prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ This module provides infrastructure to verify the correctness of the command stream produced. Currently it will invoke vela to generate a vela-optimized tflite in which the command stream is contained as a custom operator. This class include methods to parse the custom operator to extract the command stream and perform an equivalency check for single operator test cases. """ from typing import List import os import struct import numpy from enum import IntEnum from ethosu.vela.register_command_stream_generator import CmdMode from ethosu.vela.register_command_stream_generator import cmd0 from ethosu.vela.register_command_stream_generator import cmd1 import tvm from tvm import relay import tvm.relay.backend.contrib.ethosu.op as ethosu_ops from tvm.topi.nn.utils import get_pad_tuple from tests.python.relay.aot.aot_test_utils import ( AOTCompiledTestModel, AOTDataLinkage, AOTTestModel, AOTTestRunner, compile_models, run_and_check, ) class AttachType(IntEnum): kGroupRoot = 1 kInline = 2 kInlinedAlready = 3 kScope = 4 kScanUpdate = 5 class VelaArtifacts: def __init__(self): self.cs = dict() self.flash = dict() self.sram = dict() self.npu_ops = set() def parse_relay_tflite_model(tflite_model, input_tensor, input_shape, input_dtype): mod_, params_ = relay.frontend.from_tflite( tflite_model, shape_dict={input_tensor: input_shape}, dtype_dict={input_tensor: input_dtype}, ) return mod_, params_ def parse_tflite_model(model_file): try: import tflite return tflite.Model.GetRootAsModel(model_file, 0) except AttributeError: import tflite.Model return tflite.Model.Model.GetRootAsModel(model_file, 0) def print_payload(payload): cmds = deserialize_command_stream(payload) for cmd_val in cmds: cmd, val = parse_cmd(cmd_val) s = str(cmd) s = s.ljust(40) s += str(val) print(s) def parse_cmd(binary_cmd): code = binary_cmd[0] & 0x0000FFFF # lower 16 bits param = binary_cmd[0] >> 16 # higher 16 bits payload_mode = CmdMode(code & CmdMode.Mask) if payload_mode == CmdMode.Payload32: command = cmd1(code & CmdMode.CmdOpMask) value = binary_cmd[1] else: command = cmd0(code & CmdMode.CmdOpMask) value = param return command, value def check_cmms_equivalency(vela_cmd, vela_value, tvm_value, ignore_cmds=None): if ignore_cmds is None: ignore_cmds = [] if vela_value != tvm_value and vela_cmd not in ignore_cmds: raise RuntimeError( "ValueMismatch :: vela={}, tvm={} for command:{}".format( vela_value, tvm_value, vela_cmd ) ) def verify_cmms(cmms_tvm_blob, cmms_vela_blob): vela_cmm = deserialize_command_stream(cmms_vela_blob) tvm_cmm = deserialize_command_stream(cmms_tvm_blob) cmms_zip = zip(vela_cmm, tvm_cmm) first_ifm_found = False last_ofm_found = False ignore_commands = ( cmd1.NPU_SET_DMA0_SRC, cmd1.NPU_SET_DMA0_DST, cmd1.NPU_SET_WEIGHT_BASE, cmd1.NPU_SET_OFM_BASE0, cmd1.NPU_SET_IFM_BASE0, cmd1.NPU_SET_SCALE_BASE, ) ofm_region_params = [] ofm_bases = [] for vela_cmm, tvm_cmm in cmms_zip: vela_cmd, vela_value = parse_cmd(vela_cmm) tvm_cmd, tvm_value = parse_cmd(tvm_cmm) assert vela_cmd == tvm_cmd # The first IFM region could be different, but it needs to be 1 and 3. if vela_cmd == cmd0.NPU_SET_IFM_REGION and not first_ifm_found: if vela_value == 1 and tvm_value == 3: first_ifm_found = True continue if vela_cmd == cmd1.NPU_SET_IFM_BASE0 and not first_ifm_found: if tvm_value != 0: raise RuntimeError("ValueError :: tvm primary ifm base should be zero") continue # OFM regions should be cached to be checked later if vela_cmd == cmd0.NPU_SET_OFM_REGION: ofm_region_params.append((vela_value, tvm_value)) continue # OFM bases should be cached to be checked later if vela_cmd == cmd1.NPU_SET_OFM_BASE0: ofm_bases.append((vela_value, tvm_value)) continue check_cmms_equivalency(vela_cmd, vela_value, tvm_value, ignore_commands) # The last OFM region could be different but it should be 1 and 4. last_vela_ofm_region, last_tvm_ofm_region = ofm_region_params.pop(-1) if not (last_vela_ofm_region == 1 and last_tvm_ofm_region == 4): raise RuntimeError( "ValueMismatch :: vela={}, tvm={} for last ofm region it should be 1 and 4 respectively".format( last_vela_ofm_region, last_tvm_ofm_region ) ) # The rest of the OFM regions should be the same. for vela_value, tvm_value in ofm_region_params: check_cmms_equivalency(vela_cmd, vela_value, tvm_value, ignore_commands) # The last OFM base should be zero for tvm _, last_tvm_ofm_base = ofm_bases.pop(-1) if not last_tvm_ofm_base == 0: raise RuntimeError("ValueError :: tvm primary ofm base should be zero") def deserialize_command_stream(blob): assert isinstance(blob, bytes) payload_bytes = struct.unpack("<{0}I".format(len(blob) // 4), blob) cmms = [] # remove_header payload_bytes = payload_bytes[8:] idx = 0 while idx < len(payload_bytes): cmd = [] code = payload_bytes[idx] idx += 1 cmd.append(code) payload_mode = CmdMode(code & CmdMode.Mask) if payload_mode == CmdMode.Payload32: value = payload_bytes[idx] idx += 1 cmd.append(value) cmms.append(cmd) return cmms def _create_test_runner(accel): file_dir = os.path.dirname(os.path.abspath(__file__)) test_root = os.path.join(file_dir, "reference_system") ethosu_macs = accel[accel.rfind("-") + 1 :] return AOTTestRunner( makefile="corstone300", prologue=""" uart_init(); EthosuInit(); """, includes=["uart.h", "ethosu_55.h", "ethosu_mod.h", "hard_fault.h"], parameters={"ETHOSU_TEST_ROOT": test_root, "NPU_VARIANT": ethosu_macs}, pass_config={ "relay.ext.ethosu.options": { "accelerator_config": accel, } }, ) def build_source(module, inputs, outputs, accel="ethos-u55-256", output_tolerance=0): test_runner = _create_test_runner(accel) return compile_models( models=AOTTestModel( module=module, inputs=inputs, outputs=outputs, output_tolerance=output_tolerance, extra_memory_in_bytes=16 * 1024 * 1024, ), interface_api="c", use_unpacked_api=True, workspace_byte_alignment=16, pass_config=test_runner.pass_config, ) def verify_source( models: List[AOTCompiledTestModel], accel="ethos-u55-256", ): """ This method verifies the generated source from an NPU module by building it and running on an FVP. """ interface_api = "c" test_runner = _create_test_runner(accel) run_and_check( models, test_runner, interface_api, workspace_byte_alignment=16, data_linkage=AOTDataLinkage(section="ethosu_scratch", alignment=16), ) def flatten_numpy_data(data): """Flatten the numpy tensor to be single dimensional""" total_elements = data.size reshaped_data =
numpy.reshape(data, [total_elements])
numpy.reshape
import numpy as np from astropy.table import Table from astropy.io import ascii from astropy import units as u from sys import argv import sys import randhom as rh #___________________________________ # Load settings from configparser import ConfigParser filename = rh.check_file(argv) config = ConfigParser() config.read(filename) #___________________________________ # Prepare experiment p = rh.load_parameters(config._sections) from os import listdir xi_files = listdir(p.input_dir) rh.test_r_len(p.input_dir + xi_files[0], p.nr) #___________________________________ # compute xi0_rs, xi2_rs, xi4_rs = [], [], [] for xi_file in xi_files[:p.nfiles_max]: cnames=['xi_0','xi_2','xi_4','xi_6'] xil_rs = ascii.read(p.input_dir + xi_file,names=cnames) xi0_rs.append( xil_rs['xi_0'].data ) xi2_rs.append( xil_rs['xi_2'].data ) xi4_rs.append( xil_rs['xi_4'].data ) mean_xi0_rs = np.mean(xi0_rs, axis=0) mean_xi2_rs =
np.mean(xi2_rs, axis=0)
numpy.mean
import mmcv import numpy as np import os.path as osp import cv2 import matplotlib.pyplot as plt import random import argparse import cv2 import torch from torch.utils.data import Dataset import numpy as np # from tensorboardX import SummaryWritter from pysot.core.config import cfg from pysot.models.model_builder import ModelBuilder from pysot.tracker.tracker_builder import build_tracker import datetime import time import pickle from multiprocessing import Pool from torch import multiprocessing _TIMESTAMP_BIAS = 600 _TIMESTAMP_START = 840 # 60*14min _TIMESTAMP_END = 1860 # 60*31min _FPS = 30 torch.set_num_threads(0) parser = argparse.ArgumentParser(description='tracking demo') parser.add_argument('--config', type=str, help='config file') parser.add_argument('--snapshot', type=str, help='model name') parser.add_argument('--video_name', default='', type=str, help='videos or image files') args = parser.parse_args() cfg.merge_from_file(args.config) cfg.CUDA = True # device = torch.device('cuda') # random.seed(1) # Firstly Load Proposal random.seed(0) np.random.seed(0) torch.manual_seed(0) torch.cuda.manual_seed(0) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False class Tracking_Proposal(object): def __init__(self, img_prefix, proposal_path, video_stat_file, new_length=32, new_step=2, with_pysot=True, with_shuffle=False, num_gpus=1, num_workers=1): self.img_prefix = img_prefix self.new_step = new_step self.new_length = new_length self.proposal_dict, self.org_proposal_dict = self.load_proposal(proposal_path) self.video_stats = dict([tuple(x.strip().split(' ')) for x in open(video_stat_file)]) self.with_model = False self.with_pysot = with_pysot self.with_shuffle = with_shuffle self.result_dict = {} self.num_gpus = num_gpus self.num_workers = num_workers def load_proposal(self, path): proposal_dict = mmcv.load(path) convert_dict = {} for key, value in proposal_dict.items(): video_id, frame = key.split(',') if convert_dict.get(video_id,None) is None: convert_dict[video_id] = {} elif convert_dict[video_id].get(frame, None) is None: convert_dict[video_id][frame] = {} convert_dict[video_id][frame] = value return convert_dict, proposal_dict def _load_image(self, directory, image_tmpl, modality, idx): if modality in ['RGB', 'RGBDiff']: return mmcv.imread(osp.join(directory, image_tmpl.format(idx))) elif modality == 'Flow': x_imgs = mmcv.imread( osp.join(directory, image_tmpl.format('x', idx)), flag='grayscale') y_imgs = mmcv.imread( osp.join(directory, image_tmpl.format('y', idx)), flag='grayscale') return [x_imgs, y_imgs] else: raise ValueError( 'Not implemented yet; modality should be ' '["RGB", "RGBDiff", "Flow"]') def spilit_proposal_dict(self): keys = list(self.proposal_dict.keys()) if self.with_shuffle: random.shuffle(keys) shuffle_dict = [(key, self.proposal_dict[key]) for key in keys] video_per_gpu = int(len(shuffle_dict) // (self.num_gpus*self.num_workers)) self.sub_shuffle_dict_list = [shuffle_dict[i * video_per_gpu:(i + 1) * video_per_gpu] if i != self.num_gpus - 1 else shuffle_dict[i * video_per_gpu:] for i in range(self.num_gpus*self.num_workers)] self.shuffle_dict = shuffle_dict def spilit_org_proposal_dict(self): keys = list(self.org_proposal_dict.keys()) if self.with_shuffle: random.shuffle(keys) shuffle_dict = [(key, self.org_proposal_dict[key]) for key in keys if True or '-5KQ66BBWC' in key and 900<=int(key[-4:])<=950] video_per_gpu = int(len(shuffle_dict) // (self.num_gpus*self.num_workers)) self.sub_shuffle_dict_list = [shuffle_dict[i * video_per_gpu:(i + 1) * video_per_gpu] if i != (self.num_gpus*self.num_workers) - 1 else shuffle_dict[i * video_per_gpu:] for i in range(self.num_gpus*self.num_workers)] # [print((i*video_per_gpu,(i+1)*video_per_gpu)) if i != (self.num_gpus*self.num_workers-1) else print(i*video_per_gpu,len(shuffle_dict)) for i in range(self.num_gpus*self.num_workers)] self.shuffle_dict = shuffle_dict def tracking(self, index): # self.spilit_dict() self.index = index self.spilit_org_proposal_dict() if self.with_pysot: self.init_tracker() # for video_id, frame_info in self.sub_shuffle_dict_list[index]: # cnt = 0 len_proposal = sum([len(proposals) for frame_info,proposals in self.sub_shuffle_dict_list[index]]) print("Process:{},proposal lenght:{}".format(self.index, len_proposal)) cnt_time = 0 cnt_proposal = 0 begin = time.time() cnt = 0 for id_frame, (frame_info, proposals) in enumerate(self.sub_shuffle_dict_list[index]): video_id, timestamp = frame_info.split(',') indice = _FPS * (int(timestamp) - _TIMESTAMP_START) + 1 image_tmpl = 'img_{:05}.jpg' # forward tracking self.result_dict[frame_info] = [] for ik, proposal in enumerate(proposals): new_proposals = [] # begin = time.time() # if ik != 9: # continue width, height = [int(ll) for ll in self.video_stats[video_id].split('x')] ROI = np.array([int(x) for x in (proposal * np.array([ width, height, width, height, 1 ]))[:4]]) track_window = tuple(np.concatenate([ROI[:2],ROI[-2:]-ROI[:2]],axis=0).tolist()) ann_frame = self._load_image(osp.join(self.img_prefix, video_id), image_tmpl, 'RGB', indice) if False or frame_info == '-5KQ66BBWC4,0934' and False: plt.imshow(ann_frame[:,:,::-1]) color = (random.random(), random.random(), random.random()) rect = plt.Rectangle((track_window[0],track_window[1]), track_window[2], track_window[3], fill=False, edgecolor=color, linewidth=5) plt.gca().add_patch(rect) plt.show() self.init_frame(ann_frame, track_window) # Forcasting Tracking p = indice - self.new_step for i, ind in enumerate( range(-2, -(self.new_length+1), -self.new_step)): unann_frame = self._load_image(osp.join(self.img_prefix, video_id), image_tmpl, 'RGB', p) if self.with_pysot: track_window = self.pysot_tracking_roi(track_window, key_frame=ann_frame, tracked_frame=unann_frame, vis= frame_info == '-5KQ66BBWC4,0934' and False) else: track_window = self.cv2_tracking_roi(track_window, org_frame=ann_frame, tracked_frame=unann_frame) new_proposals = [np.array(track_window) / np.array([width, height, width, height])] + new_proposals # self.result_dict['{},{},{},{}'.format(video_id, '{:04d}'.format(int(timestamp)), ik, ind)] = np.array(track_window) / np.array([width, height, width, height]) ann_frame = unann_frame.copy() p -= self.new_step if frame_info == '-5KQ66BBWC4,0934' and False: print(self.index, np.array(ROI) / np.array([width, height, width, height]), np.array(track_window) / np.array([width, height, width, height])) track_window = tuple(np.concatenate([ROI[:2], ROI[-2:] - ROI[:2]], axis=0).tolist()) ann_frame = self._load_image(osp.join(self.img_prefix, video_id), image_tmpl, 'RGB', indice) # self.result_dict['{},{},{},{}'.format(video_id, '{:04d}'.format(int(timestamp)), proposal, new_proposals.append(np.array(ROI) /
np.array([width, height, width, height])
numpy.array
import numpy as np from experiments import data_source from experiments import data_transformation from savigp.kernel import ExtRBF from savigp.likelihood import UnivariateGaussian, SoftmaxLL from savigp import Savigp from sklearn.metrics import accuracy_score from sklearn.decomposition import PCA # define an automatic obtain kernel function. def get_kernels(input_dim, num_latent_proc, variance = 1, lengthscale = None, ARD = False): return [ExtRBF( input_dim, variance = variance, lengthscale=np.array((1.,)) if lengthscale is None else lengthscale, ARD=ARD ) for _ in range(num_latent_proc)] # Load the boston dataset. dataS = data_source.mnist_data()[0] dim = dataS['train_outputs'].shape[1] data_pca = {} comp_dims = 20 print("compressed with PCA") pca = PCA(comp_dims) pca.fit(dataS["train_inputs"]) data_pca["train_inputs"] = pca.transform(dataS["train_inputs"]) data_pca["test_inputs"] = pca.transform(dataS["test_inputs"]) data_pca["train_outputs"] = dataS["train_outputs"] data_pca["test_outputs"] = dataS["test_outputs"] # data_pca["train_outputs"] = np.argmax(dataS["train_outputs"], axis=1).reshape(-1,1) # data_pca["test_outputs"] = np.argmax(dataS["test_outputs"], axis=1).reshape(-1,1) data = data_pca print(data["train_inputs"][0]) print(data["train_outputs"][0]) # print(dim) # data = data_source.boston_data()[0] # print(data['test_outputs']) # print(np.argmax(data['test_outputs'], axis = 1)) SF = 0.01 # Define a univariate Gaussian likelihood function with a variance of 1. print("Define the softmax likelihood.") # likelihood = UnivariateGaussian(np.array([1.0])) likelihood = SoftmaxLL(dim) # Define a radial basis kernel with a variance of 5, lengthscale of and ARD disabled. print("Define a kernel") kernel = get_kernels(data["train_inputs"].shape[1], dim, variance=5, lengthscale=np.array((2.,))) # Set the number of inducing points to be half of the training data. num_inducing = int(SF * data['train_inputs'].shape[0]) # Transform the data before training. print("data transformation") transform = data_transformation.IdentityTransformation(data['train_inputs'], data['train_outputs']) train_inputs = transform.transform_X(data['train_inputs']) train_outputs = transform.transform_Y(data['train_outputs']) test_inputs = transform.transform_X(data['test_inputs']) # Initialize the model. print("initialize the model") gp = Savigp( likelihood=likelihood, kernels=kernel, num_inducing=num_inducing, # random_inducing=True, partition_size=3000, debug_output=True ) # Now fit the model to our training data. print("fitting") gp.fit( train_inputs, train_outputs, num_threads=6, optimization_config={'hyp': 15, "mog": 60, "inducing": 15}, max_iterations=300, optimize_stochastic=False ) # Make predictions. The third output is NLPD which is set to None unless test outputs are also # provided. print("make a prediction") train_pred, _, _ = gp.predict(data['train_inputs']) # predicted_mean, predicted_var, _ = gp.predict(data['test_inputs']) predicted_mean, _, _ = gp.predict(data['test_inputs']) # Untransform the results. predicted_mean = transform.untransform_Y(predicted_mean) train_pred = transform.untransform_Y(train_pred) # predicted_var = transform.untransform_Y_var(predicted_var) test_outputs = data['test_outputs'] # Print the accuracy # train_acc = accuracy_score(np.argmax(train_pred, axis=1), data["train_outputs"]) train_acc = accuracy_score(
np.argmax(train_pred, axis=1)
numpy.argmax
import numpy as np import matplotlib.pyplot as plt p_arr = np.linspace(0.9, 0.999, 6) L = 10000 s = np.arange(1, L + 1) nsp = lambda s, p: (1 - p) ** 2 * p ** s for p in p_arr: plt.loglog(-s *
np.log(p)
numpy.log
'''Implementation of the Regularized Convolutional Neural Fitted Q-Iteration (RC-NFQ) algorithm. ''' import numpy as np import time from keras.models import Sequential, Graph from keras.layers.core import Dense, Activation, Flatten, Dropout from keras.layers.convolutional import Convolution2D from keras.optimizers import RMSprop from keras.callbacks import RemoteMonitor from keras.callbacks import ModelCheckpoint class NFQ: """Regularized Convolutional Neural Fitted Q-Iteration (RC-NFQ) References: - <NAME>. "Neural fitted Q iteration-first experiences with a data efficient neural reinforcement learning method." Machine Learning: ECML 2005. Springer Berlin Heidelberg, 2005. 317-328. - <NAME> al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529-533. - <NAME>. "Self-improving reactive agents based on reinforcement learning, planning and teaching." Machine learning 8.3-4 (1992): 293-321. - <NAME> (2016). "Regularized Convolutional Neural Fitted Q-Iteration." Manuscript in preparation. """ def __init__(self, state_dim, nb_actions, terminal_states, convolutional=False, mlp_layers=[20, 20], discount_factor=0.99, separate_target_network=False, target_network_update_freq=None, lr=0.01, max_iters=20000): """Create an instance of the NFQ algorithm for a particular agent and environment. Parameters ---------- state_dim : The state dimensionality. An integer if convolutional = False, a 2D tuple otherwise. nb_actions : The number of possible actions terminal_states : The integer indices of the terminal states convolutional : Boolean. When True, uses convolutional neural networks and dropout regularization. Otherwise, uses a simple MLP. mlp_layers : A list consisting of an integer number of neurons for each hidden layer. Default = [20, 20]. For convolutional = False. discount_factor : The discount factor for Q-learning. separate_target_network: boolean - If True, then it will use a separate Q-network for computing the targets for the Q-learning updates, and the target network will be updated with the parameters of the main Q-network every target_network_update_freq iterations. target_network_update_freq : The frequency at which to update the target network. lr : The learning rate for the RMSprop gradient descent algorithm. max_iters : The maximum number of iterations that will be performed. Used to allocate memory for NumPy arrays. Default = 20000. max_q_predicted : The maximum number of Q-values that will be predicted. Used to allocate memory for NumPy arrays. Default = 100000. """ self.convolutional = convolutional self.separate_target_network = separate_target_network self.k = 0 # Keep track of the number of iterations self.discount_factor = discount_factor self.nb_actions = nb_actions self.state_dim = state_dim self.lr = lr self._loss_history = np.zeros((max_iters)) self._loss_history_test = np.zeros((max_iters)) self._q_predicted = np.empty((max_q_predicted), dtype=np.float32) self._q_predicted[:] = np.NAN self._q_predicted_counter = 0 self.terminal_states = terminal_states if self.convolutional: self.Q = self._init_convolutional_NFQ() else: self.Q = self._init_MLP(mlp_layers=mlp_layers) if self.separate_target_network: assert target_network_update_freq is not None if self.convolutional: self.Q_target = self._init_convolutional_NFQ() else: self.Q_target = self._init_MLP(mlp_layers=mlp_layers) # Copy the initial weights from the Q network self.Q_target.set_weights(self.Q.get_weights()) self.target_network_update_freq = target_network_update_freq def __str__(self): """Print the current Q function and value function.""" string = "" if self.convolutional: string += 'Tabular values not available for NFQ with a ' + \ 'Convolutional Neural Network function approximator.' else: for s in np.arange(self.state_dim): for a in
np.arange(self.nb_actions)
numpy.arange
import os import time from collections import OrderedDict from contextlib import contextmanager from functools import partial from typing import * import imageio import mltk import numpy as np import tensorflow as tf import tfsnippet as spt from tensorflow.contrib.framework import add_arg_scope from tensorflow.python.framework.errors_impl import ResourceExhaustedError from ood_regularizer.experiment.datasets.celeba import load_celeba from .global_config import global_config __all__ = [ 'TensorLike', 'get_activation_fn', 'get_kernel_regularizer', 'create_optimizer', 'get_scope_name', 'GraphNodes', 'batch_norm_2d', 'get_z_moments', 'unit_ball_regularization_loss', 'conv2d_with_output_shape', 'deconv2d_with_output_shape', 'NetworkLogger', 'NetworkLoggers', 'DummyNetworkLogger', 'get_network_logger', 'Timer', 'save_images_collection', 'find_largest_batch_size', ] TensorLike = Union[tf.Tensor, spt.StochasticTensor] def get_activation_fn(): activation_functions = { 'leaky_relu': tf.nn.leaky_relu, 'relu': tf.nn.relu, } return activation_functions[global_config.activation_fn] def get_kernel_regularizer(): return spt.layers.l2_regularizer(global_config.kernel_l2_reg) def create_optimizer(name: str, learning_rate: Union[float, TensorLike] ) -> tf.train.Optimizer: optimizer_cls = { 'Adam': tf.train.AdamOptimizer, }[name] return optimizer_cls(learning_rate) def get_scope_name(default_name: str, name: Optional[str] = None, obj: Optional[Any] = None): return spt.utils.get_default_scope_name(name or default_name, obj) class GraphNodes(Dict[str, TensorLike]): """A dict that maps name to TensorFlow graph nodes.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) for k, v in self.items(): if not spt.utils.is_tensor_object(v): raise TypeError(f'The value of `{k}` is not a tensor: {v!r}.') def eval(self, session: tf.Session = None, feed_dict: Dict[tf.Tensor, Any] = None) -> Dict[str, Any]: """ Evaluate all the nodes with the specified `session`. Args: session: The TensorFlow session. feed_dict: The feed dict. Returns: The node evaluation outputs. """ if session is None: session = spt.utils.get_default_session_or_error() keys = list(self) tensors = [self[key] for key in keys] outputs = session.run(tensors, feed_dict=feed_dict) return dict(zip(keys, outputs)) def add_prefix(self, prefix: str) -> 'GraphNodes': """ Add a common prefix to all metrics in this collection. Args: prefix: The common prefix. """ return GraphNodes({f'{prefix}{k}': v for k, v in self.items()}) @add_arg_scope def batch_norm_2d(input: TensorLike, scope: str, training: Union[bool, TensorLike] = False) -> tf.Tensor: """ Apply batch normalization on 2D convolutional layer. Args: input: The input tensor. scope: TensorFlow variable scope. training: Whether or not the model is under training stage? Returns: The normalized tensor. """ with tf.variable_scope(scope): input, s1, s2 = spt.ops.flatten_to_ndims(input, ndims=4) output = tf.layers.batch_normalization( input, axis=-1, training=training, name='norm' ) output = spt.ops.unflatten_from_ndims(output, s1, s2) return output def get_z_moments(z: TensorLike, value_ndims: int, name: Optional[str] = None) -> Tuple[tf.Tensor, tf.Tensor]: value_ndims = spt.utils.validate_enum_arg( 'value_ndims', value_ndims, [1, 3]) if value_ndims == 1: z = spt.utils.InputSpec(shape=['...', '*']).validate('z', z) else: z = spt.utils.InputSpec(shape=['...', '?', '?', '*']).validate('z', z) with tf.name_scope(name, default_name='get_z_moments', values=[z]): rank = len(spt.utils.get_static_shape(z)) if value_ndims == 1: axes = list(range(0, rank - 1)) else: axes = list(range(0, rank - 3)) mean, variance = tf.nn.moments(z, axes=axes) return mean, variance def unit_ball_regularization_loss(mean: TensorLike, var: TensorLike, desired_var: Optional[float] = 1., name: Optional[str] = None) -> tf.Tensor: mean = tf.convert_to_tensor(mean) var = tf.convert_to_tensor(var) with tf.name_scope(name, default_name='unit_ball_regularization_loss', values=[mean, var]): loss = tf.reduce_mean(tf.square(mean)) if desired_var is not None: loss += tf.reduce_mean(tf.square(var - desired_var)) return loss def get_strides_for_conv(input_size, output_size, kernel_size): input_size = int(input_size) output_size = int(output_size) if output_size > input_size: raise ValueError('`output_size` must <= `input_size`: output_size {} ' 'vs input_size {}'.format(output_size, input_size)) for j in range(1, input_size + 1): out_size = (input_size + j - 1) // j if out_size == output_size: return j raise ValueError('No strides can transform input_size {} into ' 'output_size {} with a convolution operation'. format(input_size, output_size)) def get_strides_for_deconv(input_size, output_size, kernel_size): input_size = int(input_size) output_size = int(output_size) if output_size < input_size: raise ValueError('`output_size` must >= `input_size`: output_size {} ' 'vs input_size {}'.format(output_size, input_size)) for j in range(1, output_size + 1): in_size = (output_size + j - 1) // j if in_size == input_size: return j raise ValueError('No strides can transform input_size {} into ' 'output_size {} with a deconvolution operation'. format(input_size, output_size)) def conv2d_with_output_shape(conv_fn, input: TensorLike, output_shape: Iterable[int], kernel_size: Union[int, Tuple[int, int]], network_logger: Optional['NetworkLogger'] = None, **kwargs) -> tf.Tensor: """ 2D convolutional layer, with `strides` determined by the input shape and output shape. Args: conv_fn: The convolution function. input: The input tensor, at least 4-d, `(...,?,H,W,C)`. output_shape: The output shape, `(H,W,C)`. kernel_size: Kernel size over spatial dimensions. network_logger: If specified, log the transformation. \\**kwargs: Other named arguments passed to `conv_fn`. Returns: The output tensor. """ input = (spt.utils.InputSpec(shape=['...', '?', '*', '*', '*']). validate('input', input)) input_shape = spt.utils.get_static_shape(input)[-3:] output_shape = tuple(output_shape) assert (len(output_shape) == 3 and None not in output_shape) # compute the strides strides = [ get_strides_for_conv(input_shape[i], output_shape[i], kernel_size) for i in [0, 1] ] # wrap network_logger if necessary if network_logger is not None: fn = partial(network_logger.log_apply, conv_fn, input) else: fn = partial(conv_fn, input) # derive output by convolution ret = fn( out_channels=output_shape[-1], kernel_size=kernel_size, strides=strides, channels_last=True, **kwargs ) # validate the output shape spt.utils.InputSpec(shape=('...', '?') + output_shape).validate('ret', ret) return ret def deconv2d_with_output_shape(deconv_fn, input: TensorLike, output_shape: Iterable[int], kernel_size: Union[int, Tuple[int, int]], network_logger: Optional['NetworkLogger'] = None, **kwargs) -> tf.Tensor: """ 2D deconvolutional layer, with `strides` determined by the input shape and output shape. Args: deconv_fn: The deconvolution function. input: The input tensor, at least 4-d, `(...,?,H,W,C)`. output_shape: The output shape, `(H,W,C)`. kernel_size: Kernel size over spatial dimensions. network_logger: If specified, log the transformation. \\**kwargs: Other named arguments passed to `conv_fn`. Returns: The output tensor. """ input = (spt.utils.InputSpec(shape=['...', '?', '*', '*', '*']). validate('input', input)) input_shape = spt.utils.get_static_shape(input)[-3:] output_shape = tuple(output_shape) assert (len(output_shape) == 3 and None not in output_shape) # compute the strides strides = [ get_strides_for_deconv(input_shape[i], output_shape[i], kernel_size) for i in [0, 1] ] # wrap network_logger if necessary if network_logger is not None: fn = partial(network_logger.log_apply, deconv_fn, input) else: fn = partial(deconv_fn, input) # derive output by convolution ret = fn( out_channels=output_shape[-1], output_shape=output_shape[:-1], kernel_size=kernel_size, strides=strides, channels_last=True, **kwargs ) # validate the output shape spt.utils.InputSpec(shape=('...', '?') + output_shape).validate('ret', ret) return ret class NetworkLogger(object): """ Class to log the high-level human readable network structures. Although TensorFlow computation graph has enough information to figure out what exactly the network architecture is, it is too verbose, and is not a very easy tool to diagnose the network structure. Thus we have this class to log some high-level human readable network structures. """ def __init__(self): """Construct a new :class:`NetworkLogger`.""" self._logs = [] @property def logs(self) -> List[str]: return self._logs def log(self, input: TensorLike, transform: str, output: TensorLike): """ Log a transformation. Args: input: The input tensor. transform: The transformation description. output: The output tensor. """ self._logs.append((input, str(transform), output)) def log_apply(self, fn: Callable[..., tf.Tensor], input: TensorLike, log_arg_names_: Iterable[str] = ( 'units', # for dense 'strides', 'kernel_size', # for conv & deconv 'shortcut_kernel_size', # for resnet 'vertical_kernel_size', 'horizontal_kernel_size', # for pixelcnn 'name', 'scope', # for general layers 'ndims', 'shape', # for reshape_tail 'rate', # for dropout ), *args, **kwargs) -> tf.Tensor: """ Do a transformation and log it. Args: fn: The transformation function, with accepts `input` as its first argument. input: The input tensor. log_arg_names_: Names of the arguments in `kwargs` to be logged. *args: The arguments. \\**kwargs: The named arguments. """ fn_name = fn.__name__ or repr(fn) if log_arg_names_: fn_args = [] log_arg_names_ = tuple(log_arg_names_) for key in log_arg_names_: if key in kwargs: fn_args.append('{}={!r}'.format(key, kwargs[key])) if fn_args: fn_name = fn_name + '({})'.format(','.join(fn_args)) ret = fn(input, *args, **kwargs) self.log(input, fn_name, ret) return ret class DummyNetworkLogger(NetworkLogger): """ A dummy network logger that logs nothing. """ def log(self, input: TensorLike, transform: str, output: TensorLike): pass def log_apply(self, fn, input, log_arg_names_=(), *args, **kwargs): return fn(input, *args, **kwargs) class NetworkLoggers(object): """Class to maintain a collection of :class:`NetworkLogger` instances.""" def __init__(self): self._loggers = OrderedDict() def get_logger(self, name: str) -> NetworkLogger: """ Get a :class:`NetworkLogger` with specified `name`. Args: name: Name of the network. Returns: The network logger instance. """ if name not in self._loggers: self._loggers[name] = NetworkLogger() return self._loggers[name] def format_logs(self, title: str = 'Network Structure') -> str: """ Format the network structure log. Args: title: Title of the log. Returns: The formatted log. """ def format_shape(t): if isinstance(t, spt.layers.PixelCNN2DOutput): shape = spt.utils.get_static_shape(t.horizontal) else: shape = spt.utils.get_static_shape(t) shape = ['?' if s is None else str(s) for s in shape] return '(' + ','.join(shape) + ')' table = spt.utils.ConsoleTable(3, col_align=['<', '^', '>']) table.add_title(title) table.add_hr('=') for key in self._loggers: logger = self._loggers[key] table.add_skip() table.add_title('{} Structure'.format(key)) table.add_row(['x', 'y=f(x)', 'y']) table.add_hr('-') if len(logger.logs) > 0: for x, transform, y in logger.logs: table.add_row([format_shape(x), transform, format_shape(y)]) else: table.add_row(['', '(null)', '']) return str(table) def print_logs(self, title: str = 'Network Structure'): """ Print the network structure log. Args: title: Title of the log. """ print(self.format_logs(title)) @contextmanager def as_default(self) -> Generator['NetworkLoggers', None, None]: """Push this object to the top of context stack.""" try: _network_loggers_stack.push(self) yield self finally: _network_loggers_stack.pop() _network_loggers_stack = spt.utils.ContextStack() def get_network_logger(name: str) -> NetworkLogger: """ Get a :class:`NetworkLogger` from the default loggers collection. Args: name: Name of the network. Returns: The network logger instance. """ if _network_loggers_stack.top() is None: return DummyNetworkLogger() else: return _network_loggers_stack.top().get_logger(name) class Timer(object): """A very simple timer.""" def __init__(self): self._time_ticks = [] self.restart() def timeit(self, tag): self._time_ticks.append((tag, time.time())) def print_logs(self): if len(self._time_ticks) > 1: print( mltk.format_key_values( [ (tag, spt.utils.humanize_duration(stop - start)) for (_, start), (tag, stop) in zip( self._time_ticks[:-1], self._time_ticks[1:] ) ], title='Time Consumption', ) ) print('') def restart(self): self._time_ticks = [(None, time.time())] def save_images_collection(images: np.ndarray, filename: str, grid_size: Tuple[int, int], border_size: int = 0): """ Save a collection of images as a large image, arranged in grid. Args: images: The images collection. Each element should be a Numpy array, in the shape of ``(H, W)``, ``(H, W, C)`` (if `channels_last` is :obj:`True`) or ``(C, H, W)``. filename: The target filename. grid_size: The ``(rows, columns)`` of the grid. border_size: Size of the border, for separating images. (default 0, no border) """ # check the arguments def validate_image(img): if len(img.shape) == 2: img =
np.reshape(img, img.shape + (1,))
numpy.reshape
""" Most codes from https://github.com/carpedm20/DCGAN-tensorflow """ from __future__ import division import math import random import pprint import scipy.misc import numpy as np from time import gmtime, strftime from six.moves import xrange import matplotlib.pyplot as plt import os, gzip import tensorflow as tf import tensorflow.contrib.slim as slim from PIL import Image from scipy.misc import imread def load_fonts(): data_dir = os.path.join("/develop/data", "fonts") splits_file = os.path.join(data_dir, "splits.txt") labels_file = os.path.join(data_dir, "numlabels.txt") images_dir = os.path.join(data_dir, "images28") with open(splits_file) as f: lines = f.readlines() split_lines = [l.rstrip().split() for l in lines] train_files = [s[0] for s in split_lines if s[1] == "0"] # valid_files = [s[0] for s in split_lines if s[1] == "1"] # test_files = [s[0] for s in split_lines if s[1] == "2"] labels = {} with open(splits_file) as f: lines = f.readlines() split_lines = [l.rstrip().split() for l in lines] for s in split_lines: labels[s[0]] = int(s[1]) trX = [] trY = [] for t in train_files: trX.append(imread(os.path.join(images_dir, t))) trY.append(labels[t]) num_train = len(train_files) trX = np.asarray(trX).reshape(num_train, 28, 28, 1) trY = np.asarray(trY).reshape(num_train).astype(np.int) # teX = [] # teY = [] # for t in valid_files: # teX.append(imread(t)) # teY.append(labels[t]) # num_valid = len(valid_files) # teX = np.array(teX).reshape(num_valid, 28, 28, 1) # teY = np.array(teY).reshape(num_valid) X = trX y = trY # X = np.concatenate((trX, teX), axis=0) # y = np.concatenate((trY, teY), axis=0).astype(np.int) # print("----------> SAVING") # for i in range(len(X)): # img_name = f'data/mnist/images/{(i+1):05d}.png' # im = Image.fromarray((X[i]).reshape(28,28).astype(np.uint8)) # im = im.convert('L') # im.save(img_name) # with open('data/mnist/labels.txt', 'w+') as the_file: # for i in range(len(y)): # the_file.write(f'{(i+1):05d}.png\t{y[i]}\n') # with open('data/mnist/splits.txt', 'w+') as the_file: # for i in range(len(y)): # if (i < 50000): # split = 0 # elif (i < 60000): # split = 1 # else: # split = 2 # the_file.write(f'{(i+1):05d}.png\t{split}\n') seed = 547 np.random.seed(seed) np.random.shuffle(X) np.random.seed(seed) np.random.shuffle(y) y_vec = np.zeros((len(y), 62), dtype=np.float) for i, label in enumerate(y): y_vec[i, y[i]] = 1.0 return X / 255., y_vec def load_mnist(dataset_name): data_dir = os.path.join("./data", dataset_name) def extract_data(filename, num_data, head_size, data_size): with gzip.open(filename) as bytestream: bytestream.read(head_size) buf = bytestream.read(data_size * num_data) data = np.frombuffer(buf, dtype=np.uint8).astype(np.float) return data data = extract_data(data_dir + '/train-images-idx3-ubyte.gz', 60000, 16, 28 * 28) trX = data.reshape((60000, 28, 28, 1)) data = extract_data(data_dir + '/train-labels-idx1-ubyte.gz', 60000, 8, 1) trY = data.reshape((60000)) data = extract_data(data_dir + '/t10k-images-idx3-ubyte.gz', 10000, 16, 28 * 28) teX = data.reshape((10000, 28, 28, 1)) data = extract_data(data_dir + '/t10k-labels-idx1-ubyte.gz', 10000, 8, 1) teY = data.reshape((10000)) trY = np.asarray(trY) teY = np.asarray(teY) X =
np.concatenate((trX, teX), axis=0)
numpy.concatenate
import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt import numpy as np import sys sys.path.append('/home/groups/ZuckermanLab/copperma/cell/celltraj') import celltraj import h5py import pickle import os import subprocess import time sys.path.append('/home/groups/ZuckermanLab/copperma/msmWE/BayesianBootstrap') import bootstrap import umap import pyemma.coordinates as coor import scipy modelList=['PBS_17nov20','EGF_17nov20','HGF_17nov20','OSM_17nov20','BMP2_17nov20','IFNG_17nov20','TGFB_17nov20'] nmodels=len(modelList) modelSet=[None]*nmodels for i in range(nmodels): modelName=modelList[i] objFile=modelName+'_coords.obj' objFileHandler=open(objFile,'rb') modelSet[i]=pickle.load(objFileHandler) objFileHandler.close() wctm=celltraj.cellTraj() fileSpecifier='/home/groups/ZuckermanLab/copperma/cell/live_cell/mcf10a/batch_17nov20/*_17nov20.h5' print('initializing...') wctm.initialize(fileSpecifier,modelName) nfeat=modelSet[0].Xf.shape[1] Xf=np.zeros((0,nfeat)) indtreatment=np.array([]) indcellSet=np.array([]) for i in range(nmodels): Xf=np.append(Xf,modelSet[i].Xf,axis=0) indtreatment=np.append(indtreatment,i*np.ones(modelSet[i].Xf.shape[0])) indcellSet=np.append(indcellSet,modelSet[i].cells_indSet) indtreatment=indtreatment.astype(int) indcellSet=indcellSet.astype(int) Xpca,pca=wctm.get_pca_fromdata(Xf,var_cutoff=.9) wctm.Xpca=Xpca wctm.pca=pca for i in range(nmodels): indsf=np.where(indtreatment==i)[0] modelSet[i].Xpca=Xpca[indsf,:] all_trajSet=[None]*nmodels for i in range(nmodels): modelSet[i].get_unique_trajectories() all_trajSet[i]=modelSet[i].trajectories.copy() self=wctm for trajl in [8]: #,2,3,4,5,6,7,8,9,10,12,14,16,18,20,25,30,26]: wctm.trajl=trajl Xpcat=np.zeros((0,pca.ndim*trajl)) indtreatment_traj=np.array([]) indstack_traj=np.array([]) indframes_traj=np.array([]) cellinds0_traj=np.array([]) cellinds1_traj=np.array([]) for i in range(nmodels): modelSet[i].trajectories=all_trajSet[i].copy() modelSet[i].trajl=trajl modelSet[i].traj=modelSet[i].get_traj_segments(trajl) data=modelSet[i].Xpca[modelSet[i].traj,:] data=data.reshape(modelSet[i].traj.shape[0],modelSet[i].Xpca.shape[1]*trajl) Xpcat=np.append(Xpcat,data,axis=0) indtreatment_traj=np.append(indtreatment_traj,i*np.ones(data.shape[0])) indstacks=modelSet[i].cells_imgfileSet[modelSet[i].traj[:,0]] indstack_traj=np.append(indstack_traj,indstacks) indframes=modelSet[i].cells_frameSet[modelSet[i].traj[:,0]] indframes_traj=np.append(indframes_traj,indframes) cellinds0=modelSet[i].traj[:,0] cellinds0_traj=np.append(cellinds0_traj,cellinds0) cellinds1=modelSet[i].traj[:,-1] cellinds1_traj=np.append(cellinds1_traj,cellinds1) cellinds0_traj=cellinds0_traj.astype(int) cellinds1_traj=cellinds1_traj.astype(int) for neigen in [2]: #[1,2,3,4,5]: reducer=umap.UMAP(n_neighbors=200,min_dist=0.1, n_components=neigen, metric='euclidean') trans = reducer.fit(Xpcat) x=trans.embedding_ indst=np.arange(x.shape[0]).astype(int) wctm.Xtraj=x.copy() wctm.indst=indst.copy() indconds=np.array([[0,1],[2,3],[4,5]]).astype(int) ncond=3 fl=12 fu=96 nbinstotal=15.*15. indstw=np.where(np.logical_and(indframes_traj[indst]<fu,indframes_traj[indst]>fl))[0] probSet=[None]*nmodels avoverlapSet=np.zeros(ncond) prob1,edges=np.histogramdd(x[indstw,:],bins=int(np.ceil(nbinstotal**(1./neigen))),density=True) for icond in range(ncond): imf1=indconds[icond,0] imf2=indconds[icond,1] inds_imf1=np.where(indstack_traj==imf1)[0] inds_imf2=np.where(indstack_traj==imf2)[0] inds_cond=np.append(inds_imf1,inds_imf2) for imf in range(nmodels): indstm=np.where(indtreatment_traj==imf)[0] indstm_cond=np.intersect1d(indstm,inds_cond) xt=x[indstm_cond,0:neigen] indg=np.where(np.logical_not(np.logical_or(np.isnan(xt[:,0]),np.isinf(xt[:,0]))))[0] xt=xt[indg] prob,edges2=np.histogramdd(xt,bins=edges,density=True) #for d=1 prob=prob/np.sum(prob) probSet[imf]=prob.copy() poverlapMatrix=np.zeros((nmodels,nmodels)) for i in range(nmodels): for j in range(nmodels): probmin=np.minimum(probSet[i],probSet[j]) poverlapMatrix[i,j]=np.sum(probmin) avoverlapSet[icond]=np.mean(poverlapMatrix[np.triu_indices(nmodels,1)]) sys.stdout.write('avoverlap: '+str(avoverlapSet[0])+' '+str(avoverlapSet[1])+' '+str(avoverlapSet[2])+'\n') #np.savetxt('avoverlapSet_UMAP_trajl'+str(trajl)+'_ndim'+str(neigen)+'_19feb21.dat',avoverlapSet) for i in range(nmodels): modelSet[i].trajectories=all_trajSet[i].copy() indconds=np.array([[0,1],[2,3],[4,5]]).astype(int) ncond=3 probSet=[None]*nmodels sigdxSet=np.zeros(ncond) sigxSet=np.zeros(ncond) dxSet=np.zeros(ncond) x0=np.zeros((0,neigen)) x1=
np.zeros((0,neigen))
numpy.zeros
import os from os.path import join import numpy as np from numpy.testing import (assert_equal, assert_allclose, assert_array_equal, assert_raises) import pytest from numpy.random import (Generator, MT19937, ThreeFry, PCG32, PCG64, Philox, Xoshiro256, Xoshiro512, RandomState) from numpy.random.common import interface try: import cffi # noqa: F401 MISSING_CFFI = False except ImportError: MISSING_CFFI = True try: import ctypes # noqa: F401 MISSING_CTYPES = False except ImportError: MISSING_CTYPES = False pwd = os.path.dirname(os.path.abspath(__file__)) def assert_state_equal(actual, target): for key in actual: if isinstance(actual[key], dict): assert_state_equal(actual[key], target[key]) elif isinstance(actual[key], np.ndarray): assert_array_equal(actual[key], target[key]) else: assert actual[key] == target[key] def uniform32_from_uint64(x): x = np.uint64(x) upper = np.array(x >> np.uint64(32), dtype=np.uint32) lower = np.uint64(0xffffffff) lower = np.array(x & lower, dtype=np.uint32) joined = np.column_stack([lower, upper]).ravel() out = (joined >> np.uint32(9)) * (1.0 / 2 ** 23) return out.astype(np.float32) def uniform32_from_uint53(x): x = np.uint64(x) >> np.uint64(16) x = np.uint32(x & np.uint64(0xffffffff)) out = (x >> np.uint32(9)) * (1.0 / 2 ** 23) return out.astype(np.float32) def uniform32_from_uint32(x): return (x >> np.uint32(9)) * (1.0 / 2 ** 23) def uniform32_from_uint(x, bits): if bits == 64: return uniform32_from_uint64(x) elif bits == 53: return uniform32_from_uint53(x) elif bits == 32: return uniform32_from_uint32(x) else: raise NotImplementedError def uniform_from_uint(x, bits): if bits in (64, 63, 53): return uniform_from_uint64(x) elif bits == 32: return uniform_from_uint32(x) def uniform_from_uint64(x): return (x >> np.uint64(11)) * (1.0 / 9007199254740992.0) def uniform_from_uint32(x): out = np.empty(len(x) // 2) for i in range(0, len(x), 2): a = x[i] >> 5 b = x[i + 1] >> 6 out[i // 2] = (a * 67108864.0 + b) / 9007199254740992.0 return out def uniform_from_dsfmt(x): return x.view(np.double) - 1.0 def gauss_from_uint(x, n, bits): if bits in (64, 63): doubles = uniform_from_uint64(x) elif bits == 32: doubles = uniform_from_uint32(x) else: # bits == 'dsfmt' doubles = uniform_from_dsfmt(x) gauss = [] loc = 0 x1 = x2 = 0.0 while len(gauss) < n: r2 = 2 while r2 >= 1.0 or r2 == 0.0: x1 = 2.0 * doubles[loc] - 1.0 x2 = 2.0 * doubles[loc + 1] - 1.0 r2 = x1 * x1 + x2 * x2 loc += 2 f = np.sqrt(-2.0 * np.log(r2) / r2) gauss.append(f * x2) gauss.append(f * x1) return gauss[:n] class Base(object): dtype = np.uint64 data2 = data1 = {} @classmethod def setup_class(cls): cls.bit_generator = Xoshiro256 cls.bits = 64 cls.dtype = np.uint64 cls.seed_error_type = TypeError cls.invalid_seed_types = [] cls.invalid_seed_values = [] @classmethod def _read_csv(cls, filename): with open(filename) as csv: seed = csv.readline() seed = seed.split(',') seed = [int(s.strip(), 0) for s in seed[1:]] data = [] for line in csv: data.append(int(line.split(',')[-1].strip(), 0)) return {'seed': seed, 'data': np.array(data, dtype=cls.dtype)} def test_raw(self): bit_generator = self.bit_generator(*self.data1['seed']) uints = bit_generator.random_raw(1000) assert_equal(uints, self.data1['data']) bit_generator = self.bit_generator(*self.data1['seed']) uints = bit_generator.random_raw() assert_equal(uints, self.data1['data'][0]) bit_generator = self.bit_generator(*self.data2['seed']) uints = bit_generator.random_raw(1000) assert_equal(uints, self.data2['data']) def test_random_raw(self): bit_generator = self.bit_generator(*self.data1['seed']) uints = bit_generator.random_raw(output=False) assert uints is None uints = bit_generator.random_raw(1000, output=False) assert uints is None def test_gauss_inv(self): n = 25 rs = RandomState(self.bit_generator(*self.data1['seed'])) gauss = rs.standard_normal(n) assert_allclose(gauss, gauss_from_uint(self.data1['data'], n, self.bits)) rs = RandomState(self.bit_generator(*self.data2['seed'])) gauss = rs.standard_normal(25) assert_allclose(gauss, gauss_from_uint(self.data2['data'], n, self.bits)) def test_uniform_double(self): rs = Generator(self.bit_generator(*self.data1['seed'])) vals = uniform_from_uint(self.data1['data'], self.bits) uniforms = rs.random(len(vals)) assert_allclose(uniforms, vals) assert_equal(uniforms.dtype, np.float64) rs = Generator(self.bit_generator(*self.data2['seed'])) vals = uniform_from_uint(self.data2['data'], self.bits) uniforms = rs.random(len(vals)) assert_allclose(uniforms, vals) assert_equal(uniforms.dtype, np.float64) def test_uniform_float(self): rs = Generator(self.bit_generator(*self.data1['seed'])) vals = uniform32_from_uint(self.data1['data'], self.bits) uniforms = rs.random(len(vals), dtype=np.float32) assert_allclose(uniforms, vals) assert_equal(uniforms.dtype, np.float32) rs = Generator(self.bit_generator(*self.data2['seed'])) vals = uniform32_from_uint(self.data2['data'], self.bits) uniforms = rs.random(len(vals), dtype=np.float32) assert_allclose(uniforms, vals) assert_equal(uniforms.dtype, np.float32) def test_seed_float(self): # GH #82 rs = Generator(self.bit_generator(*self.data1['seed'])) assert_raises(self.seed_error_type, rs.bit_generator.seed, np.pi) assert_raises(self.seed_error_type, rs.bit_generator.seed, -np.pi) def test_seed_float_array(self): # GH #82 rs = Generator(self.bit_generator(*self.data1['seed'])) assert_raises(self.seed_error_type, rs.bit_generator.seed, np.array([np.pi])) assert_raises(self.seed_error_type, rs.bit_generator.seed, np.array([-np.pi])) assert_raises(ValueError, rs.bit_generator.seed, np.array([np.pi, -np.pi])) assert_raises(TypeError, rs.bit_generator.seed, np.array([0, np.pi])) assert_raises(TypeError, rs.bit_generator.seed, [np.pi]) assert_raises(TypeError, rs.bit_generator.seed, [0, np.pi]) def test_seed_out_of_range(self): # GH #82 rs = Generator(self.bit_generator(*self.data1['seed'])) assert_raises(ValueError, rs.bit_generator.seed, 2 ** (2 * self.bits + 1)) assert_raises(ValueError, rs.bit_generator.seed, -1) def test_seed_out_of_range_array(self): # GH #82 rs = Generator(self.bit_generator(*self.data1['seed'])) assert_raises(ValueError, rs.bit_generator.seed, [2 ** (2 * self.bits + 1)]) assert_raises(ValueError, rs.bit_generator.seed, [-1]) def test_repr(self): rs = Generator(self.bit_generator(*self.data1['seed'])) assert 'Generator' in repr(rs) assert '{:#x}'.format(id(rs)).upper().replace('X', 'x') in repr(rs) def test_str(self): rs = Generator(self.bit_generator(*self.data1['seed'])) assert 'Generator' in str(rs) assert str(self.bit_generator.__name__) in str(rs) assert '{:#x}'.format(id(rs)).upper().replace('X', 'x') not in str(rs) def test_pickle(self): import pickle bit_generator = self.bit_generator(*self.data1['seed']) state = bit_generator.state bitgen_pkl = pickle.dumps(bit_generator) reloaded = pickle.loads(bitgen_pkl) reloaded_state = reloaded.state assert_array_equal(Generator(bit_generator).standard_normal(1000), Generator(reloaded).standard_normal(1000)) assert bit_generator is not reloaded assert_state_equal(reloaded_state, state) def test_invalid_state_type(self): bit_generator = self.bit_generator(*self.data1['seed']) with pytest.raises(TypeError): bit_generator.state = {'1'} def test_invalid_state_value(self): bit_generator = self.bit_generator(*self.data1['seed']) state = bit_generator.state state['bit_generator'] = 'otherBitGenerator' with pytest.raises(ValueError): bit_generator.state = state def test_invalid_seed_type(self): bit_generator = self.bit_generator(*self.data1['seed']) for st in self.invalid_seed_types: with pytest.raises(TypeError): bit_generator.seed(*st) def test_invalid_seed_values(self): bit_generator = self.bit_generator(*self.data1['seed']) for st in self.invalid_seed_values: with pytest.raises(ValueError): bit_generator.seed(*st) def test_benchmark(self): bit_generator = self.bit_generator(*self.data1['seed']) bit_generator._benchmark(1) bit_generator._benchmark(1, 'double') with pytest.raises(ValueError): bit_generator._benchmark(1, 'int32') @pytest.mark.skipif(MISSING_CFFI, reason='cffi not available') def test_cffi(self): bit_generator = self.bit_generator(*self.data1['seed']) cffi_interface = bit_generator.cffi assert isinstance(cffi_interface, interface) other_cffi_interface = bit_generator.cffi assert other_cffi_interface is cffi_interface @pytest.mark.skipif(MISSING_CTYPES, reason='ctypes not available') def test_ctypes(self): bit_generator = self.bit_generator(*self.data1['seed']) ctypes_interface = bit_generator.ctypes assert isinstance(ctypes_interface, interface) other_ctypes_interface = bit_generator.ctypes assert other_ctypes_interface is ctypes_interface def test_getstate(self): bit_generator = self.bit_generator(*self.data1['seed']) state = bit_generator.state alt_state = bit_generator.__getstate__() assert_state_equal(state, alt_state) class TestXoshiro256(Base): @classmethod def setup_class(cls): cls.bit_generator = Xoshiro256 cls.bits = 64 cls.dtype = np.uint64 cls.data1 = cls._read_csv( join(pwd, './data/xoshiro256-testset-1.csv')) cls.data2 = cls._read_csv( join(pwd, './data/xoshiro256-testset-2.csv')) cls.seed_error_type = TypeError cls.invalid_seed_types = [('apple',), (2 + 3j,), (3.1,)] cls.invalid_seed_values = [(-2,), (np.empty((2, 2), dtype=np.int64),)] class TestXoshiro512(Base): @classmethod def setup_class(cls): cls.bit_generator = Xoshiro512 cls.bits = 64 cls.dtype = np.uint64 cls.data1 = cls._read_csv( join(pwd, './data/xoshiro512-testset-1.csv')) cls.data2 = cls._read_csv( join(pwd, './data/xoshiro512-testset-2.csv')) cls.seed_error_type = TypeError cls.invalid_seed_types = [('apple',), (2 + 3j,), (3.1,)] cls.invalid_seed_values = [(-2,), (np.empty((2, 2), dtype=np.int64),)] class TestThreeFry(Base): @classmethod def setup_class(cls): cls.bit_generator = ThreeFry cls.bits = 64 cls.dtype = np.uint64 cls.data1 = cls._read_csv( join(pwd, './data/threefry-testset-1.csv')) cls.data2 = cls._read_csv( join(pwd, './data/threefry-testset-2.csv')) cls.seed_error_type = TypeError cls.invalid_seed_types = [] cls.invalid_seed_values = [(1, None, 1), (-1,), (2 ** 257 + 1,), (None, None, 2 ** 257 + 1)] def test_set_key(self): bit_generator = self.bit_generator(*self.data1['seed']) state = bit_generator.state keyed = self.bit_generator(counter=state['state']['counter'], key=state['state']['key']) assert_state_equal(bit_generator.state, keyed.state) class TestPhilox(Base): @classmethod def setup_class(cls): cls.bit_generator = Philox cls.bits = 64 cls.dtype = np.uint64 cls.data1 = cls._read_csv( join(pwd, './data/philox-testset-1.csv')) cls.data2 = cls._read_csv( join(pwd, './data/philox-testset-2.csv')) cls.seed_error_type = TypeError cls.invalid_seed_types = [] cls.invalid_seed_values = [(1, None, 1), (-1,), (2 ** 257 + 1,), (None, None, 2 ** 257 + 1)] def test_set_key(self): bit_generator = self.bit_generator(*self.data1['seed']) state = bit_generator.state keyed = self.bit_generator(counter=state['state']['counter'], key=state['state']['key']) assert_state_equal(bit_generator.state, keyed.state) class TestPCG64(Base): @classmethod def setup_class(cls): cls.bit_generator = PCG64 cls.bits = 64 cls.dtype = np.uint64 cls.data1 = cls._read_csv(join(pwd, './data/pcg64-testset-1.csv')) cls.data2 = cls._read_csv(join(pwd, './data/pcg64-testset-2.csv')) cls.seed_error_type = TypeError cls.invalid_seed_types = [(np.array([1, 2]),), (3.2,), (None, np.zeros(1))] cls.invalid_seed_values = [(-1,), (2 ** 129 + 1,), (None, -1), (None, 2 ** 129 + 1)] def test_seed_float_array(self): rs = Generator(self.bit_generator(*self.data1['seed'])) assert_raises(self.seed_error_type, rs.bit_generator.seed, np.array([np.pi])) assert_raises(self.seed_error_type, rs.bit_generator.seed, np.array([-np.pi])) assert_raises(self.seed_error_type, rs.bit_generator.seed, np.array([np.pi, -np.pi])) assert_raises(self.seed_error_type, rs.bit_generator.seed, np.array([0, np.pi])) assert_raises(self.seed_error_type, rs.bit_generator.seed, [np.pi]) assert_raises(self.seed_error_type, rs.bit_generator.seed, [0, np.pi]) def test_seed_out_of_range_array(self): rs = Generator(self.bit_generator(*self.data1['seed'])) assert_raises(self.seed_error_type, rs.bit_generator.seed, [2 ** (2 * self.bits + 1)]) assert_raises(self.seed_error_type, rs.bit_generator.seed, [-1]) def test_advance_symmetry(self): rs = Generator(self.bit_generator(*self.data1['seed'])) state = rs.bit_generator.state step = -0x9e3779b97f4a7c150000000000000000 rs.bit_generator.advance(step) val_neg = rs.integers(10) rs.bit_generator.state = state rs.bit_generator.advance(2**128 + step) val_pos = rs.integers(10) rs.bit_generator.state = state rs.bit_generator.advance(10 * 2**128 + step) val_big = rs.integers(10) assert val_neg == val_pos assert val_big == val_pos class TestPCG32(TestPCG64): @classmethod def setup_class(cls): cls.bit_generator = PCG32 cls.bits = 32 cls.dtype = np.uint32 cls.data1 = cls._read_csv(join(pwd, './data/pcg32-testset-1.csv')) cls.data2 = cls._read_csv(join(pwd, './data/pcg32-testset-2.csv')) cls.seed_error_type = TypeError cls.invalid_seed_types = [(np.array([1, 2]),), (3.2,), (None, np.zeros(1))] cls.invalid_seed_values = [(-1,), (2 ** 129 + 1,), (None, -1), (None, 2 ** 129 + 1)] class TestMT19937(Base): @classmethod def setup_class(cls): cls.bit_generator = MT19937 cls.bits = 32 cls.dtype = np.uint32 cls.data1 = cls._read_csv(join(pwd, './data/mt19937-testset-1.csv')) cls.data2 = cls._read_csv(join(pwd, './data/mt19937-testset-2.csv')) cls.seed_error_type = ValueError cls.invalid_seed_types = [] cls.invalid_seed_values = [(-1,), np.array([2 ** 33])] def test_seed_out_of_range(self): # GH #82 rs = Generator(self.bit_generator(*self.data1['seed']))
assert_raises(ValueError, rs.bit_generator.seed, 2 ** (self.bits + 1))
numpy.testing.assert_raises
import matplotlib.pyplot as plt import seaborn as sns import torch.nn as nn import numpy as np import torch import os from collections import Counter from tasks import FreeRecall # from models import CRPLSTM as Agent from models import GRU as Agent from models import compute_a2c_loss, compute_returns from utils import to_sqpth, to_pth, to_np, to_sqnp, make_log_fig_dir, rm_dup, int2onehot from stats import compute_stats, compute_recall_order, lag2index from vis import plot_learning_curve from sklearn.linear_model import RidgeClassifier sns.set(style='white', palette='colorblind', context='talk') subj_id = 0 # for subj_id in range(6): np.random.seed(subj_id) torch.manual_seed(subj_id) print(subj_id) # init task n = 40 n_std_tr = 10 n_std_te = 10 v_tr = 3 v_te = 0 reward = 1 penalty = -.5 dim_hidden = 128 beta = 1 # noise_level = 0.025 noise_level = 0 task = FreeRecall(n_std=n_std_te, n=n, v=v_te, reward=reward, penalty=penalty) dim_input = task.x_dim * 2 + 1 dim_output = task.x_dim + 1 # make log dirs epoch_trained = 100000 exp_name = f'n-{n}-n_std-{n_std_tr}-v-{v_tr}/h-{dim_hidden}/sub-{subj_id}' log_path, fig_path = make_log_fig_dir(exp_name, makedirs=False) # reload the weights fname = f'wts-{epoch_trained}.pth' agent = Agent(dim_input, dim_hidden, dim_output, beta) agent.load_state_dict(torch.load(os.path.join(log_path, fname))) # testing n_test = 2000 len_test_phase = task.n_std + v_tr + 1 # log_r = np.zeros((n_test, n_std_te)) log_r = [0 for i in range(n_test)] log_a = np.full((n_test, len_test_phase), np.nan) log_std_items = np.zeros((n_test, n_std_te)) log_h_std = np.full((n_test, task.n_std, dim_hidden), np.nan) log_h_tst = np.full((n_test, len_test_phase, dim_hidden), np.nan) i=0 for i in range(n_test): # re-sample studied items X = task.sample(to_pytorch=True) log_std_items[i] = task.studied_item_ids # study phase r_t = torch.zeros(1) hc_t = agent.get_zero_states() for t, x_t_std in enumerate(X): hc_t = agent.add_normal_noise(hc_t, scale=noise_level) x_t = torch.cat([x_t_std, torch.zeros(task.x_dim), r_t]) [_, _, _, hc_t], _ = agent.forward(x_t, hc_t) log_h_std[i, t] = to_sqnp(hc_t) # recall phase log_r_i = [] x_t_tst = torch.zeros(task.x_dim) for t in range(len_test_phase): x_t = torch.cat([torch.zeros(task.x_dim), x_t_tst, r_t.view(1)]) [a_t, pi_a_t, v_t, hc_t], _ = agent.forward(x_t, hc_t) r_t = task.get_reward(a_t) log_r_i.append(to_np(r_t)) # log log_a[i, t] = a_t log_h_tst[i, t] = to_sqnp(hc_t) # if the model choose the stop, break if int(to_np(a_t)) == task.n: break # make a onehot that represent the recalled item at time t x_t_tst = int2onehot(a_t, task.n) # collect the reward log_r[i] = log_r_i '''figures''' # select the last n_test trials to analyze targ = log_std_items resp = log_a '''compute error info''' # compute number of lures for each trials n_lures = np.zeros(n_test) stop_times = np.full(n_test, np.nan) for i in range(n_test): stop_time = np.where(resp[i] == n) # trim the trial at the stop point if len(stop_time[0]) > 0: stop_times[i] = int(stop_time[0]) resp_i = resp[i][:int(stop_time[0])] else: # stop_times[i] = len_test_phase resp_i = resp[i] # count the number of items that are not in the targets for resp_it in resp_i: if resp_it not in targ[i]: n_lures[i] +=1 n_lures_mu, n_lures_se = compute_stats(n_lures) stop_times_mu = np.nanmean(stop_times) # compute number of repeats for each trials repeats = np.zeros(n_test) for i in range(n_test): recalled_items_i = log_a[i][~np.isnan(log_a[i])] # count the number of redundent items repeats[i] = len(recalled_items_i) - len(np.unique(recalled_items_i)) repeats_mu, repeats_se = compute_stats(repeats) print(f'Lures : mu = %.2f, se = %.2f' % (n_lures_mu, n_lures_se)) print(f'Repeats : mu = %.2f, se = %.2f' % (repeats_mu, repeats_se)) print(f'Stop time : mu = %.2f' % (stop_times_mu)) '''compute recall order ''' # compute the recall order given target and responses order = compute_recall_order(targ, resp) # compute the tally for actual and possible responses tally = np.zeros((n_test, (n_std_te - 1)* 2)) tally_poss = np.zeros((n_test, (n_std_te - 1)* 2)) lags = [] for i in range(n_test): order_i = order[i] # order_i_rmnan = order_i[~np.isnan(order_i)] order_i_rmnan = order_i[~np.isnan(order_i)] order_i_rmnan = rm_dup(order_i_rmnan) # order_i_rmnan = list(dict.fromkeys(order_i_rmnan)) for j in range(len(order_i_rmnan) - 1): lag = int(order_i_rmnan[j+1] - order_i_rmnan[j]) if lag != 0: lag_index = lag2index(lag, n_std_te) # increment the count of the corresponding lag index tally[i, lag_index] +=1 lags.append(lag) for j in range(len(order_i_rmnan) - 1): for o in range(n_std_te): lag_poss = int(o - order_i_rmnan[j]) if lag_poss != 0: lag_index = lag2index(lag_poss, n_std_te) tally_poss[i, lag_index] +=1 assert np.all(tally_poss >= tally), 'possible count must >= actual count' # compute conditional response probability crp = np.divide(tally, tally_poss, out=np.zeros_like(tally), where=tally_poss!=0) # crp = tally / tally.sum(axis=1)[:,None] p_mu, p_se = compute_stats(crp, axis=0) xticklabels = np.concatenate((np.arange(-(n_std_te - 1), 0), np.arange(1, n_std_te))) f, ax = plt.subplots(1,1, figsize=(6,4)) ax.errorbar(x=np.arange(n_std_te - 1), y=p_mu[:n_std_te - 1], yerr = p_se[:n_std_te - 1],color='k') ax.errorbar(x=np.arange(n_std_te - 1) + (n_std_te - 1), y=p_mu[-(n_std_te - 1):], yerr = p_se[-(n_std_te - 1):], color='k') ax.set_ylim([0, None]) ax.set_xticks(np.arange((n_std_te - 1)*2)) ax.set_xticklabels(xticklabels) ax.set_xlabel('Lag') ax.set_ylabel('p') ax.set_title('Conditional response probability') sns.despine() ''' compute recall probabiliy arranged according to the studied order''' # order = order[:,0] # plot the serial position curve unique_recalls = np.concatenate([np.unique(order[i]) for i in range(n_test)]) counter = Counter(unique_recalls) recalls = np.array([counter[i] for i in range(n_std_te)]) spc_x = range(n_std_te) spc_y = recalls / n_test f, ax = plt.subplots(1,1, figsize=(6, 4)) ax.plot(spc_y) ax.set_ylim([0, 1]) ax.set_xlabel('Position') ax.set_ylabel('p') ax.set_title('Recall probability') sns.despine() f, ax = plt.subplots(1,1, figsize=(6, 4)) ax.plot(spc_y) ax.set_xlabel('Position') ax.set_ylabel('p') ax.set_title('Recall probability') sns.despine() ''' compute p(1st recall) ''' counter = Counter(order[:,0]) recalls_1st = np.array([counter[i] for i in range(n_std_te)]) f, ax = plt.subplots(1,1, figsize=(6, 4)) ax.plot(recalls_1st / np.sum(recalls_1st)) # ax.set_ylim([None, 1]) ax.set_ylim([0, None]) ax.set_xlabel('Position') ax.set_ylabel('p') ax.set_title('The distribution of the 1st recall') sns.despine() f, ax = plt.subplots(1,1, figsize=(6, 4)) ax.plot(recalls_1st / np.sum(recalls_1st)) ax.set_xlabel('Position') ax.set_ylabel('p') ax.set_title('The distribution of the 1st recall') sns.despine() ''' compute mean performance ''' n_items_recalled = np.empty(n_test, ) for i in range(n_test): order_i = np.unique(order[i]) n_items_recalled[i] = len(order_i[~np.isnan(order_i)]) prop_item_recalled = n_items_recalled / n_std_te pir_mu, pir_se = compute_stats(prop_item_recalled) print(f'%% items recalled = %.2f, se = %.2f' % (pir_mu, pir_se)) mean_r_all_trials = [np.mean(log_r_) for log_r_ in log_r] r_mu, r_se = compute_stats(mean_r_all_trials) print(f'Average reward = %.2f, se = %.2f' % (r_mu, r_se)) '''MVPA decoding''' n_tr = 1000 n_te = n_test - n_tr y_te_std_hat = np.zeros((n, n_tr, n_std_te)) y_te_std = np.zeros((n, n_tr, n_std_te)) dec_acc = np.zeros(n) # reshape X log_h_std_rs = np.reshape(log_h_std, (-1, dim_hidden)) ridge_clfs = [None for _ in range(n)] # train/test the clf on the study phase for std_item_id in range(n): # make y - whether item i has been presented in the past pres_time_item_i = log_std_items == std_item_id inwm_time_item_i = np.zeros_like(pres_time_item_i) for i in range(n_test): if np.any(pres_time_item_i[i, :]): t = int(np.where(pres_time_item_i[i, :])[0]) inwm_time_item_i[i, t:] = 1 # reshape y for the classifier for the study phase inwm_time_item_i_rs =
np.reshape(inwm_time_item_i, (-1,))
numpy.reshape
import abc import sys import time from collections import OrderedDict from functools import reduce import numba import numpy as np from shapely.geometry import Polygon from second.core import box_np_ops_JRDB from second.core.geometry import (points_in_convex_polygon_3d_jit, points_in_convex_polygon_jit) import copy class BatchSampler: def __init__(self, sampled_list, name=None, epoch=None, shuffle=True, drop_reminder=False): self._sampled_list = sampled_list self._indices = np.arange(len(sampled_list)) if shuffle: np.random.shuffle(self._indices) self._idx = 0 self._example_num = len(sampled_list) self._name = name self._shuffle = shuffle self._epoch = epoch self._epoch_counter = 0 self._drop_reminder = drop_reminder def _sample(self, num): if self._idx + num >= self._example_num: ret = self._indices[self._idx:].copy() self._reset() else: ret = self._indices[self._idx:self._idx + num] self._idx += num return ret def _reset(self): if self._name is not None: print("reset", self._name) if self._shuffle: np.random.shuffle(self._indices) self._idx = 0 def sample(self, num): indices = self._sample(num) return [self._sampled_list[i] for i in indices] # return np.random.choice(self._sampled_list, num) class DataBasePreprocessing: def __call__(self, db_infos): return self._preprocess(db_infos) @abc.abstractclassmethod def _preprocess(self, db_infos): pass class DBFilterByDifficulty(DataBasePreprocessing): def __init__(self, removed_difficulties): self._removed_difficulties = removed_difficulties print(removed_difficulties) def _preprocess(self, db_infos): new_db_infos = {} for key, dinfos in db_infos.items(): new_db_infos[key] = [ info for info in dinfos if info["difficulty"] not in self._removed_difficulties ] return new_db_infos class DBFilterByMinNumPoint(DataBasePreprocessing): def __init__(self, min_gt_point_dict): self._min_gt_point_dict = min_gt_point_dict print(min_gt_point_dict) def _preprocess(self, db_infos): for name, min_num in self._min_gt_point_dict.items(): if min_num > 0: filtered_infos = [] for info in db_infos[name]: if info["num_points_in_gt"] >= min_num: filtered_infos.append(info) db_infos[name] = filtered_infos return db_infos class DataBasePreprocessor: def __init__(self, preprocessors): self._preprocessors = preprocessors def __call__(self, db_infos): for prepor in self._preprocessors: db_infos = prepor(db_infos) return db_infos def random_crop_frustum(bboxes, rect, Trv2c, P2, max_crop_height=1.0, max_crop_width=0.9): num_gt = bboxes.shape[0] crop_minxy = np.random.uniform( [1 - max_crop_width, 1 - max_crop_height], [0.3, 0.3], size=[num_gt, 2]) crop_maxxy = np.ones([num_gt, 2], dtype=bboxes.dtype) crop_bboxes = np.concatenate([crop_minxy, crop_maxxy], axis=1) left = np.random.choice([False, True], replace=False, p=[0.5, 0.5]) if left: crop_bboxes[:, [0, 2]] -= crop_bboxes[:, 0:1] # crop_relative_bboxes to real bboxes crop_bboxes *= np.tile(bboxes[:, 2:] - bboxes[:, :2], [1, 2]) crop_bboxes += np.tile(bboxes[:, :2], [1, 2]) C, R, T = box_np_ops_JRDB.projection_matrix_to_CRT_kitti(P2) frustums = box_np_ops_JRDB.get_frustum_v2(crop_bboxes, C) frustums -= T # frustums = np.linalg.inv(R) @ frustums.T frustums = np.einsum('ij, akj->aki', np.linalg.inv(R), frustums) frustums = box_np_ops_JRDB.camera_to_lidar(frustums, rect, Trv2c) return frustums def filter_gt_box_outside_range(gt_boxes, limit_range): """remove gtbox outside training range. this function should be applied after other prep functions Args: gt_boxes ([type]): [description] limit_range ([type]): [description] """ gt_boxes_bv = box_np_ops_JRDB.center_to_corner_box2d( gt_boxes[:, [0, 1]], gt_boxes[:, [3, 3 + 1]], gt_boxes[:, 6]) bounding_box = box_np_ops_JRDB.minmax_to_corner_2d( np.asarray(limit_range)[np.newaxis, ...]) ret = points_in_convex_polygon_jit( gt_boxes_bv.reshape(-1, 2), bounding_box) return np.any(ret.reshape(-1, 4), axis=1) def filter_gt_box_outside_range_by_center(gt_boxes, limit_range): """remove gtbox outside training range. this function should be applied after other prep functions Args: gt_boxes ([type]): [description] limit_range ([type]): [description] """ gt_box_centers = gt_boxes[:, :2] bounding_box = box_np_ops_JRDB.minmax_to_corner_2d( np.asarray(limit_range)[np.newaxis, ...]) ret = points_in_convex_polygon_jit(gt_box_centers, bounding_box) return ret.reshape(-1) def filter_gt_low_points(gt_boxes, points, num_gt_points, point_num_threshold=2): points_mask = np.ones([points.shape[0]], np.bool) gt_boxes_mask =
np.ones([gt_boxes.shape[0]], np.bool)
numpy.ones
