find(make_pair(deg[x[i]], x[i]));
if (t != my.end()) {
pair<int, int> temp = *t;
temp.first--;
my.erase(my.find(make_pair(deg[x[i]], x[i])));
deg[x[i]]--;
my.insert(temp);
}
t = my.find(make_pair(deg[y[i]], y[i]));
if (t != my.end()) {
pair<int, int> temp = *t;
temp.first--;
my.erase(my.find(make_pair(deg[y[i]], y[i])));
deg[y[i]]--;
my.insert(temp);
}
}
for (i = 0; i < n; i++) cout << ans[i] << endl;
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.HashSet;
import java.util.Arrays;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.util.TreeSet;
import java.io.InputStream;
/**
* @author khokharnikunj8
*/
public class Main {
public static void main(String[] args) {
new Thread(null, new Runnable() {
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
}
void solve() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
ScanReader in = new ScanReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
ETrips solver = new ETrips();
solver.solve(1, in, out);
out.close();
}
static class ETrips {
int[][] G;
public void solve(int testNumber, ScanReader in, PrintWriter out) {
int n = in.scanInt();
int m = in.scanInt();
int k = in.scanInt();
TreeSet<pair> bstCustom = new TreeSet<>();
int from[] = new int[m];
int to[] = new int[m];
for (int i = 0; i < m; i++) {
from[i] = in.scanInt();
to[i] = in.scanInt();
}
int[] ans = new int[m];
G = CodeHash.packGraph(from, to, n);
int degree[] = new int[n + 1];
for (int i = 1; i <= n; i++) bstCustom.add(new pair(degree[i] = G[i].length, i));
boolean[] is_inside = new boolean[n + 1];
Arrays.fill(is_inside, true);
while (bstCustom.size() > 0 && bstCustom.first().x < k) {
for (int i : G[bstCustom.first().y]) {
if (is_inside[i]) {
bstCustom.remove(new pair(degree[i], i));
degree[i]--;
bstCustom.add(new pair(degree[i], i));
}
}
is_inside[bstCustom.first().y] = false;
bstCustom.remove(bstCustom.first());
}
ans[m - 1] = bstCustom.size();
HashSet<Long> set = new HashSet<>();
for (int i = m - 1; i >= 1; i--) {
if (is_inside[from[i]] && is_inside[to[i]]) {
if (degree[from[i]] - 1 < k) {
bstCustom.remove(new pair(degree[from[i]], from[i]));
for (int j : G[from[i]]) {
if (is_inside[j]) {
if (set.contains(j * 1000000l + from[i]) || set.contains(from[i] * 1000000l + j))
continue;
bstCustom.remove(new pair(degree[j], j));
degree[j]--;
degree[from[i]]--;
bstCustom.add(new pair(degree[j], j));
}
}
is_inside[from[i]] = false;
} else if (degree[to[i]] - 1 < k) {
bstCustom.remove(new pair(degree[to[i]], to[i]));
for (int j : G[to[i]]) {
if (is_inside[j]) {
if (set.contains(j * 1000000l + to[i]) || set.contains(to[i] * 1000000l + j)) continue;
bstCustom.remove(new pair(degree[j], j));
degree[j]--;
degree[to[i]]--;
bstCustom.add(new pair(degree[j], j));
}
}
is_inside[to[i]] = false;
} else {
bstCustom.remove(new pair(degree[from[i]], from[i]));
degree[from[i]]--;
bstCustom.add(new pair(degree[from[i]], from[i]));
bstCustom.remove(new pair(degree[to[i]], to[i]));
degree[to[i]]--;
bstCustom.add(new pair(degree[to[i]], to[i]));
}
}
set.add(1000000l * from[i] + to[i]);
while (bstCustom.size() > 0 && bstCustom.first().x < k) {
for (int j : G[bstCustom.first().y]) {
if (is_inside[j]) {
if (set.contains(j * 1000000l + bstCustom.first().x) || set.contains(bstCustom.first().x * 1000000l + j))
continue;
bstCustom.remove(new pair(degree[j], j));
degree[j]--;
bstCustom.add(new pair(degree[j], j));
}
}
is_inside[bstCustom.first().y] = false;
bstCustom.remove(bstCustom.first());
}
ans[i - 1] = bstCustom.size();
}
for (int i = 0; i < m; i++) out.println(ans[i]);
}
class pair implements Comparable<pair> {
int x;
int y;
public int compareTo(pair o) {
if (this.x == o.x) return this.y - o.y;
return this.x - o.x;
}
public pair(int x, int y) {
this.x = x;
this.y = y;
}
}
}
static class CodeHash {
public static int[][] packGraph(int[] from, int[] to, int n) {
int[][] g = new int[n + 1][];
int p[] = new int[n + 1];
for (int i : from) p[i]++;
for (int i : to) p[i]++;
for (int i = 0; i <= n; i++) g[i] = new int[p[i]];
for (int i = 0; i < from.length; i++) {
g[from[i]][--p[from[i]]] = to[i];
g[to[i]][--p[to[i]]] = from[i];
}
return g;
}
}
static class ScanReader {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public ScanReader(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0) return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
}
return neg * integer;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 10;
vector<int> g[maxn];
int edge[maxn][3];
int res[maxn];
map<pair<int, int>, int> ma;
set<pair<int, int> > s;
int deg[maxn];
int n, m, k;
void add(int x, int y) {
g[x].push_back(y);
deg[y]++;
}
void del(int x, int id) {
int si = g[x].size();
for (int i = 0; i < si; i++) {
int to = g[x][i];
if (ma[make_pair(min(x, to), max(x, to))] >= id) continue;
if (s.find(make_pair(deg[to], to)) != s.end() &&
ma[make_pair(min(x, to), max(x, to))]) {
s.erase(make_pair(deg[to], to));
deg[to]--;
s.insert(make_pair(deg[to], to));
ma[make_pair(min(x, to), max(x, to))] = 0;
}
}
}
void tu(int id) {
while (!s.empty() && (*s.begin()).first < k) {
del((*s.begin()).second, id);
s.erase(s.begin());
}
}
void put() {
printf("si:%d\n", s.size());
set<pair<int, int> >::iterator it = s.begin(), en = s.end();
while (it != en) {
printf("%d %d\n", (*it).first, (*it).second);
it++;
}
}
void delf(int x) {
s.erase(make_pair(deg[x], x));
deg[x]--;
s.insert(make_pair(deg[x], x));
}
void work() {
scanf("%d%d%d", &n, &m, &k);
for (int i = 0; i < m; i++) {
int x, y;
scanf("%d%d", &x, &y);
x--;
y--;
edge[i][0] = x;
edge[i][1] = y;
add(x, y);
add(y, x);
ma[make_pair(min(x, y), max(x, y))] = i + 1;
}
for (int i = 0; i < n; i++) {
s.insert(make_pair(deg[i], i));
}
for (int i = m - 1; i >= 0; i--) {
tu(i + 1);
res[i] = s.size();
if (s.find(make_pair(deg[edge[i][0]], edge[i][0])) != s.end() &&
s.find(make_pair(deg[edge[i][1]], edge[i][1])) != s.end()) {
delf(edge[i][0]);
delf(edge[i][1]);
ma[make_pair(min(edge[i][0], edge[i][1]), max(edge[i][0], edge[i][1]))] =
0;
}
}
for (int i = 0; i < m; i++) {
printf("%d\n", res[i]);
}
}
int main() {
work();
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int Max = 2e5 + 3;
vector<int> adj[Max];
set<int> adjNew[Max];
int cnt[Max] = {0}, degree[Max] = {0};
bool visited[Max] = {0}, going[Max] = {0};
int n, m, k;
int res = 0;
void add(int node) {
int numGoing = 0;
for (int to : adj[node]) {
cnt[to]++;
if (adjNew[to].count(node)) {
if (cnt[to] >= k) {
numGoing++;
}
}
}
if (numGoing >= k) {
if (!going[node]) {
res++;
going[node] = true;
}
for (int to : adjNew[node]) {
if (!going[to] && cnt[to] >= k) {
res++;
going[to] = true;
}
}
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin >> n >> m >> k;
int u, v;
vector<pair<int, int> > edges(m);
for (int i = 0; i < m; ++i) {
cin >> u >> v;
adj[u].push_back(v);
adj[v].push_back(u);
degree[u]++;
degree[v]++;
edges[i] = {u, v};
}
queue<int> q;
for (int i = 1; i <= n; ++i) {
if (degree[i] < k) {
visited[i] = true;
q.push(i);
}
}
while (!q.empty()) {
int node = q.front();
q.pop();
for (int to : adj[node]) {
degree[to]--;
}
for (int to : adj[node]) {
if (!visited[to] && degree[to] < k) {
q.push(to);
visited[to] = true;
}
}
}
for (int i = 1; i <= n; ++i) {
adj[i].clear();
degree[i] = 0;
}
for (int i = 0; i < m; ++i) {
u = edges[i].first;
v = edges[i].second;
if (visited[u]) continue;
if (visited[v]) continue;
adj[u].push_back(v);
adj[v].push_back(u);
}
for (int i = 0; i < m; ++i) {
u = edges[i].first;
v = edges[i].second;
if (visited[u] || visited[v]) {
cout << res << '\n';
continue;
}
degree[u]++;
degree[v]++;
adjNew[u].insert(v);
adjNew[v].insert(u);
if (degree[u] == k) {
add(u);
}
if (degree[v] == k) {
add(v);
}
cout << res << '\n';
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const int N = 2e5 + 5;
using namespace std;
int n, m, k;
int res[N];
int x[N], y[N];
int bac[N];
set<int> a[N];
set<pair<int, int> > S;
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> m >> k;
for (int i = 1; i <= m; i++) {
cin >> x[i] >> y[i];
a[x[i]].insert(y[i]);
a[y[i]].insert(x[i]);
bac[x[i]]++;
bac[y[i]]++;
}
for (int i = 1; i <= n; i++)
if (bac[i] > 0) S.insert(make_pair(bac[i], i));
for (int i = m; i >= 1; i--) {
while (S.size() && S.begin()->first < k) {
for (int v : a[S.begin()->second]) {
S.erase(make_pair(bac[v], v));
bac[v]--;
if (bac[v] > 0) S.insert(make_pair(bac[v], v));
a[v].erase(S.begin()->second);
}
a[S.begin()->second].clear();
bac[S.begin()->second] = 0;
S.erase(S.begin());
}
res[i] = S.size();
if (a[y[i]].find(x[i]) != a[y[i]].end()) {
S.erase(make_pair(bac[x[i]], x[i]));
bac[x[i]]--;
if (bac[x[i]] > 0) S.insert(make_pair(bac[x[i]], x[i]));
S.erase(make_pair(bac[y[i]], y[i]));
bac[y[i]]--;
if (bac[y[i]] > 0) S.insert(make_pair(bac[y[i]], y[i]));
a[x[i]].erase(y[i]);
a[y[i]].erase(x[i]);
}
}
for (int i = 1; i <= m; i++) cout << res[i] << '\n';
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
namespace Header_Template {
template <class T>
inline void read(T &x) {
x = 0;
T tmp = 1;
char c = getchar();
while ((c < '0' || c > '9') && c != '-') c = getchar();
if (c == '-') tmp = -1, c = getchar();
while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + c - '0', c = getchar();
x *= tmp;
}
template <class T>
inline void Max(T &x, T y) {
if (y > x) x = y;
}
template <class T>
inline void Min(T &x, T y) {
if (y < x) x = y;
}
} // namespace Header_Template
using namespace Header_Template;
const int N = 2e5 + 10;
int n, m, k, ans, t;
int cnt[N], vis[N], tag[N];
vector<int> g[N];
vector<pair<int, int> > e;
bool Dfs(int x) {
vis[x] = 1;
for (int y : g[x]) {
if (vis[y]) continue;
if (!Dfs(y)) --cnt[x];
}
return cnt[x] >= k;
}
void Solve(int x) {
tag[x] = t;
--ans;
for (int y : g[x]) {
if (tag[y] == t) continue;
--cnt[y];
if (cnt[y] == k - 1) Solve(y);
}
}
int main(void) {
read(n), read(m), read(k);
for (int i = 1, x, y; i <= m; ++i) {
read(x), read(y);
g[x].push_back(y);
g[y].push_back(x);
e.push_back({x, y});
}
for (int i = 1; i <= n; ++i) cnt[i] = (int)g[i].size();
for (int i = 1; i <= n; ++i)
if (!vis[i]) {
vis[i] = 1;
for (int x : g[i])
if (!Dfs(x)) --cnt[i];
}
ans = 0;
for (int i = 1; i <= n; ++i) ans += (cnt[i] >= k);
vector<int> Ans;
for (t = 1; t <= m; ++t) {
Ans.push_back(ans);
pair<int, int> u = e.back();
e.pop_back();
int x = u.first, y = u.second;
g[x].pop_back();
g[y].pop_back();
if (cnt[x] >= k && cnt[y] >= k) {
--cnt[x], --cnt[y];
bool flagx = 0, flagy = 0;
if (cnt[x] == k - 1) flagx = 1;
if (cnt[y] == k - 1) flagy = 1;
if (flagx) Solve(x);
if (flagy) Solve(y);
}
}
for (int i = m - 1; i >= 0; --i) printf("%d\n", Ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using namespace std;
const int MAXN = 202000;
const int MAXM = 202000;
const int MAXK = 202000;
int N, M, K;
vector<int> adj[MAXN];
pair<int, int> edges[MAXM];
int ans[MAXM];
bool inc[MAXN];
int deg[MAXM];
int tans;
void init() {
queue<int> qu;
for (int i = 1; i <= N; i++) {
if (deg[i] < K) {
tans--;
qu.push(i);
inc[i] = false;
break;
}
}
while (!qu.empty()) {
int n = qu.front();
qu.pop();
for (int i = 0; i < adj[n].size(); i++) {
if (!inc[adj[n][i]]) continue;
deg[adj[n][i]]--;
if (deg[adj[n][i]] < K) {
tans--;
qu.push(adj[n][i]);
inc[adj[n][i]] = false;
}
}
}
}
int main() {
scanf("%d%d%d", &N, &M, &K);
for (int i = 0; i <= N; i++) {
deg[i] = 0;
inc[i] = true;
}
for (int i = 0; i < M; i++) {
scanf("%d%d", &edges[i].first, &edges[i].second);
adj[edges[i].first].push_back(edges[i].second);
adj[edges[i].second].push_back(edges[i].first);
deg[edges[i].first]++;
deg[edges[i].second]++;
}
tans = N;
init();
for (int i = M - 1; i >= 0; i--) {
ans[i] = tans;
adj[edges[i].first].pop_back();
adj[edges[i].second].pop_back();
if (inc[edges[i].first] and inc[edges[i].second]) {
queue<int> qu;
if (deg[edges[i].first]-- == K) {
tans--;
inc[edges[i].first] = false;
qu.push(edges[i].first);
}
if (deg[edges[i].second]-- == K) {
tans--;
inc[edges[i].second] = false;
qu.push(edges[i].second);
}
while (!qu.empty()) {
int n = qu.front();
qu.pop();
for (int i = 0; i < adj[n].size(); i++) {
if (!inc[adj[n][i]]) continue;
deg[adj[n][i]]--;
if (deg[adj[n][i]] < K) {
tans--;
qu.push(adj[n][i]);
inc[adj[n][i]] = false;
}
}
}
}
}
for (int i = 0; i < M; i++) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long n, m, k, r[200005], redd[200005], t, xx[200005], yy[200005],
ans[200005];
vector<pair<long long, long long> > v[200005];
void red(long long x, long long time) {
if (time == 5) {
}
redd[x] = 1;
t++;
for (int i = 0; i < v[x].size(); i++) {
if (v[x][i].first > time) break;
r[v[x][i].second]--;
if (r[v[x][i].second] < k && redd[v[x][i].second] == 0) {
red(v[x][i].second, time);
}
}
}
int main() {
cin >> n >> m >> k;
for (int i = 1; i <= m; i++) {
cin >> xx[i] >> yy[i];
v[xx[i]].push_back(make_pair(i, yy[i]));
r[xx[i]]++;
v[yy[i]].push_back(make_pair(i, xx[i]));
r[yy[i]]++;
}
for (int i = 1; i <= n; i++) sort(v[i].begin(), v[i].end());
ans[m] = n;
for (int i = 1; i <= n; i++) {
if (r[i] < k) {
t = 0;
red(i, m);
ans[m] -= t;
}
}
for (int i = m; i >= 2; i--) {
for (int j = 1; j <= n; j++) {
}
if (redd[yy[i]] == 0) r[xx[i]]--;
t = 0;
if (r[xx[i]] < k && redd[xx[i]] == 0) {
red(xx[i], i);
ans[i - 1] = ans[i] - t;
continue;
}