# -*- coding: utf-8 -*- """ Lots of functions for drawing and plotting visiony things """ # TODO: New naming scheme # viz_<funcname> should clear everything. The current axes and fig: clf, cla. # # Will add annotations # interact_<funcname> should clear everything and start user interactions. # show_<funcname> should always clear the current axes, but not fig: cla # # Might # add annotates? plot_<funcname> should not clear the axes or figure. # More useful for graphs draw_<funcname> same as plot for now. More useful for # images import logging import itertools as it import utool as ut # NOQA import matplotlib as mpl import matplotlib.pyplot as plt try: from mpl_toolkits.axes_grid1 import make_axes_locatable except ImportError as ex: ut.printex( ex, 'try pip install mpl_toolkits.axes_grid1 or something. idk yet', iswarning=False, ) raise # import colorsys import pylab import warnings import numpy as np from os.path import relpath try: import cv2 except ImportError as ex: print('ERROR PLOTTOOL CANNOT IMPORT CV2') print(ex) from wbia.plottool import mpl_keypoint as mpl_kp from wbia.plottool import color_funcs as color_fns from wbia.plottool import custom_constants from wbia.plottool import custom_figure from wbia.plottool import fig_presenter DEBUG = False (print, rrr, profile) = ut.inject2(__name__) logger = logging.getLogger('wbia') def is_texmode(): return mpl.rcParams['text.usetex'] # Bring over moved functions that still have dependants elsewhere TAU = np.pi * 2 distinct_colors = color_fns.distinct_colors lighten_rgb = color_fns.lighten_rgb to_base255 = color_fns.to_base255 DARKEN = ut.get_argval( '--darken', type_=float, default=(0.7 if ut.get_argflag('--darken') else None) ) # logger.info('DARKEN = %r' % (DARKEN,)) all_figures_bring_to_front = fig_presenter.all_figures_bring_to_front all_figures_tile = fig_presenter.all_figures_tile close_all_figures = fig_presenter.close_all_figures close_figure = fig_presenter.close_figure iup = fig_presenter.iup iupdate = fig_presenter.iupdate present = fig_presenter.present reset = fig_presenter.reset update = fig_presenter.update ORANGE = custom_constants.ORANGE RED = custom_constants.RED GREEN = custom_constants.GREEN BLUE = custom_constants.BLUE YELLOW = custom_constants.YELLOW BLACK = custom_constants.BLACK WHITE = custom_constants.WHITE GRAY = custom_constants.GRAY LIGHTGRAY = custom_constants.LIGHTGRAY DEEP_PINK = custom_constants.DEEP_PINK PINK = custom_constants.PINK FALSE_RED = custom_constants.FALSE_RED TRUE_GREEN = custom_constants.TRUE_GREEN TRUE_BLUE = custom_constants.TRUE_BLUE DARK_GREEN = custom_constants.DARK_GREEN DARK_BLUE = custom_constants.DARK_BLUE DARK_RED = custom_constants.DARK_RED DARK_ORANGE = custom_constants.DARK_ORANGE DARK_YELLOW = custom_constants.DARK_YELLOW PURPLE = custom_constants.PURPLE LIGHT_BLUE = custom_constants.LIGHT_BLUE UNKNOWN_PURP = custom_constants.UNKNOWN_PURP TRUE = TRUE_BLUE FALSE = FALSE_RED figure = custom_figure.figure gca = custom_figure.gca gcf = custom_figure.gcf get_fig = custom_figure.get_fig save_figure = custom_figure.save_figure set_figtitle = custom_figure.set_figtitle set_title = custom_figure.set_title set_xlabel = custom_figure.set_xlabel set_xticks = custom_figure.set_xticks set_ylabel = custom_figure.set_ylabel set_yticks = custom_figure.set_yticks VERBOSE = ut.get_argflag(('--verbose-df2', '--verb-pt')) # ================ # GLOBALS # ================ TMP_mevent = None plotWidget = None def show_was_requested(): """ returns True if --show is specified on the commandline or you are in IPython (and presumably want some sort of interaction """ return not ut.get_argflag(('--noshow')) and ( ut.get_argflag(('--show', '--save')) or ut.inIPython() ) # return ut.show_was_requested() class OffsetImage2(mpl.offsetbox.OffsetBox): """ TODO: If this works reapply to mpl """ def __init__( self, arr, zoom=1, cmap=None, norm=None, interpolation=None, origin=None, filternorm=1, filterrad=4.0, resample=False, dpi_cor=True, **kwargs ): mpl.offsetbox.OffsetBox.__init__(self) self._dpi_cor = dpi_cor self.image = mpl.offsetbox.BboxImage( bbox=self.get_window_extent, cmap=cmap, norm=norm, interpolation=interpolation, origin=origin, filternorm=filternorm, filterrad=filterrad, resample=resample, **kwargs ) self._children = [self.image] self.set_zoom(zoom) self.set_data(arr) def set_data(self, arr): self._data = np.asarray(arr) self.image.set_data(self._data) self.stale = True def get_data(self): return self._data def set_zoom(self, zoom): self._zoom = zoom self.stale = True def get_zoom(self): return self._zoom # def set_axes(self, axes): # self.image.set_axes(axes) # martist.Artist.set_axes(self, axes) # def set_offset(self, xy): # """ # set offset of the container. # Accept : tuple of x,y coordinate in disokay units. # """ # self._offset = xy # self.offset_transform.clear() # self.offset_transform.translate(xy[0], xy[1]) def get_offset(self): """ return offset of the container. """ return self._offset def get_children(self): return [self.image] def get_window_extent(self, renderer): """ get the bounding box in display space. """ import matplotlib.transforms as mtransforms w, h, xd, yd = self.get_extent(renderer) ox, oy = self.get_offset() return mtransforms.Bbox.from_bounds(ox - xd, oy - yd, w, h) def get_extent(self, renderer): # FIXME dpi_cor is never used if self._dpi_cor: # True, do correction # conversion (px / pt) dpi_cor = renderer.points_to_pixels(1.0) else: dpi_cor = 1.0 # NOQA zoom = self.get_zoom() data = self.get_data() # Data width and height in pixels ny, nx = data.shape[:2] # w /= dpi_cor # h /= dpi_cor # import utool # if self.axes: # Hack, find right axes ax = self.figure.axes[0] ax.get_window_extent() # bbox = mpl.transforms.Bbox.union([ax.get_window_extent()]) # xmin, xmax = ax.get_xlim() # ymin, ymax = ax.get_ylim() # https://www.mail-archive.com/<EMAIL>/msg25931.html fig = self.figure # dpi = fig.dpi # (pt / in) fw_in, fh_in = fig.get_size_inches() # divider = make_axes_locatable(ax) # fig_ppi = dpi * dpi_cor # fw_px = fig_ppi * fw_in # fh_px = fig_ppi * fh_in # bbox.width # transforms data to figure coordinates # pt1 = ax.transData.transform_point([nx, ny]) pt1 = ax.transData.transform_point([1, 20]) pt2 = ax.transData.transform_point([0, 0]) w, h = pt1 - pt2 # zoom_factor = max(fw_px, ) # logger.info('fw_px = %r' % (fw_px,)) # logger.info('pos = %r' % (pos,)) # w = h = .2 * fw_px * pos[2] # .1 * fig_dpi * fig_size[0] / data.shape[0] # logger.info('zoom = %r' % (zoom,)) w, h = w * zoom, h * zoom return w, h, 0, 0 # return 30, 30, 0, 0 def draw(self, renderer): """ Draw the children """ self.image.draw(renderer) # bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) self.stale = False def overlay_icon( icon, coords=(0, 0), coord_type='axes', bbox_alignment=(0, 0), max_asize=None, max_dsize=None, as_artist=True, ): """ Overlay a species icon References: http://matplotlib.org/examples/pylab_examples/demo_annotation_box.html http://matplotlib.org/users/annotations_guide.html /usr/local/lib/python2.7/dist-packages/matplotlib/offsetbox.py Args: icon (ndarray or str): image icon data or path coords (tuple): (default = (0, 0)) coord_type (str): (default = 'axes') bbox_alignment (tuple): (default = (0, 0)) max_dsize (None): (default = None) CommandLine: python -m wbia.plottool.draw_func2 --exec-overlay_icon --show --icon zebra.png python -m wbia.plottool.draw_func2 --exec-overlay_icon --show --icon lena.png python -m wbia.plottool.draw_func2 --exec-overlay_icon --show --icon lena.png --artist Example: >>> # DISABLE_DOCTEST >>> from wbia.plottool.draw_func2 import * # NOQA >>> import wbia.plottool as pt >>> pt.plot2(np.arange(100), np.arange(100)) >>> icon = ut.get_argval('--icon', type_=str, default='lena.png') >>> coords = (0, 0) >>> coord_type = 'axes' >>> bbox_alignment = (0, 0) >>> max_dsize = None # (128, None) >>> max_asize = (60, 40) >>> as_artist = not ut.get_argflag('--noartist') >>> result = overlay_icon(icon, coords, coord_type, bbox_alignment, >>> max_asize, max_dsize, as_artist) >>> print(result) >>> import wbia.plottool as pt >>> pt.show_if_requested() """ # from mpl_toolkits.axes_grid.anchored_artists import AnchoredAuxTransformBox import vtool as vt ax = gca() if isinstance(icon, str): # hack because icon is probably a url icon_url = icon icon = vt.imread(ut.grab_file_url(icon_url)) if max_dsize is not None: icon = vt.resize_to_maxdims(icon, max_dsize) icon = vt.convert_colorspace(icon, 'RGB', 'BGR') # imagebox = OffsetImage2(icon, zoom=.3) if coord_type == 'axes': xlim = ax.get_xlim() ylim = ax.get_ylim() xy = [ xlim[0] * (1 - coords[0]) + xlim[1] * (coords[0]), ylim[0] * (1 - coords[1]) + ylim[1] * (coords[1]), ] else: raise NotImplementedError('') # ab = AnchoredAuxTransformBox(ax.transData, loc=2) # ab.drawing_area.add_artist(imagebox) # *xycoords* and *textcoords* are strings that indicate the # coordinates of *xy* and *xytext*, and may be one of the # following values: # 'figure points' #'figure pixels' #'figure fraction' #'axes points' # 'axes pixels' #'axes fraction' #'data' #'offset points' #'polar' if as_artist: # Hack while I am trying to get constant size images working if ut.get_argval('--save'): # zoom = 1.0 zoom = 1.0 else: zoom = 0.5 zoom = ut.get_argval('--overlay-zoom', default=zoom) if False: # TODO: figure out how to make axes fraction work imagebox = mpl.offsetbox.OffsetImage(icon) imagebox.set_width(1) imagebox.set_height(1) ab = mpl.offsetbox.AnnotationBbox( imagebox, xy, xybox=(0.0, 0.0), xycoords='data', boxcoords=('axes fraction', 'data'), # boxcoords="offset points", box_alignment=bbox_alignment, pad=0.0, ) else: imagebox = mpl.offsetbox.OffsetImage(icon, zoom=zoom) ab = mpl.offsetbox.AnnotationBbox( imagebox, xy, xybox=(0.0, 0.0), xycoords='data', # xycoords='axes fraction', boxcoords='offset points', box_alignment=bbox_alignment, pad=0.0, ) ax.add_artist(ab) else: img_size = vt.get_size(icon) logger.info('img_size = %r' % (img_size,)) if max_asize is not None: dsize, ratio = vt.resized_dims_and_ratio(img_size, max_asize) width, height = dsize else: width, height = img_size logger.info('width, height= %r, %r' % (width, height)) x1 = xy[0] + width * bbox_alignment[0] y1 = xy[1] + height * bbox_alignment[1] x2 = xy[0] + width * (1 - bbox_alignment[0]) y2 = xy[1] + height * (1 - bbox_alignment[1]) ax = plt.gca() prev_aspect = ax.get_aspect() # FIXME: adjust aspect ratio of extent to match the axes logger.info('icon.shape = %r' % (icon.shape,)) logger.info('prev_aspect = %r' % (prev_aspect,)) extent = [x1, x2, y1, y2] logger.info('extent = %r' % (extent,)) ax.imshow(icon, extent=extent) logger.info('current_aspect = %r' % (ax.get_aspect(),)) ax.set_aspect(prev_aspect) logger.info('current_aspect = %r' % (ax.get_aspect(),)) # x - width // 2, x + width // 2, # y - height // 2, y + height // 2]) def update_figsize(): """updates figsize based on command line""" figsize = ut.get_argval('--figsize', type_=list, default=None) if figsize is not None: # Enforce inches and DPI fig = gcf() figsize = [eval(term) if isinstance(term, str) else term for term in figsize] figw, figh = figsize[0], figsize[1] logger.info('get_size_inches = %r' % (fig.get_size_inches(),)) logger.info('fig w,h (inches) = %r, %r' % (figw, figh)) fig.set_size_inches(figw, figh) # logger.info('get_size_inches = %r' % (fig.get_size_inches(),)) def udpate_adjust_subplots(): """ DEPRICATE updates adjust_subplots based on command line """ adjust_list = ut.get_argval('--adjust', type_=list, default=None) if adjust_list is not None: # --adjust=[.02,.02,.05] keys = ['left', 'bottom', 'wspace', 'right', 'top', 'hspace'] if len(adjust_list) == 1: # [all] vals = adjust_list * 3 + [1 - adjust_list[0]] * 2 + adjust_list elif len(adjust_list) == 3: # [left, bottom, wspace] vals = adjust_list + [1 - adjust_list[0], 1 - adjust_list[1], adjust_list[2]] elif len(adjust_list) == 4: # [left, bottom, wspace, hspace] vals = adjust_list[0:3] + [ 1 - adjust_list[0], 1 - adjust_list[1], adjust_list[3], ] elif len(adjust_list) == 6: vals = adjust_list else: raise NotImplementedError( ( 'vals must be len (1, 3, or 6) not %d, adjust_list=%r. ' 'Expects keys=%r' ) % (len(adjust_list), adjust_list, keys) ) adjust_kw = dict(zip(keys, vals)) logger.info('**adjust_kw = %s' % (ut.repr2(adjust_kw),)) adjust_subplots(**adjust_kw) def render_figure_to_image(fig, **savekw): import io import cv2 import wbia.plottool as pt # Pop save kwargs from kwargs # save_keys = ['dpi', 'figsize', 'saveax', 'verbose'] # Write matplotlib axes to an image axes_extents = pt.extract_axes_extents(fig) # assert len(axes_extents) == 1, 'more than one axes' # if len(axes_extents) == 1: # extent = axes_extents[0] # else: extent = mpl.transforms.Bbox.union(axes_extents) with io.BytesIO() as stream: # This call takes 23% - 15% of the time depending on settings fig.savefig(stream, bbox_inches=extent, **savekw) stream.seek(0) data = np.fromstring(stream.getvalue(), dtype=np.uint8) image = cv2.imdecode(data, 1) return image class RenderingContext(object): def __init__(self, **savekw): self.image = None self.fig = None self.was_interactive = None self.savekw = savekw def __enter__(self): import wbia.plottool as pt tmp_fnum = -1 import matplotlib as mpl self.fig = pt.figure(fnum=tmp_fnum) self.was_interactive = mpl.is_interactive() if self.was_interactive: mpl.interactive(False) return self def __exit__(self, type_, value, trace): if trace is not None: # logger.info('[util_time] Error in context manager!: ' + str(value)) return False # return a falsey value on error # Ensure that this figure will not pop up import wbia.plottool as pt self.image = pt.render_figure_to_image(self.fig, **self.savekw) pt.plt.close(self.fig) if self.was_interactive: mpl.interactive(self.was_interactive) def extract_axes_extents(fig, combine=False, pad=0.0): """ CommandLine: python -m wbia.plottool.draw_func2 extract_axes_extents python -m wbia.plottool.draw_func2 extract_axes_extents --save foo.jpg Notes: contour does something weird to axes with contour: axes_extents = Bbox([[-0.839827203337, -0.00555555555556], [7.77743055556, 6.97227277762]]) without contour axes_extents = Bbox([[0.0290607810781, -0.00555555555556], [7.77743055556, 5.88]]) Example: >>> # ENABLE_DOCTEST >>> from wbia.plottool.draw_func2 import * # NOQA >>> import wbia.plottool as pt >>> import matplotlib.gridspec as gridspec >>> import matplotlib.pyplot as plt >>> pt.qtensure() >>> fig = plt.figure() >>> gs = gridspec.GridSpec(17, 17) >>> specs = [ >>> gs[0:8, 0:8], gs[0:8, 8:16], >>> gs[9:17, 0:8], gs[9:17, 8:16], >>> ] >>> rng = np.random.RandomState(0) >>> X = (rng.rand(100, 2) * [[8, 8]]) + [[6, -14]] >>> x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 >>> y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 >>> xx, yy = np.meshgrid(np.arange(x_min, x_max), np.arange(y_min, y_max)) >>> yynan = np.full(yy.shape, fill_value=np.nan) >>> xxnan = np.full(yy.shape, fill_value=np.nan) >>> cmap = plt.cm.RdYlBu >>> norm = plt.Normalize(vmin=0, vmax=1) >>> for count, spec in enumerate(specs): >>> fig.add_subplot(spec) >>> plt.plot(X.T[0], X.T[1], 'o', color='r', markeredgecolor='w') >>> Z = rng.rand(*xx.shape) >>> plt.contourf(xx, yy, Z, cmap=cmap, norm=norm, alpha=1.0) >>> plt.title('full-nan decision point') >>> plt.gca().set_aspect('equal') >>> gs = gridspec.GridSpec(1, 16) >>> subspec = gs[:, -1:] >>> cax = plt.subplot(subspec) >>> sm = plt.cm.ScalarMappable(cmap=cmap) >>> sm.set_array(np.linspace(0, 1)) >>> plt.colorbar(sm, cax) >>> cax.set_ylabel('ColorBar') >>> fig.suptitle('SupTitle') >>> subkw = dict(left=.001, right=.9, top=.9, bottom=.05, hspace=.2, wspace=.1) >>> plt.subplots_adjust(**subkw) >>> import wbia.plottool as pt >>> pt.show_if_requested() """ import wbia.plottool as pt # Make sure we draw the axes first so we can # extract positions from the text objects fig.canvas.draw() # Group axes that belong together atomic_axes = [] seen_ = set([]) for ax in fig.axes: div = pt.get_plotdat(ax, DF2_DIVIDER_KEY, None) if div is not None: df2_div_axes = pt.get_plotdat_dict(ax).get('df2_div_axes', []) seen_.add(ax) seen_.update(set(df2_div_axes)) atomic_axes.append([ax] + df2_div_axes) # TODO: pad these a bit else: if ax not in seen_: atomic_axes.append([ax]) seen_.add(ax) hack_axes_group_row = ut.get_argflag('--grouprows') if hack_axes_group_row: groupid_list = [] for axs in atomic_axes: for ax in axs: groupid = ax.colNum groupid_list.append(groupid) groupxs = ut.group_indices(groupid_list)[1] new_groups = ut.lmap(ut.flatten, ut.apply_grouping(atomic_axes, groupxs)) atomic_axes = new_groups # [[(ax.rowNum, ax.colNum) for ax in axs] for axs in atomic_axes] # save all rows of each column dpi_scale_trans_inv = fig.dpi_scale_trans.inverted() axes_bboxes_ = [axes_extent(axs, pad) for axs in atomic_axes] axes_extents_ = [extent.transformed(dpi_scale_trans_inv) for extent in axes_bboxes_] # axes_extents_ = axes_bboxes_ if combine: if True: # Grab include extents of figure text as well # FIXME: This might break on OSX # http://stackoverflow.com/questions/22667224/bbox-backend renderer = fig.canvas.get_renderer() for mpl_text in fig.texts: bbox = mpl_text.get_window_extent(renderer=renderer) extent_ = bbox.expanded(1.0 + pad, 1.0 + pad) extent = extent_.transformed(dpi_scale_trans_inv) # extent = extent_ axes_extents_.append(extent) axes_extents = mpl.transforms.Bbox.union(axes_extents_) else: axes_extents = axes_extents_ # if True: # axes_extents.x0 = 0 # # axes_extents.y1 = 0 return axes_extents def axes_extent(axs, pad=0.0): """ Get the full extent of a group of axes, including axes labels, tick labels, and titles. """ def axes_parts(ax): yield ax for label in ax.get_xticklabels(): if label.get_text(): yield label for label in ax.get_yticklabels(): if label.get_text(): yield label xlabel = ax.get_xaxis().get_label() ylabel = ax.get_yaxis().get_label() for label in (xlabel, ylabel, ax.title): if label.get_text(): yield label # def axes_parts2(ax): # yield ('ax', ax) # for c, label in enumerate(ax.get_xticklabels()): # if label.get_text(): # yield ('xtick{}'.format(c), label) # for label in ax.get_yticklabels(): # if label.get_text(): # yield ('ytick{}'.format(c), label) # xlabel = ax.get_xaxis().get_label() # ylabel = ax.get_yaxis().get_label() # for key, label in (('xlabel', xlabel), ('ylabel', ylabel), # ('title', ax.title)): # if label.get_text(): # yield (key, label) # yield from ax.lines # yield from ax.patches items = it.chain.from_iterable(axes_parts(ax) for ax in axs) extents = [item.get_window_extent() for item in items] # mpl.transforms.Affine2D().scale(1.1) extent = mpl.transforms.Bbox.union(extents) extent = extent.expanded(1.0 + pad, 1.0 + pad) return extent def save_parts(fig, fpath, grouped_axes=None, dpi=None): """ FIXME: this works in mpl 2.0.0, but not 2.0.2 Args: fig (?): fpath (str): file path string dpi (None): (default = None) Returns: list: subpaths CommandLine: python -m wbia.plottool.draw_func2 save_parts Example: >>> # DISABLE_DOCTEST >>> from wbia.plottool.draw_func2 import * # NOQA >>> import wbia.plottool as pt >>> import matplotlib as mpl >>> import matplotlib.pyplot as plt >>> def testimg(fname): >>> return plt.imread(mpl.cbook.get_sample_data(fname)) >>> fnames = ['grace_hopper.png', 'ada.png'] * 4 >>> fig = plt.figure(1) >>> for c, fname in enumerate(fnames, start=1): >>> ax = fig.add_subplot(3, 4, c) >>> ax.imshow(testimg(fname)) >>> ax.set_title(fname[0:3] + str(c)) >>> ax.set_xticks([]) >>> ax.set_yticks([]) >>> ax = fig.add_subplot(3, 1, 3) >>> ax.plot(np.sin(np.linspace(0, np.pi * 2))) >>> ax.set_xlabel('xlabel') >>> ax.set_ylabel('ylabel') >>> ax.set_title('title') >>> fpath = 'test_save_parts.png' >>> adjust_subplots(fig=fig, wspace=.3, hspace=.3, top=.9) >>> subpaths = save_parts(fig, fpath, dpi=300) >>> fig.savefig(fpath) >>> ut.startfile(subpaths[0]) >>> ut.startfile(fpath) """ if dpi: # Need to set figure dpi before we draw fig.dpi = dpi # We need to draw the figure before calling get_window_extent # (or we can figure out how to set the renderer object) # if getattr(fig.canvas, 'renderer', None) is None: fig.canvas.draw() # Group axes that belong together if grouped_axes is None: grouped_axes = [] for ax in fig.axes: grouped_axes.append([ax]) subpaths = [] _iter = enumerate(grouped_axes, start=0) _iter = ut.ProgIter(list(_iter), label='save subfig') for count, axs in _iter: subpath = ut.augpath(fpath, chr(count + 65)) extent = axes_extent(axs).transformed(fig.dpi_scale_trans.inverted()) savekw = {} savekw['transparent'] = ut.get_argflag('--alpha') if dpi is not None: savekw['dpi'] = dpi savekw['edgecolor'] = 'none' fig.savefig(subpath, bbox_inches=extent, **savekw) subpaths.append(subpath) return subpaths def quit_if_noshow(): import utool as ut saverequest = ut.get_argval('--save', default=None) if not (saverequest or ut.get_argflag(('--show', '--save')) or ut.inIPython()): raise ut.ExitTestException('This should be caught gracefully by ut.run_test') def show_if_requested(N=1): """ Used at the end of tests. Handles command line arguments for saving figures Referencse: http://stackoverflow.com/questions/4325733/save-a-subplot-in-matplotlib """ if ut.NOT_QUIET: logger.info('[pt] ' + str(ut.get_caller_name(range(3))) + ' show_if_requested()') # Process figures adjustments from command line before a show or a save # udpate_adjust_subplots() adjust_subplots(use_argv=True) update_figsize() dpi = ut.get_argval('--dpi', type_=int, default=custom_constants.DPI) SAVE_PARTS = ut.get_argflag('--saveparts') fpath_ = ut.get_argval('--save', type_=str, default=None) if fpath_ is None: fpath_ = ut.get_argval('--saveparts', type_=str, default=None) SAVE_PARTS = True if fpath_ is not None: from os.path import expanduser fpath_ = expanduser(fpath_) logger.info('Figure save was requested') arg_dict = ut.get_arg_dict( prefix_list=['--', '-'], type_hints={'t': list, 'a': list} ) # import sys from os.path import basename, splitext, join, dirname import wbia.plottool as pt import vtool as vt # HACK arg_dict = { key: (val[0] if len(val) == 1 else '[' + ']['.join(val) + ']') if isinstance(val, list) else val for key, val in arg_dict.items() } fpath_ = fpath_.format(**arg_dict) fpath_ = ut.remove_chars(fpath_, ' \'"') dpath, gotdpath = ut.get_argval( '--dpath', type_=str, default='.', return_specified=True ) fpath = join(dpath, fpath_) if not gotdpath: dpath = dirname(fpath_) logger.info('dpath = %r' % (dpath,)) fig = pt.gcf() fig.dpi = dpi fpath_strict = ut.truepath(fpath) CLIP_WHITE = ut.get_argflag('--clipwhite') if SAVE_PARTS: # TODO: call save_parts instead, but we still need to do the # special grouping. # Group axes that belong together atomic_axes = [] seen_ = set([]) for ax in fig.axes: div = pt.get_plotdat(ax, DF2_DIVIDER_KEY, None) if div is not None: df2_div_axes = pt.get_plotdat_dict(ax).get('df2_div_axes', []) seen_.add(ax) seen_.update(set(df2_div_axes)) atomic_axes.append([ax] + df2_div_axes) # TODO: pad these a bit else: if ax not in seen_: atomic_axes.append([ax]) seen_.add(ax) hack_axes_group_row = ut.get_argflag('--grouprows') if hack_axes_group_row: groupid_list = [] for axs in atomic_axes: for ax in axs: groupid = ax.colNum groupid_list.append(groupid) groups = ut.group_items(atomic_axes, groupid_list) new_groups = ut.emap(ut.flatten, groups.values()) atomic_axes = new_groups # [[(ax.rowNum, ax.colNum) for ax in axs] for axs in atomic_axes] # save all rows of each column subpath_list = save_parts( fig=fig, fpath=fpath_strict, grouped_axes=atomic_axes, dpi=dpi ) absfpath_ = subpath_list[-1] fpath_list = [relpath(_, dpath) for _ in subpath_list] if CLIP_WHITE: for subpath in subpath_list: # remove white borders pass vt.clipwhite_ondisk(subpath, subpath) else: savekw = {} # savekw['transparent'] = fpath.endswith('.png') and not noalpha savekw['transparent'] = ut.get_argflag('--alpha') savekw['dpi'] = dpi savekw['edgecolor'] = 'none' savekw['bbox_inches'] = extract_axes_extents( fig, combine=True ) # replaces need for clipwhite absfpath_ = ut.truepath(fpath) fig.savefig(absfpath_, **savekw) if CLIP_WHITE: # remove white borders fpath_in = fpath_out = absfpath_ vt.clipwhite_ondisk(fpath_in, fpath_out) # img = vt.imread(absfpath_) # thresh = 128 # fillval = [255, 255, 255] # cropped_img = vt.crop_out_imgfill(img, fillval=fillval, thresh=thresh) # logger.info('img.shape = %r' % (img.shape,)) # logger.info('cropped_img.shape = %r' % (cropped_img.shape,)) # vt.imwrite(absfpath_, cropped_img) # if dpath is not None: # fpath_ = ut.unixjoin(dpath, basename(absfpath_)) # else: # fpath_ = fpath fpath_list = [fpath_] # Print out latex info default_caption = '\n% ---\n' + basename(fpath).replace('_', ' ') + '\n% ---\n' default_label = splitext(basename(fpath))[0] # [0].replace('_', '') caption_list = ut.get_argval('--caption', type_=str, default=default_caption) if isinstance(caption_list, str): caption_str = caption_list else: caption_str = ' '.join(caption_list) # caption_str = ut.get_argval('--caption', type_=str, # default=basename(fpath).replace('_', ' ')) label_str = ut.get_argval('--label', type_=str, default=default_label) width_str = ut.get_argval('--width', type_=str, default='\\textwidth') width_str = ut.get_argval('--width', type_=str, default='\\textwidth') logger.info('width_str = %r' % (width_str,)) height_str = ut.get_argval('--height', type_=str, default=None) caplbl_str = label_str if False and ut.is_developer() and len(fpath_list) <= 4: if len(fpath_list) == 1: latex_block = ( '\\ImageCommand{' + ''.join(fpath_list) + '}{' + width_str + '}{\n' + caption_str + '\n}{' + label_str + '}' ) else: width_str = '1' latex_block = ( '\\MultiImageCommandII' + '{' + label_str + '}' + '{' + width_str + '}' + '{' + caplbl_str + '}' + '{\n' + caption_str + '\n}' '{' + '}{'.join(fpath_list) + '}' ) # HACK else: RESHAPE = ut.get_argval('--reshape', type_=tuple, default=None) if RESHAPE: def list_reshape(list_, new_shape): for dim in reversed(new_shape): list_ = list(map(list, zip(*[list_[i::dim] for i in range(dim)]))) return list_ newshape = (2,) unflat_fpath_list = ut.list_reshape(fpath_list, newshape, trail=True) fpath_list = ut.flatten(ut.list_transpose(unflat_fpath_list)) caption_str = '\\caplbl{' + caplbl_str + '}' + caption_str figure_str = ut.util_latex.get_latex_figure_str( fpath_list, label_str=label_str, caption_str=caption_str, width_str=width_str, height_str=height_str, ) # import sys # logger.info(sys.argv) latex_block = figure_str latex_block = ut.latex_newcommand(label_str, latex_block) # latex_block = ut.codeblock( # r''' # \newcommand{\%s}{ # %s # } # ''' # ) % (label_str, latex_block,) try: import os import psutil import pipes # import shlex # TODO: separate into get_process_cmdline_str # TODO: replace home with ~ proc = psutil.Process(pid=os.getpid()) home = os.path.expanduser('~') cmdline_str = ' '.join( [pipes.quote(_).replace(home, '~') for _ in proc.cmdline()] ) latex_block = ( ut.codeblock( r""" \begin{comment} %s \end{comment} """ ) % (cmdline_str,) + '\n' + latex_block ) except OSError: pass # latex_indent = ' ' * (4 * 2) latex_indent = ' ' * (0) latex_block_ = ut.indent(latex_block, latex_indent) ut.print_code(latex_block_, 'latex') if 'append' in arg_dict: append_fpath = arg_dict['append'] ut.write_to(append_fpath, '\n\n' + latex_block_, mode='a') if ut.get_argflag(('--diskshow', '--ds')): # show what we wrote ut.startfile(absfpath_) # Hack write the corresponding logfile next to the output log_fpath = ut.get_current_log_fpath() if ut.get_argflag('--savelog'): if log_fpath is not None: ut.copy(log_fpath, splitext(absfpath_)[0] + '.txt') else: logger.info('Cannot copy log file because none exists') if ut.inIPython(): import wbia.plottool as pt pt.iup() # elif ut.get_argflag('--cmd'): # import wbia.plottool as pt # pt.draw() # ut.embed(N=N) elif ut.get_argflag('--cmd'): # cmd must handle show I think pass elif ut.get_argflag('--show'): if ut.get_argflag('--tile'): if ut.get_computer_name().lower() in ['hyrule']: fig_presenter.all_figures_tile(percent_w=0.5, monitor_num=0) else: fig_presenter.all_figures_tile() if ut.get_argflag('--present'): fig_presenter.present() for fig in fig_presenter.get_all_figures(): fig.set_dpi(80) plt.show() def distinct_markers(num, style='astrisk', total=None, offset=0): r""" Args: num (?): CommandLine: python -m wbia.plottool.draw_func2 --exec-distinct_markers --show python -m wbia.plottool.draw_func2 --exec-distinct_markers --mstyle=star --show python -m wbia.plottool.draw_func2 --exec-distinct_markers --mstyle=polygon --show Example: >>> # ENABLE_DOCTEST >>> from wbia.plottool.draw_func2 import * # NOQA >>> import wbia.plottool as pt >>> style = ut.get_argval('--mstyle', type_=str, default='astrisk') >>> marker_list = distinct_markers(10, style) >>> x_data = np.arange(0, 3) >>> for count, (marker) in enumerate(marker_list): >>> pt.plot(x_data, [count] * len(x_data), marker=marker, markersize=10, linestyle='', label=str(marker)) >>> pt.legend() >>> import wbia.plottool as pt >>> pt.show_if_requested() """ num_sides = 3 style_num = {'astrisk': 2, 'star': 1, 'polygon': 0, 'circle': 3}[style] if total is None: total = num total_degrees = 360 / num_sides marker_list = [ (num_sides, style_num, total_degrees * (count + offset) / total) for count in range(num) ] return marker_list def get_all_markers(): r""" CommandLine: python -m wbia.plottool.draw_func2 --exec-get_all_markers --show References: http://matplotlib.org/1.3.1/examples/pylab_examples/line_styles.html http://matplotlib.org/api/markers_api.html#matplotlib.markers.MarkerStyle.markers Example: >>> # ENABLE_DOCTEST >>> from wbia.plottool.draw_func2 import * # NOQA >>> import wbia.plottool as pt >>> marker_dict = get_all_markers() >>> x_data = np.arange(0, 3) >>> for count, (marker, name) in enumerate(marker_dict.items()): >>> pt.plot(x_data, [count] * len(x_data), marker=marker, linestyle='', label=name) >>> pt.legend() >>> import wbia.plottool as pt >>> pt.show_if_requested() """ marker_dict = { 0: u'tickleft', 1: u'tickright', 2: u'tickup', 3: u'tickdown', 4: u'caretleft', 5: u'caretright', 6: u'caretup', 7: u'caretdown', # None: u'nothing', # u'None': u'nothing', # u' ': u'nothing', # u'': u'nothing', u'*': u'star', u'+': u'plus', u',': u'pixel', u'.': u'point', u'1': u'tri_down', u'2': u'tri_up', u'3': u'tri_left', u'4': u'tri_right', u'8': u'octagon', u'<': u'triangle_left', u'>': u'triangle_right', u'D': u'diamond', u'H': u'hexagon2', u'^': u'triangle_up', u'_': u'hline', u'd': u'thin_diamond', u'h': u'hexagon1', u'o': u'circle', u'p': u'pentagon', u's': u'square', u'v': u'triangle_down', u'x': u'x', u'|': u'vline', } # marker_list = marker_dict.keys() # marker_list = ['.', ',', 'o', 'v', '^', '<', '>', '1', '2', '3', '4', '8', 's', 'p', '*', # 'h', 'H', '+', 'x', 'D', 'd', '|', '_', 'TICKLEFT', 'TICKRIGHT', 'TICKUP', # 'TICKDOWN', 'CARETLEFT', 'CARETRIGHT', 'CARETUP', 'CARETDOWN'] return marker_dict def get_pnum_func(nRows=1, nCols=1, base=0): assert base in [0, 1], 'use base 0' offst = 0 if base == 1 else 1 def pnum_(px): return (nRows, nCols, px + offst) return pnum_ def pnum_generator(nRows=1, nCols=1, base=0, nSubplots=None, start=0): r""" Args: nRows (int): (default = 1) nCols (int): (default = 1) base (int): (default = 0) nSubplots (None): (default = None) Yields: tuple : pnum CommandLine: python -m wbia.plottool.draw_func2 --exec-pnum_generator --show Example: >>> # ENABLE_DOCTEST >>> from wbia.plottool.draw_func2 import * # NOQA >>> nRows = 3 >>> nCols = 2 >>> base = 0 >>> pnum_ = pnum_generator(nRows, nCols, base) >>> result = ut.repr2(list(pnum_), nl=1, nobr=True) >>> print(result) (3, 2, 1), (3, 2, 2), (3, 2, 3), (3, 2, 4), (3, 2, 5), (3, 2, 6), Example: >>> # ENABLE_DOCTEST >>> from wbia.plottool.draw_func2 import * # NOQA >>> nRows = 3 >>> nCols = 2 >>> pnum_ = pnum_generator(nRows, nCols, start=3) >>> result = ut.repr2(list(pnum_), nl=1, nobr=True) >>> print(result) (3, 2, 4), (3, 2, 5), (3, 2, 6), """ pnum_func = get_pnum_func(nRows, nCols, base) total_plots = nRows * nCols # TODO: have the last pnums fill in the whole figure # when there are less subplots than rows * cols # if nSubplots is not None: # if nSubplots < total_plots: # pass for px in range(start, total_plots): yield pnum_func(px) def make_pnum_nextgen(nRows=None, nCols=None, base=0, nSubplots=None, start=0): r""" Args: nRows (None): (default = None) nCols (None): (default = None) base (int): (default = 0) nSubplots (None): (default = None) start (int): (default = 0) Returns: iterator: pnum_next CommandLine: python -m wbia.plottool.draw_func2 --exec-make_pnum_nextgen --show GridParams: >>> param_grid = dict( >>> nRows=[None, 3], >>> nCols=[None, 3], >>> nSubplots=[None, 9], >>> ) >>> combos = ut.all_dict_combinations(param_grid) GridExample: >>> # ENABLE_DOCTEST >>> from wbia.plottool.draw_func2 import * # NOQA >>> base, start = 0, 0 >>> pnum_next = make_pnum_nextgen(nRows, nCols, base, nSubplots, start) >>> pnum_list = list( (pnum_next() for _ in it.count()) ) >>> print((nRows, nCols, nSubplots)) >>> result = ('pnum_list = %s' % (ut.repr2(pnum_list),)) >>> print(result) """ import functools nRows, nCols = get_num_rc(nSubplots, nRows, nCols) pnum_gen = pnum_generator( nRows=nRows, nCols=nCols, base=base, nSubplots=nSubplots, start=start ) pnum_next = functools.partial(next, pnum_gen) return pnum_next def get_num_rc(nSubplots=None, nRows=None, nCols=None): r""" Gets a constrained row column plot grid Args: nSubplots (None): (default = None) nRows (None): (default = None) nCols (None): (default = None) Returns: tuple: (nRows, nCols) CommandLine: python -m wbia.plottool.draw_func2 get_num_rc Example: >>> # ENABLE_DOCTEST >>> from wbia.plottool.draw_func2 import * # NOQA >>> cases = [ >>> dict(nRows=None, nCols=None, nSubplots=None), >>> dict(nRows=2, nCols=None, nSubplots=5), >>> dict(nRows=None, nCols=2, nSubplots=5), >>> dict(nRows=None, nCols=None, nSubplots=5), >>> ] >>> for kw in cases: >>> print('----') >>> size = get_num_rc(**kw) >>> if kw['nSubplots'] is not None: >>> assert size[0] * size[1] >= kw['nSubplots'] >>> print('**kw = %s' % (ut.repr2(kw),)) >>> print('size = %r' % (size,)) """ if nSubplots is None: if nRows is None: nRows = 1 if nCols is None: nCols = 1 else: if nRows is None and nCols is None: from wbia.plottool import plot_helpers nRows, nCols = plot_helpers.get_square_row_cols(nSubplots) elif nRows is not None: nCols = int(np.ceil(nSubplots / nRows)) elif nCols is not None: nRows = int(np.ceil(nSubplots / nCols)) return nRows, nCols def fnum_generator(base=1): fnum = base - 1 while True: fnum += 1 yield fnum def make_fnum_nextgen(base=1): import functools fnum_gen = fnum_generator(base=base) fnum_next = functools.partial(next, fnum_gen) return fnum_next BASE_FNUM = 9001 def next_fnum(new_base=None): global BASE_FNUM if new_base is not None: BASE_FNUM = new_base BASE_FNUM += 1 return BASE_FNUM def ensure_fnum(fnum): if fnum is None: return next_fnum() return fnum def execstr_global(): execstr = ['global' + key for key in globals().keys()] return execstr def label_to_colors(labels_): """ returns a unique and distinct color corresponding to each label """ unique_labels = list(set(labels_)) unique_colors = distinct_colors(len(unique_labels)) label2_color = dict(zip(unique_labels, unique_colors)) color_list = [label2_color[label] for label in labels_] return color_list # def distinct_colors(N, brightness=.878, shuffle=True): # """ # Args: # N (int): number of distinct colors # brightness (float): brightness of colors (maximum distinctiveness is .5) default is .878 # Returns: # RGB_tuples # Example: # >>> from wbia.plottool.draw_func2 import * # NOQA # """ # # http://blog.jianhuashao.com/2011/09/generate-n-distinct-colors.html # sat = brightness # val = brightness # HSV_tuples = [(x * 1.0 / N, sat, val) for x in range(N)] # RGB_tuples = list(map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples)) # if shuffle: # ut.deterministic_shuffle(RGB_tuples) # return RGB_tuples def add_alpha(colors): return [list(color) + [1] for color in colors] def get_axis_xy_width_height(ax=None, xaug=0, yaug=0, waug=0, haug=0): """gets geometry of a subplot""" if ax is None: ax = gca() autoAxis = ax.axis() xy = (autoAxis[0] + xaug, autoAxis[2] + yaug) width = (autoAxis[1] - autoAxis[0]) + waug height = (autoAxis[3] - autoAxis[2]) + haug return xy, width, height def get_axis_bbox(ax=None, **kwargs): """ # returns in figure coordinates? """ xy, width, height = get_axis_xy_width_height(ax=ax, **kwargs) return (xy[0], xy[1], width, height) def draw_border(ax, color=GREEN, lw=2, offset=None, adjust=True): """draws rectangle border around a subplot""" if adjust: xy, width, height = get_axis_xy_width_height(ax, -0.7, -0.2, 1, 0.4) else: xy, width, height = get_axis_xy_width_height(ax) if offset is not None: xoff, yoff = offset xy = [xoff, yoff] height = -height - yoff width = width - xoff rect = mpl.patches.Rectangle(xy, width, height, lw=lw) rect = ax.add_patch(rect) rect.set_clip_on(False) rect.set_fill(False) rect.set_edgecolor(color) return rect TAU = np.pi * 2 def rotate_plot(theta=TAU / 8, ax=None): r""" Args: theta (?): ax (None): CommandLine: python -m wbia.plottool.draw_func2 --test-rotate_plot Example: >>> # DISABLE_DOCTEST >>> from wbia.plottool.draw_func2 import * # NOQA >>> # build test data >>> ax = gca() >>> theta = TAU / 8 >>> plt.plot([1, 2, 3, 4, 5], [1, 2, 3, 2, 2]) >>> # execute function >>> result = rotate_plot(theta, ax) >>> # verify results >>> print(result) >>> show_if_requested() """ import vtool as vt if ax is None: ax = gca() # import vtool as vt xy, width, height = get_axis_xy_width_height(ax) bbox = [xy[0], xy[1], width, height] M = mpl.transforms.Affine2D(vt.rotation_around_bbox_mat3x3(theta, bbox)) propname = 'transAxes' # propname = 'transData' T = getattr(ax, propname) T.transform_affine(M) # T = ax.get_transform() # Tnew = T + M # ax.set_transform(Tnew) # setattr(ax, propname, Tnew) iup() def cartoon_stacked_rects(xy, width, height, num=4, shift=None, **kwargs): """ pt.figure() xy = (.5, .5) width = .2 height = .2 ax = pt.gca() ax.add_collection(col) """ if shift is None: shift = np.array([-width, height]) * (0.1 / num) xy = np.array(xy) rectkw = dict( ec=kwargs.pop('ec', None), lw=kwargs.pop('lw', None), linestyle=kwargs.pop('linestyle', None), ) patch_list = [ mpl.patches.Rectangle(xy + shift * count, width, height, **rectkw) for count in reversed(range(num)) ] col = mpl.collections.PatchCollection(patch_list, **kwargs) return col def make_bbox( bbox, theta=0, bbox_color=None, ax=None, lw=2, alpha=1.0, align='center', fill=None, **kwargs ): if ax is None: ax = gca() (rx, ry, rw, rh) = bbox # Transformations are specified in backwards order. trans_annotation = mpl.transforms.Affine2D() if align == 'center': trans_annotation.scale(rw, rh) elif align == 'outer': trans_annotation.scale(rw + (lw / 2), rh + (lw / 2)) elif align == 'inner': trans_annotation.scale(rw - (lw / 2), rh - (lw / 2)) trans_annotation.rotate(theta) trans_annotation.translate(rx + rw / 2, ry + rh / 2) t_end = trans_annotation + ax.transData bbox = mpl.patches.Rectangle((-0.5, -0.5), 1, 1, lw=lw, transform=t_end, **kwargs) bbox.set_fill(fill if fill else None) bbox.set_alpha(alpha) # bbox.set_transform(trans) bbox.set_edgecolor(bbox_color) return bbox # TODO SEPARTE THIS INTO DRAW BBOX AND DRAW_ANNOTATION def draw_bbox( bbox, lbl=None, bbox_color=(1, 0, 0), lbl_bgcolor=(0, 0, 0), lbl_txtcolor=(1, 1, 1), draw_arrow=True, theta=0, ax=None, lw=2, ): if ax is None: ax = gca() (rx, ry, rw, rh) = bbox # Transformations are specified in backwards order. trans_annotation = mpl.transforms.Affine2D() trans_annotation.scale(rw, rh) trans_annotation.rotate(theta) trans_annotation.translate(rx + rw / 2, ry + rh / 2) t_end = trans_annotation + ax.transData bbox = mpl.patches.Rectangle((-0.5, -0.5), 1, 1, lw=lw, transform=t_end) bbox.set_fill(False) # bbox.set_transform(trans) bbox.set_edgecolor(bbox_color) ax.add_patch(bbox) # Draw overhead arrow indicating the top of the ANNOTATION if draw_arrow: arw_xydxdy = (-0.5, -0.5, 1.0, 0.0) arw_kw = dict(head_width=0.1, transform=t_end, length_includes_head=True) arrow = mpl.patches.FancyArrow(*arw_xydxdy, **arw_kw) arrow.set_edgecolor(bbox_color) arrow.set_facecolor(bbox_color) ax.add_patch(arrow) # Draw a label if lbl is not None: ax_absolute_text( rx, ry, lbl, ax=ax, horizontalalignment='center', verticalalignment='center', color=lbl_txtcolor, backgroundcolor=lbl_bgcolor, ) def plot(*args, **kwargs): yscale = kwargs.pop('yscale', 'linear') xscale = kwargs.pop('xscale', 'linear') logscale_kwargs = kwargs.pop('logscale_kwargs', {}) # , {'nonposx': 'clip'}) plot = plt.plot(*args, **kwargs) ax = plt.gca() yscale_kwargs = logscale_kwargs if yscale in ['log', 'symlog'] else {} xscale_kwargs = logscale_kwargs if xscale in ['log', 'symlog'] else {} ax.set_yscale(yscale, **yscale_kwargs) ax.set_xscale(xscale, **xscale_kwargs) return plot def plot2( x_data, y_data, marker='o', title_pref='', x_label='x', y_label='y', unitbox=False, flipx=False, flipy=False, title=None, dark=None, equal_aspect=True, pad=0, label='', fnum=None, pnum=None, *args, **kwargs ): """ don't forget to call pt.legend Kwargs: linewidth (float): """ if x_data is None: warnstr = '[df2] ! Warning: x_data is None' logger.info(warnstr) x_data = np.arange(len(y_data)) if fnum is not None or pnum is not None: figure(fnum=fnum, pnum=pnum) do_plot = True # ensure length if len(x_data) != len(y_data): warnstr = '[df2] ! Warning: len(x_data) != len(y_data). Cannot plot2' warnings.warn(warnstr) draw_text(warnstr) do_plot = False if len(x_data) == 0: warnstr = '[df2] ! Warning: len(x_data) == 0. Cannot plot2' warnings.warn(warnstr) draw_text(warnstr) do_plot = False # ensure in ndarray if isinstance(x_data, list): x_data = np.array(x_data) if isinstance(y_data, list): y_data = np.array(y_data) ax = gca() if do_plot: ax.plot(x_data, y_data, marker, label=label, *args, **kwargs) min_x = x_data.min() min_y = y_data.min() max_x = x_data.max() max_y = y_data.max() min_ = min(min_x, min_y) max_ = max(max_x, max_y) if equal_aspect: # Equal aspect ratio if unitbox is True: # Just plot a little bit outside the box set_axis_limit(-0.01, 1.01, -0.01, 1.01, ax) # ax.grid(True) else: set_axis_limit(min_, max_, min_, max_, ax) # aspect_opptions = ['auto', 'equal', num] ax.set_aspect('equal') else: ax.set_aspect('auto') if pad > 0: ax.set_xlim(min_x - pad, max_x + pad) ax.set_ylim(min_y - pad, max_y + pad) # ax.grid(True, color='w' if dark else 'k') if flipx: ax.invert_xaxis() if flipy: ax.invert_yaxis() use_darkbackground = dark if use_darkbackground is None: import wbia.plottool as pt use_darkbackground = pt.is_default_dark_bg() if use_darkbackground: dark_background(ax) else: # No data, draw big red x draw_boxedX() presetup_axes(x_label, y_label, title_pref, title, ax=None) def pad_axes(pad, xlim=None, ylim=None): ax = gca() if xlim is None: xlim = ax.get_xlim() if ylim is None: ylim = ax.get_ylim() min_x, max_x = xlim min_y, max_y = ylim ax.set_xlim(min_x - pad, max_x + pad) ax.set_ylim(min_y - pad, max_y + pad) def presetup_axes( x_label='x', y_label='y', title_pref='', title=None, equal_aspect=False, ax=None, **kwargs ): if ax is None: ax = gca() set_xlabel(x_label, **kwargs) set_ylabel(y_label, **kwargs) if title is None: title = x_label + ' vs ' + y_label set_title(title_pref + ' ' + title, ax=None, **kwargs) if equal_aspect: ax.set_aspect('equal') def postsetup_axes(use_legend=True, bg=None): import wbia.plottool as pt if bg is None: if pt.is_default_dark_bg(): bg = 'dark' if bg == 'dark': dark_background() if use_legend: legend() def adjust_subplots( left=None, right=None, bottom=None, top=None, wspace=None, hspace=None, use_argv=False, fig=None, ): """ Kwargs: left (float): left side of the subplots of the figure right (float): right side of the subplots of the figure bottom (float): bottom of the subplots of the figure top (float): top of the subplots of the figure wspace (float): width reserved for blank space between subplots hspace (float): height reserved for blank space between subplots """ kwargs = dict( left=left, right=right, bottom=bottom, top=top, wspace=wspace, hspace=hspace ) kwargs = {k: v for k, v in kwargs.items() if v is not None} if fig is None: fig = gcf() subplotpars = fig.subplotpars adjust_dict = subplotpars.__dict__.copy() if 'validate' in adjust_dict: del adjust_dict['validate'] if '_validate' in adjust_dict: del adjust_dict['_validate'] adjust_dict.update(kwargs) if use_argv: # hack to take args from commandline adjust_dict = ut.parse_dict_from_argv(adjust_dict) fig.subplots_adjust(**adjust_dict) # ======================= # TEXT FUNCTIONS # TODO: I have too many of these. Need to consolidate # ======================= def upperleft_text(txt, alpha=0.6, color=None): txtargs = dict( horizontalalignment='left', verticalalignment='top', backgroundcolor=(0, 0, 0, alpha), color=ORANGE if color is None else color, ) relative_text((0.02, 0.02), txt, **txtargs) def upperright_text(txt, offset=None, alpha=0.6): txtargs = dict( horizontalalignment='right', verticalalignment='top', backgroundcolor=(0, 0, 0, alpha), color=ORANGE, offset=offset, ) relative_text((0.98, 0.02), txt, **txtargs) def lowerright_text(txt): txtargs = dict( horizontalalignment='right', verticalalignment='bottom', backgroundcolor=(0, 0, 0, 0.6), color=ORANGE, ) relative_text((0.98, 0.92), txt, **txtargs) def absolute_lbl(x_, y_, txt, roffset=(-0.02, -0.02), alpha=0.6, **kwargs): """alternative to relative text""" txtargs = dict( horizontalalignment='right', verticalalignment='top', backgroundcolor=(0, 0, 0, alpha), color=ORANGE, ) txtargs.update(kwargs) ax_absolute_text(x_, y_, txt, roffset=roffset, **txtargs) def absolute_text(pos, text, ax=None, **kwargs): x, y = pos ax_absolute_text(x, y, text, ax=ax, **kwargs) def relative_text(pos, text, ax=None, offset=None, **kwargs): """ Places text on axes in a relative position Args: pos (tuple): relative xy position text (str): text ax (None): (default = None) offset (None): (default = None) **kwargs: horizontalalignment, verticalalignment, roffset, ha, va, fontsize, fontproperties, fontproperties, clip_on CommandLine: python -m wbia.plottool.draw_func2 relative_text --show Example: >>> # DISABLE_DOCTEST >>> from wbia.plottool.draw_func2 import * # NOQA >>> import wbia.plottool as pt >>> x = .5 >>> y = .5 >>> txt = 'Hello World' >>> pt.figure() >>> ax = pt.gca() >>> family = 'monospace' >>> family = 'CMU Typewriter Text' >>> fontproperties = mpl.font_manager.FontProperties(family=family, >>> size=42) >>> result = relative_text((x, y), txt, ax, halign='center', >>> fontproperties=fontproperties) >>> print(result) >>> import wbia.plottool as pt >>> pt.show_if_requested() """ if pos == 'lowerleft': pos = (0.01, 0.99) kwargs['halign'] = 'left' kwargs['valign'] = 'bottom' elif pos == 'upperleft': pos = (0.01, 0.01) kwargs['halign'] = 'left' kwargs['valign'] = 'top' x, y = pos if ax is None: ax = gca() if 'halign' in kwargs: kwargs['horizontalalignment'] = kwargs.pop('halign') if 'valign' in kwargs: kwargs['verticalalignment'] = kwargs.pop('valign') xy, width, height = get_axis_xy_width_height(ax) x_, y_ = ((xy[0]) + x * width, (xy[1] + height) - y * height) if offset is not None: xoff, yoff = offset x_ += xoff y_ += yoff absolute_text((x_, y_), text, ax=ax, **kwargs) def parse_fontkw(**kwargs): r""" Kwargs: fontsize, fontfamilty, fontproperties """ from matplotlib.font_manager import FontProperties if 'fontproperties' not in kwargs: size = kwargs.get('fontsize', 14) weight = kwargs.get('fontweight', 'normal') fontname = kwargs.get('fontname', None) if fontname is not None: # TODO catch user warning '/usr/share/fonts/truetype/' '/usr/share/fonts/opentype/' fontpath = mpl.font_manager.findfont(fontname, fallback_to_default=False) font_prop = FontProperties(fname=fontpath, weight=weight, size=size) else: family = kwargs.get('fontfamilty', 'monospace') font_prop = FontProperties(family=family, weight=weight, size=size) else: font_prop = kwargs['fontproperties'] return font_prop def ax_absolute_text(x_, y_, txt, ax=None, roffset=None, **kwargs): """Base function for text Kwargs: horizontalalignment in ['right', 'center', 'left'], verticalalignment in ['top'] color """ kwargs = kwargs.copy() if ax is None: ax = gca() if 'ha' in kwargs: kwargs['horizontalalignment'] = kwargs['ha'] if 'va' in kwargs: kwargs['verticalalignment'] = kwargs['va'] if 'fontproperties' not in kwargs: if 'fontsize' in kwargs: fontsize = kwargs['fontsize'] font_prop = mpl.font_manager.FontProperties( family='monospace', # weight='light', size=fontsize, ) kwargs['fontproperties'] = font_prop else: kwargs['fontproperties'] = mpl.font_manager.FontProperties(family='monospace') # custom_constants.FONTS.relative if 'clip_on' not in kwargs: kwargs['clip_on'] = True if roffset is not None: xroff, yroff = roffset xy, width, height = get_axis_xy_width_height(ax) x_ += xroff * width y_ += yroff * height return ax.text(x_, y_, txt, **kwargs) def fig_relative_text(x, y, txt, **kwargs): kwargs['horizontalalignment'] = 'center' kwargs['verticalalignment'] = 'center' fig = gcf() # xy, width, height = get_axis_xy_width_height(ax) # x_, y_ = ((xy[0]+width)+x*width, (xy[1]+height)-y*height) fig.text(x, y, txt, **kwargs) def draw_text(text_str, rgb_textFG=(0, 0, 0), rgb_textBG=(1, 1, 1)): ax = gca() xy, width, height = get_axis_xy_width_height(ax) text_x = xy[0] + (width / 2) text_y = xy[1] + (height / 2) ax.text( text_x, text_y, text_str, horizontalalignment='center', verticalalignment='center', color=rgb_textFG, backgroundcolor=rgb_textBG, ) # def convert_keypress_event_mpl_to_qt4(mevent): # global TMP_mevent # TMP_mevent = mevent # # Grab the key from the mpl.KeyPressEvent # key = mevent.key # logger.info('[df2] convert event mpl -> qt4') # logger.info('[df2] key=%r' % key) # # dicts modified from backend_qt4.py # mpl2qtkey = {'control': Qt.Key_Control, 'shift': Qt.Key_Shift, # 'alt': Qt.Key_Alt, 'super': Qt.Key_Meta, # 'enter': Qt.Key_Return, 'left': Qt.Key_Left, 'up': Qt.Key_Up, # 'right': Qt.Key_Right, 'down': Qt.Key_Down, # 'escape': Qt.Key_Escape, 'f1': Qt.Key_F1, 'f2': Qt.Key_F2, # 'f3': Qt.Key_F3, 'f4': Qt.Key_F4, 'f5': Qt.Key_F5, # 'f6': Qt.Key_F6, 'f7': Qt.Key_F7, 'f8': Qt.Key_F8, # 'f9': Qt.Key_F9, 'f10': Qt.Key_F10, 'f11': Qt.Key_F11, # 'f12': Qt.Key_F12, 'home': Qt.Key_Home, 'end': Qt.Key_End, # 'pageup': Qt.Key_PageUp, 'pagedown': Qt.Key_PageDown} # # Reverse the control and super (aka cmd/apple) keys on OSX # if sys.platform == 'darwin': # mpl2qtkey.update({'super': Qt.Key_Control, 'control': Qt.Key_Meta, }) # # Try to reconstruct QtGui.KeyEvent # type_ = QtCore.QEvent.Type(QtCore.QEvent.KeyPress) # The type should always be KeyPress # text = '' # # Try to extract the original modifiers # modifiers = QtCore.Qt.NoModifier # initialize to no modifiers # if key.find(u'ctrl+') >= 0: # modifiers = modifiers | QtCore.Qt.ControlModifier # key = key.replace(u'ctrl+', u'') # logger.info('[df2] has ctrl modifier') # text += 'Ctrl+' # if key.find(u'alt+') >= 0: # modifiers = modifiers | QtCore.Qt.AltModifier # key = key.replace(u'alt+', u'') # logger.info('[df2] has alt modifier') # text += 'Alt+' # if key.find(u'super+') >= 0: # modifiers = modifiers | QtCore.Qt.MetaModifier # key = key.replace(u'super+', u'') # logger.info('[df2] has super modifier') # text += 'Super+' # if key.isupper(): # modifiers = modifiers | QtCore.Qt.ShiftModifier # logger.info('[df2] has shift modifier') # text += 'Shift+' # # Try to extract the original key # try: # if key in mpl2qtkey: # key_ = mpl2qtkey[key] # else: # key_ = ord(key.upper()) # Qt works with uppercase keys # text += key.upper() # except Exception as ex: # logger.info('[df2] ERROR key=%r' % key) # logger.info('[df2] ERROR %r' % ex) # raise # autorep = False # default false # count = 1 # default 1 # text = str(text) # The text is somewhat arbitrary # # Create the QEvent # logger.info('----------------') # logger.info('[df2] Create event') # logger.info('[df2] type_ = %r' % type_) # logger.info('[df2] text = %r' % text) # logger.info('[df2] modifiers = %r' % modifiers) # logger.info('[df2] autorep = %r' % autorep) # logger.info('[df2] count = %r ' % count) # logger.info('----------------') # qevent = QtGui.QKeyEvent(type_, key_, modifiers, text, autorep, count) # return qevent # def test_build_qkeyevent(): # import draw_func2 as df2 # qtwin = df2.QT4_WINS[0] # # This reconstructs an test mplevent # canvas = df2.figure(1).canvas # mevent = mpl.backend_bases.KeyEvent('key_press_event', canvas, u'ctrl+p', x=672, y=230.0) # qevent = df2.convert_keypress_event_mpl_to_qt4(mevent) # app = qtwin.backend.app # app.sendEvent(qtwin.ui, mevent) # #type_ = QtCore.QEvent.Type(QtCore.QEvent.KeyPress) # The type should always be KeyPress # #text = str('A') # The text is somewhat arbitrary # #modifiers = QtCore.Qt.NoModifier # initialize to no modifiers # #modifiers = modifiers | QtCore.Qt.ControlModifier # #modifiers = modifiers | QtCore.Qt.AltModifier # #key_ = ord('A') # Qt works with uppercase keys # #autorep = False # default false # #count = 1 # default 1 # #qevent = QtGui.QKeyEvent(type_, key_, modifiers, text, autorep, count) # return qevent def show_histogram(data, bins=None, **kwargs): """ CommandLine: python -m wbia.plottool.draw_func2 --test-show_histogram --show Example: >>> # DISABLE_DOCTEST >>> from wbia.plottool.draw_func2 import * # NOQA >>> # build test data >>> data = np.array([1, 24, 0, 0, 3, 4, 5, 9, 3, 0, 0, 0, 0, 2, 2, 2, 0, 0, 1, 1, 0, 0, 0, 3,]) >>> bins = None >>> # execute function >>> result = show_histogram(data, bins) >>> # verify results >>> print(result) >>> import wbia.plottool as pt >>> pt.show_if_requested() """ logger.info('[df2] show_histogram()') dmin = int(np.floor(data.min())) dmax = int(np.ceil(data.max())) if bins is None: bins = dmax - dmin fig = figure(**kwargs) ax = gca() ax.hist(data, bins=bins, range=(dmin, dmax)) # dark_background() use_darkbackground = None if use_darkbackground is None: use_darkbackground = not ut.get_argflag('--save') if use_darkbackground: dark_background(ax) return fig # help(np.bincount) # fig.show() def show_signature(sig, **kwargs): fig = figure(**kwargs) plt.plot(sig) fig.show() def draw_stems( x_data=None, y_data=None, setlims=True, color=None, markersize=None, bottom=None, marker=None, linestyle='-', ): """ Draws stem plot Args: x_data (None): y_data (None): setlims (bool): color (None): markersize (None): bottom (None): References: http://exnumerus.blogspot.com/2011/02/how-to-quickly-plot-multiple-line.html CommandLine: python -m wbia.plottool.draw_func2 --test-draw_stems --show python -m wbia.plottool.draw_func2 --test-draw_stems Example: >>> # ENABLE_DOCTEST >>> from wbia.plottool.draw_func2 import * # NOQA >>> x_data = np.append(np.arange(1, 10), np.arange(1, 10)) >>> rng = np.random.RandomState(0) >>> y_data = sorted(rng.rand(len(x_data)) * 10) >>> # y_data = np.array([ut.get_nth_prime(n) for n in x_data]) >>> setlims = False >>> color = [1.0, 0.0, 0.0, 1.0] >>> markersize = 2 >>> marker = 'o' >>> bottom = None >>> result = draw_stems(x_data, y_data, setlims, color, markersize, bottom, marker) >>> import wbia.plottool as pt >>> pt.show_if_requested() """ if y_data is not None and x_data is None: x_data = np.arange(len(y_data)) pass if len(x_data) != len(y_data): logger.info('[df2] WARNING plot_stems(): len(x_data)!=len(y_data)') if len(x_data) == 0: logger.info('[df2] WARNING plot_stems(): len(x_data)=len(y_data)=0') x_data_ = np.array(x_data) y_data_ = np.array(y_data) y_data_sortx = y_data_.argsort()[::-1] x_data_sort = x_data_[y_data_sortx] y_data_sort = y_data_[y_data_sortx] if color is None: color = [1.0, 0.0, 0.0, 1.0] OLD = False if not OLD: if bottom is None: bottom = 0 # Faster way of drawing stems # with ut.Timer('new stem'): stemlines = [] ax = gca() x_segments = ut.flatten([[thisx, thisx, None] for thisx in x_data_sort]) if linestyle == '': y_segments = ut.flatten([[thisy, thisy, None] for thisy in y_data_sort]) else: y_segments = ut.flatten([[bottom, thisy, None] for thisy in y_data_sort]) ax.plot(x_segments, y_segments, linestyle, color=color, marker=marker) else: with ut.Timer('old stem'): markerline, stemlines, baseline = pylab.stem( x_data_sort, y_data_sort, linefmt='-', bottom=bottom ) if markersize is not None: markerline.set_markersize(markersize) pylab.setp(markerline, 'markerfacecolor', 'w') pylab.setp(stemlines, 'markerfacecolor', 'w') if color is not None: for line in stemlines: line.set_color(color) pylab.setp(baseline, 'linewidth', 0) # baseline should be invisible if setlims: ax = gca() ax.set_xlim(min(x_data) - 1, max(x_data) + 1) ax.set_ylim(min(y_data) - 1, max(max(y_data), max(x_data)) + 1) def plot_sift_signature(sift, title='', fnum=None, pnum=None): """ Plots a SIFT descriptor as a histogram and distinguishes different bins into different colors Args: sift (ndarray[dtype=np.uint8]): title (str): (default = '') fnum (int): figure number(default = None) pnum (tuple): plot number(default = None) Returns: AxesSubplot: ax CommandLine: python -m wbia.plottool.draw_func2 --test-plot_sift_signature --show Example: >>> # ENABLE_DOCTEST >>> from wbia.plottool.draw_func2 import * # NOQA >>> import vtool as vt >>> sift = vt.demodata.testdata_dummy_sift(1, np.random.RandomState(0))[0] >>> title = 'test sift histogram' >>> fnum = None >>> pnum = None >>> ax = plot_sift_signature(sift, title, fnum, pnum) >>> result = ('ax = %s' % (str(ax),)) >>> print(result) >>> import wbia.plottool as pt >>> pt.show_if_requested() """ fnum = ensure_fnum(fnum) figure(fnum=fnum, pnum=pnum) ax = gca() plot_bars(sift, 16) ax.set_xlim(0, 128) ax.set_ylim(0, 256) space_xticks(9, 16) space_yticks(5, 64) set_title(title, ax=ax) # dark_background(ax) use_darkbackground = None if use_darkbackground is None: use_darkbackground = not ut.get_argflag('--save') if use_darkbackground: dark_background(ax) return ax def plot_descriptor_signature(vec, title='', fnum=None, pnum=None): """ signature general for for any descriptor vector. Args: vec (ndarray): title (str): (default = '') fnum (int): figure number(default = None) pnum (tuple): plot number(default = None) Returns: AxesSubplot: ax CommandLine: python -m wbia.plottool.draw_func2 --test-plot_descriptor_signature --show SeeAlso: plot_sift_signature Example: >>> # DISABLE_DOCTEST >>> from wbia.plottool.draw_func2 import * # NOQA >>> import vtool as vt >>> vec = ((np.random.RandomState(0).rand(258) - .2) * 4) >>> title = 'test sift histogram' >>> fnum = None >>> pnum = None >>> ax = plot_descriptor_signature(vec, title, fnum, pnum) >>> result = ('ax = %s' % (str(ax),)) >>> print(result) >>> import wbia.plottool as pt >>> pt.show_if_requested() """ fnum = ensure_fnum(fnum) figure(fnum=fnum, pnum=pnum) ax = gca() plot_bars(vec, vec.size // 8) ax.set_xlim(0, vec.size) ax.set_ylim(vec.min(), vec.max()) # space_xticks(9, 16) # space_yticks(5, 64) set_title(title, ax=ax) use_darkbackground = None if use_darkbackground is None: use_darkbackground = not ut.get_argflag('--save') if use_darkbackground: dark_background(ax) return ax def dark_background(ax=None, doubleit=False, force=False): r""" Args: ax (None): (default = None) doubleit (bool): (default = False) CommandLine: python -m wbia.plottool.draw_func2 --exec-dark_background --show Example: >>> # ENABLE_DOCTEST >>> from wbia.plottool.draw_func2 import * # NOQA >>> import wbia.plottool as pt >>> fig = pt.figure() >>> pt.dark_background() >>> import wbia.plottool as pt >>> pt.show_if_requested() """ def is_using_style(style): style_dict = mpl.style.library[style] return len(ut.dict_isect(style_dict, mpl.rcParams)) == len(style_dict) # is_using_style('classic') # is_using_style('ggplot') # HARD_DISABLE = force is not True HARD_DISABLE = False if not HARD_DISABLE and force: # Should use mpl style dark background instead bgcolor = BLACK * 0.9 if ax is None: ax = gca() from mpl_toolkits.mplot3d import Axes3D if isinstance(ax, Axes3D): ax.set_axis_bgcolor(bgcolor) ax.tick_params(colors='white') return xy, width, height = get_axis_xy_width_height(ax) if doubleit: halfw = (doubleit) * (width / 2) halfh = (doubleit) * (height / 2) xy = (xy[0] - halfw, xy[1] - halfh) width *= doubleit + 1 height *= doubleit + 1 rect = mpl.patches.Rectangle(xy, width, height, lw=0, zorder=0) rect.set_clip_on(True) rect.set_fill(True) rect.set_color(bgcolor) rect.set_zorder(-99999999999) rect = ax.add_patch(rect) def space_xticks(nTicks=9, spacing=16, ax=None): if ax is None: ax = gca() ax.set_xticks(np.arange(nTicks) * spacing) small_xticks(ax) def space_yticks(nTicks=9, spacing=32, ax=None): if ax is None: ax = gca() ax.set_yticks(np.arange(nTicks) * spacing) small_yticks(ax) def small_xticks(ax=None): for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(8) def small_yticks(ax=None): for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(8) def plot_bars(y_data, nColorSplits=1): width = 1 nDims = len(y_data) nGroup = nDims // nColorSplits ori_colors = distinct_colors(nColorSplits) x_data = np.arange(nDims) ax = gca() for ix in range(nColorSplits): xs = np.arange(nGroup) + (nGroup * ix) color = ori_colors[ix] x_dat = x_data[xs] y_dat = y_data[xs] ax.bar(x_dat, y_dat, width, color=color, edgecolor=np.array(color) * 0.8) def append_phantom_legend_label(label, color, type_='circle', alpha=1.0, ax=None): """ adds a legend label without displaying an actor Args: label (?): color (?): loc (str): CommandLine: python -m wbia.plottool.draw_func2 --test-append_phantom_legend_label --show Example: >>> # ENABLE_DOCTEST >>> from wbia.plottool.draw_func2 import * # NOQA >>> import wbia.plottool as pt >>> label = 'some label' >>> color = 'b' >>> loc = 'upper right' >>> fig = pt.figure() >>> ax = pt.gca() >>> result = append_phantom_legend_label(label, color, loc, ax=ax) >>> print(result) >>> import wbia.plottool as pt >>> pt.quit_if_noshow() >>> pt.show_phantom_legend_labels(ax=ax) >>> pt.show_if_requested() """ # pass # , loc=loc if ax is None: ax = gca() _phantom_legend_list = getattr(ax, '_phantom_legend_list', None) if _phantom_legend_list is None: _phantom_legend_list = [] setattr(ax, '_phantom_legend_list', _phantom_legend_list) if type_ == 'line': phantom_actor = plt.Line2D((0, 0), (1, 1), color=color, label=label, alpha=alpha) else: phantom_actor = plt.Circle((0, 0), 1, fc=color, label=label, alpha=alpha) # , prop=custom_constants.FONTS.legend) # legend_tups = [] _phantom_legend_list.append(phantom_actor) # ax.legend(handles=[phantom_actor], framealpha=.2) # plt.legend(*zip(*legend_tups), framealpha=.2) def show_phantom_legend_labels(ax=None, **kwargs): if ax is None: ax = gca() _phantom_legend_list = getattr(ax, '_phantom_legend_list', None) if _phantom_legend_list is None: _phantom_legend_list = [] setattr(ax, '_phantom_legend_list', _phantom_legend_list) # logger.info(_phantom_legend_list) legend(handles=_phantom_legend_list, ax=ax, **kwargs) # ax.legend(handles=_phantom_legend_list, framealpha=.2) LEGEND_LOCATION = { 'upper right': 1, 'upper left': 2, 'lower left': 3, 'lower right': 4, 'right': 5, 'center left': 6, 'center right': 7, 'lower center': 8, 'upper center': 9, 'center': 10, } # def legend(loc='upper right', fontproperties=None): def legend( loc='best', fontproperties=None, size=None, fc='w', alpha=1, ax=None, handles=None ): r""" Args: loc (str): (default = 'best') fontproperties (None): (default = None) size (None): (default = None) CommandLine: python -m wbia.plottool.draw_func2 --exec-legend --show Example: >>> # ENABLE_DOCTEST >>> from wbia.plottool.draw_func2 import * # NOQA >>> loc = 'best' >>> import wbia.plottool as pt >>> xdata = np.linspace(-6, 6) >>> ydata = np.sin(xdata) >>> pt.plot(xdata, ydata, label='sin') >>> fontproperties = None >>> size = None >>> result = legend(loc, fontproperties, size) >>> print(result) >>> import wbia.plottool as pt >>> pt.show_if_requested() """ assert loc in LEGEND_LOCATION or loc == 'best', 'invalid loc. try one of %r' % ( LEGEND_LOCATION, ) if ax is None: ax = gca() if fontproperties is None: prop = {} if size is not None: prop['size'] = size # prop['weight'] = 'normal' # prop['family'] = 'sans-serif' else: prop = fontproperties legendkw = dict(loc=loc) if prop: legendkw['prop'] = prop if handles is not None: legendkw['handles'] = handles legend = ax.legend(**legendkw) if legend: legend.get_frame().set_fc(fc) legend.get_frame().set_alpha(alpha) def plot_histpdf(data, label=None, draw_support=False, nbins=10): freq, _ = plot_hist(data, nbins=nbins) from wbia.plottool import plots plots.plot_pdf(data, draw_support=draw_support, scale_to=freq.max(), label=label) def plot_hist(data, bins=None, nbins=10, weights=None): if isinstance(data, list): data = np.array(data) dmin = data.min() dmax = data.max() if bins is None: bins = dmax - dmin ax = gca() freq, bins_, patches = ax.hist(data, bins=nbins, weights=weights, range=(dmin, dmax)) return freq, bins_ def variation_trunctate(data): ax = gca() data = np.array(data) if len(data) == 0: warnstr = '[df2] ! Warning: len(data) = 0. Cannot variation_truncate' warnings.warn(warnstr) return trunc_max = data.mean() + data.std() * 2 trunc_min = np.floor(data.min()) ax.set_xlim(trunc_min, trunc_max) # trunc_xticks = np.linspace(0, int(trunc_max),11) # trunc_xticks = trunc_xticks[trunc_xticks >= trunc_min] # trunc_xticks = np.append([int(trunc_min)], trunc_xticks) # no_zero_yticks = ax.get_yticks()[ax.get_yticks() > 0] # ax.set_xticks(trunc_xticks) # ax.set_yticks(no_zero_yticks) # _----------------- HELPERS ^^^ --------- def scores_to_color( score_list, cmap_='hot', logscale=False, reverse_cmap=False, custom=False, val2_customcolor=None, score_range=None, cmap_range=(0.1, 0.9), ): """ Other good colormaps are 'spectral', 'gist_rainbow', 'gist_ncar', 'Set1', 'Set2', 'Accent' # TODO: plasma Args: score_list (list): cmap_ (str): defaults to hot logscale (bool): cmap_range (tuple): restricts to only a portion of the cmap to avoid extremes Returns: <class '_ast.ListComp'> SeeAlso: python -m wbia.plottool.color_funcs --test-show_all_colormaps --show --type "Perceptually Uniform Sequential" CommandLine: python -m wbia.plottool.draw_func2 scores_to_color --show Example: >>> # ENABLE_DOCTEST >>> from wbia.plottool.draw_func2 import * # NOQA >>> import wbia.plottool as pt >>> ut.exec_funckw(pt.scores_to_color, globals()) >>> score_list = np.array([-1, -2, 1, 1, 2, 10]) >>> # score_list = np.array([0, .1, .11, .12, .13, .8]) >>> # score_list = np.linspace(0, 1, 100) >>> cmap_ = 'plasma' >>> colors = pt.scores_to_color(score_list, cmap_) >>> import vtool as vt >>> imgRGB = vt.atleast_nd(np.array(colors)[:, 0:3], 3, tofront=True) >>> imgRGB = imgRGB.astype(np.float32) >>> imgBGR = vt.convert_colorspace(imgRGB, 'BGR', 'RGB') >>> pt.imshow(imgBGR) >>> pt.show_if_requested() Example: >>> from wbia.plottool.draw_func2 import * # NOQA >>> score_list = np.array([-1, -2, 1, 1, 2, 10]) >>> cmap_ = 'hot' >>> logscale = False >>> reverse_cmap = True >>> custom = True >>> val2_customcolor = { ... -1: UNKNOWN_PURP, ... -2: LIGHT_BLUE, ... } """ assert len(score_list.shape) == 1, 'score must be 1d' if len(score_list) == 0: return [] def apply_logscale(scores): scores = np.array(scores) above_zero = scores >= 0 scores_ = scores.copy() scores_[above_zero] = scores_[above_zero] + 1 scores_[~above_zero] = scores_[~above_zero] - 1 scores_ = np.log2(scores_) return scores_ if logscale: # Hack score_list = apply_logscale(score_list) # if loglogscale # score_list = np.log2(np.log2(score_list + 2) + 1) # if isinstance(cmap_, str): cmap = plt.get_cmap(cmap_) # else: # cmap = cmap_ if reverse_cmap: cmap = reverse_colormap(cmap) # if custom: # base_colormap = cmap # data = score_list # cmap = customize_colormap(score_list, base_colormap) if score_range is None: min_ = score_list.min() max_ = score_list.max() else: min_ = score_range[0] max_ = score_range[1] if logscale: min_, max_ = apply_logscale([min_, max_]) if cmap_range is None: cmap_scale_min, cmap_scale_max = 0.0, 1.0 else: cmap_scale_min, cmap_scale_max = cmap_range extent_ = max_ - min_ if extent_ == 0: colors = [cmap(0.5) for fx in range(len(score_list))] else: if False and logscale: # hack def score2_01(score): return np.log2( 1 + cmap_scale_min + cmap_scale_max * (float(score) - min_) / (extent_) ) score_list = np.array(score_list) # rank_multiplier = score_list.argsort() / len(score_list) # normscore = np.array(list(map(score2_01, score_list))) * rank_multiplier normscore = np.array(list(map(score2_01, score_list))) colors = list(map(cmap, normscore)) else: def score2_01(score): return cmap_scale_min + cmap_scale_max * (float(score) - min_) / (extent_) colors = [cmap(score2_01(score)) for score in score_list] if val2_customcolor is not None: colors = [ np.array(val2_customcolor.get(score, color)) for color, score in zip(colors, score_list) ] return colors def customize_colormap(data, base_colormap): unique_scalars = np.array(sorted(np.unique(data))) max_ = unique_scalars.max() min_ = unique_scalars.min() extent_ = max_ - min_ bounds = np.linspace(min_, max_ + 1, extent_ + 2) # Get a few more colors than we actually need so we don't hit the bottom of # the cmap colors_ix = np.concatenate((np.linspace(0, 1.0, extent_ + 2), (0.0, 0.0, 0.0, 0.0))) colors_rgba = base_colormap(colors_ix) # TODO: parametarize val2_special_rgba = { -1: UNKNOWN_PURP, -2: LIGHT_BLUE, } def get_new_color(ix, val): if val in val2_special_rgba: return val2_special_rgba[val] else: return colors_rgba[ix - len(val2_special_rgba) + 1] special_colors = [get_new_color(ix, val) for ix, val in enumerate(bounds)] cmap = mpl.colors.ListedColormap(special_colors) norm = mpl.colors.BoundaryNorm(bounds, cmap.N) sm = mpl.cm.ScalarMappable(cmap=cmap, norm=norm) sm.set_array([]) # sm.set_clim(-0.5, extent_ + 0.5) # colorbar = plt.colorbar(sm) return cmap def unique_rows(arr): """ References: http://stackoverflow.com/questions/16970982/find-unique-rows-in-numpy-array """ rowblocks = np.ascontiguousarray(arr).view( np.dtype((np.void, arr.dtype.itemsize * arr.shape[1])) ) _, idx = np.unique(rowblocks, return_index=True) unique_arr = arr[idx] return unique_arr def scores_to_cmap(scores, colors=None, cmap_='hot'): if colors is None: colors = scores_to_color(scores, cmap_=cmap_) scores = np.array(scores) colors = np.array(colors) sortx = scores.argsort() sorted_colors = colors[sortx] # Make a listed colormap and mappable object listed_cmap = mpl.colors.ListedColormap(sorted_colors) return listed_cmap DF2_DIVIDER_KEY = '_df2_divider' def ensure_divider(ax): """Returns previously constructed divider or creates one""" from wbia.plottool import plot_helpers as ph divider = ph.get_plotdat(ax, DF2_DIVIDER_KEY, None) if divider is None: divider = make_axes_locatable(ax) ph.set_plotdat(ax, DF2_DIVIDER_KEY, divider) orig_append_axes = divider.append_axes def df2_append_axes( divider, position, size, pad=None, add_to_figure=True, **kwargs ): """override divider add axes to register the divided axes""" div_axes = ph.get_plotdat(ax, 'df2_div_axes', []) new_ax = orig_append_axes( position, size, pad=pad, add_to_figure=add_to_figure, **kwargs ) div_axes.append(new_ax) ph.set_plotdat(ax, 'df2_div_axes', div_axes) return new_ax ut.inject_func_as_method( divider, df2_append_axes, 'append_axes', allow_override=True ) return divider def get_binary_svm_cmap(): # useful for svms return reverse_colormap(plt.get_cmap('bwr')) def reverse_colormap(cmap): """ References: http://nbviewer.ipython.org/github/kwinkunks/notebooks/blob/master/Matteo_colourmaps.ipynb """ if isinstance(cmap, mpl.colors.ListedColormap): return mpl.colors.ListedColormap(cmap.colors[::-1]) else: reverse = [] k = [] for key, channel in cmap._segmentdata.items(): data = [] for t in channel: data.append((1 - t[0], t[1], t[2])) k.append(key) reverse.append(sorted(data)) cmap_reversed = mpl.colors.LinearSegmentedColormap( cmap.name + '_reversed', dict(zip(k, reverse)) ) return cmap_reversed def interpolated_colormap(color_frac_list, resolution=64, space='lch-ab'): """ http://stackoverflow.com/questions/12073306/customize-colorbar-in-matplotlib CommandLine: python -m wbia.plottool.draw_func2 interpolated_colormap --show Example: >>> # DISABLE_DOCTEST >>> from wbia.plottool.draw_func2 import * # NOQA >>> import wbia.plottool as pt >>> color_frac_list = [ >>> (pt.TRUE_BLUE, 0), >>> #(pt.WHITE, .5), >>> (pt.YELLOW, .5), >>> (pt.FALSE_RED, 1.0), >>> ] >>> color_frac_list = [ >>> (pt.RED, 0), >>> (pt.PINK, .1), >>> (pt.ORANGE, .2), >>> (pt.GREEN, .5), >>> (pt.TRUE_BLUE, .7), >>> (pt.PURPLE, 1.0), >>> ] >>> color_frac_list = [ >>> (pt.RED, 0/6), >>> (pt.YELLOW, 1/6), >>> (pt.GREEN, 2/6), >>> (pt.CYAN, 3/6), >>> (pt.BLUE, 4/6), # FIXME doesn't go in correct direction >>> (pt.MAGENTA, 5/6), >>> (pt.RED, 6/6), >>> ] >>> color_frac_list = [ >>> ((1, 0, 0, 0), 0/6), >>> ((1, 0, .001/255, 0), 6/6), # hack >>> ] >>> space = 'hsv' >>> color_frac_list = [ >>> (pt.BLUE, 0.0), >>> (pt.GRAY, 0.5), >>> (pt.YELLOW, 1.0), >>> ] >>> color_frac_list = [ >>> (pt.GREEN, 0.0), >>> (pt.GRAY, 0.5), >>> (pt.RED, 1.0), >>> ] >>> space = 'lab' >>> #resolution = 16 + 1 >>> resolution = 256 + 1 >>> cmap = interpolated_colormap(color_frac_list, resolution, space) >>> import wbia.plottool as pt >>> pt.quit_if_noshow() >>> a = np.linspace(0, 1, resolution).reshape(1, -1) >>> pylab.imshow(a, aspect='auto', cmap=cmap, interpolation='nearest') # , origin="lower") >>> plt.grid(False) >>> pt.show_if_requested() """ import colorsys if len(color_frac_list[0]) != 2: color_frac_list = list( zip(color_frac_list, np.linspace(0, 1, len(color_frac_list))) ) colors = ut.take_column(color_frac_list, 0) fracs = ut.take_column(color_frac_list, 1) # resolution = 17 basis = np.linspace(0, 1, resolution) fracs = np.array(fracs) indices =
np.searchsorted(fracs, basis)
numpy.searchsorted