if (redd[xx[i]] == 0) r[yy[i]]--;
if (r[yy[i]] < k && redd[yy[i]] == 0) {
if (xx[i] == 5) {
}
r[xx[i]]++;
red(yy[i], i);
}
ans[i - 1] = ans[i] - t;
}
for (int i = 1; i <= m; i++) {
cout << ans[i] << endl;
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.HashSet;
import java.util.Arrays;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.util.TreeSet;
import java.io.InputStream;
/**
* @author khokharnikunj8
*/
public class Main {
public static void main(String[] args) {
new Thread(null, new Runnable() {
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
}
void solve() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
ScanReader in = new ScanReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
ETrips solver = new ETrips();
solver.solve(1, in, out);
out.close();
}
static class ETrips {
int[][] G;
public void solve(int testNumber, ScanReader in, PrintWriter out) {
int n = in.scanInt();
int m = in.scanInt();
int k = in.scanInt();
TreeSet<pair> bstCustom = new TreeSet<>();
int from[] = new int[m];
int to[] = new int[m];
for (int i = 0; i < m; i++) {
from[i] = in.scanInt();
to[i] = in.scanInt();
}
int[] ans = new int[m];
G = CodeHash.packGraph(from, to, n);
int degree[] = new int[n + 1];
for (int i = 1; i <= n; i++) bstCustom.add(new pair(degree[i] = G[i].length, i));
boolean[] is_inside = new boolean[n + 1];
Arrays.fill(is_inside, true);
HashSet<Long> set = new HashSet<>();
while (bstCustom.size() > 0 && bstCustom.first().x < k) {
for (int i : G[bstCustom.first().y]) {
if (is_inside[i]) {
bstCustom.remove(new pair(degree[i], i));
degree[i]--;
degree[bstCustom.first().y]--;
bstCustom.add(new pair(degree[i], i));
}
}
is_inside[bstCustom.first().y] = false;
bstCustom.remove(bstCustom.first());
}
ans[m - 1] = bstCustom.size();
for (int i = m - 1; i >= 1; i--) {
if (is_inside[from[i]] && is_inside[to[i]]) {
bstCustom.remove(new pair(degree[from[i]], from[i]));
degree[from[i]]--;
bstCustom.add(new pair(degree[from[i]], from[i]));
bstCustom.remove(new pair(degree[to[i]], to[i]));
degree[to[i]]--;
bstCustom.add(new pair(degree[to[i]], to[i]));
set.add(1000000000l * from[i] + to[i]);
}
while (bstCustom.size() > 0 && bstCustom.first().x < k) {
for (int j : G[bstCustom.first().y]) {
if (is_inside[j]) {
if (set.contains(j * 1000000000l + bstCustom.first().y) || set.contains(bstCustom.first().y * 1000000000l + j))
continue;
bstCustom.remove(new pair(degree[j], j));
degree[j]--;
degree[bstCustom.first().y]--;
bstCustom.add(new pair(degree[j], j));
set.add(j * 1000000000l + bstCustom.first().y);
}
}
is_inside[bstCustom.first().y] = false;
bstCustom.remove(bstCustom.first());
}
ans[i - 1] = bstCustom.size();
}
for (int i = 0; i < m; i++) out.println(ans[i]);
}
class pair implements Comparable<pair> {
int x;
int y;
public int compareTo(pair o) {
if (this.x == o.x) return this.y - o.y;
return this.x - o.x;
}
public pair(int x, int y) {
this.x = x;
this.y = y;
}
}
}
static class CodeHash {
public static int[][] packGraph(int[] from, int[] to, int n) {
int[][] g = new int[n + 1][];
int p[] = new int[n + 1];
for (int i : from) p[i]++;
for (int i : to) p[i]++;
for (int i = 0; i <= n; i++) g[i] = new int[p[i]];
for (int i = 0; i < from.length; i++) {
g[from[i]][--p[from[i]]] = to[i];
g[to[i]][--p[to[i]]] = from[i];
}
return g;
}
}
static class ScanReader {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public ScanReader(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0) return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
}
return neg * integer;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int inf = 1e9 + 9;
const long long int MOD = 1e9 + 696969;
const long long INF = 1e18 + 3;
const int maxn = 200100;
int n, m, k;
int A[maxn], B[maxn];
int key[maxn], pref[maxn];
vector<pair<pair<int, int>, int> > e;
vector<pair<int, int> > wie;
int needed[maxn], odw[maxn];
vector<int> graf[maxn];
void solve(int x, int y, vector<pair<int, int> > &ver,
vector<pair<pair<int, int>, int> > &edges) {
if (x > y) return;
int mid = (x + y) / 2;
for (auto u : ver) {
graf[u.first].clear();
odw[u.first] = 0;
needed[u.first] = u.second;
}
for (auto u : edges)
if (u.second <= mid) {
graf[u.first.first].push_back(u.first.second);
graf[u.first.second].push_back(u.first.first);
needed[u.first.first]--;
needed[u.first.second]--;
}
queue<int> q;
for (auto u : ver)
if (needed[u.first] > 0) q.push(u.first), odw[u.first] = 1;
while (!q.empty()) {
int tmp = q.front();
q.pop();
for (auto u : graf[tmp]) {
needed[u]++;
if (needed[u] > 0 && !odw[u]) {
q.push(u);
odw[u] = 1;
}
}
}
for (auto u : ver) needed[u.first] = u.second;
for (auto u : ver) {
if (!odw[u.first]) {
key[u.first] = min(key[u.first], mid);
for (auto sec : graf[u.first]) needed[sec]--;
}
}
vector<pair<int, int> > v1, v2;
vector<pair<pair<int, int>, int> > first, second;
for (auto u : edges) {
if (!odw[u.first.first] && !odw[u.first.second] && u.second <= mid)
first.push_back(u);
else if ((odw[u.first.first] && odw[u.first.second]) || u.second > mid)
second.push_back(u);
}
for (auto u : ver) {
if (!odw[u.first])
v1.push_back(u);
else
v2.push_back(make_pair(u.first, needed[u.first]));
}
solve(x, mid - 1, v1, first);
solve(mid + 1, y, v2, second);
}
int main() {
ios_base::sync_with_stdio(false);
cin >> n >> m >> k;
for (int i = (1); i <= (n); ++i) key[i] = m + 1;
for (int i = (1); i <= (m); ++i) {
cin >> A[i] >> B[i];
e.push_back(make_pair(make_pair(A[i], B[i]), i));
}
for (int i = (1); i <= (n); ++i) wie.push_back(make_pair(i, k));
solve(1, m, wie, e);
for (int i = (1); i <= (n); ++i) pref[key[i]]++;
for (int i = (1); i <= (m); ++i) pref[i] += pref[i - 1];
for (int i = (1); i <= (m); ++i) cout << pref[i] << "\n";
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.Writer;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.Set;
import java.util.StringTokenizer;
public class Main {
static int deg[];
static Set<Integer> s;
static Set<Integer>[] graph;
static int n,k;
public static void main(String[] args) {
FastReader sc = new FastReader();
OutputWriter out = new OutputWriter(System.out);
n = sc.nextInt();
int m = sc.nextInt();
k = sc.nextInt();
graph = new Set[n];
for(int i=0;i<n;i++) {
graph[i] = new HashSet<>();
}
deg = new int[n];
ArrayList<Edge> edges = new ArrayList<Edge>();
for(int i=0;i<m;i++) {
int u = sc.nextInt()-1;
int v = sc.nextInt()-1;
edges.add(new Edge(u,v));
graph[u].add(v);
graph[v].add(u);
deg[u]++;
deg[v]++;
}
s = new HashSet<Integer>();
ArrayList<Vertex> ver = new ArrayList<>();
for(int i=0;i<n;i++) {
s.add(i);
ver.add(new Vertex(i,deg[i]));
}
ver.sort((v1,v2)->v1.d-v2.d);
int i=0;
for(i=0;i<n;i++) {
if(ver.get(i).d<k) {
int u = ver.get(i).u;
if(s.contains(u)) {
dfs(u);
}
else {
break;
}
}
}
ArrayList<Integer> ans = new ArrayList<>();
ans.add(s.size());
for(int j=m-1;j>0;j--) {
Edge e = edges.get(j);
graph[e.u].remove(e.v);
graph[e.v].remove(e.u);
if(s.contains(e.u) && s.contains(e.v)) {
dfs(e.u);
if(s.contains(e.v)) {
dfs(e.v);
}
}
ans.add(s.size());
}
for(int j=ans.size()-1;j>=0;j--) {
out.println(ans.get(j));
}
out.close();
}
static void dfs(int u) {
deg[u]--;
if(deg[u]>=k) {
return;
}
s.remove(u);
for(int v:(Set<Integer>) graph[u]) {
if(s.contains(v)) {
dfs(v);
}
}
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void println(int i) {
writer.println(i);
}
}
class Edge{
int u,v;
Edge(int i,int j){
u = i;
v = j;
}
}
class Vertex{
int u,d;
Vertex(int i,int j){
u = i;
d = j;
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
int n, m, k;
cin >> n >> m >> k;
pair<int, int> vv[m];
set<int> adj[n];
int deg[n];
for (int i = 0; i < n; i++) deg[i] = 0;
for (int i = 0; i < m; i++) {
int x, y;
cin >> x >> y;
x--;
y--;
vv[i] = make_pair(x, y);
deg[x]++;
deg[y]++;
adj[x].insert(y);
adj[y].insert(x);
}
int ans[m], good = n;
bool done[n];
for (int i = 0; i < n; i++) done[i] = 0;
set<pair<int, int> > st;
priority_queue<pair<int, int> > pq;
for (int i = 0; i < n; i++)
if (deg[i] >= k)
pq.push(make_pair(-deg[i], i));
else {
done[i] = true;
good--;
for (set<int>::iterator it = adj[i].begin(); it != adj[i].end(); it++) {
deg[*it]--;
adj[*it].erase(i);
pq.push(make_pair(-deg[*it], *it));
}
deg[i] = 0;
adj[i].clear();
}
for (int i = m - 1; i >= 0; i--) {
ans[i] = good;
if (adj[vv[i].first].find(vv[i].second) != adj[vv[i].first].end()) {
deg[vv[i].first]--;
pq.push(make_pair(-deg[vv[i].first], vv[i].first));
deg[vv[i].second]--;
pq.push(make_pair(-deg[vv[i].second], vv[i].second));
adj[vv[i].first].erase(vv[i].second);
adj[vv[i].second].erase(vv[i].first);
}
while (!pq.empty()) {
pair<int, int> p = pq.top();
pq.pop();
if (-p.first >= k) {
pq.push(p);
break;
}
if (done[p.second]) continue;
done[p.second] = true;
good--;
int ix = p.second;
for (set<int>::iterator it = adj[ix].begin(); it != adj[ix].end(); it++) {
deg[*it]--;
adj[*it].erase(ix);
pq.push(make_pair(-deg[*it], *it));
}
deg[ix] = 0;
adj[ix].clear();
}
}
for (int i = 0; i < m; i++) cout << ans[i] << endl;
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int mod = 1e9 + 7;
vector<vector<pair<int, int> > > g;
set<pair<int, int> > good;
vector<char> very_good;
vector<int> d;
int k;
void check(long long int i) {
while (!good.empty() && good.begin()->first < k) {
int v = good.begin()->second;
for (auto &y : g[v]) {
int x = y.first;
if (y.second >= i) continue;
if (very_good[x]) {
good.erase(make_pair(d[x], x));
d[x]--;
good.insert(make_pair(d[x], x));
}
}
good.erase(make_pair(d[v], v));
very_good[v] = false;
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int n, m;
cin >> n >> m >> k;
g.resize(n);
d.resize(n);
vector<pair<int, int> > f(m);
for (int i = 0; i < m; ++i) {
cin >> f[i].first >> f[i].second;
f[i].first--, f[i].second--;
g[f[i].first].push_back(make_pair(f[i].second, i));
g[f[i].second].push_back(make_pair(f[i].first, i));
d[f[i].first]++;
d[f[i].second]++;
}
for (int i = 0; i < n; ++i) {
good.insert(make_pair(d[i], i));
}
very_good.assign(n, true);
check(1e18);
vector<int> ans(m);
for (int i = m - 1; i >= 0; --i) {
ans[i] = good.size();
int v = f[i].first, u = f[i].second;
if (very_good[v] && very_good[u]) {
good.erase(make_pair(d[v], v));
d[v]--;
good.insert(make_pair(d[v], v));
good.erase(make_pair(d[u], u));
d[u]--;
good.insert(make_pair(d[u], u));
check(i);
}
cout << good.size() << " ";
}
for (int i = 0; i < m; ++i) cout << ans[i] << '\n';
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.Arrays;
import java.util.TreeSet;
import java.util.HashSet;
import java.util.StringTokenizer;
import java.io.PrintWriter;
import java.io.OutputStream;
import java.util.Iterator;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.FileNotFoundException;
import java.io.Writer;
import java.io.BufferedReader;
import java.util.Comparator;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Asgar Javadov
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskE solver = new TaskE();
solver.solve(1, in, out);
out.close();
}
static class TaskE {
int k;
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
int m = in.nextInt();
k = in.nextInt();
Graph graph = new Graph(n);
IntPair[] degree = new IntPair[n];
for (int i = 0; i < n; i++) {
degree[i] = IntPair.newPair(0, i);
}
TreeSet<IntPair> set = new TreeSet<>(Comparator.reverseOrder());
for (int i = 0; i < n; i++) {
set.add(degree[i]);
}
IntPair temp = IntPair.newPair(k, -1);
long threshold = (long) k * (k + 1) / 2;
for (int i = 1; i <= m; ++i) {
int u = in.nextInt() - 1;
int v = in.nextInt() - 1;
graph.addEdge(u, v);
degree[u].first++;
degree[v].first++;
set.remove(degree[u]);
set.remove(degree[v]);
set.add(degree[u]);
set.add(degree[v]);
if (i < threshold) {
out.println(0);
continue;
}
TreeSet<IntPair> subSet = (TreeSet<IntPair>) set.headSet(temp);
if (subSet.size() < k + 1) {
out.println(0);
continue;
}
HashSet<Integer> potential = new HashSet<>();
for (IntPair node : subSet) {
int cnt = 0;
for (int e : graph.getEdgesFrom(node.second)) if (degree[e].first >= k) cnt++;
if (cnt >= k) potential.add(node.second);
}
int answer = 0;
for (int node : potential) {
int cnt = 0;
for (int e : graph.getEdgesFrom(node)) if (potential.contains(e)) cnt++;
if (cnt >= k) answer++;
}
out.println(answer);
}
}
}
static class InputReader extends BufferedReader {
StringTokenizer tokenizer;
public InputReader(InputStream inputStream) {
super(new InputStreamReader(inputStream), 32768);
}
public InputReader(String filename) {
super(new InputStreamReader(Thread.currentThread().getContextClassLoader().getResourceAsStream(filename)));
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(readLine());
} catch (IOException e) {
throw new RuntimeException();
}
}
return tokenizer.nextToken();
}
public Integer nextInt() {
return Integer.valueOf(next());
}
}
static class IntPair implements Comparable<IntPair> {
public int first;
public int second;
public IntPair(int first, int second) {
this.first = first;
this.second = second;
}
public int compareTo(IntPair o) {
if (first != o.first)
return Integer.compare(first, o.first);
return Integer.compare(second, o.second);
}
public static IntPair newPair(int first, int second) {
return new IntPair(first, second);
}
public String toString() {
return "" + first + " " + second;
// return String.format("{" + first + ", " + second + '}');
}
public boolean equals(Object o) {
if (this == o) return true;
if (!(o instanceof IntPair)) return false;
IntPair intPair = (IntPair) o;
return first == intPair.first &&
second == intPair.second;
}
public int hashCode() {
return (31 * first + second);
}
}
static class Graph {
protected int V;
protected boolean directed = false;
private IntList[] edges;
public Graph() {
}
public Graph(int v) {
this(v, false);
}
@SuppressWarnings("unchecked")
public Graph(int v, boolean directed) {
this.V = v;
this.directed = directed;
this.edges = new IntList[V];
for (int i = 0; i < V; i++) {
edges[i] = new IntList(4);
}
}
public void addEdge(int u, int v) {
// if (edges[u] == null) edges[u] = new IntList(3);
edges[u].add(v);
if (!directed) {
// if (edges[v] == null) edges[v] = new IntList(3);
edges[v].add(u);
}
}
public IntList getEdgesFrom(int i) {
if (i < 0 || i >= V)
throw new IllegalArgumentException("Argument must be in [0, V).");
return this.edges[i];
}
}
static class IntList implements Iterable<Integer> {
public static final int INITIAL_CAPACITY = 4;
private int size;
private int[] array;
public IntList() {
this(INITIAL_CAPACITY);
}
public IntList(int initialCapacity) {
this.array = new int[initialCapacity];
this.size = 0;
}
public IntList(int[] array) {
this.array = Arrays.copyOf(array, array.length);
this.size = this.array.length;
}
public void add(int value) {
if (size == array.length) {
ensureCapacity();
}
this.array[this.size++] = value;
}
private void ensureCapacity() {
if (size < array.length)
return;
this.array = Arrays.copyOf(array, array.length << 1);
}
public IntList clone() {
IntList cloned = new IntList(Math.max(1, this.size));
for (int i = 0; i < size; ++i)
cloned.add(array[i]);
return cloned;
}
public Iterator<Integer> iterator() {
return new IntListIterator();
}
private class IntListIterator implements Iterator<Integer> {
private int current;
public IntListIterator() {
this.current = 0;
}
public boolean hasNext() {
return this.current < size;
}
public Integer next() {
return array[current++];
}
}
}
static class OutputWriter extends PrintWriter {
public OutputWriter(OutputStream outputStream) {
super(outputStream);
}
public OutputWriter(Writer writer) {
super(writer);
}
public OutputWriter(String filename) throws FileNotFoundException {
super(filename);
}
public void close() {
super.close();
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int a[200008];
int b[200008];
int c[200008];
vector<vector<int>> adj(1000008);
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
long long int n, m;
cin >> n;
for (int i = 1; i <= n - 1; ++i) {
int x, y;
cin >> x >> y;
adj[x].push_back(y);
adj[y].push_back(x);
}
for (int i = 1; i <= n; ++i) {
cin >> b[i];
}
vector<bool> check(n + 1, false);
queue<int> que;
que.push(b[1]);
check[b[1]] = true;
c[b[1]] = 1;
int index = 2;
int Check = true;
while (!que.empty() && Check) {
int val = que.front();
que.pop();
int counter = 0;
for (int i = 0; i < adj[val].size(); ++i) {
if (!check[adj[val][i]]) {
check[adj[val][i]] = true;
c[adj[val][i]] = 1;
que.push(adj[val][i]);
++counter;
}
}
for (int i = 0; i < counter; ++i) {
if (c[b[index + i]] == 0) {
Check = false;
break;
}
}
index += counter;
}
if (Check) {
cout << "Yes" << endl;
} else {
cout << "No" << endl;
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.HashSet;
import java.util.Arrays;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.util.TreeSet;
import java.io.InputStream;
/**
* @author khokharnikunj8
*/
public class Main {
public static void main(String[] args) {
new Thread(null, new Runnable() {
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
}
void solve() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
ScanReader in = new ScanReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
ETrips solver = new ETrips();
solver.solve(1, in, out);
out.close();
}
static class ETrips {
int[][] G;
public void solve(int testNumber, ScanReader in, PrintWriter out) {
int n = in.scanInt();
int m = in.scanInt();
int k = in.scanInt();
TreeSet<pair> bstCustom = new TreeSet<>();
int from[] = new int[m];
int to[] = new int[m];
for (int i = 0; i < m; i++) {
from[i] = in.scanInt();
to[i] = in.scanInt();
}
int[] ans = new int[m];
G = CodeHash.packGraph(from, to, n);
int degree[] = new int[n + 1];
for (int i = 1; i <= n; i++) bstCustom.add(new pair(degree[i] = G[i].length, i));
boolean[] is_inside = new boolean[n + 1];
Arrays.fill(is_inside, true);
HashSet<Long> set = new HashSet<>();
while (bstCustom.size() > 0 && bstCustom.first().x < k) {
pair tt = bstCustom.first();
for (int i : G[tt.y]) {
if (is_inside[i]) {
if (set.contains(i * 1000000000l + bstCustom.first().y) || set.contains(bstCustom.first().y * 1000000000l + i))
continue;
bstCustom.remove(new pair(degree[i], i));
degree[i]--;
degree[tt.y]--;
bstCustom.add(new pair(degree[i], i));
}
}
is_inside[tt.y] = false;
bstCustom.remove(tt);
}
ans[m - 1] = bstCustom.size();
for (int i = m - 1; i >= 1; i--) {
if (is_inside[from[i]] && is_inside[to[i]]) {
bstCustom.remove(new pair(degree[from[i]], from[i]));
degree[from[i]]--;
bstCustom.add(new pair(degree[from[i]], from[i]));
bstCustom.remove(new pair(degree[to[i]], to[i]));
degree[to[i]]--;
bstCustom.add(new pair(degree[to[i]], to[i]));
set.add(1000000000l * from[i] + to[i]);
}
while (bstCustom.size() > 0 && bstCustom.first().x < k) {
pair tt = bstCustom.first();
for (int j : G[tt.y]) {
if (is_inside[j]) {
if (set.contains(j * 1000000000l + bstCustom.first().y) || set.contains(bstCustom.first().y * 1000000000l + j))
continue;
bstCustom.remove(new pair(degree[j], j));
degree[j]--;
degree[tt.y]--;
bstCustom.add(new pair(degree[j], j));
set.add(j * 1000000000l + bstCustom.first().y);
}
}
is_inside[tt.y] = false;
bstCustom.remove(tt);
}
ans[i - 1] = bstCustom.size();
}
for (int i = 0; i < m; i++) out.println(ans[i]);
}
class pair implements Comparable<pair> {
int x;
int y;
public int compareTo(pair o) {
if (this.x == o.x) return this.y - o.y;
return this.x - o.x;
}
public pair(int x, int y) {
this.x = x;
this.y = y;
}
}
}
static class CodeHash {
public static int[][] packGraph(int[] from, int[] to, int n) {
int[][] g = new int[n + 1][];
int p[] = new int[n + 1];
for (int i : from) p[i]++;
for (int i : to) p[i]++;
for (int i = 0; i <= n; i++) g[i] = new int[p[i]];
for (int i = 0; i < from.length; i++) {
g[from[i]][--p[from[i]]] = to[i];
g[to[i]][--p[to[i]]] = from[i];
}
return g;
}
}
static class ScanReader {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public ScanReader(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0) return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
}
return neg * integer;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 3e5;
int n, m, k, u[N], v[N];
int deg[N], ans[N];
vector<int> G[N], id[N];
bool ok[N];
int main() {
scanf("%d %d %d", &n, &m, &k);
for (int i = 1; i <= m; i++) {
scanf("%d %d", &u[i], &v[i]);
G[u[i]].push_back(v[i]);
G[v[i]].push_back(u[i]);
deg[u[i]]++;
deg[v[i]]++;
id[u[i]].push_back(i);
id[v[i]].push_back(i);
}
for (int i = 1; i <= n; i++) {
ok[i] = 1;
}
int c = 0;
queue<int> que;
for (int i = 1; i <= n; i++) {
if (deg[i] < k) {
ok[i] = 0;
que.push(i);
c++;
}
}
while (!que.empty()) {
int u = que.front();
que.pop();
for (int i = 0; i < G[u].size(); i++) {
int v = G[u][i];
deg[v]--;
if (ok[v] && deg[v] < k) {
ok[v] = 0;
que.push(v);
c++;
}
}
}
ans[m] = n - c;
for (int i = m - 1; i > 0; i--) {
c = 0;
int x = u[i + 1], y = v[i + 1];
if (ok[x] && ok[y]) {
deg[x]--;
deg[y]--;
if (deg[x] < k) {
ok[x] = 0;
c++;
que.push(x);
}
if (deg[y] < k) {
ok[y] = 0;
c++;
que.push(y);
}
}
while (!que.empty()) {
int z = que.front();
que.pop();
for (int j = 0; j < G[z].size(); j++) {
int w = G[z][j];
if (id[z][j] >= i) continue;
deg[w]--;
if (ok[w] && deg[w] < k) {
ok[w] = 0;
que.push(w);
c++;
}
}
}
ans[i] = ans[i + 1] - c;
}
for (int i = 1; i <= m; i++) {
printf("%d\n", ans[i]);
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long int n, m, k;
cin >> n >> m >> k;
vector<pair<long long int, long long int> > edges(m);
set<long long int> adj[n];
for (int i = 0; i < m; ++i) {
long long int u, v;
cin >> u >> v;
u--;
v--;
adj[u].insert(v);
adj[v].insert(u);
edges[i].first = u;
edges[i].second = v;
}
set<pair<long long int, long long int> > myset;
for (int i = 0; i < n; ++i) {
myset.insert({adj[i].size(), i});
}
vector<long long int> ans(m, 0);
for (int i = m - 1; i > 0; --i) {
while (!myset.empty() && myset.begin()->first < k) {
long long int ind = myset.begin()->second;
myset.erase(myset.begin());
for (auto v : adj[ind]) {
myset.erase({adj[v].size(), v});
adj[v].erase(ind);
myset.insert({adj[v].size(), v});
}
}
ans[i] = myset.size();
long long int u = edges[i].first, v = edges[i].second;
set<pair<long long int, long long int> >::iterator it =
myset.find({adj[u].size(), u});
if (it != myset.end()) {
myset.erase(it);
adj[u].erase(v);
myset.insert({adj[u].size(), u});
}
it = myset.find({adj[v].size(), v});
if (it != myset.end()) {
myset.erase(it);
adj[v].erase(u);
myset.insert({adj[v].size(), v});
}
}
for (int i = 0; i < m; ++i) {
cout << ans[i] << "\n";
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | //package superior;
import java.util.*;
public class Tester {
static TreeSet<Integer> tr[];
static int k,n,m,cnt=0;
static Queue<Integer> q;
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner s=new Scanner(System.in);
n=s.nextInt();
m=s.nextInt();
k=s.nextInt();
Edge e[]=new Edge[m+1];
tr=new TreeSet[n+1];
for(int j=1;j<=n;j++)
tr[j]=new TreeSet<Integer>();
int x,y;
for(int j=1;j<=m;j++)
{
x=s.nextInt();
y=s.nextInt();
e[j]=new Edge(x,y);
tr[x].add(y);
tr[y].add(x);
}
int ans=0;
for(int j=1;j<=n;j++)
{
if(tr[j].size()<k)
reduce(j);
}
for(int j=1;j<=n;j++)
{
if(tr[j].size()>=k)
ans++;
}
//System.out.println(ans);
int fri[]=new int[m+1];
int ind;
fri[m]=ans;
ind=m-1;
for(int j=m;j>1;j--)
{
x=e[j].x;
y=e[j].y;
cnt=0;
if(tr[x].contains(y) && tr[y].contains(x))
{
//System.out.println("hiii");
tr[x].remove(y);
tr[y].remove(x);
if(tr[x].size()<k)
{
reduce(x);
ans-=cnt;
if(ans<=0)
break;
fri[ind--]=ans;
//System.out.println(ans+" "+cnt);
continue;
}
if(tr[y].size()<k)
{
reduce(y);
ans-=cnt;
if(ans<=0)
break;
fri[ind--]=ans;
//System.out.println(ans+" "+cnt);
continue;
}
fri[ind--]=ans;
}
else
{
//System.out.println("hello");
fri[ind--]=ans;
}
}
for(int j=1;j<=m;j++)
System.out.println(fri[j]);
}
public static void reduce(int x)
{
cnt++;int get;
while(tr[x].size()>0)
{
get=tr[x].first();
tr[get].remove(x);
tr[x].remove(get);
if(tr[get].size()<k)
reduce(get);
}
}
}
class Edge
{
int x;
int y;
public Edge(int x,int y)
{
this.x=x;
this.y=y;
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, m, k, dgg[500005];
set<int> gg[500005];
int uu[500005], vv[500005];
int ans[500005];
int dlt[500005];
int crnt;
void gna(int v) {
dlt[v] = 1;
crnt--;
for (int to : gg[v]) {
gg[to].erase(v);
}
for (int to : gg[v])
if (--dgg[to] <= k - 1) {
gna(to);
}
dgg[v] = 0;
gg[v].clear();
}
int main() {
cin >> n >> m >> k;
for (int i = 0; i < m; i++) {
int u, v;
cin >> u >> v;
u--;
v--;
gg[u].insert(v);
gg[v].insert(u);
dgg[u]++;
dgg[v]++;
uu[i] = u;
vv[i] = v;
}
crnt = n;
for (int i = 0; i < n; i++)
if (dlt[i] == 0 && dgg[i] <= k - 1) {
gna(i);
}
for (int i = m - 1; i >= 0; i--) {
ans[i] = crnt;
dgg[uu[i]]--;
dgg[vv[i]]--;
gg[uu[i]].erase(vv[i]);
gg[vv[i]].erase(uu[i]);
if (dlt[uu[i]] == 0 && dgg[uu[i]] < k) gna(uu[i]);
if (dlt[vv[i]] == 0 && dgg[vv[i]] < k) gna(vv[i]);
}
for (int i = 0; i < m; i++)
if (ans[i] <= 0)
cout << 0 << " ";
else
cout << ans[i] << endl;
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma GCC optimize("unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
using namespace std;
typedef long long ll;
typedef double lf;
typedef pair<int,int> ii;
#define REP(i,n) for(int i=0;i<n;i++)
#define REP1(i,n) for(ll i=1;i<=n;i++)
#define RST(i,n) memset(i,n,sizeof i)
#define SZ(a) (int)a.size()
#define ALL(a) a.begin(),a.end()
#define X first
#define Y second
#define mkp make_pair
#define pb push_back
#define eb emplace_back
#define pob pop_back
#ifdef cold66
#define debug(...) do{\
fprintf(stderr,"%s - %d (%s) = ",__PRETTY_FUNCTION__,__LINE__,#__VA_ARGS__);\
_do(__VA_ARGS__);\
}while(0)
template<typename T>void _do(T &&_x){cerr<<_x<<endl;}
template<typename T,typename ...S> void _do(T &&_x,S &&..._t){cerr<<_x<<" ,";_do(_t...);}
template<typename _a,typename _b> ostream& operator << (ostream &_s,const pair<_a,_b> &_p){return _s<<"("<<_p.X<<","<<_p.Y<<")";}
template<typename It> ostream& _OUTC(ostream &_s,It _ita,It _itb)
{
_s<<"{";
for(It _it=_ita;_it!=_itb;_it++)
{
_s<<(_it==_ita?"":",")<<*_it;
}
_s<<"}";
return _s;
}
template<typename _a> ostream &operator << (ostream &_s,vector<_a> &_c){return _OUTC(_s,ALL(_c));}
template<typename _a> ostream &operator << (ostream &_s,set<_a> &_c){return _OUTC(_s,ALL(_c));}
template<typename _a,typename _b> ostream &operator << (ostream &_s,map<_a,_b> &_c){return _OUTC(_s,ALL(_c));}
template<typename _t> void pary(_t _a,_t _b){_OUTC(cerr,_a,_b);cerr<<endl;}
#define IOS()
#else
#define debug(...)
#define pary(...)