# coding: utf-8 # # Packages # In[2]: import pickle import numpy as np import cv2 import glob import matplotlib.pyplot as plt import matplotlib.image as mpimg get_ipython().run_line_magic('matplotlib', 'inline') #%matplotlib qt # # Reading and Plotting Images # In[3]: image = mpimg.imread('test_images/straight_lines2.jpg') image123 = mpimg.imread('test_images/test5.jpg') print('This image is:', type(image), 'with dimensions:', image.shape) plt.imshow(image) print('\nThis image is distorted') # # Do camera calibration given object points and image points # In[4]: # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0) objp = np.zeros((6*9,3), np.float32) objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2) # Arrays to store object points and image points from all the images. objpoints = [] # 3d points in real world space imgpoints = [] # 2d points in image plane. # Make a list of calibration images images = glob.glob('camera_cal/calibration*.jpg') # Step through the list and search for chessboard corners for fname in images: img = cv2.imread(fname) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # Find the chessboard corners ret, corners = cv2.findChessboardCorners(gray, (9,6),None) # If found, add object points, image points if ret == True: objpoints.append(objp) imgpoints.append(corners) # Draw and display the corners img = cv2.drawChessboardCorners(img, (9,6), corners, ret) cv2.imshow('img',img) cv2.waitKey(500) cv2.destroyAllWindows() # # Undistorting an image # In[5]: undist_array = [] def cal_undistort(img, objpoints, imgpoints): # Use cv2.calibrateCamera() and cv2.undistort() ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img.shape[1::-1], None, None) undist = cv2.undistort(img, mtx, dist, None, mtx) return undist test_images = glob.glob('test_images/test*.jpg') #test_images_straight = glob.glob('test_images/straight_lines*.jpg') #undistorted = cal_undistort(image, objpoints, imgpoints) for fname in test_images: image1 = mpimg.imread(fname) undistorted = cal_undistort(image1, objpoints, imgpoints) undist_array.append(undistorted) plt.figure() plt.imshow(undistorted) print('\nThese images are undistorted') # # Undistorted images to Binary # In[6]: binary_image_array = [] for image in undist_array: #image = undistorted #gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) hls = cv2.cvtColor(image, cv2.COLOR_RGB2HLS) s_channel = hls[:,:,2] gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0) # Take the derivative in x abs_sobelx = np.absolute(sobelx) # Absolute x derivative to accentuate lines away from horizontal scaled_sobel = np.uint8(255*abs_sobelx/np.max(abs_sobelx)) thresh_min = 20 thresh_max = 100 sxbinary = np.zeros_like(scaled_sobel) sxbinary[(scaled_sobel >= thresh_min) & (scaled_sobel <= thresh_max)] = 1 s_thresh_min = 170 s_thresh_max = 255 s_binary = np.zeros_like(s_channel) s_binary[(s_channel >= s_thresh_min) & (s_channel <= s_thresh_max)] = 1 color_binary = np.dstack(( np.zeros_like(sxbinary), sxbinary, s_binary)) * 255 combined_binary = np.zeros_like(sxbinary) combined_binary[(s_binary == 1) | (sxbinary == 1)] = 1 binary_image_array.append(combined_binary) plt.figure() plt.imshow(combined_binary, cmap='gray') # # Define important Parameters # In[7]: nx = 9 # the number of inside corners in x ny = 6 # the number of inside corners in y img_size = (image.shape[1], image.shape[0]) src = np.float32([[590,450],[687,450],[1100,720],[200,720]]) dst = np.float32([[300,0],[900,0],[900,720],[300,720]]) M = cv2.getPerspectiveTransform(src, dst) M_inverse = cv2.getPerspectiveTransform(dst, src) # # Perspective Transform on binary images # In[8]: def warper(img, src, dst): # Compute and apply perpective transform img_size = (img.shape[1], img.shape[0]) M = cv2.getPerspectiveTransform(src, dst) warped = cv2.warpPerspective(img, M, img_size, flags=cv2.INTER_NEAREST) # keep same size as input image return warped # In[9]: binary_warped_images = [] for img in binary_image_array: warped_image = warper(img, src, dst) #warped_image_gray = cv2.cvtColor(warped_image,cv2.COLOR_BGR2GRAY) plt.figure() plt.imshow(warped_image, cmap='gray') binary_warped_images.append(warped_image) # # Finding Lane Pixels and Sliding window # In[10]: def find_lane_pixels(binary_warped): # Take a histogram of the bottom half of the image histogram = np.sum(binary_warped[binary_warped.shape[0]//2:,:], axis=0) # Create an output image to draw on and visualize the result out_img = np.dstack((binary_warped, binary_warped, binary_warped)) # Find the peak of the left and right halves of the histogram # These will be the starting point for the left and right lines midpoint = np.int(histogram.shape[0]//2) leftx_base = np.argmax(histogram[:midpoint]) rightx_base = np.argmax(histogram[midpoint:]) + midpoint # HYPERPARAMETERS # Choose the number of sliding windows nwindows = 9 # Set the width of the windows +/- margin margin = 100 # Set minimum number of pixels found to recenter window minpix = 50 # Set height of windows - based on nwindows above and image shape window_height = np.int(binary_warped.shape[0]//nwindows) # Identify the x and y positions of all nonzero pixels in the image nonzero = binary_warped.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) # Current positions to be updated later for each window in nwindows leftx_current = leftx_base rightx_current = rightx_base # Create empty lists to receive left and right lane pixel indices left_lane_inds = [] right_lane_inds = [] # Step through the windows one by one for window in range(nwindows): # Identify window boundaries in x and y (and right and left) win_y_low = binary_warped.shape[0] - (window+1)*window_height win_y_high = binary_warped.shape[0] - window*window_height ### TO-DO: Find the four below boundaries of the window ### win_xleft_low = leftx_current - margin win_xleft_high = leftx_current + margin win_xright_low = rightx_current - margin win_xright_high = rightx_current + margin # Draw the windows on the visualization image cv2.rectangle(out_img,(win_xleft_low,win_y_low), (win_xleft_high,win_y_high),(0,255,0), 2) cv2.rectangle(out_img,(win_xright_low,win_y_low), (win_xright_high,win_y_high),(0,255,0), 2) ### TO-DO: Identify the nonzero pixels in x and y within the window ### good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0] good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0] # Append these indices to the lists left_lane_inds.append(good_left_inds) right_lane_inds.append(good_right_inds) ### TO-DO: If you found > minpix pixels, recenter next window ### ### (`right` or `leftx_current`) on their mean position ### if len(good_left_inds) > minpix: leftx_current = np.int(np.mean(nonzerox[good_left_inds])) if len(good_right_inds) > minpix: rightx_current = np.int(np.mean(nonzerox[good_right_inds])) # Concatenate the arrays of indices (previously was a list of lists of pixels) try: left_lane_inds = np.concatenate(left_lane_inds) right_lane_inds = np.concatenate(right_lane_inds) except ValueError: # Avoids an error if the above is not implemented fully pass # Extract left and right line pixel positions leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] return leftx, lefty, rightx, righty, out_img def fit_polynomial(binary_warped): # Find our lane pixels first leftx, lefty, rightx, righty, out_img = find_lane_pixels(binary_warped) # Fit a second order polynomial to each using `np.polyfit` left_fit = np.polyfit(lefty, leftx, 2) right_fit = np.polyfit(righty, rightx, 2) # Generate x and y values for plotting ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] ) try: left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2] right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2] except TypeError: # Avoids an error if `left` and `right_fit` are still none or incorrect print('The function failed to fit a line!') left_fitx = 1*ploty**2 + 1*ploty right_fitx = 1*ploty**2 + 1*ploty ## Visualization ## # Colors in the left and right lane regions out_img[lefty, leftx] = [255, 0, 0] out_img[righty, rightx] = [0, 0, 255] # Plots the left and right polynomials on the lane lines plt.plot(left_fitx, ploty, color='yellow') plt.plot(right_fitx, ploty, color='yellow') return out_img #out_img = fit_polynomial(binary_warped_images[0]) #plt.imshow(out_img) for img in binary_warped_images: result = fit_polynomial(img) plt.imshow(result) plt.figure() # # Radius of curvature # In[11]: def measure_radius_of_curvature(x_values, binary_warped): num_rows = binary_warped.shape[0] ym_per_pix = 30/720 # meters per pixel in y dimension xm_per_pix = 3.7/700 # meters per pixel in x dimension # If no pixels were found return None y_points = np.linspace(0, num_rows-1, num_rows) y_eval = np.max(y_points) # Fit new polynomials to x,y in world space fit_cr = np.polyfit(y_points*ym_per_pix, x_values*xm_per_pix, 2) curverad = ((1 + (2*fit_cr[0]*y_eval*ym_per_pix + fit_cr[1])**2)**1.5) / np.absolute(2*fit_cr[0]) return curverad # # Finding the Lines # In[12]: final_lane_images = [] left_fit = np.array([ 2.13935315e-04, -3.77507980e-01, 4.76902175e+02]) right_fit = np.array([4.17622148e-04, -4.93848953e-01, 1.11806170e+03]) def fit_poly(img_shape, leftx, lefty, rightx, righty): ### TO-DO: Fit a second order polynomial to each with np.polyfit() ### left_fit = np.polyfit(lefty, leftx, 2) right_fit = np.polyfit(righty, rightx, 2) # Generate x and y values for plotting ploty = np.linspace(0, img_shape[0]-1, img_shape[0]) ### TO-DO: Calc both polynomials using ploty, left_fit and right_fit ### left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2] right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2] return left_fitx, right_fitx, ploty def search_around_poly(binary_warped): # HYPERPARAMETER # Choose the width of the margin around the previous polynomial to search # The quiz grader expects 100 here, but feel free to tune on your own! margin = 100 # Grab activated pixels nonzero = binary_warped.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) ### TO-DO: Set the area of search based on activated x-values ### ### within the +/- margin of our polynomial function ### ### Hint: consider the window areas for the similarly named variables ### ### in the previous quiz, but change the windows to our new search area ### left_lane_inds = ((nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] - margin)) & (nonzerox < (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] + margin))) right_lane_inds = ((nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] - margin)) & (nonzerox < (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] + margin))) # Again, extract left and right line pixel positions leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] # Fit new polynomials left_fitx, right_fitx, ploty = fit_poly(binary_warped.shape, leftx, lefty, rightx, righty) left_curve_radius = measure_radius_of_curvature(left_fitx, binary_warped) right_curve_radius = measure_radius_of_curvature(right_fitx, binary_warped) average_curve_radius = (left_curve_radius + right_curve_radius)/2 curvature_string = "Radius of curvature: %.2f m" % average_curve_radius print(curvature_string) road_center = (right_fitx[719] + left_fitx[719])/2 xm_per_pix = 3.7/700 # meters per pixel in x dimension center_offset_pixels = abs(img_size[0]/2 - road_center) center_offset_meters = xm_per_pix*center_offset_pixels offset = "Center offset: %.2f m" % center_offset_meters print(offset) ## Visualization ## # Create an image to draw on and an image to show the selection window out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255 window_img = np.zeros_like(out_img) # Color in left and right line pixels out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0] out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255] # Generate a polygon to illustrate the search window area # And recast the x and y points into usable format for cv2.fillPoly() left_line_window1 = np.array([np.transpose(np.vstack([left_fitx-margin, ploty]))]) left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([left_fitx+margin, ploty])))]) left_line_pts = np.hstack((left_line_window1, left_line_window2)) right_line_window1 = np.array([np.transpose(np.vstack([right_fitx-margin, ploty]))]) right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([right_fitx+margin, ploty])))]) right_line_pts = np.hstack((right_line_window1, right_line_window2)) # Draw the lane onto the warped blank image cv2.fillPoly(window_img, np.int_([left_line_pts]), (0,255, 0)) cv2.fillPoly(window_img, np.int_([right_line_pts]), (0,255, 0)) result = cv2.addWeighted(out_img, 1, window_img, 0.3, 0) # Plot the polynomial lines onto the image plt.plot(left_fitx, ploty, color='yellow') plt.plot(right_fitx, ploty, color='yellow') ## End visualization steps ## return result # Run image through the pipeline # Note that in your project, you'll also want to feed in the previous fits for image in binary_warped_images: result = search_around_poly(image) final_lane_images.append(result) plt.imshow(result) plt.figure() # # Calculating the radius and offset # In[13]: def radius_and_offset(image): margin = 100 nonzero = image.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) left_lane_inds = ((nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] - margin)) & (nonzerox < (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] + margin))) right_lane_inds = ((nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] - margin)) & (nonzerox < (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] + margin))) leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] left_fitx, right_fitx, ploty = fit_poly(image.shape, leftx, lefty, rightx, righty) left_curve_radius = measure_radius_of_curvature(left_fitx, image) right_curve_radius = measure_radius_of_curvature(right_fitx, image) average_curve_radius = (left_curve_radius + right_curve_radius)/2 curvature_string = "Radius of curvature: %.2f m" % average_curve_radius #print(curvature_string) road_center = (right_fitx[719] + left_fitx[719])/2 xm_per_pix = 3.7/700 # meters per pixel in x dimension center_offset_pixels = abs(img_size[0]/2 - road_center) center_offset_meters = xm_per_pix*center_offset_pixels offset = "Center offset: %.2f m" % center_offset_meters #print(offset) return curvature_string, offset # # Lane Area over final image # In[14]: for image in binary_warped_images: margin = 100 nonzero = image.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) left_lane_inds = ((nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] - margin)) & (nonzerox < (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] + margin))) right_lane_inds = ((nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] - margin)) & (nonzerox < (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] + margin))) leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] # Fit new polynomials left_fitx, right_fitx, ploty = fit_poly(image.shape, leftx, lefty, rightx, righty) warp_zero = np.zeros_like(image).astype(np.uint8) color_warp = np.dstack((warp_zero, warp_zero, warp_zero)) # Recast the x and y points into usable format for cv2.fillPoly() pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))]) pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))]) pts = np.hstack((pts_left, pts_right)) # Draw the lane onto the warped blank image cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0)) # Warp the blank back to original image space using inverse perspective matrix (Minv) newwarp = cv2.warpPerspective(color_warp, M_inverse, img_size) # Combine the result with the original image result = cv2.addWeighted(undistorted, 1, newwarp, 0.3, 0) plt.imshow(result) # In[15]: from moviepy.editor import VideoFileClip from IPython.display import HTML # # Pipeline # In[16]: def process_image(image): # TODO: put your pipeline here initial_image = np.copy(image) undistorted = cal_undistort(initial_image, objpoints, imgpoints) #gray = cv2.cvtColor(undistorted, cv2.COLOR_RGB2GRAY) hls = cv2.cvtColor(undistorted, cv2.COLOR_RGB2HLS) s_channel = hls[:,:,2] gray = cv2.cvtColor(undistorted, cv2.COLOR_RGB2GRAY) sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0) # Take the derivative in x abs_sobelx = np.absolute(sobelx) # Absolute x derivative to accentuate lines away from horizontal scaled_sobel = np.uint8(255*abs_sobelx/np.max(abs_sobelx)) thresh_min = 20 thresh_max = 100 sxbinary = np.zeros_like(scaled_sobel) sxbinary[(scaled_sobel >= thresh_min) & (scaled_sobel <= thresh_max)] = 1 s_thresh_min = 170 s_thresh_max = 255 s_binary = np.zeros_like(s_channel) s_binary[(s_channel >= s_thresh_min) & (s_channel <= s_thresh_max)] = 1 color_binary = np.dstack(( np.zeros_like(sxbinary), sxbinary, s_binary)) * 255 combined_binary = np.zeros_like(sxbinary) combined_binary[(s_binary == 1) | (sxbinary == 1)] = 1 warped_image = warper(combined_binary, src, dst) #result = fit_polynomial(warped_image) #result = search_around_poly(warped_image) curvature_string, offset = radius_and_offset(warped_image) #print(curvature_string) #print(offset) margin = 100 nonzero = warped_image.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) left_lane_inds = ((nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] - margin)) & (nonzerox < (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] + margin))) right_lane_inds = ((nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] - margin)) & (nonzerox < (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] + margin))) leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] left_fitx, right_fitx, ploty = fit_poly(warped_image.shape, leftx, lefty, rightx, righty) warp_zero = np.zeros_like(warped_image).astype(np.uint8) color_warp = np.dstack((warp_zero, warp_zero, warp_zero)) pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))]) pts_right = np.array([np.flipud(np.transpose(
np.vstack([right_fitx, ploty])
numpy.vstack
"""CBMA methods from the multilevel kernel density analysis (MKDA) family.""" import logging import multiprocessing as mp import numpy as np from scipy import special from statsmodels.sandbox.stats.multicomp import multipletests from tqdm.auto import tqdm from ... import references from ...due import due from ...stats import null_to_p, one_way, two_way from ...transforms import p_to_z from ...utils import use_memmap, vox2mm from ..kernel import KDAKernel, MKDAKernel from .base import CBMAEstimator, PairwiseCBMAEstimator LGR = logging.getLogger(__name__) @due.dcite(references.MKDA, description="Introduces MKDA.") class MKDADensity(CBMAEstimator): r"""Multilevel kernel density analysis- Density analysis. Parameters ---------- kernel_transformer : :obj:`nimare.meta.kernel.KernelTransformer`, optional Kernel with which to convolve coordinates from dataset. Default is :class:`nimare.meta.kernel.MKDAKernel`. null_method : {"approximate", "montecarlo"}, optional Method by which to determine uncorrected p-values. "approximate" is faster, but slightly less accurate. "montecarlo" can be much slower, and is only slightly more accurate. n_iters : int, optional Number of iterations to use to define the null distribution. This is only used if ``null_method=="montecarlo"``. Default is 10000. n_cores : :obj:`int`, optional Number of cores to use for parallelization. This is only used if ``null_method=="montecarlo"``. If <=0, defaults to using all available cores. Default is 1. **kwargs Keyword arguments. Arguments for the kernel_transformer can be assigned here, with the prefix '\kernel__' in the variable name. Notes ----- The MKDA density algorithm is also implemented in MATLAB at https://github.com/canlab/Canlab_MKDA_MetaAnalysis. Available correction methods: :func:`MKDADensity.correct_fwe_montecarlo` References ---------- * Wager, <NAME>., <NAME>, and <NAME>. "Meta-analysis of functional neuroimaging data: current and future directions." Social cognitive and affective neuroscience 2.2 (2007): 150-158. https://doi.org/10.1093/scan/nsm015 """ def __init__( self, kernel_transformer=MKDAKernel, null_method="approximate", n_iters=10000, n_cores=1, **kwargs, ): if not (isinstance(kernel_transformer, MKDAKernel) or kernel_transformer == MKDAKernel): LGR.warning( f"The KernelTransformer being used ({kernel_transformer}) is not optimized " f"for the {type(self).__name__} algorithm. " "Expect suboptimal performance and beware bugs." ) # Add kernel transformer attribute and process keyword arguments super().__init__(kernel_transformer=kernel_transformer, **kwargs) self.null_method = null_method self.n_iters = n_iters self.n_cores = n_cores self.dataset = None self.results = None def _compute_weights(self, ma_values): """Determine experiment-wise weights per the conventional MKDA approach.""" # TODO: Incorporate sample-size and inference metadata extraction and # merging into df. # This will need to be distinct from the kernel_transformer-based kind # done in CBMAEstimator._preprocess_input ids_df = self.inputs_["coordinates"].groupby("id").first() n_exp = len(ids_df) # Default to unit weighting for missing inference or sample size if "inference" not in ids_df.columns: ids_df["inference"] = "rfx" if "sample_size" not in ids_df.columns: ids_df["sample_size"] = 1.0 n = ids_df["sample_size"].astype(float).values inf = ids_df["inference"].map({"ffx": 0.75, "rfx": 1.0}).values weight_vec = n_exp * ((np.sqrt(n) * inf) / np.sum(np.sqrt(n) * inf)) weight_vec = weight_vec[:, None] assert weight_vec.shape[0] == ma_values.shape[0] return weight_vec def _compute_summarystat(self, ma_values): # Note: .dot should be faster, but causes multiprocessing to stall # on some (Mac) architectures. If this is ever resolved, we can # replace with the commented line. # return ma_values.T.dot(self.weight_vec_).ravel() weighted_ma_vals = ma_values * self.weight_vec_ return weighted_ma_vals.sum(0) def _determine_histogram_bins(self, ma_maps): """Determine histogram bins for null distribution methods. Parameters ---------- ma_maps Notes ----- This method adds one entry to the null_distributions_ dict attribute: "histogram_bins". """ if isinstance(ma_maps, list): ma_values = self.masker.transform(ma_maps) elif isinstance(ma_maps, np.ndarray): ma_values = ma_maps.copy() else: raise ValueError(f"Unsupported data type '{type(ma_maps)}'") prop_active = ma_values.mean(1) self.null_distributions_["histogram_bins"] = np.arange(len(prop_active) + 1, step=1) def _compute_null_approximate(self, ma_maps): """Compute uncorrected null distribution using approximate solution. Parameters ---------- ma_maps : list of imgs or numpy.ndarray MA maps. Notes ----- This method adds two entries to the null_distributions_ dict attribute: "histogram_bins" and "histogram_weights". """ if isinstance(ma_maps, list): ma_values = self.masker.transform(ma_maps) elif isinstance(ma_maps, np.ndarray): ma_values = ma_maps.copy() else: raise ValueError(f"Unsupported data type '{type(ma_maps)}'") # MKDA maps are binary, so we only have k + 1 bins in the final # histogram, where k is the number of studies. We can analytically # compute the null distribution by convolution. prop_active = ma_values.mean(1) ss_hist = 1.0 for exp_prop in prop_active: ss_hist = np.convolve(ss_hist, [1 - exp_prop, exp_prop]) self.null_distributions_["histogram_bins"] = np.arange(len(prop_active) + 1, step=1) self.null_distributions_["histweights_corr-none_method-approximate"] = ss_hist @due.dcite(references.MKDA, description="Introduces MKDA.") class MKDAChi2(PairwiseCBMAEstimator): r"""Multilevel kernel density analysis- Chi-square analysis. .. versionchanged:: 0.0.8 * [REF] Use saved MA maps, when available. Parameters ---------- kernel_transformer : :obj:`nimare.meta.kernel.KernelTransformer`, optional Kernel with which to convolve coordinates from dataset. Default is :class:`nimare.meta.kernel.MKDAKernel`. prior : float, optional Uniform prior probability of each feature being active in a map in the absence of evidence from the map. Default: 0.5 **kwargs Keyword arguments. Arguments for the kernel_transformer can be assigned here, with the prefix '\kernel__' in the variable name. Notes ----- The MKDA Chi-square algorithm was originally implemented as part of the Neurosynth Python library (https://github.com/neurosynth/neurosynth). Available correction methods: :func:`MKDAChi2.correct_fwe_montecarlo`, :obj:`MKDAChi2.correct_fdr_bh` References ---------- * Wager, <NAME>., <NAME>, and <NAME>. "Meta-analysis of functional neuroimaging data: current and future directions." Social cognitive and affective neuroscience 2.2 (2007): 150-158. https://doi.org/10.1093/scan/nsm015 """ def __init__(self, kernel_transformer=MKDAKernel, prior=0.5, **kwargs): if not (isinstance(kernel_transformer, MKDAKernel) or kernel_transformer == MKDAKernel): LGR.warning( f"The KernelTransformer being used ({kernel_transformer}) is not optimized " f"for the {type(self).__name__} algorithm. " "Expect suboptimal performance and beware bugs." ) # Add kernel transformer attribute and process keyword arguments super().__init__(kernel_transformer=kernel_transformer, **kwargs) self.prior = prior @use_memmap(LGR, n_files=2) def _fit(self, dataset1, dataset2): self.dataset1 = dataset1 self.dataset2 = dataset2 self.masker = self.masker or dataset1.masker self.null_distributions_ = {} ma_maps1 = self._collect_ma_maps( maps_key="ma_maps1", coords_key="coordinates1", fname_idx=0, ) ma_maps2 = self._collect_ma_maps( maps_key="ma_maps2", coords_key="coordinates2", fname_idx=1, ) # Calculate different count variables n_selected = ma_maps1.shape[0] n_unselected = ma_maps2.shape[0] n_mappables = n_selected + n_unselected n_selected_active_voxels = np.sum(ma_maps1, axis=0) n_unselected_active_voxels = np.sum(ma_maps2, axis=0) # Remove large arrays del ma_maps1, ma_maps2 # Nomenclature for variables below: p = probability, # F = feature present, g = given, U = unselected, A = activation. # So, e.g., pAgF = p(A|F) = probability of activation # in a voxel if we know that the feature is present in a study. pF = n_selected / n_mappables pA = np.array( (n_selected_active_voxels + n_unselected_active_voxels) / n_mappables ).squeeze() # Conditional probabilities pAgF = n_selected_active_voxels / n_selected pAgU = n_unselected_active_voxels / n_unselected pFgA = pAgF * pF / pA # Recompute conditionals with uniform prior pAgF_prior = self.prior * pAgF + (1 - self.prior) * pAgU pFgA_prior = pAgF * self.prior / pAgF_prior # One-way chi-square test for consistency of activation pAgF_chi2_vals = one_way(np.squeeze(n_selected_active_voxels), n_selected) pAgF_p_vals = special.chdtrc(1, pAgF_chi2_vals) pAgF_sign = np.sign(n_selected_active_voxels - np.mean(n_selected_active_voxels)) pAgF_z = p_to_z(pAgF_p_vals, tail="two") * pAgF_sign # Two-way chi-square for specificity of activation cells = np.squeeze( np.array( [ [n_selected_active_voxels, n_unselected_active_voxels], [ n_selected - n_selected_active_voxels, n_unselected - n_unselected_active_voxels, ], ] ).T ) pFgA_chi2_vals = two_way(cells) pFgA_p_vals = special.chdtrc(1, pFgA_chi2_vals) pFgA_p_vals[pFgA_p_vals < 1e-240] = 1e-240 pFgA_sign = np.sign(pAgF - pAgU).ravel() pFgA_z = p_to_z(pFgA_p_vals, tail="two") * pFgA_sign images = { "prob_desc-A": pA, "prob_desc-AgF": pAgF, "prob_desc-FgA": pFgA, ("prob_desc-AgF_given_pF=%0.2f" % self.prior): pAgF_prior, ("prob_desc-FgA_given_pF=%0.2f" % self.prior): pFgA_prior, "z_desc-consistency": pAgF_z, "z_desc-specificity": pFgA_z, "chi2_desc-consistency": pAgF_chi2_vals, "chi2_desc-specificity": pFgA_chi2_vals, "p_desc-consistency": pAgF_p_vals, "p_desc-specificity": pFgA_p_vals, } return images def _run_fwe_permutation(self, params): iter_df1, iter_df2, iter_xyz1, iter_xyz2 = params iter_xyz1 = np.squeeze(iter_xyz1) iter_xyz2 = np.squeeze(iter_xyz2) iter_df1[["x", "y", "z"]] = iter_xyz1 iter_df2[["x", "y", "z"]] = iter_xyz2 temp_ma_maps1 = self.kernel_transformer.transform( iter_df1, self.masker, return_type="array" ) n_selected = temp_ma_maps1.shape[0] n_selected_active_voxels = np.sum(temp_ma_maps1, axis=0) del temp_ma_maps1 temp_ma_maps2 = self.kernel_transformer.transform( iter_df2, self.masker, return_type="array" ) n_unselected = temp_ma_maps2.shape[0] n_unselected_active_voxels =
np.sum(temp_ma_maps2, axis=0)
numpy.sum
import numpy import pyaudio import threading class SwhRecorder: """Simple, cross-platform class to record from the microphone.""" MAX_FREQUENCY = 5000 # sounds above this are just annoying MIN_FREQUENCY = 16 # can't hear anything less than this def __init__(self, buckets=300, min_freq=16, max_freq=5000): """minimal garb is executed when class is loaded.""" self.buckets = buckets self.MIN_FREQUENCY = min_freq self.MAX_FREQUENCY = max_freq self.p = pyaudio.PyAudio() self.input_device = self.p.get_default_input_device_info() self.secToRecord = 0.08 self.RATE = int(self.input_device['defaultSampleRate']) self.BUFFERSIZE = int(self.secToRecord * self.RATE) # should be a power of 2 and at least double buckets self.threadsDieNow = False self.newData = False self.buckets_within_frequency = (self.MAX_FREQUENCY * self.BUFFERSIZE) / self.RATE self.buckets_per_final_bucket = max(int(self.buckets_within_frequency / buckets), 1) self.buckets_below_frequency = int((self.MIN_FREQUENCY * self.BUFFERSIZE) / self.RATE) self.buffersToRecord = int(self.RATE * self.secToRecord / self.BUFFERSIZE) if self.buffersToRecord == 0: self.buffersToRecord = 1 def setup(self): """initialize sound card.""" self.inStream = self.p.open( format=pyaudio.paInt16, channels=1, rate=self.RATE, input=True, frames_per_buffer=self.BUFFERSIZE, input_device_index=self.input_device['index']) self.audio = numpy.empty((self.buffersToRecord * self.BUFFERSIZE), dtype=numpy.int16) def close(self): """cleanly back out and release sound card.""" self.continuousEnd() self.inStream.stop_stream() self.inStream.close() self.p.terminate() def getAudio(self): """get a single buffer size worth of audio.""" audioString = self.inStream.read(self.BUFFERSIZE) return numpy.fromstring(audioString, dtype=numpy.int16) def record(self, forever=True): """record secToRecord seconds of audio.""" while True: if self.threadsDieNow: break for i in range(self.buffersToRecord): try: audio = self.getAudio() self.audio[i * self.BUFFERSIZE:(i + 1) * self.BUFFERSIZE] = audio except: #OSError input overflowed print('OSError: input overflowed') self.newData = True if forever is False: break def continuousStart(self): """CALL THIS to start running forever.""" self.t = threading.Thread(target=self.record) self.t.start() def continuousEnd(self): """shut down continuous recording.""" self.threadsDieNow = True if hasattr(self, 't') and self.t: self.t.join() def fft(self): if not self.newData: return None data = self.audio.flatten() self.newData = False left, right = numpy.split(numpy.abs(numpy.fft.fft(data)), 2) ys = numpy.add(left, right[::-1]) # don't lose power, add negative to positive ys = ys[self.buckets_below_frequency:] # Shorten to requested number of buckets within MAX_FREQUENCY final = numpy.copy(ys[::self.buckets_per_final_bucket]) final_size = len(final) for i in range(1, self.buckets_per_final_bucket): data_to_combine = numpy.copy(ys[i::self.buckets_per_final_bucket]) data_to_combine.resize(final_size) final =
numpy.add(final, data_to_combine)
numpy.add
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Chromatic Adaptation Transforms =============================== Defines various chromatic adaptation transforms (CAT) and objects to calculate the chromatic adaptation matrix between two given *CIE XYZ* colourspace matrices: - :attr:`XYZ_SCALING_CAT`: *XYZ Scaling* CAT [1]_ - :attr:`BRADFORD_CAT`: *Bradford* CAT [1]_ - :attr:`VON_KRIES_CAT`: *Von Kries* CAT [1]_ - :attr:`FAIRCHILD_CAT`: *Fairchild* CAT [2]_ - :attr:`CAT02_CAT`: *CAT02* CAT [3]_ See Also -------- `Chromatic Adaptation Transforms IPython Notebook <http://nbviewer.ipython.org/github/colour-science/colour-ipython/blob/master/notebooks/adaptation/cat.ipynb>`_ # noqa References ---------- .. [1] http://brucelindbloom.com/Eqn_ChromAdapt.html .. [2] http://rit-mcsl.org/fairchild//files/FairchildYSh.zip .. [3] http://en.wikipedia.org/wiki/CIECAM02#CAT02 """ from __future__ import division, unicode_literals import numpy as np from colour.utilities import CaseInsensitiveMapping __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013 - 2014 - Colour Developers' __license__ = 'New BSD License - http://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = '<EMAIL>' __status__ = 'Production' __all__ = ['XYZ_SCALING_CAT', 'BRADFORD_CAT', 'VON_KRIES_CAT', 'FAIRCHILD_CAT', 'CAT02_CAT', 'CAT02_INVERSE_CAT', 'CHROMATIC_ADAPTATION_METHODS', 'chromatic_adaptation_matrix'] XYZ_SCALING_CAT = np.array(np.identity(3)).reshape((3, 3)) """ *XYZ Scaling* chromatic adaptation transform. [1]_ XYZ_SCALING_CAT : array_like, (3, 3) """ BRADFORD_CAT = np.array( [[0.8951000, 0.2664000, -0.1614000], [-0.7502000, 1.7135000, 0.0367000], [0.0389000, -0.0685000, 1.0296000]]) """ *Bradford* chromatic adaptation transform. [1]_ BRADFORD_CAT : array_like, (3, 3) """ VON_KRIES_CAT = np.array( [[0.4002400, 0.7076000, -0.0808100], [-0.2263000, 1.1653200, 0.0457000], [0.0000000, 0.0000000, 0.9182200]]) """ *<NAME>* chromatic adaptation transform. [1]_ VON_KRIES_CAT : array_like, (3, 3) """ FAIRCHILD_CAT = np.array( [[.8562, .3372, -.1934], [-.8360, 1.8327, .0033], [.0357, -.0469, 1.0112]]) """ *Fairchild* chromatic adaptation transform. [2]_ FAIRCHILD_CAT : array_like, (3, 3) """ CAT02_CAT = np.array( [[0.7328, 0.4296, -0.1624], [-0.7036, 1.6975, 0.0061], [0.0030, 0.0136, 0.9834]]) """ *CAT02* chromatic adaptation transform. [3]_ CAT02_CAT : array_like, (3, 3) """ CAT02_INVERSE_CAT = np.linalg.inv(CAT02_CAT) """ Inverse *CAT02* chromatic adaptation transform. [3]_ CAT02_INVERSE_CAT : array_like, (3, 3) """ CHROMATIC_ADAPTATION_METHODS = CaseInsensitiveMapping( {'XYZ Scaling': XYZ_SCALING_CAT, 'Bradford': BRADFORD_CAT, '<NAME>': VON_KRIES_CAT, 'Fairchild': FAIRCHILD_CAT, 'CAT02': CAT02_CAT}) """ Supported chromatic adaptation transform methods. CHROMATIC_ADAPTATION_METHODS : dict ('XYZ Scaling', 'Bradford', '<NAME>', 'Fairchild, 'CAT02') """ def chromatic_adaptation_matrix(XYZ1, XYZ2, method='CAT02'): """ Returns the *chromatic adaptation* matrix from given source and target *CIE XYZ* colourspace *array_like* variables. Parameters ---------- XYZ1 : array_like, (3,) *CIE XYZ* source *array_like* variable. XYZ2 : array_like, (3,) *CIE XYZ* target *array_like* variable. method : unicode, optional ('XYZ Scaling', 'Bradford', '<NAME>', 'Fairchild, 'CAT02'), Chromatic adaptation method. Returns ------- ndarray, (3, 3) Chromatic adaptation matrix. Raises ------ KeyError If chromatic adaptation method is not defined. References ---------- .. [4] http://brucelindbloom.com/Eqn_ChromAdapt.html (Last accessed 24 February 2014) Examples -------- >>> XYZ1 = np.array([1.09923822, 1.000, 0.35445412]) >>> XYZ2 = np.array([0.96907232, 1.000, 1.121792157]) >>> chromatic_adaptation_matrix(XYZ1, XYZ2) # doctest: +ELLIPSIS array([[ 0.8714561..., -0.1320467..., 0.4039483...], [-0.0963880..., 1.0490978..., 0.160403... ], [ 0.0080207..., 0.0282636..., 3.0602319...]]) Using *Bradford* method: >>> XYZ1 = np.array([1.09923822, 1.000, 0.35445412]) >>> XYZ2 = np.array([0.96907232, 1.000, 1.121792157]) >>> method = 'Bradford' >>> chromatic_adaptation_matrix(XYZ1, XYZ2, method) # doctest: +ELLIPSIS array([[ 0.8518131..., -0.1134786..., 0.4124804...], [-0.1277659..., 1.0928930..., 0.1341559...], [ 0.0845323..., -0.1434969..., 3.3075309...]]) """ method_matrix = CHROMATIC_ADAPTATION_METHODS.get(method) if method_matrix is None: raise KeyError( '"{0}" chromatic adaptation method is not defined! Supported ' 'methods: "{1}".'.format(method, CHROMATIC_ADAPTATION_METHODS.keys())) XYZ1, XYZ2 = np.ravel(XYZ1),
np.ravel(XYZ2)
numpy.ravel
import numpy as np import pandas as pd import pytest from sklearn.feature_selection import SelectKBest, chi2 as sk_chi2 from inz.utils import chi2, select_k_best, split, train_test_split def test_split_list_int(): ints = list(range(7)) want = [[0, 1, 2], [3, 4, 5], [6]] get = list(split(ints, 3)) assert len(get) == len(want) assert get == want def test_split_int(): ints = range(7) want = [[0, 1, 2], [3, 4, 5], [6]] get = list(split(ints, 3)) assert len(get) == len(want) assert get == want def test_split_list_int_greater_width(): ints = list(range(3)) want = [[0, 1, 2]] get = list(split(ints, 4)) assert len(get) == len(want) assert get == want def test_split_list_str(): strings = list(map(str, range(6))) want = [['0', '1'], ['2', '3'], ['4', '5']] get = list(split(strings, 2)) assert len(get) == len(want) assert get == want def test_str(): string = ''.join(map(str, range(6))) want = [['0', '1'], ['2', '3'], ['4', '5']] get = list(split(string, 2)) assert len(get) == len(want) assert get == want def test_split_ndarray_int(): array = np.arange(10, dtype=int).reshape(-1, 2) want = [np.array([[0, 1], [2, 3]]), np.array([[4, 5], [6, 7]]), np.array([[8, 9]])] get = list(split(array, 2)) assert len(get) == len(want) for i, j in zip(get, want): assert type(i) == type(j) assert np.array_equal(i, j) def test_split_generator_str(): strings = map(str, range(6)) want = [['0', '1'], ['2', '3'], ['4', '5']] get = list(split(strings, 2)) assert len(get) == len(want) assert get == want def test_split_list_int_not_allow(): ints = list(range(7)) want = [[0, 1, 2], [3, 4, 5]] get = list(split(ints, 3, False)) assert len(get) == len(want) assert get == want def test_split_list_int_greater_width_not_allow(): ints = list(range(3)) want = [] get = list(split(ints, 4, False)) assert len(get) == len(want) assert get == want def test_split_list_str_not_allow(): strings = list(map(str, range(6))) want = [['0', '1'], ['2', '3'], ['4', '5']] get = list(split(strings, 2, False)) assert len(get) == len(want) assert get == want def test_split_ndarray_int_not_allow(): array = np.arange(10, dtype=int).reshape(-1, 2) want = [np.array([[0, 1], [2, 3]]), np.array([[4, 5], [6, 7]])] get = list(split(array, 2, False)) assert len(get) == len(want) for i, j in zip(get, want): assert type(i) == type(j) assert np.array_equal(i, j) def test_split_generator_str_not_allow(): strings = map(str, range(6)) want = [['0', '1'], ['2', '3'], ['4', '5']] get = list(split(strings, 2, False)) assert len(get) == len(want) assert get == want @pytest.fixture def data(): X = pd.read_csv('../../data/data.csv') y = X.pop('Choroba') return X.values, y.values def test_chi2(data): X, y = data sk_val, _ = sk_chi2(X, y) my_val = chi2(X, y) np.testing.assert_equal(sk_val, my_val) def test_select_k_best(data): X, y = data for i in range(1, 31): sk_sup1 = SelectKBest(sk_chi2, i).fit(X, y).get_support() sk_sup2 = SelectKBest(sk_chi2, i).fit(X, y).get_support(True) my_sup1 = select_k_best(X, y, k=i) my_sup2 = select_k_best(X, y, k=i, indices=True) np.testing.assert_equal(sk_sup1, my_sup1, str(i)) np.testing.assert_equal(sk_sup2, sorted(my_sup2), str(i)) def test_train_test_split(): x = np.arange(10) get = train_test_split(x, shuffle=False) want = [np.arange(7), np.arange(7, 10)] for i in zip(get, want): np.testing.assert_equal(*i) def test_train_test_split5(): x = np.arange(10) get = train_test_split(x, test_size=.5, shuffle=False) want = [np.arange(5),
np.arange(5, 10)
numpy.arange
#!/usr/bin/env python # MIT License # # Copyright (c) 2019 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # This file is a part of the CIRN Interaction Language. from __future__ import print_function, division import logging from os import path import math import numpy as np from .reservation_reader import ReservationReader from .observer_reader import ObserverReader from .spectrum_grid import SpectrumGrid from .usage_reader import UsageReader from .geodata_reader import GeodataReader class SpecEval(object): """ Creates statistics on spectrum usage. """ def __init__(self): self.log = logging.getLogger('spec_eval') # for the observer data self.observer_dir = None self.observer_config = None self.observer_grid = None self.observer_threshold = None # for the CIL reports self.gateway_pcap = None self.gateway_stats = None self.measured_voxels = [] self.forecast_voxels = [] # for the spec-val tool self.gdf_file_name = None self.gdf_file_report = None self.gdf_file_shapes = None # bounds of the spectrum region self.time_start = None self.time_stop = None self.time_bins = None self.freq_start = None self.freq_stop = None self.freq_bins = None # numpy matrixes with duty cycles for each bin self.observer_duty = None # from observer passband data self.observer_quantized = None # from observer passband data, quantized to be true or false self.measured_duty = None # from CIL past measurements self.measured_quantized = None # from CIL past measurements, quantized to be true or false self.forecast_duty = None # from CIL future forecasts self.gdf_file_duty = None # from the spec-val tool self.forecast_quantized = None # from CIL future forecasts, quantized to be true or false # numpy matrices with quantized errors for each bin self.measured_v_observer = None self.forecast_v_observer = None def read_observer_data(self, observer_dir): self.log.info('Reading observer data from %s', path.basename(observer_dir)) reader = ObserverReader(observer_dir) reader.read_state_change() reader.read_configs() reader.read_pass_band_rf() self.observer_dir = observer_dir self.observer_config = reader.config self.observer_grid = reader.grid def read_usage_data(self, gateway_pcap, gateway_srn=None, incumbent_srn=None): self.log.info('Reading usage data from %s', path.basename(gateway_pcap)) reader = UsageReader(gateway_pcap, gateway_srn, incumbent_srn) reader.read_messages() self.gateway_pcap = gateway_pcap self.gateway_stats = reader.stats self.measured_voxels = reader.measured_past_voxels self.forecast_voxels = reader.forecast_future_voxels def read_gdf_data(self, gdf_file_name, rf_start_time): self.log.info('Reading geodata frames from %s', gdf_file_name) reader = GeodataReader(gdf_file_name, rf_start_time) self.gdf_file_name = gdf_file_name self.gdf_file_report = { 'filename': reader.stats['filename'], 'bbox': reader.stats['bbox'], 'geometry_types': reader.stats['geometry_types'], } self.gdf_file_shapes = reader.select_shapes() def set_bounds(self, time_start, time_stop, time_bins, time_step, freq_start, freq_stop, freq_bins, freq_step): # use the bounds from the observer if not specified time_start = time_start or self.observer_grid.time_start time_stop = time_stop or self.observer_grid.time_stop freq_start = freq_start or self.observer_grid.freq_start freq_stop = freq_stop or self.observer_grid.freq_stop # make sure that we have proper ranges time_start = min(max(time_start, self.observer_grid.time_start), self.observer_grid.time_stop) time_stop = min(max(time_stop, self.observer_grid.time_start), self.observer_grid.time_stop) freq_start = min(max(freq_start, self.observer_grid.freq_start), self.observer_grid.freq_stop) freq_stop = min(max(freq_stop, self.observer_grid.freq_start), self.observer_grid.freq_stop) # override bins if step is specified if time_step and (time_stop - time_start) > time_step > 0: time_stop = time_start + \ math.floor((time_stop - time_start) / time_step) * time_step time_bins = int(round((time_stop - time_start) / time_step)) if freq_step and (freq_stop - freq_start) > freq_step > 0: freq_stop = freq_start + \ math.floor((freq_stop - freq_start) / freq_step) * freq_step freq_bins = int(round((freq_stop - freq_start) / freq_step)) # save everything self.time_start = time_start self.time_stop = time_stop self.time_bins = time_bins self.freq_start = freq_start self.freq_stop = freq_stop self.freq_bins = freq_bins self.log.info('Selected times: start %s stop %s', time_start, time_stop) self.log.info('Selected bins: time %s freq %s', time_bins, freq_bins) def calculate_observer_duty_cylces(self, threshold): self.log.info('Calculating observer duty cycles') grid = self.observer_grid.threshold(threshold) grid = grid.resample( self.time_start, self.time_stop, self.time_bins, self.freq_start, self.freq_stop, self.freq_bins) self.observer_threshold = threshold self.observer_duty = grid.data self.observer_quantized = self.observer_grid.resample( self.time_start, self.time_stop, self.time_bins, self.freq_start, self.freq_stop, self.freq_bins, take_max=True ).data self.observer_quantized[self.observer_quantized >= threshold] = 1 self.observer_quantized[self.observer_quantized < 1] = 0 def calculate_spectrum_usage_duty_cycles(self): self.log.info('Calculating measured spectrum duty cycles') grid = SpectrumGrid( self.time_start, self.time_stop, self.time_bins, self.freq_start, self.freq_stop, self.freq_bins) for voxel in self.measured_voxels: grid.add_voxel(voxel) self.measured_duty = grid.data self.measured_quantized = grid.data self.measured_quantized[self.measured_quantized>0] = 1 self.log.info('Calculating forecast spectrum duty cycles') grid = SpectrumGrid( self.time_start, self.time_stop, self.time_bins, self.freq_start, self.freq_stop, self.freq_bins) for voxel in self.forecast_voxels: grid.add_voxel(voxel) self.forecast_duty = grid.data self.forecast_quantized = grid.data ; self.forecast_quantized[self.forecast_quantized>0] = 1 def calculate_gdf_file_duty_cycles(self): self.log.info('Calculating geodata spectrum duty cycles') grid = SpectrumGrid( self.time_start, self.time_stop, self.time_bins, self.freq_start, self.freq_stop, self.freq_bins) for shape in self.gdf_file_shapes: grid.add_shape(shape) self.gdf_file_duty = grid.data def get_diff_stat(self, diff): return { 'above': float(np.average(np.maximum(diff, 0))), 'below': float(np.average(np.maximum(-diff, 0))), 'total': float(np.average(np.abs(diff))) } def get_diff_quant_stat(self, a, b): above = a-b ; below = -above ; total = np.abs(a-b) ; above[above<0] = 0 ; below[below<0] = 0 ; return { 'above': float(np.sum(above)/np.sum(b)), 'below': float(np.sum(below)/np.sum(b)), 'total': float(np.sum(total)/np.sum(b)), } def create_report(self): self.log.info('Creating reports') self.measured_v_observer = -1*self.measured_quantized - (self.observer_quantized*-5) self.forecast_v_observer = -1*self.forecast_quantized - (self.observer_quantized*-5) # fraction of spectrum where there is anything observer_occupied = np.array(self.observer_duty > 0.0, dtype=float) measured_occupied = np.array(self.measured_duty > 0.0, dtype=float) forecast_occupied = np.array(self.forecast_duty > 0.0, dtype=float) report = { 'bounds': { 'time_start': self.time_start, 'time_stop': self.time_stop, 'time_bins': self.time_bins, 'time_step': (self.time_stop - self.time_start) / self.time_bins, 'freq_start': self.freq_start, 'freq_stop': self.freq_stop, 'freq_bins': self.freq_bins, 'freq_step': (self.freq_stop - self.freq_start) / self.freq_bins, }, 'observer': { 'directory': path.basename(self.observer_dir), 'center_frequency': self.observer_config.get('center_frequency'), 'rf_bandwidth': self.observer_config.get('rf_bandwidth'), 'real_frame_len': self.observer_config.get('real_frame_len'), 'threshold': self.observer_threshold, }, 'gateway': { 'filename': path.basename(self.gateway_pcap), 'forecast_future_voxels': self.gateway_stats.get('forecast_future_voxels'), 'forecast_past_voxels': self.gateway_stats.get('forecast_past_voxels'), 'measured_future_voxels': self.gateway_stats.get('measured_future_voxels'), 'measured_past_voxels': self.gateway_stats.get('measured_past_voxels'), 'measured_past_duplicates': self.gateway_stats.get('measured_past_duplicates'), }, 'gdf-file': self.gdf_file_report, 'duty_cycles': { 'observer': float(
np.average(self.observer_duty)
numpy.average
#!/usr/bin/env python """Acquisition script for Keysight E4990A.""" import argparse import collections import configparser import datetime import functools import numbers import pathlib import shutil import subprocess import sys import time import traceback import matplotlib.pyplot as pyplot import numpy import pyvisa import scipy.io as scio FILE_EXT = '.mat' CONFIG_FILENAME_DEFAULT = 'e4990a.ini' program_version = None time_now = None __version__ = '2.6' class E4990AError(Exception): """Exception class for all errors raised in this module. The `main` function has an exception handler for this class. """ def to_number(f, s): """Convert string to a number with format specified by `f`.""" if s is None: return s if isinstance(s, numbers.Number): return f(float(s)) if ',' in s: # comma-separated values return [f(float(i.strip())) for i in s.strip().split(',')] return f(float(s.strip())) def to_int(s): """Convert string to an integer.""" return to_number(int, s) def to_float(s, precision=None): """Convert string to a float.""" if precision is not None: f = functools.partial(round, ndigits=precision) else: f = lambda x: x return to_number(f, s) def resource_path(file_name): """Resolve filename within the PyInstaller executable.""" try: base_path = pathlib.Path(sys._MEIPASS) except AttributeError: base_path = pathlib.Path('.').resolve() return base_path.joinpath(file_name) def acquire(filename, config_filename, fixture_compensation): """Read the configuration file, initiate communication with the instrument and execute the sweep or fixture compensation. """ cfg = read_config(config_filename) rm = pyvisa.ResourceManager() print(rm.visalib) if cfg.ip_address: resource_name = f'TCPIP::{cfg.ip_address}::INSTR' else: resources = rm.list_resources('USB?*INSTR') if not resources: raise E4990AError("No USB instruments found") if len(resources) > 1: msg = "Multiple USB instruments found:\n" for r in resources: msg += ('\t' + r) raise E4990AError(msg) resource_name = resources[0] print(f"Opening resource: {resource_name}") try: inst = rm.open_resource(resource_name) except pyvisa.errors.VisaIOError as e: raise E4990AError(f"{e}") from e # Timeout must be longer than sweep interval. inst.timeout = 15000 try: if fixture_compensation: run_fixture_compensation(inst, cfg) else: try: run_sweep(inst, filename, cfg) finally: inst.write(':SOUR:BIAS:STAT OFF') if cfg.plotting_enabled: input("Press [ENTER] to exit\n") finally: inst.close() rm.close() def read_config(config_filename): """Parse the configuration file and return a named tuple of configuration data. """ parser = configparser.ConfigParser() ConfigBase = collections.namedtuple('ConfigBase', [ 'ip_address', 'start_frequency', 'stop_frequency', 'number_of_points', 'segments', 'measurement_speed', 'number_of_sweep_averages', 'number_of_point_averages', 'oscillator_voltage', 'bias_voltage', 'number_of_intervals', 'interval_period', 'plotting_enabled' ]) class Configuration(ConfigBase): """Named tuple of configuration parameters.""" def print(self): """Print the configuration parameters.""" print("Acquisition parameters:") if self.ip_address is not None: print(f"\tIP address: {self.ip_address}") if self.start_frequency is not None: print(f"\tStart frequency: {self.start_frequency / 1e3:.3e} kHz") if self.stop_frequency is not None: print(f"\tStop frequency: {self.stop_frequency / 1e3:.3e} kHz") if self.number_of_points is not None: print(f"\tNumber of points: {self.number_of_points}") if self.segments is not None: print(f"\tSegments: {self.segments}") print(f"\tMeasurement speed: {self.measurement_speed}") print(f"\tNumber of sweep averages: {self.number_of_sweep_averages}") print(f"\tNumber of point averages: {self.number_of_point_averages}") print(f"\tOscillator voltage: {self.oscillator_voltage} Volts") print(f"\tBias voltage: {self.bias_voltage} Volts") print(f"\tNumber of intervals: {self.number_of_intervals}") print(f"\tInterval period: {self.interval_period} seconds") print(f"\tPlotting enabled: {self.plotting_enabled}") parser.read(config_filename) sweep_section = parser['sweep'] cfg = Configuration( parser.get('resource', 'ip_address', fallback=None), to_int(sweep_section.getfloat('start_frequency')), to_int(sweep_section.getfloat('stop_frequency')), sweep_section.getint('number_of_points'), sweep_section.get('segments'), sweep_section.getint('measurement_speed', fallback=1), sweep_section.getint('number_of_sweep_averages', fallback=1), sweep_section.getint('number_of_point_averages', fallback=1), to_float(sweep_section.getfloat('oscillator_voltage'), 3), to_float(sweep_section.getfloat('bias_voltage'), 3), sweep_section.getint('number_of_intervals'), sweep_section.getfloat('interval_period'), parser.getboolean('plotting', 'enabled', fallback=True) ) linear_sweep_params = \ (cfg.start_frequency, cfg.stop_frequency, cfg.number_of_points) if cfg.segments and any(linear_sweep_params): raise E4990AError( "Configuration contains segmented and linear sweep parameters.\n" "Define only segments or " "start_frequency/stop_frequency/number_of_points.") return cfg def run_sweep(inst, filename, cfg): """Execute the sweep acquisition and save data to a MAT file.""" print(f"Acquisition program version: {program_version}") idn = inst.query('*IDN?').strip() print(idn) opt = inst.query('*OPT?').strip() print('Options installed:', opt) cfg.print() inst.write('*CLS') def print_status(st): return "ON" if st else "OFF" fixture = inst.query(':SENS:FIXT:SEL?').strip() print(f"Fixture: {fixture}") print("Fixture compensation status:") open_cmp_status = to_int(inst.query(':SENS1:CORR2:OPEN?')) print(f"\tOpen fixture compensation: {print_status(open_cmp_status)}") short_cmp_status = to_int(inst.query(':SENS1:CORR2:SHOR?')) print(f"\tShort fixture compensation: {print_status(short_cmp_status)}") query = functools.partial(inst.query_ascii_values, separator=',', container=numpy.array) number_of_points = configure_sweep_parameters(inst, cfg) x = query(':SENS1:FREQ:DATA?') # Check that compensation is valid for the sweep frequency range. # Check the frequencies for the open compensation and assume that # frequencies for the short compensation are the same. fix_cmp_frequencies = query(':SENS1:CORR2:ZME:OPEN:FREQ?') fix_cmp_number_of_points = to_int(inst.query(':SENS1:CORR2:ZME:OPEN:POIN?')) if number_of_points != fix_cmp_number_of_points or \ not
numpy.array_equal(x, fix_cmp_frequencies)
numpy.array_equal
""" A module providing some utility functions regarding bezier path manipulation. """ import numpy as np from math import sqrt from matplotlib.path import Path from operator import xor import warnings # some functions def get_intersection(cx1, cy1, cos_t1, sin_t1, cx2, cy2, cos_t2, sin_t2): """ return a intersecting point between a line through (cx1, cy1) and having angle t1 and a line through (cx2, cy2) and angle t2. """ # line1 => sin_t1 * (x - cx1) - cos_t1 * (y - cy1) = 0. # line1 => sin_t1 * x + cos_t1 * y = sin_t1*cx1 - cos_t1*cy1 line1_rhs = sin_t1 * cx1 - cos_t1 * cy1 line2_rhs = sin_t2 * cx2 - cos_t2 * cy2 # rhs matrix a, b = sin_t1, -cos_t1 c, d = sin_t2, -cos_t2 ad_bc = a*d-b*c if ad_bc == 0.: raise ValueError("Given lines do not intersect") #rhs_inverse a_, b_ = d, -b c_, d_ = -c, a a_, b_, c_, d_ = [k / ad_bc for k in [a_, b_, c_, d_]] x = a_* line1_rhs + b_ * line2_rhs y = c_* line1_rhs + d_ * line2_rhs return x, y def get_normal_points(cx, cy, cos_t, sin_t, length): """ For a line passing through (*cx*, *cy*) and having a angle *t*, return locations of the two points located along its perpendicular line at the distance of *length*. """ if length == 0.: return cx, cy, cx, cy cos_t1, sin_t1 = sin_t, -cos_t cos_t2, sin_t2 = -sin_t, cos_t x1, y1 = length*cos_t1 + cx, length*sin_t1 + cy x2, y2 = length*cos_t2 + cx, length*sin_t2 + cy return x1, y1, x2, y2 ## BEZIER routines # subdividing bezier curve # http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/bezier-sub.html def _de_casteljau1(beta, t): next_beta = beta[:-1] * (1-t) + beta[1:] * t return next_beta def split_de_casteljau(beta, t): """split a bezier segment defined by its controlpoints *beta* into two separate segment divided at *t* and return their control points. """ beta = np.asarray(beta) beta_list = [beta] while True: beta = _de_casteljau1(beta, t) beta_list.append(beta) if len(beta) == 1: break left_beta = [beta[0] for beta in beta_list] right_beta = [beta[-1] for beta in reversed(beta_list)] return left_beta, right_beta def find_bezier_t_intersecting_with_closedpath(bezier_point_at_t, inside_closedpath, t0=0., t1=1., tolerence=0.01): """ Find a parameter t0 and t1 of the given bezier path which bounds the intersecting points with a provided closed path(*inside_closedpath*). Search starts from *t0* and *t1* and it uses a simple bisecting algorithm therefore one of the end point must be inside the path while the orther doesn't. The search stop when |t0-t1| gets smaller than the given tolerence. value for - bezier_point_at_t : a function which returns x, y coordinates at *t* - inside_closedpath : return True if the point is insed the path """ # inside_closedpath : function start = bezier_point_at_t(t0) end = bezier_point_at_t(t1) start_inside = inside_closedpath(start) end_inside = inside_closedpath(end) if not xor(start_inside, end_inside): raise ValueError("the segment does not seemed to intersect with the path") while 1: # return if the distance is smaller than the tolerence if (start[0]-end[0])**2 + (start[1]-end[1])**2 < tolerence**2: return t0, t1 # calculate the middle point middle_t = 0.5*(t0+t1) middle = bezier_point_at_t(middle_t) middle_inside = inside_closedpath(middle) if xor(start_inside, middle_inside): t1 = middle_t end = middle end_inside = middle_inside else: t0 = middle_t start = middle start_inside = middle_inside class BezierSegment: """ A simple class of a 2-dimensional bezier segment """ # Highrt order bezier lines can be supported by simplying adding # correcponding values. _binom_coeff = {1:np.array([1., 1.]), 2:np.array([1., 2., 1.]), 3:np.array([1., 3., 3., 1.])} def __init__(self, control_points): """ *control_points* : location of contol points. It needs have a shpae of n * 2, where n is the order of the bezier line. 1<= n <= 3 is supported. """ _o = len(control_points) self._orders = np.arange(_o) _coeff = BezierSegment._binom_coeff[_o - 1] _control_points = np.asarray(control_points) xx = _control_points[:,0] yy = _control_points[:,1] self._px = xx * _coeff self._py = yy * _coeff def point_at_t(self, t): "evaluate a point at t" one_minus_t_powers = np.power(1.-t, self._orders)[::-1] t_powers = np.power(t, self._orders) tt = one_minus_t_powers * t_powers _x = sum(tt * self._px) _y = sum(tt * self._py) return _x, _y def split_bezier_intersecting_with_closedpath(bezier, inside_closedpath, tolerence=0.01): """ bezier : control points of the bezier segment inside_closedpath : a function which returns true if the point is inside the path """ bz = BezierSegment(bezier) bezier_point_at_t = bz.point_at_t t0, t1 = find_bezier_t_intersecting_with_closedpath(bezier_point_at_t, inside_closedpath, tolerence=tolerence) _left, _right = split_de_casteljau(bezier, (t0+t1)/2.) return _left, _right def find_r_to_boundary_of_closedpath(inside_closedpath, xy, cos_t, sin_t, rmin=0., rmax=1., tolerence=0.01): """ Find a radius r (centered at *xy*) between *rmin* and *rmax* at which it intersect with the path. inside_closedpath : function cx, cy : center cos_t, sin_t : cosine and sine for the angle rmin, rmax : """ cx, cy = xy def _f(r): return cos_t*r + cx, sin_t*r + cy find_bezier_t_intersecting_with_closedpath(_f, inside_closedpath, t0=rmin, t1=rmax, tolerence=tolerence) ## matplotlib specific def split_path_inout(path, inside, tolerence=0.01, reorder_inout=False): """ divide a path into two segment at the point where inside(x, y) becomes False. """ path_iter = path.iter_segments() ctl_points, command = path_iter.next() begin_inside = inside(ctl_points[-2:]) # true if begin point is inside bezier_path = None ctl_points_old = ctl_points concat = np.concatenate iold=0 i = 1 for ctl_points, command in path_iter: iold=i i += len(ctl_points)/2 if inside(ctl_points[-2:]) != begin_inside: bezier_path = concat([ctl_points_old[-2:], ctl_points]) break ctl_points_old = ctl_points if bezier_path is None: raise ValueError("The path does not seem to intersect with the patch") bp = zip(bezier_path[::2], bezier_path[1::2]) left, right = split_bezier_intersecting_with_closedpath(bp, inside, tolerence) if len(left) == 2: codes_left = [Path.LINETO] codes_right = [Path.MOVETO, Path.LINETO] elif len(left) == 3: codes_left = [Path.CURVE3, Path.CURVE3] codes_right = [Path.MOVETO, Path.CURVE3, Path.CURVE3] elif len(left) == 4: codes_left = [Path.CURVE4, Path.CURVE4, Path.CURVE4] codes_right = [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4] else: raise ValueError() verts_left = left[1:] verts_right = right[:] #i += 1 if path.codes is None: path_in = Path(concat([path.vertices[:i], verts_left])) path_out = Path(concat([verts_right, path.vertices[i:]])) else: path_in = Path(concat([path.vertices[:iold], verts_left]), concat([path.codes[:iold], codes_left])) path_out = Path(concat([verts_right, path.vertices[i:]]), concat([codes_right, path.codes[i:]])) if reorder_inout and begin_inside == False: path_in, path_out = path_out, path_in return path_in, path_out def inside_circle(cx, cy, r): r2 = r**2 def _f(xy): x, y = xy return (x-cx)**2 + (y-cy)**2 < r2 return _f # quadratic bezier lines def get_cos_sin(x0, y0, x1, y1): dx, dy = x1-x0, y1-y0 d = (dx*dx + dy*dy)**.5 return dx/d, dy/d def check_if_parallel(dx1, dy1, dx2, dy2, tolerence=1.e-5): """ returns * 1 if two lines are parralel in same direction * -1 if two lines are parralel in opposite direction * 0 otherwise """ theta1 = np.arctan2(dx1, dy1) theta2 = np.arctan2(dx2, dy2) dtheta = np.abs(theta1 - theta2) if dtheta < tolerence: return 1 elif
np.abs(dtheta - np.pi)
numpy.abs
from enum import Enum from types import SimpleNamespace from typing import Any, Dict, List, Literal, Optional, Set, Tuple import json import matplotlib.pyplot as plt #type: ignore import numpy as np # =============================================== # Colorama Filler # =============================================== try: from colorama import Fore # type: ignore except: colors = ["RED", "YELLOW", "GREEN", "BLUE", "ORANGE", "MAGENTA", "CYAN"] kwargs = {} for col in colors: kwargs[col] = "" kwargs[f"LIGHT{col}_EX"] Fore = SimpleNamespace(RESET="", **kwargs) # =============================================== # Data Types # =============================================== class DataType(Enum): DISTRIBUTION = "distribution" SEQUENTIAL = "sequential" MAP = "map" DISTRIBUTION_2D = "distribution_2d" # =============================================== # Metrics # =============================================== class Metrics: def __init__(self) -> None: self.metrics: Dict[str, Dict[str, Any]] = {} self._auto_bins: List[str] = [] def new_data(self, name: str, type: DataType, auto_bins: bool = False, **kwargs): entry = { "type": type.value, "data": [], **kwargs } self.metrics[name] = entry if auto_bins: self._auto_bins.append(name) def add(self, name: str, data: Any): self.metrics[name]["data"].append(data) def save(self, path: str = "metrics.json"): for name in self._auto_bins: self.auto_bins(name) with open(path, "w") as fd: json.dump(self.metrics, fd) def auto_bins(self, name: str): mini = min(self.metrics[name]["data"]) maxi = max(self.metrics[name]["data"]) self.metrics[name]["bins"] = list(range(mini, maxi + 2)) # =============================================== # Globasl for Plotting # =============================================== StoredDataKey = Literal["data", "orientation", "type", "bins", "labels", "measure"] StoredData = Dict[StoredDataKey, Any] __OPTIONS_STR__ = "@" __GRAPH_STR__ = "+" __KWARGS_STR__ = "$" __ALLOWED_KWARGS__ = ["logx", "logy", "loglog", "exp"] __OPTIONS__ = ["sharex", "sharey", "sharexy", "grid"] # =============================================== # Utils for plotting # =============================================== def __optional_split__(text: str, split: str) -> List[str]: if split in text: return text.split(split) return [text] def __find_metrics_for__(metrics: Dict[str, Dict[StoredDataKey, Any]], prefix: str) -> List[str]: candidates = list(metrics.keys()) for i, l in enumerate(prefix): if l == "*": return candidates candidates = [cand for cand in candidates if len( cand) > i and cand[i] == l] if len(candidates) == 1: return candidates for cand in candidates: if len(cand) == len(prefix): return [cand] return candidates def __to_nice_name__(name: str) -> str: return name.replace("_", " ").replace(".", " ").title() def layout_for_subplots(nplots: int, screen_ratio: float = 16 / 9) -> Tuple[int, int]: """ Find a good number of rows and columns for organizing the specified number of subplots. Parameters ----------- - **nplots**: the number of subplots - **screen_ratio**: the ratio width/height of the screen Return ----------- [nrows, ncols] for the sublopt layout. It is guaranteed that ```nplots <= nrows * ncols```. """ nrows = int(np.floor(np.sqrt(nplots / screen_ratio))) ncols = int(np.floor(nrows * screen_ratio)) # Increase size so that everything can fit while nrows * ncols < nplots: if nrows < ncols: nrows += 1 elif ncols < nrows: ncols += 1 else: if screen_ratio >= 1: ncols += 1 else: nrows += 1 # If we can reduce the space, reduce it while (nrows - 1) * ncols >= nplots and (ncols - 1) * nrows >= nplots: if nrows > ncols: nrows -= 1 elif nrows < ncols: ncols -= 1 else: if screen_ratio < 1: ncols -= 1 else: nrows -= 1 while (nrows - 1) * ncols >= nplots: nrows -= 1 while (ncols - 1) * nrows >= nplots: ncols -= 1 return nrows, ncols # =============================================== # Main function called # =============================================== def interactive_plot(metrics: Dict[str, Dict[StoredDataKey, Any]]): while True: print("Available data:", ", ".join([Fore.LIGHTYELLOW_EX + s + Fore.RESET for s in metrics.keys()])) try: query = input("Which metric do you want to plot?\n>" + Fore.LIGHTGREEN_EX) print(Fore.RESET, end=" ") except EOFError: break global_options = __optional_split__(query.lower().strip(), __OPTIONS_STR__) choice = global_options.pop(0) elements = __optional_split__(choice, __GRAPH_STR__) things_with_options = [__get_graph_options__(x) for x in elements] metrics_with_str_options = [(__find_metrics_for__(metrics, x), y) for x,y in things_with_options] metrics_with_options = [(x, __parse_kwargs__(y)) for x, y in metrics_with_str_options if len(x) > 0] if len(metrics_with_options) == 0: print(Fore.RED + "No metrics found matching query:\'" + Fore.LIGHTRED_EX + query + Fore.RED + "\'" + Fore.RESET) continue correctly_expanded_metrics_with_otpions: List[Tuple[List[str], Dict]] = [] for x, y in metrics_with_options: if y["exp"]: for el in x: correctly_expanded_metrics_with_otpions.append(([el], y)) else: correctly_expanded_metrics_with_otpions.append((x, y)) plt.figure() __plot_all__(metrics, correctly_expanded_metrics_with_otpions, global_options) plt.show() # =============================================== # Plot a list of metrics on the same graph # =============================================== def __plot_sequential__(metrics: Dict[str, Dict[StoredDataKey, Any]], metrics_name: List[str], logx: bool = False, logy: bool = False): plt.xlabel("Time") if logx: if logy: plt.loglog() else: plt.semilogx() elif logy: plt.semilogy() for name in metrics_name: nice_name = __to_nice_name__(name) plt.plot(metrics[name]["data"], label=nice_name) if len(metrics_name) > 1: plt.legend() else: plt.ylabel(nice_name) def __plot_distribution__(metrics: Dict[str, Dict[StoredDataKey, Any]], metrics_name: List[str], logx: bool = False, logy: bool = False): # This may also contain maps # We should convert distributions to maps new_metrics: Dict[str, Dict[StoredDataKey, Any]] = {} for name in metrics_name: info = metrics[name] # If a MAP no need to convert if info["type"] == DataType.MAP: new_metrics[name] = metrics[name] continue # Compute histogram bins = info.get("bins", None) or "auto" hist, edges =
np.histogram(metrics[name]["data"], bins=bins, density=True)
numpy.histogram
'''plotting functions for Validation input -- one or more Single_TractorCat() objects -- ref is reference Single_TractorCat() test is test ... ''' import matplotlib matplotlib.use('Agg') #display backend import matplotlib.pyplot as plt import os import sys import numpy as np from scipy import stats as sp_stats # Globals class PlotKwargs(object): def __init__(self): self.ax= dict(fontweight='bold',fontsize='medium') self.text=dict(fontweight='bold',fontsize='medium',va='top',ha='left') self.leg=dict(frameon=True,fontsize='x-small') self.save= dict(bbox_inches='tight',dpi=150) kwargs= PlotKwargs() ########## # Helpful functions for making plots def bin_up(data_bin_by,data_for_percentile, bin_minmax=(18.,26.),nbins=20): '''bins "data_for_percentile" into "nbins" using "data_bin_by" to decide how indices are assigned to bins returns bin center,N,q25,50,75 for each bin ''' bin_edges= np.linspace(bin_minmax[0],bin_minmax[1],num= nbins+1) N= np.zeros(nbins)+np.nan q25,q50,q75= N.copy(),N.copy(),N.copy() for i,low,hi in zip(range(nbins-1), bin_edges[:-1],bin_edges[1:]): keep= np.all((low <= data_bin_by,data_bin_by < hi),axis=0) if np.where(keep)[0].size > 0: N[i]= np.where(keep)[0].size q25[i]= np.percentile(data_for_percentile[keep],q=25) q50[i]= np.percentile(data_for_percentile[keep],q=50) q75[i]= np.percentile(data_for_percentile[keep],q=75) else: # already initialized to nan pass return (bin_edges[1:]+bin_edges[:-1])/2.,N,q25,q50,q75 # Main plotting functions def nobs(obj, name=''): '''make histograms of nobs so can compare depths of g,r,z between the two catalogues obj -- Single_TractorCat()''' hi= np.max(obj.t['decam_nobs'][:,[1,2,4]]) fig,ax= plt.subplots(3,1) for i, band,iband in zip(range(3),['g','r','z'],[1,2,4]): ax[i].hist(obj.t['decam_nobs'][:,iband],\ bins=hi+1,normed=True,cumulative=True,align='mid') xlab=ax[i].set_xlabel('nobs %s' % band, **kwargs.ax) ylab=ax[i].set_ylabel('CDF', **kwargs.ax) plt.savefig(os.path.join(obj.outdir,'nobs_%s.png' % name), \ bbox_extra_artists=[xlab,ylab], **kwargs.save) plt.close() def radec(obj,name=''): '''ra,dec distribution of objects obj -- Single_TractorCat()''' plt.scatter(obj.t['ra'], obj.t['dec'], \ edgecolor='b',c='none',lw=1.) xlab=plt.xlabel('RA', **kwargs.ax) ylab=plt.ylabel('DEC', **kwargs.ax) plt.savefig(os.path.join(obj.outdir,'radec_%s.png' % name), \ bbox_extra_artists=[xlab,ylab], **kwargs.save) plt.close() def hist_types(obj, name=''): '''number of psf,exp,dev,comp, etc obj -- Single_TractorCat()''' types= ['PSF','SIMP','EXP','DEV','COMP'] # the x locations for the groups ind = np.arange(len(types)) # the width of the bars width = 0.35 ht= np.zeros(len(types),dtype=int) for cnt,typ in enumerate(types): # Mask to type desired ht[cnt]= obj.number_not_masked(['current',typ.lower()]) # Plot fig, ax = plt.subplots() rects = ax.bar(ind, ht, width, color='b') ylab= ax.set_ylabel("counts") ax.set_xticks(ind + width) ax.set_xticklabels(types) plt.savefig(os.path.join(obj.outdir,'hist_types_%s.png' % name), \ bbox_extra_artists=[ylab], **kwargs.save) plt.close() def sn_vs_mag(obj, mag_minmax=(18.,26.),name=''): '''plots Signal to Noise vs. mag for each band obj -- Single_TractorCat()''' min,max= mag_minmax # Bin up SN values bin_SN={} for band,iband in zip(['g','r','z'],[1,2,4]): bin_SN[band]={} bin_SN[band]['binc'],N,bin_SN[band]['q25'],bin_SN[band]['q50'],bin_SN[band]['q75']=\ bin_up(obj.t['decam_mag'][:,iband], \ obj.t['decam_flux'][:,iband]*np.sqrt(obj.t['decam_flux_ivar'][:,iband]),\ bin_minmax=mag_minmax) #setup plot fig,ax=plt.subplots(1,3,figsize=(9,3),sharey=True) plt.subplots_adjust(wspace=0.25) #plot SN for cnt,band,color in zip(range(3),['g','r','z'],['g','r','m']): #horiz line at SN = 5 ax[cnt].plot([mag_minmax[0],mag_minmax[1]],[5,5],'k--',lw=2) #data ax[cnt].plot(bin_SN[band]['binc'], bin_SN[band]['q50'],c=color,ls='-',lw=2) ax[cnt].fill_between(bin_SN[band]['binc'],bin_SN[band]['q25'],bin_SN[band]['q75'],color=color,alpha=0.25) #labels for cnt,band in zip(range(3),['g','r','z']): ax[cnt].set_yscale('log') xlab=ax[cnt].set_xlabel('%s' % band, **kwargs.ax) ax[cnt].set_ylim(1,100) ax[cnt].set_xlim(mag_minmax) ylab=ax[0].set_ylabel('S/N', **kwargs.ax) ax[2].text(26,5,'S/N = 5 ',**kwargs.text) plt.savefig(os.path.join(obj.outdir,'sn_%s.png' % name), \ bbox_extra_artists=[xlab,ylab], **kwargs.save) plt.close() def create_confusion_matrix(ref_obj,test_obj): '''compares MATCHED reference (truth) to test (prediction) ref_obj,test_obj -- reference,test Single_TractorCat() return 5x5 confusion matrix and colum/row names''' cm=np.zeros((5,5))-1 types=['PSF','SIMP','EXP','DEV','COMP'] for i_ref,ref_type in enumerate(types): cut_ref= np.where(ref_obj.t['type'] == ref_type)[0] #n_ref= ref_obj.number_not_masked(['current',ref_type.lower()]) for i_test,test_type in enumerate(types): n_test= np.where(test_obj.t['type'][ cut_ref ] == test_type)[0].size if cut_ref.size > 0: cm[i_ref,i_test]= float(n_test)/cut_ref.size else: cm[i_ref,i_test]= np.nan return cm,types def confusion_matrix(ref_obj,test_obj, name='',\ ref_name='ref',test_name='test'): '''plot confusion matrix ref_obj,test_obj -- reference,test Single_TractorCat()''' cm,ticknames= create_confusion_matrix(ref_obj,test_obj) plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues,vmin=0,vmax=1) cbar=plt.colorbar() plt.xticks(range(len(ticknames)), ticknames) plt.yticks(range(len(ticknames)), ticknames) ylab=plt.ylabel('True (%s)' % ref_name, **kwargs.ax) xlab=plt.xlabel('Predicted (%s)' % test_name, **kwargs.ax) for row in range(len(ticknames)): for col in range(len(ticknames)): if np.isnan(cm[row,col]): plt.text(col,row,'n/a',va='center',ha='center') elif cm[row,col] > 0.5: plt.text(col,row,'%.2f' % cm[row,col],va='center',ha='center',color='yellow') else: plt.text(col,row,'%.2f' % cm[row,col],va='center',ha='center',color='black') plt.savefig(os.path.join(ref_obj.outdir,'confusion_matrix_%s.png' % name), \ bbox_extra_artists=[xlab,ylab], **kwargs.save) plt.close() def matched_dist(obj,dist, name=''): '''dist -- array of distances in degress between matched objects''' pixscale=dict(decam=0.25,bass=0.45) # Plot fig,ax=plt.subplots() ax.hist(dist*3600,bins=50,color='b',align='mid') ax2 = ax.twiny() ax2.hist(dist*3600./pixscale['bass'],bins=50,color='g',align='mid',\ visible=False) xlab= ax.set_xlabel("arcsec") xlab= ax2.set_xlabel("pixels [BASS]") ylab= ax.set_ylabel("Matched") plt.savefig(os.path.join(obj.outdir,"separation_hist_%s.png" % name), \ bbox_extra_artists=[xlab,ylab], **kwargs.save) plt.close() def chi_v_gaussian(ref_obj,test_obj, low=-8.,hi=8., name=''): # Compute Chi chi={} for band,iband in zip(['g','r','z'],[1,2,4]): chi[band]= (ref_obj.t['decam_flux'][:,iband]-test_obj.t['decam_flux'][:,iband])/\ np.sqrt(
np.power(ref_obj.t['decam_flux_ivar'][:,iband],-1)
numpy.power
# -*- coding: utf-8 -*- """ Created on Thu Aug 22 15:58:31 2019 @author: DaniJ """ import numpy as np import scipy as sp from bvp import solve_bvp from scipy import linalg #from four_layer_model_2try_withFixSpeciesOption_Scaling import four_layer_model_2try_withFixSpeciesOption_Scaling as flm from matplotlib import pyplot as plt ''' In this first try we will assume that the vector of unknowns is composed in the following order: ''' def PB_and_fourlayermodel (T, X_guess, A, Z, log_k, idx_Aq, pos_psi_S1_vec, pos_psi_S2_vec, temp, sS1, aS1, sS2, aS2, e, CapacitancesS1, CapacitancesS2, d0,df, idx_fix_species = None, zel=1, tolerance_NR = 1e-6, max_iterations = 100,scalingRC = True, tol_PB=1e-6): counter_iterations = 0 abs_err = tolerance_NR + 1 if idx_fix_species != None: X_guess [idx_fix_species] = T [idx_fix_species] tempv = (np.linspace(d0,df,100)); y_0 = np.zeros((2,tempv.shape[0])) bvp_class = [y_0] while abs_err>tolerance_NR and counter_iterations < max_iterations: # Calculate Y [Y, T, bvp_class] = func_NR_FLM (X_guess, A, log_k, temp, idx_Aq, sS1, aS1, sS2, aS2, e, CapacitancesS1, CapacitancesS2, T, Z, zel, pos_psi_S1_vec, pos_psi_S2_vec, d0,df, bvp_class, idx_fix_species,tol_PB) # Calculate Z J = Jacobian_NR_FLM (X_guess, A, log_k, temp, idx_Aq, sS1, aS1, sS2, aS2, e, CapacitancesS1, CapacitancesS2, T, Z, zel, pos_psi_S1_vec, pos_psi_S2_vec, d0,df, bvp_class, idx_fix_species,tol_PB) # Scaling technique is the RC technique from "Thermodynamic Equilibrium Solutions Through a Modified Newton Raphson Method"-<NAME>, <NAME>, <NAME>, and <NAME> (2016) if scalingRC == True: D1 = diagonal_row(J) D2 = diagonal_col(J) J_new = np.matmul(D1,np.matmul(J, D2)) Y_new = np.matmul(D1, Y) delta_X_new = linalg.solve(J_new,-Y_new) delta_X = np.matmul(D2, delta_X_new) else: # Calculating the diff, Delta_X delta_X = linalg.solve(J,-Y) #print(delta_X)) # Relaxation factor borrow from <NAME> to avoid negative values max_1 = 1 max_2 =np.amax(-2*np.multiply(delta_X, 1/X_guess)) Max_f = np.amax([max_1, max_2]) Del_mul = 1/Max_f X_guess=X_guess + Del_mul*delta_X #print(X_guess) Xmod=X_guess.copy() for i in range(len(X_guess)): if X_guess[i]<=0: Xmod[i]=1 log_C = log_k + np.matmul(A,np.log10(Xmod)) # transf C = 10**(log_C) u = np.matmul(A.transpose(),C) #print(C) # Vector_error d = u-T print(d) if idx_fix_species != None: d[idx_fix_species] =0 abs_err = max(abs(d)) counter_iterations += 1 if counter_iterations >= max_iterations: raise ValueError('Max number of iterations surpassed.') #return X_guess, C # Speciation - mass action law Xmod=X_guess.copy() for i in range(len(X_guess)): if X_guess[i]<=0: Xmod[i]=1 log_C = log_k + np.matmul(A,np.log10(Xmod)) # transf C = 10**(log_C) return X_guess, C def func_NR_FLM (X, A, log_k, temp, idx_Aq, sS1, aS1, sS2, aS2, e, CapacitancesS1, CapacitancesS2, T, Z, zel, pos_psi_S1_vec, pos_psi_S2_vec, d0,df, bvp_solver, idx_fix_species=None, tol_PB=1e-6): """ This function is supossed to be linked to the four_layer_two_surface_speciation function. It just gave the evaluated vector of Y, and T for the Newton-raphson procedure. The formulation of Westall (1980) is followed. FLM = four layer model """ # Speciation - mass action law Xmod=X.copy() for i in range(len(X)): if X[i]<=0: Xmod[i]=1 log_C = log_k + np.matmul(A,
np.log10(Xmod)
numpy.log10
from lib.utils.config import cfg from lib.utils.base_utils import PoseTransformer, read_pose, read_pickle, save_pickle import os import numpy as np from transforms3d.quaternions import mat2quat import glob from PIL import Image from scipy import stats import OpenEXR import Imath from multiprocessing.dummy import Pool import struct import scipy.io as sio class DataStatistics(object): # world_to_camera_pose = np.array([[-1.19209304e-07, 1.00000000e+00, -2.98023188e-08, 1.19209304e-07], # [-8.94069672e-08, 2.22044605e-16, -1.00000000e+00, 8.94069672e-08], # [-1.00000000e+00, -8.94069672e-08, 1.19209304e-07, 1.00000000e+00]]) world_to_camera_pose = np.array([[-1.00000024e+00, -8.74227979e-08, -5.02429621e-15, 8.74227979e-08], [5.02429621e-15, 1.34358856e-07, -1.00000012e+00, -1.34358856e-07], [8.74227979e-08, -1.00000012e+00, 1.34358856e-07, 1.00000012e+00]]) def __init__(self, class_type): self.class_type = class_type self.mask_path = os.path.join(cfg.LINEMOD,'{}/mask/*.png'.format(class_type)) self.dir_path = os.path.join(cfg.LINEMOD_ORIG,'{}/data'.format(class_type)) dataset_pose_dir_path = os.path.join(cfg.DATA_DIR, 'dataset_poses') os.system('mkdir -p {}'.format(dataset_pose_dir_path)) self.dataset_poses_path = os.path.join(dataset_pose_dir_path, '{}_poses.npy'.format(class_type)) blender_pose_dir_path = os.path.join(cfg.DATA_DIR, 'blender_poses') os.system('mkdir -p {}'.format(blender_pose_dir_path)) self.blender_poses_path = os.path.join(blender_pose_dir_path, '{}_poses.npy'.format(class_type)) os.system('mkdir -p {}'.format(blender_pose_dir_path)) self.pose_transformer = PoseTransformer(class_type) def get_proper_crop_size(self): mask_paths = glob.glob(self.mask_path) widths = [] heights = [] for mask_path in mask_paths: mask = Image.open(mask_path).convert('1') mask = np.array(mask).astype(np.int32) row_col = np.argwhere(mask == 1) min_row, max_row = np.min(row_col[:, 0]), np.max(row_col[:, 0]) min_col, max_col = np.min(row_col[:, 1]), np.max(row_col[:, 1]) width = max_col - min_col height = max_row - min_row widths.append(width) heights.append(height) widths = np.array(widths) heights = np.array(heights) print('min width: {}, max width: {}'.format(np.min(widths), np.max(widths))) print('min height: {}, max height: {}'.format(np.min(heights), np.max(heights))) def get_quat_translation(self, object_to_camera_pose): object_to_camera_pose = np.append(object_to_camera_pose, [[0, 0, 0, 1]], axis=0) world_to_camera_pose = np.append(self.world_to_camera_pose, [[0, 0, 0, 1]], axis=0) object_to_world_pose = np.dot(np.linalg.inv(world_to_camera_pose), object_to_camera_pose) quat = mat2quat(object_to_world_pose[:3, :3]) translation = object_to_world_pose[:3, 3] return quat, translation def get_dataset_poses(self): if os.path.exists(self.dataset_poses_path): poses = np.load(self.dataset_poses_path) return poses[:, :3], poses[:, 3:] eulers = [] translations = [] train_set = np.loadtxt(os.path.join(cfg.LINEMOD, '{}/training_range.txt'.format(self.class_type)),np.int32) for idx in train_set: rot_path = os.path.join(self.dir_path, 'rot{}.rot'.format(idx)) tra_path = os.path.join(self.dir_path, 'tra{}.tra'.format(idx)) pose = read_pose(rot_path, tra_path) euler = self.pose_transformer.orig_pose_to_blender_euler(pose) eulers.append(euler) translations.append(pose[:, 3]) eulers = np.array(eulers) translations =
np.array(translations)
numpy.array
# The # %% lines denote cells, allowing this file to be run using # the interactive mode of the Python VS Code extension. But you # can also run it simply as a normal python script. # %% import matplotlib.pyplot as plt import numpy as np import os import seaborn as sns from scipy.signal import correlate2d from e2cnn.diffops.utils import discretize_homogeneous_polynomial as dp from e2cnn import nn from e2cnn import gspaces # %% sns.set_theme(context="paper") os.makedirs("fig", exist_ok=True) # %% x = np.linspace(0, np.pi, 128) xx, yy = np.meshgrid(x[32:], x[:64]) zz_x = np.sin(xx + yy) + 0.5 * (xx - 2) zz_y = np.cos(xx - yy) + 0.5 * (yy - 2) zz_mag = np.sqrt(zz_x**2 + zz_y**2) plt.figure(figsize=(6, 4)) plt.gcf().set_facecolor((0.95, 0.95, 0.95)) plt.quiver(zz_x[::8, ::8], zz_y[::8, ::8], zz_mag[::8, ::8]) plt.axis("equal") plt.axis("off") plt.gcf().tight_layout() plt.savefig("fig/vector_input.pdf", bbox_inches="tight", facecolor=plt.gcf().get_facecolor()) # %% # the order is like that ... for reasons # y_grad, x_grad = np.gradient(zz) # gradient_mag = np.sqrt(x_grad**2 + y_grad**2) # Laplacian of the divergence: x_filter = dp([-2, -1, 0, 1, 2], np.array([0, 1, 0, 1])).reshape(5, 5) # curl: x_filter += dp([-2, -1, 0, 1, 2], np.array([1, 0])).reshape(5, 5) y_filter = dp([-2, -1, 0, 1, 2], np.array([1, 0, 1, 0])).reshape(5, 5) y_filter += dp([-2, -1, 0, 1, 2],
np.array([0, -1])