#define endl '\n'
#define IOS() ios_base::sync_with_stdio(0);cin.tie(0);
#endif // cold66
//}
template<class T> inline bool chkmax(T &a, const T &b) { return b > a ? a = b, true : false; }
template<class T> inline bool chkmin(T &a, const T &b) { return b < a ? a = b, true : false; }
template<class T> using MaxHeap = priority_queue<T>;
template<class T> using MinHeap = priority_queue<T, vector<T>, greater<T>>;
const ll MAXn=2e5+5,MAXlg=__lg(MAXn)+2;
const ll MOD=1000000007;
const ll INF=0x3f3f3f3f;
int n,m,k;
int deg[MAXn],vis[MAXn],t;
bool ok[MAXn];
vector<int> e[MAXn];
ii dfs(int x){
if( vis[x]==t ) return mkp(0,-INF);
int cnt=0,ct=1;
vis[x] = t;
for( auto i:e[x] ){
if( deg[i]<k ) continue;
if( vis[i]==t ) cnt++;
else{
ii tmp = dfs(i);
cnt+=tmp.X;
if( tmp.X ) ct+=tmp.Y;
ok[x]|=ok[i];
}
}
if( cnt>=k ){
ok[x] = true;
debug(ct);
if( ct>0 ) return mkp(1,ct);
else return mkp(0,-INF);
}
else return mkp(0,-INF);
}
int main(){
IOS();
cin>>n>>m>>k;
int ans=0;
REP(T,m){
int a,b;
cin>>a>>b;
a--,b--;
if( ans==n ){
cout<<ans<<endl;
continue;
}
deg[a]++,deg[b]++;
e[a].eb(b);
e[b].eb(a);
if( ok[a]|ok[b] ){
if( ok[a]&ok[b] );
else{
if( !ok[a] ) swap(a,b);
if( deg[b]>=k ) ok[b] = true,ans++;
}
}
else{
t++;
ii ta = dfs(a);
ii tb = dfs(b);
debug(ta,tb);
if( ta.X ) ans+=ta.Y;
if( tb.X ) ans+=tb.Y;
}
cout<<ans<<endl;
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.HashSet;
import java.util.Arrays;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.util.TreeSet;
import java.io.InputStream;
/**
* @author khokharnikunj8
*/
public class Main {
public static void main(String[] args) {
new Thread(null, new Runnable() {
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
}
void solve() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
ScanReader in = new ScanReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
ETrips solver = new ETrips();
solver.solve(1, in, out);
out.close();
}
static class ETrips {
int[][] G;
public void solve(int testNumber, ScanReader in, PrintWriter out) {
int n = in.scanInt();
int m = in.scanInt();
int k = in.scanInt();
TreeSet<pair> bstCustom = new TreeSet<>();
int from[] = new int[m];
int to[] = new int[m];
for (int i = 0; i < m; i++) {
from[i] = in.scanInt();
to[i] = in.scanInt();
}
int[] ans = new int[m];
G = CodeHash.packGraph(from, to, n);
int degree[] = new int[n + 1];
for (int i = 1; i <= n; i++) bstCustom.add(new pair(degree[i] = G[i].length, i));
boolean[] is_inside = new boolean[n + 1];
Arrays.fill(is_inside, true);
HashSet<Long> set = new HashSet<>();
while (bstCustom.size() > 0 && bstCustom.first().x < k) {
for (int i : G[bstCustom.first().y]) {
if (is_inside[i]) {
if (set.contains(i * 1000000l + bstCustom.first().y) || set.contains(bstCustom.first().y * 1000000l + i))
continue;
bstCustom.remove(new pair(degree[i], i));
degree[i]--;
degree[bstCustom.first().y]--;
bstCustom.add(new pair(degree[i], i));
set.add(i * 1000000l + bstCustom.first().y);
}
}
is_inside[bstCustom.first().y] = false;
bstCustom.remove(bstCustom.first());
}
ans[m - 1] = bstCustom.size();
for (int i = m - 1; i >= 1; i--) {
if (is_inside[from[i]] && is_inside[to[i]]) {
if (degree[from[i]] - 1 < k) {
bstCustom.remove(new pair(degree[from[i]], from[i]));
for (int j : G[from[i]]) {
if (is_inside[j]) {
if (set.contains(j * 1000000l + from[i]) || set.contains(from[i] * 1000000l + j))
continue;
bstCustom.remove(new pair(degree[j], j));
degree[j]--;
degree[from[i]]--;
bstCustom.add(new pair(degree[j], j));
set.add(j * 1000000l + from[i]);
}
}
is_inside[from[i]] = false;
} else if (degree[to[i]] - 1 < k) {
bstCustom.remove(new pair(degree[to[i]], to[i]));
for (int j : G[to[i]]) {
if (is_inside[j]) {
if (set.contains(j * 1000000l + to[i]) || set.contains(to[i] * 1000000l + j)) continue;
bstCustom.remove(new pair(degree[j], j));
degree[j]--;
degree[to[i]]--;
bstCustom.add(new pair(degree[j], j));
set.add(j * 1000000l + to[i]);
}
}
is_inside[to[i]] = false;
} else {
bstCustom.remove(new pair(degree[from[i]], from[i]));
degree[from[i]]--;
bstCustom.add(new pair(degree[from[i]], from[i]));
bstCustom.remove(new pair(degree[to[i]], to[i]));
degree[to[i]]--;
bstCustom.add(new pair(degree[to[i]], to[i]));
set.add(1000000l * from[i] + to[i]);
}
}
while (bstCustom.size() > 0 && bstCustom.first().x < k) {
for (int j : G[bstCustom.first().y]) {
if (is_inside[j]) {
if (set.contains(j * 1000000l + bstCustom.first().y) || set.contains(bstCustom.first().y * 1000000l + j))
continue;
bstCustom.remove(new pair(degree[j], j));
degree[j]--;
bstCustom.add(new pair(degree[j], j));
}
}
is_inside[bstCustom.first().y] = false;
bstCustom.remove(bstCustom.first());
}
ans[i - 1] = bstCustom.size();
}
for (int i = 0; i < m; i++) out.println(ans[i]);
}
class pair implements Comparable<pair> {
int x;
int y;
public int compareTo(pair o) {
if (this.x == o.x) return this.y - o.y;
return this.x - o.x;
}
public pair(int x, int y) {
this.x = x;
this.y = y;
}
}
}
static class CodeHash {
public static int[][] packGraph(int[] from, int[] to, int n) {
int[][] g = new int[n + 1][];
int p[] = new int[n + 1];
for (int i : from) p[i]++;
for (int i : to) p[i]++;
for (int i = 0; i <= n; i++) g[i] = new int[p[i]];
for (int i = 0; i < from.length; i++) {
g[from[i]][--p[from[i]]] = to[i];
g[to[i]][--p[to[i]]] = from[i];
}
return g;
}
}
static class ScanReader {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public ScanReader(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0) return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
}
return neg * integer;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int K;
vector<int> F, KF, adj[200000];
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
((void)0);
((void)0);
int N, M, cnt = 0;
cin >> N >> M >> K;
F.resize(N);
KF.resize(N);
for (int i = 0; i < M; i++) {
int a, b;
cin >> a >> b;
adj[--a].push_back(--b);
adj[b].push_back(a);
if (++F[a] == K) {
for (auto n : adj[a]) {
cnt += (++KF[n] == K);
}
}
if (++F[b] == K) {
for (auto n : adj[b]) {
cnt += (++KF[n] == K);
}
}
cout << cnt << '\n';
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 7;
const long long mod = 998244353;
const int INF = 1e9;
int n, m, K, sum;
int u[maxn], v[maxn];
int du[maxn];
vector<int> edge[maxn];
map<int, bool> vis[maxn];
bool is_del[maxn];
void del(int x) {
if (is_del[x]) return;
is_del[x] = 1;
du[x] = 0;
sum--;
for (int i = 0; i < edge[x].size(); i++) {
if (is_del[edge[x][i]]) continue;
if (vis[x][edge[x][i]]) {
du[edge[x][i]]--;
vis[x][edge[x][i]] = vis[edge[x][i]][x] = 0;
if (du[edge[x][i]] < K) del(edge[x][i]);
}
}
}
int ans[maxn];
int main() {
int i, j, x, y;
scanf("%d%d%d", &n, &m, &K);
for (i = 1; i <= m; i++) {
scanf("%d%d", &u[i], &v[i]);
edge[u[i]].push_back(v[i]);
edge[v[i]].push_back(u[i]);
vis[u[i]][v[i]] = vis[v[i]][u[i]] = 1;
du[v[i]]++;
du[u[i]]++;
}
sum = n;
for (i = 1; i <= n; i++) {
if (du[i] < K) del(i);
}
for (i = m; i >= 1; i--) {
ans[i] = sum;
if (vis[u[i]][v[i]]) {
du[u[i]]--;
du[v[i]]--;
vis[u[i]][v[i]] = vis[v[i]][u[i]] = 0;
if (du[u[i]] < K) del(u[i]);
if (du[v[i]] < K) del(v[i]);
}
}
for (i = 1; i <= m; i++) {
printf("%d\n", ans[i]);
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.*;
import java.util.*;
public class Main {
static int deg[];
static Set<Integer> s;
static Set[] graph;
static int n,k;
public static void main(String[] args) {
FastReader sc = new FastReader();
OutputWriter out = new OutputWriter(System.out);
n = sc.nextInt();
int m = sc.nextInt();
k = sc.nextInt();
graph = new Set[n];
for(int i=0;i<n;i++) {
graph[i] = new HashSet();
}
deg = new int[n];
List<Edge> edges = new ArrayList<>();
for(int i=0;i<m;i++) {
int u = sc.nextInt()-1;
int v = sc.nextInt()-1;
edges.add(new Edge(u,v));
graph[u].add(v);
graph[v].add(u);
deg[u]++;
deg[v]++;
}
s = new HashSet<>();
List<Vertex> ver = new ArrayList<>();
for(int i=0;i<n;i++) {
s.add(i);
ver.add(new Vertex(i,deg[i]));
}
ver.sort((v1,v2)->v1.d-v2.d);
int i=0;
for(i=0;i<n;i++) {
if(ver.get(i).d<k) {
int u = ver.get(i).u;
if(s.contains(u)) {
dfs(u);
}
else {
break;
}
}
}
List<Integer> ans = new ArrayList<>();
ans.add(s.size());
for(int j=m-1;j>0;j--) {
Edge e = edges.get(j);
if(s.contains(e.u) && s.contains(e.v)) {
graph[e.u].remove(e.v);
graph[e.v].remove(e.u);
dfs(e.u);
if(s.contains(e.v)) {
dfs(e.v);
}
}
ans.add(s.size());
}
for(int j=ans.size()-1;j>=0;j--) {
out.println(ans.get(j));
}
out.close();
}
static void dfs(int u) {
deg[u]--;
if(deg[u]>=k) {
return;
}
s.remove(u);
for(int v:(Set<Integer>) graph[u]) {
if(s.contains(v)) {
dfs(v);
}
}
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void println(int i) {
writer.println(i);
}
}
class Edge{
int u,v;
Edge(int i,int j){
u = i;
v = j;
}
}
class Vertex{
int u,d;
Vertex(int i,int j){
u = i;
d = j;
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MOD = 1e9 + 7;
const long long N = 3e5 + 10;
long long x[N], y[N], deg[N];
vector<long long> vp[N];
long long removed[N];
int32_t main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
long long n, m, k;
cin >> n >> m >> k;
for (long long i = 1; i <= m; i++) {
cin >> x[i] >> y[i];
vp[x[i]].push_back(y[i]);
vp[y[i]].push_back(x[i]);
deg[x[i]]++;
deg[y[i]]++;
}
set<pair<long long, long long> > s;
for (long long i = 1; i <= n; i++) {
s.insert({deg[i], i});
}
long long ans = n;
set<pair<long long, long long> > ae;
vector<long long> v;
for (long long i = m; i >= 1; i--) {
while (s.size() > 0) {
auto it = *s.begin();
s.erase(it);
if (it.first >= k) break;
removed[it.second] = 1;
for (auto it1 : vp[it.second]) {
if (ae.find({it1, it.second}) == ae.end()) {
ae.insert({it1, it.second});
ae.insert({it.second, it1});
if (!removed[it1]) {
s.erase({deg[it1], it1});
deg[it1]--;
if (deg[it1] > 0) s.insert({deg[it1], it1});
}
}
}
ans--;
}
if (ae.find({x[i], y[i]}) == ae.end()) {
ae.insert({x[i], y[i]});
ae.insert({y[i], x[i]});
s.erase({deg[x[i]], x[i]});
s.erase({deg[y[i]], y[i]});
if (!removed[x[i]]) {
deg[x[i]]--;
if (deg[x[i]] > 0) {
s.insert({deg[x[i]], x[i]});
}
}
if (!removed[y[i]]) {
deg[y[i]]--;
if (deg[y[i]] > 0) {
s.insert({deg[y[i]], y[i]});
}
}
}
v.push_back(ans);
}
reverse(v.begin(), v.end());
for (auto it : v) {
if (it == 1)
cout << 0 << "\n";
else
cout << it << "\n";
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T1, typename T2>
istream& operator>>(istream& in, pair<T1, T2>& p) {
in >> p.first >> p.second;
return in;
}
template <typename T1, typename T2>
ostream& operator<<(ostream& out, pair<T1, T2>& p) {
out << p.first << " " << p.second;
return out;
}
template <typename T>
ostream& operator<<(ostream& out, vector<T>& v) {
for (auto& i : v) {
out << i << "\n";
}
return out;
}
vector<vector<int> > graph;
vector<int> edges;
vector<pair<int, int> > days;
vector<bool> vis;
vector<bool> correct;
int previous = 0;
bool DFS(int v, int k) {
if ((int)(graph[v].size()) < k) {
correct[v] = false;
return false;
}
int works = 0;
for (auto& u : graph[v]) {
if (!vis[u]) {
vis[u] = true;
correct[u] = true;
if (DFS(u, k)) {
++works;
}
} else {
if (correct[u]) {
++works;
}
}
}
if (works < k) {
correct[v] = false;
}
return correct[v];
}
void ERASE(int v, int x, int k) {
if ((int)(graph[v].size()) > k) {
return;
}
correct[v] = false;
--previous;
for (auto& u : graph[v]) {
if (correct[u] && u != x) {
--edges[u];
ERASE(u, -1, k);
}
}
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
;
int n, m, k;
cin >> n >> m >> k;
graph.resize(n);
edges.resize(n);
days.resize(m);
vis.resize(n, 0);
correct.resize(n, 0);
for (int i = (0); i < (m); ++i) {
int a, b;
cin >> a >> b;
--a;
--b;
graph[a].push_back(b);
graph[b].push_back(a);
++edges[a];
++edges[b];
days[i] = make_pair(a, b);
}
for (int i = (0); i < (n); ++i) {
if (!vis[i]) {
vis[i] = true;
correct[i] = true;
DFS(i, k);
}
}
for (int i = (0); i < (n); ++i) {
if (correct[i]) {
++previous;
}
}
for (int i = (0); i < (n); ++i) {
if (correct[i]) {
for (auto& u : graph[i]) {
if (!correct[u]) {
--edges[i];
}
}
}
}
stack<int> result;
for (int i = (int)(days.size()) - 1; i >= 0; --i) {
result.push(previous);
if (correct[days[i].first] && correct[days[i].second]) {
--edges[days[i].first];
--edges[days[i].second];
ERASE(days[i].first, days[i].second, k);
ERASE(days[i].second, days[i].first, k);
}
}
while ((int)(result.size())) {
cout << result.top() << "\n";
result.pop();
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.*;
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
public class cf1037e {
public static void main(String[] args) throws IOException {
int n = rni(), m = ni(), k = ni(), deg[] = new int[n];
List<p> e = new ArrayList<>();
TreeSet<p> set = new TreeSet<>((a, b) -> a.a == b.a ? a.b - b.b : a.a - b.a);
Graph g = graph(n);
for (int i = 0; i < m; ++i) {
p ed = new p(rni() - 1, ni() - 1);
g.c(ed.a, ed.b);
e.add(ed);
++deg[ed.a];
++deg[ed.b];
}
for (int i = 0; i < n; ++i) {
set.add(new p(deg[i], i));
}
while (!set.isEmpty() && set.first().a < k) {
p p = set.first();
set.remove(p);
for (int i : g.get(p.b)) {
if (set.remove(new p(deg[i], i))) {
set.add(new p(--deg[i], i));
}
}
}
int ans[] = new int[m];
ans[m - 1] = set.size();
for (int i = m - 1; i > 0; --i) {
int a = e.get(i).a, b = e.get(i).b;
boolean del_a, del_b;
g.get(a).remove(b);
g.get(b).remove(a);
if (del_a = set.remove(new p(deg[a], a))) {
set.add(new p(--deg[a], a));
}
if (del_b = set.remove(new p(deg[b], b))) {
set.add(new p(--deg[b], b));
}
if (del_a && del_b) {
while (!set.isEmpty() && set.first().a < k) {
p p = set.first();
set.remove(p);
for (int j : g.get(p.b)) {
if (set.remove(new p(deg[j], j))) {
set.add(new p(--deg[j], j));
}
}
}
}
ans[i - 1] = set.size();
}
for (int i = 0; i < m; ++i) {
prln(ans[i]);
}
close();
}
static Graph graph(int n) {
Graph g = new Graph();
for (int i = 0; i < n; ++i) {
g.add(new HashSet<>());
}
return g;
}
static Graph graph(int n, int m) throws IOException {
Graph g = graph(n);
for (int i = 0; i < m; ++i) {
g.c(rni() - 1, ni() - 1);
}
return g;
}
static Graph tree(int n) throws IOException {
return graph(n, n - 1);
}
static class Graph extends ArrayList<Set<Integer>> {
void cto(int u, int v) {
get(u).add(v);
}
void c(int u, int v) {
cto(u, v);
cto(v, u);
}
boolean is_leaf(int i) {
return get(i).size() == 1;
}
}
static class p {
int a, b;
p(int a_, int b_) {
a = a_;
b = b_;
}
@Override
public String toString() {
return "Pair{" + "a = " + a + ", b = " + b + '}';
}
public boolean asymmetricEquals(Object o) {
p p = (p) o;
return a == p.a && b == p.b;
}
public boolean symmetricEquals(Object o) {
p p = (p) o;
return a == p.a && b == p.b || a == p.b && b == p.a;
}
@Override
public boolean equals(Object o) {
return asymmetricEquals(o);
}
public int asymmetricHashCode() {
return Objects.hash(a, b);
}
public int symmetricHashCode() {
return Objects.hash(a, b) + Objects.hash(b, a);
}
@Override
public int hashCode() {
return asymmetricHashCode();
}
}
static BufferedReader __in = new BufferedReader(new InputStreamReader(System.in));
static PrintWriter __out = new PrintWriter(new OutputStreamWriter(System.out));
static StringTokenizer input;
static Random __rand = new Random();
// references
// IBIG = 1e9 + 7
// IMAX ~= 2e9
// LMAX ~= 9e18
// constants
static final int IBIG = 1000000007;
static final int IMAX = 2147483647;
static final int IMIN = -2147483648;
static final long LMAX = 9223372036854775807L;
static final long LMIN = -9223372036854775808L;
// math util
static int minof(int a, int b, int c) {return min(a, min(b, c));}
static int minof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); int min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;}
static long minof(long a, long b, long c) {return min(a, min(b, c));}
static long minof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); long min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;}
static int maxof(int a, int b, int c) {return max(a, max(b, c));}
static int maxof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); int max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;}
static long maxof(long a, long b, long c) {return max(a, max(b, c));}
static long maxof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); long max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;}
static int powi(int a, int b) {if (a == 0) return 0; int ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;}
static long powl(long a, int b) {if (a == 0) return 0; long ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;}
static int fli(double d) {return (int) d;}
static int cei(double d) {return (int) ceil(d);}
static long fll(double d) {return (long) d;}
static long cel(double d) {return (long) ceil(d);}
static int gcf(int a, int b) {return b == 0 ? a : gcf(b, a % b);}
static long gcf(long a, long b) {return b == 0 ? a : gcf(b, a % b);}
static int lcm(int a, int b) {return a * b / gcf(a, b);}
static long lcm(long a, long b) {return a * b / gcf(a, b);}
static int randInt(int min, int max) {return __rand.nextInt(max - min + 1) + min;}
static long mix(long x) {x += 0x9e3779b97f4a7c15L; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9L; x = (x ^ (x >> 27)) * 0x94d049bb133111ebL; return x ^ (x >> 31);}
// array util
static void reverse(int[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {int swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(long[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {long swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(double[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {double swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(char[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {char swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void shuffle(int[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); int swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void shuffle(long[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); long swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void shuffle(double[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); double swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void rsort(int[] a) {shuffle(a); sort(a);}
static void rsort(long[] a) {shuffle(a); sort(a);}
static void rsort(double[] a) {shuffle(a); sort(a);}
static int[] copy(int[] a) {int[] ans = new int[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static long[] copy(long[] a) {long[] ans = new long[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static double[] copy(double[] a) {double[] ans = new double[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static char[] copy(char[] a) {char[] ans = new char[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
// input
static void r() throws IOException {input = new StringTokenizer(rline());}
static int ri() throws IOException {return Integer.parseInt(rline());}
static long rl() throws IOException {return Long.parseLong(rline());}
static double rd() throws IOException {return Double.parseDouble(rline());}
static int[] ria(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni(); return a;}
static int[] riam1(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni() - 1; return a;}
static long[] rla(int n) throws IOException {long[] a = new long[n]; r(); for (int i = 0; i < n; ++i) a[i] = nl(); return a;}
static double[] rda(int n) throws IOException {double[] a = new double[n]; r(); for (int i = 0; i < n; ++i) a[i] = nd(); return a;}
static char[] rcha() throws IOException {return rline().toCharArray();}
static String rline() throws IOException {return __in.readLine();}
static String n() {return input.nextToken();}
static int rni() throws IOException {r(); return ni();}
static int ni() {return Integer.parseInt(n());}
static long rnl() throws IOException {r(); return nl();}
static long nl() {return Long.parseLong(n());}
static double rnd() throws IOException {r(); return nd();}
static double nd() {return Double.parseDouble(n());}
// output
static void pr(int i) {__out.print(i);}
static void prln(int i) {__out.println(i);}
static void pr(long l) {__out.print(l);}
static void prln(long l) {__out.println(l);}
static void pr(double d) {__out.print(d);}
static void prln(double d) {__out.println(d);}
static void pr(char c) {__out.print(c);}
static void prln(char c) {__out.println(c);}
static void pr(char[] s) {__out.print(new String(s));}
static void prln(char[] s) {__out.println(new String(s));}
static void pr(String s) {__out.print(s);}
static void prln(String s) {__out.println(s);}
static void pr(Object o) {__out.print(o);}
static void prln(Object o) {__out.println(o);}
static void prln() {__out.println();}
static void pryes() {prln("yes");}
static void pry() {prln("Yes");}
static void prY() {prln("YES");}
static void prno() {prln("no");}
static void prn() {prln("No");}
static void prN() {prln("NO");}
static boolean pryesno(boolean b) {prln(b ? "yes" : "no"); return b;};
static boolean pryn(boolean b) {prln(b ? "Yes" : "No"); return b;}
static boolean prYN(boolean b) {prln(b ? "YES" : "NO"); return b;}
static void prln(int... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();}
static void prln(long... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();}
static void prln(double... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();}
static <T> void prln(Collection<T> c) {int n = c.size() - 1; Iterator<T> iter = c.iterator(); for (int i = 0; i < n; pr(iter.next()), pr(' '), ++i); if (n >= 0) prln(iter.next()); else prln();}
static void h() {prln("hlfd"); flush();}
static void flush() {__out.flush();}
static void close() {__out.close();}
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.Arrays;
import java.util.TreeSet;
import java.util.HashSet;
import java.util.StringTokenizer;
import java.io.PrintWriter;
import java.io.OutputStream;
import java.util.Iterator;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.FileNotFoundException;
import java.io.Writer;
import java.io.BufferedReader;
import java.util.Comparator;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Asgar Javadov
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskE solver = new TaskE();
solver.solve(1, in, out);
out.close();
}
static class TaskE {
int k;
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
int m = in.nextInt();
k = in.nextInt();
Graph graph = new Graph(n);
IntPair[] degree = new IntPair[n];
for (int i = 0; i < n; i++) {
degree[i] = IntPair.newPair(0, i);
}
TreeSet<IntPair> set = new TreeSet<>(Comparator.reverseOrder());
for (int i = 0; i < n; i++) {
set.add(degree[i]);
}
IntPair temp = IntPair.newPair(k, -1);
long threshold = (long) k * (k + 1) / 2;
for (int i = 1; i <= m; ++i) {
int u = in.nextInt() - 1;
int v = in.nextInt() - 1;
graph.addEdge(u, v);
degree[u].first++;
degree[v].first++;
set.remove(degree[u]);
set.remove(degree[v]);
set.add(degree[u]);
set.add(degree[v]);
if (i < threshold) {
out.println(0);
continue;
}
TreeSet<IntPair> subSet = (TreeSet<IntPair>) set.headSet(temp);
if (subSet.size() < k + 1) {
out.println(0);
continue;
}
HashSet<Integer> potential = new HashSet<>();
for (IntPair node : subSet) {
int cnt = 0;
for (int e : graph.getEdgesFrom(node.second)) if (degree[e].first >= k) cnt++;
if (cnt >= k) potential.add(node.second);
}
HashSet<Integer> potential2 = new HashSet<>();
for (int node : potential) {
int cnt = 0;
for (int e : graph.getEdgesFrom(node)) if (potential.contains(e)) cnt++;
if (cnt >= k) potential2.add(node);
}
int answer = 0;
for (int node : potential) {
int cnt = 0;
for (int e : graph.getEdgesFrom(node)) if (potential2.contains(e)) cnt++;
if (cnt >= k) answer++;
}
out.println(answer);
}
}
}
static class InputReader extends BufferedReader {
StringTokenizer tokenizer;
public InputReader(InputStream inputStream) {
super(new InputStreamReader(inputStream), 32768);
}
public InputReader(String filename) {
super(new InputStreamReader(Thread.currentThread().getContextClassLoader().getResourceAsStream(filename)));
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(readLine());
} catch (IOException e) {
throw new RuntimeException();
}
}
return tokenizer.nextToken();
}
public Integer nextInt() {
return Integer.valueOf(next());
}
}
static class IntPair implements Comparable<IntPair> {
public int first;
public int second;
public IntPair(int first, int second) {
this.first = first;
this.second = second;
}
public int compareTo(IntPair o) {
if (first != o.first)
return Integer.compare(first, o.first);
return Integer.compare(second, o.second);
}
public static IntPair newPair(int first, int second) {
return new IntPair(first, second);
}
public String toString() {
return "" + first + " " + second;
// return String.format("{" + first + ", " + second + '}');
}
public boolean equals(Object o) {
if (this == o) return true;
if (!(o instanceof IntPair)) return false;
IntPair intPair = (IntPair) o;
return first == intPair.first &&
second == intPair.second;
}
public int hashCode() {
return (31 * first + second);
}
}
static class Graph {
protected int V;
protected boolean directed = false;
private IntList[] edges;
public Graph() {
}
public Graph(int v) {
this(v, false);
}
@SuppressWarnings("unchecked")
public Graph(int v, boolean directed) {
this.V = v;
this.directed = directed;
this.edges = new IntList[V];
for (int i = 0; i < V; i++) {
edges[i] = new IntList(4);
}
}
public void addEdge(int u, int v) {
// if (edges[u] == null) edges[u] = new IntList(3);
edges[u].add(v);
if (!directed) {
// if (edges[v] == null) edges[v] = new IntList(3);
edges[v].add(u);
}
}
public IntList getEdgesFrom(int i) {
if (i < 0 || i >= V)
throw new IllegalArgumentException("Argument must be in [0, V).");
return this.edges[i];
}
}
static class IntList implements Iterable<Integer> {
public static final int INITIAL_CAPACITY = 4;
private int size;
private int[] array;
public IntList() {
this(INITIAL_CAPACITY);
}
public IntList(int initialCapacity) {
this.array = new int[initialCapacity];
this.size = 0;
}
public IntList(int[] array) {
this.array = Arrays.copyOf(array, array.length);
this.size = this.array.length;
}
public void add(int value) {
if (size == array.length) {
ensureCapacity();
}
this.array[this.size++] = value;
}
private void ensureCapacity() {
if (size < array.length)
return;
this.array = Arrays.copyOf(array, array.length << 1);
}
public IntList clone() {
IntList cloned = new IntList(Math.max(1, this.size));
for (int i = 0; i < size; ++i)
cloned.add(array[i]);
return cloned;
}
public Iterator<Integer> iterator() {
return new IntListIterator();
}
private class IntListIterator implements Iterator<Integer> {
private int current;
public IntListIterator() {
this.current = 0;
}
public boolean hasNext() {
return this.current < size;
}
public Integer next() {
return array[current++];
}
}
}
static class OutputWriter extends PrintWriter {
public OutputWriter(OutputStream outputStream) {
super(outputStream);
}
public OutputWriter(Writer writer) {
super(writer);
}
public OutputWriter(String filename) throws FileNotFoundException {
super(filename);
}
public void close() {
super.close();
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma GCC optimize("unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
using namespace std;
typedef long long ll;
typedef double lf;
typedef pair<int,int> ii;
#define REP(i,n) for(int i=0;i<n;i++)
#define REP1(i,n) for(ll i=1;i<=n;i++)
#define RST(i,n) memset(i,n,sizeof i)
#define SZ(a) (int)a.size()
#define ALL(a) a.begin(),a.end()
#define X first
#define Y second
#define mkp make_pair
#define pb push_back
#define eb emplace_back
#define pob pop_back
#ifdef cold66
#define debug(...) do{\
fprintf(stderr,"%s - %d (%s) = ",__PRETTY_FUNCTION__,__LINE__,#__VA_ARGS__);\
_do(__VA_ARGS__);\
}while(0)
template<typename T>void _do(T &&_x){cerr<<_x<<endl;}
template<typename T,typename ...S> void _do(T &&_x,S &&..._t){cerr<<_x<<" ,";_do(_t...);}
template<typename _a,typename _b> ostream& operator << (ostream &_s,const pair<_a,_b> &_p){return _s<<"("<<_p.X<<","<<_p.Y<<")";}
template<typename It> ostream& _OUTC(ostream &_s,It _ita,It _itb)
{
_s<<"{";
for(It _it=_ita;_it!=_itb;_it++)
{
_s<<(_it==_ita?"":",")<<*_it;
}
_s<<"}";
return _s;
}
template<typename _a> ostream &operator << (ostream &_s,vector<_a> &_c){return _OUTC(_s,ALL(_c));}
template<typename _a> ostream &operator << (ostream &_s,set<_a> &_c){return _OUTC(_s,ALL(_c));}
template<typename _a,typename _b> ostream &operator << (ostream &_s,map<_a,_b> &_c){return _OUTC(_s,ALL(_c));}
template<typename _t> void pary(_t _a,_t _b){_OUTC(cerr,_a,_b);cerr<<endl;}
#define IOS()
#else
#define debug(...)
#define pary(...)