numpy.array
#Loading dependencies import numpy as np from collections import Counter from .BaseMRRPlan import * class MRRTwoActions(BaseMRRPlan): def __init__(self, **params): super().__init__(**params) self.start = params.pop(start) action_duration = params.pop('action_duration') self.mrr_duration = {BINAR: action_duration} self.randomize_mrr() def randomize_mrr(self): '''Randomly initialize the mrr''' self.mrr =
np.random.randint(2, size=(self.settings.n_elements, self.settings.n_steps))
numpy.random.randint
#!/usr/bin/env python # -*- coding: utf-8 -*- import copy from glob import glob import matplotlib.pyplot as plt import multiprocessing import numpy as np import os import pandas as pd import shutil from .tileserver_helpers import create_hf from .tileserver_helpers import collect_coord_info from .tileserver_helpers import check_par_jobs from .tileserver_scraper import scraper from .tileserver_stitcher import stitcher class TileServer: def __init__( self, metadata_path, geometry="polygone", download_url="https://mapseries-tilesets.s3.amazonaws.com/1inch_2nd_ed/{z}/{x}/{y}.png", ): """Initialize TileServer class and read in metadata self.metadata is a dictionary that contains info about the maps to be downloaded. Each key in this dict should have ["properties"]["IMAGEURL"] ["geometry"]["coordinates"] ["properties"]["IMAGE"] Args: metadata_path: path to a metadata file downloaded from a tileserver. This file contains information about one series of maps stored on the tileserver. Some example metadata files can be found in `MapReader/mapreader/persistent_data` geometry (str, optional): Geometry that defines the boundaries. Defaults to "polygone". download_url (str, optional): Base URL to download the maps. Defaults to "https://mapseries-tilesets.s3.amazonaws.com/1inch_2nd_ed/{z}/{x}/{y}.png". """ # initialize variables self.detected_rect_boundary = False self.found_queries = None self.geometry = geometry self.download_url = download_url if isinstance(metadata_path, str) and os.path.isfile(metadata_path): # Read a metada file json_fio = open(metadata_path, "r") json_f = json_fio.readlines()[0] # change metadata to a dictionary: metadata_all = eval(json_f) metadata = metadata_all["features"] elif isinstance(metadata_path, dict): metadata = metadata_all["features"] elif isinstance(metadata_path, list): metadata = metadata_path[:] else: raise ValueError(f"Could not find or load: {metadata_path}") # metadata contains the "features" of metadata_all self.metadata = metadata print(self.__str__()) def create_info(self): """ Extract information from metadata and create metadata_info_list and metadata_coord_arr. This is a helper function for other methods in this class """ metadata_info_list = [] metadata_coord_arr = [] for one_item in self.metadata: min_lon, max_lon, min_lat, max_lat = self.detect_rectangle_boundary( one_item["geometry"]["coordinates"][0][0] ) # XXX hardcoded: the file path is hardcoded to map_<IMAGE>.png metadata_info_list.append( [ one_item["properties"]["IMAGEURL"], "map_" + one_item["properties"]["IMAGE"] + ".png", ] ) # Collect boundaries for fast queries metadata_coord_arr.append([min_lon, max_lon, min_lat, max_lat]) self.metadata_info_list = metadata_info_list self.metadata_coord_arr = np.array(metadata_coord_arr).astype(np.float) self.detected_rect_boundary = True def modify_metadata(self, remove_image_ids=[], only_keep_image_ids=[]): """Modify metadata using metadata[...]["properties"]["IMAGE"] Parameters ---------- remove_image_ids : list, optional Image IDs to be removed from metadata variable """ print(f"[INFO] #images (before modification): {len(self.metadata)}") one_edit = False if len(remove_image_ids) != 0: for i in range(len(self.metadata) - 1, -1, -1): if self.metadata[i]["properties"]["IMAGE"] in remove_image_ids: print(f'Removing {self.metadata[i]["properties"]["IMAGE"]}') del self.metadata[i] one_edit = True if len(only_keep_image_ids) != 0: for i in range(len(self.metadata) - 1, -1, -1): if self.metadata[i]["properties"]["IMAGE"] not in only_keep_image_ids: print(f'Removing {self.metadata[i]["properties"]["IMAGE"]}') del self.metadata[i] one_edit = True if one_edit: print("[INFO] run .create_info") self.create_info() print(f"[INFO] #images (after modification): {len(self.metadata)}") def query_point(self, latlon_list, append=False): """Query maps from a list of lats/lons using metadata file Args: latlon_list (list): a list that contains lats/lons: [lat, lon] or [[lat1, lon1], [lat2, lon2], ...] append (bool, optional): If True, append the new query to the list of queries. Defaults to False. """ # Detect the boundaries of maps if not self.detected_rect_boundary: self.create_info() if not type(latlon_list[0]) == list: latlon_list = [latlon_list] if append and (self.found_queries != None): found_queries = copy.deepcopy(self.found_queries) else: found_queries = [] for one_q in latlon_list: lat_q, lon_q = one_q indx_q = np.where( (self.metadata_coord_arr[:, 2] <= lat_q) & (lat_q <= self.metadata_coord_arr[:, 3]) & (self.metadata_coord_arr[:, 0] <= lon_q) & (lon_q <= self.metadata_coord_arr[:, 1]) )[0] if len(indx_q) == 0: print(f"Could not find any candidates for {one_q}") continue indx_q = indx_q[0] already_in_candidates = False # Check if the query is already in the list if len(found_queries) > 0: for one_in_candidates in found_queries: if self.metadata_info_list[indx_q][0] == one_in_candidates[0]: already_in_candidates = True print(f"Already in the query list: {one_in_candidates[0]}") break if not already_in_candidates: found_queries.append(copy.deepcopy(self.metadata_info_list[indx_q])) found_queries[-1].extend( [copy.deepcopy(self.metadata_coord_arr[indx_q]), indx_q] ) self.found_queries = found_queries def print_found_queries(self): """Print found queries""" print(12 * "-") print(f"Found items:") print(12 * "-") if not self.found_queries: print("[]") else: for one_item in self.found_queries: print(f"URL: \t{one_item[0]}") print(f"filepath:\t{one_item[1]}") print(f"coords: \t{one_item[2]}") print(f"index: \t{one_item[3]}") print(20 * "=") def detect_rectangle_boundary(self, coords): """Detect rectangular boundary given a set of coordinates""" if self.geometry == "polygone": coord_arr = np.array(coords) # if len(coord_arr) != 5: # raise ValueError(f"[ERROR] expected length of coordinate list is 5. coords: {coords}") min_lon = np.min(coord_arr[:, 0]) max_lon = np.max(coord_arr[:, 0]) min_lat = np.min(coord_arr[:, 1]) max_lat = np.max(coord_arr[:, 1]) ### # XXX this method results in smaller rectangles (compared to the original polygone) particularly ### # if the map is strongly tilted ### min_lon = np.sort(coord_arr[:-1, 0])[1] ### max_lon = np.sort(coord_arr[:-1, 0])[2] ### min_lat = np.sort(coord_arr[:-1, 1])[1] ### max_lat = np.sort(coord_arr[:-1, 1])[2] return min_lon, max_lon, min_lat, max_lat def create_metadata_query(self): """ Create a metadata type variable out of all queries. This will be later used in download_tileserver method """ self.metadata_query = [] for one_item in self.found_queries: self.metadata_query.append(copy.deepcopy(self.metadata[one_item[3]])) def minmax_latlon(self): """Method to return min/max of lats/lons""" if not self.detected_rect_boundary: self.create_info() print( f"Min/Max Lon: {np.min(self.metadata_coord_arr[:, 0])}, {
np.max(self.metadata_coord_arr[:, 1])
numpy.max
#!/usr/bin/env python # -*- coding: latin-1 -*- import numpy as np from .TriaMesh import TriaMesh def import_fssurf(infile): """ Load triangle mesh from FreeSurfer surface geometry file :return: TriaMesh """ verbose = 1 if verbose > 0: print("--> FS Surf format ... ") try: # here we use our copy to also support surfaces from dev (and maybe v7*?) # these have an empty line and mess up Nibabel # once this is fixed in nibabel we can switch back from .read_geometry import read_geometry surf = read_geometry(infile, read_metadata=True) except IOError: print("[file not found or not readable]\n") return return TriaMesh(surf[0], surf[1], fsinfo=surf[2]) def import_off(infile): """ Load triangle mesh from OFF txt file :return: TriaMesh """ verbose = 1 if verbose > 0: print("--> OFF format ... ") try: f = open(infile, 'r') except IOError: print("[file not found or not readable]\n") return line = f.readline() while line[0] == '#': line = f.readline() if not line.startswith("OFF"): print("[OFF keyword not found] --> FAILED\n") f.close() return # expect tria and vertex sizes after OFF line: line = f.readline() larr = line.split() pnum = int(larr[0]) tnum = int(larr[1]) # print(" tnum: {} pnum: {}".format(tnum,pnum)) # read points as chunch v = np.fromfile(f, 'float32', 3 * pnum, ' ') v.shape = (pnum, 3) # read trias as chunch t = np.fromfile(f, 'int', 4 * tnum, ' ') t.shape = (tnum, 4) # print(" t0: {} ".format(t[0, :])) # make sure first column is equal to 3 (trias) # max0 = np.amax(t[:, 0]) # print(" max: {}".format(max0)) if np.amax(t[:, 0]) != 3: print("[no triangle data] --> FAILED\n") f.close() return t = t[:, 1:] f.close() print(" --> DONE ( V: " + str(v.shape[0]) + " , T: " + str(t.shape[0]) + " )\n") return TriaMesh(v, t) def import_vtk(infile): """ Load triangle mesh from VTK txt file :return: TriaMesh """ verbose = 1 if verbose > 0: print("--> VTK format ... ") try: f = open(infile, 'r') except IOError: print("[file not found or not readable]\n") return # skip comments line = f.readline() while line[0] == '#': line = f.readline() # search for ASCII keyword in first 5 lines: count = 0 while count < 5 and not line.startswith("ASCII"): line = f.readline() # print line count = count + 1 if not line.startswith("ASCII"): print("[ASCII keyword not found] --> FAILED\n") return # expect Dataset Polydata line after ASCII: line = f.readline() if not line.startswith("DATASET POLYDATA") and not line.startswith("DATASET UNSTRUCTURED_GRID"): print("[read: " + line + " expected DATASET POLYDATA or DATASET UNSTRUCTURED_GRID] --> FAILED\n") return # read number of points line = f.readline() larr = line.split() if larr[0] != "POINTS" or (larr[2] != "float" and larr[2] != "double"): print("[read: " + line + " expected POINTS # float or POINTS # double ] --> FAILED\n") return pnum = int(larr[1]) # read points as chunk v = np.fromfile(f, 'float32', 3 * pnum, ' ') v.shape = (pnum, 3) # expect polygon or tria_strip line line = f.readline() larr = line.split() if larr[0] == "POLYGONS" or larr[0] == "CELLS": tnum = int(larr[1]) ttnum = int(larr[2]) npt = float(ttnum) / tnum if npt != 4.0: print("[having: " + str(npt) + " data per tria, expected trias 3+1] --> FAILED\n") return t = np.fromfile(f, 'int', ttnum, ' ') t.shape = (tnum, 4) if t[tnum - 1][0] != 3: print("[can only read triangles] --> FAILED\n") return t = np.delete(t, 0, 1) elif larr[0] == "TRIANGLE_STRIPS": tnum = int(larr[1]) # ttnum = int(larr[2]) tt = [] for i in range(tnum): larr = f.readline().split() if len(larr) == 0: print("[error reading triangle strip (i)] --> FAILED\n") return n = int(larr[0]) if len(larr) != n + 1: print("[error reading triangle strip (ii)] --> FAILED\n") return # create triangles from strip # note that larr tria info starts at index 1 for ii in range(2, n): if ii % 2 == 0: tria = [larr[ii - 1], larr[ii], larr[ii + 1]] else: tria = [larr[ii], larr[ii - 1], larr[ii + 1]] tt.append(tria) t =
np.array(tt)
numpy.array
import numpy as np from PIL import Image from nets.srgan import build_generator from utils.utils import preprocess_input, cvtColor class SRGAN(object): #-----------------------------------------# # 注意修改model_path #-----------------------------------------# _defaults = { #-----------------------------------------------# # model_path指向logs文件夹下的权值文件 #-----------------------------------------------# "model_path" : 'model_data/Generator_SRGAN.h5', #-----------------------------------------------# # 上采样的倍数,和训练时一样 #-----------------------------------------------# "scale_factor" : 4, } #---------------------------------------------------# # 初始化SRGAN #---------------------------------------------------# def __init__(self, **kwargs): self.__dict__.update(self._defaults) for name, value in kwargs.items(): setattr(self, name, value) self.generate() #---------------------------------------------------# # 创建生成模型 #---------------------------------------------------# def generate(self): self.net = build_generator([None, None, 3], self.scale_factor) self.net.load_weights(self.model_path) print('{} model loaded.'.format(self.model_path)) def generate_1x1_image(self, image): #---------------------------------------------------------# # 在这里将图像转换成RGB图像,防止灰度图在预测时报错。 # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB #---------------------------------------------------------# image = cvtColor(image) #---------------------------------------------------------# # 添加上batch_size维度,并进行归一化 #---------------------------------------------------------# image_data = np.expand_dims(preprocess_input(
np.array(image, dtype='float32')
numpy.array
"""Test application services """ import numpy as np import pytest import xarray as xr from xesmf.data import wave_smooth from xesmf.util import grid_global from xclim.sdba.adjustment import QuantileDeltaMapping from dodola.services import ( bias_correct, build_weights, rechunk, regrid, remove_leapdays, clean_cmip6, downscale, correct_wet_day_frequency, train_qdm, apply_qdm, train_aiqpd, apply_aiqpd, ) import dodola.repository as repository def _datafactory(x, start_time="1950-01-01", variable_name="fakevariable"): """Populate xr.Dataset with synthetic data for testing""" start_time = str(start_time) if x.ndim != 1: raise ValueError("'x' needs dim of one") time = xr.cftime_range( start=start_time, freq="D", periods=len(x), calendar="standard" ) out = xr.Dataset( {variable_name: (["time", "lon", "lat"], x[:, np.newaxis, np.newaxis])}, coords={ "index": time, "time": time, "lon": (["lon"], [1.0]), "lat": (["lat"], [1.0]), }, ) return out def _gcmfactory(x, gcm_variable="fakevariable", start_time="1950-01-01"): """Populate xr.Dataset with synthetic GCM data for testing that includes extra dimensions and leap days to be removed. """ start_time = str(start_time) if x.ndim != 1: raise ValueError("'x' needs dim of one") time = xr.cftime_range( start=start_time, freq="D", periods=len(x), calendar="standard" ) out = xr.Dataset( { gcm_variable: ( ["time", "lon", "lat", "member_id"], x[:, np.newaxis, np.newaxis, np.newaxis], ) }, coords={ "index": time, "time": time, "bnds": [0, 1], "lon": (["lon"], [1.0]), "lat": (["lat"], [1.0]), "member_id": (["member_id"], [1.0]), "height": (["height"], [1.0]), "time_bnds": (["time", "bnds"], np.ones((len(x), 2))), }, ) return out @pytest.fixture def domain_file(request): """Creates a fake domain Dataset for testing""" lon_name = "lon" lat_name = "lat" domain = grid_global(request.param, request.param) domain[lat_name] = np.unique(domain[lat_name].values) domain[lon_name] = np.unique(domain[lon_name].values) return domain def test_apply_qdm(tmpdir): """Test to apply a trained QDM to input data and read the output. This is an integration test between train_qdm, apply_qdm. """ # Setup input data. target_variable = "fakevariable" variable_kind = "additive" n_histdays = 10 * 365 # 10 years of daily historical. n_simdays = 50 * 365 # 50 years of daily simulation. model_bias = 2 ts_ref = np.ones(n_histdays, dtype=np.float64) ts_sim = np.ones(n_simdays, dtype=np.float64) hist = _datafactory(ts_ref + model_bias, variable_name=target_variable) ref = _datafactory(ts_ref, variable_name=target_variable) sim = _datafactory(ts_sim + model_bias, variable_name=target_variable) # Load up a fake repo with our input data in the place of big data and cloud # storage. qdm_key = "memory://test_apply_qdm/qdm.zarr" hist_key = "memory://test_apply_qdm/hist.zarr" ref_key = "memory://test_apply_qdm/ref.zarr" sim_key = "memory://test_apply_qdm/sim.zarr" # Writes NC to local disk, so dif format here: sim_adjusted_key = tmpdir.join("sim_adjusted.nc") repository.write(sim_key, sim) repository.write(hist_key, hist) repository.write(ref_key, ref) target_year = 1995 train_qdm( historical=hist_key, reference=ref_key, out=qdm_key, variable=target_variable, kind=variable_kind, ) apply_qdm( simulation=sim_key, qdm=qdm_key, year=target_year, variable=target_variable, out=sim_adjusted_key, ) adjusted_ds = xr.open_dataset(str(sim_adjusted_key)) assert target_variable in adjusted_ds.variables @pytest.mark.parametrize("kind", ["multiplicative", "additive"]) def test_train_qdm(kind): """Test that train_qdm outputs store giving sdba.adjustment.QuantileDeltaMapping Checks that output is consistent if we do "additive" or "multiplicative" QDM kinds. """ # Setup input data. n_years = 10 n = n_years * 365 model_bias = 2 ts = np.sin(np.linspace(-10 * 3.14, 10 * 3.14, n)) * 0.5 hist = _datafactory(ts + model_bias) ref = _datafactory(ts) output_key = "memory://test_train_qdm/test_output.zarr" hist_key = "memory://test_train_qdm/hist.zarr" ref_key = "memory://test_train_qdm/ref.zarr" # Load up a fake repo with our input data in the place of big data and cloud # storage. repository.write(hist_key, hist) repository.write(ref_key, ref) train_qdm( historical=hist_key, reference=ref_key, out=output_key, variable="fakevariable", kind=kind, ) assert QuantileDeltaMapping.from_dataset(repository.read(output_key)) @pytest.mark.parametrize( "method, expected_head, expected_tail", [ pytest.param( "QDM", np.array( [6.6613381e-16, 8.6090365e-3, 1.7215521e-2, 2.58169e-2, 3.4410626e-2] ), np.array( [ -3.4410626e-2, -2.58169e-2, -1.7215521e-2, -8.6090365e-3, -1.110223e-15, ] ), id="QDM head/tail", ), ], ) def test_bias_correct_basic_call(method, expected_head, expected_tail): """Simple integration test of bias_correct service""" # Setup input data. n_years = 10 n = n_years * 365 # need daily data... # Our "biased model". model_bias = 2 ts = np.sin(np.linspace(-10 * np.pi, 10 * np.pi, n)) * 0.5 x_train = _datafactory((ts + model_bias)) # True "observations". y_train = _datafactory(ts) # Yes, we're testing and training on the same data... x_test = x_train.copy(deep=True) output_key = "memory://test_bias_correct_basic_call/test_output.zarr" training_model_key = "memory://test_bias_correct_basic_call/x_train.zarr" training_obs_key = "memory://test_bias_correct_basic_call/y_train.zarr" forecast_model_key = "memory://test_bias_correct_basic_call/x_test.zarr" # Load up a fake repo with our input data in the place of big data and cloud # storage. repository.write(training_model_key, x_train) repository.write(training_obs_key, y_train) repository.write(forecast_model_key, x_test) bias_correct( forecast_model_key, x_train=training_model_key, train_variable="fakevariable", y_train=training_obs_key, out=output_key, out_variable="fakevariable", method=method, ) # We can't just test for removal of bias here since quantile mapping # and adding in trend are both components of bias correction, # so testing head and tail values instead np.testing.assert_almost_equal( repository.read(output_key)["fakevariable"].squeeze(drop=True).values[:5], expected_head, ) np.testing.assert_almost_equal( repository.read(output_key)["fakevariable"].squeeze(drop=True).values[-5:], expected_tail, ) @pytest.mark.parametrize( "domain_file, regrid_method", [pytest.param(1.0, "bilinear"), pytest.param(1.0, "conservative")], indirect=["domain_file"], ) def test_build_weights(domain_file, regrid_method, tmpdir): """Test that services.build_weights produces a weights file""" # Output to tmp dir so we cleanup & don't clobber existing files... weightsfile = tmpdir.join("a_file_path_weights.nc") # Make fake input data. ds_in = grid_global(30, 20) ds_in["fakevariable"] = wave_smooth(ds_in["lon"], ds_in["lat"]) domain_file_url = "memory://test_regrid_methods/a/domainfile/path.zarr" repository.write(domain_file_url, domain_file) url = "memory://test_build_weights/a_file_path.zarr" repository.write(url, ds_in) build_weights(url, regrid_method, domain_file_url, outpath=weightsfile) # Test that weights file is actually created where we asked. assert weightsfile.exists() def test_rechunk(): """Test that rechunk service rechunks""" chunks_goal = {"time": 4, "lon": 1, "lat": 1} test_ds = xr.Dataset( {"fakevariable": (["time", "lon", "lat"], np.ones((4, 4, 4)))}, coords={ "time": [1, 2, 3, 4], "lon": (["lon"], [1.0, 2.0, 3.0, 4.0]), "lat": (["lat"], [1.5, 2.5, 3.5, 4.5]), }, ) in_url = "memory://test_rechunk/input_ds.zarr" out_url = "memory://test_rechunk/output_ds.zarr" repository.write(in_url, test_ds) rechunk( in_url, target_chunks=chunks_goal, out=out_url, ) actual_chunks = repository.read(out_url)["fakevariable"].data.chunksize assert actual_chunks == tuple(chunks_goal.values()) @pytest.mark.parametrize( "domain_file, regrid_method, expected_shape", [ pytest.param( 1.0, "bilinear", (180, 360), id="Bilinear regrid", ), pytest.param( 1.0, "conservative", (180, 360), id="Conservative regrid", ), ], indirect=["domain_file"], ) def test_regrid_methods(domain_file, regrid_method, expected_shape): """Smoke test that services.regrid outputs with different regrid methods The expected shape is the same, but change in methods should not error. """ # Make fake input data. ds_in = grid_global(30, 20) ds_in["fakevariable"] = wave_smooth(ds_in["lon"], ds_in["lat"]) in_url = "memory://test_regrid_methods/an/input/path.zarr" domain_file_url = "memory://test_regrid_methods/a/domainfile/path.zarr" out_url = "memory://test_regrid_methods/an/output/path.zarr" repository.write(in_url, ds_in) repository.write(domain_file_url, domain_file) regrid(in_url, out=out_url, method=regrid_method, domain_file=domain_file_url) actual_shape = repository.read(out_url)["fakevariable"].shape assert actual_shape == expected_shape @pytest.mark.parametrize( "domain_file, expected_dtype", [ pytest.param( 2.0, "float64", id="Cast output to float64", ), pytest.param( 2.0, "float32", id="Cast output to float32", ), ], indirect=["domain_file"], ) def test_regrid_dtype(domain_file, expected_dtype): """Tests that services.regrid casts output to different dtypes""" # Make fake input data. ds_in = grid_global(5, 10) ds_in["fakevariable"] = wave_smooth(ds_in["lon"], ds_in["lat"]) in_url = "memory://test_regrid_dtype/an/input/path.zarr" domain_file_url = "memory://test_regrid_dtype/a/domainfile/path.zarr" out_url = "memory://test_regrid_dtype/an/output/path.zarr" repository.write(in_url, ds_in) repository.write(domain_file_url, domain_file) regrid( in_url, out=out_url, method="bilinear", domain_file=domain_file_url, astype=expected_dtype, ) actual_dtype = repository.read(out_url)["fakevariable"].dtype assert actual_dtype == expected_dtype @pytest.mark.parametrize( "domain_file, expected_shape", [ pytest.param( 1.0, (180, 360), id="Regrid to domain file grid", ), pytest.param( 2.0, (90, 180), id="Regrid to global 2.0° x 2.0° grid", ), ], indirect=["domain_file"], ) def test_regrid_resolution(domain_file, expected_shape): """Smoke test that services.regrid outputs with different grid resolutions The expected shape is the same, but change in methods should not error. """ # Make fake input data. ds_in = grid_global(30, 20) ds_in["fakevariable"] = wave_smooth(ds_in["lon"], ds_in["lat"]) in_url = "memory://test_regrid_resolution/an/input/path.zarr" domain_file_url = "memory://test_regrid_resolution/a/domainfile/path.zarr" out_url = "memory://test_regrid_resolution/an/output/path.zarr" repository.write(in_url, ds_in) repository.write(domain_file_url, domain_file) regrid(in_url, out=out_url, method="bilinear", domain_file=domain_file_url) actual_shape = repository.read(out_url)["fakevariable"].shape assert actual_shape == expected_shape @pytest.mark.parametrize( "domain_file", [pytest.param(1.0, id="Regrid to domain file grid")], indirect=True ) def test_regrid_weights_integration(domain_file, tmpdir): """Test basic integration between service.regrid and service.build_weights""" expected_shape = (180, 360) # Output to tmp dir so we cleanup & don't clobber existing files... weightsfile = tmpdir.join("a_file_path_weights.nc") # Make fake input data. ds_in = grid_global(30, 20) ds_in["fakevariable"] = wave_smooth(ds_in["lon"], ds_in["lat"]) in_url = "memory://test_regrid_weights_integration/an/input/path.zarr" domain_file_url = "memory://test_regrid_weights_integration/a/domainfile/path.zarr" out_url = "memory://test_regrid_weights_integration/an/output/path.zarr" repository.write(in_url, ds_in) repository.write(domain_file_url, domain_file) # First, use service to pre-build regridding weights files, then read-in to regrid. build_weights( in_url, method="bilinear", domain_file=domain_file_url, outpath=weightsfile ) regrid( in_url, out=out_url, method="bilinear", weights_path=weightsfile, domain_file=domain_file_url, ) actual_shape = repository.read(out_url)["fakevariable"].shape assert actual_shape == expected_shape def test_clean_cmip6(): """Tests that cmip6 cleanup removes extra dimensions on dataset""" # Setup input data n = 1500 # need over four years of daily data ts = np.sin(np.linspace(-10 * np.pi, 10 * np.pi, n)) * 0.5 ds_gcm = _gcmfactory(ts, start_time="1950-01-01") in_url = "memory://test_clean_cmip6/an/input/path.zarr" out_url = "memory://test_clean_cmip6/an/output/path.zarr" repository.write(in_url, ds_gcm) clean_cmip6(in_url, out_url, leapday_removal=True) ds_cleaned = repository.read(out_url) assert "height" not in ds_cleaned.coords assert "member_id" not in ds_cleaned.coords assert "time_bnds" not in ds_cleaned.coords @pytest.mark.parametrize( "gcm_variable", [pytest.param("tasmax"), pytest.param("tasmin"), pytest.param("pr")] ) def test_cmip6_precip_unitconversion(gcm_variable): """Tests that precip units are converted in CMIP6 cleanup if variable is precip""" # Setup input data n = 1500 # need over four years of daily data ts = np.sin(
np.linspace(-10 * np.pi, 10 * np.pi, n)
numpy.linspace
import numpy as np import matplotlib.pylab as plt import obspy.signal.cross_correlation as cc import obspy from obspy.core.stream import Stream from obspy.core.trace import Trace import os import pylab class Misfit: def __init__(self, directory): self.save_dir = directory def get_RMS(self, data_obs, data_syn): N = data_syn.__len__() # Normalization factor RMS = np.sqrt(np.sum(data_obs - data_syn) ** 2 / N) return RMS def norm(self, data_obs, data_syn): norm = np.linalg.norm(data_obs - data_syn) return norm def L2_stream(self, p_obs, p_syn, s_obs, s_syn, or_time, var): dt = s_obs[0].meta.delta misfit = np.array([]) time_shift = np.array([], dtype=int) # S - correlations: for i in range(len(s_obs)): cc_obspy = cc.correlate(s_obs[i].data, s_syn[i].data, int(0.25* len(s_obs[i].data))) shift, CC_s = cc.xcorr_max(cc_obspy) s_syn_shift = self.shift(s_syn[i].data, -shift) time_shift = np.append(time_shift, shift) # d_obs_mean = np.mean(s_obs[i].data) # var_array = var * d_obs_mean var_array = np.var(s_obs[i].data) # var_array = var**2 misfit = np.append(misfit, np.matmul((s_obs[i].data - s_syn_shift).T, (s_obs[i].data - s_syn_shift)) / ( 2 * (var_array))) # time = -time_shift * dt # Relatively, the s_wave arrives now time later or earlier than it originally did # plt.plot(s_syn_shift,label='s_shifted',linewidth=0.3) # plt.plot(s_syn[i], label='s_syn',linewidth=0.3) # plt.plot(s_obs[i], label='s_obs',linewidth=0.3) # plt.legend() # plt.savefig() # plt.close() # P- correlation for i in range(len(p_obs)): cc_obspy = cc.correlate(s_obs[i].data, s_syn[i].data, int(0.25 * len(p_obs[i].data))) shift, CC_p = cc.xcorr_max(cc_obspy) p_syn_shift = self.shift(p_syn[i].data, -shift) time_shift = np.append(time_shift, shift) # d_obs_mean = np.mean(p_obs[i].data) # var_array = var * d_obs_mean var_array = np.var(p_obs[i].data) misfit = np.append(misfit, np.matmul((p_obs[i].data - p_syn_shift).T, (p_obs[i].data - p_syn_shift)) / ( 2 * (var_array))) # time = -time_shift + len(s_obs)] * dt # Relatively, the s_wave arrives now time later or earlier than it originally did # plt.plot(p_syn_shift, label='p_shifted') # plt.plot(p_syn[i], label='p_syn') # plt.plot(p_obs[i], label='p_obs') # plt.legend() # # plt.show() # plt.close() sum_misfit = np.sum(misfit) return sum_misfit, time_shift def CC_stream(self, p_obs, p_syn, s_obs,s_syn,p_start_obs,p_start_syn): dt = s_obs[0].meta.delta misfit = np.array([]) misfit_obs = np.array([]) time_shift = np.array([], dtype=int) amplitude = np.array([]) amp_obs = p_obs.copy() amp_obs.trim(p_start_obs, p_start_obs + 25) amp_syn = p_syn.copy() amp_syn.trim(p_start_syn, p_start_syn + 25) # S - correlations: for i in range(len(s_obs)): cc_obspy = cc.correlate(s_obs[i].data, s_syn[i].data, int(0.25*len(s_obs[i].data))) shift, CC_s = cc.xcorr_max(cc_obspy, abs_max=False) s_syn_shift_obspy = self.shift(s_syn[i].data, -shift) D_s = 1 - CC_s # Decorrelation time_shift = np.append(time_shift, shift) misfit = np.append(misfit, ((CC_s - 0.95) ** 2) / (2 * (0.1) ** 2))# + np.abs(shift)) # misfit = np.append(misfit,((CC - 0.95) ** 2) / (2 * (0.1) ** 2)) # plt.plot(self.zero_to_nan(s_syn_shift_obspy),label='s_syn_shifted_obspy',linewidth=0.3) # plt.plot(self.zero_to_nan(s_syn[i]),label = 's_syn',linewidth=0.3) # plt.plot(self.zero_to_nan(s_obs[i]),label = 's_obs',linestyle = ":",linewidth=0.3) # plt.legend() # plt.tight_layout() # plt.savefig(self.save_dir + '/S_%s.pdf' % s_obs.traces[i].meta.channel) plt.close() # P- correlation for i in range(len(p_obs)): cc_obspy = cc.correlate(p_obs[i].data, p_syn[i].data, int( 0.25*len(p_obs[i].data))) shift, CC_p = cc.xcorr_max(cc_obspy ,abs_max=False) # time = -shift * p_syn[i].meta.delta p_syn_shift_obspy = self.shift(p_syn[i].data, -shift) D_p = 1 - CC_p # Decorrelation time_shift = np.append(time_shift, shift) misfit = np.append(misfit, ((CC_p - 0.95) ** 2) / (2 * (0.1) ** 2) )#+ np.abs(shift)) A = (np.dot(amp_obs.traces[i],amp_syn.traces[i])/np.dot(amp_obs.traces[i],amp_obs.traces[i])) amplitude = np.append(amplitude,abs(A)) # plt.plot(p_obs.traces[i].data[0:200],label='P_obs',linewidth=0.3) # plt.plot(p_syn.traces[i].data[0:200],label = 'p_syn',linewidth=0.3) # plt.legend() # plt.tight_layout() # plt.show() # plt.savefig(self.save_dir + '/P_%s.pdf' % s_obs.traces[i].meta.channel) # plt.close() sum_misfit = np.sum(misfit) return misfit, time_shift, amplitude def shift(self, np_array, time_shift): new_array = np.zeros_like(np_array) if time_shift < 0: new_array[-time_shift:] = np_array[:time_shift] elif time_shift == 0: new_array[:] = np_array[:] else: new_array[:-time_shift] = np_array[time_shift:] return new_array def SW_CC(self, SW_env_obs, SW_env_syn): # I suppose that your observed traces and synthetic traces are filtered with same bandwidths in same order! R_dict = {} misfit = np.array([]) for i in range((len(SW_env_obs))): dt = SW_env_obs[i].meta.delta cc_obspy = cc.correlate(SW_env_obs[i].data, SW_env_syn[i].data, int(0.25*len(SW_env_obs[i].data))) shift, CC = cc.xcorr_max(cc_obspy) SW_syn_shift_obspy = self.shift(SW_env_syn[i].data, -shift) D = 1 - CC # Decorrelation misfit = np.append(misfit, ((CC - 0.95) ** 2) / (2 * (0.1) ** 2) + np.abs(shift)) R_dict.update({'%s' % SW_env_obs.traces[i].stats.channel: {'misfit': misfit[i], 'time_shift': shift}}) sum_misfit = np.sum(misfit) return sum_misfit def SW_L2(self, SW_env_obs, SW_env_syn, var, amplitude): misfit =
np.array([])
numpy.array
import math from collections import OrderedDict import numpy as np import os, pickle as pkl import json import qelos_core as q from torch import nn import torch EPS = 1e-6 class WordVecBase(object): masktoken = "<MASK>" raretoken = "<RARE>" def __init__(self, worddic, **kw): """ Takes a worddic and provides word id lookup and vector retrieval interface """ super(WordVecBase, self).__init__(**kw) self.D = OrderedDict() if worddic is None else worddic # region NON-BLOCK API ::::::::::::::::::::::::::::::::::::: def getindex(self, word): return self.D[word] if word in self.D else self.D[self.raretoken] if self.raretoken in self.D else -1 def __mul__(self, other): """ given word (string), returns index (integer) based on dictionary """ return self.getindex(other) def __contains__(self, word): return word in self.D def getvector(self, word): raise NotImplemented() def __getitem__(self, word): """ given word (string or index), returns vector """ return self.getvector(word) @property def shape(self): raise NotImplemented() def cosine(self, A, B): return
np.dot(A, B)
numpy.dot
import multiprocessing import numpy as np import pyrosetta import re from itertools import permutations from rif.eigen_types import X3 from rif.geom.ray_hash import RayToRay4dHash from rif.hash import XformHash_bt24_BCC6_X3f # NOTE(onalant): change below to desired ray pair provider from privileged_residues.chemical import catpi from privileged_residues.geometry import coords_to_transform from privileged_residues.util import models_from_pdb, numpy_to_rif dt = [("hash", "u8"), ("residue", "S3"), ("transform", "u8")] attr = [("cart_resl", 0.1), ("ori_resl", 2.0), ("cart_bound", 16.0)] attr = dict(attr) cart_resl = attr["cart_resl"] ori_resl = attr["ori_resl"] cart_bound = attr["cart_bound"] select = pyrosetta.rosetta.core.select.residue_selector.TrueResidueSelector() lattice = XformHash_bt24_BCC6_X3f(cart_resl, ori_resl, cart_bound) # WARN(onalant): constants recommended by <NAME>; do not change unless /absolutely/ sure LEVER = 10 BOUND = 1000 raygrid = RayToRay4dHash(ori_resl, LEVER, bound=BOUND) # NOTE(onalant): change as necessary target_pair = (2, 5) assert(2 == len(target_pair)) def write_records_from_structure(pipe, posefile): print("[WORKER-%s]" % (re.match(".*(\d+)", multiprocessing.current_process().name).group(1)), posefile) for pose in models_from_pdb(posefile): for (a, b) in permutations(target_pair): raypair = catpi.rays_from_residue(pose.residue(a)) hashed_rays = raygrid.get_keys(*(numpy_to_rif(r) for r in raypair)).item() fxA = catpi.rsd_to_fxnl_grp[pose.residue(a).name3()] fxB = catpi.rsd_to_fxnl_grp[pose.residue(b).name3()] xyzA = np.array([pose.residue(a).xyz(atom) for atom in fxA.atoms]) xyzB = np.array([pose.residue(b).xyz(atom) for atom in fxB.atoms]) xfA = coords_to_transform(xyzA) xfB = coords_to_transform(xyzB) xfrel = xfB @ np.linalg.inv(xfA) transform = lattice.get_key(xfrel.astype("f4").flatten().view(X3)).item() record =
np.array([(hashed_rays, fxB.grp, transform)], dtype=dt)
numpy.array
from pprint import pprint import numpy as np import cv2 import os import matplotlib.pyplot as plt from keras.models import Model from keras.layers import BatchNormalization, LeakyReLU, Conv2D from keras.layers import Conv2DTranspose, Input, Concatenate from keras.applications import MobileNetV2 import keras.backend as K from mask_to_contours import find_contours, draw_contours def show_performance(model): """ This function is to show some examples from validation data """ val_image_ids_ = [i for i in val_image_ids] np.random.shuffle(val_image_ids_) df_val = area_filter(val_image_ids_, val_coco) image_id = df_val['image_id'].iloc[0] annotation_ids = df_val[df_val['image_id'] == image_id]['annotation_id'].tolist() image_json = val_coco.loadImgs([image_id])[0] raw_image = cv2.imread(os.path.join("{}/{}/{}".format(data_dir, val_type, image_json['file_name']))) height, width, _ = raw_image.shape # decode the mask, using annotation id created at the group by above binary_mask = process_mask(val_coco, annotation_ids, width, height) # preprocess input and mask (resize to 128, scale to [0, 1)) input_image, input_mask = preprocess(raw_image, binary_mask) input_mask =
np.expand_dims(input_mask, axis=-1)
numpy.expand_dims
""" Test Surrogates Overview ======================== """ # Author: <NAME> <<EMAIL>> # License: new BSD from PIL import Image import numpy as np import scripts.surrogates_overview as exo import scripts.image_classifier as imgclf import sklearn.datasets import sklearn.linear_model SAMPLES = 10 BATCH = 50 SAMPLE_IRIS = False IRIS_SAMPLES = 50000 def test_bilmey_image(): """Tests surrogate image bLIMEy.""" # Load the image doggo_img = Image.open('surrogates_overview/img/doggo.jpg') doggo_array = np.array(doggo_img) # Load the classifier clf = imgclf.ImageClassifier() explain_classes = [('tennis ball', 852), ('golden retriever', 207), ('Labrador retriever', 208)] # Configure widgets to select occlusion colour, segmentation granularity # and explained class colour_selection = { i: i for i in ['mean', 'black', 'white', 'randomise-patch', 'green'] } granularity_selection = {'low': 13, 'medium': 30, 'high': 50} # Generate explanations blimey_image_collection = {} for gran_name, gran_number in granularity_selection.items(): blimey_image_collection[gran_name] = {} for col_name in colour_selection: blimey_image_collection[gran_name][col_name] = \ exo.build_image_blimey( doggo_array, clf.predict_proba, explain_classes, explanation_size=5, segments_number=gran_number, occlusion_colour=col_name, samples_number=SAMPLES, batch_size=BATCH, random_seed=42) exp = [] for gran_ in blimey_image_collection: for col_ in blimey_image_collection[gran_]: exp.append(blimey_image_collection[gran_][col_]['surrogates']) assert len(exp) == len(EXP_IMG) for e, E in zip(exp, EXP_IMG): assert sorted(list(e.keys())) == sorted(list(E.keys())) for key in e.keys(): assert e[key]['name'] == E[key]['name'] assert len(e[key]['explanation']) == len(E[key]['explanation']) for e_, E_ in zip(e[key]['explanation'], E[key]['explanation']): assert e_[0] == E_[0] assert np.allclose(e_[1], E_[1], atol=.001, equal_nan=True) def test_bilmey_tabular(): """Tests surrogate tabular bLIMEy.""" # Load the iris data set iris = sklearn.datasets.load_iris() iris_X = iris.data # [:, :2] # take the first two features only iris_y = iris.target iris_labels = iris.target_names iris_feature_names = iris.feature_names label2class = {lab: i for i, lab in enumerate(iris_labels)} # Fit the classifier logreg = sklearn.linear_model.LogisticRegression(C=1e5) logreg.fit(iris_X, iris_y) # explained class _dtype = iris_X.dtype explained_instances = { 'setosa': np.array([5, 3.5, 1.5, 0.25]).astype(_dtype), 'versicolor': np.array([5.5, 2.75, 4.5, 1.25]).astype(_dtype), 'virginica': np.array([7, 3, 5.5, 2.25]).astype(_dtype) } petal_length_idx = iris_feature_names.index('petal length (cm)') petal_length_bins = [1, 2, 3, 4, 5, 6, 7] petal_width_idx = iris_feature_names.index('petal width (cm)') petal_width_bins = [0, .5, 1, 1.5, 2, 2.5] discs_ = [] for i, ix in enumerate(petal_length_bins): # X-axis for iix in petal_length_bins[i + 1:]: for j, jy in enumerate(petal_width_bins): # Y-axis for jjy in petal_width_bins[j + 1:]: discs_.append({ petal_length_idx: [ix, iix], petal_width_idx: [jy, jjy] }) for inst_i in explained_instances: for cls_i in iris_labels: for disc_i, disc in enumerate(discs_): inst = explained_instances[inst_i] cls = label2class[cls_i] exp = exo.build_tabular_blimey( inst, cls, iris_X, iris_y, logreg.predict_proba, disc, IRIS_SAMPLES, SAMPLE_IRIS, 42) key = '{}&{}&{}'.format(inst_i, cls, disc_i) exp_ = EXP_TAB[key] assert exp['explanation'].shape[0] == exp_.shape[0] assert np.allclose( exp['explanation'], exp_, atol=.001, equal_nan=True) EXP_IMG = [ {207: {'explanation': [(13, -0.24406872165780585), (11, -0.20456180387430317), (9, -0.1866779131424261), (4, 0.15001224157793785), (3, 0.11589480417160983)], 'name': 'golden retriever'}, 208: {'explanation': [(13, -0.08395966359346249), (0, -0.0644986107387837), (9, 0.05845584633658977), (1, 0.04369763085720947), (11, -0.035958188394941866)], 'name': '<NAME>'}, 852: {'explanation': [(13, 0.3463529698715463), (11, 0.2678050131923326), (4, -0.10639863421417416), (6, 0.08345792378117327), (9, 0.07366945242386444)], 'name': '<NAME>'}}, {207: {'explanation': [(13, -0.0624167912596456), (7, 0.06083359545295548), (3, 0.0495953943686462), (11, -0.04819787147412231), (2, -0.03858823761391199)], 'name': '<NAME>'}, 208: {'explanation': [(13, -0.08408428146916162), (7, 0.07704235920590158), (3, 0.06646468388122273), (11, -0.0638326572126609), (2, -0.052621478002380796)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.35248212611685886), (13, 0.2516925608037859), (2, 0.13682853028454384), (9, 0.12930134856644754), (6, 0.1257747954095489)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.21351937934930917), (10, 0.16933456312772083), (11, -0.13447244552856766), (8, 0.11058919217055371), (2, -0.06269239798368743)], 'name': '<NAME>'}, 208: {'explanation': [(8, 0.05995551486884414), (9, -0.05375302972380482), (11, -0.051997353324246445), (6, 0.04213181405953071), (2, -0.039169895361928275)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.31382219776986503), (11, 0.24126214884275987), (13, 0.21075924370226598), (2, 0.11937652039885377), (8, -0.11911265319329697)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.39254403293049134), (9, 0.19357165018747347), (6, 0.16592079671652987), (0, 0.14042059731407297), (1, 0.09793027079765507)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.19351859273276703), (1, -0.15262967987262344), (3, 0.12205127112235375), (2, 0.11352141032313934), (6, -0.11164209893429898)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.17213007100844877), (0, -0.1583030948868859), (3, -0.13748574615069775), (5, 0.13273283867075436), (11, 0.12309551170070354)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.4073533182995105), (10, 0.20711667988142463), (8, 0.15360813290032324), (6, 0.1405424759832785), (1, 0.1332920685413575)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.14747910525112617), (1, -0.13977061235228924), (2, 0.10526833898161611), (6, -0.10416022118399552), (3, 0.09555992655161764)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.2232260929107954), (7, 0.21638443149433054), (5, 0.21100464215582274), (13, 0.145614853795006), (1, -0.11416523431311262)], 'name': '<NAME>'}}, {207: {'explanation': [(1, 0.14700178977744183), (0, 0.10346667279328238), (2, 0.10346667279328238), (7, 0.10346667279328238), (8, 0.10162900633690726)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.10845134816658476), (8, -0.1026920429226184), (6, -0.10238154733842847), (18, 0.10094164937411244), (16, 0.08646888450232793)], 'name': '<NAME>'}, 852: {'explanation': [(18, -0.20542297091894474), (13, 0.2012751176130666), (8, -0.19194747162742365), (20, 0.14686930696710473), (15, 0.11796990086271067)], 'name': '<NAME>'}}, {207: {'explanation': [(13, 0.12446259821701779), (17, 0.11859084421095789), (15, 0.09690553833007137), (12, -0.08869743701731962), (4, 0.08124900427893789)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.09478194981909983), (20, -0.09173392507039077), (9, 0.08768898801254493), (17, -0.07553994244536394), (4, 0.07422905503397653)], 'name': '<NAME>'}, 852: {'explanation': [(21, 0.1327882942965061), (1, 0.1238236573086363), (18, -0.10911712271717902), (19, 0.09707191051320978), (6, 0.08593672504338913)], 'name': '<NAME>'}}, {207: {'explanation': [(6, 0.14931728779865114), (14, 0.14092073957103526), (1, 0.11071480021464616), (4, 0.10655287976934531), (8, 0.08705404649152573)], 'name': '<NAME>'}, 208: {'explanation': [(8, -0.12242580400886727), (9, 0.12142729544158742), (14, -0.1148252787068248), (16, -0.09562322208795092), (4, 0.09350160975513132)], 'name': '<NAME>'}, 852: {'explanation': [(6, 0.04227675072263027), (9, -0.03107924340879173), (14, 0.028007115650713045), (13, 0.02771190348545554), (19, 0.02640441416071482)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.14313680656283245), (18, 0.12866508562342843), (8, 0.11809779264185447), (0, 0.11286255403442104), (2, 0.11286255403442104)], 'name': '<NAME>'}, 208: {'explanation': [(9, 0.2397917428082761), (14, -0.19435572812170654), (6, -0.1760894833446507), (18, -0.12243333818399058), (15, 0.10986343675377105)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.15378038774613365), (9, -0.14245940635481966), (6, 0.10213601012183973), (20, 0.1009180838986786), (3, 0.09780065767815548)], 'name': '<NAME>'}}, {207: {'explanation': [(15, 0.06525850448807077), (9, 0.06286791243851698), (19, 0.055189970374185854), (8, 0.05499197604401475), (13, 0.04748220842936177)], 'name': '<NAME>'}, 208: {'explanation': [(6, -0.31549091899770765), (5, 0.1862302670824446), (8, -0.17381478451341995), (10, -0.17353516098662508), (14, -0.13591542421754205)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.2163853942943355), (6, 0.17565046338282214), (1, 0.12446193028474549), (9, -0.11365789839746396), (10, 0.09239073691962967)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.1141207265647932), (36, -0.08861425922625768), (30, 0.07219209872026074), (9, -0.07150939547859836), (38, -0.06988288637544438)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.10531073909547647), (13, 0.08279642208039652), (34, -0.0817952443980797), (33, -0.08086848205765082), (12, 0.08086848205765082)], 'name': '<NAME>'}, 852: {'explanation': [(13, -0.1330452414595897), (4, 0.09942366413042845), (12, -0.09881995683190645), (33, 0.09881995683190645), (19, -0.09596925317560831)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08193926967758253), (35, 0.06804043021426347), (15, 0.06396269230810163), (11, 0.062255657227065296), (8, 0.05529200233091672)], 'name': '<NAME>'}, 208: {'explanation': [(19, 0.05711957286614678), (27, -0.050230108135410824), (16, -0.04743034616549999), (5, -0.046717346734255705), (9, -0.04419100026638039)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.08390967998497496), (30, -0.07037680222442452), (22, 0.07029819368543713), (8, -0.06861396187180349), (37, -0.06662511956402824)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.048418845359024805), (9, -0.0423869575883795), (30, 0.04012650790044438), (36, -0.03787242980067195), (10, 0.036557999380695635)], 'name': '<NAME>'}, 208: {'explanation': [(10, 0.12120686823129677), (17, 0.10196564232230493), (7, 0.09495133975425854), (25, -0.0759657891182803), (2, -0.07035244568286837)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.0770578003457272), (28, 0.0769372258280398), (6, -0.06044725989272927), (22, 0.05550155775286349), (31, -0.05399028046597057)], 'name': '<NAME>'}}, {207: {'explanation': [(14, 0.05371383110181226), (0, -0.04442539316084218), (18, 0.042589475382826494), (19, 0.04227647855354252), (17, 0.041685661662754295)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.14419601354489464), (17, 0.11785174500536676), (36, 0.1000501679652906), (10, 0.09679790134851017), (35, 0.08710376081189208)], 'name': '<NAME>'}, 852: {'explanation': [(8, -0.02486237985832769), (3, -0.022559886154747102), (11, -0.021878686669239856), (36, 0.021847953817988534), (19, -0.018317598300716522)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08098729255605368), (35, 0.06639102704982619), (15, 0.06033721190370432), (34, 0.05826267856117829), (28, 0.05549505160798173)], 'name': '<NAME>'}, 208: {'explanation': [(17, 0.13839012042250542), (10, 0.11312187488346881), (7, 0.10729071207480922), (25, -0.09529127965797404), (11, -0.09279834572979286)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.028385651836694076), (22, 0.023364702783498722), (8, -0.023097812578270233), (30, -0.022931236620034406), (37, -0.022040170736525342)], 'name': '<NAME>'}} ] EXP_TAB = { 'setosa&0&0': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&1': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&2': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&3': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&4': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&5': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&6': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&7': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&8': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&9': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&10': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&11': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&12': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&13': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&14': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&15': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&16': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&17': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&18': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&19': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&20': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&21': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&22': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&23': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&24': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&25': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&26': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&27': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&28': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&29': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&30': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&31': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&32': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&33': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&34': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&35': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&36': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&37': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&38': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&39': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&40': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&41': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&42': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&43': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&44': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&45': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&46': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&50': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&51': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&52': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&53': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&54': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&55': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&56': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&60': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&61': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&65': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&66': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&67': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&68': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&69': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&70': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&71': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&75': np.array([0.0, 0.95124502153736]), 'setosa&0&76': np.array([0.0, 0.9708703761803881]), 'setosa&0&77': np.array([0.0, 0.5659706098422994]), 'setosa&0&78': np.array([0.0, 0.3962828716108186]), 'setosa&0&79': np.array([0.0, 0.2538069363248767]), 'setosa&0&80': np.array([0.0, 0.95124502153736]), 'setosa&0&81': np.array([0.0, 0.95124502153736]), 'setosa&0&82': np.array([0.0, 0.95124502153736]), 'setosa&0&83': np.array([0.0, 0.95124502153736]), 'setosa&0&84': np.array([0.0, 0.9708703761803881]), 'setosa&0&85': np.array([0.0, 0.9708703761803881]), 'setosa&0&86': np.array([0.0, 0.9708703761803881]), 'setosa&0&87': np.array([0.0, 0.5659706098422994]), 'setosa&0&88': np.array([0.0, 0.5659706098422994]), 'setosa&0&89': np.array([0.0, 0.3962828716108186]), 'setosa&0&90': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&91': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&92': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&93': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&94': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&95': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&96': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&97': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&98': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&99': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&100': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&101': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&102': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&103': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&104': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&105': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&106': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&107': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&108': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&109': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&110': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&111': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&112': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&113': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&114': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&115': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&116': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&117': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&118': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&119': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&120': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&121': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&122': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&123': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&124': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&125': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&126': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&127': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&128': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&129': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&130': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&131': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&132': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&133': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&134': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&135': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&136': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&137': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&138': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&139': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&140': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&141': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&142': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&143': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&144': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&145': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&146': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&147': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&148': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&149': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&150': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&151': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&152': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&153': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&154': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&155': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&156': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&157': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&158': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&159': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&160': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&161': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&162': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&163': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&164': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&165': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&166': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&167': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&168': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&169': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&170': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&171': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&172': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&173': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&174': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&175': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&176': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&177': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&178': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&179': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&180': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&181': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&182': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&183': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&184': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&185': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&186': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&187': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&188': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&189': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&190': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&191': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&192': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&193': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&194': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&195': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&196': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&197': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&198': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&199': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&200': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&201': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&202': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&203': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&204': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&205': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&206': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&207': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&208': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&209': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&210': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&211': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&212': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&213': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&214': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&215': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&216': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&217': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&218': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&219': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&220': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&221': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&222': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&223': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&224': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&225': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&226': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&227': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&228': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&229': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&230': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&231': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&232': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&233': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&234': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&235': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&236': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&237': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&238': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&239': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&240': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&241': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&242': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&243': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&244': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&245': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&246': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&247': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&248': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&249': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&250': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&251': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&252': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&253': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&254': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&255': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&256': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&257': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&258': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&259': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&260': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&261': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&262': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&263': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&264': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&265': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&266': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&267': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&268': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&269': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&270': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&271': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&275': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&276': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&277': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&278': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&279': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&280': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&281': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&282': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&283': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&284': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&285': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&286': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&287': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&288': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&289': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&290': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&291': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&292': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&293': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&294': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&295': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&296': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&297': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&298': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&299': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&300': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&301': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&302': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&303': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&305': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&306': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&307': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&308': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&309': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&310': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&311': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&312': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&313': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&314': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&1&0': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&1': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&2': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&3': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&4': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&5': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&6': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&7': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&8': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&9': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&10': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&11': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&12': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&13': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&14': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&15': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&16': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&17': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&18': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&19': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&20': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&21': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&22': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&23': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&24': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&25': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&26': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&27': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&28': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&29': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&30': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&31': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&32': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&33': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&34': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&35': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&36': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&37': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&38': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&39': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&40': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&41': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&42': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&43': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&44': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&45': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&46': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&47': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&48': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&49': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&50': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&51': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&52': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&53': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&54': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&55': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&56': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&57': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&58': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&59': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&60': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&61': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&62': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&63': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&65': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&66': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&67': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&68': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&69': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&70': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&71': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&72': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&73': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&74': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&75': np.array([0.0, -0.4756207622944677]), 'setosa&1&76': np.array([0.0, -0.4854334805210761]), 'setosa&1&77': np.array([0.0, 0.16885577975809635]), 'setosa&1&78': np.array([0.0, 0.395805885538554]), 'setosa&1&79': np.array([0.0, 0.2538072707138344]), 'setosa&1&80': np.array([0.0, -0.4756207622944677]), 'setosa&1&81': np.array([0.0, -0.4756207622944677]), 'setosa&1&82': np.array([0.0, -0.4756207622944677]), 'setosa&1&83': np.array([0.0, -0.4756207622944677]), 'setosa&1&84': np.array([0.0, -0.4854334805210761]), 'setosa&1&85': np.array([0.0, -0.4854334805210761]), 'setosa&1&86': np.array([0.0, -0.4854334805210761]), 'setosa&1&87': np.array([0.0, 0.16885577975809635]), 'setosa&1&88': np.array([0.0, 0.16885577975809635]), 'setosa&1&89': np.array([0.0, 0.395805885538554]), 'setosa&1&90': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&91': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&92': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&93': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&94': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&95': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&96': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&97': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&98': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&99': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&100': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&101': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&102': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&103': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&104': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&105': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&106': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&107': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&108': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&109': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&110': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&111': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&112': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&113': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&114': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&115': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&116': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&117': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&118': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&119': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&120': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&121': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&122': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&123': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&124': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&125': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&126': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&127': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&128': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&129': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&130': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&131': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&132': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&133': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&134': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&135': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&136': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&137': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&138': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&139': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&140': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&141': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&142': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&143': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&144': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&145': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&146': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&147': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&148': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&149': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&150': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&151': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&152': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&153': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&154': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&155': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&156': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&157': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&158': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&159': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&160': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&161': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&162': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&163': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&164': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&165': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&166': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&167': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&168': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&169': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&170': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&171': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&172': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&173': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&174': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&175': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&176': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&177': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&178': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&179': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&180': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&181': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&182': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&183': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&184': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&185': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&186': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&187': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&188': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&189': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&190': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&191': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&192': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&193': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&194': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&195': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&196': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&197': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&198': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&199': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&200': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&201': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&202': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&203': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&204': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&205': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&206': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&207': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&208': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&209': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&210': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&211': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&212': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&213': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&214': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&215': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&216': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&217': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&218': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&219': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&220': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&221': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&222': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&223': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&224': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&225': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&226': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&227': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&228': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&229': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&230': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&231': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&232': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&233': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&234': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&235': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&236': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&237': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&238': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&239': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&240': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&241': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&242': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&243': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&244': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&245': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&246': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&247': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&248': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&249': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&250': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&251': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&252': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&253': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&254': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&255': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&256': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&257': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&258': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&259': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&260': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&261': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&262': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&263': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&264': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&265': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&266': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&267': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&268': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&269': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&270': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&271': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&272': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&273': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&274': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&275': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&276': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&277': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&278': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&279': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&280': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&281': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&282': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&283': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&284': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&285': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&286': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&287': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&288': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&289': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&290': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&291': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&292': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&293': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&294': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&295': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&296': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&297': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&298': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&299': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&300': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&301': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&302': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&303': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&305': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&306': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&307': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&308': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&309': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&310': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&311': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&312': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&313': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&314': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&2&0': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&1': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&2': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&3': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&4': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&5': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&6': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&7': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&8': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&9': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&10': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&11': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&12': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&13': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&14': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&15': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&16': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&17': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&18': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&19': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&20': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&21': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&22': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&23': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&24': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&25': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&26': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&27': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&28': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&29': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&30': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&31': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&32': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&33': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&34': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&35': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&36': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&37': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&38': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&39': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&40': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&41': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&42': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&43': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&44': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&45': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&46': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&47': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&48': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&49': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&50': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&51': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&52': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&53': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&54': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&55': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&56': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&57': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&58': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&59': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&60': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&61': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&62': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&63': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&64': np.array([-0.6188410763351541, -0.22803625884668638]), 'setosa&2&65': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&66': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&67': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&68': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&69': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&70': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&71': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&72': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&73': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&74': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&75': np.array([0.0, -0.47562425924289314]), 'setosa&2&76': np.array([0.0, -0.48543689565931186]), 'setosa&2&77': np.array([0.0, -0.7348263896003956]), 'setosa&2&78': np.array([0.0, -0.7920887571493729]), 'setosa&2&79': np.array([0.0, -0.507614207038711]), 'setosa&2&80': np.array([0.0, -0.47562425924289314]), 'setosa&2&81': np.array([0.0, -0.47562425924289314]), 'setosa&2&82': np.array([0.0, -0.47562425924289314]), 'setosa&2&83': np.array([0.0, -0.47562425924289314]), 'setosa&2&84': np.array([0.0, -0.48543689565931186]), 'setosa&2&85': np.array([0.0, -0.48543689565931186]), 'setosa&2&86': np.array([0.0, -0.48543689565931186]), 'setosa&2&87': np.array([0.0, -0.7348263896003956]), 'setosa&2&88': np.array([0.0, -0.7348263896003956]), 'setosa&2&89': np.array([0.0, -0.7920887571493729]), 'setosa&2&90': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&91': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&92': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&93': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&94': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&95': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&96': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&97': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&98': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&99': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&100': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&101': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&102': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&103': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&104': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&105': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&106': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&107': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&108': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&109': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&110': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&111': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&112': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&113': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&114': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&115': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&116': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&117': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&118': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&119': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&120': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&121': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&122': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&123': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&124': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&125': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&126': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&127': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&128': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&129': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&130': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&131': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&132': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&133': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&134': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&135': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&136': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&137': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&138': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&139': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&140': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&141': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&142': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&143': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&144': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&145': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&146': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&147': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&148': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&149': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&150': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&151': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&152': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&153': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&154': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&155': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&156': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&157': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&158': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&159': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&160': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&161': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&162': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&163': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&164': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&165': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&166': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&167': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&168': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&169': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&170': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&171': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&172': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&173': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&174': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&175': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&176': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&177': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&178': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&179': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&180': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&181': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&182': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&183': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&184': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&185': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&186': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&187': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&188': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&189': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&190': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&191': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&192': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&193': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&194': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&195': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&196': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&197': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&198': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&199': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&200': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&201': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&202': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&203': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&204': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&205': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&206': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&207': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&208': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&209': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&210': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&211': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&212': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&213': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&214': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&215': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&216': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&217': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&218': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&219': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&220': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&221': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&222': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&223': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&224': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&225': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&226': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&227': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&228': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&229': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&230': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&231': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&232': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&233': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&234': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&235': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&236': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&237': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&238': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&239': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&240': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&241': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&242': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&243': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&244': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&245': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&246': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&247': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&248': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&249': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&250': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&251': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&252': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&253': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&254': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&255': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&256': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&257': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&258': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&259': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&260': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&261': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&262': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&263': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&264': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&265': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&266': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&267': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&268': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&269': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&270': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&271': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&272': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&273': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&274': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&275': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&276': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&277': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&278': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&279': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&280': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&281': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&282': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&283': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&284': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&285': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&286': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&287': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&288': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&289': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&290': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&291': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&292': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&293': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&294': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&295': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&296': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&297': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&298': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&299': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&300': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&301': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&302': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&303': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&304': np.array([-0.6188410763351541, -0.22803625884668638]), 'setosa&2&305': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&306': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&307': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&308': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&309': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&310': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&311': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&312': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&313': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&314': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&0&0': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&1': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&2': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&3': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&4': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&5': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&6': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&7': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&8': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&9': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&10': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&11': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&12': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&13': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&14': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&15': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&16': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&17': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&18': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&19': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&20': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&21': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&22': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&23': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&24': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&25': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&26': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&27': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&28': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&29': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&30': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&31': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&32': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&33': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&34': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&35': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&36': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&37': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&38': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&39': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&40': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&41': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&42': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&43': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&44': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&45': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&46': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&50': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&51': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&52': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&53': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&54': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&55': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&56': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&60': np.array([0.029402442458921384, -0.9481684282717414]), 'versicolor&0&61': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'versicolor&0&65': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&66': np.array([0.42809266524335826, -0.40375108595117376]), 'versicolor&0&67': np.array([0.45547700380103057, -0.6083463409799501]), 'versicolor&0&68': np.array([0.19002455311770447, -0.8848597943731074]), 'versicolor&0&69': np.array([0.436966114193701, -0.4638042290788281]), 'versicolor&0&70': np.array([0.45424510803217066, -0.6425314361631614]), 'versicolor&0&71': np.array([0.1746467870122951, -0.9073062742839755]), 'versicolor&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&75': np.array([0.0, -0.95124502153736]), 'versicolor&0&76': np.array([0.0, -0.9708703761803881]), 'versicolor&0&77': np.array([0.0, 0.5659706098422994]), 'versicolor&0&78': np.array([0.0, 0.3962828716108186]), 'versicolor&0&79': np.array([0.0, 0.2538069363248767]), 'versicolor&0&80': np.array([0.0, -0.9708703761803881]), 'versicolor&0&81': np.array([0.0, -0.3631376646911367]), 'versicolor&0&82': np.array([0.0, -0.5804857652839247]), 'versicolor&0&83': np.array([0.0, -0.8943993997517804]), 'versicolor&0&84': np.array([0.0, -0.4231275527222919]), 'versicolor&0&85': np.array([0.0, -0.6164235822373675]), 'versicolor&0&86': np.array([0.0, -0.9166476163222441]), 'versicolor&0&87': np.array([0.0, 0.5659706098422994]), 'versicolor&0&88': np.array([0.0, 0.5659706098422994]), 'versicolor&0&89': np.array([0.0, 0.3962828716108186]), 'versicolor&0&90': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&91': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&92': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&93': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&94': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&95': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&96': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&97': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&98': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&99': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&100': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&101': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&102': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&103': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&104': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&105': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&106': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&107': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&108': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&109': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&110': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&111': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&112': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&113': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&114': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&115': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&116': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&117': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&118': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&119': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&120': np.array([-0.05855179950109871, -0.9211684729232403]), 'versicolor&0&121': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&122': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&123': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&124': np.array([-0.5182062652425321, 0.3958533237517639]), 'versicolor&0&125': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&126': np.array([-0.5107107533700952, 0.0075507123577884866]), 'versicolor&0&127': np.array([-0.1464063320531759, -0.4788055402156298]), 'versicolor&0&128': np.array([-0.061109248092233844, -0.8620287767000373]), 'versicolor&0&129': np.array([-0.4706137753079746, -0.057389625790424635]), 'versicolor&0&130': np.array([-0.06804620923037683, -0.5677904519730453]), 'versicolor&0&131': np.array([-0.020216773196675246, -0.9057119888626176]), 'versicolor&0&132': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&133': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&134': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&135': np.array([-0.19684482070614498, -0.7845939961595055]), 'versicolor&0&136': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&137': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&138': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&139': np.array([-0.8063011502229427, 0.4134300066735808]), 'versicolor&0&140': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&141': np.array([-0.7985789197998611, 0.0026209054759345337]), 'versicolor&0&142': np.array([-0.7182275903095532, -0.11963032135457498]), 'versicolor&0&143': np.array([-0.2798927835773098, -0.6581136857450849]), 'versicolor&0&144': np.array([-0.7920119433269182, -0.0142751249964083]), 'versicolor&0&145': np.array([-0.6943081428778407, -0.14852813120265815]), 'versicolor&0&146': np.array([-0.16106555563262584, -0.777621649099753]), 'versicolor&0&147': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&148': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&149': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&150': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&151': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&152': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&153': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&154': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&155': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&156': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&157': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&158': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&159': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&160': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&161': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&162': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&163': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&164': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&165': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&166': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&167': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&168': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&169': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&170': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&171': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&172': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&173': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&174': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&175': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&176': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&177': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&178': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&179': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&180': np.array([-0.05855179950109871, -0.9211684729232403]), 'versicolor&0&181': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&182': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&183': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&184': np.array([-0.5182062652425321, 0.3958533237517639]), 'versicolor&0&185': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&186': np.array([-0.5107107533700952, 0.0075507123577884866]), 'versicolor&0&187': np.array([-0.1464063320531759, -0.4788055402156298]), 'versicolor&0&188': np.array([-0.061109248092233844, -0.8620287767000373]), 'versicolor&0&189': np.array([-0.4706137753079746, -0.057389625790424635]), 'versicolor&0&190': np.array([-0.06804620923037683, -0.5677904519730453]), 'versicolor&0&191': np.array([-0.020216773196675246, -0.9057119888626176]), 'versicolor&0&192': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&193': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&194': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&195': np.array([-0.19684482070614498, -0.7845939961595055]), 'versicolor&0&196': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&197': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&198': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&199': np.array([-0.8063011502229427, 0.4134300066735808]), 'versicolor&0&200': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&201': np.array([-0.7985789197998611, 0.0026209054759345337]), 'versicolor&0&202': np.array([-0.7182275903095532, -0.11963032135457498]), 'versicolor&0&203': np.array([-0.2798927835773098, -0.6581136857450849]), 'versicolor&0&204': np.array([-0.7920119433269182, -0.0142751249964083]), 'versicolor&0&205': np.array([-0.6943081428778407, -0.14852813120265815]), 'versicolor&0&206': np.array([-0.16106555563262584, -0.777621649099753]), 'versicolor&0&207': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&208': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&209': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&210': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&211': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&212': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&213': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&214': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&215': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&216': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&217': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&218': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&219': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&220': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&221': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&222': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&223': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&224': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&225': np.array([-0.04777085826693217, -0.931704979630315]), 'versicolor&0&226': np.array([-0.016252316132452975, -0.9640854286687816]), 'versicolor&0&227': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&228': np.array([-0.5844994389588399, 0.5715208832363579]), 'versicolor&0&229': np.array([-0.46216647196120714, 0.35468591243823655]), 'versicolor&0&230': np.array([-0.016252316132452975, -0.9640854286687816]), 'versicolor&0&231': np.array([-0.3707180757031537, -0.1977196581472426]), 'versicolor&0&232': np.array([-0.1043459833293615, -0.5233314327065356]), 'versicolor&0&233': np.array([-0.049289647556763364, -0.8736084405111605]), 'versicolor&0&234': np.array([-0.34078174031874375, -0.25874482325965437]), 'versicolor&0&235': np.array([-0.050841051273783675, -0.5877587283589205]), 'versicolor&0&236': np.array([-0.0161720977425142, -0.9096817855236822]), 'versicolor&0&237': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&238': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&239': np.array([-0.5844994389588399, 0.5715208832363579]), 'versicolor&0&240': np.array([-0.11329659732608087, -0.8671819100849522]), 'versicolor&0&241': np.array([-0.040390637135858574, -0.9402832917474078]), 'versicolor&0&242': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&243': np.array([-0.6392402874163683, 0.24114611970435948]), 'versicolor&0&244': np.array([-0.6814868825686854, 0.35066801608083215]), 'versicolor&0&245': np.array([-0.040390637135858574, -0.9402832917474078]), 'versicolor&0&246': np.array([-0.6425009695928476, -0.24851992476830956]), 'versicolor&0&247': np.array([-0.5151243662384031, -0.3255567772442641]), 'versicolor&0&248': np.array([-0.16157511199607094, -0.7754323813403634]), 'versicolor&0&249': np.array([-0.6300442788906601, -0.28361140069713875]), 'versicolor&0&250': np.array([-0.4875864856121089, -0.3614122096616301]), 'versicolor&0&251': np.array([-0.08968204532514226, -0.8491191210330045]), 'versicolor&0&252': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&253': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&254': np.array([-0.6392402874163683, 0.24114611970435948]), 'versicolor&0&255': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&256': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&257': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&258': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&259': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&260': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&261': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&262': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&263': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&264': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&265': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&266': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&267': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&268': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&269': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&270': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&271': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&275': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&276': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&277': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&278': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&279': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&280': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&281': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&282': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&283': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&284': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&285': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&286': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&287': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&288': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&289': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&290': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&291': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&292': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&293': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&294': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&295': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&296': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&297': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&298': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&299': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&300': np.array([0.029402442458921384, -0.9481684282717414]), 'versicolor&0&301': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&302': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&303': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'versicolor&0&305': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&306': np.array([0.42809266524335826, -0.40375108595117376]), 'versicolor&0&307': np.array([0.45547700380103057, -0.6083463409799501]), 'versicolor&0&308': np.array([0.19002455311770447, -0.8848597943731074]), 'versicolor&0&309': np.array([0.436966114193701, -0.4638042290788281]), 'versicolor&0&310': np.array([0.45424510803217066, -0.6425314361631614]), 'versicolor&0&311': np.array([0.1746467870122951, -0.9073062742839755]), 'versicolor&0&312': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&313': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&314': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&1&0': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&1': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&2': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&3': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&4': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&5': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&6': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&7': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&8': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&9': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&10': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&11': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&12': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&13': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&14': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&15': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&16': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&17': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&18': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&19': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&20': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&21': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&22': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&23': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&24': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&25': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&26': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&27': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&28': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&29': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&30': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&31': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&32': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&33': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&34': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&35': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&36': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&37': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&38': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&39': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&40': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&41': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&42': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&43': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&44': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&45': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&46': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&47': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&48': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&49': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&50': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&51': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&52': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&53': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&54': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&55': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&56': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&57': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&58': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&59': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&60': np.array([0.4933316375690332, 0.5272416708629276]), 'versicolor&1&61': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&62': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&63': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'versicolor&1&65': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&66': np.array([0.1413116283690917, 0.7479856297394165]), 'versicolor&1&67': np.array([0.189773257421942, 0.6552150653012478]), 'versicolor&1&68': np.array([0.40694846236352233, 0.5109051764198169]), 'versicolor&1&69': np.array([0.1390424906594644, 0.7991613016301518]), 'versicolor&1&70': np.array([0.1945777487290197, 0.6743932844312892]), 'versicolor&1&71': np.array([0.415695226122737, 0.5230815102377903]), 'versicolor&1&72': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&73': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&74': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&75': np.array([0.0, 0.4756207622944677]), 'versicolor&1&76': np.array([0.0, 0.4854334805210761]), 'versicolor&1&77': np.array([0.0, 0.16885577975809635]), 'versicolor&1&78': np.array([0.0, 0.395805885538554]), 'versicolor&1&79': np.array([0.0, 0.2538072707138344]), 'versicolor&1&80': np.array([0.0, 0.4854334805210761]), 'versicolor&1&81': np.array([0.0, 0.7613919530844643]), 'versicolor&1&82': np.array([0.0, 0.6668230985485095]), 'versicolor&1&83': np.array([0.0, 0.4904755652105692]), 'versicolor&1&84': np.array([0.0, 0.8121046082359693]), 'versicolor&1&85': np.array([0.0, 0.6855766903749089]), 'versicolor&1&86': np.array([0.0, 0.5008471974438506]), 'versicolor&1&87': np.array([0.0, 0.16885577975809635]), 'versicolor&1&88': np.array([0.0, 0.16885577975809635]), 'versicolor&1&89': np.array([0.0, 0.395805885538554]), 'versicolor&1&90': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&91': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&92': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&93': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&94': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&95': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&96': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&97': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&98': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&99': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&100': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&101': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&102': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&103': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&104': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&105': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&106': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&107': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&108': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&109': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&110': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&111': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&112': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&113': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&114': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&115': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&116': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&117': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&118': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&119': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&120': np.array([0.8224435822504677, 0.05315271528828394]), 'versicolor&1&121': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&122': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&123': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&124': np.array([0.8476206690613984, 0.02146454924522743]), 'versicolor&1&125': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&126': np.array([0.69362517791403, 0.2579390890424607]), 'versicolor&1&127': np.array([0.7261791877801502, 0.16248655642013624]), 'versicolor&1&128': np.array([0.8190416077589757, 0.05661509439536992]), 'versicolor&1&129': np.array([0.6654762076749751, 0.2949291633432878]), 'versicolor&1&130': np.array([0.7118161070185614, 0.17683644094125878]), 'versicolor&1&131': np.array([0.8165214253946836, 0.059175619390630096]), 'versicolor&1&132': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&133': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&134': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&135': np.array([0.5188109114552927, 0.03638964581864269]), 'versicolor&1&136': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&137': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&138': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&139': np.array([0.5436097000280874, 0.1461891067488832]), 'versicolor&1&140': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&141': np.array([0.32513442685780247, 0.6124765483184536]), 'versicolor&1&142': np.array([0.1812883360919208, 0.5504982486874137]), 'versicolor&1&143': np.array([0.4788153032824012, 0.08625929936974323]), 'versicolor&1&144': np.array([0.28490718210609345, 0.6650298146522879]), 'versicolor&1&145': np.array([0.1313204067730033, 0.597079642504441]), 'versicolor&1&146': np.array([0.46583127837967303, 0.09875847161509169]), 'versicolor&1&147': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&148': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&149': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&150': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&151': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&152': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&153': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&154': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&155': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&156': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&157': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&158': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&159': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&160': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&161': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&162': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&163': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&164': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&165': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&166': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&167': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&168': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&169': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&170': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&171': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&172': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&173': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&174': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&175': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&176': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&177': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&178': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&179': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&180': np.array([0.8224435822504677, 0.05315271528828394]), 'versicolor&1&181': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&182': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&183': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&184': np.array([0.8476206690613984, 0.02146454924522743]), 'versicolor&1&185': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&186': np.array([0.69362517791403, 0.2579390890424607]), 'versicolor&1&187': np.array([0.7261791877801502, 0.16248655642013624]), 'versicolor&1&188': np.array([0.8190416077589757, 0.05661509439536992]), 'versicolor&1&189': np.array([0.6654762076749751, 0.2949291633432878]), 'versicolor&1&190': np.array([0.7118161070185614, 0.17683644094125878]), 'versicolor&1&191': np.array([0.8165214253946836, 0.059175619390630096]), 'versicolor&1&192': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&193': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&194': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&195': np.array([0.5188109114552927, 0.03638964581864269]), 'versicolor&1&196': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&197': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&198': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&199': np.array([0.5436097000280874, 0.1461891067488832]), 'versicolor&1&200': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&201': np.array([0.32513442685780247, 0.6124765483184536]), 'versicolor&1&202': np.array([0.1812883360919208, 0.5504982486874137]), 'versicolor&1&203': np.array([0.4788153032824012, 0.08625929936974323]), 'versicolor&1&204': np.array([0.28490718210609345, 0.6650298146522879]), 'versicolor&1&205': np.array([0.1313204067730033, 0.597079642504441]), 'versicolor&1&206': np.array([0.46583127837967303, 0.09875847161509169]), 'versicolor&1&207': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&208': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&209': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&210': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&211': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&212': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&213': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&214': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&215': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&216': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&217': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&218': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&219': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&220': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&221': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&222': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&223': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&224': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&225': np.array([0.6253337666017573, 0.21983620140147825]), 'versicolor&1&226': np.array([0.6178968870349187, 0.22747652768125623]), 'versicolor&1&227': np.array([0.7245803616608639, 0.18141483095066183]), 'versicolor&1&228': np.array([0.6762617119303499, 0.19305674697949574]), 'versicolor&1&229': np.array([0.7182033715159247, 0.0970420677941148]), 'versicolor&1&230': np.array([0.6178968870349187, 0.22747652768125623]), 'versicolor&1&231': np.array([0.4976586558055923, 0.5393318265947251]), 'versicolor&1&232': np.array([0.4361093214026388, 0.4279491486345008]), 'versicolor&1&233': np.array([0.613985959011319, 0.23148898930908424]), 'versicolor&1&234': np.array([0.46747697713468217, 0.586607956360002]), 'versicolor&1&235': np.array([0.41044950174869577, 0.45415985894965977]), 'versicolor&1&236': np.array([0.6057447478066579, 0.23993389556303918]), 'versicolor&1&237': np.array([0.7245803616608639, 0.18141483095066183]), 'versicolor&1&238': np.array([0.7245803616608639, 0.18141483095066183]), 'versicolor&1&239': np.array([0.6762617119303499, 0.19305674697949574]), 'versicolor&1&240': np.array([0.056623968925773045, 0.43360725859686644]), 'versicolor&1&241': np.array([0.020169511418752378, 0.47015948158260334]), 'versicolor&1&242': np.array([0.5806365328450954, 0.47262706807712623]), 'versicolor&1&243': np.array([0.4146290154471569, 0.4964318942067898]), 'versicolor&1&244': np.array([0.3351719071445682, 0.20616862401308342]), 'versicolor&1&245': np.array([0.020169511418752378, 0.47015948158260334]), 'versicolor&1&246': np.array([0.24022705822940116, 0.7185371033867092]), 'versicolor&1&247': np.array([0.010447231513465048, 0.6616528865917504]), 'versicolor&1&248': np.array([0.024556360933646205, 0.4723948285969902]), 'versicolor&1&249': np.array([0.21321406009810842, 0.7648907754638917]), 'versicolor&1&250': np.array([-0.027450681014480036, 0.6999336015080245]), 'versicolor&1&251': np.array([-0.0164329511444131, 0.5132208276383963]), 'versicolor&1&252': np.array([0.5806365328450954, 0.47262706807712623]), 'versicolor&1&253': np.array([0.5806365328450954, 0.47262706807712623]), 'versicolor&1&254': np.array([0.4146290154471569, 0.4964318942067898]), 'versicolor&1&255': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&256': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&257': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&258': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&259': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&260': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&261': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&262': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&263': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&264': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&265': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&266': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&267': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&268': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&269': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&270': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&271': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&272': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&273': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&274': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&275': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&276': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&277': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&278': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&279': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&280': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&281': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&282': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&283': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&284': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&285': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&286': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&287': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&288': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&289': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&290': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&291': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&292': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&293': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&294': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&295': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&296': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&297': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&298': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&299': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&300': np.array([0.4933316375690332, 0.5272416708629276]), 'versicolor&1&301': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&302': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&303': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'versicolor&1&305': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&306': np.array([0.1413116283690917, 0.7479856297394165]), 'versicolor&1&307': np.array([0.189773257421942, 0.6552150653012478]), 'versicolor&1&308': np.array([0.40694846236352233, 0.5109051764198169]), 'versicolor&1&309': np.array([0.1390424906594644, 0.7991613016301518]), 'versicolor&1&310': np.array([0.1945777487290197, 0.6743932844312892]), 'versicolor&1&311': np.array([0.415695226122737, 0.5230815102377903]), 'versicolor&1&312': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&313': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&314': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&2&0': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&1': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&2': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&3': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&4': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&5': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&6': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&7': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&8': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&9': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&10': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&11': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&12': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&13': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&14': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&15': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&16': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&17': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&18': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&19': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&20': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&21': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&22': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&23': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&24': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&25': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&26': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&27': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&28': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&29': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&30': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&31': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&32': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&33': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&34': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&35': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&36': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&37': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&38': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&39': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&40': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&41': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&42': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&43': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&44': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&45': np.array([-0.8252668830593566, 0.11450866713130668]), 'versicolor&2&46': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&47': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&48': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&49': np.array([-0.8735738195653328, -0.046438180466149094]), 'versicolor&2&50': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&51': np.array([-0.8470213454017305, -0.0910504504559782]), 'versicolor&2&52': np.array([-0.8783521565540571, 0.01381094589198601]), 'versicolor&2&53': np.array([-0.8388485924434891, 0.09800790238640067]), 'versicolor&2&54': np.array([-0.8495871633670822, -0.08820642363054954]), 'versicolor&2&55': np.array([-0.8784816772224661, 0.017184907022714958]), 'versicolor&2&56': np.array([-0.835455914569297, 0.10189258327760495]), 'versicolor&2&57': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&58': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&59': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&60': np.array([-0.5227340800279543, 0.4209267574088147]), 'versicolor&2&61': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&62': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&63': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&2&64': np.array([-0.6188410763351541, -0.22803625884668638]), 'versicolor&2&65': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&66': np.array([-0.56940429361245, -0.3442345437882425]), 'versicolor&2&67': np.array([-0.6452502612229726, -0.04686872432129788]), 'versicolor&2&68': np.array([-0.596973015481227, 0.37395461795328944]), 'versicolor&2&69': np.array([-0.5760086048531655, -0.3353570725513232]), 'versicolor&2&70': np.array([-0.6488228567611906, -0.03186184826812757]), 'versicolor&2&71': np.array([-0.5903420131350324, 0.384224764046184]), 'versicolor&2&72': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&73': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&74': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&2&75': np.array([0.0, 0.47562425924289314]), 'versicolor&2&76': np.array([0.0, 0.4854368956593117]), 'versicolor&2&77': np.array([0.0, -0.7348263896003956]), 'versicolor&2&78': np.array([0.0, -0.7920887571493729]), 'versicolor&2&79': np.array([0.0, -0.507614207038711]), 'versicolor&2&80': np.array([0.0, 0.4854368956593117]), 'versicolor&2&81': np.array([0.0, -0.3982542883933272]), 'versicolor&2&82': np.array([0.0, -0.08633733326458487]), 'versicolor&2&83': np.array([0.0, 0.4039238345412103]), 'versicolor&2&84': np.array([0.0, -0.38897705551367706]), 'versicolor&2&85': np.array([0.0, -0.06915310813754129]), 'versicolor&2&86': np.array([0.0, 0.41580041887839214]), 'versicolor&2&87': np.array([0.0, -0.7348263896003956]), 'versicolor&2&88': np.array([0.0, -0.7348263896003956]), 'versicolor&2&89': np.array([0.0, -0.7920887571493729]), 'versicolor&2&90': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&91': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&92': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&93': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&94': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&95': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&96': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&97': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&98': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&99': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&100': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&101': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&102': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&103': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&104': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&105': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&106': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&107': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&108': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&109': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&110': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&111': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&112': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&113': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&114': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&115': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&116': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&117': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&118': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&119': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&120': np.array([-0.7638917827493686, 0.868015757634957]), 'versicolor&2&121': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&122': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&123': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&124': np.array([-0.32941440381886555, -0.4173178729969913]), 'versicolor&2&125': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&126': np.array([-0.18291442454393395, -0.2654898014002494]), 'versicolor&2&127': np.array([-0.5797728557269727, 0.3163189837954924]), 'versicolor&2&128': np.array([-0.7579323596667402, 0.8054136823046655]), 'versicolor&2&129': np.array([-0.1948624323669993, -0.23753953755286383]), 'versicolor&2&130': np.array([-0.6437698977881832, 0.3909540110317858]), 'versicolor&2&131': np.array([-0.7963046521980063, 0.846536369471985]), 'versicolor&2&132': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&133': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&134': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&135': np.array([-0.3219660907491514, 0.7482043503408669]), 'versicolor&2&136': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&137': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&138': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&139': np.array([0.2626914501948546, -0.5596191134224637]), 'versicolor&2&140': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&141': np.array([0.4734444929420575, -0.6150974537943872]), 'versicolor&2&142': np.array([0.5369392542176313, -0.430867927332838]), 'versicolor&2&143': np.array([-0.19892251970509112, 0.5718543863753405]), 'versicolor&2&144': np.array([0.5071047612208237, -0.6507546896558788]), 'versicolor&2&145': np.array([0.5629877361048359, -0.4485515113017818]), 'versicolor&2&146': np.array([-0.3047657227470458, 0.6788631774846587]), 'versicolor&2&147': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&148': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&149': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&150': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&151': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&152': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&153': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&154': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&155': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&156': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&157': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&158': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&159': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&160': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&161': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&162': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&163': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&164': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&165': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&166': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&167': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&168': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&169': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&170': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&171': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&172': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&173': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&174': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&175': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&176': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&177': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&178': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&179': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&180': np.array([-0.7638917827493686, 