#define endl '\n'
#define IOS() ios_base::sync_with_stdio(0);cin.tie(0);
#endif // cold66
//}
template<class T> inline bool chkmax(T &a, const T &b) { return b > a ? a = b, true : false; }
template<class T> inline bool chkmin(T &a, const T &b) { return b < a ? a = b, true : false; }
template<class T> using MaxHeap = priority_queue<T>;
template<class T> using MinHeap = priority_queue<T, vector<T>, greater<T>>;
const ll MAXn=2e5+5,MAXlg=__lg(MAXn)+2;
const ll MOD=1000000007;
const ll INF=0x3f3f3f3f;
int n,m,k;
int deg[MAXn],vis[MAXn],t;
bool ok[MAXn];
vector<int> e[MAXn];
ii dfs(int x){
if( vis[x]==t ) return mkp(0,-INF);
int cnt=0,ct=1;
vis[x] = t;
for( auto i:e[x] ){
if( deg[i]<k ) continue;
if( vis[i]==t || ok[i] ) cnt++,ok[x]|=ok[i];
else{
ii tmp = dfs(i);
cnt+=tmp.X;
if( tmp.X ) ct+=tmp.Y;
ok[x]|=ok[i];
}
}
if( x==2 ) debug(cnt,ct);
if( cnt>=k ){
ok[x] = true;
debug(ct);
if( ct>0 ) return mkp(1,ct);
else return mkp(0,-INF);
}
else return mkp(0,-INF);
}
int main(){
IOS();
cin>>n>>m>>k;
int ans=0;
REP(T,m){
int a,b;
cin>>a>>b;
a--,b--;
if( ans==n ){
cout<<ans<<endl;
continue;
}
deg[a]++,deg[b]++;
e[a].eb(b);
e[b].eb(a);
if( ok[a]|ok[b] ){
if( ok[a]&ok[b] );
else{
t++;
if( !ok[a] ) swap(a,b);
if( deg[b]>=k ){
debug(b);
ii tmp = dfs(b);
debug(tmp);
if( tmp.X ) ans+=tmp.Y;
}
}
}
else{
t++;
ii ta = dfs(a);
ii tb = dfs(b);
debug(ta,tb);
if( ta.X ) ans+=ta.Y;
if( tb.X ) ans+=tb.Y;
}
cout<<ans<<endl;
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.util.*;
public class p1037e {
static final int MAXN = (int) 2e5 + 5;
static boolean[] going = new boolean[MAXN];
static int[] ans = new int[MAXN];
static Vector<Set<Integer>> adj = new Vector<>();
static int[][] relation = new int[MAXN][2];
static int total;
static int n_people;
static int m_days;
static int k_num_friends;
static {
Arrays.fill(going, true);
for (int i = 0; i < MAXN; i++) {
adj.add(new HashSet<>());
}
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
solve(sc);
}
public static void solve(Scanner s) {
n_people = s.nextInt();
m_days = s.nextInt();
k_num_friends = s.nextInt();
Stack<Integer> Q = new Stack<>();
for (int i = 0; i < m_days; i++) {
int x = s.nextInt();
int y = s.nextInt();
relation[i][0] = x;
relation[i][1] = y;
adj.get(x).add(y);
adj.get(y).add(x);
}
for (int i = 1; i <= n_people; i++) {
if (adj.get(i).size() < k_num_friends) {
going[i] = false;
Q.push(i);
}
}
total = n_people;
takeout(Q);
ans[m_days - 1] = total;
for (int i = m_days - 2; i > 0; i--) {
int u = relation[i + 1][0];
int v = relation[i + 1][1];
if (going[u] && going[v]) {
Q = new Stack<>();
adj.get(u).remove(v);
adj.get(v).remove(u);
if (adj.get(u).size() < k_num_friends) {
going[u] = false;
Q.push(u);
}
if (adj.get(v).size() < k_num_friends) {
going[v] = false;
Q.push(v);
}
takeout(Q);
}
ans[i] = total;
}
for (int i = 0; i < m_days; i++) {
System.out.println(ans[i]);
}
}
static void takeout(Stack<Integer> Q) {
while (!Q.empty()) {
int x = Q.pop();
total--;
for (Integer p : adj.get(x)) {
adj.get(p).remove(x);
if (going[p]) {
if (adj.get(p).size() < k_num_friends) {
going[p] = false;
Q.push(p);
}
}
}
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MAXN = 1123456;
template <typename T>
T sqr(T x) {
return x * x;
}
template <typename T>
void vout(T s) {
cout << s << endl;
exit(0);
}
long long bp(long long a, long long n) {
long long res = 1;
while (n) {
if (n % 2) res *= a;
a *= a;
n >>= 1;
}
return res;
}
set<long long> s[MAXN];
long long n, m, k;
long long kol[MAXN];
long long ans;
bool fl[MAXN];
pair<long long, long long> a[MAXN];
queue<long long> q;
void add(long long x) {
if (fl[x]) return;
ans--;
fl[x] = 1;
q.push(x);
}
int main() {
ios_base ::sync_with_stdio(0);
cin.tie(0);
cin >> n >> m >> k;
ans = n;
vector<long long> res(m);
for (int i = 0; i < m; i++) {
cin >> a[i].first >> a[i].second;
kol[a[i].first]++;
kol[a[i].second]++;
s[a[i].first].insert(a[i].second);
s[a[i].second].insert(a[i].first);
}
for (int i = 1; i <= n; i++)
if (!fl[i] && kol[i] < k) {
add(i);
while (!q.empty()) {
long long x = q.front();
q.pop();
for (auto i : s[x]) {
kol[i]--;
if (!kol[i]) add(i);
}
}
}
for (int i = m - 1; i >= 0; i--) {
res[i] = ans;
if (!fl[a[i].first] && !fl[a[i].second]) {
kol[a[i].first]--;
kol[a[i].second]--;
s[a[i].first].erase(a[i].second);
s[a[i].second].erase(a[i].first);
if (kol[a[i].first] < k) add(a[i].first);
if (kol[a[i].second] < k) add(a[i].second);
while (!q.empty()) {
long long x = q.front();
q.pop();
for (auto i : s[x]) {
kol[i]--;
if (kol[i] < k) add(i);
}
}
}
}
for (auto i : res) cout << i << "\n";
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.Set;
import java.util.StringTokenizer;
public class Main {
static int deg[];
static Set<Integer> s;
static Set<Integer>[] graph;
static int n,m,k;
public static void main(String[] args) {
FastReader sc = new FastReader();
n = sc.nextInt();
m = sc.nextInt();
k = sc.nextInt();
graph = new Set[n];
for(int i=0;i<n;i++) {
graph[i] = new HashSet<>();
}
deg = new int[n];
ArrayList<Edge> edges = new ArrayList<Edge>();
for(int i=0;i<m;i++) {
int u = sc.nextInt()-1;
int v = sc.nextInt()-1;
edges.add(new Edge(u,v));
graph[u].add(v);
graph[v].add(u);
deg[u]++;
deg[v]++;
}
s = new HashSet<Integer>();
ArrayList<Vertex> ver = new ArrayList<>();
for(int i=0;i<n;i++) {
s.add(i);
ver.add(new Vertex(i,deg[i]));
}
ver.sort((v1,v2)->v1.d-v2.d);
int i=0;
for(i=0;i<n;i++) {
if(ver.get(i).d<k) {
int u = ver.get(i).u;
if(s.contains(u)) {
dfs(u);
}
else {
break;
}
}
}
ArrayList<Integer> ans = new ArrayList<>();
ans.add(s.size());
for(int j=m-1;j>0;j--) {
Edge e = edges.get(j);
graph[e.u].remove(e.v);
graph[e.v].remove(e.u);
if(s.contains(e.u) && s.contains(e.v)) {
dfs(e.u);
if(s.contains(e.v)) {
dfs(e.v);
}
}
ans.add(s.size());
}
for(int j=ans.size()-1;j>=0;j--) {
System.out.println(ans.get(j));
}
}
static void dfs(int u) {
deg[u]--;
if(deg[u]>=k) {
return;
}
s.remove(u);
for(int v:(Set<Integer>) graph[u]) {
if(s.contains(v)) {
dfs(v);
}
}
}
}
class Edge{
int u,v;
Edge(int i,int j){
u = i;
v = j;
}
}
class Vertex{
int u,d;
Vertex(int i,int j){
u = i;
d = j;
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
struct EDGE {
int to, next;
} edge[400010];
int a[200010], b[200010], last[200010], edgecnt = 0, ansa[200010], deg[200010], q[200010], k;
inline void addedge (register int from, register int to)
{
edge[++edgecnt] = (EDGE) {to, last[from]};
last[from] = edgecnt;
++deg[from];
}
#define ae(x, y) addedge (x, y), addedge (y, x)
bool wiped[200010], vis[200010];
void DFS (register int x)
{
/**///printf ("\nDFS @ %d\nto : ", x);
vis[x] = 1;
/**///for (register int e = last[x]; e; e = edge[e].next) printf("%d(%d %d)", edge[e].to, wiped[edge[e].to], vis[edge[e].to]); puts ("");
for (register int TO, e = last[x]; e; e = edge[e].next)
{
TO = edge[e].to;
if (TO && !vis[TO])
{
if (wiped[TO])
{
edge[e].to = edge[e ^ 1].to = 0;
--deg[x];
}
else
{
if (!vis[TO])
DFS (TO);
if (wiped[TO])
{
edge[e].to = edge[e ^ 1].to = 0;
--deg[x];
}
}
}
}
if (deg[x] < k)
wiped[x] = 1;
}
int main ()
{
register int n, m, aa, bb, ans = 0, qend;
scanf ("%d %d %d\n", &n, &m, &k);
for (register int i = 0; i < m; ++i)
{
scanf ("%d %d", &aa, &bb);
ae(aa, bb);
a[i] = aa;
b[i] = bb;
}
for (register int i = 1; i <= n; ++i)
wiped[i] = (deg[i] < k);
/**///for (register int i = 1; i <= n; ++i) printf ("%d ", wiped[i]); puts ("");
for (register int i = 1; i <= n; ++i)
if (!wiped[i] && !vis[i])
DFS (i);
for (register int i = 1; i <= n; ++i)
if (!wiped[i])
++ans;
ansa[m] = ans;
/**///for (register int i = 1; i <= n; ++i) printf ("%d %d, deg %d\n", i, wiped[i], deg[i]);
/**///printf ("\n%d\n", ans);
for (register int I = m - 1; I; --I)
{
edge[edgecnt].to = 0;
edge[--edgecnt].to = 0;
--edgecnt;
aa = a[I];
bb = b[I];
if (wiped[aa] | wiped[bb])
{
/**///printf ("ans : %d\n", ans);
ansa[I] = ans;
continue;
}
qend = 0;
if (!wiped[aa] && --deg[aa] < k)
{
--ans;
wiped[aa] = 1;
q[++qend] = aa;
}
if (!wiped[bb] && --deg[bb] < k)
{
--ans;
wiped[bb] = 1;
q[++qend] = bb;
}
/**///printf ("%d(%d, deg %d) %d(%d, deg %d)\n", aa, wiped[aa], deg[aa], bb, wiped[bb], deg[bb]);
/**///printf ("qend : %d\n", qend);
/**///for (register int i = 1; i <= qend; ++i) printf ("%d ", q[i]); puts ("");
for (register int i = 1, tmp = q[1]; tmp; tmp = q[++i])
{
/**///printf ("topo @ %d\nto : ", tmp);
for (register int TO, e = last[tmp]; e; e = edge[e].next)
{
TO = edge[e].to;
if (TO && !wiped[TO])
{
/**///printf("%d ", TO);
if (--deg[TO] < k)
{
wiped[q[++qend] = TO] = 1;
--ans;
}
}
edge[e].to = edge[e ^ 1].to = 0;
}
/**///puts ("");
}
ansa[I] = ans;
/**///printf ("ans : %d\n", ans);
}
/**///puts ("****************ans begin****************");
for (register int i = 1; i <= m; ++i)
printf ("%d\n", ansa[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(int argc, char const *argv[]) {
int n, m, k;
cin >> n >> m >> k;
vector<vector<int> > edges(m, vector<int>(2));
vector<vector<int> > graph(n + 1);
vector<int> degrees(n + 1, 0);
for (int i = 0; i < m; ++i) {
scanf("%d %d", &edges[i][0], &edges[i][1]);
degrees[edges[i][0]]++;
degrees[edges[i][1]]++;
graph[edges[i][0]].push_back(edges[i][1]);
graph[edges[i][1]].push_back(edges[i][0]);
}
map<pair<int, int>, bool> sorted;
for (int i = 0; i < n; ++i)
sorted.insert(make_pair(make_pair(degrees[i + 1], i + 1), 1));
vector<int> ans(m);
for (int i = m - 1; i >= 0; --i) {
while ((!sorted.empty()) and sorted.begin()->first.first < k) {
int temp = sorted.begin()->first.second;
sorted.erase(sorted.begin());
degrees[temp] = 0;
for (int i = 0; i < graph[temp].size(); ++i) {
auto it =
sorted.find(make_pair(degrees[graph[temp][i]], graph[temp][i]));
degrees[graph[temp][i]]--;
if (it != sorted.end()) {
sorted.erase(it);
if (degrees[graph[temp][i]] != 0)
sorted.insert(make_pair(
make_pair(degrees[graph[temp][i]], graph[temp][i]), 1));
}
}
}
ans[i] = sorted.size();
if (degrees[edges[i][0]] != 0 and degrees[edges[i][1]] != 0) {
auto it1 = sorted.find(make_pair(degrees[edges[i][0]], edges[i][0]));
auto it2 = sorted.find(make_pair(degrees[edges[i][1]], edges[i][1]));
degrees[edges[i][0]]--;
degrees[edges[i][1]]--;
graph[edges[i][0]].pop_back();
graph[edges[i][1]].pop_back();
if (it1 != sorted.end()) {
sorted.erase(it1);
sorted.insert(
make_pair(make_pair(degrees[edges[i][0]], edges[i][0]), 1));
}
if (it2 != sorted.end()) {
sorted.erase(it2);
sorted.insert(
make_pair(make_pair(degrees[edges[i][1]], edges[i][1]), 1));
}
}
}
for (int i = 0; i < m; ++i) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.util.*;
import java.io.*;
public class Trips {
static Pair[] pairs;
static ArrayList<Integer> graph[];
public static void main(String[] args) {
FastScanner sc = new FastScanner();
StringBuilder sb = new StringBuilder();
ArrayDeque<Integer> st = new ArrayDeque<>();
ArrayDeque<Pair> edges = new ArrayDeque<>();
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
//Adjacency List
graph = new ArrayList[n+1];
pairs = new Pair[n+1];
for (int i = 0; i< n+1; i++) {
graph[i] = new ArrayList();
}
//int sizes[] = new int[n+1];
for (int i = 0; i < m;i++) {
int p1 = sc.nextInt();
int p2 = sc.nextInt();
graph[p1].add(p2);
graph[p2].add(p1);
edges.push(new Pair(p1, p2));
}
for(int i = 0; i < n+1;i++) {
pairs[i] = new Pair(i, graph[i].size());
}
int prevTrip = checkTrip(k, n);
st.push(prevTrip);
//for(int i = 1; i < n+1;i++) {
// System.out.println("i: " + i + ": " + pairs[i].b);
//}
//System.out.println(edges.size());
while(!edges.isEmpty()) {
Pair edge = edges.pop();
int node1 = edge.a;
int node2 = edge.b;
//System.out.println("removed edge: " + node1 + " " + node2);
if (pairs[node1].b < 1 || pairs[node2].b < 1) {
st.push(prevTrip);
}
else {
pairs[node1].b--;
pairs[node2].b--;
if (pairs[node1].b < k && pairs[node2].b >= k) {
pairs[node2].b++;
prevTrip = checkTrip(k, n);
}
else if (pairs[node2].b < k || pairs[node1].b >= k) {
pairs[node1].b++;
prevTrip = checkTrip(k, n);
}
else if (pairs[node1].b < k && pairs[node2].b < k) {
prevTrip = checkTrip(k, n);
}
//System.out.println("NEW UPDATES");
//for (int i = 1; i < n + 1; i++) {
// System.out.println("i: " + i + ": " + pairs[i].b);
//}
st.push(prevTrip);
}
}
//System.out.println(st.size());
//last edge removed will always be 0
st.pop();
while(!st.isEmpty()) {
sb.append(st.pop());
sb.append('\n');
}
System.out.print(sb.toString());
}
public static int checkTrip(int k, int n) {
boolean removed = false;
int sum = 0;
for (int i = 1; i < n+1 ;i++) {
if (pairs[i].b > 0 && pairs[i].b < k) {
removed = true;
for (int e: graph[i]) {
--pairs[e].b;
}
pairs[i].b = 0;
}
else if (pairs[i].b >= k) {
sum++;
}
}
if (removed) {
return checkTrip(k, n);
}
return sum;
}
public static class Pair{
int a,b;
public Pair(int a, int b) {this.a=a;this.b=b;}
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(Reader in) {
br = new BufferedReader(in);
}
public FastScanner() {
this(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String readNextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
int[] readIntArray(int n) {
int[] a = new int[n];
for (int idx = 0; idx < n; idx++) {
a[idx] = nextInt();
}
return a;
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int n, m, k, groupsize;
vector<int> x, y, friends, ans, px, py;
vector<vector<int>> graph;
queue<int> q;
void check(int v) {
if (v == -1 || friends[v] == -1) return;
if (friends[v] < k) {
q.push(v);
friends[v] = -1;
--groupsize;
}
}
void trim() {
while (!q.empty()) {
int u = q.front();
q.pop();
for (int v : graph[u]) {
if (v != -1 && friends[v] != -1) {
--friends[v];
check(v);
}
}
}
}
int main() {
ios::sync_with_stdio(false);
scanf("%d %d %d", &n, &m, &k);
x.resize(m), y.resize(m), friends.assign(n + 1, 0);
graph.resize(n + 1);
px.resize(m), py.resize(m);
for (int i = 0; i < m; ++i) scanf("%d %d", &x[i], &y[i]);
groupsize = n;
for (int i = 0; i < m; ++i) {
++friends[x[i]];
++friends[y[i]];
graph[x[i]].push_back(y[i]);
px[i] = graph[x[i]].size() - 1;
graph[y[i]].push_back(x[i]);
py[i] = graph[y[i]].size() - 1;
}
for (int v = 1; v <= n; ++v) {
check(v);
}
ans.push_back(groupsize);
for (int i = m - 1; i >= 1; --i) {
if (!(x[i] == -1 || y[i] == -1 || friends[x[i]] == -1 ||
friends[y[i]] == -1)) {
--friends[x[i]];
--friends[y[i]];
graph[x[i]][px[i]] = -1;
graph[y[i]][py[i]] = -1;
check(x[i]);
check(y[i]);
}
trim();
ans.push_back(groupsize);
}
for (int i = m - 1; i >= 0; --i) {
printf("%d\n", ans[i]);
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
struct EDGE {
int to, next;
} edge[400010];
int a[200010], b[200010], last[200010], edgecnt = 0, ansa[200010], deg[200010], q[200010], k;
inline void addedge (register int from, register int to)
{
edge[++edgecnt] = (EDGE) {to, last[from]};
last[from] = edgecnt;
++deg[from];
}
#define ae(x, y) addedge (x, y), addedge (y, x)
bool wiped[200010], vis[200010];
void DFS (register int x)
{
/**///printf ("\nDFS @ %d\nto : ", x);
vis[x] = 1;
/**///for (register int e = last[x]; e; e = edge[e].next) printf("%d(%d %d)", edge[e].to, wiped[edge[e].to], vis[edge[e].to]); puts ("");
for (register int TO, e = last[x]; e; e = edge[e].next)
{
TO = edge[e].to;
if (TO && !vis[TO])
{
if (wiped[TO])
{
TO = 0;
--deg[x];
}
else
{
if (!vis[TO])
DFS (TO);
if (wiped[TO])
{
TO = 0;
--deg[x];
}
}
}
}
if (deg[x] < k)
wiped[x] = 1;
}
int main ()
{
register int n, m, aa, bb, ans = 0, qend;
scanf ("%d %d %d\n", &n, &m, &k);
for (register int i = 0; i < m; ++i)
{
scanf ("%d %d", &aa, &bb);
ae(aa, bb);
a[i] = aa;
b[i] = bb;
}
for (register int i = 1; i <= n; ++i)
wiped[i] = (deg[i] < k);
/**///for (register int i = 1; i <= n; ++i) printf ("%d ", wiped[i]); puts ("");
for (register int i = 1; i <= n; ++i)
if (!wiped[i] && !vis[i])
DFS (i);
for (register int i = 1; i <= n; ++i)
if (!wiped[i])
++ans;
ansa[m] = ans;
/**///for (register int i = 1; i <= n; ++i) printf ("%d %d, deg %d\n", i, wiped[i], deg[i]);
/**///printf ("\n%d\n", ans);
for (register int I = m - 1; I; --I)
{
edge[edgecnt].to = 0;
edge[--edgecnt].to = 0;
--edgecnt;
aa = a[I];
bb = b[I];
if (wiped[aa] | wiped[bb])
{
/**///printf ("ans : %d\n", ans);
ansa[I] = ans;
continue;
}
qend = 0;
if (!wiped[aa] && --deg[aa] < k)
{
--ans;
wiped[aa] = 1;
q[++qend] = aa;
}
if (!wiped[bb] && --deg[bb] < k)
{
--ans;
wiped[bb] = 1;
q[++qend] = bb;
}
/**///printf ("%d(%d, deg %d) %d(%d, deg %d)\n", aa, wiped[aa], deg[aa], bb, wiped[bb], deg[bb]);
/**///printf ("qend : %d\n", qend);
/**///for (register int i = 1; i <= qend; ++i) printf ("%d ", q[i]); puts ("");
for (register int i = 1, tmp = q[1]; tmp; tmp = q[++i])
{
/**///printf ("topo @ %d\nto : ", tmp);
for (register int TO, e = last[tmp]; e; e = edge[e].next)
{
TO = edge[e].to;
if (TO && !wiped[TO])
{
/**///printf("%d ", TO);
if (--deg[TO] < k)
{
wiped[q[++qend] = TO] = 1;
--ans;
}
}
edge[e].to = edge[e ^ 1].to = 0;
}
/**///puts ("");
}
ansa[I] = ans;
/**///printf ("ans : %d\n", ans);
}
/**///puts ("****************ans begin****************");
for (register int i = 1; i <= m; ++i)
printf ("%d\n", ansa[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | python3 | maxN =200005
G = [None] * maxN
s = set()
k = [0] * 1
def delete(v):
if len(G[v]) < k[0] and (v in s):
s.remove(v)
for u in G[v]:
G[u].discard(v)
delete(u)
def main():
n,m,k[0] = map(int,input().split())
edges = [None] * (m + 1)
ans = [0] * (m + 1)
for i in range(m):
u,v = map(int,input().split())
if G[u] is None:
G[u] = set()
if G[v] is None:
G[v] = set()
G[u].add(v)
G[v].add(u)
edges[i+1] = (u,v)
for i in range(1,n+1):
s.add(i)
for i in range(1,n+1):
delete(i)
i = m
while i > 0:
ans[i] = len(s)
e = edges[i]
G[e[0]].discard(e[1])
G[e[1]].discard(e[0])
delete(e[0])
delete(e[1])
i-=1
for i in range(1,m+1):
print(ans[i])
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | python2 | '''input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
'''
n,m,k=[int(x) for x in raw_input().split()]
F=[0]*n
E=[0]*n
C=[set() for x in range(n)]
tot=0
M=[]
for i in range(m):
a,b=[int(x)-1 for x in raw_input().split()]
C[a].add(b)
C[b].add(a)
F[a]+=1
F[b]+=1
M.append((a,b))
M=M[::-1]
for i in range(n):
if F[i]>=k:
for j in C[i]:
E[j]+=1
for i in E:
if i>=k:
tot+=1
#print E,F
ans=[]
#print F
for a,b in M:
ans.append(tot)
F[a]-=1
F[b]-=1
if F[a]==k-1:
for j in C[a]:
E[j]-=1
if E[j]==k-1:
tot-=1
E[a]=-3
tot-=1
F[a]=-3
a,b=b,a
if F[a]==k-1:
E[a]=-3
F[a]=-3
tot-=1
for j in C[a]:
E[j]-=1
if E[j]==k-1:
tot-=1
C[a].discard(b)
C[b].discard(a)
#ans.append(tot)
#print F,E
ans=ans[::-1]
for i in ans:
print i |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | // amigos y no más
// dile a la jardinera que traigo flores
// += O(logn) ; + = O(n)
//#pragma GCC optimize("Ofast")
//#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp> // Common file
#include <ext/pb_ds/tree_policy.hpp> // Including tree_order_statistics_node_update
#define fastio ios_base::sync_with_stdio(0);cin.tie(0)
#define MOD 998244353LL
#define MOD1 1000000009LL
#define LIM 262150
#define FORN(i,j,n) for(int i=j; i<n;i++)
#define FOR(i,n) FORN(i,0,n)
#define ones(x) __builtin_popcountll(x)
#define MAXIMO 20000000
using namespace std;
using namespace __gnu_pbds;
typedef long long ll ;
typedef unsigned long long ull ;
typedef tree<int,int,less<int>,rb_tree_tag,tree_order_statistics_node_update> ordered_set;
int n,m,k;
set<int> G[200005];
vector< pair<int,int> > v;
map <int,int> ma;
int ans[200005]={0};
queue<int> node_to_remove;
void step1(int x){
auto it= G[x].begin();
while(it!=G[x].end()){
bool flag = false;
int y = *it;
if( ma.count(y) ) {
if(ma[y] <= k) {
ma.erase(y); node_to_remove.push(y);
}
else {ma[y]--; G[y].erase(x);}
}
it++;
}
}
void remove_node(int x){
step1(x);
//step2
while(!node_to_remove.empty()){
step1(node_to_remove.front());
node_to_remove.pop();
}
}
void go(){
cin>>n>>m>>k;
for(int i=0; i<m; i++){
int x,y; cin>>x>>y;
G[x].insert(y);
G[y].insert(x);
v.push_back({x,y});
}
for(int i=1;i<=n;i++) {
if(G[i].size() >= k) ma[i] = G[i].size();
}
for(int i=1;i<=n;i++) {
if(!ma.count(i)){
remove_node(i);
}
}
ans[m] = ma.size();
for(int i=m-1; i>=0;i--){
int & x = v[i].first; int & y = v[i].second;
if(ma.count(x) && ma.count(y) ){
/*cout<<x<<" "<<y<<"\n";
for(auto it: ma){
cout<<it.first<<"->"<<it.second<<" ";
}
cout<<"\n";*/
if(ma[x] <= k && ma[y] <= k) {
ma.erase(y); ma.erase(x);
remove_node(x); remove_node(y);
}
else if(ma[x] <= k){
ma.erase(x); remove_node(x);
if(ma.count(y)) ma[y] = G[y].size();
}
else if(ma[y] <= k){
ma.erase(y);remove_node(y);
if(ma.count(x)) ma[x] = G[x].size();
}
else{
ma[x]--; ma[y]--;
G[x].erase(y);
G[y].erase(x);
}
}
ans[i] = ma.size();
}
for(int i=1; i<=m;i++){
cout<<ans[i]<<"\n";
}
}
int main() {
fastio;
go();
return 0;
} |
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
set<pair<int, int> > s;
int d[200010], k, ans[200010];
set<int> e[200010];
pair<int, int> q[200010];
void update() {
while (!s.empty()) {
auto it = s.begin();
int x = it->second;
if (d[x] >= k) return;
s.erase(it);
for (auto it1 = e[x].begin(); it1 != e[x].end(); it1++) {
int y = *it1;
e[y].erase(x);
if (d[y] >= k) {
s.erase({d[y], y});
d[y]--;
s.insert({d[y], y});
}
}
e[x].clear();
}
}
int main() {
ios::sync_with_stdio(false);
int n, m;
cin >> n >> m >> k;
for (int i = 0; i < m; i++) {
int x, y;
cin >> x >> y;
q[i] = {x, y};
e[x].insert(y);
e[y].insert(x);
d[x]++;
d[y]++;
}
for (int i = 1; i <= n; i++) s.insert({d[i], i});
update();
for (int i = m - 1; i > 0; i--) {
ans[i] = s.size();
int x = q[i].first, y = q[i].second;
if (d[x] >= k && d[y] >= k) {
e[x].erase(y);
e[y].erase(x);
s.erase({d[x], x});
d[x]--;
s.insert({d[x], x});
s.erase({d[y], y});
d[y]--;
s.insert({d[y], y});
update();
}
}
for (int i = 0; i < m; i++) cout << ans[i] << "\n";
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 10;
int n, m, k;
bool vis[N];
queue<int> Q;
set<int> G[N];
vector<int> E[N];
int a[N], b[N], ans[N], sum;
void solve() {
while (!Q.empty()) {
int u = Q.front();
Q.pop();
for (auto v : G[u]) {
G[v].erase(u);
if (G[v].size() < k) {
sum--;
vis[v] = 1;
Q.push(v);
}
}
}
}
int main() {
scanf("%d%d%d", &n, &m, &k);
sum = n;
for (int i = 1; i <= m; i++) {
scanf("%d%d", &a[i], &b[i]);
G[a[i]].insert(b[i]);
G[b[i]].insert(a[i]);
}
for (int i = 1; i <= n; i++) {
if (G[i].size() < k) {
Q.push(i);
vis[i] = 1;
sum--;
}
}
solve();
ans[m] = sum;
for (int i = m - 1; i >= 1; i--) {
G[a[i]].erase(b[i]);
G[b[i]].erase(a[i]);
solve();
ans[i] = sum;
}
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
/**
*
*/
public class E {
static Set<Pair>[] g;
static int k;
static Set<Integer> s;
static int[] degree;
static Queue<Integer> q = new LinkedList<>();
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(reader.readLine());
int n = Integer.parseInt(st.nextToken());
int m = Integer.parseInt(st.nextToken());
k = Integer.parseInt(st.nextToken());
s = new HashSet<>(2*m);
g = new Set[n];
degree = new int[n];
for (int i = 0; i < n; i++) {
g[i] = new HashSet<>();
}
int[][] f = new int[m][2];
for (int i = 0; i < m; i++) {
st = new StringTokenizer(reader.readLine());
int a = Integer.parseInt(st.nextToken())-1;
int b = Integer.parseInt(st.nextToken())-1;
g[a].add(new Pair(b,i));
g[b].add(new Pair(a,i));
degree[a]++;degree[b]++;
s.add(a);s.add(b);
f[i][0] = a;
f[i][1] = b;
}
for (int i = 0; i < n; i++) {
if(g[i].isEmpty()){
s.remove(i);
} else if(g[i].size() < k) {
q.add(i);
s.remove(i);
}
}
while (!q.isEmpty()){
int v = q.poll();
for (Pair u : g[v]) {
if(s.contains(u.a)) {
degree[u.a]--;
if (degree[u.a] < k) {
q.add(u.a);
}
}
}
s.remove(v);
}
int[] ans = new int[m];
for (int i = m-1; i >=0; i--) {
ans[i] = s.size();
int a = f[i][0];
int b = f[i][1];
if(s.contains(a) && s.contains(b)) {
degree[a]--;degree[b]--;
if (degree[a] < k) q.add(a);
if (degree[b] < k) q.add(b);
while (!q.isEmpty()){
int v = q.poll();
for (Pair u : g[v]) {
if(s.contains(u.a) && u.b < i) {
degree[u.a]--;
if (degree[u.a] < k) {
q.add(u.a);
}
}
}
s.remove(v);
}
}
}
for (int i = 0; i < m; i++) {
System.out.println(ans[i]);
}
}
static class Pair{
int a;
int b;
public Pair(int a, int b) {
this.a = a;
this.b = b;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Pair pair = (Pair) o;
return a == pair.a;
}
@Override
public int hashCode() {
return Objects.hash(a);
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 5;
pair<int, int> ed[maxn];
vector<int> g[maxn];
int n, m, k, fa[maxn], d[maxn];
int cl[maxn], fcl[maxn], ans[maxn];
int vs[maxn], sz;
bool v[maxn], w[maxn], us[maxn];
void dfs(int x, int p) {
fa[x] = p;
d[x] = p == -1 ? 0 : d[p] + 1;
v[x] = true;
for (int u : g[x]) {
if (d[u] < d[x]) w[d[x] - d[u]] = true;
}
int i = 0;
while (w[i + 1]) ++i;
cl[x] = i + 1;
if (~p) cl[x] = min(cl[x], cl[p] + 1);
for (int u : g[x]) {
if (d[u] < d[x]) w[d[x] - d[u]] = false;
}
fcl[x] = cl[x];
if (~p && cl[p] == cl[x] - 1) {
fcl[p] = max(fcl[p], fcl[x]);
}
for (int u : g[x]) {
if (v[u]) continue;
dfs(u, x);
}
vs[sz++] = x;
}
int check(int t) {
sz = 0;
for (int i = 0; i < n; ++i) g[i].clear();
for (int i = 1; i <= t; ++i) {
int x = ed[i].first, y = ed[i].second;
g[x].push_back(y);
g[y].push_back(x);
}
for (int i = 0; i < n; ++i) v[i] = false;
for (int i = 0; i < n; ++i) {
if (v[i]) continue;
dfs(i, -1);
}
for (int i = 0; i < n; ++i) us[i] = false;
int ans = 0;
for (int i = 0; i < n; ++i) {
int x = vs[i];
if (fa[x] == -1) continue;
if (cl[x] <= k) continue;
if (us[x]) continue;
if (cl[x] == fcl[x]) {
for (int j = 0; j < fcl[vs[i]]; ++j) {
if (!us[x]) ++ans;
us[x] = true;
x = fa[x];
}
}
}
return ans;
}
int main() {
scanf("%d %d %d", &n, &m, &k);
for (int i = 1; i <= m; ++i) {
int x, y;
scanf("%d %d", &x, &y);
--x, --y;
ed[i] = make_pair(x, y);
}
int last = 0;
for (int i = 0; i <= n; ++i) {
int d = 20, t = last;
while (d--)
if (t + (1 << d) <= m) {
if (check(t + (1 << d)) == i) t += (1 << d);
}
for (int j = last + 1; j <= t; ++j) ans[j] = i;
last = t;
}
for (int i = 1; i <= m; ++i) printf("%d\n", ans[i]);
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | java | import java.lang.reflect.Array;
import java.util.*;
import java.io.*;
public class Trips {
static Pair[] pairs;
static ArrayList<Integer> graph[];
public static void main(String[] args) {
FastScanner sc = new FastScanner();
StringBuilder sb = new StringBuilder();
ArrayDeque<Integer> st = new ArrayDeque<>();
ArrayDeque<Pair> edges = new ArrayDeque<>();
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
//Adjacency List
graph = new ArrayList[n+1];
pairs = new Pair[n+1];
for (int i = 0; i< n+1; i++) {
graph[i] = new ArrayList();
}
//int sizes[] = new int[n+1];
for (int i = 0; i < m;i++) {
int p1 = sc.nextInt();
int p2 = sc.nextInt();
graph[p1].add(p2);
graph[p2].add(p1);
edges.push(new Pair(p1, p2));
}
for(int i = 0; i < n+1;i++) {
pairs[i] = new Pair(i, graph[i].size());
}
int prevTrip = checkTrip(k, n);
st.push(prevTrip);
//for(int i = 1; i < n+1;i++) {
// System.out.println("i: " + i + ": " + pairs[i].b);
//}
//System.out.println(edges.size());
while(!edges.isEmpty()) {
Pair edge = edges.pop();
int node1 = edge.a;
int node2 = edge.b;
//System.out.println("removed edge: " + node1 + " " + node2);
if (pairs[node1].b < 1 || pairs[node2].b < 1) {
st.push(prevTrip);
}
else {
pairs[node1].b--;
pairs[node2].b--;
if (pairs[node1].b < k && pairs[node2].b >= k) {
pairs[node2].b++;
prevTrip = checkTrip(k, n);
}
if (pairs[node2].b < k || pairs[node1].b >= k) {
pairs[node1].b++;
prevTrip = checkTrip(k, n);
}
if (pairs[node1].b < k && pairs[node2].b < k) {
prevTrip = checkTrip(k, n);
}
//System.out.println("NEW UPDATES");
//for (int i = 1; i < n + 1; i++) {
// System.out.println("i: " + i + ": " + pairs[i].b);
//}
st.push(prevTrip);
}
}
//System.out.println(st.size());
//last edge removed will always be 0
st.pop();
while(!st.isEmpty()) {
sb.append(st.pop());
sb.append('\n');
}
System.out.print(sb.toString());
}
public static int checkTrip(int k, int n) {
boolean removed = false;
int sum = 0;
for (int i = 1; i < n+1 ;i++) {
if (pairs[i].b > 0 && pairs[i].b < k) {
removed = true;
for (int e: graph[i]) {
--pairs[e].b;
}
pairs[i].b = 0;
}