0.868015757634957]), 'versicolor&2&181': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&182': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&183': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&184': np.array([-0.32941440381886555, -0.4173178729969913]), 'versicolor&2&185': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&186': np.array([-0.18291442454393395, -0.2654898014002494]), 'versicolor&2&187': np.array([-0.5797728557269727, 0.3163189837954924]), 'versicolor&2&188': np.array([-0.7579323596667402, 0.8054136823046655]), 'versicolor&2&189': np.array([-0.1948624323669993, -0.23753953755286383]), 'versicolor&2&190': np.array([-0.6437698977881832, 0.3909540110317858]), 'versicolor&2&191': np.array([-0.7963046521980063, 0.846536369471985]), 'versicolor&2&192': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&193': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&194': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&195': np.array([-0.3219660907491514, 0.7482043503408669]), 'versicolor&2&196': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&197': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&198': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&199': np.array([0.2626914501948546, -0.5596191134224637]), 'versicolor&2&200': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&201': np.array([0.4734444929420575, -0.6150974537943872]), 'versicolor&2&202': np.array([0.5369392542176313, -0.430867927332838]), 'versicolor&2&203': np.array([-0.19892251970509112, 0.5718543863753405]), 'versicolor&2&204': np.array([0.5071047612208237, -0.6507546896558788]), 'versicolor&2&205': np.array([0.5629877361048359, -0.4485515113017818]), 'versicolor&2&206': np.array([-0.3047657227470458, 0.6788631774846587]), 'versicolor&2&207': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&208': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&209': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&210': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&211': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&212': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&213': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&214': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&215': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&216': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&217': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&218': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&219': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&220': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&221': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&222': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&223': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&224': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&225': np.array([-0.5775629083348267, 0.7118687782288384]), 'versicolor&2&226': np.array([-0.6016445709024666, 0.7366089009875252]), 'versicolor&2&227': np.array([-0.28356111726513855, -0.739741315226852]), 'versicolor&2&228': np.array([-0.0917622729715107, -0.7645776302158537]), 'versicolor&2&229': np.array([-0.25603689955471853, -0.451727980232351]), 'versicolor&2&230': np.array([-0.6016445709024666, 0.7366089009875252]), 'versicolor&2&231': np.array([-0.1269405801024398, -0.34161216844748166]), 'versicolor&2&232': np.array([-0.33176333807327857, 0.09538228407203546]), 'versicolor&2&233': np.array([-0.564696311454556, 0.6421194512020755]), 'versicolor&2&234': np.array([-0.12669523681593967, -0.32786313310034665]), 'versicolor&2&235': np.array([-0.35960845047491363, 0.1335988694092619]), 'versicolor&2&236': np.array([-0.589572650064144, 0.6697478899606418]), 'versicolor&2&237': np.array([-0.28356111726513855, -0.739741315226852]), 'versicolor&2&238': np.array([-0.28356111726513855, -0.739741315226852]), 'versicolor&2&239': np.array([-0.0917622729715107, -0.7645776302158537]), 'versicolor&2&240': np.array([0.05667262840030629, 0.4335746514880877]), 'versicolor&2&241': np.array([0.0202211257171063, 0.470123810164804]), 'versicolor&2&242': np.array([-0.052990507284891984, -0.7625494034929868]), 'versicolor&2&243': np.array([0.22461127196921116, -0.7375780139111495]), 'versicolor&2&244': np.array([0.3463149754241171, -0.5568366400939154]), 'versicolor&2&245': np.array([0.0202211257171063, 0.470123810164804]), 'versicolor&2&246': np.array([0.4022739113634462, -0.4700171786183992]), 'versicolor&2&247': np.array([0.5046771347249378, -0.33609610934748635]), 'versicolor&2&248': np.array([0.1370187510624256, 0.30303755274337163]), 'versicolor&2&249': np.array([0.41683021879255133, -0.4812793747667524]), 'versicolor&2&250': np.array([0.5150371666265885, -0.33852139184639396]), 'versicolor&2&251': np.array([0.10611499646955676, 0.33589829339460586]), 'versicolor&2&252': np.array([-0.052990507284891984, -0.7625494034929868]), 'versicolor&2&253': np.array([-0.052990507284891984, -0.7625494034929868]), 'versicolor&2&254': np.array([0.22461127196921116, -0.7375780139111495]), 'versicolor&2&255': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&256': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&257': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&258': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&259': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&260': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&261': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&262': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&263': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&264': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&265': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&266': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&267': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&268': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&269': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&270': np.array([-0.8252668830593566, 0.11450866713130668]), 'versicolor&2&271': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&272': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&273': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&274': np.array([-0.8735738195653328, -0.046438180466149094]), 'versicolor&2&275': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&276': np.array([-0.8470213454017305, -0.0910504504559782]), 'versicolor&2&277': np.array([-0.8783521565540571, 0.01381094589198601]), 'versicolor&2&278': np.array([-0.8388485924434891, 0.09800790238640067]), 'versicolor&2&279': np.array([-0.8495871633670822, -0.08820642363054954]), 'versicolor&2&280': np.array([-0.8784816772224661, 0.017184907022714958]), 'versicolor&2&281': np.array([-0.835455914569297, 0.10189258327760495]), 'versicolor&2&282': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&283': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&284': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&285': np.array([-0.8252668830593566, 0.11450866713130668]), 'versicolor&2&286': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&287': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&288': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&289': np.array([-0.8735738195653328, -0.046438180466149094]), 'versicolor&2&290': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&291': np.array([-0.8470213454017305, -0.0910504504559782]), 'versicolor&2&292': np.array([-0.8783521565540571, 0.01381094589198601]), 'versicolor&2&293': np.array([-0.8388485924434891, 0.09800790238640067]), 'versicolor&2&294': np.array([-0.8495871633670822, -0.08820642363054954]), 'versicolor&2&295': np.array([-0.8784816772224661, 0.017184907022714958]), 'versicolor&2&296': np.array([-0.835455914569297, 0.10189258327760495]), 'versicolor&2&297': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&298': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&299': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&300': np.array([-0.5227340800279543, 0.4209267574088147]), 'versicolor&2&301': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&302': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&303': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&2&304': np.array([-0.6188410763351541, -0.22803625884668638]), 'versicolor&2&305': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&306': np.array([-0.56940429361245, -0.3442345437882425]), 'versicolor&2&307': np.array([-0.6452502612229726, -0.04686872432129788]), 'versicolor&2&308': np.array([-0.596973015481227, 0.37395461795328944]), 'versicolor&2&309': np.array([-0.5760086048531655, -0.3353570725513232]), 'versicolor&2&310': np.array([-0.6488228567611906, -0.03186184826812757]), 'versicolor&2&311': np.array([-0.5903420131350324, 0.384224764046184]), 'versicolor&2&312': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&313': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&314': np.array([-0.2741128763380603, -0.7260889090887469]), 'virginica&0&0': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&1': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&2': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&3': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&4': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&5': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&6': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&7': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&8': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&9': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&10': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&11': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&12': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&13': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&14': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&15': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&16': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&17': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&18': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&19': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&20': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&21': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&22': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&23': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&24': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&25': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&26': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&27': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&28': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&29': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&30': np.array([-0.19685199412911655, -0.7845879230594393]), 'virginica&0&31': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&32': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&33': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&34': np.array([-0.7974072911132788, 0.006894018772033604]), 'virginica&0&35': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&36': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&37': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&38': np.array([-0.3355030348883163, -0.6305271339971502]), 'virginica&0&39': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&40': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&41': np.array([-0.2519677855687844, -0.7134447168661863]), 'virginica&0&42': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&43': np.array([-0.7799744386472778, -0.026476616324402506]), 'virginica&0&44': np.array([-0.7942342242967624, -0.0119572163963601]), 'virginica&0&45': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&46': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&47': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&48': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&49': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&50': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&51': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&52': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&53': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&54': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&55': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&56': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&57': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&58': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&59': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&60': np.array([0.029402442458921384, -0.9481684282717414]), 'virginica&0&61': np.array([0.009887859354111524, -0.9698143912008228]), 'virginica&0&62': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&63': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'virginica&0&65': np.array([0.009887859354111524, -0.9698143912008228]), 'virginica&0&66': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&67': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&68': np.array([0.19002455311770447, -0.8848597943731074]), 'virginica&0&69': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&70': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&71': np.array([0.1746467870122951, -0.9073062742839755]), 'virginica&0&72': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&73': np.array([0.11200181312407695, -0.5330612470996793]), 'virginica&0&74': np.array([0.19998284600732558, -0.3489062419702088]), 'virginica&0&75': np.array([0.0, -0.95124502153736]), 'virginica&0&76': np.array([0.0, -0.9708703761803881]), 'virginica&0&77': np.array([0.0, -0.5659706098422994]), 'virginica&0&78': np.array([0.0, -0.3962828716108186]), 'virginica&0&79': np.array([0.0, 0.2538069363248767]), 'virginica&0&80': np.array([0.0, -0.9708703761803881]), 'virginica&0&81': np.array([0.0, -0.5659706098422994]), 'virginica&0&82': np.array([0.0, -0.3962828716108186]), 'virginica&0&83': np.array([0.0, -0.8943993997517804]), 'virginica&0&84': np.array([0.0, -0.5659706098422994]), 'virginica&0&85': np.array([0.0, -0.3962828716108186]), 'virginica&0&86': np.array([0.0, -0.9166476163222441]), 'virginica&0&87': np.array([0.0, -0.3962828716108186]), 'virginica&0&88': np.array([0.0, -0.5466925844560601]), 'virginica&0&89': np.array([0.0, -0.38529908946531777]), 'virginica&0&90': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&91': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&92': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&93': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&94': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&95': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&96': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&97': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&98': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&99': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&100': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&101': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&102': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&103': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&104': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&105': np.array([-0.19685199412911655, -0.7845879230594393]), 'virginica&0&106': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&107': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&108': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&109': np.array([-0.7974072911132788, 0.006894018772033604]), 'virginica&0&110': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&111': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&112': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&113': np.array([-0.3355030348883163, -0.6305271339971502]), 'virginica&0&114': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&115': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&116': np.array([-0.2519677855687844, -0.7134447168661863]), 'virginica&0&117': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&118': np.array([-0.7799744386472778, -0.026476616324402506]), 'virginica&0&119': np.array([-0.7942342242967624, -0.0119572163963601]), 'virginica&0&120': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&121': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&122': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&123': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&124': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&125': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&126': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&127': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&128': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&129': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&130': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&131': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&132': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&133': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&134': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&135': np.array([-0.19684482070614498, -0.7845939961595055]), 'virginica&0&136': np.array([-0.07475231751447156, -0.9062785678426409]), 'virginica&0&137': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&138': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&139': np.array([-0.8063011502229427, 0.4134300066735808]), 'virginica&0&140': np.array([-0.07475231751447156, -0.9062785678426409]), 'virginica&0&141': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&142': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&143': np.array([-0.2798927835773098, -0.6581136857450849]), 'virginica&0&144': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&145': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&146': np.array([-0.16106555563262584, -0.777621649099753]), 'virginica&0&147': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&148': np.array([-0.6898990333725056, -0.2534947697713122]), 'virginica&0&149': np.array([-0.769491694075929, -0.22884642137519118]), 'virginica&0&150': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&151': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&152': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&153': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&154': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&155': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&156': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&157': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&158': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&159': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&160': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&161': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&162': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&163': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&164': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&165': np.array([-0.19685199412911655, -0.7845879230594393]), 'virginica&0&166': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&167': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&168': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&169': np.array([-0.7974072911132788, 0.006894018772033604]), 'virginica&0&170': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&171': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&172': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&173': np.array([-0.3355030348883163, -0.6305271339971502]), 'virginica&0&174': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&175': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&176': np.array([-0.2519677855687844, -0.7134447168661863]), 'virginica&0&177': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&178': np.array([-0.7799744386472778, -0.026476616324402506]), 'virginica&0&179': np.array([-0.7942342242967624, -0.0119572163963601]), 'virginica&0&180': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&181': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&182': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&183': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&184': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&185': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&186': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&187': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&188': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&189': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&190': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&191': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&192': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&193': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&194': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&195': np.array([-0.19684482070614498, -0.7845939961595055]), 'virginica&0&196': np.array([-0.07475231751447156, -0.9062785678426409]), 'virginica&0&197': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&198': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&199': np.array([-0.8063011502229427, 0.4134300066735808]), 'virginica&0&200': np.array([-0.07475231751447156, -0.9062785678426409]), 'virginica&0&201': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&202': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&203': np.array([-0.2798927835773098, -0.6581136857450849]), 'virginica&0&204': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&205': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&206': np.array([-0.16106555563262584, -0.777621649099753]), 'virginica&0&207': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&208': np.array([-0.6898990333725056, -0.2534947697713122]), 'virginica&0&209': np.array([-0.769491694075929, -0.22884642137519118]), 'virginica&0&210': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&211': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&212': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&213': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&214': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&215': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&216': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&217': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&218': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&219': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&220': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&221': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&222': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&223': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&224': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&225': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&226': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&227': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&228': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&229': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&230': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&231': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&232': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&233': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&234': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&235': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&236': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&237': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&238': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&239': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&240': np.array([-0.11329659732608087, -0.8671819100849522]), 'virginica&0&241': np.array([-0.040390637135858574, -0.9402832917474078]), 'virginica&0&242': np.array([-0.5276460255602035, -0.28992233541586077]), 'virginica&0&243': np.array([-0.6392402874163683, -0.24114611970435948]), 'virginica&0&244': np.array([-0.6814868825686854, 0.35066801608083215]), 'virginica&0&245': np.array([-0.040390637135858574, -0.9402832917474078]), 'virginica&0&246': np.array([-0.5276460255602035, -0.28992233541586077]), 'virginica&0&247': np.array([-0.6392402874163683, -0.24114611970435948]), 'virginica&0&248': np.array([-0.16157511199607094, -0.7754323813403634]), 'virginica&0&249': np.array([-0.5276460255602035, -0.28992233541586077]), 'virginica&0&250': np.array([-0.6392402874163683, -0.24114611970435948]), 'virginica&0&251': np.array([-0.08968204532514226, -0.8491191210330045]), 'virginica&0&252': np.array([-0.6392402874163683, -0.24114611970435948]), 'virginica&0&253': np.array([-0.544626974647221, -0.24972982107967573]), 'virginica&0&254': np.array([-0.6426355680762406, -0.20016519137103667]), 'virginica&0&255': np.array([-0.19685199412911655, -0.7845879230594393]), 'virginica&0&256': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&257': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&258': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&259': np.array([-0.7974072911132788, 0.006894018772033604]), 'virginica&0&260': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&261': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&262': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&263': np.array([-0.3355030348883163, -0.6305271339971502]), 'virginica&0&264': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&265': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&266': np.array([-0.2519677855687844, -0.7134447168661863]), 'virginica&0&267': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&268': np.array([-0.7799744386472778, -0.026476616324402506]), 'virginica&0&269': np.array([-0.7942342242967624, -0.0119572163963601]), 'virginica&0&270': np.array([-0.04201361383207032, -0.9372571358382161]), 'virginica&0&271': np.array([-0.014237661899709955, -0.9660323357290304]), 'virginica&0&272': np.array([-0.04813346258022244, -0.5416229439456887]), 'virginica&0&273': np.array([-0.3109532939139045, -0.22759134703604383]), 'virginica&0&274': np.array([-0.4167677904879879, 0.22207334821665425]), 'virginica&0&275': np.array([-0.014237661899709955, -0.9660323357290304]), 'virginica&0&276': np.array([-0.04813346258022244, -0.5416229439456887]), 'virginica&0&277': np.array([-0.3109532939139045, -0.22759134703604383]), 'virginica&0&278': np.array([-0.07857689135903215, -0.8696882596532965]), 'virginica&0&279': np.array([-0.04813346258022244, -0.5416229439456887]), 'virginica&0&280': np.array([-0.3109532939139045, -0.22759134703604383]), 'virginica&0&281': np.array([-0.05160969201296555, -0.9000166344885441]), 'virginica&0&282': np.array([-0.3109532939139045, -0.22759134703604383]), 'virginica&0&283': np.array([-0.0766197045034485, -0.5080325256323984]), 'virginica&0&284': np.array([-0.32767091750230254, -0.19689316772421933]), 'virginica&0&285': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&286': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&287': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&288': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&289': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&290': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&291': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&292': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&293': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&294': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&295': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&296': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&297': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&298': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&299': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&300': np.array([0.029402442458921384, -0.9481684282717414]), 'virginica&0&301': np.array([0.009887859354111524, -0.9698143912008228]), 'virginica&0&302': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&303': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'virginica&0&305': np.array([0.009887859354111524, -0.9698143912008228]), 'virginica&0&306': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&307': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&308': np.array([0.19002455311770447, -0.8848597943731074]), 'virginica&0&309': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&310': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&311': np.array([0.1746467870122951, -0.9073062742839755]), 'virginica&0&312': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&313': np.array([0.11200181312407695, -0.5330612470996793]), 'virginica&0&314': np.array([0.19998284600732558, -0.3489062419702088]), 'virginica&1&0': np.array([0.37157553889555184, 0.1221600832023858]), 'virginica&1&1': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&2': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&3': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&4': np.array([0.4964962439921071, 0.3798215458387346]), 'virginica&1&5': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&6': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&7': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&8': np.array([0.22125635302655813, 0.2925832702358638]), 'virginica&1&9': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&10': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&11': np.array([0.10063786451829529, 0.4085974066833644]), 'virginica&1&12': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&13': np.array([0.8441748651745272, -0.6057436494968107]), 'virginica&1&14': np.array([0.6453274192140858, -0.6334259878992301]), 'virginica&1&15':
np.array([0.37157553889555184, 0.1221600832023858])
numpy.array
import asyncio import json import os import time import warnings import wave from queue import Queue from typing import Callable import numpy as np import pvporcupine import sounddevice as sd import vosk from fluxhelper import osInterface from speech_recognition import AudioFile, Recognizer, UnknownValueError from tensorflow.keras.models import load_model from vosk import SetLogLevel RATE = 16000 DURATION = 0.5 CHANNELS = 1 CHUNK = 512 MAX_FREQ = 18 # Disable logging warnings.filterwarnings("ignore") os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" SetLogLevel(-1) class VAD: """ Main Voice activity detection class. This uses deep learning to predict whether a piece of audio is considered a speech or not a speech. Parameters ---------- `modelPath` : str path to the model.h5 file. `sensitivity : float how sensitive the detection is. Methods ------- `isSpeech(stream: bytes)` : returns True if the classified stream is a voice and False if not. """ def __init__(self, modelPath: str, sensitivity: float = 0.90): self.model = load_model(modelPath) self.buffer = [] self.sensitivity = sensitivity async def _formatPredictions(self, predictions) -> list: """ Format the predictions into a more readable and easy to traverse format. """ predictions = [[i, float(r)] for i, r in enumerate(predictions)] predictions.sort(key=lambda x: x[1], reverse=True) return predictions async def isSpeech(self, stream: bytes) -> bool: """ Makes a prediction from the given stream bytes. Parameters ---------- `stream` : bytes raw bytes stream (usually retrieved from pyaudio's .read function or sounddevice) Returns True if the classified stream is a voice and False if not. """ # Convert the raw streams into a numpy array and get the decibels arr = np.frombuffer(stream, dtype=np.int16) db = 20 * np.log10(np.abs(np.fft.rfft(arr[:2048]))) # Collect decibel values from relevent frequencies (MAX_FREQ) features = list(
np.round(db[3:MAX_FREQ], 2)
numpy.round
from math import * import sys, os, argparse, time from re import split as regexp_split import numpy as np import numpy.ma as ma import general_scripts as gs import general_maths as gm import transforms3d.quaternions as qops import transforms3d_supplement as qs import fitting_Ct_functions as fitCt import spectral_densities as sd from scipy.optimize import fmin_powell # There may be minor mistakes in the selection text. Try to identify what is wrong. def confirm_seltxt(ref, Hseltxt, Xseltxt): bError=False indH = mol.topology.select(Hseltxt) indX = mol.topology.select(Xseltxt) numH = len(indH) ; numX = len(numX) if numH == 0: bError=True t1 = mol.topology.select('name H') t2 = mol.topology.select('name HN') t3 = mol.topology.select('name HA') print( " .... ERROR: The 'name H' selects %i atoms, 'name HN' selects %i atoms, and 'name HA' selects %i atoms." % (t1, t2, t3) ) if numX == 0: bError=True t1 = mol.topology.select('name N') t2 = mol.topology.select('name NT') print( " .... ERROR: The 'name N' selects %i atoms, and 'name NT' selects %i atoms." % (t1, t2) ) resH = [ mol.topology.atom(x).residue.resSeq for x in indH ] resX = [ mol.topology.atom(x).residue.resSeq for x in indX ] if resX != resH: bError=True print( " .... ERROR: The residue lists are not the name between the two selections:" ) print( " .... Count for X (%i)" % numX, resX ) print( " .... Count for H (%i)" % numH, resH ) if bError: sys.exit(1) return indH, indX, resX def extract_vectors_from_structure( pdbFile, Hseltxt='name H', Xsel='name N and not resname PRO', trjFile=None ): print( "= = = Using vectors as found directly in the coordinate files, via MDTraj module." ) print( "= = = NOTE: no fitting is conducted." ) import mdtraj as md if not trjFile is None: mol = md.load(trjFile, top=pdbFile) print( "= = = PDB file %s and trajectory file %s loaded." % (pdbFile, trjFile) ) else: omol = md.load(pdbFile) print( "= = = PDB file %s loaded." % pdbFile ) indH, indX, resXH = confirm_seltxt(ref, Hsel, Xsel) # Extract submatrix of vector trajectory vecXH = np.take(mol.xyz, indH, axis=1) - np.take(mol.xyz, indX, axis=1) vecXH = qs.vecnorm_NDarray(vecXH, axis=2) # = = = Check shape and switch to match. if vecXH.shape[0] == 1: return resXH, vecXH[0] else: return resXH, np.swapaxes(vecXH,0,1) def sanity_check_two_list(listA, listB, string, bVerbose=False): if not gm.list_identical( listA, listB ): print( "= = ERROR: Sanity checked failed for %s!" % string ) if bVerbose: print( listA ) print( listB ) else: print( " ...first residues:", listA[0], listB[0] ) print( " ...set intersection (unordered):", set(listA).intersection(set(listB)) ) sys.exit(1) return def _obtain_Jomega(RObj, nSites, S2, consts, taus, vecXH, weights=None): """ The inputs vectors have dimensions (nSites, nSamples, 3) or just (nSites, 3) the datablock being returned has dimensions: - (nFrequencies, nSites) of there is no uncertainty calculations. 5 being the five frequencies J(0), J(wN) J(wH+wN), J(wH), J(wH-wN) - (nFrequencies, nSites, 2) if there is uncertainty calculations. """ nFrequencies= len(RObj.omega) if RObj.rotdifModel.name == 'rigid_sphere': datablock=np.zeros((5,nSites), dtype=np.float32) for i in range(nSites): J = sd.J_combine_isotropic_exp_decayN(RObj.omega, 1.0/(6.0*RObj.rotdifModel.D), S2[i], consts[i], taus[i]) datablock[:,i]=J return datablock elif RObj.rotdifModel.name == 'rigid_symmtop': # Automatically use the vector-form of function. if len(vecXH.shape) > 2: # An ensemble of vectors at each site. Measure values for all of them then average with/without weights. datablock=np.zeros( (nFrequencies, nSites, 2), dtype=np.float32) npts=vecXH.shape[1] for i in range(nSites): # = = = Calculate at each residue and sum over Jmat( nSamples, 2) Jmat = sd.J_combine_symmtop_exp_decayN(RObj.omega, vecXH[i], RObj.rotdifModel.D[0], RObj.rotdifModel.D[1], S2[i], consts[i], taus[i]) if weights is None: datablock[:,i,0] = np.mean(Jmat, axis=0) datablock[:,i,1] = np.std(Jmat, axis=0) else: datablock[:,i,0] = np.average(Jmat, axis=0, weights=weights[i]) datablock[:,i,1] = np.sqrt( np.average( (Jmat - datablock[:,i,0])**2.0, axis=0, weights=weights[i]) ) return datablock else: #Single XH vector at each site. Ignore weights, as they should not exist. datablock=np.zeros((5,nSites), dtype=np.float32) for i in range(nSites): Jmat = sd.J_combine_symmtop_exp_decayN(RObj.omega, vecXH[i], RObj.rotdifModel.D[0], RObj.rotdifModel.D[1], S2[i], consts[i], taus[i]) datablock[:,i]=Jmat return datablock # = = Should only happen with fully anisotropic models. print( "= = ERROR: Unknown rotdifModel in the relaxation object used in calculations!", file=sys.stderr ) return [] def _obtain_R1R2NOErho(RObj, nSites, S2, consts, taus, vecXH, weights=None, CSAvaluesArray=None): """ The inputs vectors have dimensions (nSites, nSamples, 3) or just (nSites, 3) the datablock being returned has dimensions: - ( 4, nSites) of there is no uncertainty calculations. 4 corresponding each to R1, R2, NOE, and rho. - ( 4, nSites, 2) if there is uncertainty calculations. """ if CSAvaluesArray is None: CSAvaluesArray = np.repeat(CSAvaluesArray, nSites) if RObj.rotdifModel.name == 'direct_transform': datablock=np.zeros((4,nSites), dtype=np.float32) for i in range(nSites): J = sd.J_direct_transform(RObj.omega, consts[i], taus[i]) R1, R2, NOE = RObj.get_relax_from_J( J, CSAvalue=CSAvaluesArray[i] ) rho = RObj.get_rho_from_J( J ) datablock[:,i]=[R1,R2,NOE,rho] return datablock elif RObj.rotdifModel.name == 'rigid_sphere': datablock=np.zeros((4,nSites), dtype=np.float32) for i in range(nSites): J = sd.J_combine_isotropic_exp_decayN(RObj.omega, 1.0/(6.0*RObj.rotdifModel.D), S2[i], consts[i], taus[i]) R1, R2, NOE = RObj.get_relax_from_J( J, CSAvalue=CSAvaluesArray[i] ) rho = RObj.get_rho_from_J( J ) datablock[:,i]=[R1,R2,NOE,rho] return datablock elif RObj.rotdifModel.name == 'rigid_symmtop': # Automatically use the vector-form of function. if len(vecXH.shape) > 2: # An ensemble of vectors for each site. datablock=np.zeros((4,nSites,2), dtype=np.float32) npts=vecXH.shape[1] #tmpR1 = np.zeros(npts) ; tmpR2 = np.zeros(npts) ; tmpNOE = np.zeros(npts) #tmprho = np.zeros(npts) for i in range(nSites): Jmat = sd.J_combine_symmtop_exp_decayN(RObj.omega, vecXH[i], RObj.rotdifModel.D[0], RObj.rotdifModel.D[1], S2[i], consts[i], taus[i]) # = = = Calculate relaxation values from the entire sample of vectors before any averagins is to be done tmpR1, tmpR2, tmpNOE = RObj.get_relax_from_J_simd( Jmat, CSAvalue=CSAvaluesArray[i] ) tmprho = RObj.get_rho_from_J_simd( Jmat ) #for j in range(npts): # tmpR1[j], tmpR2[j], tmpNOE[j] = RObj.get_relax_from_J( Jmat[j] ) # tmprho[j] = RObj.get_rho_from_J( Jmat[j] ) if weights is None: R1 = np.mean(tmpR1) ; R2 = np.mean(tmpR2) ; NOE = np.mean(tmpNOE) R1sig = np.std(tmpR1); R2sig = np.std(tmpR2) ; NOEsig = np.std(tmpNOE) rho = np.mean(tmprho); rhosig = np.std(tmprho) datablock[:,i]=[[R1,R1sig],[R2,R2sig],[NOE,NOEsig],[rho,rhosig]] else: datablock[0,i]=gm.weighted_average_stdev(tmpR1, weights[i]) datablock[1,i]=gm.weighted_average_stdev(tmpR2, weights[i]) datablock[2,i]=gm.weighted_average_stdev(tmpNOE, weights[i]) datablock[3,i]=gm.weighted_average_stdev(tmprho, weights[i]) return datablock else: #Single XH vector for each site. datablock=np.zeros((4,nSites), dtype=np.float32) for i in range(nSites): Jmat = sd.J_combine_symmtop_exp_decayN(RObj.omega, vecXH[i], RObj.rotdifModel.D[0], RObj.rotdifModel.D[1], S2[i], consts[i], taus[i]) if len(Jmat.shape) == 1: # A single vector was given. R1, R2, NOE = RObj.get_relax_from_J( Jmat, CSAvalue=CSAvaluesArray[i] ) rho = RObj.get_rho_from_J( Jmat ) datablock[:,i]=[R1,R2,NOE,rho] return datablock # = = Should only happen with fully anisotropic models. print( "= = ERROR: Unknown rotdifModel in the relaxation object used in calculations!", file=sys.stderr ) return [] def optfunc_R1R2NOE_inner(datablock, expblock): if len(datablock.shape)==3 and len(expblock.shape)==3 : chisq = np.square(datablock[...,0] - expblock[...,0]) sigsq = np.square(datablock[...,1]) +
np.square(expblock[...,1])
numpy.square
from solver import Solver from task_scheduler import TaskScheduler from DAG_scheduler import DAGScheduler from data_loader import DataLoader import numpy as np import logging import time def DepthBasedBaseline(file_path="../ToyData.xlsx"): """ Depth Based Baseline, implemented by <NAME> """ f = open('depthbased_baseline.txt', 'w') f.close() start_time = time.time() task_scheduler = TaskScheduler(file_path=file_path) solver = Solver(file_path=file_path) cur_depth = 0 max_depth = task_scheduler.max_depth data_center = None placement = None finish_time = None task_set = None task_set_new = None final_placement = [] final_time = 0 while(cur_depth<=max_depth): if cur_depth ==0: task_set = task_scheduler.get_taskset(cur_depth) data_center = task_scheduler.get_datacenter() placement, finish_time = solver.get_placement(task_set, data_center) time_cost = np.max(finish_time) with open('depthbased_baseline.txt', 'a') as f: f.write("depth %d cost time %f\n"%(cur_depth, time_cost)) f.close() print("time cost:", time_cost) final_time += time_cost cur_depth += 1 final_placement.append(placement) continue task_set_new = task_scheduler.get_taskset(cur_depth) data_center = solver.update_datacenter(placement, task_set_new, task_set, data_center) placement, finish_time = solver.get_placement(task_set_new, data_center) final_placement.append(placement) time_cost = np.max(finish_time) print("time cost:", time_cost) with open('depthbased_baseline.txt', 'a') as f: f.write("depth %d cost time %f\n"%(cur_depth, time_cost)) f.close() final_time += time_cost task_set = task_set_new cur_depth += 1 final_placement_show_depthbased(final_placement, task_scheduler) print("-----Depth Based Baseline Finish. Final Time:%f----\n"%final_time) end_time = time.time() print("-----Execution Time of Depth Based Baseline:-----",end_time-start_time) with open('depthbased_baseline.txt', 'a') as f: f.write("-----Depth Based Baseline Finish. Final Time:%f----\n"%final_time) f.write("-----Execution Time of Depth Based Baseline: %f----\n"%(end_time-start_time)) f.close() def JobStepBasedBaseline(file_path="../ToyData.xlsx", threshold=5): """ Job Step Based Baseline, implemented by <NAME> """ f = open('jobbased_baseline.txt', 'w') f.close() start_time = time.time() print('Job Step Based Baseline, threshold = %d '%threshold) task_scheduler = TaskScheduler(file_path=file_path, threshold=threshold) solver = Solver(file_path=file_path) cur_step = 0 max_step = task_scheduler.max_step data_center = None placement = None finish_time = None task_set = None task_set_new = None final_time = 0 final_placement = [] while(cur_step<=max_step): if cur_step ==0: task_set = task_scheduler.get_taskset_jobbased(cur_step) data_center = task_scheduler.get_datacenter() placement, finish_time = solver.get_placement(task_set, data_center) time_cost = np.max(finish_time) with open('jobbased_baseline.txt', 'a') as f: f.write("step %d cost time %f\n"%(cur_step, time_cost)) f.close() final_time += time_cost cur_step += 1 final_placement.append(placement) continue task_set_new = task_scheduler.get_taskset_jobbased(cur_step) new_data_center = solver.update_datacenter(placement, task_set_new, task_set, data_center) placement, finish_time = solver.get_placement(task_set_new, new_data_center) time_cost = np.max(finish_time) with open('jobbased_baseline.txt', 'a') as f: f.write("step %d cost time %f\n"%(cur_step, time_cost)) # print("time cost:", time_cost) final_time += time_cost task_set = task_set_new final_placement.append(placement) cur_step += 1 print("-----Job Step Based Baseline Finish. Final Time:%f----\n"%final_time) ## show result final_placement_show_jobbased(final_placement, task_scheduler) end_time = time.time() print("-----Execution Time of Job Based Baseline: %f-------\n"%(end_time-start_time)) with open('jobbased_baseline.txt', 'a') as f: f.write("-----Job Step Based Baseline Finish. Final Time:%f----\n"%final_time) f.write("-----Execution Time of Job Based Baseline: %f-------\n"%(end_time-start_time)) f.close() return final_placement def final_placement_show_jobbased(final_placement, task_scheduler): """ Input: list of several placements in several step Output: show the placement """ f = open('jobbased_baseline.txt', 'a') for i in range(len(final_placement)): f.write("Step%d:\n"%i) print("Step%d:"%i) placement = final_placement[i] task_set = task_scheduler.get_taskset_jobbased(i) for id in range(len(task_set)): task = task_set[id] job_id = int(ord(task.task_name[1]) - ord('A')) task_id = int(task.task_name[2]) - 1 try: dc_id = np.where(placement[job_id][task_id]==1)[0] + 1 except: dc_id = np.where(placement[job_id][task_id]==1)[0][0] + 1 f.write(str(task) + 'place in DC' + str(dc_id)+'\n') print(task, 'place in DC', dc_id) f.close() def final_placement_show_depthbased(final_placement, task_scheduler): """ Input: list of several placements in several step Output: show the placement """ f = open('depthbased_baseline.txt', 'a') for i in range(task_scheduler.max_depth): f.write("Depth%d:\n"%i) print("Depth%d:"%i) placement = final_placement[i] task_set = task_scheduler.get_taskset(i) for id in range(len(task_set)): task = task_set[id] job_id = int(ord(task.task_name[1]) - ord('A')) task_id = int(task.task_name[2]) - 1 try: dc_id = np.where(placement[job_id][task_id]==1)[0] + 1 except: dc_id =
np.where(placement[job_id][task_id]==1)
numpy.where
# Databricks notebook source # MAGIC %md # MAGIC ## Problem formulation # MAGIC A common problem in computer vision is estimating the fundamental matrix based on a image pair. The fundamental matrix relates corresponding points in stereo geometry, and is useful as a pre-processing step for example when one wants to perform reconstruction of a captured scene. In this small project we use a scalable distributed algorithm to compute fundamental matrices between a large set of images. # MAGIC # MAGIC #### Short theory section # MAGIC Assume that we want to link points in some image taken by camera <img src="https://latex.codecogs.com/svg.latex?&space;P_1" /> to points in an image taken by another camera <img src="https://latex.codecogs.com/svg.latex?&space;P_2" />. Let <img src="https://latex.codecogs.com/svg.latex?&space;x_i" /> and <img src="https://latex.codecogs.com/svg.latex?&space;x_i'" /> denote the projections of global point <img src="https://latex.codecogs.com/svg.latex?&space;X_i" /> onto the cameras <img src="https://latex.codecogs.com/svg.latex?&space;P_1" /> and <img src="https://latex.codecogs.com/svg.latex?&space;P_2" />, respectivly. Then the points are related as follows # MAGIC # MAGIC <img src="https://latex.codecogs.com/svg.latex?&space;\begin{cases}\lambda_i x_i = P_1X_i \\ \lambda_i' x_i' = P_2X_i # MAGIC \end{cases} \Leftrightarrow \quad \begin{cases}\lambda_i x_i = P_1HH^{-1}X_i \\ \lambda_i' x_i' = P_2HH^{-1}X_i # MAGIC \end{cases} \Leftrightarrow \quad \begin{cases}\lambda_i x_i = \tilde{P_1}\tilde{X_i} \\ \lambda_i' x_i' = \tilde{P_2}\tilde{X_i} # MAGIC \end{cases}" /> # MAGIC # MAGIC where <img src="https://latex.codecogs.com/svg.latex?&space;\lambda, \lambda'" /> are scale factors. Since we always can apply a projective transformation <img src="https://latex.codecogs.com/svg.latex?&space;H" /> to set one of the cameras to <img src="https://latex.codecogs.com/svg.latex?&space;P_1 = [I \quad 0]" /> and the other to some <img src="https://latex.codecogs.com/svg.latex?&space;P_2 = [A \quad t]" /> we can parametrize the global point <img src="https://latex.codecogs.com/svg.latex?&space;X_i" /> by # MAGIC <img src="https://latex.codecogs.com/svg.latex?&space;X_i(\lambda) = [\lambda x_i \quad 1]^T" />. Thus the projected point onto camera <img src="https://latex.codecogs.com/svg.latex?&space;P_2" /> is represented by the line <img src="https://latex.codecogs.com/svg.latex?&space;P_2X_i(\lambda) = \lambda Ax_i + t " />. This line is called the epipolar line to the point <img src="https://latex.codecogs.com/svg.latex?&space;x_i" /> in epipolar geomtry, and descirbes how the point <img src="https://latex.codecogs.com/svg.latex?&space;x_i" /> in image 1 is related to points on in image 2. Since # MAGIC all scene points that can project to <img src="https://latex.codecogs.com/svg.latex?&space;x_i" /> are on the viewing ray, all points in the second image that can # MAGIC correspond <img src="https://latex.codecogs.com/svg.latex?&space;x_i" /> have to be on the epipolar line. This condition is called the epipolar constraint. # MAGIC # MAGIC ![plot](http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT10/img17.gif) # MAGIC # MAGIC Taking two points on this line (one of them being <img src="https://latex.codecogs.com/svg.latex?&space;e'" /> using <img src="https://latex.codecogs.com/svg.latex?&space;\lambda = 0" />), (add what is e_2) # MAGIC we can derive an expression of this line <img src="https://latex.codecogs.com/svg.latex?&space;\ell" />, as any point x on the line <img src="https://latex.codecogs.com/svg.latex?&space;\ell" /> must fulfill <img src="https://latex.codecogs.com/svg.latex?&space;\ell^Tx = 0" />. Thus the line is thus given by # MAGIC # MAGIC # MAGIC <img src="https://latex.codecogs.com/svg.latex?&space;\ell = t # MAGIC \times (Ax +t ) = t \times (Ax) = e' \times Ax_i.\\" /> # MAGIC # MAGIC Let <img src="https://latex.codecogs.com/svg.latex?&space;F = e' \times A " />, this is called the fundamental matrix. The fundamental matrix thus is a mathematical formulation which links points in image 1 to lines in image 2 (and vice versa). If <img src="https://latex.codecogs.com/svg.latex?&space;x'" /> corresponds to <img src="https://latex.codecogs.com/svg.latex?&space;x" /> then the epipolar constraint can be written # MAGIC # MAGIC <img src="https://latex.codecogs.com/svg.latex?&space;x'^T\ell = x'^T F x = 0 " /> # MAGIC # MAGIC F is a 3x 3 matrix with 9 entiers and has 7 degrees of freedom. It can be estimated using 7 points using the 7-point algorithm. # MAGIC # MAGIC # MAGIC Before we have assumed the the correspndeces between points in the imagaes are known, however these are found by first extracting features in the images using some form of feature extractor (e.g. SIFT) and subsequently finding matches using some mathcing criterion/algorithm (e.g. using Lowes criterion or in our case FLANN based matcher) # MAGIC #### SIFT # MAGIC Scale-invariant feature transform (SIFT) is a feature detection algorithm which detect and describe local features in images, see examples of detected SIFT features in the two images (a) and (b). SIFT finds local features present in the image and compute desriptors and locations of these features. Next we need to link the features present in image 1 to the features in image 2, which can be done using e.g. a FLANN (Fast Library for Approximate Nearest Neighbors) based matcher. In short the features in the images are compared and the matches are found using a nearest neighbor search. After a matching algorithm is used we have correspandence between the detected points in image 1 and image 2, see example in image (c) below. Note that there is still a high probaility that some of these matches are incorrect. # MAGIC # MAGIC ![plot](https://www.researchgate.net/profile/Hieu_Nguyen144/publication/259952213/figure/fig1/AS:614330479439873@1523479208356/Scale-invariant-feature-transform-SIFT-matching-result-of-a-few-objects-placed-in.png # MAGIC ) # MAGIC # MAGIC ### RANSAC # MAGIC Some matches found by the FLANN may be incorrect, and a common robust method used for reducing the influence of these outliers in the estimation of F is RANSAC (RANdom SAmpling Consensus). In short, it relies on the fact that the inliers will tend to a consesus regarding the correct estimation, whereas the outlier estimation will show greater variation. By sampling random sets of points with size corresponding to the degrees of freedom of the model, calculating their corresponding estimations, and grouping all estimations with a difference below a set threshold, the largest consesus group is found. This set is then lastly used for the final estimate of F. # COMMAND ---------- # MAGIC %md # MAGIC ###For a more joyful presentation of the theory, listed to The Fundamental Matrix Song! (link) # MAGIC [![The Fundamental matrix](https://img.youtube.com/vi/DgGV3l82NTk/0.jpg)](https://www.youtube.com/watch?v=DgGV3l82NTk) # COMMAND ---------- # MAGIC %md # MAGIC OpenCV is an well-known open-source library for computer vision, machine learning, and image processing tasks. In this project we will use it for feature extraction (SIFT), feature matching (FLANN) and the estimation of the fundamental matrix (using the 7-point algorithm). Let us install opencv # COMMAND ---------- # MAGIC %pip install opencv-python # COMMAND ---------- # MAGIC %md # MAGIC Also we need to download a dataset that we can work with, this dataset is collected by <NAME> from LTH. # MAGIC This is achieved by the bash shell script below. # MAGIC The dataset is placed in the /tmp folder using the -P "prefix" # COMMAND ---------- # MAGIC %sh # MAGIC rm -r /tmp/0019 # MAGIC rm -r /tmp/eglise_int1.zip # MAGIC # MAGIC wget -P /tmp vision.maths.lth.se/calledataset/eglise_int/eglise_int1.zip # MAGIC unzip /tmp/eglise_int1.zip -d /tmp/0019/ # MAGIC rm -r /tmp/eglise_int1.zip # COMMAND ---------- # MAGIC %sh # MAGIC rm -r /tmp/eglise_int2.zip # MAGIC # MAGIC wget -P /tmp vision.maths.lth.se/calledataset/eglise_int/eglise_int2.zip # MAGIC unzip /tmp/eglise_int2.zip -d /tmp/0019/ # MAGIC rm -r /tmp/eglise_int2.zip # COMMAND ---------- # MAGIC %sh # MAGIC rm -r /tmp/eglise_int3.zip # MAGIC # MAGIC wget -P /tmp vision.maths.lth.se/calledataset/eglise_int/eglise_int3.zip # MAGIC unzip /tmp/eglise_int3.zip -d /tmp/0019/ # MAGIC rm -r /tmp/eglise_int3.zip # COMMAND ---------- # MAGIC %sh # MAGIC cd /tmp/0019/ # MAGIC for f in *; do mv "$f" "eglise_$f"; done # MAGIC cd /databricks/driver # COMMAND ---------- # MAGIC %sh # MAGIC rm -r /tmp/gbg.zip # MAGIC # MAGIC wget -P /tmp vision.maths.lth.se/calledataset/gbg/gbg.zip # MAGIC unzip /tmp/gbg.zip -d /tmp/0019/ # MAGIC rm -r /tmp/gbg.zip # COMMAND ---------- # MAGIC %scala # MAGIC # MAGIC import sys.process._ # MAGIC # MAGIC //"wget -P /tmp vision.maths.lth.se/calledataset/door/door.zip" !! # MAGIC //"unzip /tmp/door.zip -d /tmp/door/"!! # MAGIC # MAGIC //move downloaded dataset to dbfs # MAGIC # MAGIC val localpath="file:/tmp/0019/" # MAGIC # MAGIC dbutils.fs.rm("dbfs:/datasets/0019/mixedimages", true) // the boolean is for recursive rm # MAGIC # MAGIC dbutils.fs.mkdirs("dbfs:/datasets/0019/mixedimages") # MAGIC # MAGIC dbutils.fs.cp(localpath, "dbfs:/datasets/0019/mixedimages", true) # COMMAND ---------- # MAGIC %sh # MAGIC rm -r /tmp/0019 # COMMAND ---------- # MAGIC %scala # MAGIC # MAGIC display(dbutils.fs.ls("dbfs:/datasets/0019/mixedimages")) # COMMAND ---------- #Loading one image from the dataset for testing import numpy as np import cv2 import matplotlib.pyplot as plt def plot_img(figtitle,img): #create figure with std size fig = plt.figure(figtitle, figsize=(10, 5)) plt.imshow(img) display(plt.show()) img1 = cv2.imread("/dbfs/datasets/0019/mixedimages/eglise_DSC_0133.JPG") #img2 = cv2.imread("/dbfs/datasets/0019/mixedimages/DSC_0133.JPG") plot_img("eglise", img1) #plot_img("gbg", img2) # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC Read Image Dataset # COMMAND ---------- import glob import numpy as np import cv2 import os dataset_path = "/dbfs/datasets/0019/mixedimages/" #get all filenames in folder files = glob.glob(os.path.join(dataset_path,"*.JPG")) dataset = [] #load all images for i, file in enumerate(files): # Alex: changed # Load an color image #img = cv2.imread(file) #add image and image name as a tupel to the list dataset.append((file)) if i >= 150: # Alex: changed break # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC Define maps # COMMAND ---------- import glob import numpy as np import cv2 import matplotlib.pyplot as plt max_features = 1000 def plot_img(figtitle,s): img = cv2.imread(s) #create figure with std size fig = plt.figure(figtitle, figsize=(10, 5)) plt.imshow(img) display(plt.show()) def extract_features(s): """ """ img = cv2.imread(s) # Johan : here we load the images on the executor from dbfs into memory #convert to gray scale gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) sift = cv2.SIFT_create(max_features) #extract sift features and descriptors kp, des = sift.detectAndCompute(gray, None) #convert keypoint class to list of feature locations (for serialization) points=[] for i in range(len(kp)): points.append(kp[i].pt) #return a tuple of image name, image, feature points, descriptors, called a feature tuple return (s, points, des) # Johan : here we don't send the images def estimate_fundamental_matrix(s): """ """ # s[0] is a feature tuple for the first image, s[1] is the same for the second image a = s[0] b = s[1] # unpacks the tuples name1, kp1, desc1 = a name2, kp2, desc2 = b # Create FLANN matcher object FLANN_INDEX_KDTREE = 0 indexParams = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) searchParams = dict(checks=50) flann = cv2.FlannBasedMatcher(indexParams, searchParams) # matches the descriptors, for each query descriptor it finds the two best matches among the train descriptors matches = flann.knnMatch(desc1, desc2, k=2) goodMatches = [] pts1 = [] pts2 = [] # compares the best with the second best match and only adds those where the best match is significantly better than the next best. for i,(m,n) in enumerate(matches): if m.distance < 0.8*n.distance: goodMatches.append([m.queryIdx, m.trainIdx]) pts2.append(kp2[m.trainIdx]) pts1.append(kp1[m.queryIdx]) pts1 = np.array(pts1, dtype=np.float32) pts2 = np.array(pts2, dtype=np.float32) # finds the fundamental matrix using ransac: # selects minimal sub-set of the matches, # estimates the fundamental matrix, # checks how many of the matches satisfy the epipolar geometry (the inlier set) # iterates this for a number of iterations, # returns the fundamental matrix and mask with the largest number of inliers. F, mask = cv2.findFundamentalMat(pts1, pts2, cv2.FM_RANSAC) inlier_matches = [] # removes all matches that are not inliers if mask is not None: for i, el in enumerate(mask): if el == 1: inlier_matches.append(goodMatches[i]) # returns a tuple containing the feature tuple of image one and image two, the fundamental matrix and the inlier matches return (a, b, F, inlier_matches) def display_data(data): for el in data: print(el[2]) print("#######################################################") # COMMAND ---------- # MAGIC %md # MAGIC Perform Calculations # COMMAND ---------- # creates an rdd from the loaded images (im_name, image) rdd = sc.parallelize(dataset,20) print("num partitions: ",rdd.getNumPartitions()) # applys the feature extraction to the images rdd_features = rdd.map(extract_features) # Alex: we could leave the name but remove the image in a and b print("num partitions: ",rdd_features.getNumPartitions()) # forms pairs of images by applying the cartisian product and filtering away the identity pair rdd_pairs = rdd_features.cartesian(rdd_features).filter(lambda s: s[0][0] != s[1][0]) print("num partitions: ",rdd_pairs.getNumPartitions()) # applys the fundamental matrix estimation function on the pairs formed in the previous step and filters away all pairs with a low inlier set. rdd_fundamental_matrix = rdd_pairs.map(estimate_fundamental_matrix).filter(lambda s: len(s[3]) > 50) print("num partitions: ",rdd_fundamental_matrix.getNumPartitions()) # collects the result from the nodes data = rdd_fundamental_matrix.collect() # displays the fundamental matrices display_data(data) # COMMAND ---------- # MAGIC %md # MAGIC Now we have computed the fundamental matrices, let us have a look at them by present the epipolar lines. # COMMAND ---------- import random def drawlines(img1,img2,lines,pts1,pts2): #from opencv tutorial ''' img1 - image on which we draw the epilines for the points in img2 lines - corresponding epilines ''' r,c,_ = img1.shape for r,pt1,pt2 in zip(lines,pts1,pts2): color = tuple(np.random.randint(0,255,3).tolist()) x0,y0 = map(int, [0, -r[2]/r[1] ]) x1,y1 = map(int, [c, -(r[2]+r[0]*c)/r[1] ]) img1 = cv2.line(img1, (x0,y0), (x1,y1), color,3) img1 = cv2.circle(img1,tuple(pt1),10,color,-1) img2 = cv2.circle(img2,tuple(pt2),10,color,-1) return img1,img2 # draws a random subset of the data sampling = random.choices(data, k=4) #plotts the inlier features in the first image and the corresponding epipolar lines in the second image i = 0 fig, axs = plt.subplots(1, 8, figsize=(25, 5)) for el in sampling: a, b, F, matches = el; if F is None: continue name1, kp1, desc1 = a name2, kp2, desc2 = b im1 = cv2.imread(name1) im2 = cv2.imread(name2) pts1 = [] pts2 = [] for m in matches: pts1.append(kp1[m[0]]); pts2.append(kp2[m[1]]); pts1 = np.array(pts1, dtype=np.float32) pts2 =
np.array(pts2, dtype=np.float32)
numpy.array
""" This script identifies the time between the fist two action potentials from a ramp protocol in order to quantify burstiness. """ import pyabf import glob import numpy as np import matplotlib.pyplot as plt def getListOfProtocol(protocol="0111", folderPath="X:/Data/SD/OXT-Subiculum/abfs"): matchingPaths = [] for path in glob.glob(folderPath + "/*.abf"): abf = pyabf.ABF(path, loadData=False) if (abf.adcUnits[0] != "mV"): print("bad units: " + path) continue if abf.protocol.startswith("0111"): matchingPaths.append(path) return matchingPaths with open("paths-all.txt") as f: abfPaths = f.readlines() abfPaths = [x.strip() for x in abfPaths] abfPaths = [x for x in abfPaths if ".abf" in x] abfPaths = [x for x in abfPaths if not "#" in x] def getFullTrace(abf: pyabf.ABF): sweeps = [None] * abf.sweepCount for sweepIndex in range(abf.sweepCount): abf.setSweep(sweepIndex) sweeps[sweepIndex] = abf.sweepY return
np.concatenate(sweeps)
numpy.concatenate
import numpy as np from scipy.optimize import minimize from scipy import optimize # array operations class OrthAE(object): def __init__(self, views, latent_spaces, x = None, knob = 0): # x: input, column-wise # y: output, column-wise # h: hidden layer # views and latent_spaces: specify number of neurons in each view and latent space respectively # params: initial weights of the orthogonal autoencoders self.x = x self.knob = knob self.views = views self.latent_spaces = latent_spaces # sets of weights self.w1 = np.zeros((np.sum(latent_spaces), np.sum(views) + 1)) self.w2 = np.zeros((np.sum(views), np.sum(latent_spaces) + 1)) # add orthogonal constraints start_idx_hidden = np.cumsum(self.latent_spaces) start_idx_input = np.cumsum(np.append([0],self.views)) # public latent space has fully connection self.w1[0:start_idx_hidden[0],:] = 1 # private latent spaces only connect to respective views for i in range(latent_spaces.size-1): self.w1[start_idx_hidden[i]: start_idx_hidden[i+1], start_idx_input[i]: start_idx_input[i+1]] = 1 self.w2[:, :-1] = np.transpose(self.w1[:, :-1]) self.w2[:, -1] = 1 # index of effective weigths self.index1 = np.where( self.w1 != 0 ) self.index2 = np.where( self.w2 != 0 ) # # randomly initialize weights # self.w1[self.index1] = randInitWeights(self.w1.shape)[self.index1] # self.w2[self.index2] = randInitWeights(self.w2.shape)[self.index2] # print self.w1 # print self.w2 def feedforward(self): instance_count = self.x.shape[1] bias = np.ones((1, instance_count)) # a's are with bias self.a1 = np.concatenate(( self.x, bias )) # before activation self.h = np.dot(self.w1, self.a1) self.a2 = np.concatenate(( activate(self.h), bias )) self.y = np.dot(self.w2, self.a2) self.a3 = activate(self.y) return self.a3 def backpropogateT(self, weights, y): self.weightSplit(weights) self.feedforward() return self.backpropogate(y) def backpropogate(self, y): # knob is to prevent over-fitting instance_count = self.x.shape[1] delta = (self.a3 - y)/instance_count * activateGradient(self.y) self.w2_gradient = np.dot(delta, np.transpose(self.a2)) # regularization self.w2_gradient[:, :-1] += np.dot(self.knob, self.w2[:, :-1])/instance_count delta = np.dot(np.transpose(self.w2[:, :-1]), delta) * activateGradient(self.h) self.w1_gradient = np.dot(delta, np.transpose(self.a1)) # regularization self.w1_gradient[:, :-1] += np.dot(self.knob, self.w1[:, :-1])/instance_count return np.concatenate(( self.w1_gradient[self.index1].flatten(), self.w2_gradient[self.index2].flatten() ), axis=1) def costT(self, weights, y): self.weightSplit(weights) self.feedforward() return self.cost(y) def cost(self, y): instance_count = self.x.shape[1] result = np.sum(np.square(self.w1)) + np.sum(np.square(self.w2)) result = np.sum(np.square(self.a3 - y)) +
np.dot(self.knob, result)
numpy.dot
# (c) <NAME>, 2010-2022. MIT License. Based on own private work over the years. import time import warnings from functools import partial from typing import Any, Optional import numpy as np import pandas as pd from scipy.stats import chi2, f from sklearn.base import BaseEstimator, TransformerMixin from sklearn.cross_decomposition import PLSRegression as PLS_sklearn from sklearn.decomposition import PCA as PCA_sklearn from sklearn.utils.validation import check_is_fitted from .plots import loadings_plot, score_plot, spe_plot, t2_plot epsqrt = np.sqrt(np.finfo(float).eps) class SpecificationWarning(UserWarning): """Parent warning class.""" pass class MCUVScaler(BaseEstimator, TransformerMixin): """ Create our own mean centering and scaling to unit variance (MCUV) class The default scaler in sklearn does not handle small datasets accurately, with ddof. """ def __init__(self): pass def fit(self, X, y=None): self.center_ = pd.DataFrame(X).mean() # this is the key difference with "preprocessing.StandardScaler" self.scale_ = pd.DataFrame(X).std(ddof=1) self.scale_[self.scale_ == 0] = 1.0 # columns with no variance are left as-is. return self def transform(self, X): check_is_fitted(self, "center_") check_is_fitted(self, "scale_") X = pd.DataFrame(X).copy() return (X - self.center_) / self.scale_ def inverse_transform(self, X): check_is_fitted(self, "center_") check_is_fitted(self, "scale_") X = pd.DataFrame(X).copy() return X * self.scale_ + self.center_ class PCA(PCA_sklearn): def __init__( self, n_components=None, *, copy=True, whiten=False, svd_solver="auto", tol=0.0, iterated_power="auto", random_state=None, # Own extra inputs, for the case when there is missing data missing_data_settings: Optional[dict] = None, ): super().__init__( n_components=n_components, copy=copy, whiten=whiten, svd_solver=svd_solver, tol=tol, iterated_power=iterated_power, random_state=random_state, ) self.n_components: int = n_components self.missing_data_settings = missing_data_settings self.has_missing_data = False def fit(self, X, y=None) -> PCA_sklearn: """ Fits a principal component analysis (PCA) model to the data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where `n_samples` is the number of samples (rows) and `n_features` is the number of features (columns). y : Not used; by default None Returns ------- PCA Model object. """ if not isinstance(X, pd.DataFrame): X = pd.DataFrame(X) self.N, self.K = X.shape # Check if number of components is supported against maximum requested min_dim = int(min(self.N, self.K)) self.A: int = min_dim if self.n_components is None else int(self.n_components) if self.A > min_dim: warn = ( "The requested number of components is more than can be " "computed from data. The maximum number of components is " f"the minimum of either the number of rows ({self.N}) or " f"the number of columns ({self.K})." ) warnings.warn(warn, SpecificationWarning) self.A = self.n_components = min_dim if np.any(X.isna()): # If there are missing data, then the missing data settings apply. Defaults are: # # md_method = "pmp" # md_tol = np.sqrt(np.finfo(float).eps) # md_max_iter = 1000 default_mds = dict(md_method="tsr", md_tol=epsqrt, md_max_iter=1000) if isinstance(self.missing_data_settings, dict): default_mds.update(self.missing_data_settings) self.missing_data_settings = default_mds self = PCA_missing_values( n_components=self.n_components, missing_data_settings=self.missing_data_settings, ) self.N, self.K = X.shape self.A = self.n_components self.fit(X) else: self = super().fit(X) self.x_loadings = self.components_.T self.extra_info = {} self.extra_info["timing"] = np.zeros((1, self.A)) * np.nan self.extra_info["iterations"] = np.zeros((1, self.A)) * np.nan # We have now fitted the model. Apply some convenience shortcuts for the user. self.A = self.n_components self.N = self.n_samples_ self.K = self.n_features_ self.loadings = pd.DataFrame(self.x_loadings.copy()) self.loadings.index = X.columns component_names = [a + 1 for a in range(self.A)] self.loadings.columns = component_names self.scaling_factor_for_scores = pd.Series( np.sqrt(self.explained_variance_), index=component_names, name="Standard deviation per score", ) self.Hotellings_T2 = pd.DataFrame( np.zeros(shape=(self.N, self.A)), columns=component_names, index=X.index, # name="Hotelling's T^2 statistic, per component", ) if self.has_missing_data: self.x_scores = pd.DataFrame( self.x_scores_, columns=component_names, index=X.index ) self.squared_prediction_error = pd.DataFrame( self.squared_prediction_error_, columns=component_names, index=X.index.copy(), ) self.R2 = pd.Series( self.R2_, index=component_names, name="Model's R^2, per component", ) self.R2cum = pd.Series( self.R2cum_, index=component_names, name="Cumulative model's R^2, per component", ) self.R2X_cum = pd.DataFrame( self.R2X_cum_, columns=component_names, index=X.columns, # name ="Per variable R^2, per component" ) else: self.x_scores = pd.DataFrame( super().fit_transform(X), columns=component_names, index=X.index ) self.squared_prediction_error = pd.DataFrame( np.zeros((self.N, self.A)), columns=component_names, index=X.index.copy(), ) self.R2 = pd.Series( np.zeros(shape=(self.A,)), index=component_names, name="Model's R^2, per component", ) self.R2cum = pd.Series( np.zeros(shape=(self.A,)), index=component_names, name="Cumulative model's R^2, per component", ) self.R2X_cum = pd.DataFrame( np.zeros(shape=(self.K, self.A)), columns=component_names, index=X.columns, # name ="Per variable R^2, per component" ) if not self.has_missing_data: Xd = X.copy() prior_SSX_col = ssq(Xd.values, axis=0) base_variance = np.sum(prior_SSX_col) for a in range(self.A): Xd -= self.x_scores.iloc[:, [a]] @ self.loadings.iloc[:, [a]].T # These are the Residual Sums of Squares (RSS); i.e X-X_hat row_SSX = ssq(Xd.values, axis=1) col_SSX = ssq(Xd.values, axis=0) # Don't use a check correction factor. Define SPE simply as the sum of squares of # the errors, then take the square root, so it is interpreted like a standard error. # If the user wants to normalize it, then this is a clean base value to start from. self.squared_prediction_error.iloc[:, a] = np.sqrt(row_SSX) # TODO: some entries in prior_SSX_col can be zero and leads to nan's in R2X_cum self.R2X_cum.iloc[:, a] = 1 - col_SSX / prior_SSX_col # R2 and cumulative R2 value for the whole block self.R2cum.iloc[a] = 1 - sum(row_SSX) / base_variance if a > 0: self.R2.iloc[a] = self.R2cum.iloc[a] - self.R2cum.iloc[a - 1] else: self.R2.iloc[a] = self.R2cum.iloc[a] # end: has no missing data for a in range(self.A): self.Hotellings_T2.iloc[:, a] = ( self.Hotellings_T2.iloc[:, max(0, a - 1)] + (self.x_scores.iloc[:, a] / self.scaling_factor_for_scores.iloc[a]) ** 2 ) # Replace `self.loadings` with self.x_loadings self.x_loadings = self.loadings self.ellipse_coordinates = partial( ellipse_coordinates, n_components=self.n_components, scaling_factor_for_scores=self.scaling_factor_for_scores, n_rows=self.N, ) self.T2_limit = partial(T2_limit, n_components=self.n_components, n_rows=self.N) self.SPE_plot = partial(spe_plot, model=self) self.T2_plot = partial(t2_plot, model=self) self.loadings_plot = partial(loadings_plot, model=self, loadings_type="p") self.score_plot = partial(score_plot, model=self) return self def fit_transform(self, X, y=None): self.fit(X) assert False, "Still do the transform part" def SPE_limit(self, conf_level=0.95) -> float: check_is_fitted(self, "squared_prediction_error") return spe_calculation( spe_values=self.squared_prediction_error.iloc[:, self.A - 1], conf_level=conf_level, ) def predict(self, X): """ Using the PCA model on new data coming in matrix X. """ class State(object): """Class object to hold the prediction results together.""" pass state = State() state.N, state.K = X.shape assert ( self.K == state.K ), "Prediction data must have same number of columns as training data." state.x_scores = X @ self.x_loadings # TODO: handle the missing data version here still for a in range(self.A): pass # p = self.x_loadings.iloc[:, [a]] # temp = X @ self.x_loadings.iloc[:, [a]] # X_mcuv -= temp @ p.T # state.x_scores[:, [a]] = temp # Scores are calculated, now do the rest state.Hotellings_T2 = np.sum( np.power((state.x_scores / self.scaling_factor_for_scores.values), 2), 1 ) # Calculate SPE-residuals (sum over rows of the errors) X_mcuv = X.copy() X_mcuv -= state.x_scores @ self.x_loadings.T state.squared_prediction_error = np.sqrt(np.power(X_mcuv, 2).sum(axis=1)) return state class PCA_missing_values(BaseEstimator, TransformerMixin): """ Create our PCA class if there is even a single missing data value in the X input array. The default method to impute missing values is the TSR algorithm (`md_method="tsr"`). Missing data method options are: * 'pmp' Projection to Model Plane * 'scp' Single Component Projection * 'nipals' Same as 'scp': non-linear iterative partial least squares. * 'tsr': TODO * Other options? See papers by <NAME> and also: https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/cem.750 """ valid_md_methods = ["pmp", "scp", "nipals", "tsr"] def __init__( self, n_components=None, copy: bool = True, missing_data_settings=dict, ): self.n_components = n_components self.missing_data_settings = missing_data_settings self.has_missing_data = True self.missing_data_settings["md_max_iter"] = int( self.missing_data_settings["md_max_iter"] ) assert ( self.missing_data_settings["md_tol"] < 10 ), "Tolerance should not be too large" assert ( self.missing_data_settings["md_tol"] > epsqrt**1.95 ), "Tolerance must exceed machine precision" assert self.missing_data_settings["md_method"] in self.valid_md_methods, ( f"Missing data method is not recognized. Must be one of {self.valid_md_methods}.", ) def fit(self, X, y=None): # Force input to NumPy array: self.data = np.asarray(X) # Other setups: self.n_components = self.A self.n_samples_ = self.N self.n_features_ = self.K self.x_loadings = np.zeros((self.K, self.A)) self.x_scores_ = np.zeros((self.N, self.A)) self.R2_ = np.zeros(shape=(self.A,)) self.R2cum_ = np.zeros(shape=(self.A,)) self.R2X_cum_ = np.zeros(shape=(self.K, self.A)) self.squared_prediction_error_ = np.zeros((self.N, self.A)) # Perform MD algorithm here if self.missing_data_settings["md_method"].lower() == "pmp": self._fit_pmp(X) elif self.missing_data_settings["md_method"].lower() in ["scp", "nipals"]: self._fit_nipals_pca(settings=self.missing_data_settings) elif self.missing_data_settings["md_method"].lower() in ["tsr"]: self._fit_tsr(settings=self.missing_data_settings) # Additional calculations, which can be done after the missing data method is complete. self.explained_variance_ = np.diag(self.x_scores_.T @ self.x_scores_) / ( self.N - 1 ) return self def transform(self, X): check_is_fitted(self, "blah") X = X.copy() return X def inverse_transform(self, X): check_is_fitted(self, "blah") X = X.copy() return X def _fit_nipals_pca(self, settings): """ Internal method to fit the PCA model using the NIPALS algorithm. """ # NIPALS algorithm K, A = self.K, self.A # Create direct links to the data Xd = np.asarray(self.data) base_variance = ssq(Xd) # Initialize storage: self.extra_info = {} self.extra_info["timing"] = np.zeros(A) * np.nan self.extra_info["iterations"] = np.zeros(A) * np.nan for a in np.arange(A): # Timers and housekeeping start_time = time.time() itern = 0 start_SS_col = ssq(Xd, axis=0) if sum(start_SS_col) < epsqrt: emsg = ( "There is no variance left in the data array: cannot " f"compute any more components beyond component {a}." ) raise RuntimeError(emsg) # Initialize t_a with random numbers, or carefully select a column # from X. <-- Don't do this anymore. # Rather: Pick a column from X as the initial guess instead. t_a_guess = Xd[:, [0]] # .reshape(self.N, 1) t_a_guess[np.isnan(t_a_guess)] = 0 t_a = t_a_guess + 1.0 p_a = np.zeros((K, 1)) while not ( terminate_check(t_a_guess, t_a, iterations=itern, settings=settings) ): # 0: Richardson's acceleration, or any numerical acceleration # method for PCA where there is slow convergence? # 0: starting point for convergence checking on next loop t_a_guess = t_a.copy() # 1: Regress the score, t_a, onto every column in X, compute the # regression coefficient and store in p_a # p_a = X.T * t_a / (t_a.T * t_a) # p_a = (X.T)(t_a) / ((t_a.T)(t_a)) # p_a = np.dot(X.T, t_a) / ssq(t_a) p_a = quick_regress(Xd, t_a) # 2: Normalize p_a to unit length p_a /= np.sqrt(ssq(p_a)) # 3: Now regress each row in X on the p_a vector, and store the # regression coefficient in t_a # t_a = X * p_a / (p_a.T * p_a) # t_a = (X)(p_a) / ((p_a.T)(p_a)) # t_a = np.dot(X, p_a) / ssq(p_a) t_a = quick_regress(Xd, p_a) itern += 1 self.extra_info["timing"][a] = time.time() - start_time self.extra_info["iterations"][a] = itern # Loop terminated! Now deflate the X-matrix Xd -= np.dot(t_a, p_a.T) # These are the Residual Sums of Squares (RSS); i.e X-X_hat row_SSX = ssq(Xd, axis=1) col_SSX = ssq(Xd, axis=0) self.squared_prediction_error_.iloc[:, a] = np.sqrt(row_SSX) # TODO: some entries in start_SS_col can be zero and leads to nan's in R2X_cum self.R2X_cum_.iloc[:, a] = 1 - col_SSX / start_SS_col # R2 and cumulative R2 value for the whole block self.R2cum_.iloc[a] = 1 - sum(row_SSX) / base_variance if a > 0: self.R2_.iloc[a] = self.R2cum_.iloc[a] - self.R2cum_.iloc[a - 1] else: self.R2_.iloc[a] = self.R2cum_.iloc[a] # VIP value (only calculated for X-blocks); only last column is useful # self.VIP_a = np.zeros((self.K, self.A)) # self.VIP = np.zeros(self.K) # Store results # ------------- # Flip the signs of the column vectors in P so that the largest # magnitude element is positive # (<NAME>, Geladi, PCA, CILS, 1987, p 42) # http://dx.doi.org/10.1016/0169-7439(87)80084-9 max_el_idx = np.argmax(np.abs(p_a)) if np.sign(p_a[max_el_idx]) < 1: p_a *= -1.0 t_a *= -1.0 # Store the loadings and scores self.x_loadings.iloc[:, a] = p_a.flatten() self.x_scores_.iloc[:, a] = t_a.flatten() # end looping on A components def _fit_tsr(self, settings): delta = 1e100 Xd = np.asarray(self.data) N, K, A = self.N, self.K, self.A mmap = np.isnan(Xd) # Could impute missing values per row, but leave it at zero, assuming the data are MCUV. Xd[mmap] = 0.0 itern = 0 while (itern < settings["md_max_iter"]) and (delta > settings["md_tol"]): itern += 1 missing_X = Xd[mmap] mean_X = np.mean(Xd, axis=0) S = np.cov(Xd, rowvar=False, ddof=1) Xc = Xd - mean_X if N > K: _, _, V = np.linalg.svd(Xc, full_matrices=False) else: V, _, _ = np.linalg.svd(Xc.T, full_matrices=False) V = V.T[:, 0:A] # transpose first for n in range(N): # If there are missing values (mis) in the n-th row. Compared to obs-erved values. row_mis = mmap[n, :] row_obs = ~row_mis if np.any(row_mis): # Form the so-called key-matrix, L L = V[row_obs, 0 : min(A, sum(row_obs))] S11 = S[row_obs, :][:, row_obs] S21 = S[row_mis, :][:, row_obs] z2 = (S21 @ L) @ np.linalg.pinv(L.T @ S11 @ L) @ L.T Xc[n, row_mis] = z2 @ Xc[n, row_obs] Xd = Xc + mean_X delta = np.mean((Xd[mmap] - missing_X) ** 2) # All done: return the results in `self` S = np.cov(Xd, rowvar=False, ddof=1) _, _, V = np.linalg.svd(S, full_matrices=False) self.x_loadings = (V[0:A, :]).T # transpose result to the right shape: K x A self.x_scores_ = (Xd - np.mean(Xd, axis=0)) @ self.x_loadings self.data = Xd class PLS(PLS_sklearn): def __init__( self, n_components: int = 2, *, scale: bool = True, max_iter: int = 1000, tol: float = epsqrt, copy: bool = True, # Own extra inputs, for the case when there is missing data missing_data_settings: Optional[dict] = None, ): super().__init__( n_components=n_components, scale=scale, max_iter=max_iter, tol=tol, copy=copy, ) self.n_components: int = n_components self.missing_data_settings = missing_data_settings self.has_missing_data = False def fit(self, X, Y) -> PLS_sklearn: """ Fits a projection to latent structures (PLS) or Partial Least Square (PLS) model to the data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where `n_samples` is the number of samples (rows) and `n_features` is the number of features (columns). Y : array-like, shape (n_samples, n_targets) Training data, where `n_samples` is the number of samples (rows) and `n_targets` is the number of target outputs (columns). Returns ------- PLS Model object. References ---------- Abdi, "Partial least squares regression and projection on latent structure regression (PLS Regression)", 2010, DOI: 10.1002/wics.51 """ self.N, self.K = X.shape self.Ny, self.M = Y.shape assert self.Ny == self.N, ( f"The X and Y arrays must have the same number of rows: X has {self.N} and " f"Y has {self.Ny}." ) # Check if number of components is supported against maximum requested min_dim = min(self.N, self.K) self.A = min_dim if self.n_components is None else int(self.n_components) if self.A > min_dim: warn = ( "The requested number of components is more than can be " "computed from data. The maximum number of components is " f"the minimum of either the number of rows ({self.N}) or " f"the number of columns ({self.K})." ) warnings.warn(warn, SpecificationWarning) self.A = self.n_components = min_dim if np.any(Y.isna()) or np.any(X.isna()): # If there are missing data, then the missing data settings apply. Defaults are: # # md_method = "tsr" # md_tol = np.sqrt(np.finfo(float).eps) # md_max_iter = self.max_iter default_mds = dict( md_method="tsr", md_tol=epsqrt, md_max_iter=self.max_iter ) if isinstance(self.missing_data_settings, dict): default_mds.update(self.missing_data_settings) self.missing_data_settings = default_mds self = PLS_missing_values( n_components=self.n_components, missing_data_settings=self.missing_data_settings, ) self.N, self.K = X.shape self.Ny, self.M = Y.shape self.A = self.n_components # Call the sub-function to do the PLS fit when missing data are present self.fit(X, Y) else: self = super().fit(X, Y) # x_scores #T: N x A # y_scores # U: N x A # x_weights # W: K x A # y_weights # identical values to y_loadings. So this is redundant then. # x_loadings # P: K x A # y_loadings # C: M x A self.extra_info = {} self.extra_info["timing"] = np.zeros(self.A) * np.nan self.extra_info["iterations"] = np.array(self.n_iter_) # We have now fitted the model. Apply some convenience shortcuts for the user. self.A = self.n_components # Further convenience calculations # "direct_weights" is matrix R = W(P'W)^{-1} [R is KxA matrix]; useful since T = XR direct_weights = self.x_weights_ @ np.linalg.inv( self.x_loadings_.T @ self.x_weights_ ) # beta = RC' [KxA by AxM = KxM]: the KxM matrix gives the direct link from the k-th (input) # X variable, to the m-th (output) Y variable. beta_coefficients = direct_weights @ self.y_loadings_.T # Initialize storage: component_names = [a + 1 for a in range(self.A)] self.x_scores = pd.DataFrame( self.x_scores_, index=X.index, columns=component_names ) self.y_scores = pd.DataFrame( self.y_scores_, index=Y.index, columns=component_names ) self.x_weights = pd.DataFrame( self.x_weights_, index=X.columns, columns=component_names ) self.y_weights = pd.DataFrame( self.y_weights_, index=Y.columns, columns=component_names ) self.x_loadings = pd.DataFrame( self.x_loadings_, index=X.columns, columns=component_names ) self.y_loadings = pd.DataFrame( self.y_loadings_, index=Y.columns, columns=component_names ) self.predictions = pd.DataFrame( self.x_scores @ self.y_loadings.T, index=Y.index, columns=Y.columns ) self.direct_weights = pd.DataFrame( direct_weights, index=X.columns, columns=component_names ) self.beta_coefficients = pd.DataFrame( beta_coefficients, index=X.columns, columns=Y.columns ) self.explained_variance = np.diag(self.x_scores.T @ self.x_scores) / ( self.N - 1 ) self.scaling_factor_for_scores = pd.Series( np.sqrt(self.explained_variance), index=component_names, name="Standard deviation per score", ) self.Hotellings_T2 = pd.DataFrame( np.zeros(shape=(self.N, self.A)), columns=component_names, index=X.index.copy(), ) self.Hotellings_T2.index.name = "Hotelling's T^2 statistic, per component (col)" self.squared_prediction_error = pd.DataFrame( np.zeros((self.N, self.A)), columns=component_names, index=X.index.copy(), ) self.R2 = pd.Series( np.zeros(shape=(self.A)), index=component_names, name="Output R^2, per component (col)", ) self.R2cum = pd.Series( np.zeros(shape=(self.A)), index=component_names, name="Output cumulative R^2, per component (col)", ) self.R2X_cum = pd.DataFrame( np.zeros(shape=(self.K, self.A)), index=X.columns.copy(), columns=component_names, ) self.R2X_cum.index.name = "R^2 per variable (row), per component (col)" self.R2Y_cum = pd.DataFrame( np.zeros(shape=(self.M, self.A)), index=Y.columns.copy(), columns=component_names, ) self.R2Y_cum.index.name = "R^2 per variable (row), per component (col)" self.RMSE = pd.DataFrame( np.zeros(shape=(self.M, self.A)), index=Y.columns.copy(), columns=component_names, ) self.RMSE.index.name = ( "Root mean square error per variable (row), per component (col)" ) Xd = X.copy() Yd = Y.copy() prior_SSX_col = ssq(Xd.values, axis=0) prior_SSY_col = ssq(Yd.values, axis=0) base_variance_Y = np.sum(prior_SSY_col) for a in range(self.A): self.Hotellings_T2.iloc[:, a] = ( self.Hotellings_T2.iloc[:, max(0, a - 1)] + (self.x_scores.iloc[:, a] / self.scaling_factor_for_scores.iloc[a]) ** 2 ) Xd -= self.x_scores.iloc[:, [a]] @ self.x_loadings.iloc[:, [a]].T y_hat = ( self.x_scores.iloc[:, 0 : (a + 1)] @ self.y_loadings.iloc[:, 0 : (a + 1)].T ) # These are the Residual Sums of Squares (RSS); i.e X-X_hat row_SSX = ssq(Xd.values, axis=1) col_SSX = ssq(Xd.values, axis=0) row_SSY = ssq(y_hat.values, axis=1) col_SSY = ssq(y_hat.values, axis=0) # R2 and cumulative R2 value for the whole block self.R2cum.iloc[a] = sum(row_SSY) / base_variance_Y if a > 0: self.R2.iloc[a] = self.R2cum.iloc[a] - self.R2cum.iloc[a - 1] else: self.R2.iloc[a] = self.R2cum.iloc[a] # Don't use a check correction factor. Define SPE simply as the sum of squares of # the errors, then take the square root, so it is interpreted like a standard error. # If the user wants to normalize it, then this is a clean base value to start from. self.squared_prediction_error.iloc[:, a] = np.sqrt(row_SSX) # TODO: some entries in prior_SSX_col can be zero and leads to nan's in R2X_cum self.R2X_cum.iloc[:, a] = 1 - col_SSX / prior_SSX_col self.R2Y_cum.iloc[:, a] = col_SSY / prior_SSY_col self.RMSE.iloc[:, a] = (Yd.values - y_hat).pow(2).mean().pow(0.5) self.ellipse_coordinates = partial( ellipse_coordinates, n_components=self.n_components, scaling_factor_for_scores=self.scaling_factor_for_scores, n_rows=self.N, ) self.T2_limit = partial(T2_limit, n_components=self.n_components, n_rows=self.N) self.SPE_plot = partial(spe_plot, model=self) self.T2_plot = partial(t2_plot, model=self) self.loadings_plot = partial(loadings_plot, model=self) self.score_plot = partial(score_plot, model=self) return self def predict(self, X): """ Using the PLS model on new data coming in matrix X. """ class State(object): """Class object to hold the prediction results together.""" pass state = State() state.N, state.K = X.shape assert ( self.K == state.K ), "Prediction data must have same number of columns as training data." state.x_scores = X @ self.direct_weights # TODO: handle the missing data version here still for a in range(self.A): pass # p = self.x_loadings.iloc[:, [a]] # w = self.x_weights.iloc[:, [a]] # temp = X @ self.direct_weights.iloc[:, [a]] # X_mcuv -= temp @ p.T # state.x_scores[:, [a]] = temp # Scores are calculated, now do the rest state.Hotellings_T2 = np.sum( np.power((state.x_scores / self.scaling_factor_for_scores.values), 2), 1 ) # Calculate SPE-residuals (sum over rows of the errors) X_mcuv = X.copy() X_mcuv -= state.x_scores @ self.x_loadings.T state.squared_prediction_error = np.sqrt(np.power(X_mcuv, 2).sum(axis=1)) # Predicted values from the model (user still has to un-preprocess these predictions!) state.y_hat = state.x_scores @ self.y_loadings.T return state def SPE_limit(self, conf_level=0.95) -> float: check_is_fitted(self, "squared_prediction_error") return spe_calculation( spe_values=self.squared_prediction_error.iloc[:, self.A - 1], conf_level=conf_level, ) class PLS_missing_values(BaseEstimator, TransformerMixin): """ Create our PLS class if there is even a single missing data value in the X input array. The default method to impute missing values is the TSR algorithm (`md_method="tsr"`). Missing data method options are: * 'pmp' Projection to Model Plane * 'scp' Single Component Projection * 'nipals' Same as 'scp': non-linear iterative partial least squares. * 'tsr': Trimmed score regression * Other options? See papers by <NAME> and also: https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/cem.750 """ valid_md_methods = ["pmp", "scp", "nipals", "tsr"] def __init__( self, n_components=None, copy: bool = True, missing_data_settings=dict, ): self.n_components = n_components self.missing_data_settings = missing_data_settings self.has_missing_data = True self.missing_data_settings["md_max_iter"] = int( self.missing_data_settings["md_max_iter"] ) assert ( self.missing_data_settings["md_tol"] < 10 ), "Tolerance should not be too large" assert ( self.missing_data_settings["md_tol"] > epsqrt**1.95 ), "Tolerance must exceed machine precision" assert self.missing_data_settings["md_method"] in self.valid_md_methods, ( f"Missing data method is not recognized. Must be one of {self.valid_md_methods}.", ) def fit(self, X, Y): """ Fits a PLS latent variable model between `X` and `Y` data arrays, accounting for missing values (nan's) in either or both arrays. 1. Höskuldsson, PLS regression methods, Journal of Chemometrics, 2(3), 211-228, 1998, http://dx.doi.org/10.1002/cem.1180020306 """ # Force input to NumPy array: self.Xd = np.asarray(X) self.Yd = np.asarray(Y) if np.any(np.sum(self.Yd, axis=1) == 0): raise Warning( ( "Cannot handle the case yet where the entire observation in Y-matrix is " "missing. Please remove those rows and refit model." ) ) # Other setups: self.n_components = self.A self.n_samples_ = self.N self.n_features_ = self.K # self.M ? self.x_scores_ = np.zeros((self.N, self.A)) # T: N x A self.y_scores_ = np.zeros((self.N, self.A)) # U: N x A self.x_weights_ = np.zeros((self.K, self.A)) # W: K x A self.y_weights_ = None self.x_loadings_ = np.zeros((self.K, self.A)) # P: K x A self.y_loadings_ = np.zeros((self.M, self.A)) # C: M x A self.R2 = np.zeros(shape=(self.A,)) self.R2cum = np.zeros(shape=(self.A,)) self.R2X_cum = np.zeros(shape=(self.K, self.A)) self.R2Y_cum = np.zeros(shape=(self.M, self.A)) self.squared_prediction_error = np.zeros((self.N, self.A)) # Perform MD algorithm here if self.missing_data_settings["md_method"].lower() == "pmp": self._fit_pmp_pls(X) elif self.missing_data_settings["md_method"].lower() in ["scp", "nipals"]: self._fit_nipals_pls(settings=self.missing_data_settings) elif self.missing_data_settings["md_method"].lower() in ["tsr"]: self._fit_tsr_pls(settings=self.missing_data_settings) # Additional calculations, which can be done after the missing data method is complete. # self.explained_variance_ = np.diag(self.x_scores.T @ self.x_scores) / (self.N - 1) return self def _fit_nipals_pls(self, settings): """ Internal method to fit the PLS model using the NIPALS algorithm. """ # NIPALS algorithm A = self.A # Initialize storage: self.extra_info = {} self.extra_info["timing"] = np.zeros(A) * np.nan self.extra_info["iterations"] = np.zeros(A) * np.nan for a in np.arange(A): # Timers and housekeeping start_time = time.time() itern = 0 start_SSX_col = ssq(self.Xd, axis=0) start_SSY_col = ssq(self.Yd, axis=0) if sum(start_SSX_col) < epsqrt: emsg = ( "There is no variance left in the data array for X: cannot " f"compute any more components beyond component {a}." ) raise RuntimeError(emsg) if sum(start_SSY_col) < epsqrt: emsg = ( "There is no variance left in the data array for Y: cannot " f"compute any more components beyond component {a}." ) raise RuntimeError(emsg) # Initialize t_a with random numbers, or carefully select a column from X or Y? # Find a column with the largest variance as t1_start; replace missing with zeros # All columns have the same variance if the data have been scaled to unit variance! u_a_guess = self.Yd[:, [0]] u_a_guess[np.isnan(u_a_guess)] = 0 u_a = u_a_guess + 1.0 while not ( terminate_check(u_a_guess, u_a, iterations=itern, settings=settings) ): # 0: starting point for convergence checking on next loop u_a_guess = u_a.copy() # 1: Regress the score, u_a, onto every column in X, compute the # regression coefficient and store in w_a # w_a = X.T * u_a / (u_a.T * u_a) w_a = quick_regress(self.Xd, u_a) # 2: Normalize w_a to unit length w_a /= np.sqrt(ssq(w_a)) # 3: Now regress each row in X on the w_a vector, and store the # regression coefficient in t_a # t_a = X * w_a / (w_a.T * w_a) t_a = quick_regress(self.Xd, w_a) # 4: Now regress score, t_a, onto every column in Y, compute the # regression coefficient and store in c_a # c_a = Y * t_a / (t_a.T * t_a) c_a = quick_regress(self.Yd, t_a) # 5: Now regress each row in Y on the c_a vector, and store the # regression coefficient in u_a # u_a = Y * c_a / (c_a.T * c_a) # # TODO(KGD): % Still handle case when entire row in Y is missing u_a = quick_regress(self.Yd, c_a) itern += 1 self.extra_info["timing"][a] = time.time() - start_time self.extra_info["iterations"][a] = itern if itern > settings["md_max_iter"]: Warning( "PLS missing data [SCP method]: maximum number of iterations reached!" ) # Loop terminated! # 6: Now deflate the X-matrix. To do that we need to calculate loadings for the # X-space. Regress columns of t_a onto each column in X and calculate loadings, p_a. # Use this p_a to deflate afterwards. p_a = quick_regress(self.Xd, t_a) # Note the similarity with step 4! self.Xd -= np.dot(t_a, p_a.T) # and that similarity helps understand self.Yd -= np.dot(t_a, c_a.T) # the deflation process. ## VIP value (only calculated for X-blocks); only last column is useful # self.stats.VIP_a = np.zeros((self.K, self.A)) # self.stats.VIP = np.zeros(self.K) # Store results # ------------- # Flip the signs of the column vectors in P so that the largest # magnitude element is positive (Wold, Esbensen, Geladi, PCA, # CILS, 1987, p 42) max_el_idx = np.argmax(np.abs(p_a)) if
np.sign(p_a[max_el_idx])
numpy.sign
# Copyright (c) 2011, <NAME> [see LICENSE.txt] # This software is funded in part by NIH Grant P20 RR016454. # Python 2 to 3 workarounds import sys if sys.version_info[0] == 2: _strobj = str _xrange = xrange elif sys.version_info[0] == 3: _strobj = str _xrange = range import unittest import warnings import os import numpy as np from pyvttbl import DataFrame from pyvttbl.plotting import interaction_plot from pyvttbl.misc.support import * class Test_interaction_plot(unittest.TestCase): def test0(self): """no error bars specified""" R = {'aggregate': None, 'clevels': [1], 'fname': 'output\\interaction_plot(WORDS~AGE_X_CONDITION).png', 'maintitle': 'WORDS by AGE * CONDITION', 'numcols': 1, 'numrows': 1, 'rlevels': [1], 'subplot_titles': [''], 'xmaxs': [1.5], 'xmins': [-0.5], 'y': [[[11.0, 14.8], [7.0, 6.5], [13.4, 17.6], [12.0, 19.3], [6.9, 7.6]]], 'yerr': [[]], 'ymin': 0.0, 'ymax': 27.183257964740832} # a simple plot df=DataFrame() df.TESTMODE=True df.read_tbl('data/words~ageXcondition.csv') D=df.interaction_plot('WORDS','AGE', seplines='CONDITION', output_dir='output') self.assertEqual(D['aggregate'], R['aggregate']) self.assertEqual(D['clevels'], R['clevels']) self.assertEqual(D['rlevels'], R['rlevels']) self.assertEqual(D['numcols'], R['numcols']) self.assertEqual(D['numrows'], R['numrows']) self.assertEqual(D['fname'], R['fname']) self.assertEqual(D['maintitle'], R['maintitle']) self.assertEqual(D['subplot_titles'], R['subplot_titles']) self.assertAlmostEqual(D['ymin'], R['ymin']) self.assertAlmostEqual(D['ymax'], R['ymax']) for d,r in zip(np.array(D['y']).flat, np.array(R['y']).flat): self.assertAlmostEqual(d,r) for d,r in zip(np.array(D['yerr']).flat, np.array(R['yerr']).flat): self.assertAlmostEqual(d,r) def test01(self): """confidence interval error bars specified""" R = {'aggregate': 'ci', 'clevels': [1], 'fname': 'output\\interaction_plot(WORDS~AGE_X_CONDITION,yerr=95% ci).png', 'maintitle': 'WORDS by AGE * CONDITION', 'numcols': 1, 'numrows': 1, 'rlevels': [1], 'subplot_titles': [''], 'xmaxs': [1.5], 'xmins': [-0.5], 'y': [[[11.0, 14.8], [7.0, 6.5], [13.4, 17.6], [12.0, 19.3], [6.9, 7.6]]], 'yerr': [[]], 'ymin': 0.0, 'ymax': 27.183257964740832} # a simple plot df=DataFrame() df.TESTMODE=True df.read_tbl('data/words~ageXcondition.csv') D=df.interaction_plot('WORDS','AGE', seplines='CONDITION', output_dir='output', yerr='ci') self.assertEqual(D['aggregate'], R['aggregate']) self.assertEqual(D['clevels'], R['clevels']) self.assertEqual(D['rlevels'], R['rlevels']) self.assertEqual(D['numcols'], R['numcols']) self.assertEqual(D['numrows'], R['numrows']) self.assertEqual(D['fname'], R['fname']) self.assertEqual(D['maintitle'], R['maintitle']) self.assertEqual(D['subplot_titles'], R['subplot_titles']) self.assertAlmostEqual(D['ymin'], R['ymin']) self.assertAlmostEqual(D['ymax'], R['ymax']) for d,r in zip(np.array(D['y']).flat, np.array(R['y']).flat): self.assertAlmostEqual(d,r) for d,r in zip(np.array(D['yerr']).flat, np.array(R['yerr']).flat): self.assertAlmostEqual(d,r) def test02(self): """using loftus and masson error bars""" # a simple plot df=DataFrame() df.read_tbl('data/words~ageXcondition.csv') aov = df.anova('WORDS', wfactors=['AGE','CONDITION']) aov.plot('WORDS','AGE', seplines='CONDITION', errorbars='ci', output_dir='output') def test1(self): R = {'aggregate': None, 'clevels': ['M1', 'M2', 'M3'], 'fname': 'output\\interaction_plot(ERROR~TIMEOFDAY_X_COURSE_X_MODEL,yerr=1.0).png', 'maintitle': 'ERROR by TIMEOFDAY * COURSE * MODEL', 'numcols': 3, 'numrows': 1, 'rlevels': [1], 'subplot_titles': ['M1', 'M2', 'M3'], 'xmaxs': [1.5, 1.5, 1.5], 'xmins': [-0.5, -0.5, -0.5], 'y': [[[ 9. , 4.33333333], [ 8.66666667, 3.66666667], [ 4.66666667, 1.66666667]], [[ 7.5 , 2.66666667], [ 6. , 2.66666667], [ 5. , 1.66666667]], [[ 5. , 2.66666667], [ 3.5 , 2.33333333], [ 2.33333333, 1.33333333]]], 'yerr': [[1.0, 1.0], [1.0, 1.0], [1.0, 1.0]], 'ymax': 11.119188627248182, 'ymin': 0.0} # specify yerr df=DataFrame() df.TESTMODE = True df.read_tbl('data/error~subjectXtimeofdayXcourseXmodel_MISSING.csv') D=df.interaction_plot('ERROR','TIMEOFDAY', seplines='COURSE', sepxplots='MODEL', yerr=1., output_dir='output') self.assertEqual(D['aggregate'], R['aggregate']) self.assertEqual(D['clevels'], R['clevels']) self.assertEqual(D['rlevels'], R['rlevels']) self.assertEqual(D['numcols'], R['numcols']) self.assertEqual(D['numrows'], R['numrows']) self.assertEqual(D['fname'], R['fname']) self.assertEqual(D['maintitle'], R['maintitle']) self.assertEqual(D['subplot_titles'], R['subplot_titles']) self.assertAlmostEqual(D['ymin'], R['ymin']) self.assertAlmostEqual(D['ymax'], R['ymax']) for d,r in zip(np.array(D['y']).flat, np.array(R['y']).flat): self.assertAlmostEqual(d,r) for d,r in zip(np.array(D['yerr']).flat, np.array(R['yerr']).flat): self.assertAlmostEqual(d,r) def test2(self): R = {'aggregate': 'ci', 'clevels': [1], 'fname': 'output\\interaction_plot(SUPPRESSION~CYCLE_X_AGE_X_PHASE,yerr=95% ci).png', 'maintitle': 'SUPPRESSION by CYCLE * AGE * PHASE', 'numcols': 1, 'numrows': 2, 'rlevels': ['I', 'II'], 'subplot_titles': ['I', 'II'], 'xmaxs': [4.1749999999999998, 4.1749999999999998], 'xmins': [0.32499999999999996, 0.32499999999999996], 'y': [[[ 17.33333333, 22.41666667, 22.29166667, 20.75 ], [ 7.34166667, 9.65 , 9.70833333, 9.10833333]], [[ 26.625 , 38.70833333, 39.08333333, 40.83333333], [ 10.24166667, 12.575 , 13.19166667, 12.79166667]]], 'yerr': [[ 1.81325589, 1.44901936, 1.60883063, 1.57118871], [ 2.49411239, 1.34873573, 1.95209851, 1.35412572]], 'ymax': 64.8719707118471, 'ymin': 0.0} # generate yerr df=DataFrame() df.TESTMODE = True df.read_tbl('data\suppression~subjectXgroupXageXcycleXphase.csv') D = df.interaction_plot('SUPPRESSION','CYCLE', seplines='AGE', sepyplots='PHASE', yerr='ci', output_dir='output') self.assertEqual(D['aggregate'], R['aggregate']) self.assertEqual(D['clevels'], R['clevels']) self.assertEqual(D['rlevels'], R['rlevels']) self.assertEqual(D['numcols'], R['numcols']) self.assertEqual(D['numrows'], R['numrows']) self.assertEqual(D['fname'], R['fname']) self.assertEqual(D['maintitle'], R['maintitle']) self.assertEqual(D['subplot_titles'], R['subplot_titles']) self.assertAlmostEqual(D['ymin'], R['ymin']) self.assertAlmostEqual(D['ymax'], R['ymax']) for d,r in zip(np.array(D['y']).flat,np.array(R['y']).flat): self.assertAlmostEqual(d,r) for d,r in zip(np.array(D['yerr']).flat,np.array(R['yerr']).flat): self.assertAlmostEqual(d,r) def test3(self): R = {'aggregate': 'ci', 'clevels': ['I', 'II'], 'fname': 'output\\whereGROUPnotLAB.png', 'maintitle': 'SUPPRESSION by CYCLE * AGE * PHASE * GROUP', 'numcols': 2, 'numrows': 2, 'rlevels': ['AA', 'AB'], 'subplot_titles': ['GROUP = AA, PHASE = AA', 'GROUP = AA, PHASE = AA', 'GROUP = AB, PHASE = AB', 'GROUP = AB, PHASE = AB'], 'xmaxs': [4.1500000000000004, 4.1500000000000004, 4.1500000000000004, 4.1500000000000004], 'xmins': [0.84999999999999998, 0.84999999999999998, 0.84999999999999998, 0.84999999999999998], 'y': [[[ 17.75 , 22.375, 23.125, 20.25 ], [ 8.675, 10.225, 10.5 , 9.925]], [[ 20.875, 28.125, 20.75 , 24.25 ], [ 8.3 , 10.25 , 9.525, 11.1 ]], [[ 12.625, 23.5 , 20. , 15.625], [ 5.525, 8.825, 9.125, 7.75 ]], [[ 22.75 , 41.125, 46.125, 51.75 ], [ 8.675, 13.1 , 14.475, 12.85 ]]], 'ymax': 64.8719707118471, 'ymin': 0.0} # separate y plots and separate x plots df=DataFrame() df.TESTMODE = True df.read_tbl('data\suppression~subjectXgroupXageXcycleXphase.csv') D = df.interaction_plot('SUPPRESSION','CYCLE', seplines='AGE', sepxplots='PHASE', sepyplots='GROUP',yerr='ci', where=[('GROUP','not in',['LAB'])], fname='whereGROUPnotLAB.png', output_dir='output') self.assertEqual(D['aggregate'], R['aggregate']) self.assertEqual(D['clevels'], R['clevels']) self.assertEqual(D['rlevels'], R['rlevels']) self.assertEqual(D['numcols'], R['numcols']) self.assertEqual(D['numrows'], R['numrows']) self.assertEqual(D['fname'], R['fname']) self.assertEqual(D['maintitle'], R['maintitle']) self.assertEqual(D['subplot_titles'], R['subplot_titles']) self.assertAlmostEqual(D['ymin'], R['ymin']) self.assertAlmostEqual(D['ymax'], R['ymax']) for d,r in zip(np.array(D['y']).flat,np.array(R['y']).flat): self.assertAlmostEqual(d,r) def test31(self): # separate y plots and separate x plots df=DataFrame() df.TESTMODE = True df.read_tbl('data\suppression~subjectXgroupXageXcycleXphase.csv') D = df.interaction_plot('SUPPRESSION','CYCLE', seplines='AGE', sepxplots='GROUP', sepyplots='PHASE', yerr='sem', output_dir='output') # the code for when seplines=None is in a different branch # these test that code def test4(self): R = {'aggregate': None, 'clevels': ['adjective', 'counting', 'imagery', 'intention', 'rhyming'], 'fname': 'output\\interaction_plot(WORDS~AGE_X_CONDITION).png', 'maintitle': 'WORDS by AGE * CONDITION', 'numcols': 5, 'numrows': 1, 'rlevels': [1], 'subplot_titles': ['adjective', 'counting', 'imagery', 'intention', 'rhyming'], 'xmaxs': [1.5, 1.5, 1.5, 1.5, 1.5], 'xmins': [-0.5, -0.5, -0.5, -0.5, -0.5], 'y': [[ 11. , 14.8], [ 7. , 6.5], [ 13.4, 17.6], [ 12. , 19.3], [ 6.9, 7.6]], 'yerr': [[], [], [], [], []], 'ymax': 27.183257964740832, 'ymin': 0.0} # a simple plot df=DataFrame() df.TESTMODE = True df.read_tbl('data/words~ageXcondition.csv') D = df.interaction_plot('WORDS','AGE', sepxplots='CONDITION', output_dir='output') self.assertEqual(D['aggregate'], R['aggregate']) self.assertEqual(D['clevels'], R['clevels']) self.assertEqual(D['rlevels'], R['rlevels']) self.assertEqual(D['numcols'], R['numcols']) self.assertEqual(D['numrows'], R['numrows']) self.assertEqual(D['fname'], R['fname']) self.assertEqual(D['maintitle'], R['maintitle']) self.assertEqual(D['subplot_titles'], R['subplot_titles']) self.assertAlmostEqual(D['ymin'], R['ymin']) self.assertAlmostEqual(D['ymax'], R['ymax']) for d,r in zip(np.array(D['y']).flat,
np.array(R['y'])
numpy.array
import time import numpy as np from scipy import signal import matplotlib.pyplot as plt def fft_window(tnum, nfft, window, overlap): # IN : full length of time series, nfft, window name, overlap ratio # OUT : bins, 1 x nfft window function # use overlapping bins = int(np.fix((int(tnum/nfft) - overlap)/(1.0 - overlap))) # window function if window == 'rectwin': # overlap = 0.5 win = np.ones(nfft) elif window == 'hann': # overlap = 0.5 win = np.hanning(nfft) elif window == 'hamm': # overlap = 0.5 win = np.hamming(nfft) elif window == 'kaiser': # overlap = 0.62 win = np.kaiser(nfft, beta=30) elif window == 'HFT248D': # overlap = 0.84 z = 2*np.pi/nfft*np.arange(0,nfft) win = 1 - 1.985844164102*np.cos(z) + 1.791176438506*np.cos(2*z) - 1.282075284005*np.cos(3*z) + \ 0.667777530266*np.cos(4*z) - 0.240160796576*np.cos(5*z) + 0.056656381764*np.cos(6*z) - \ 0.008134974479*np.cos(7*z) + 0.000624544650*np.cos(8*z) - 0.000019808998*np.cos(9*z) + \ 0.000000132974*np.cos(10*z) return bins, win def fftbins(x, dt, nfft, window, overlap, detrend=0, full=0): # IN : 1 x tnum data # OUT : bins x faxis fftdata tnum = len(x) bins, win = fft_window(tnum, nfft, window, overlap) win_factor = np.mean(win**2) # window factors # make an x-axis # ax = np.fft.fftfreq(nfft, d=dt) # full 0~fN -fN~-f1 if np.mod(nfft, 2) == 0: # even nfft ax = np.hstack([ax[0:int(nfft/2)], -(ax[int(nfft/2)]), ax[int(nfft/2):nfft]]) if full == 1: # full shift to -fN ~ 0 ~ fN ax = np.fft.fftshift(ax) else: # half 0~fN ax = ax[0:int(nfft/2+1)] # make fftdata if full == 1: # full shift to -fN ~ 0 ~ fN if np.mod(nfft, 2) == 0: # even nfft fftdata = np.zeros((bins, nfft+1), dtype=np.complex_) else: # odd nfft fftdata = np.zeros((bins, nfft), dtype=np.complex_) else: # half 0 ~ fN fftdata = np.zeros((bins, int(nfft/2+1)), dtype=np.complex_) for b in range(bins): idx1 = int(b*np.fix(nfft*(1 - overlap))) idx2 = idx1 + nfft sx = x[idx1:idx2] if detrend == 0: sx = signal.detrend(sx, type='constant') # subtract mean elif detrend == 1: sx = signal.detrend(sx, type='linear') sx = sx * win # apply window function # get fft SX = np.fft.fft(sx, n=nfft)/nfft # divide by the length if np.mod(nfft, 2) == 0: # even nfft SX = np.hstack([SX[0:int(nfft/2)], np.conj(SX[int(nfft/2)]), SX[int(nfft/2):nfft]]) if full == 1: # shift to -fN ~ 0 ~ fN SX = np.fft.fftshift(SX) else: # half 0 ~ fN SX = SX[0:int(nfft/2+1)] fftdata[b,:] = SX return ax, fftdata, win_factor def cwt(x, dt, df, detrend=0, full=1): # detrend signal if detrend == 0: x = signal.detrend(x, type='constant') # subtract mean elif detrend == 1: x = signal.detrend(x, type='linear') # make a t-axis tnum = len(x) nfft = nextpow2(tnum) # power of 2 t = np.arange(nfft)*dt # make a f-axis with constant df s0 = 2.0*dt # the smallest scale ax = np.arange(0.0, 1.0/(1.03*s0), df) # 1.03 for the Morlet wavelet function # scales old_settings = np.seterr(divide='ignore') sj = 1.0/(1.03*ax) np.seterr(**old_settings) dj = np.log2(sj/s0) / np.arange(len(sj)) # dj; necessary for reconstruction sj[0] = tnum*dt/2.0 dj[0] = 0 # remove infinity point due to fmin = 0 # Morlet wavelet function (unnormalized) omega0 = 6.0 # nondimensional wavelet frequency wf0 = lambda eta: np.pi**(-1.0/4) * np.exp(1.0j*omega0*eta) * np.exp(-1.0/2*eta**2) ts = np.sqrt(2)*sj # e-folding time for Morlet wavelet with omega0 = 6; significance level # FFT of signal X = np.fft.fft(x, n=nfft)/nfft # calculate CWT snum = len(sj) cwtdata = np.zeros((nfft, snum), dtype=np.complex_) for j, s in enumerate(sj): # nondimensional time axis at time scale s eta = t/s # FFT of the normalized wavelet function W = np.fft.fft( np.conj( wf0(eta - np.mean(eta))*np.sqrt(dt/s) ) ) # Wavelet transform at scae s for all n time cwtdata[:,j] = np.conj(np.fft.fftshift(np.fft.ifft(X * W) * nfft)) # phase direction correct # full size if full == 1: cwtdata = np.hstack([np.fliplr(np.conj(cwtdata)), cwtdata[:,1:]]) # real x only ax = np.hstack([-ax[::-1], ax[1:]]) return ax, cwtdata[0:tnum,:], dj, ts def cross_power(XX, YY, win_factor): Pxy = np.mean(XX * np.conjugate(YY), 0) Pxy = np.abs(Pxy).real / win_factor return Pxy def coherence(XX, YY): # normalization outside loop # Pxy = np.mean(XX * np.conjugate(YY), 0) # Pxx = np.mean(XX * np.conjugate(XX), 0).real # Pyy = np.mean(YY * np.conjugate(YY), 0).real # Gxy = np.abs(Pxy).real / np.sqrt(Pxx * Pyy) # normalization inside loop bins = XX.shape[0] val = np.zeros(XX.shape, dtype=np.complex_) for i in range(bins): X = XX[i,:] Y = YY[i,:] Pxx = X * np.matrix.conjugate(X) Pyy = Y * np.matrix.conjugate(Y) val[i,:] = X*np.matrix.conjugate(Y) / np.sqrt(Pxx*Pyy) # average over bins Gxy = np.mean(val, 0) Gxy = np.abs(Gxy).real return Gxy def cross_phase(XX, YY): Pxy = np.mean(XX * np.conjugate(YY), 0) Axy = np.arctan2(Pxy.imag, Pxy.real).real return Axy def correlation(XX, YY, win_factor): bins = XX.shape[0] nfreq = XX.shape[1] val = np.zeros(XX.shape, dtype=np.complex_) for b in range(bins): X = XX[b,:] Y = YY[b,:] val[b,:] = np.fft.ifftshift(X*np.matrix.conjugate(Y) / win_factor) val[b,:] = np.fft.ifft(val[b,:], n=nfreq)*nfreq val[b,:] = np.fft.fftshift(val[b,:]) val[b,:] = np.flip(val[b,:], axis=0) # average over bins; return real value Cxy = np.mean(val, 0) return Cxy.real def corr_coef(XX, YY): bins = XX.shape[0] nfreq = XX.shape[1] val = np.zeros(XX.shape, dtype=np.complex_) for b in range(bins): X = XX[b,:] Y = YY[b,:] x = np.fft.ifft(np.fft.ifftshift(X), n=nfreq)*nfreq Rxx = np.mean(x**2) y = np.fft.ifft(np.fft.ifftshift(Y), n=nfreq)*nfreq Ryy = np.mean(y**2) val[b,:] = np.fft.ifftshift(X*np.matrix.conjugate(Y)) val[b,:] = np.fft.ifft(val[b,:], n=nfreq)*nfreq val[b,:] = np.fft.fftshift(val[b,:]) val[b,:] = np.flip(val[b,:], axis=0)/np.sqrt(Rxx*Ryy) # average over bins; return real value cxy = np.mean(val, 0) return cxy.real def xspec(XX, YY, win_factor): val = np.abs(XX * np.conjugate(YY)).real return val def bicoherence(XX, YY): # ax1 = self.Dlist[dtwo].ax # full -fN ~ fN # ax2 = np.fft.ifftshift(self.Dlist[dtwo].ax) # full 0 ~ fN, -fN ~ -f1 # ax2 = ax2[0:int(nfft/2+1)] # half 0 ~ fN bins = XX.shape[0] full = XX.shape[1] half = int(full/2+1) # half length # calculate bicoherence B = np.zeros((full, half), dtype=np.complex_) P12 = np.zeros((full, half)) P3 = np.zeros((full, half)) val = np.zeros((full, half)) for b in range(bins): X = XX[b,:] # full -fN ~ fN Y = YY[b,:] # full -fN ~ fN Xhalf = np.fft.ifftshift(X) # full 0 ~ fN, -fN ~ -f1 Xhalf = Xhalf[0:half] # half 0 ~ fN X1 = np.transpose(np.tile(X, (half, 1))) X2 = np.tile(Xhalf, (full, 1)) X3 = np.zeros((full, half), dtype=np.complex_) for j in range(half): if j == 0: X3[0:, j] = Y[j:] else: X3[0:(-j), j] = Y[j:] B = B + X1 * X2 * np.matrix.conjugate(X3) # complex bin average P12 = P12 + (np.abs(X1 * X2).real)**2 # real average P3 = P3 + (np.abs(X3).real)**2 # real average # val = np.log10(np.abs(B)**2) # bispectrum old_settings = np.seterr(invalid='ignore') val = (np.abs(B)**2) / P12 / P3 # bicoherence np.seterr(**old_settings) # summation over pairs sum_val = np.zeros(full) for i in range(half): if i == 0: sum_val = sum_val + val[:,i] else: sum_val[i:] = sum_val[i:] + val[:-i,i] N = np.array([i+1 for i in range(half)] + [half for i in range(full-half)]) sum_val = sum_val / N # element wise division return val, sum_val def ritz_nonlinear(XX, YY): bins = XX.shape[0] full = XX.shape[1] kidx = get_kidx(full) Aijk = np.zeros((full, full), dtype=np.complex_) # Xo1 Xo2 cXo cAijk = np.zeros((full, full), dtype=np.complex_) # cXo1 cXo2 Xo Bijk = np.zeros((full, full), dtype=np.complex_) # Yo cXo1 cXo2 Aij = np.zeros((full, full)) # |Xo1 Xo2|^2 Ak = np.zeros(full) # Xo cXo Bk = np.zeros(full, dtype=np.complex_) # Yo cXo for b in range(bins): X = XX[b,:] # full -fN ~ fN Y = YY[b,:] # full -fN ~ fN # make Xi and Xj Xi = np.transpose(np.tile(X, (full, 1))) # columns of (-fN ~ fN) Xj = np.tile(X, (full, 1)) # rows of (-fN ~ fN) # make Xk and Yk Xk = np.zeros((full, full), dtype=np.complex_) Yk = np.zeros((full, full), dtype=np.complex_) for k in range(full): idx = kidx[k] for n, ij in enumerate(idx): Xk[ij] = X[k] Yk[ij] = Y[k] # do ensemble average Aijk = Aijk + Xi * Xj * np.matrix.conjugate(Xk) / bins cAijk = cAijk + np.matrix.conjugate(Xi) * np.matrix.conjugate(Xj) * Xk / bins Bijk = Bijk + np.matrix.conjugate(Xi) * np.matrix.conjugate(Xj) * Yk / bins Aij = Aij + (np.abs(Xi * Xj).real)**2 / bins Ak = Ak + (np.abs(X).real)**2 / bins Bk = Bk + Y * np.matrix.conjugate(X) / bins # Linear transfer function ~ growth rate Lk = np.zeros(full, dtype=np.complex_) bsum = np.zeros(full, dtype=np.complex_) asum = np.zeros(full) for k in range(full): idx = kidx[k] for n, ij in enumerate(idx): bsum[k] = bsum[k] + Aijk[ij] * Bijk[ij] / Aij[ij] asum[k] = asum[k] + (np.abs(Aijk[ij]).real)**2 / Aij[ij] Lk = (Bk - bsum) / (Ak - asum) # Quadratic transfer function ~ nonlinear energy transfer rate Lkk = np.zeros((full, full), dtype=np.complex_) for k in range(full): idx = kidx[k] for n, ij in enumerate(idx): Lkk[ij] = Lk[k] Qijk = (Bijk - Lkk * cAijk) / Aij return Lk, Qijk, Bk, Aijk def wit_nonlinear(XX, YY): bins = XX.shape[0] full = XX.shape[1] kidx = get_kidx(full) Lk = np.zeros(full, dtype=np.complex_) # Linear Qijk = np.zeros((full, full), dtype=np.complex_) # Quadratic print('For stable calculations, bins ({0}) >> full/2 ({1})'.format(bins, full/2)) for k in range(full): idx = kidx[k] # construct equations for each k U = np.zeros((bins, len(idx)+1), dtype=np.complex_) # N (number of ensembles) x P (number of pairs + 1) V = np.zeros(bins, dtype=np.complex_) # N x 1 for b in range(bins): U[b,0] = XX[b,k] for n, ij in enumerate(idx): U[b,n+1] = XX[b, ij[0]]*XX[b, ij[1]] V[b] = YY[b,k] # solution for each k H = np.matmul(np.linalg.pinv(U), V) Lk[k] = H[0] for n, ij in enumerate(idx): Qijk[ij] = H[n+1] # calculate others for the rates Aijk = np.zeros((full, full), dtype=np.complex_) # Xo1 Xo2 cXo Bk = np.zeros(full, dtype=np.complex_) # Yo cXo # print('DO NOT CALCULATE RATES') for b in range(bins): X = XX[b,:] # full -fN ~ fN Y = YY[b,:] # full -fN ~ fN # make Xi and Xj Xi = np.transpose(np.tile(X, (full, 1))) # columns of (-fN ~ fN) Xj = np.tile(X, (full, 1)) # rows of (-fN ~ fN) # make Xk and Yk Xk = np.zeros((full, full), dtype=np.complex_) for k in range(full): idx = kidx[k] for n, ij in enumerate(idx): Xk[ij] = X[k] # do ensemble average Aijk = Aijk + Xi * Xj * np.matrix.conjugate(Xk) / bins Bk = Bk + Y * np.matrix.conjugate(X) / bins return Lk, Qijk, Bk, Aijk def local_coherency(XX, YY, Lk, Qijk, Aijk): bins = XX.shape[0] full = XX.shape[1] # calculate Glin Pxx = np.mean(XX * np.conjugate(XX), 0).real Pyy = np.mean(YY * np.conjugate(YY), 0).real Glin = np.abs(Lk)**2 * Pxx / Pyy # calculate Aijij kidx = get_kidx(full) # kidx Aijij =
np.zeros((full, full))
numpy.zeros
#!/usr/bin/env python ''' Miscellaneous utilities that are extremely helpful but cannot be clubbed into other modules. ''' import torch # Scientific computing import numpy as np import scipy.linalg as lin from scipy import io # Plotting import cv2 import matplotlib.pyplot as plt def nextpow2(x): ''' Return smallest number larger than x and a power of 2. ''' logx = np.ceil(np.log2(x)) return pow(2, logx) def normalize(x, fullnormalize=False): ''' Normalize input to lie between 0, 1. Inputs: x: Input signal fullnormalize: If True, normalize such that minimum is 0 and maximum is 1. Else, normalize such that maximum is 1 alone. Outputs: xnormalized: Normalized x. ''' if x.sum() == 0: return x xmax = x.max() if fullnormalize: xmin = x.min() else: xmin = 0 xnormalized = (x - xmin)/(xmax - xmin) return xnormalized def asnr(x, xhat, compute_psnr=False): ''' Compute affine SNR, which accounts for any scaling and shift between two signals Inputs: x: Ground truth signal(ndarray) xhat: Approximation of x Outputs: asnr_val: 20log10(||x||/||x - (a.xhat + b)||) where a, b are scalars that miminize MSE between x and xhat ''' mxy = (x*xhat).mean() mxx = (xhat*xhat).mean() mx = xhat.mean() my = x.mean() a = (mxy - mx*my)/(mxx - mx*mx) b = my - a*mx if compute_psnr: return psnr(x, a*xhat + b) else: return rsnr(x, a*xhat + b) def rsnr(x, xhat): ''' Compute reconstruction SNR for a given signal and its reconstruction. Inputs: x: Ground truth signal (ndarray) xhat: Approximation of x Outputs: rsnr_val: RSNR = 20log10(||x||/||x-xhat||) ''' xn = lin.norm(x.reshape(-1)) en = lin.norm((x-xhat).reshape(-1)) + 1e-12 rsnr_val = 20*
np.log10(xn/en)
numpy.log10
import sys import cftime import numpy as np import pandas as pd import pytest import xarray as xr # Import from directory structure if coverage test, or from installed # packages otherwise if "--cov" in str(sys.argv): from src.geocat.comp import anomaly, climatology, month_to_season, calendar_average, climatology_average else: from geocat.comp import anomaly, climatology, month_to_season, calendar_average, climatology_average dset_a = xr.tutorial.open_dataset("rasm") dset_b = xr.tutorial.open_dataset("air_temperature") dset_c = dset_a.copy().rename({"time": "Times"}) dset_encoded = xr.tutorial.open_dataset("rasm", decode_cf=False) def get_fake_dataset(start_month, nmonths, nlats, nlons): """Returns a very simple xarray dataset for testing. Data values are equal to "month of year" for monthly time steps. """ # Create coordinates months = pd.date_range(start=pd.to_datetime(start_month), periods=nmonths, freq="MS") lats = np.linspace(start=-90, stop=90, num=nlats, dtype="float32") lons = np.linspace(start=-180, stop=180, num=nlons, dtype="float32") # Create data variable. Construct a 3D array with time as the first # dimension. month_values = np.expand_dims(np.arange(start=1, stop=nmonths + 1), axis=(1, 2)) var_values = np.tile(month_values, (1, nlats, nlons)) ds = xr.Dataset( data_vars={ "my_var": (("time", "lat", "lon"), var_values.astype("float32")), }, coords={ "time": months, "lat": lats, "lon": lons }, ) return ds def _get_dummy_data(start_date, end_date, freq, nlats, nlons, calendar='standard'): """Returns a simple xarray dataset to test with. Data can be hourly, daily, or monthly. """ # Coordinates time = xr.cftime_range(start=start_date, end=end_date, freq=freq, calendar=calendar) lats = np.linspace(start=-90, stop=90, num=nlats, dtype='float32') lons = np.linspace(start=-180, stop=180, num=nlons, dtype='float32') # Create data variable values = np.expand_dims(np.arange(len(time)), axis=(1, 2)) data = np.tile(values, (1, nlats, nlons)) ds = xr.Dataset(data_vars={'data': (('time', 'lat', 'lon'), data)}, coords={ 'time': time, 'lat': lats, 'lon': lons }) return ds def test_climatology_invalid_freq(): with pytest.raises(ValueError): climatology(dset_a, "hourly") def test_climatology_encoded_time(): with pytest.raises(ValueError): climatology(dset_encoded, "monthly") @pytest.mark.parametrize("dataset", [dset_a, dset_b, dset_c["Tair"]]) @pytest.mark.parametrize("freq", ["day", "month", "year", "season"]) def test_climatology_setup(dataset, freq): computed_dset = climatology(dataset, freq) assert type(dataset) == type(computed_dset) @pytest.mark.parametrize("dataset", [dset_a, dset_b, dset_c["Tair"]]) @pytest.mark.parametrize("freq", ["day", "month", "year", "season"]) def test_anomaly_setup(dataset, freq): computed_dset = anomaly(dataset, freq) assert type(dataset) == type(computed_dset) ds1 = get_fake_dataset(start_month="2000-01", nmonths=12, nlats=1, nlons=1) # Create another dataset for the year 2001. ds2 = get_fake_dataset(start_month="2001-01", nmonths=12, nlats=1, nlons=1) # Create a dataset that combines the two previous datasets, for two # years of data. ds3 = xr.concat([ds1, ds2], dim="time") # Create a dataset with the wrong number of months. partial_year_dataset = get_fake_dataset(start_month="2000-01", nmonths=13, nlats=1, nlons=1) # Create a dataset with a custom time coordinate. custom_time_dataset = get_fake_dataset(start_month="2000-01", nmonths=12, nlats=1, nlons=1) custom_time_dataset = custom_time_dataset.rename({"time": "my_time"}) # Create a more complex dataset just to verify that get_fake_dataset() # is generally working. complex_dataset = get_fake_dataset(start_month="2001-01", nmonths=12, nlats=10, nlons=10) @pytest.mark.parametrize("dataset, season, expected", [(ds1, "JFM", 2.0), (ds1, "JJA", 7.0)]) def test_month_to_season_returns_middle_month_value(dataset, season, expected): season_ds = month_to_season(dataset, season) np.testing.assert_equal(season_ds["my_var"].data, expected) def test_month_to_season_bad_season_exception(): with pytest.raises(KeyError): month_to_season(ds1, "TEST") def test_month_to_season_partial_years_exception(): with pytest.raises(ValueError): month_to_season(partial_year_dataset, "JFM") @pytest.mark.parametrize("dataset, season, expected", [(ds1, "NDJ", 11.5)]) def test_month_to_season_final_season_returns_2month_average( dataset, season, expected): season_ds = month_to_season(dataset, season) np.testing.assert_equal(season_ds["my_var"].data, expected) @pytest.mark.parametrize( "season", [ "DJF", "JFM", "FMA", "MAM", "AMJ", "MJJ", "JJA", "JAS", "ASO", "SON", "OND", "NDJ", ], ) def test_month_to_season_returns_one_point_per_year(season): nyears_of_data = ds3.sizes["time"] / 12 season_ds = month_to_season(ds3, season) assert season_ds["my_var"].size == nyears_of_data @pytest.mark.parametrize( "dataset, time_coordinate, var_name, expected", [ (custom_time_dataset, "my_time", "my_var", 2.0), (dset_c.isel(x=110, y=200), None, "Tair", [-10.56, -8.129, -7.125]), ], ) def test_month_to_season_custom_time_coordinate(dataset, time_coordinate, var_name, expected): season_ds = month_to_season(dataset, "JFM", time_coord_name=time_coordinate) np.testing.assert_almost_equal(season_ds[var_name].data, expected, decimal=1) # Test Datasets For calendar_average() and climatology_average() minute = _get_dummy_data('2020-01-01', '2021-12-31 23:30:00', '30min', 1, 1) hourly = _get_dummy_data('2020-01-01', '2021-12-31 23:00:00', 'H', 1, 1) daily = _get_dummy_data('2020-01-01', '2021-12-31', 'D', 1, 1) monthly = _get_dummy_data('2020-01-01', '2021-12-01', 'MS', 1, 1) # Computational Tests for calendar_average() hour_avg = np.arange(0.5, 35088.5, 2).reshape((365 + 366) * 24, 1, 1) hour_avg_time = xr.cftime_range('2020-01-01 00:30:00', '2021-12-31 23:30:00', freq='H') min_2_hour_avg = xr.Dataset( data_vars={'data': (('time', 'lat', 'lon'), hour_avg)}, coords={ 'time': hour_avg_time, 'lat': [-90.0], 'lon': [-180.0] }) @pytest.mark.parametrize('dset, expected', [(minute, min_2_hour_avg)]) def test_30min_to_hourly_calendar_average(dset, expected): result = calendar_average(dset, freq='hour') xr.testing.assert_equal(result, expected) day_avg = np.arange(11.5, 17555.5, 24).reshape(366 + 365, 1, 1) day_avg_time = xr.cftime_range('2020-01-01 12:00:00', '2021-12-31 12:00:00', freq='D') hour_2_day_avg = xr.Dataset( data_vars={'data': (('time', 'lat', 'lon'), day_avg)}, coords={ 'time': day_avg_time, 'lat': [-90.0], 'lon': [-180.0] }) @pytest.mark.parametrize('dset, expected', [(hourly, hour_2_day_avg)]) def test_hourly_to_daily_calendar_average(dset, expected): result = calendar_average(dset, freq='day') xr.testing.assert_equal(result, expected) month_avg = np.array([ 15, 45, 75, 105.5, 136, 166.5, 197, 228, 258.5, 289, 319.5, 350, 381, 410.5, 440, 470.5, 501, 531.5, 562, 593, 623.5, 654, 684.5, 715 ]).reshape(24, 1, 1) month_avg_time = xr.cftime_range('2020-01-01', '2022-01-01', freq='MS') month_avg_time = xr.DataArray(np.vstack((month_avg_time[:-1], month_avg_time[1:])).T, dims=['time', 'nbd']) \ .mean(dim='nbd') day_2_month_avg = xr.Dataset( data_vars={'data': (('time', 'lat', 'lon'), month_avg)}, coords={ 'time': month_avg_time, 'lat': [-90.0], 'lon': [-180.0] }) @pytest.mark.parametrize('dset, expected', [(daily, day_2_month_avg)]) def test_daily_to_monthly_calendar_average(dset, expected): result = calendar_average(dset, freq='month') xr.testing.assert_equal(result, expected) season_avg = np.array([29.5, 105.5, 197.5, 289, 379.5, 470.5, 562.5, 654, 715]).reshape(9, 1, 1) season_avg_time = xr.cftime_range('2019-12-01', '2022-03-01', freq='QS-DEC') season_avg_time = xr.DataArray(np.vstack((season_avg_time[:-1], season_avg_time[1:])).T, dims=['time', 'nbd']) \ .mean(dim='nbd') day_2_season_avg = xr.Dataset( data_vars={'data': (('time', 'lat', 'lon'), season_avg)}, coords={ 'time': season_avg_time, 'lat': [-90.0], 'lon': [-180.0] }) season_avg = np.array( [0.483333333, 3, 6.010869565, 9, 11.96666667, 15, 18.01086957, 21, 23]).reshape(9, 1, 1) month_2_season_avg = xr.Dataset( data_vars={'data': (('time', 'lat', 'lon'), season_avg)}, coords={ 'time': season_avg_time, 'lat': [-90.0], 'lon': [-180.0] }) @pytest.mark.parametrize('dset, expected', [(daily, day_2_season_avg), (monthly, month_2_season_avg)]) def test_daily_monthly_to_seasonal_calendar_average(dset, expected): result = calendar_average(dset, freq='season') xr.testing.assert_allclose(result, expected) year_avg_time = [ cftime.datetime(2020, 7, 2), cftime.datetime(2021, 7, 2, hour=12) ] day_2_year_avg = [[[182.5]], [[548]]] day_2_year_avg = xr.Dataset( data_vars={'data': (('time', 'lat', 'lon'), day_2_year_avg)}, coords={ 'time': year_avg_time, 'lat': [-90.0], 'lon': [-180.0] }) month_2_year_avg = [[[5.513661202]], [[17.5260274]]] month_2_year_avg = xr.Dataset( data_vars={'data': (('time', 'lat', 'lon'), month_2_year_avg)}, coords={ 'time': year_avg_time, 'lat': [-90.0], 'lon': [-180.0] }) @pytest.mark.parametrize('dset, expected', [(daily, day_2_year_avg), (monthly, month_2_year_avg)]) def test_daily_monthly_to_yearly_calendar_average(dset, expected): result = calendar_average(dset, freq='year') xr.testing.assert_allclose(result, expected) # Computational Tests for climatology_average() hour_clim = np.concatenate([np.arange(8784.5, 11616.5, 2), np.arange(2832.5, 2880.5, 2), np.arange(11640.5, 26328.5, 2)])\ .reshape(8784, 1, 1) hour_clim_time = xr.cftime_range('2020-01-01 00:30:00', '2020-12-31 23:30:00', freq='H') min_2_hourly_clim = xr.Dataset( data_vars={'data': (('time', 'lat', 'lon'), hour_clim)}, coords={ 'time': hour_clim_time, 'lat': [-90.0], 'lon': [-180.0] }) @pytest.mark.parametrize('dset, expected', [(minute, min_2_hourly_clim)]) def test_30min_to_hourly_climatology_average(dset, expected): result = climatology_average(dset, freq='hour') xr.testing.assert_allclose(result, expected) day_clim = np.concatenate([np.arange(4403.5, 5819.5, 24), [1427.5], np.arange(5831.5, 13175.5, 24)]) \ .reshape(366, 1, 1) day_clim_time = xr.cftime_range('2020-01-01 12:00:00', '2020-12-31 12:00:00', freq='24H') hour_2_day_clim = xr.Dataset( data_vars={'data': (('time', 'lat', 'lon'), day_clim)}, coords={ 'time': day_clim_time, 'lat': [-90.0], 'lon': [-180.0] }) @pytest.mark.parametrize('dset, expected', [(hourly, hour_2_day_clim)]) def test_hourly_to_daily_climatology_average(dset, expected): result = climatology_average(dset, freq='day') xr.testing.assert_equal(result, expected) month_clim = np.array([ 198, 224.5438596, 257.5, 288, 318.5, 349, 379.5, 410.5, 441, 471.5, 502, 532.5 ]).reshape(12, 1, 1) month_clim_time = xr.cftime_range('2020-01-01', '2021-01-01', freq='MS') month_clim_time = xr.DataArray(np.vstack( (month_clim_time[:-1], month_clim_time[1:])).T, dims=['time', 'nbd']).mean(dim='nbd') day_2_month_clim = xr.Dataset( data_vars={'data': (('time', 'lat', 'lon'), month_clim)}, coords={ 'time': month_clim_time, 'lat': [-90.0], 'lon': [-180.0] }) @pytest.mark.parametrize('dset, expected', [(daily, day_2_month_clim)]) def test_daily_to_monthly_climatology_average(dset, expected): result = climatology_average(dset, freq='month') xr.testing.assert_allclose(result, expected) season_clim = np.array([320.9392265, 380, 288, 471.5]).reshape(4, 1, 1) season_clim_time = ['DJF', 'JJA', 'MAM', 'SON'] day_2_season_clim = xr.Dataset( data_vars={'data': (('season', 'lat', 'lon'), season_clim)}, coords={ 'season': season_clim_time, 'lat': [-90.0], 'lon': [-180.0] }) season_clim = np.array([10.04972376, 12.01086957, 9, 15]).reshape(4, 1, 1) month_2_season_clim = xr.Dataset( data_vars={'data': (('season', 'lat', 'lon'), season_clim)}, coords={ 'season': season_clim_time, 'lat': [-90.0], 'lon': [-180.0] }) @pytest.mark.parametrize('dset, expected', [(daily, day_2_season_clim), (monthly, month_2_season_clim)]) def test_daily_monthly_to_seasonal_climatology_average(dset, expected): result = climatology_average(dset, freq='season') xr.testing.assert_allclose(result, expected) # Argument Tests for climatology_average() and calendar_average() @pytest.mark.parametrize('freq', ['TEST', None]) def test_invalid_freq_climatology_average(freq): with pytest.raises(KeyError): climatology_average(monthly, freq=freq) @pytest.mark.parametrize('freq', ['TEST', None]) def test_invalid_freq_calendar_average(freq): with pytest.raises(KeyError): calendar_average(monthly, freq=freq) time_dim = 'my_time' custom_time = daily.rename({'time': time_dim}) custom_time_expected = day_2_month_clim.rename({'time': time_dim}) @pytest.mark.parametrize('dset, expected, time_dim', [(custom_time, custom_time_expected, time_dim)]) def test_custom_time_coord_climatology_average(dset, expected, time_dim): result = climatology_average(dset, freq='month', time_dim=time_dim) xr.testing.assert_allclose(result, expected) custom_time_expected = day_2_month_avg.rename({'time': time_dim}) @pytest.mark.parametrize('dset, expected, time_dim', [(custom_time, custom_time_expected, time_dim)]) def test_custom_time_coord_calendar_average(dset, expected, time_dim): result = calendar_average(dset, freq='month', time_dim=time_dim) xr.testing.assert_allclose(result, expected) array = daily['data'] array_expected = day_2_month_clim['data'] @pytest.mark.parametrize('da, expected', [(array, array_expected)]) def test_xr_DataArray_support_climatology_average(da, expected): result = climatology_average(da, freq='month') xr.testing.assert_allclose(result, expected) array_expected = day_2_month_avg['data'] @pytest.mark.parametrize('da, expected', [(array, array_expected)]) def test_xr_DataArray_support_calendar_average(da, expected): result = calendar_average(da, freq='month') xr.testing.assert_equal(result, expected) dset_encoded = xr.tutorial.open_dataset("air_temperature", decode_cf=False) def test_non_datetime_like_objects_climatology_average(): with pytest.raises(ValueError): climatology_average(dset_encoded, 'month') def test_non_datetime_like_objects_calendar_average(): with pytest.raises(ValueError): calendar_average(dset_encoded, 'month') time = pd.to_datetime(['2020-01-01', '2020-01-02', '2020-01-04']) non_uniform = xr.Dataset(data_vars={'data': (('time'), np.arange(3))}, coords={'time': time}) def test_non_uniformly_spaced_data_climatology_average(): with pytest.raises(ValueError): climatology_average(non_uniform, freq='day') def test_non_uniformly_spaced_data_calendar_average(): with pytest.raises(ValueError): calendar_average(non_uniform, freq='day') julian_daily = _get_dummy_data('2020-01-01', '2021-12-31', 'D', 1, 1, calendar='julian') noleap_daily = _get_dummy_data('2020-01-01', '2021-12-31', 'D', 1, 1, calendar='noleap') all_leap_daily = _get_dummy_data('2020-01-01', '2021-12-31', 'D', 1, 1, calendar='all_leap') day_360_daily = _get_dummy_data('2020-01-01', '2021-12-30', 'D', 1, 1, calendar='360_day') # Daily -> Monthly Climatologies for Julian Calendar julian_month_clim = np.array([198, 224.54385965, 257.5, 288, 318.5, 349, 379.5, 410.5, 441, 471.5, 502, 532.5])\ .reshape(12, 1, 1) julian_month_clim_time = xr.cftime_range('2020-01-01', '2021-01-01', freq='MS', calendar='julian') julian_month_clim_time = xr.DataArray(
np.vstack((julian_month_clim_time[:-1], julian_month_clim_time[1:]))
numpy.vstack
#K-means Clustering #%reset -f #Importing Libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.cluster import DBSCAN from pyclustertend import hopkins from sklearn.cluster import MeanShift, estimate_bandwidth from sklearn.metrics import silhouette_score #Importing Dataset df = pd.read_csv('appdata10.csv') df_user = pd.DataFrame(np.arange(0,len(df)), columns=['user']) df = pd.concat([df_user, df], axis=1) df.info() df.head() df.tail() df.columns.values #Converting columns to Datatime df['Timestamp'] = pd.to_datetime(df['Timestamp']) time_new = df['Timestamp'].iloc[0] df['Hour'] = df['Timestamp'].apply(lambda time_new: time_new.hour) df['Month'] = df['Timestamp'].apply(lambda time_new: time_new.month) df['Day'] = df['Timestamp'].apply(lambda time_new: time_new.dayofweek) df["hour"] = df.hour.str.slice(1, 3).astype(int) #Data analysis statistical = df.describe() #Verifying null values sns.heatmap(df.isnull(), yticklabels=False, cbar=False, cmap='viridis') df.isna().any() df.isna().sum() #Define X features = ['tipo_de_negociacao','percentual_venda', 'quantas_correcoes', 'quantos_pontos_avancou', 'quantos_pontos_retornados', 'amplitude'] X = df[features] #Taking care of missing data ''' from sklearn.preprocessing import Imputer imputer = Imputer(missing_values='NaN', strategy='mean', axis=0) imputer = imputer.fit(X[:, 1:3]) X[:, 1:3] = imputer.transform(X[:, 1:3] ) ''' #Encoding categorical data ''' from sklearn.preprocessing import LabelEncoder, OneHotEncoder labelenconder_x = LabelEncoder() X.iloc[:, 1] = labelenconder_x.fit_transform(X.iloc[:, 1]) onehotencoder_x = OneHotEncoder(categorical_features=[1]) X2 = pd.DataFrame(onehotencoder_x.fit_transform(X).toarray()) y = pd.DataFrame(labelenconder_x.fit_transform(y)) #Dummies Trap X2 = X2.iloc[:, 1:] X2 = X2.iloc[:,[0,1,2]] X2 = X2.rename(columns={1:'pay_schedule_1', 2:'pay_schedule_2', 3:'pay_schedule_3'}) X = pd.concat([X,X2], axis=1) X = X.drop(['pay_schedule'], axis=1) ''' #Visualizing data sns.pairplot(data=df, hue='target_names', vars= ['mean radius', 'mean texture', 'mean area', 'mean perimeter', 'mean smoothness']) sns.countplot(x='target_names', data=df, label='Count') sns.scatterplot(x='mean area', y='mean smoothness',hue='target_names', data=df) plt.figure(figsize=(20,10)) sns.heatmap(data=df.corr(), annot=True, cmap='viridis') # Hopkins Test ''' the null hypothesis (no meaningfull cluster) happens when the hopkins test is around 0.5 and the hopkins test tends to 0 when meaningful cluster exists in the space. Usually, we can believe in the existence of clusters when the hopkins score is bellow 0.25. Here the value of the hopkins test is quite high but one could think there is cluster in our subspace. BUT the hopkins test is highly influenced by outliers, let's try once again with normalised data. ''' hopkins(X, X.shape[0]) # Construção do modelo DBSCAN dbscan = DBSCAN(eps = 0.2, min_samples = 5, metric = 'euclidean') y_pred = dbscan.fit_predict(X) # Construção do modelo mean shift # bandwidth = Comprimento da Interação entre os exemplos, também conhecido como a largura de banda do algoritmo. bandwidth = estimate_bandwidth(X, quantile = .1, n_samples = 500) mean_shift = MeanShift(bandwidth = bandwidth, bin_seeding = True) mean_shift.fit(X) #Using the Elbow Method to find the optimal number of clusters from sklearn.cluster import KMeans wcss = [] for i in range(1,11): kmeans = KMeans(n_clusters=i, init='k-means++', n_init=10, max_iter=300, random_state=0) #n_init e max_iter são padrões. kmeans.fit(X) wcss.append(kmeans.inertia_) plt.plot(range(1,11), wcss) plt.title('The Elbow Method') plt.xlabel('Number of Clusters') plt.ylabel('WCSS') plt.show() #Quando parar de cair exageradamente no gráfico, este será o número de cluster. Neste caso serão 5 cluesters #Applying the K-means to Dataset kmeans = KMeans(n_clusters=5, init='k-means++', n_init=10, max_iter=300, random_state=0) kmeans.fit(X) print(90*'_') print("\nCount of features in each cluster") print(90*'_') pd.value_counts(kmeans.labels_, sort=False) # Silhouette Score labels = modelo_v1.labels_ silhouette_score(pca, labels, metric = 'euclidean') # Function that creates a DataFrame with a column for Cluster Number def pd_centers(featuresUsed, centers): colNames = list(featuresUsed) colNames.append('prediction') # Zip with a column called 'prediction' (index) Z = [np.append(A, index) for index, A in enumerate(centers)] # Convert to pandas data frame for plotting P = pd.DataFrame(Z, columns=colNames) P['prediction'] = P['prediction'].astype(int) return P # Function that creates Parallel Plots from itertools import cycle, islice from pandas.plotting import parallel_coordinates def parallel_plot(data): my_colors = list(islice(cycle(['b', 'r', 'g', 'y', 'k']), None, len(data))) plt.figure(figsize=(15,8)).gca().axes.set_ylim([-3,+3]) parallel_coordinates(data, 'prediction', color = my_colors, marker='o') P = pd_centers(featuresUsed=features, centers=kmeans.cluster_centers_) P parallel_plot(P) y_kmeans = kmeans.fit_predict(X) #Visualising the clusters plt.scatter(np.array(X)[y_kmeans == 0, 0], np.array(X)[y_kmeans == 0, 1], s = 100, c = 'red', label = 'Careful') plt.scatter(np.array(X)[y_kmeans == 1, 0], np.array(X)[y_kmeans == 1, 1], s = 100, c = 'blue', label = 'Standard') plt.scatter(
np.array(X)
numpy.array
# -*- coding: utf-8 -*- # Visualizzazione dell'andamento della funzione di errore quadratico nella regressione import pandas as pd import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import seaborn as sns # + plt.style.use('fivethirtyeight') plt.rcParams['font.family'] = 'sans-serif' plt.rcParams['font.serif'] = 'Ubuntu' plt.rcParams['font.monospace'] = 'Ubuntu Mono' plt.rcParams['font.size'] = 10 plt.rcParams['axes.labelsize'] = 10 plt.rcParams['axes.labelweight'] = 'bold' plt.rcParams['axes.titlesize'] = 10 plt.rcParams['xtick.labelsize'] = 8 plt.rcParams['ytick.labelsize'] = 8 plt.rcParams['legend.fontsize'] = 10 plt.rcParams['figure.titlesize'] = 12 plt.rcParams['image.cmap'] = 'jet' plt.rcParams['image.interpolation'] = 'none' plt.rcParams['figure.figsize'] = (16, 8) plt.rcParams['lines.linewidth'] = 2 plt.rcParams['lines.markersize'] = 8 colors = ['xkcd:pale orange', 'xkcd:sea blue', 'xkcd:pale red', 'xkcd:sage green', 'xkcd:terra cotta', 'xkcd:dull purple', 'xkcd:teal', 'xkcd:goldenrod', 'xkcd:cadet blue', 'xkcd:scarlet'] # - # definisce un vettore di colori colors = sns.color_palette("husl", 4) # dichiara alcune proprietà grafiche della figura sns.set(style="darkgrid", context='paper', palette=colors, rc={"figure.figsize": (16, 8),'image.cmap': 'jet', 'lines.linewidth':.7}) # legge i dati in dataframe pandas data = pd.read_csv("../dataset/cars.csv", delimiter=',', header=0, names=['X','y']) # calcola dimensione dei dati n = len(data) # visualizza dati mediante scatter fig = plt.figure() fig.patch.set_facecolor('white') ax = fig.gca() ax.scatter(data['X'], data['y'], s=40,c='r', marker='o', alpha=.5) plt.xlabel(u'Velocità in mph', fontsize=14) plt.ylabel('Distanza di arresto in ft', fontsize=14) plt.show() # Estrae dal dataframe l'array X delle features e aggiunge ad esso una colonna di 1 X=np.array(data['X']).reshape(-1,1) X = np.column_stack((np.ones(n), X)) # Estrae dal dataframe l'array t dei valori target t=np.array(data['y']).reshape(-1,1) # mostra distribuzione dell'errore quadratico medio al variare dei coefficienti # insieme dei valori considerati per i coefficienti w0_list = np.linspace(-100, 100, 100) w1_list = np.linspace(-100, 100, 100) # crea una griglia di coppie di valori w0, w1 = np.meshgrid(w0_list, w1_list) # definisce la funzione da calcolare in ogni punto della griglia def error(v1, v2): theta =
np.array((v1, v2))
numpy.array
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Tests for PauliList class.""" import unittest from test import combine import itertools import numpy as np from ddt import ddt from scipy.sparse import csr_matrix from qiskit import QiskitError from qiskit.circuit.library import ( CXGate, CYGate, CZGate, HGate, IGate, SdgGate, SGate, SwapGate, XGate, YGate, ZGate, ) from qiskit.quantum_info.operators import ( Clifford, Operator, Pauli, PauliList, PauliTable, StabilizerTable, ) from qiskit.quantum_info.random import random_clifford, random_pauli_list from qiskit.test import QiskitTestCase from .test_pauli import pauli_group_labels def pauli_mat(label): """Return Pauli matrix from a Pauli label""" mat = np.eye(1, dtype=complex) if label[0:2] == "-i": mat *= -1j label = label[2:] elif label[0] == "-": mat *= -1 label = label[1:] elif label[0] == "i": mat *= 1j label = label[1:] for i in label: if i == "I": mat = np.kron(mat, np.eye(2, dtype=complex)) elif i == "X": mat = np.kron(mat, np.array([[0, 1], [1, 0]], dtype=complex)) elif i == "Y": mat = np.kron(mat, np.array([[0, -1j], [1j, 0]], dtype=complex)) elif i == "Z": mat = np.kron(mat, np.array([[1, 0], [0, -1]], dtype=complex)) else: raise QiskitError(f"Invalid Pauli string {i}") return mat class TestPauliListInit(QiskitTestCase): """Tests for PauliList initialization.""" def test_array_init(self): """Test array initialization.""" # Matrix array initialization with self.subTest(msg="bool array"): z = np.array([[False], [True]]) x = np.array([[False], [True]]) pauli_list = PauliList.from_symplectic(z, x) np.testing.assert_equal(pauli_list.z, z) np.testing.assert_equal(pauli_list.x, x) with self.subTest(msg="bool array no copy"): z = np.array([[False], [True]]) x = np.array([[True], [True]]) pauli_list = PauliList.from_symplectic(z, x) z[0, 0] = not z[0, 0] np.testing.assert_equal(pauli_list.z, z) np.testing.assert_equal(pauli_list.x, x) def test_string_init(self): """Test string initialization.""" # String initialization with self.subTest(msg='str init "I"'): pauli_list = PauliList("I") z = np.array([[False]]) x = np.array([[False]]) np.testing.assert_equal(pauli_list.z, z) np.testing.assert_equal(pauli_list.x, x) with self.subTest(msg='str init "X"'): pauli_list = PauliList("X") z = np.array([[False]]) x = np.array([[True]]) np.testing.assert_equal(pauli_list.z, z) np.testing.assert_equal(pauli_list.x, x) with self.subTest(msg='str init "Y"'): pauli_list = PauliList("Y") z = np.array([[True]]) x = np.array([[True]]) np.testing.assert_equal(pauli_list.z, z) np.testing.assert_equal(pauli_list.x, x) with self.subTest(msg='str init "Z"'): pauli_list = PauliList("Z") z = np.array([[True]]) x = np.array([[False]]) np.testing.assert_equal(pauli_list.z, z) np.testing.assert_equal(pauli_list.x, x) with self.subTest(msg='str init "iZ"'): pauli_list = PauliList("iZ") z = np.array([[True]]) x = np.array([[False]]) phase = np.array([3]) np.testing.assert_equal(pauli_list.z, z) np.testing.assert_equal(pauli_list.x, x) np.testing.assert_equal(pauli_list.phase, phase) with self.subTest(msg='str init "-Z"'): pauli_list = PauliList("-Z") z = np.array([[True]]) x = np.array([[False]]) phase = np.array([2]) np.testing.assert_equal(pauli_list.z, z) np.testing.assert_equal(pauli_list.x, x) np.testing.assert_equal(pauli_list.phase, phase) with self.subTest(msg='str init "-iZ"'): pauli_list = PauliList("-iZ") z = np.array([[True]]) x = np.array([[False]]) phase = np.array([1]) np.testing.assert_equal(pauli_list.z, z) np.testing.assert_equal(pauli_list.x, x) np.testing.assert_equal(pauli_list.phase, phase) with self.subTest(msg='str init "IX"'): pauli_list = PauliList("IX") z = np.array([[False, False]]) x = np.array([[True, False]]) np.testing.assert_equal(pauli_list.z, z) np.testing.assert_equal(pauli_list.x, x) with self.subTest(msg='str init "XI"'): pauli_list = PauliList("XI") z = np.array([[False, False]]) x = np.array([[False, True]]) np.testing.assert_equal(pauli_list.z, z) np.testing.assert_equal(pauli_list.x, x) with self.subTest(msg='str init "YZ"'): pauli_list = PauliList("YZ") z = np.array([[True, True]]) x = np.array([[False, True]]) np.testing.assert_equal(pauli_list.z, z) np.testing.assert_equal(pauli_list.x, x) with self.subTest(msg='str init "iZY"'): pauli_list = PauliList("iZY") z = np.array([[True, True]]) x = np.array([[True, False]]) phase = np.array([3])
np.testing.assert_equal(pauli_list.z, z)
numpy.testing.assert_equal