else if (pairs[i].b >= k) {
sum++;
}
}
if (removed) {
return checkTrip(k, n);
}
return sum;
}
public static class Pair{
int a,b;
public Pair(int a, int b) {this.a=a;this.b=b;}
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(Reader in) {
br = new BufferedReader(in);
}
public FastScanner() {
this(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String readNextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
int[] readIntArray(int n) {
int[] a = new int[n];
for (int idx = 0; idx < n; idx++) {
a[idx] = nextInt();
}
return a;
}
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long N = 200005;
set<long long> st[N];
long long deg[N];
set<pair<long long, long long> > freq;
vector<pair<long long, long long> > v;
vector<long long> ans;
int main() {
long long n, m, k;
cin >> n >> m >> k;
for (long long i = 0; i < m; ++i) {
long long x, y;
scanf("%I64d%I64d", &x, &y);
st[x].insert(y);
st[y].insert(x);
++deg[x], ++deg[y];
v.push_back({x, y});
}
for (long long i = 1; i <= n; ++i) {
freq.insert({deg[i], i});
}
long long c = n;
for (long long i = m - 1; i >= 0; --i) {
while (freq.size()) {
auto it = freq.begin();
if (it->first >= k) break;
--c;
vector<long long> temp;
for (auto x : st[it->second]) {
temp.push_back(x);
}
freq.erase(freq.begin());
for (auto x1 : temp) {
st[x1].erase(it->second);
freq.erase({deg[x1], x1});
--deg[x1];
freq.insert({deg[x1], x1});
}
st[it->second].clear();
}
ans.push_back(c);
if (st[v[i].first].find(v[i].second) != st[v[i].first].end()) {
st[v[i].first].erase(v[i].second);
freq.erase({deg[v[i].first], v[i].first});
--deg[v[i].first];
freq.insert({deg[v[i].first], v[i].first});
}
if (st[v[i].second].find(v[i].first) != st[v[i].second].end()) {
st[v[i].second].erase(v[i].first);
freq.erase({deg[v[i].second], v[i].second});
--deg[v[i].second];
freq.insert({deg[v[i].second], v[i].second});
}
}
reverse(ans.begin(), ans.end());
for (auto x : ans) cout << x << '\n';
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, m, s;
map<pair<int, int>, bool> del;
int x[200010], y[200010];
vector<int> g[200010];
int ind[200010];
queue<int> q;
bool in[200010];
int ans[200010];
int res;
void remove(int k) {
q.push(k);
while (!q.empty()) {
int k = q.front();
q.pop();
--res;
in[k] = false;
for (vector<int>::iterator it = g[k].begin(); it != g[k].end(); ++it) {
if (del[make_pair(k, *it)]) continue;
if (in[*it]) --ind[*it], --ind[k];
if (in[*it] && ind[*it] < s) q.push(*it);
}
}
return;
}
int main() {
scanf("%d%d%d", &n, &m, &s);
for (int i = 1; i <= m; ++i) {
scanf("%d%d", &x[i], &y[i]);
g[x[i]].push_back(y[i]);
g[y[i]].push_back(x[i]);
++ind[x[i]];
++ind[y[i]];
}
res = n;
for (int i = 1; i <= n; ++i) in[i] = true;
for (int i = 1; i <= n; ++i) {
if (ind[i] < s) q.push(i);
}
while (!q.empty()) {
int k = q.front();
q.pop();
--res;
in[k] = false;
for (vector<int>::iterator it = g[k].begin(); it != g[k].end(); ++it) {
if (in[*it]) --ind[*it];
if (in[*it] && ind[*it] < s) q.push(*it);
}
}
ans[m] = res;
for (int i = m; i >= 1; --i) {
del[make_pair(x[i], y[i])] = del[make_pair(y[i], x[i])] = true;
if (in[x[i]] && in[y[i]]) {
--ind[x[i]];
--ind[y[i]];
}
if (in[x[i]] && ind[x[i]] < s) remove(x[i]);
if (in[y[i]] && ind[y[i]] < s) remove(y[i]);
ans[i - 1] = res;
}
for (int i = 1; i <= m; ++i) {
printf("%d\n", ans[i]);
}
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using pii = pair<int, int>;
const int MAXN = 200010;
int n, m, k;
vector<int> adj[MAXN];
set<int> nadj[MAXN];
int ans[MAXN];
int ins[MAXN];
int deg[MAXN];
int out = 0;
pii ent[MAXN];
void dfs(int v) {
if (ins[v]) return;
out++;
for (auto& it : nadj[v])
if (ins[it]) {
if (deg[it] == k) {
ins[it] = 0;
--deg[it];
dfs(it);
} else
--deg[it];
}
}
int main() {
ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0);
cin >> n >> m >> k;
for (int i = 0; i < m; ++i) {
int a, b;
cin >> a >> b;
--a;
--b;
adj[a].push_back(b);
adj[b].push_back(a);
ent[i] = {a, b};
}
for (int i = 0; i < n; ++i)
if (adj[i].size() >= k) {
deg[i] = k;
}
for (int i = 0; i < n; ++i) {
for (auto& it : adj[i])
if (deg[i] >= k && deg[it] >= k) nadj[i].insert(it);
ins[i] = nadj[i].size() >= k;
ans[m - 1] += (nadj[i].size() >= k);
deg[i] = nadj[i].size();
}
for (int i = m - 1; i >= 0; --i) {
out = 0;
int v = ent[i].first, u = ent[i].second;
if (!ins[v] || !ins[u]) {
if (i) ans[i - 1] = ans[i];
continue;
}
nadj[v].erase(u);
nadj[u].erase(v);
--deg[v];
--deg[u];
if (deg[v] < k) ins[v] = 0;
if (deg[u] < k) ins[u] = 0;
dfs(v);
dfs(u);
if (i) ans[i - 1] = ans[i] - out;
}
for (int i = 0; i < m; ++i) {
cout << ans[i] << "\n";
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
vector<vector<int>> gr;
map<pair<int, int>, bool> was;
vector<int> cnt;
vector<bool> group;
void relax(set<pair<int, int>> &data, int &m, int &n, int &k) {
while (!data.empty() && data.begin()->first < k) {
int v = data.begin()->second;
group[v] = 0;
cnt[v] = 0;
for (int to : gr[v]) {
if (was[{v, to}]) {
continue;
}
if (!group[to]) {
continue;
}
data.erase({cnt[to], to});
cnt[to]--;
data.insert({cnt[to], to});
was[{to, v}] = 1;
was[{v, to}] = 1;
}
data.erase(data.begin());
}
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int n, m, k;
cin >> n >> m >> k;
vector<pair<int, int>> ask;
gr.resize(n);
cnt.resize(n);
group.resize(n, 1);
for (int i = 0; i < m; ++i) {
int a, b;
cin >> a >> b;
--a, --b;
gr[a].push_back(b);
gr[b].push_back(a);
cnt[a]++;
cnt[b]++;
ask.push_back({a, b});
}
set<pair<int, int>> data;
for (int i = 0; i < n; ++i) {
data.insert({cnt[i], i});
}
vector<int> ans;
for (int i = m - 1; i >= 0; --i) {
relax(data, m, n, k);
ans.push_back(data.size());
int a = ask[i].first, b = ask[i].second;
if (!was[{a, b}]) {
data.erase({cnt[a], a});
--cnt[a];
data.erase({cnt[b], b});
--cnt[b];
data.insert({cnt[a], a});
data.insert({cnt[b], b});
}
was[{a, b}] = 1;
was[{b, a}] = 1;
}
for (int i = m - 1; i >= 0; --i) {
cout << ans[i] << "\n";
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | python3 | maxN =200005
G = [None] * maxN
s = set()
k = 0
def delete(v):
global k
if G[v] is not None:
if len(G[v]) < k and (v in s): #Chequeando que deg(v) no es mayor o igual que k
s.remove(v) #Se elimina del conjunto porque no cumple las condiciones
i = 0
while i < len(G[v]):
u = G[v][i]
if v in G[u]:
G[u].remove(v)
delete(u)
i+= 1
#for u in G[v]:
# G[u].discard(v) #Se actualiza la lista de adyacencia
# delete(u) #se repite el proceso para sus vertices adyacentes
def main():
global k
n,m,k = map(int,input().split())
edges = [None] * (m + 1)
ans = [0] * m
for i in range(m): #Añadiendo a G las m aristas
u,v = map(int,input().split())
if G[u] is None:
G[u] = []
if G[v] is None:
G[v] = []
if v not in G[u]:
G[u].append(v)
if u not in G[v]:
G[v].append(u)
edges[i+1] = (u,v)
for i in range(1,n+1): #Insertando los vértices al conjunto X
s.add(i)
for i in range(1,n+1): #Realizando el análisis para el momento en que G tenga todas las aristas
delete(i)
i = m
while i > 0: #Removiendo aristas y analizando
ans[i-1] = len(s)
e = edges[i]
if e[1] in G[e[0]]:
G[e[0]].remove(e[1])
if e[0] in G[e[1]]:
G[e[1]].remove(e[0])
delete(e[0])
delete(e[1])
i-=1
for i in ans:
print(i)
main()
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, m, k;
vector<int> used;
vector<int> selected;
vector<vector<int>> g;
void dfs(int cur) {
if (selected[cur]) {
return;
}
used[cur] = 1;
selected[cur] = 1;
int cnt = 0;
for (auto t : g[cur]) {
if (!used[t]) {
dfs(t);
}
if (selected[t]) {
cnt++;
}
}
if (cnt < k) {
selected[cur] = 0;
}
}
signed main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cin >> n >> m >> k;
g.resize(n);
selected.assign(n, 0);
for (int i = 0; i < m; i++) {
int u, v;
cin >> u >> v;
u--;
v--;
g[u].push_back(v);
g[v].push_back(u);
used.assign(n, 0);
if (!selected[u]) {
dfs(u);
} else if (!selected[v]) {
dfs(v);
}
int cur = 0;
for (int i = 0; i < n; i++) {
cur += selected[i];
}
cout << cur << '\n';
}
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma warning(disable : 4996)
#pragma comment(linker, "/stack:200000000")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("-ffloat-store")
using namespace std;
const int MN = 5e5;
int n, m, k, deg[MN];
set<int> g[MN];
int uu[MN], vv[MN];
int ans[MN];
int del[MN];
int cur;
void slv(int v) {
del[v] = 1;
cur--;
for (int to : g[v]) g[to].erase(v);
for (int to : g[v])
if (--deg[to] < k) slv(to);
deg[v] = 0;
g[v].clear();
}
int main() {
ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cin >> n >> m >> k;
for (int i = 0; i < m; i++) {
int u, v;
cin >> u >> v;
u--;
v--;
g[u].insert(v);
g[v].insert(u);
deg[u]++;
deg[v]++;
uu[i] = u;
vv[i] = v;
}
cur = n;
for (int i = 0; i < n; i++)
if (del[i] == 0 && deg[i] < k) {
slv(i);
}
for (int i = m - 1; i >= 0; i--) {
ans[i] = cur;
if (g[uu[i]].find(vv[i]) != g[uu[i]].end()) {
deg[uu[i]]--;
deg[vv[i]]--;
g[uu[i]].erase(vv[i]);
g[vv[i]].erase(uu[i]);
if (del[uu[i]] == 0 && deg[uu[i]] < k) slv(uu[i]);
if (del[vv[i]] == 0 && deg[vv[i]] < k) slv(vv[i]);
}
}
for (int i = 0; i < m; i++) cout << ans[i] << "\n";
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 10;
int deg[N], incoming[N];
vector<int> g[N];
set<int> G[N];
bool vis[N], mark[N];
int x[N], y[N];
int print[N];
int main() {
std::ios::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
int n, m, k;
cin >> n >> m >> k;
for (int i = 1; i < m + 1; i++) {
cin >> x[i] >> y[i];
g[x[i]].push_back(y[i]);
g[y[i]].push_back(x[i]);
deg[x[i]]++;
deg[y[i]]++;
}
queue<int> q;
for (int i = 1; i < n + 1; i++)
if (deg[i] < k) q.push(i);
while ((int)(q).size()) {
int v = q.front();
q.pop();
vis[v] = true;
for (int u : g[v]) {
--deg[u];
if (deg[u] < k && !vis[u]) {
q.push(u);
vis[u] = true;
}
}
}
for (int i = 1; i < m + 1; i++) {
G[x[i]].insert(y[i]);
G[y[i]].insert(x[i]);
}
memset(vis, false, sizeof(vis));
int r = 0;
for (int i = 1; i < n + 1; i++)
if (deg[i] >= k) ++r;
while ((int)(q).size()) q.pop();
print[m] = r;
for (int i = m + 1 - 1; i >= 2; i--) {
int u = x[i], v = y[i];
if (deg[u] < k || deg[v] < k) {
G[u].erase(v);
G[v].erase(u);
--deg[u], --deg[v];
print[i - 1] = r;
} else {
--deg[u];
--deg[v];
G[u].erase(v);
G[v].erase(u);
if (!vis[u] && deg[u] < k) vis[u] = true, --r, q.push(u);
if (!vis[v] && deg[v] < k) vis[v] = true, --r, q.push(v);
while ((int)(q).size()) {
int v = q.front();
q.pop();
vis[v] = true;
for (int u : G[v]) {
--deg[u];
if (!vis[u] && deg[u] < k) {
vis[u] = true;
--r;
q.push(u);
}
}
G[v].clear();
}
print[i - 1] = r;
}
}
for (int i = 1; i < m + 1; i++) cout << print[i] << endl;
return 0;
}
|
1037_E. Trips | There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends.
We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold:
* Either this person does not go on the trip,
* Or at least k of his friends also go on the trip.
Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends.
For each day, find the maximum number of people that can go on the trip on that day.
Input
The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group.
The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before.
Output
Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i.
Examples
Input
4 4 2
2 3
1 2
1 3
1 4
Output
0
0
3
3
Input
5 8 2
2 1
4 2
5 4
5 2
4 3
5 1
4 1
3 2
Output
0
0
0
3
3
4
4
5
Input
5 7 2
1 5
3 2
2 5
3 4
1 2
5 3
1 3
Output
0
0
0
0
3
4
4
Note
In the first example,
* 1,2,3 can go on day 3 and 4.
In the second example,
* 2,4,5 can go on day 4 and 5.
* 1,2,4,5 can go on day 6 and 7.
* 1,2,3,4,5 can go on day 8.
In the third example,
* 1,2,5 can go on day 5.
* 1,2,3,5 can go on day 6 and 7. | {
"input": [
"4 4 2\n2 3\n1 2\n1 3\n1 4\n",
"5 8 2\n2 1\n4 2\n5 4\n5 2\n4 3\n5 1\n4 1\n3 2\n",
"5 7 2\n1 5\n3 2\n2 5\n3 4\n1 2\n5 3\n1 3\n"
],
"output": [
"0\n0\n3\n3\n",
"0\n0\n0\n3\n3\n4\n4\n5\n",
"0\n0\n0\n0\n3\n4\n4\n"
]
} | {
"input": [
"16 20 2\n10 3\n5 3\n10 5\n12 7\n7 6\n9 12\n9 6\n1 10\n11 16\n11 1\n16 2\n10 2\n14 4\n15 14\n4 13\n13 15\n1 8\n7 15\n1 7\n8 15\n",
"2 1 1\n2 1\n"
],
"output": [
"0\n0\n3\n3\n3\n3\n7\n7\n7\n7\n7\n11\n11\n11\n11\n15\n15\n15\n15\n16\n",
"2\n"
]
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
template <class C, class E>
inline bool contains(const C& container, const E& element) {
return container.find(element) != container.end();
}
template <class T>
inline void checkmin(T& a, T b) {
if (b < a) a = b;
}
template <class T>
inline void checkmax(T& a, T b) {
if (b > a) a = b;
}
using namespace std;
vector<pair<int, int> > fr;
vector<set<int> > gr;
int n, m, k;
vector<bool> inTrip;
vector<int> deg;
int inTripCount;
void Remove(int a, int b) {
gr[a].erase(b);
gr[b].erase(a);
--deg[a];
--deg[b];
}
vector<bool> visited;
void RemAll(queue<int>& toRemove) {
if (toRemove.empty()) return;
while (!toRemove.empty()) {
int iRem = toRemove.front();
inTrip[iRem] = false;
--inTripCount;
toRemove.pop();
vector<int> rem2;
for (int br : gr[iRem]) {
--deg[br];
gr[br].erase(iRem);
if (deg[br] < k && !visited[br]) {
rem2.push_back(br);
visited[br] = true;
toRemove.push(br);
}
}
gr[iRem].clear();
deg[iRem] = 0;
}
}
void Process(pair<int, int> p) {
if (!contains(gr[p.first], p.second)) return;
Remove(p.first, p.second);
queue<int> toRemove;
if (deg[p.first] < k) toRemove.push(p.first);
if (deg[p.second] < k) toRemove.push(p.second);
RemAll(toRemove);
}
void Init() {
queue<int> toRemove;
for (int i = (0), _b = ((n)-1); i <= _b; i++) {
if (deg[i] < k) toRemove.push(i);
}
RemAll(toRemove);
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
cout << std::setprecision(15);
cout << std::fixed;
cin >> n >> m >> k;
fr.resize(m);
gr.resize(n);
deg.resize(n);
visited.resize(n);
inTrip.resize(n, true);
inTripCount = n;
for (int i = (0), _b = ((m)-1); i <= _b; i++) {
int a, b;
cin >> a >> b;
--a;
--b;
fr[i] = make_pair(a, b);
gr[a].insert(b);
gr[b].insert(a);
++deg[a];
++deg[b];
}
Init();
vector<int> res;
for (int i = (m - 1), _b = (0); i >= _b; i--) {
res.push_back(inTripCount);
if (i != 0) Process(fr[i]);
}
for (int i = (m - 1), _b = (0); i >= _b; i--) {
cout << res[i] << endl;
}
return 0;
}
|
Subsets and Splits