''' episodestats.py implements statistic that are used in producing employment statistics for the lifecycle model ''' import h5py import numpy as np import numpy_financial as npf import matplotlib.pyplot as plt import matplotlib as mpl import seaborn as sns from scipy.stats import norm #import locale from tabulate import tabulate import pandas as pd import scipy.optimize from tqdm import tqdm_notebook as tqdm from . empstats import Empstats from scipy.stats import gaussian_kde #locale.setlocale(locale.LC_ALL, 'fi_FI') def modify_offsettext(ax,text): ''' For y axis ''' x_pos = 0.0 y_pos = 1.0 horizontalalignment='left' verticalalignment='bottom' offset = ax.yaxis.get_offset_text() #value=offset.get_text() # value=float(value) # if value>=1e12: # text='biljoonaa' # elif value>1e9: # text=str(value/1e9)+' miljardia' # elif value==1e9: # text=' miljardia' # elif value>1e6: # text=str(value/1e6)+' miljoonaa' # elif value==1e6: # text='miljoonaa' # elif value>1e3: # text=str(value/1e3)+' tuhatta' # elif value==1e3: # text='tuhatta' offset.set_visible(False) ax.text(x_pos, y_pos, text, transform=ax.transAxes, horizontalalignment=horizontalalignment, verticalalignment=verticalalignment) class Labels(): def get_labels(self,language='English'): labels={} if language=='English': labels['osuus tilassa x']='Proportion in state {} [%]' labels['age']='Age [y]' labels['ratio']='Proportion [%]' labels['unemp duration']='Length of unemployment [y]' labels['scaled freq']='Scaled frequency' labels['probability']='probability' labels['telp']='Employee pension premium' labels['sairausvakuutus']='Health insurance' labels['työttömyysvakuutusmaksu']='Unemployment insurance' labels['puolison verot']='Partners taxes' labels['taxes']='Taxes' labels['asumistuki']='Housing benefit' labels['toimeentulotuki']='Supplementary benefit' labels['tyottomyysturva']='Unemployment benefit' labels['paivahoito']='Daycare' labels['elake']='Pension' labels['tyollisyysaste']='Employment rate' labels['tyottomien osuus']='Proportion of unemployed' labels['havainto']='Observation' labels['tyottomyysaste']='Unemployment rate [%]' labels['tyottomien osuus']='Proportion of unemployed [%]' labels['tyollisyysaste %']='Employment rate [%]' labels['ero osuuksissa']='Difference in proportions [%]' labels['osuus']='proportion' labels['havainto, naiset']='data, women' labels['havainto, miehet']='data, men' labels['palkkasumma']='Palkkasumma [euroa]' labels['Verokiila %']='Verokiila [%]' labels['Työnteko [hlö/htv]']='Työnteko [hlö/htv]' labels['Työnteko [htv]']='Työnteko [htv]' labels['Työnteko [hlö]']='Työnteko [hlö]' labels['Työnteko [miljoonaa hlö/htv]']='Työnteko [miljoonaa hlö/htv]' labels['Työnteko [miljoonaa htv]']='Työnteko [miljoonaa htv]' labels['Työnteko [miljoonaa hlö]']='Työnteko [miljoonaa hlö]' labels['Osatyönteko [%-yks]']='Osa-aikatyössä [%-yks]' labels['Muut tulot [euroa]']='Muut tulot [euroa]' labels['Henkilöitä']='Henkilöitä' labels['Verot [euroa]']='Verot [euroa]' labels['Verot [[miljardia euroa]']='Verot [[miljardia euroa]' labels['Verokertymä [euroa]']='Verokertymä [euroa]' labels['Verokertymä [miljardia euroa]']='Verokertymä [miljardia euroa]' labels['Muut tarvittavat tulot [euroa]']='Muut tarvittavat tulot [euroa]' labels['Muut tarvittavat tulot [miljardia euroa]']='Muut tarvittavat tulot [miljardia euroa]' labels['malli']='Life cycle model' else: labels['osuus tilassa x']='Osuus tilassa {} [%]' labels['age']='Ikä [v]' labels['ratio']='Osuus tilassa [%]' labels['unemp duration']='työttömyysjakson pituus [v]' labels['scaled freq']='skaalattu taajuus' labels['probability']='todennäköisyys' labels['telp']='TEL-P' labels['sairausvakuutus']='Sairausvakuutus' labels['työttömyysvakuutusmaksu']='Työttömyysvakuutusmaksu' labels['puolison verot']='puolison verot' labels['taxes']='Verot' labels['asumistuki']='Asumistuki' labels['toimeentulotuki']='Toimeentulotuki' labels['tyottomyysturva']='Työttömyysturva' labels['paivahoito']='Päivähoito' labels['elake']='Eläke' labels['tyollisyysaste']='työllisyysaste' labels['tyottomien osuus']='työttömien osuus' labels['havainto']='havainto' labels['tyottomyysaste']='Työttömyysaste [%]' labels['tyottomien osuus']='Työttömien osuus väestöstö [%]' labels['tyollisyysaste %']='Työllisyysaste [%]' labels['ero osuuksissa']='Ero osuuksissa [%]' labels['osuus']='Osuus' labels['havainto, naiset']='havainto, naiset' labels['havainto, miehet']='havainto, miehet' labels['palkkasumma']='Palkkasumma [euroa]' labels['Verokiila %']='Verokiila [%]' labels['Työnteko [hlö/htv]']='Työnteko [hlö/htv]' labels['Työnteko [htv]']='Työnteko [htv]' labels['Työnteko [hlö]']='Työnteko [hlö]' labels['Työnteko [miljoonaa hlö/htv]']='Työnteko [miljoonaa hlö/htv]' labels['Työnteko [miljoonaa htv]']='Työnteko [miljoonaa htv]' labels['Työnteko [miljoonaa hlö]']='Työnteko [miljoonaa hlö]' labels['Osatyönteko [%-yks]']='Osa-aikatyössä [%-yks]' labels['Muut tulot [euroa]']='Muut tulot [euroa]' labels['Henkilöitä']='Henkilöitä' labels['Verot [euroa]']='Verot [euroa]' labels['Verot [[miljardia euroa]']='Verot [[miljardia euroa]' labels['Verokertymä [euroa]']='Verokertymä [euroa]' labels['Verokertymä [miljardia euroa]']='Verokertymä [miljardia euroa]' labels['Muut tarvittavat tulot [euroa]']='Muut tarvittavat tulot [euroa]' labels['Muut tarvittavat tulot [miljardia euroa]']='Muut tarvittavat tulot [miljardia euroa]' labels['malli']='elinkaarimalli' return labels class EpisodeStats(): def __init__(self,timestep,n_time,n_emps,n_pop,env,minimal,min_age,max_age,min_retirementage,year=2018,version=3,params=None,gamma=0.92,lang='English'): self.version=version self.gamma=gamma self.params=params self.lab=Labels() self.reset(timestep,n_time,n_emps,n_pop,env,minimal,min_age,max_age,min_retirementage,year,params=params,lang=lang) print('version',version) def reset(self,timestep,n_time,n_emps,n_pop,env,minimal,min_age,max_age,min_retirementage,year,version=None,params=None,lang=None,dynprog=False): self.min_age=min_age self.max_age=max_age self.min_retirementage=min_retirementage self.minimal=minimal if params is not None: self.params=params if lang is None: self.language='English' else: self.language=lang if version is not None: self.version=version self.setup_labels() self.n_employment=n_emps self.n_time=n_time self.timestep=timestep # 0.25 = 3kk askel self.inv_timestep=int(np.round(1/self.timestep)) # pitää olla kokonaisluku self.n_pop=n_pop self.year=year self.env=env self.reaalinen_palkkojenkasvu=0.016 self.palkkakerroin=(0.8*1+0.2*1.0/(1+self.reaalinen_palkkojenkasvu))**self.timestep self.elakeindeksi=(0.2*1+0.8*1.0/(1+self.reaalinen_palkkojenkasvu))**self.timestep self.dynprog=dynprog if self.minimal: self.version=0 if self.version in set([0,101]): self.n_groups=1 else: self.n_groups=6 self.empstats=Empstats(year=self.year,max_age=self.max_age,n_groups=self.n_groups,timestep=self.timestep,n_time=self.n_time, min_age=self.min_age) self.init_variables() def init_variables(self): n_emps=self.n_employment self.empstate=np.zeros((self.n_time,n_emps)) self.gempstate=np.zeros((self.n_time,n_emps,self.n_groups)) self.deceiced=np.zeros((self.n_time,1)) self.alive=np.zeros((self.n_time,1)) self.galive=np.zeros((self.n_time,self.n_groups)) self.rewstate=np.zeros((self.n_time,n_emps)) self.poprewstate=np.zeros((self.n_time,self.n_pop)) self.salaries_emp=np.zeros((self.n_time,n_emps)) #self.salaries=np.zeros((self.n_time,self.n_pop)) self.actions=np.zeros((self.n_time,self.n_pop)) self.popempstate=np.zeros((self.n_time,self.n_pop)) self.popunemprightleft=np.zeros((self.n_time,self.n_pop)) self.popunemprightused=np.zeros((self.n_time,self.n_pop)) self.tyoll_distrib_bu=np.zeros((self.n_time,self.n_pop)) self.unemp_distrib_bu=np.zeros((self.n_time,self.n_pop)) self.siirtyneet=np.zeros((self.n_time,n_emps)) self.siirtyneet_det=np.zeros((self.n_time,n_emps,n_emps)) self.pysyneet=np.zeros((self.n_time,n_emps)) self.aveV=np.zeros((self.n_time,self.n_pop)) self.time_in_state=np.zeros((self.n_time,n_emps)) self.stat_tyoura=np.zeros((self.n_time,n_emps)) self.stat_toe=np.zeros((self.n_time,n_emps)) self.stat_pension=np.zeros((self.n_time,n_emps)) self.stat_paidpension=np.zeros((self.n_time,n_emps)) self.out_of_work=np.zeros((self.n_time,n_emps)) self.stat_unemp_len=np.zeros((self.n_time,self.n_pop)) self.stat_wage_reduction=np.zeros((self.n_time,n_emps)) self.stat_wage_reduction_g=np.zeros((self.n_time,n_emps,self.n_groups)) self.infostats_group=np.zeros((self.n_pop,1)) self.infostats_taxes=np.zeros((self.n_time,1)) self.infostats_wagetaxes=np.zeros((self.n_time,1)) self.infostats_taxes_distrib=np.zeros((self.n_time,n_emps)) self.infostats_etuustulo=np.zeros((self.n_time,1)) self.infostats_etuustulo_group=np.zeros((self.n_time,self.n_groups)) self.infostats_perustulo=np.zeros((self.n_time,1)) self.infostats_palkkatulo=np.zeros((self.n_time,1)) self.infostats_palkkatulo_eielakkeella=np.zeros((self.n_time,1)) self.infostats_palkkatulo_group=np.zeros((self.n_time,self.n_groups)) self.infostats_palkkatulo_eielakkeella_group=np.zeros((self.n_time,1)) self.infostats_ansiopvraha=np.zeros((self.n_time,1)) self.infostats_ansiopvraha_group=np.zeros((self.n_time,self.n_groups)) self.infostats_asumistuki=np.zeros((self.n_time,1)) self.infostats_asumistuki_group=np.zeros((self.n_time,self.n_groups)) self.infostats_valtionvero=np.zeros((self.n_time,1)) self.infostats_valtionvero_group=np.zeros((self.n_time,self.n_groups)) self.infostats_kunnallisvero=np.zeros((self.n_time,1)) self.infostats_kunnallisvero_group=np.zeros((self.n_time,self.n_groups)) self.infostats_valtionvero_distrib=np.zeros((self.n_time,n_emps)) self.infostats_kunnallisvero_distrib=np.zeros((self.n_time,n_emps)) self.infostats_ptel=np.zeros((self.n_time,1)) self.infostats_tyotvakmaksu=np.zeros((self.n_time,1)) self.infostats_tyoelake=np.zeros((self.n_time,1)) self.infostats_kokoelake=np.zeros((self.n_time,1)) self.infostats_opintotuki=np.zeros((self.n_time,1)) self.infostats_isyyspaivaraha=np.zeros((self.n_time,1)) self.infostats_aitiyspaivaraha=np.zeros((self.n_time,1)) self.infostats_kotihoidontuki=np.zeros((self.n_time,1)) self.infostats_sairauspaivaraha=np.zeros((self.n_time,1)) self.infostats_toimeentulotuki=np.zeros((self.n_time,1)) self.infostats_tulot_netto=np.zeros((self.n_time,1)) self.infostats_pinkslip=np.zeros((self.n_time,n_emps)) self.infostats_pop_pinkslip=np.zeros((self.n_time,self.n_pop)) self.infostats_chilren18_emp=np.zeros((self.n_time,n_emps)) self.infostats_chilren7_emp=np.zeros((self.n_time,n_emps)) self.infostats_chilren18=
np.zeros((self.n_time,1))
numpy.zeros
""" Example distributions. """ from __future__ import absolute_import, division, print_function import collections from typing import Callable, Optional from scipy.stats import multivariate_normal, ortho_group import tensorflow_probability as tfp import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from config import TF_FLOATS tfd = tfp.distributions TF_FLOAT = TF_FLOATS[tf.keras.backend.floatx()] # NP_FLOAT = [tf.keras.backend.floatx()] # pylint:disable=invalid-name # pylint:disable=unused-argument def w1(z): """Transformation.""" return tf.math.sin(2. * np.pi * z[0] / 4.) def w2(z): """Transformation.""" return 3. * tf.exp(-0.5 * (((z[0] - 1.) / 0.6)) ** 2) def w3(z): """Transformation.""" return 3. * (1 + tf.exp(-(z[0] - 1.) / 0.3)) ** (-1) def plot_samples2D( samples: np.ndarray, title: str = None, fig: Optional[plt.Figure] = None, ax: Optional[plt.Axes] = None, **kwargs, ): """Plot collection of 2D samples. NOTE: **kwargs are passed to `ax.plot(...)`. """ if fig is None and ax is None: fig, ax = plt.subplots() _ = ax.plot(samples[:, 0], samples[:, 1], **kwargs) if title is not None: _ = ax.set_title(title, fontsize='x-large') return fig, ax def meshgrid(x, y=None): """Create a mesgrid of dtype 'float32'.""" if y is None: y = x [gx, gy] = np.meshgrid(x, y, indexing='ij') gx, gy = np.float32(gx), np.float32(gy) grid = np.concatenate([gx.ravel()[None, :], gy.ravel()[None, :]], axis=0) return grid.T.reshape(x.size, y.size, 2) # pylint:disable=too-many-arguments def contour_potential( potential_fn: Callable, ax: Optional[plt.Axes] = None, title: Optional[str] = None, xlim: Optional[float] = 5., ylim: Optional[float] = 5., cmap: Optional[str] = 'inferno', dtype: Optional[str] = 'float32' ): """Plot contours of `potential_fn`.""" if isinstance(xlim, (tuple, list)): x0, x1 = xlim else: x0 = -xlim x1 = xlim if isinstance(ylim, (tuple, list)): y0, y1 = ylim else: y0 = -ylim y1 = ylim grid = np.mgrid[x0:x1:100j, y0:y1:100j] # grid_2d = meshgrid(np.arange(x0, x1, 0.05), np.arange(y0, y1, 0.05)) grid_2d = grid.reshape(2, -1).T cmap = plt.get_cmap(cmap) if ax is None: _, ax = plt.subplots() try: pdf1e = np.exp(-potential_fn(grid_2d)) except Exception as e: pdf1e = np.exp(-potential_fn(tf.cast(grid_2d, dtype))) z = pdf1e.reshape(100, 100) _ = ax.contourf(grid[0], grid[1], z, cmap=cmap, levels=8) if title is not None: ax.set_title(title, fontsize='x-large') plt.tight_layout() return ax def two_moons_potential(z): """two-moons like potential.""" z = tf.transpose(z) term1 = 0.5 * ((tf.linalg.norm(z, axis=0) - 2.) / 0.4) ** 2 logterm1 = tf.exp(-0.5 * ((z[0] - 2.) / 0.6) ** 2) logterm2 = tf.exp(-0.5 * ((z[0] + 2.) / 0.6) ** 2) output = term1 - tf.math.log(logterm1 + logterm2) return output def sin_potential(z): """Sin-like potential.""" z = tf.transpose(z) x = z[0] y = z[1] # x, y = z return 0.5 * ((y - w1(z)) / 0.4) ** 2 + 0.1 * tf.math.abs(x) def sin_potential1(z): """Modified sin potential.""" z = tf.transpose(z) logterm1 = tf.math.exp(-0.5 * ((z[1] - w1(z)) / 0.35) ** 2) logterm2 = tf.math.exp(-0.5 * ((z[1] - w1(z) + w2(z)) / 0.35) ** 2) term3 = 0.1 * tf.math.abs(z[0]) output = -1. * tf.math.log(logterm1 + logterm2) + term3 return output def sin_potential2(z): """Modified sin potential.""" z = tf.transpose(z) logterm1 = tf.math.exp(-0.5 * ((z[1] - w1(z)) / 0.4) ** 2) logterm2 = tf.math.exp(-0.5 * ((z[1] - w1(z) + w3(z)) / 0.35) ** 2) term3 = 0.1 * tf.math.abs(z[0]) output = -1. * tf.math.log(logterm1 + logterm2) + term3 return output def quadratic_gaussian(x, mu, S): """Simple quadratic Gaussian (normal) distribution.""" x = tf.cast(x, dtype=TF_FLOAT) return tf.linalg.diag_part(0.5 * ((x - mu) @ S) @ tf.transpose((x - mu))) def random_tilted_gaussian(dim, log_min=-2., log_max=2.): """Implements a randomly tilted Gaussian (Normal) distribution.""" mu = np.zeros((dim,)) R = ortho_group.rvs(dim) sigma = np.diag( np.exp(np.log(10.) * np.random.uniform(log_min, log_max, size=(dim,))) ) S = R.T.dot(sigma).dot(R) return Gaussian(mu, S) def gen_ring(r=1., var=1., nb_mixtures=2): """Generate a ring of Gaussian distributions.""" base_points = [] for t in range(nb_mixtures): c = np.cos(2 * np.pi * t / nb_mixtures) s = np.sin(2 * np.pi * t / nb_mixtures) base_points.append(np.array([r * c, r * s])) # v = np.array(base_points) sigmas = [var * np.eye(2) for t in range(nb_mixtures)] pis = [1. / nb_mixtures] * nb_mixtures pis[0] += 1. - sum(pis) return GMM(base_points, sigmas, pis) def distribution_arr(x_dim, num_distributions): """Create array describing likelihood of drawing from distributions.""" if num_distributions > x_dim: pis = [1. / num_distributions] * num_distributions pis[0] += 1 - sum(pis) if x_dim == num_distributions: big_pi = round(1.0 / num_distributions, x_dim) pis = num_distributions * [big_pi] else: big_pi = (1.0 / num_distributions) - x_dim * 1e-16 pis = num_distributions * [big_pi] small_pi = (1. - sum(pis)) / (x_dim - num_distributions) pis.extend((x_dim - num_distributions) * [small_pi]) # return np.array(pis)#, dtype=NP_FLOAT) return np.array(pis) def ring_of_gaussians(num_modes, sigma, r=1.): """Create ring of Gaussians for GaussianMixtureModel. Args: num_modes (int): Number of modes for distribution. sigma (float): Standard deviation of each mode. x_dim (int): Spatial dimensionality in which the distribution exists. radius (float): Radius from the origin along which the modes are located. Returns: distribution (GMM object): Gaussian mixture distribution. mus (np.ndarray): Array of the means of the distribution. covs (np.array): Covariance matrices. distances (np.ndarray): Array of the differences between different modes. """ distribution = gen_ring(r=r, var=sigma, nb_mixtures=num_modes) mus = np.array(distribution.mus) covs = np.array(distribution.sigmas) diffs = mus[1:] - mus[:-1, :] distances = [np.sqrt(np.dot(d, d.T)) for d in diffs] return distribution, mus, covs, distances def lattice_of_gaussians(num_modes, sigma, x_dim=2, size=None): """Create lattice of Gaussians for GaussianMixtureModel. Args: num_modes (int): Number of modes for distribution. sigma (float): Standard deviation of each mode. x_dim (int): Spatial dimensionality in which the distribution exists. size (int): Spatial extent of lattice. Returns: distribution (GMM object): Gaussian mixture distribution. covs (np.array): Covariance matrices. mus (np.ndarray): Array of the means of the distribution. pis (np.ndarray): Array of relative probabilities for each mode. Must sum to 1. """ if size is None: size = int(np.sqrt(num_modes)) mus = np.array([(i, j) for i in range(size) for j in range(size)]) covs = np.array([sigma * np.eye(x_dim) for _ in range(num_modes)]) pis = [1. / num_modes] * num_modes pis[0] += 1. - sum(pis) distribution = GMM(mus, covs, pis) return distribution, mus, covs, pis class Gaussian: """Implements a standard Gaussian distribution.""" def __init__(self, mu, sigma): self.mu = mu self.sigma = sigma self.i_sigma = np.linalg.inv(np.copy(sigma)) def get_energy_function(self): """Return the potential energy function of the Gaussian.""" def fn(x, *args, **kwargs): S = tf.constant(tf.cast(self.i_sigma, TF_FLOAT)) mu = tf.constant(tf.cast(self.mu, TF_FLOAT)) return quadratic_gaussian(x, mu, S) return fn def get_samples(self, n): """Get `n` samples from the distribution.""" C = np.linalg.cholesky(self.sigma) x = np.random.randn(n, self.sigma.shape[0]) return x.dot(C.T) def log_density(self, x): """Return the log_density of the distribution.""" return multivariate_normal(mean=self.mu, cov=self.sigma).logpdf(x) class TiltedGaussian(Gaussian): """Implements a tilted Gaussian.""" def __init__(self, dim, log_min, log_max): self.R = ortho_group.rvs(dim) rand_unif = np.random.uniform(log_min, log_max, size=(dim,)) self.diag = np.diag(np.exp(np.log(10.) * rand_unif)) S = self.R.T.dot(self.diag).dot(self.R) self.dim = dim Gaussian.__init__(self, np.zeros((dim,)), S) def get_samples(self, n): """Get `n` samples from the distribution.""" x = np.random.randn(200, self.dim) x = x.dot(np.sqrt(self.diag)) x = x.dot(self.R) return x class RoughWell: """Implements a rough well distribution.""" def __init__(self, dim, eps, easy=False): self.dim = dim self.eps = eps self.easy = easy def get_energy_function(self): """Return the potential energy function of the distribution.""" def fn(x, *args, **kwargs): n = tf.reduce_sum(tf.square(x), 1) eps2 = self.eps * self.eps if not self.easy: out = (0.5 * n + self.eps * tf.reduce_sum(tf.math.cos(x/eps2), 1)) else: out = (0.5 * n + self.eps * tf.reduce_sum(tf.cos(x / self.eps), 1)) return out return fn def get_samples(self, n): """Get `n` samples from the distribution.""" # we can approximate by a gaussian for eps small enough return np.random.randn(n, self.dim) class GaussianFunnel: """Gaussian funnel distribution.""" def __init__(self, dim=2, clip=6., sigma=2.): self.dim = dim self.sigma = sigma self.clip = 4 * self.sigma def get_energy_function(self): """Returns the (potential) energy function of the distribution.""" def fn(x): v = x[:, 0] log_p_v = tf.square(v / self.sigma) s = tf.exp(v) sum_sq = tf.reduce_sum(tf.square(x[:, 1:]), axis=1) n = tf.cast(tf.shape(x)[1] - 1, TF_FLOAT) E = 0.5 * (log_p_v + sum_sq / s + n * tf.math.log(2.0 * np.pi * s)) s_min = tf.exp(-self.clip) s_max = tf.exp(self.clip) E_safe1 = 0.5 * ( log_p_v + sum_sq / s_max + n * tf.math.log(2. * np.pi * s_max) ) E_safe2 = 0.5 * ( log_p_v + sum_sq / s_min + n * tf.math.log(2.0 * np.pi * s_min) ) # E_safe = tf.minimum(E_safe1, E_safe2) E_ = tf.where(tf.greater(v, self.clip), E_safe1, E) E_ = tf.where(tf.greater(-self.clip, v), E_safe2, E_) return E_ return fn def get_samples(self, n): """Get `n` samples from the distribution.""" samples = np.zeros((n, self.dim)) for t in range(n): v = self.sigma * np.random.randn() s = np.exp(v / 2) samples[t, 0] = v samples[t, 1:] = s * np.random.randn(self.dim-1) return samples def log_density(self, x): """Return the log density of the distribution.""" v = x[:, 0] log_p_v = np.square(v / self.sigma) s = np.exp(v) sum_sq = np.square(x[:, 1:]).sum(axis=1) n = tf.shape(x)[1] - 1 return 0.5 * ( log_p_v + sum_sq / s + (n / 2) * tf.math.log(2 * np.pi * s) ) class GMM: """Implements a Gaussian Mixutre Model distribution.""" def __init__(self, mus, sigmas, pis): assert len(mus) == len(sigmas) assert sum(pis) == 1.0 self.mus = mus self.sigmas = sigmas self.pis = pis self.nb_mixtures = len(pis) self.k = mus[0].shape[0] self.i_sigmas = [] self.constants = [] for i, sigma in enumerate(sigmas): self.i_sigmas.append(tf.cast(np.linalg.inv(sigma), TF_FLOAT)) det = np.sqrt((2 * np.pi) ** self.k * np.linalg.det(sigma)) det = tf.cast(det, TF_FLOAT) self.constants.append(tf.cast(pis[i] / det, dtype=TF_FLOAT)) def get_energy_function(self): """Get the energy function of the distribution.""" def fn(x): V = tf.concat([ tf.expand_dims(-quadratic_gaussian(x, self.mus[i], self.i_sigmas[i]) + tf.math.log(self.constants[i]), axis=1) for i in range(self.nb_mixtures) ], axis=1) return -1.0 * tf.math.reduce_logsumexp(V, axis=1) return fn def get_samples(self, n): """Get `n` samples from the distribution.""" categorical =
np.random.choice(self.nb_mixtures, size=(n,), p=self.pis)
numpy.random.choice
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot =
N.array([0,1,0,0,0,1,1,0,0])
numpy.array
from ..regions import GenomicRegions import numpy as np import pypipegraph as ppg import pandas as pd from pathlib import Path from mbf_externals.util import lazy_method _exon_regions_overlapping_cache = {} _genes_per_genome_singletons = {} class Genes(GenomicRegions): def __new__(cls, genome, alternative_load_func=None, *args, **kwargs): """Make sure that Genes for a full genome (ie. before filtering) are singletonic. Ie. you can always safely call Genes(my_genome), without worrying about duplicate objects""" if alternative_load_func is None: if ppg.util.global_pipegraph: if not hasattr( ppg.util.global_pipegraph, "_genes_per_genome_singletons" ): ppg.util.global_pipegraph._genes_per_genome_singletons = {} singleton_dict = ppg.util.global_pipegraph._genes_per_genome_singletons else: singleton_dict = _genes_per_genome_singletons if not genome in singleton_dict: singleton_dict[genome] = GenomicRegions.__new__(cls) return singleton_dict[genome] else: return GenomicRegions.__new__(cls) def __init__( self, genome, alternative_load_func=None, name=None, dependencies=None, result_dir=None, sheet_name=None, vid=None, ): if hasattr(self, "_already_inited"): if ( alternative_load_func is not None and alternative_load_func != self.genes_load_func ): # pragma: no cover - # this can only happen iff somebody starts to singletonize the Genes # with loading_functions - otherwise the duplicate object # checker will kick in first raise ValueError( "Trying to define Genes(%s) twice with different loading funcs" % self.name ) pass else: if name is None: if alternative_load_func: raise ValueError( "If you pass in an alternative_load_func you also need to specify a name" ) name = "Genes_%s" % genome.name self.top_level = True else: self.top_level = False if alternative_load_func is None: load_func = lambda: genome.df_genes.reset_index() # noqa: E731 else: load_func = alternative_load_func self.genes_load_func = load_func if result_dir: pass elif sheet_name: result_dir = result_dir or Path("results") / "Genes" / sheet_name / name else: result_dir = result_dir or Path("results") / "Genes" / name result_dir = Path(result_dir).absolute() self.column_properties = { "chr": { "user_visible": False, "priority": -997, "description": "On which chromosome (or contig) the gene is loacted", }, "start": { "user_visible": False, "priority": -997, "description": "Left most position of this gene", }, "stop": { "user_visible": False, "priority": -997, "description": "Right most position of this gene", }, "tss": { "user_visible": False, "priority": -997, "description": "Position of Transcription start site on the chromosome", }, "tes": { "user_visible": False, "priority": -997, "description": "Position of the annotated end of transcription", }, "gene_stable_id": { "user_visible": True, "priority": -1000, "index": True, "description": "Unique identification name for this gene", }, "name": { "user_visible": True, "priority": -999, "index": True, "description": "Offical name for this gene", "nocase": True, }, "strand": { "user_visible": True, "priority": -998, "description": "Which is the coding strand (1 forward, -1 reverse)", }, "description": { "user_visible": True, "priority": -998.5, "description": "A short description of the gene", }, } GenomicRegions.__init__( self, name, self._load, dependencies if dependencies is not None else [], genome, on_overlap="ignore", result_dir=result_dir, sheet_name=sheet_name, summit_annotator=False, ) if self.load_strategy.build_deps: deps = [genome.download_genome()] # function invariant for _load is done by GR.__init__ deps.append(genome.job_genes()) deps.append(genome.job_transcripts()) self.load_strategy.load().depends_on(deps) self._already_inited = True self.vid = vid def __str__(self): return "Genes(%s)" % self.name def __repr__(self): return "Genes(%s)" % self.name def register(self): pass def _load(self): """Load func """ if hasattr(self, "df"): # pragma: no cover return df = self.genes_load_func() if not isinstance(df, pd.DataFrame): raise ValueError( "GenomicRegion.loading_function must return a DataFrame, was: %s" % type(df) ) for col in self.get_default_columns(): if not col in df.columns: func_filename = self.genes_load_func.__code__.co_filename func_line_no = self.genes_load_func.__code__.co_firstlineno raise ValueError( "%s not in dataframe returned by GenomicRegion.loading_function %s %s - it did return %s" % (col, func_filename, func_line_no, df.columns) ) allowed_chromosomes = set(self.genome.get_chromosome_lengths().keys()) if len(df): for chr in df["chr"]: if not chr in allowed_chromosomes: raise ValueError( "Invalid chromosome found when loading %s: '%s', expected one of: %s\nLoading func was %s" % ( self.name, chr, sorted(allowed_chromosomes), self.genes_load_func, ) ) if not np.issubdtype(df["tss"].dtype, np.integer): raise ValueError( "tss needs to be an integer, was: %s" % df["tss"].dtype ) if not np.issubdtype(df["tes"].dtype, np.integer): raise ValueError( "tes needs to be an integer, was: %s" % df["tes"].dtype ) # df = self.handle_overlap(df) Genes don't care about overlap if not "start" in df.columns: df = df.assign(start=np.min([df["tss"], df["tes"]], 0)) if not "stop" in df.columns: df = df.assign(stop=np.max([df["tss"], df["tes"]], 0)) else: df = df.assign( start=np.array([], dtype=np.int32), stop=
np.array([], dtype=np.int32)
numpy.array
import ast import matplotlib.pyplot as plt import numpy as np from scipy.stats import wilcoxon from matplotlib.ticker import FormatStrFormatter import matplotlib from tabulate import tabulate text_dir = 'data/qa_example/' counterfactual_dir = 'counterfactuals/qa_example/model_dist_1layer/' probe_type = 'model_dist' test_layers = [i for i in range(1, 25)] layer_offset = test_layers[0] # For a single sentence, plot the distribution over start probabilities for the original and updated embeddings # as well as just the deltas. def plot_sentence_probs(sentence_idx): fig, (ax1, ax2) = plt.subplots(nrows=2, figsize=(10, 10)) fig.suptitle("Absolute and Relative Start Token Probabilities") x_axis = [i + 1 for i in range(len(original_start_probs[sentence_idx]))] # Plot the absolute probability values ax1.set_title("Start probabilities for layer " + str(layer) + " and sentence " + str(sentence_idx)) ax1.set_xlabel('Token idx') ax1.errorbar(x_axis, original_start_probs[sentence_idx], linestyle='--', color='green', marker='s', label='Original') ax1.errorbar(x_axis, nn1_parse_updated_start_probs[sentence_idx], color='red', marker='s', label='Conj. Parse') ax1.errorbar(x_axis, nn2_parse_updated_start_probs[sentence_idx], color='blue', marker='s', label='NN2 Parse') ax1.legend(loc="upper left") ax2.set_title("Changes in start probabilities for layer " + str(layer) + " and sentence " + str(sentence_idx)) ax2.set_xlabel('Token idx') nn1_delta = [nn1_parse_updated_start_probs[sentence_idx][i] - original_start_probs[sentence_idx][i] for i in range(len(original_start_probs[sentence_idx]))] nn2_delta = [nn2_parse_updated_start_probs[sentence_idx][i] - original_start_probs[sentence_idx][i] for i in range(len(original_start_probs[sentence_idx]))] ax2.errorbar(x_axis, nn1_delta, color='red', marker='s', label='Conj. Parse') ax2.errorbar(x_axis, nn2_delta, color='blue', marker='s', label='NN2 Parse') ax2.legend(loc='upper left') plt.show() # Read in the other question info as well corpus_types = [] answer_lengths = [] start_likelihoods = [] contexts = [] questions = [] answers = [] with open(text_dir + 'setup.txt', 'r') as setup_file: for line_idx, line in enumerate(setup_file): split_line = line.split('\t') corpus_types.append(split_line[0]) answer_lengths.append(int(split_line[1])) start_likelihoods.append(float(split_line[2])) contexts.append(split_line[3]) questions.append(split_line[4]) answers.append(split_line[5]) # Read in the token id data. We care about probability changes at specific locations, which were stored way back # when the corpus was generated in token_idxs.txt. # We care about 4 locations (determiner and noun) x (location 1 and location 2) det1_token_idxs = [] nn1_token_idxs = [] det2_token_idxs = [] nn2_token_idxs = [] all_token_idxs = [det1_token_idxs, nn1_token_idxs, det2_token_idxs, nn2_token_idxs] with open(text_dir + 'token_idxs.txt', 'r') as token_file: for line_idx, line in enumerate(token_file): if line_idx % 2 == 0: continue # Have twice as many token lines as needed because the sentence were duplicated. split_line = line.split('\t') det1_token_idxs.append(int(split_line[0])) nn1_token_idxs.append(int(split_line[1])) det2_token_idxs.append(int(split_line[2])) nn2_token_idxs.append(int(split_line[3])) all_layers_original_starts = [] all_layers_nn1_parse_starts = [] all_layers_nn2_parse_starts = [] for layer in test_layers: # Read in how the probabilities got updated. original_start_probs = [] nn1_parse_updated_start_probs = [] nn2_parse_updated_start_probs = [] with open(counterfactual_dir + probe_type + str(layer) + '/updated_probs.txt', 'r') as results_file: for line_idx, line in enumerate(results_file): split_line = line.split('\t') if line_idx == 0: # The first line has some cruft based on how files are generated. continue if line_idx % 2 == 1: original_start_probs.append([ast.literal_eval(data)[0] for data in split_line]) nn1_parse_updated_start_probs.append([ast.literal_eval(data)[2] for data in split_line]) else: nn2_parse_updated_start_probs.append([ast.literal_eval(data)[2] for data in split_line]) # Now we have the data, so if you want to plot probabilities for a single sentence, you can. # Plot stuff for just a single sentence. # for i in range(1): # plot_sentence_probs(i) # Dump the layer-specific data into an aggregator. all_layers_original_starts.append(original_start_probs) all_layers_nn1_parse_starts.append(nn1_parse_updated_start_probs) all_layers_nn2_parse_starts.append(nn2_parse_updated_start_probs) def get_token_idx_start_update(token_idxs): nn1_updates = [] nn1_updates_std = [] nn2_updates = [] nn2_updates_std = [] nn1_all = [] nn2_all = [] for layer in test_layers: layer_specific_nn1_updates = [] layer_specific_nn2_updates = [] for sentence_idx, token_idx in enumerate(token_idxs): if token_idx == -1: print("Invalid token, skipping") layer_specific_nn1_updates.append(0) layer_specific_nn2_updates.append(0) continue original_prob = all_layers_original_starts[layer - layer_offset][sentence_idx][token_idx] nn1_parse_prob = all_layers_nn1_parse_starts[layer - layer_offset][sentence_idx][token_idx] nn2_parse_prob = all_layers_nn2_parse_starts[layer - layer_offset][sentence_idx][token_idx] layer_specific_nn1_updates.append(nn1_parse_prob - original_prob) layer_specific_nn2_updates.append(nn2_parse_prob - original_prob) nn1_updates.append(np.mean(layer_specific_nn1_updates)) nn1_updates_std.append(np.std(layer_specific_nn1_updates)) nn2_updates.append(np.mean(layer_specific_nn2_updates)) nn2_updates_std.append(np.std(layer_specific_nn2_updates)) nn1_all.append(layer_specific_nn1_updates) nn2_all.append(layer_specific_nn2_updates) return nn1_updates, nn1_updates_std, nn2_updates, nn2_updates_std, nn1_all, nn2_all def plot_start_updates(): x_axis = [i for i in test_layers] fig, axes = plt.subplots(nrows=4, figsize=(10, 20)) for i in range(4): tokens = all_token_idxs[i] _, _, _, _, nn1_all, nn2_all =\ get_token_idx_start_update(tokens) # Now do the plotting ax = axes[i] ax.set_title("Start prob deltas for token " + str(i)) ax.set_xlabel('Layer idx') ax.errorbar(x_axis, np.mean(nn1_all, axis=1), color='red', marker='s', label='NP1 Parse') ax.errorbar(x_axis, np.mean(nn2_all, axis=1), color='blue', marker='s', label='NP2 Parse') ax.axhline() ax.legend(loc='upper left') plt.savefig(counterfactual_dir + probe_type + '_token_updates.png') plt.show() # Plot aggregate data. plot_start_updates() _, _, _, _, p1_tok0, p2_tok0 = get_token_idx_start_update(all_token_idxs[0]) _, _, _, _, p1_tok1, p2_tok1 = get_token_idx_start_update(all_token_idxs[1]) _, _, _, _, p1_tok2, p2_tok2 = get_token_idx_start_update(all_token_idxs[2]) _, _, _, _, p1_tok3, p2_tok3 = get_token_idx_start_update(all_token_idxs[3]) def calculate_stats(p1_tokens, p2_tokens, string_label): p1 = np.asarray(p1_tokens[0]) for p1_idx, p1_tokens_entry in enumerate(p1_tokens): if p1_idx == 0: continue p1 = p1 + np.asarray(p1_tokens_entry) p2 = np.asarray(p2_tokens[0]) for p2_idx, p2_tokens_entry in enumerate(p2_tokens): if p2_idx == 0: continue p2 = p2 + np.asarray(p2_tokens_entry) for layer in range(p1.shape[0]): stat, p = wilcoxon(p1[layer], p2[layer], alternative='greater') _, less_p = wilcoxon(p1[layer], p2[layer], alternative='less') if p < 0.01: print("Sig. greater:\t", string_label, "for layer", layer + layer_offset) continue if less_p < 0.01: print("Sig. less:\t", string_label, "for layer", layer + layer_offset) continue print("Not significant for layer", layer + layer_offset) print() calculate_stats((p1_tok0, p1_tok1), (p2_tok0, p2_tok1), "NP1") calculate_stats((p1_tok2, p1_tok3), (p2_tok2, p2_tok3), "NP2") parse1_np1_delta = np.asarray(p1_tok0) + np.asarray(p1_tok1) parse1_np2_delta = (np.asarray(p1_tok2) + np.asarray(p1_tok3)) parse2_np1_delta = np.asarray(p2_tok0) + np.asarray(p2_tok1) parse2_np2_delta = (np.asarray(p2_tok2) + np.asarray(p2_tok3)) calculate_stats((parse1_np1_delta, -1 * parse1_np2_delta), (parse2_np1_delta, -1 * parse2_np2_delta), "Overall shift") calculate_stats((p1_tok0, p1_tok1), (np.zeros_like(p2_tok2), np.zeros_like(p2_tok3)), "Parse1 NP1 vs. 0") calculate_stats((p1_tok2, p1_tok3), (np.zeros_like(p2_tok2), np.zeros_like(p2_tok3)), "Parse1 NP2 vs. 0") calculate_stats((p2_tok2, p2_tok3), (np.zeros_like(p2_tok2), np.zeros_like(p2_tok3)), "Parse2 NP2 vs. 0") calculate_stats((p2_tok0, p2_tok1), (np.zeros_like(p2_tok2), np.zeros_like(p2_tok3)), "Parse2 NP1 vs. 0") # Plot the net shift in probability mass between tokens from the different noun phrases, plotting one line per # parse. def plot_aggregate_delta(): p1_net = parse1_np1_delta - parse1_np2_delta p2_net = parse2_np1_delta - parse2_np2_delta x_axis = [i for i in test_layers] fig, ax = plt.subplots(figsize=(10, 5)) ax.errorbar(x_axis, np.mean(p1_net, axis=1), color='red', marker='s', label='Parse 1') ax.errorbar(x_axis,
np.mean(p2_net, axis=1)
numpy.mean
import numpy as np from scipy.sparse import csr_matrix from feature_mining.em_base import ExpectationMaximization class ExpectationMaximizationVector(ExpectationMaximization): """ Vectorized implementation of EM algorithm. """ def __init__(self, dump_path="../tests/data/em_01/"): print(type(self).__name__, '- init...') ExpectationMaximization.__init__(self, dump_path=dump_path) # Parameters for matrix result interpretation self.features_map = {} self.words_map = {} self.words_list = {} # TODO: one more optimization place self.topic_model_sentence_matrix = None self.iv = None # identity array of v size # TODO: Remove these after testing validated # Parameters for temporary import transformation self.reviews_matrix = np.array([]) self.pi_matrix = np.array([]) self.topic_model_matrix = () self.reviews_binary = np.array([]) self.previous_pi_matrix = None self.expose_sentence_sum_for_testing = None self.denom = 0.0 self.nom = 0.0 self.m_sum = None def import_data(self): """ Needed data structures could be further transformed here. Input: please see import_data_temporary (for now) Output: - self.reviews_matrix: matrix representation of Reviews - self.topic_model_matrix: matrix representation of TopicModel - self.pi_matrix: matrix representation of PI - self.m: number of sections (sentences) - self.v: number of words in vocabulary - self.f: number of features/aspects - self.iv: identity vector of b length - self.features_map: used for testing - maps features to id-s - self.words_map: used for testing - maps words to id-s - self.words_list: list of words (inverse of words_map) - self.background_probability = background_probability_vector :return: """ print(type(self).__name__, '- import data...') self.import_data_temporary() # TODO: deactivate this when our data is available def import_data_temporary(self): """ Transforms data read from a snapshot of Santu's data, after 1 execution of E-M steps. Input: - Reviews.npy: np dump of the Reviews structure - TopicModel.npy: np dump of TopicModel - BackgroundProbability: np dump of BackgroundProbability - HP: np dump of hidden parameters - PI: np dump of pi (important for testing purposes, since this is randomly generated) :return: """ # TODO: this should be deleted once the implementation is safe print(type(self).__name__, '- import data ********temporary********...') self.reviews = np.load(self.dump_path + "Reviews.npy") self.topic_model = np.load(self.dump_path + 'TopicModel.npy').item() self.background_probability = np.load(self.dump_path + 'BackgroundProbability.npy').item() self.hidden_parameters = np.load(self.dump_path + "HP.npy") self.hidden_parameters_background = np.load(self.dump_path + "HPB.npy") self.pi = np.load(self.dump_path + "PI.npy") """ Prepare data for testing vectorised solution. Want to convert the photo of Santu's data for vectorised needs. :return: """ m = 0 # number of sentences (lines) in all reviews - 8799 nw = 0 # number of words in vocabulary - 7266 na = 0 # number of aspects - 9 for reviewNum in range(0, len(self.reviews)): for lineNum in range(0, len(self.reviews[reviewNum])): m += 1 for feature in self.topic_model: na += 1 words_dict = {} for feature in self.topic_model.keys(): for word in self.topic_model[feature]: words_dict[word] = True nw = len(words_dict.keys()) # 7266 word_list = sorted(words_dict.keys()) words_map = {} for word_id in range(0, len(word_list)): words_map[word_list[word_id]] = word_id # initialize reviews with zeros reviews_matrix =
np.zeros(m * nw)
numpy.zeros
import numpy as np from scipy import interpolate from cemc.wanglandau.wltools import convert_array, adapt_array import sqlite3 as sq import time class Histogram( object ): """ Class for tracking the WL histtogram and related quantities """ def __init__( self, Nbins, Emin, Emax, logger ): self.Nbins = Nbins self.Emin = Emin self.Emax = Emax self.histogram = np.zeros(self.Nbins, dtype=np.int32) self.logdos = np.zeros( self.Nbins ) self.growth_variance = np.zeros( self.Nbins ) self.logger = logger self.largest_energy_ever = -np.inf self.smallest_energy_ever = np.inf self.tot_number = 0 self.number_of_converged = 0 self.known_state = np.zeros(self.Nbins,dtype=np.uint8) # Assume that both the maximum state is found by some algorithm that # ensures that there exists states self.known_state[0] = 1 self.known_state[-1] = 1 def get_energy( self, indx ): """ Returns the energy corresponding to one bin """ return self.Emin + (self.Emax-self.Emin )*indx/self.Nbins def get_bin( self, energy ): """ Returns the bin corresponding to one energy """ return int( (energy-self.Emin)*self.Nbins/(self.Emax-self.Emin) ) def update( self, selected_bin, mod_factor ): """ Updates all quantities """ self.known_state[selected_bin] = 1 self.histogram[selected_bin] += 1 self.logdos[selected_bin] += mod_factor self.growth_variance += self.Nbins**(-2) self.growth_variance[selected_bin] += (1.0 - 2.0/self.Nbins) def update_range( self ): """ Updates the range of the histogram to better fit the required energies """ upper = self.Nbins for i in range(len(self.histogram)-1,0,-1): if ( self.histogram[i] > 0 ): upper = i break lower = 0 for i in range(len(self.histogram)): if ( self.histogram[i] > 0 ): lower = i break Emin = self.get_energy(lower) Emax = self.get_energy(upper) if ( Emax != self.largest_energy_ever and self.largest_energy_ever!=-np.inf): Emax = self.largest_energy_ever if ( Emin != self.smallest_energy_ever and self.smallest_energy_ever!=np.inf): Emin = self.smallest_energy_ever if ( Emin >= Emax ): Emax = Emin+10.0 if ( Emin != self.Emin or Emax != self.Emax ): self.redistribute_hist(Emin,Emax) def redistribute_hist( self, Emin, Emax ): """ Redistributes the histogram to better fit the new energies """ if ( Emin > Emax ): Emin = Emax-10.0 eps = 1E-8 Emax += eps old_E = np.linspace( self.Emin, self.Emax, self.Nbins ) new_E = np.linspace( Emin, Emax, self.Nbins ) interp_hist = interpolate.interp1d( old_E, self.histogram, bounds_error=False, fill_value=0 ) new_hist = interp_hist(new_E) interp_logdos = interpolate.interp1d( old_E, self.logdos, bounds_error=False, fill_value=0 ) new_logdos = interp_logdos(new_E) interp_var = interpolate.interp1d( old_E, self.growth_variance, bounds_error=False, fill_value="extrapolate" ) self.growth_variance = interp_var( new_E ) # Scale if ( np.sum(new_hist) > 0 ): new_hist *= np.sum(self.histogram)/np.sum(new_hist) if ( np.sum(new_logdos) > 0 ): new_logdos *= np.sum(self.logdos)/np.sum(new_logdos) self.histogram = np.floor(new_hist).astype(np.int32) self.logdos = new_logdos for i in range(len(self.histogram)): if ( self.histogram[i] == 0 ): # Set the DOS to 1 if the histogram indicates that it has never been visited # This just an artifact of the interpolation and setting it low will make # sure that these parts of the space gets explored self.logdos[i] = 0.0 self.Emin = Emin self.Emax = Emax def get_growth_fluctuation( self ): """ Returns the fluctuation of the growth term """ N = np.sum(self.histogram) if ( N <= 1 ): return None std =
np.sqrt( self.growth_variance/N )
numpy.sqrt
# "Lorenz-95" (or 96) model. # # A summary for the purpose of DA is provided in # section 3.5 of thesis found at # ora.ox.ac.uk/objects/uuid:9f9961f0-6906-4147-a8a9-ca9f2d0e4a12 # # A more detailed summary is given in Chapter 11 of # Majda, Harlim: Filtering Complex Turbulent Systems" # # Note: implementation is ndim-agnostic. # # Note: the model integration is unstable (--> infinity) # in the presence of large peaks in amplitude, # Example: x = [0,-30,0,30]; step(x,dt=0.05,recursion=4). # This may be occasioned by the Kalman analysis update, # especially if the system is only partially observed. # Is this effectively a CFL condition? Could be addressed by: # - post-processing, # - modifying the step() function, e.g.: # - crop amplitude # - or lowering dt # - using an implicit time stepping scheme instead of rk4 import numpy as np from scipy.linalg import circulant try: from tools.math import rk4, integrate_TLM, is1d except: from DAPPER.tools.math import rk4, integrate_TLM, is1d Force = 8.0 prevent_blow_up = False def dxdt(x): a = x.ndim-1 s = lambda x,n: np.roll(x,-n,axis=a) return (s(x,1)-s(x,-2))*s(x,-1) - x + Force def step(x0, t, dt): #if prevent_blow_up: #clip = abs(x0)>30 #x0[clip] *= 0.1 return rk4(lambda t,x: dxdt(x), x0, np.nan, dt) def TLM(x): """Tangent linear model""" assert is1d(x) m = len(x) TLM =
np.zeros((m,m))
numpy.zeros
# Copyright 2021 NREL # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. from datetime import timedelta as td from itertools import product import numpy as np import pandas as pd from floris.utilities import wrap_360 from . import utilities as fsut def df_movingaverage( df_in, cols_angular, window_width=td(seconds=60), min_periods=1, center=True, calc_median_min_max_std=False, return_index_mapping=False, ): # Copy and ensure dataframe is indexed by time df = df_in.copy() if "time" in df.columns: df = df.set_index("time") # Find non-angular columns if isinstance(cols_angular, bool): if cols_angular: cols_angular = [c for c in df.columns] else: cols_angular = [] cols_regular = [c for c in df.columns if c not in cols_angular] # Now calculate cos and sin components for angular columns sin_cols = ["{:s}_sin".format(c) for c in cols_angular] cos_cols = ["{:s}_cos".format(c) for c in cols_angular] df[sin_cols] = np.sin(df[cols_angular] * np.pi / 180.0) df[cos_cols] = np.cos(df[cols_angular] * np.pi / 180.0) # Drop angular columns df = df.drop(columns=cols_angular) # Now calculate rolling (moving) average df_roll = df.rolling( window_width, center=center, axis=0, min_periods=min_periods ) # First calculate mean values of non-angular columns df_ma = df_roll[cols_regular].mean().copy() # Now add mean values of angular columns df_ma[cols_angular] = wrap_360( np.arctan2( df_roll[sin_cols].mean().values, df_roll[cos_cols].mean().values ) * 180.0 / np.pi ) # Figure out which indices/data points belong to each window if (return_index_mapping or calc_median_min_max_std): df_tmp = df_ma[[]].copy().reset_index(drop=False) df_tmp["tmp"] = 1 df_tmp = df_tmp.rolling(window_width, center=center, axis=0, on="time")["tmp"] # Grab index of first and last time entry for each window windows_min = list(df_tmp.apply(lambda x: x.index[0]).astype(int)) windows_max = list(df_tmp.apply(lambda x: x.index[-1]).astype(int)) # Now create a large array that contains the array of indices, with # the values in each row corresponding to the indices upon which that # row's moving/rolling average is based. Note that we purposely create # a larger matrix than necessary, since some rows/windows rely on more # data (indices) than others. This is the case e.g., at the start of # the dataset, at the end, and when there are gaps in the data. We fill # the remaining matrix entries with "-1". dn = int(np.ceil(window_width/fsut.estimate_dt(df_in["time"]))) + 5 data_indices = -1 * np.ones((df_ma.shape[0], dn), dtype=int) for ii in range(len(windows_min)): lb = windows_min[ii] ub = windows_max[ii] ind = np.arange(lb, ub + 1, dtype=int) data_indices[ii, ind - lb] = ind # Calculate median, min, max, std if necessary if calc_median_min_max_std: # Append all current columns with "_mean" df_ma.columns = ["{:s}_mean".format(c) for c in df_ma.columns] # Add statistics for regular columns funs = ["median", "min", "max", "std"] cols_reg_stats = ["_".join(i) for i in product(cols_regular, funs)] df_ma[cols_reg_stats] = df_roll[cols_regular].agg(funs).copy() # Add statistics for angular columns # Firstly, create matrix with indices for the mean values data_indices_mean = np.tile(np.arange(0, df_ma.shape[0]), (dn, 1)).T # Grab raw and mean data and format as numpy arrays D = df_in[cols_angular].values M = df_ma[["{:s}_mean".format(c) for c in cols_angular]].values # Add NaN row as last row. This corresponds to the -1 indices # that we use as placeholders. This way, those indices do not # count towards the final statistics (median, min, max, std). D = np.vstack([D, np.nan * np.ones(D.shape[1])]) M = np.vstack([M, np.nan * np.ones(M.shape[1])]) # Now create a 3D matrix containing all values. The three dimensions # come from: # > [0] one dimension containing the rolling windows, # > [1] one with the raw data underlying each rolling window, # > [2] one for each angular column within the dataset values = D[data_indices, :] values_mean = M[data_indices_mean, :] # Center values around values_mean values[values > (values_mean + 180.0)] += -360.0 values[values < (values_mean - 180.0)] += 360.0 # Calculate statistical properties and wrap to [0, 360) values_median = wrap_360(np.nanmedian(values, axis=1)) values_min = wrap_360(np.nanmin(values, axis=1)) values_max = wrap_360(np.nanmax(values, axis=1)) values_std = wrap_360(np.nanstd(values, axis=1)) # Save to dataframe df_ma[["{:s}_median".format(c) for c in cols_angular]] = values_median df_ma[["{:s}_min".format(c) for c in cols_angular]] = values_min df_ma[["{:s}_max".format(c) for c in cols_angular]] = values_max df_ma[["{:s}_std".format(c) for c in cols_angular]] = values_std if return_index_mapping: return df_ma, data_indices return df_ma def df_downsample( df_in, cols_angular, window_width=td(seconds=60), min_periods=1, center=False, calc_median_min_max_std=False, return_index_mapping=False, ): # Copy and ensure dataframe is indexed by time df = df_in.copy() if "time" in df.columns: df = df.set_index("time") # Find non-angular columns cols_regular = [c for c in df.columns if c not in cols_angular] # Now calculate cos and sin components for angular columns sin_cols = ["{:s}_sin".format(c) for c in cols_angular] cos_cols = ["{:s}_cos".format(c) for c in cols_angular] df[sin_cols] = np.sin(df[cols_angular] * np.pi / 180.0) df[cos_cols] = np.cos(df[cols_angular] * np.pi / 180.0) # Drop angular columns df = df.drop(columns=cols_angular) # Add _N for each variable to keep track of n.o. data points cols_all = df.columns cols_N = ["{:s}_N".format(c) for c in cols_all] df[cols_N] = 1 - df[cols_all].isna().astype(int) # Now calculate downsampled dataframe, automatically # mark by label on the right (i.e., "past 10 minutes"). df_resample = df.resample(window_width, label="right", axis=0) # First calculate mean values of non-angular columns df_out = df_resample[cols_regular].mean().copy() # Now add mean values of angular columns df_out[cols_angular] = wrap_360( np.arctan2( df_resample[sin_cols].mean().values, df_resample[cos_cols].mean().values ) * 180.0 / np.pi ) # Check if we have enough samples for every measurement if min_periods > 1: N_counts = df_resample[cols_N].sum() df_out[N_counts < min_periods] = None # Remove data relying on too few samples # Figure out which indices/data points belong to each window if (return_index_mapping or calc_median_min_max_std): df_tmp = df[[]].copy().reset_index() df_tmp["tmp"] = 1 df_tmp = df_tmp.resample(window_width, on="time", label="right", axis=0)["tmp"] # Grab index of first and last time entry for each window def get_first_index(x): if len(x) <= 0: return -1 else: return x.index[0] def get_last_index(x): if len(x) <= 0: return -1 else: return x.index[-1] windows_min = list(df_tmp.apply(get_first_index).astype(int)) windows_max = list(df_tmp.apply(get_last_index).astype(int)) # Now create a large array that contains the array of indices, with # the values in each row corresponding to the indices upon which that # row's moving/rolling average is based. Note that we purposely create # a larger matrix than necessary, since some rows/windows rely on more # data (indices) than others. This is the case e.g., at the start of # the dataset, at the end, and when there are gaps in the data. We fill # the remaining matrix entries with "-1". dn = int(np.ceil(window_width/fsut.estimate_dt(df_in["time"]))) + 5 data_indices = -1 * np.ones((df_out.shape[0], dn), dtype=int) for ii in range(len(windows_min)): lb = windows_min[ii] ub = windows_max[ii] if not ((lb == -1) | (ub == -1)): ind = np.arange(lb, ub + 1, dtype=int) data_indices[ii, ind - lb] = ind # Calculate median, min, max, std if necessary if calc_median_min_max_std: # Append all current columns with "_mean" df_out.columns = ["{:s}_mean".format(c) for c in df_out.columns] # Add statistics for regular columns funs = ["median", "min", "max", "std"] cols_reg_stats = ["_".join(i) for i in product(cols_regular, funs)] df_out[cols_reg_stats] = df_resample[cols_regular].agg(funs).copy() # Add statistics for angular columns # Firstly, create matrix with indices for the mean values data_indices_mean = np.tile(np.arange(0, df_out.shape[0]), (dn, 1)).T # Grab raw and mean data and format as numpy arrays D = df_in[cols_angular].values M = df_out[["{:s}_mean".format(c) for c in cols_angular]].values # Add NaN row as last row. This corresponds to the -1 indices # that we use as placeholders. This way, those indices do not # count towards the final statistics (median, min, max, std). D = np.vstack([D, np.nan * np.ones(D.shape[1])]) M = np.vstack([M, np.nan * np.ones(M.shape[1])]) # Now create a 3D matrix containing all values. The three dimensions # come from: # > [0] one dimension containing the rolling windows, # > [1] one with the raw data underlying each rolling window, # > [2] one for each angular column within the dataset values = D[data_indices, :] values_mean = M[data_indices_mean, :] # Center values around values_mean values[values > (values_mean + 180.0)] += -360.0 values[values < (values_mean - 180.0)] += 360.0 # Calculate statistical properties and wrap to [0, 360) values_median = wrap_360(np.nanmedian(values, axis=1)) values_min = wrap_360(np.nanmin(values, axis=1)) values_max = wrap_360(np.nanmax(values, axis=1)) values_std = wrap_360(np.nanstd(values, axis=1)) # Save to dataframe df_out[["{:s}_median".format(c) for c in cols_angular]] = values_median df_out[["{:s}_min".format(c) for c in cols_angular]] = values_min df_out[["{:s}_max".format(c) for c in cols_angular]] = values_max df_out[["{:s}_std".format(c) for c in cols_angular]] = values_std if center: # Shift time column towards center of the bin df_out.index = df_out.index - window_width / 2.0 if return_index_mapping: return df_out, data_indices return df_out def df_resample_by_interpolation( df, time_array, circular_cols, interp_method='linear', max_gap=None, verbose=True ): # Copy with properties but no actual data df_res = df.head(0).copy() # Remove timezones, if any df = df.copy() time_array = [pd.to_datetime(t).tz_localize(None) for t in time_array] time_array = np.array(time_array, dtype='datetime64') df["time"] = df["time"].dt.tz_localize(None) # Fill with np.nan values and the correct time array (without tz) df_res['time'] = time_array t0 = time_array[0] df_t = np.array(df['time'] - t0, dtype=np.timedelta64) xp = df_t/np.timedelta64(1, 's') # Convert to regular seconds xp = np.array(xp, dtype=float) # Normalize time variables time_array = np.array([t - t0 for t in time_array], dtype=np.timedelta64) x = time_array/
np.timedelta64(1, 's')
numpy.timedelta64
import numpy as np import pandas as pd import numpy.random as npr from operator import xor import seaborn as sns import matplotlib.pyplot as plt sns.set(font_scale = 1.3) sns.set_style('white') def pns(z, y): y_giv_z = np.sum(z * y) / np.sum(z) y_giv_nz = np.sum((1-z) * y) / np.sum(1-z) lb = np.maximum(0, y_giv_z - y_giv_nz) ub = np.minimum(y_giv_z, 1-y_giv_nz) return lb, ub def cond_pns(z0, y, cond): # cond is the column index of z1 this is being flipped; all other columns are being held fixed z_full = z0.copy() nz_full = z0.copy() nz_full[:,cond] = 1 - nz_full[:,cond] z = np.prod(z_full, axis=1) nz = np.prod(nz_full, axis=1) y_giv_z = np.sum(z * y) / np.sum(z) y_giv_nz = np.sum((nz) * y) / np.sum(nz) lb = np.maximum(0, y_giv_z - y_giv_nz) ub = np.minimum(y_giv_z, 1-y_giv_nz) return lb, ub def pn(z, y): y_giv_z = np.sum(z * y) / np.sum(z) pns_lb, pns_ub = pns(z,y) lb = pns_lb / y_giv_z ub = pns_ub / y_giv_z return lb, ub def ps(z, y): ny_giv_nz = 1 - np.sum((1-z) * y) / np.sum(1-z) pns_lb, pns_ub = pns(z,y) lb = pns_lb / ny_giv_nz ub = pns_ub / ny_giv_nz return lb, ub def eval_pns_pn_ps(x, y, lower=True): pns_l_y, pns_u_y = pns(x,y) pn_l_y, pn_u_y = pn(x,y) ps_l_y, ps_u_y = ps(x,y) if lower: return pns_l_y, pn_l_y, ps_l_y else: return pns_u_y, pn_u_y, ps_u_y def eval_cond_pns(x, y, lower=True): pns_l_ys, pns_u_ys = [], [] for i in range(x.shape[1]): pns_l_y, pns_u_y = cond_pns(x,y,i) pns_l_ys.append(pns_l_y) pns_u_ys.append(pns_u_y) if lower: return pns_l_ys else: return pns_u_ys def gen_z(p, noise_p, n_samples): z1 = npr.binomial(1, p=p, size=n_samples) z2 = z1^(npr.binomial(1, p=noise_p, size=n_samples)) # print("correlation z1, z2\n", np.corrcoef(z1, z2)) # as noise_p increase, z1 and z2 are less highly correlated. return z1, z2 def gen_y(z1, z2, noise_y, n_samples): y1 = z1^(npr.binomial(1, p=noise_y, size=n_samples)) y2 = (z1 * z2)^(npr.binomial(1, p=noise_y, size=n_samples)) # z1 is necessary and sufficient for y1. # z1 is necessary but insufficient for y2. # z2 is neither necessary nor sufficient for y1. # z2 is necessary but insufficient for y2. # z1 * z2 is necessary and sufficient for y2. return y1, y2 # params = {'p': 0.5, # p(z1=1) # 'noise_p': 0.2, # p(z2|z1) # 'noise_y': 0.1, # p(y|z1,z2) # 'n_samples': 1000, # 'n_trials': 100} def calc_all(p, noise_p, noise_y, n_samples, n_trials=100): res_all = [] params = {'p': p, # p(z1=1) 'noise_p': noise_p, # p(z2|z1) 'noise_y': noise_y, # p(y|z1,z2) 'n_samples': n_samples, 'n_trials': 100} for _ in range(params['n_trials']): res = pd.DataFrame(params, index=[0]) z1, z2 = gen_z(params['p'], params['noise_p'], params['n_samples']) y1, y2 = gen_y(z1, z2, params['noise_y'], params['n_samples']) params['z1_z2_corr'] =
np.corrcoef(z1, z2)
numpy.corrcoef
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import DataLoader, SubsetRandomSampler from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm from pathlib import Path import itertools import sys from datasets import lits17_no_slice, brats20_no_slice, kits21_no_slice from losses import MultiTverskyLoss from UNet3D import Encoder, Decoder from scipy.stats import entropy from matplotlib import colors from mpl_toolkits.axes_grid1 import make_axes_locatable from evaluations import eval_uncertainty, eval_dice def forward(encoder, decoder_mean, decoder_var, x): out, context_1, context_2, context_3, context_4 = encoder(x) mean = decoder_mean(out, context_1, context_2, context_3, context_4) var = decoder_var(out, context_1, context_2, context_3, context_4) return mean, var def predict(encoder, decoder_mean, decoder_var, x, T=10): mean, var = forward(encoder, decoder_mean, decoder_var, x) running_x = torch.zeros(var.shape).to(x.device) noise = torch.randn(var.shape).to(x.device) for i in range(T): x = mean + var * noise running_x += F.softmax(x, dim=1) return running_x / T # returns aleatoric uncertainty map, yhat def aleatoric_uncertainty_density_model(encoder, decoder_mean, decoder_var, x, T=10): encoder = encoder.eval() decoder_mean = decoder_mean.eval() decoder_var = decoder_var.eval() with torch.no_grad(): yhat = predict(encoder, decoder_mean, decoder_var, x, T=T) return entropy(yhat.cpu().numpy()[0], axis=0), yhat[0, 1].cpu().numpy() # returns epistemic uncertainty map, yhat def epistemic_uncertainty_mc_dropout(encoder, decoder_mean, decoder_var, x, K=10): encoder = encoder.eval() decoder_mean = decoder_mean.eval() decoder_var = decoder_var.eval() enable_dropout(encoder) enable_dropout(decoder_mean) yhat = [] for k in range(K): with torch.no_grad(): yhat_mean, yhat_var = forward(encoder, decoder_mean, decoder_var, x) yhat_mean = F.softmax(yhat_mean, dim=1).cpu().numpy() yhat.append(yhat_mean) yhat = np.stack(yhat).mean(axis=0) epis = entropy(yhat, axis=1) return epis[0], yhat[0, 1] def enable_dropout(model): for m in model.modules(): if m.__class__.__name__.startswith('Dropout'): m.train() ROOT = Path('/scratch/zc2357/cv/final/nyu-cv2271-final/baseline/runs/') tasks = [ { 'name': 'lits17_baseline', 'dataset': lits17_no_slice, 'in_channels': 1, 'n_classes': 2, 'enabled': True, 'root': ROOT / 'Dec12_04-00-51_gr017.nyu.cluster_lits17_baseline_lr1.0e-04_weightDecay1.0e-02', 'encoder_path': 'lits17_epoch_55_step_5824_encoder.pth', 'decoder_mean_path': 'lits17_epoch_55_epoch_55_loss_0.04442_decoder_mean.pth', 'decoder_var_path': 'lits17_epoch_55_epoch_55_loss_0.04442_decoder_var.pth', }, { 'name': 'lits17_cotraining', 'dataset': lits17_no_slice, 'in_channels': 1, 'n_classes': 2, 'enabled': True, 'root': ROOT / 'Dec11_19-20-25_gr011.nyu.cluster_lits17_brats20_kits21_cotraining_baseline_lr1.0e-04_weightDecay1.0e-02', 'encoder_path': 'lits17_epoch_59_step_6241_encoder.pth', 'decoder_mean_path': 'lits17_epoch_59_epoch_59_loss_0.04083_decoder_mean.pth', 'decoder_var_path': 'lits17_epoch_59_epoch_59_loss_0.04083_decoder_var.pth', }, { 'name': 'brats20_baseline', 'dataset': brats20_no_slice, 'in_channels': 4, 'n_classes': 2, 'enabled': True, 'root': ROOT / 'Dec11_14-53-08_gr011.nyu.cluster_brats20_baseline_lr1.0e-04_weightDecay1.0e-02', 'encoder_path': 'brats20_epoch_21_step_6490_encoder.pth', 'decoder_mean_path': 'brats20_epoch_21_epoch_21_loss_0.09565_decoder_mean.pth', 'decoder_var_path': 'brats20_epoch_21_epoch_21_loss_0.09565_decoder_var.pth', }, { 'name': 'brats20_cotraining', 'dataset': brats20_no_slice, 'in_channels': 4, 'n_classes': 2, 'enabled': True, 'root': ROOT / 'Dec11_19-20-25_gr011.nyu.cluster_lits17_brats20_kits21_cotraining_baseline_lr1.0e-04_weightDecay1.0e-02', 'encoder_path': 'brats20_epoch_14_step_4596_encoder.pth', 'decoder_mean_path': 'brats20_epoch_14_epoch_14_loss_0.09117_decoder_mean.pth', 'decoder_var_path': 'brats20_epoch_14_epoch_14_loss_0.09117_decoder_var.pth', }, { 'name': 'kits21_baseline', 'dataset': kits21_no_slice, 'in_channels': 1, 'n_classes': 2, 'enabled': True, 'root': ROOT / 'Dec11_05-24-43_gr038.nyu.cluster_kits21_baseline_lr1.0e-04_weightDecay1.0e-02', 'encoder_path': 'kits21_epoch_25_step_6240_encoder.pth', 'decoder_mean_path': 'kits21_epoch_25_epoch_25_loss_0.05592_decoder_mean.pth', 'decoder_var_path': 'kits21_epoch_25_epoch_25_loss_0.05592_decoder_var.pth', }, { 'name': 'kits21_cotraining', 'dataset': kits21_no_slice, 'in_channels': 1, 'n_classes': 2, 'enabled': True, 'root': ROOT / 'Dec11_19-20-25_gr011.nyu.cluster_lits17_brats20_kits21_cotraining_baseline_lr1.0e-04_weightDecay1.0e-02', 'encoder_path': 'kits21_epoch_25_step_6241_encoder.pth', 'decoder_mean_path': 'kits21_epoch_25_epoch_25_loss_0.05474_decoder_mean.pth', 'decoder_var_path': 'kits21_epoch_25_epoch_25_loss_0.05474_decoder_var.pth', }, ] # DO NOT CHANGE; CHANGING THESE BREAKS REPLICATION SEED = 42 TRAIN_VAL_SPLIT = 0.8 # 80% training # /DO NOT CHANGE device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") for i in range(len(tasks)): task = tasks[i] if task['enabled']: n = len(task['dataset']) idxrange =
np.arange(n)
numpy.arange
""" Draw Figures - Chapter 6 This script generates all of the figures that appear in Chapter 6 of the textbook. Ported from MATLAB Code <NAME> 25 March 2021 """ import utils import matplotlib.pyplot as plt import numpy as np import seaborn as sns def make_all_figures(close_figs=False): """ Call all the figure generators for this chapter :close_figs: Boolean flag. If true, will close all figures after generating them; for batch scripting. Default=False :return: List of figure handles """ # Find the output directory prefix = utils.init_output_dir('chapter6') # Activate seaborn for prettier plots sns.set() # Generate all figures fig1 = make_figure_1(prefix) fig2 = make_figure_2(prefix) fig3 = make_figure_3(prefix) fig4 = make_figure_4(prefix) figs = [fig1, fig2, fig3, fig4] if close_figs: for fig in figs: plt.close(fig) return None else: plt.show() return figs def make_figure_1(prefix=None): """ Figure 1, Bayesian Example Ported from MATLAB Code <NAME> 25 March 2021 :param prefix: output directory to place generated figure :return: figure handle """ d_lam_narrow_beam = 4 num_array_elements = 10 psi_0 = 135*np.pi/180 # psi_0 = 95*np.pi/180 # Narrow Beam (Marginal Distribution) def element_pattern(psi): return np.absolute(np.cos(psi-np.pi/2))**1.2 def array_function_narrow(psi): numerator = np.sin(np.pi*d_lam_narrow_beam*num_array_elements*(np.cos(psi)-np.cos(psi_0))) denominator = np.sin(np.pi*d_lam_narrow_beam*(np.cos(psi)-np.cos(psi_0))) # Throw in a little error handling; division by zero throws a runtime warning limit_mask = denominator == 0 valid_mask = np.logical_not(limit_mask) valid_result = np.absolute(numerator[valid_mask] / denominator[valid_mask])/num_array_elements return np.piecewise(x=psi, condlist=[limit_mask], funclist=[1, valid_result]) # Wide Beam (Prior Distribution) d_lam_wide_beam = .5 def array_function_wide(psi): numerator = np.sin(np.pi*d_lam_wide_beam*num_array_elements*(np.cos(psi)-np.cos(psi_0))) denominator = np.sin(np.pi*d_lam_wide_beam*(np.cos(psi)-np.cos(psi_0))) # Throw in a little error handling; division by zero throws a runtime warning limit_mask = denominator == 0 valid_mask = np.logical_not(limit_mask) valid_result = np.absolute(numerator[valid_mask] / denominator[valid_mask])/num_array_elements return np.piecewise(x=psi, condlist=[limit_mask], funclist=[1, valid_result]) fig1 = plt.figure() psi_vec = np.arange(start=0, step=np.pi/1000, stop=np.pi) plt.plot(psi_vec, element_pattern(psi_vec)*array_function_narrow(psi_vec), label='Narrow Beam (marginal)') plt.plot(psi_vec, array_function_wide(psi_vec), label='Wide Beam (prior)') plt.xlabel(r'$\psi$') plt.legend(loc='upper left') # Save figure if prefix is not None: plt.savefig(prefix + 'fig1.svg') plt.savefig(prefix + 'fig1.png') return fig1 def make_figure_2(prefix=None): """ Figure 2, Convex Optimization Example Ported from MATLAB Code <NAME> 25 March 2021 :param prefix: output directory to place generated figure :return: figure handle """ # True position x0 = np.array([1, .5]) # Grid xx = np.expand_dims(np.arange(start=-5, step=.01, stop=5), axis=1) yy = np.expand_dims(np.arange(start=-3, step=.01, stop=3), axis=0) # Broadcast xx and yy out_shp = np.broadcast(xx, yy) xx_full = np.broadcast_to(xx, out_shp.shape) yy_full = np.broadcast_to(yy, out_shp.shape) # Crude cost function; the different weights force an elliptic shape f = 1.*(xx-x0[0])**2 + 5.*(yy-x0[1])**2 # Iterative estimates x_est = np.array([[-3, 2], [2, -1.5], [1, 2.2], [1, .6]]) # Plot results fig2 = plt.figure() plt.contour(xx_full, yy_full, f) plt.scatter(x0[0], x0[1], marker='^', label='True Minimum') plt.plot(x_est[:, 0], x_est[:, 1], linestyle='--', marker='+', label='Estimate') plt.text(-3, 2.1, 'Initial Estimate', fontsize=10) plt.legend(loc='lower left') if prefix is not None: plt.savefig(prefix + 'fig2.svg') plt.savefig(prefix + 'fig2.png') return fig2 def make_figure_3(prefix=None): """ Figure 3, Tracker Example Ported from MATLAB Code <NAME> 25 March 2021 :param prefix: output directory to place generated figure :return: figure handle """ # Measurements y = np.array([1, 1.1, 1.3, 1.4, 1.35, 1.3, .7, .75]) # Estimates x = np.array([1, 1.05, 1.2, 1.35, 1.45, 1.35, 1.2, .8]) # Confidence Intervals s2 = np.array([.8, .5, .4, .3, .3, .2, .2, .6]) num_updates = y.size # Plot result fig3 = plt.figure() for i in np.arange(start=1, stop=s2.size): plt.fill(i + np.array([.2, .2, -.2, -.2, .2]), x[i] + s2[i-1]*np.array([-1, 1, 1, -1, -1]), color=(.8, .8, .8), label=None) x_vec = np.arange(num_updates) plt.scatter(x_vec, y, marker='x', label='Measurement', zorder=10) plt.plot(x_vec, x, linestyle='-.', marker='o', label='Estimate') plt.legend(loc='upper left') plt.xlabel('Time') plt.ylabel(r'Parameter ($\theta$)') if prefix is not None: plt.savefig(prefix + 'fig3.svg') plt.savefig(prefix + 'fig3.png') return fig3 def make_figure_4(prefix=None): """ Figure 4, Angle Error Variance Ported from MATLAB Code <NAME> 25 March 2021 :param prefix: output directory to place generated figure :return: figure handle """ # Sensor Coordinates x0 = np.array([0, 0]) # xs = np.array([2, 1.4]) # Bearing and confidence interval aoa = 40 aoa_rad =
np.deg2rad(aoa)
numpy.deg2rad
import numpy as np import oddt from oddt.spatial import distance from oddt.docking.internal import vina_ligand, get_children, get_close_neighbors, num_rotors_pdbqt from oddt.scoring.functions import nnscore, rfscore, ri_score class CustomEngine(object): def __init__(self, rec, lig=None, scoring_func=None, box=None, box_size=1.): self.box_size = box_size self.scoring_func = scoring_func if rec: if isinstance(rec, str): receptor_format = rec.split('.')[-1] try: self.receptor = next(oddt.toolkit.readfile(receptor_format, rec)) except ValueError: raise Exception('Unsupported receptor file format.') elif isinstance(rec, oddt.toolkit.Molecule): self.receptor = rec else: raise Exception('Unsupported protein format.') self.receptor.protein = True self.receptor.removeh() self.set_protein(self.receptor) if lig: if isinstance(lig, oddt.toolkit.Molecule): self.ligand = lig else: raise Exception('Unsupported ligand format.') self.ligand.removeh() self.set_ligand(self.ligand) self.prepare_scoring_function() self.set_box(box) self.mask_inter = {} self.mask_intra = {} def set_box(self, box): if box is not None: self.box = np.array(box) # delete unused atoms r = self.rec_dict['coords'] # X, Y, Z within box and cutoff mask = (self.box[0][0] - 8 <= r[:, 0]) & (r[:, 0] <= self.box[1][0] + 8) mask *= (self.box[0][1] - 8 <= r[:, 1]) & (r[:, 1] <= self.box[1][1] + 8) mask *= (self.box[0][2] - 8 <= r[:, 2]) & (r[:, 2] <= self.box[1][2] + 8) self.rec_dict = self.rec_dict # [mask] else: self.box = box def set_protein(self, rec): """Prepare protein to docking.""" if rec is None: self.rec_dict = None self.mask_inter = {} else: self.rec_dict = rec.atom_dict[rec.atom_dict['atomicnum'] != 1].copy() self.mask_inter = {} def set_ligand(self, lig): """Prepare ligand to docking.""" lig_hvy_mask = (lig.atom_dict['atomicnum'] != 1) self.lig_dict = lig.atom_dict[lig_hvy_mask].copy() self.num_rotors = num_rotors_pdbqt(lig) self.mask_inter = {} self.mask_intra = {} # Find distant members (min 3 consecutive bonds) mask = np.vstack([~get_close_neighbors(lig, i, num_bonds=3) for i in range(len(lig.atoms))]) mask = mask[lig_hvy_mask[np.newaxis, :] * lig_hvy_mask[:, np.newaxis]] self.lig_distant_members = mask.reshape(lig_hvy_mask.sum(), lig_hvy_mask.sum()) # prepare rotors dictionary self.rotors = [] for b in lig.bonds: if b.isrotor: a2 = int(b.atoms[0].idx0) a3 = int(b.atoms[1].idx0) for n in b.atoms[0].neighbors: if a3 != int(n.idx0) and n.atomicnum != 1: a1 = int(n.idx0) break for n in b.atoms[1].neighbors: if a2 != int(n.idx0) and n.atomicnum != 1: a4 = int(n.idx0) break rot_mask = get_children(lig, a3, a2)[lig_hvy_mask] # translate atom indicies to lig_dict indicies (heavy only) a1 = np.argwhere(self.lig_dict['id'] == a1).flatten()[0] a2 = np.argwhere(self.lig_dict['id'] == a2).flatten()[0] a3 = np.argwhere(self.lig_dict['id'] == a3).flatten()[0] a4 = np.argwhere(self.lig_dict['id'] == a4).flatten()[0] # rotate smaller part of the molecule if rot_mask.sum() > len(rot_mask): rot_mask = -rot_mask a4, a3, a2, a1 = a1, a2, a3, a4 self.rotors.append({'atoms': (a1, a2, a3, a4), 'mask': rot_mask}) # Setup cached ligand coords self.lig = vina_ligand(self.lig_dict['coords'].copy(), len(self.rotors), self, self.box_size) def prepare_scoring_function(self): """Initiate scoring functions based on AI/ML methods.""" sf = None if self.scoring_func == 'nnscore': sf = nnscore.load() sf.set_protein(self.receptor) elif self.scoring_func == 'rfscore': sf = rfscore.load() sf.set_protein(self.receptor) self.trained_scorer = sf def score(self, coords=None): """Score given coordinates.""" if coords is None: coords = self.lig_dict['coords'] self.ligand.coords = coords if self.trained_scorer: # nnscore/rfscore return self.trained_scorer.predict([self.ligand])[0] elif self.scoring_func == 'ri_score': return ri_score(self.ligand, self.receptor) elif self.scoring_func == 'interaction_energy': return np.sum(self.score_inter(coords) + self.score_intra(coords)) else: raise Exception('Unsupported scoring function.') def score_inter(self, coords): """Calculate inter-molecular energy between protein and ligand.""" # Inter-molecular r = distance(self.rec_dict['coords'], coords) d = (r - self.rec_dict['radius'][:, np.newaxis] - self.lig_dict['radius'][np.newaxis, :]) mask = r < 8 inter = [] # Gauss 1 inter.append(
np.exp(-(d[mask] / 0.5)**2)
numpy.exp
# -*- coding: utf-8 -*- """ Container for the primary EMUS routines. """ import numpy as np from scipy.special import logsumexp try: import usample.linalg as lm import usample.autocorrelation as autocorrelation from .usutils import unpackNbrs except ImportError: import linalg as lm import autocorrelation as autocorrelation from usutils import unpackNbrs def calculate_obs(psis,z,f1data,f2data=None): """Estimates the value of an observable or ratio of observables. Parameters ---------- psis : 3D data structure Data structure containing psi values. See documentation for a detailed explanation. z : 1D array Array containing the normalization constants f1data : 2D data structure Trajectory of observable in the numerator. First dimension corresponds to the umbrella index and the second to the point in the trajectory. f2data : 2D data structure, optional Trajectory of observable in the denominator. Returns ------- avg : float The estimate of <f_1>/<f_2>. """ f1avg = 0 f2avg = 0 for i,psi_i in enumerate(psis): psi_xi = np.array(psi_i) psi_i_sum = np.sum(psi_xi,axis=1) f1_i =
np.array(f1data[i])
numpy.array
import sys import gzip import ubjson import pickle import numpy as np import pprint pp = pprint.PrettyPrinter() from time import sleep from copy import deepcopy from functools import partial from parser.reader import Game from sklearn import svm from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM ########################################################## # Utils ########################################################## def get_next_game(f): pgn = f.readline() while True: if "EOF" in pgn: return None new_line = f.readline() pgn += new_line if new_line[:2] == "1.": break return pgn def serialize_data(src, data): with gzip.open(src, "wb") as f: ubjson.dump(data, f) def deserialize_data(src): with gzip.open(src, "rb") as f: return ubjson.load(f) ########################################################## # Extractors ########################################################## def extract_pieces(game): game.go_to_move(len(game.moves)) a, b = game.num_pieces() out = np.zeros(256) out[(a-1)*16 + (b-1)] = 1 return out def extract_num_pieces_over_n_moves(game, n=50): n_moves_vector = [] for i in range(1, n+1): try: game.go_to_move(i) next_num_pieces = game.num_pieces()[i%2] except Exception: next_num_pieces = 0 n_moves_vector.append(next_num_pieces) return np.array(n_moves_vector) def generate_coefficient_matrix_for_extract_pieces(clf): ''' Generate a 16 x 16 coefficient matrix from a 256-long vector of coefficients (from a trained classifier) Probably should only be used for the above extractor `extract_pieces` ''' coeff_matrix = np.zeros((16, 16)) for a in range(16): for b in range(16): coeff_matrix[a][b] = round(clf.coef_[0][a*16 + b], 2) return coeff_matrix def extract_coords_n_moves(game, n=15): return game.vectorize_moves(n) def extract_sparse_vector(game): full_game_vector = np.array([]) next_state = game.board_state(0) for i in range(1, 36): try: next_state = game.board_state(i) except Exception: pass full_game_vector = np.concatenate((full_game_vector, next_state)) return full_game_vector def extract_sparse_vector_n_moves_even(game, n=14): n_moves_vector = np.array([]) next_state = game.board_state(0) for i in range(1, n+1): try: next_state = game.board_state(i) except Exception: pass if i % 2 == 0: n_moves_vector =
np.concatenate((n_moves_vector, next_state))
numpy.concatenate
import numpy as np import glob import os import matplotlib.pyplot as plt import corner def load_summary(filename): dtype=[('minr', 'f8'), ('maxr', 'f8'), ('ca_ratio', 'f8'), ('ba_ratio', 'f8'), ('a', 'f8'), ('center', 'f8'), ('width', 'f8'), ('mu', 'f8')] summary = np.loadtxt(filename, dtype=dtype) return summary def load_experiment(input_path="../data/mstar_selected_summary/vmax_sorted/", n_sat=11, full_data=False): files = glob.glob(input_path+"M31_group_*_nsat_{}.dat".format(n_sat)) group_id = [] for f in files: i = int(f.split("_")[-3]) if i not in group_id: group_id.append(i) #print(group_id, len(group_id)) n_groups = len(group_id) fields = ['width','mu', 'a', 'ba_ratio', 'ca_ratio'] M31_all = {} MW_all = {} if full_data: for field in fields: M31_all[field] = np.empty((0)) MW_all[field] = np.empty((0)) M31_all[field+'_random'] = np.empty((0)) MW_all[field+'_random'] = np.empty((0)) else: for field in fields: M31_all[field] =
np.ones(n_groups)
numpy.ones
# code to calculate fundamental stellar parameters and distances using # a "direct method", i.e. adopting a fixed reddening map and bolometric # corrections import astropy.units as units from astropy.coordinates import SkyCoord import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy.interpolate import RegularGridInterpolator import pdb def distance_likelihood(plx, plxe, ds): """Distance Likelihood Likelihood of distance given measured parallax Args: plx (float): parallax plxe (float): parallax uncertainty ds (array): distance in parsecs Returns: array: likelihood (not log-likelihood) """ lh = ((1.0/(np.sqrt(2.0*np.pi)*plxe)) * np.exp( (-1.0/(2.0*plxe**2))*(plx - 1.0/ds)**2)) return lh def distance_prior(ds, L): """Distance prior Exponetial decreasing vol density prior Returns: array: prior probability (not log-prior) """ prior = ds**2/(2.0*L**3.0)*np.exp(-ds/L) return prior def stparas(input, dnumodel=-99, bcmodel=-99, dustmodel=-99, dnucor=-99, useav=-99, plot=0, band='k', ext=-99): # IAU XXIX Resolution, Mamajek et al. (2015) r_sun = 6.957e10 gconst = 6.67408e-8 gm = 1.3271244e26 m_sun = gm/gconst rho_sun = m_sun/(4./3.*np.pi*r_sun**3) g_sun = gconst*m_sun/r_sun**2. # solar constants numaxsun = 3090. dnusun = 135.1 teffsun = 5777. Msun = 4.74 # NB this is fixed to MESA BCs! # assumed uncertainty in bolometric corrections err_bc=0.02 # assumed uncertainty in extinction err_ext=0.02 # object containing output values out = resdata() ## extinction coefficients extfactors=ext if (len(band) == 4): bd=band[0:1] else: bd=band[0:2] ###################################### # case 1: input is parallax + colors # ###################################### #with h5py.File(bcmodel,'r') as h5: teffgrid = bcmodel['teffgrid'][:] logggrid = bcmodel['logggrid'][:] fehgrid = bcmodel['fehgrid'][:] avgrid = bcmodel['avgrid'][:] bc_band = bcmodel['bc_'+bd][:] if ((input.plx > 0.)): # load up bolometric correction grid # only K-band for now points = (teffgrid,logggrid,fehgrid,avgrid) values = bc_band interp = RegularGridInterpolator(points,values) ### Monte Carlo starts here # number of samples nsample = int(1e5) # length scale for exp decreasing vol density prior in pc L = 1350.0 # maximum distance to sample (in pc) maxdis = 1e5 # get a rough maximum and minimum distance tempdis = 1.0/input.plx tempdise = input.plxe/input.plx**2 maxds = tempdis + 5.0*tempdise minds = tempdis - 5.0*tempdise ds = np.arange(1.0, maxdis, 1.0) lh = distance_likelihood(input.plx, input.plxe, ds) prior = distance_prior(ds, L) dis = lh*prior dis2 = dis/np.sum(dis) norm = dis2/np.max(dis2) # Deal with negative and positive parallaxes differently: if tempdis > 0: # Determine maxds based on posterior: um = np.where((ds > tempdis) & (norm < 0.001))[0] # Determine minds just like maxds: umin = np.where((ds < tempdis) & (norm < 0.001))[0] else: # Determine maxds based on posterior, taking argmax # instead of tempdis which is wrong: um = np.where((ds > np.argmax(norm)) & (norm < 0.001))[0] # Determine minds just like maxds: umin = np.where((ds < np.argmax(norm)) & (norm < 0.001))[0] if (len(um) > 0): maxds = np.min(ds[um]) else: maxds = 1e5 if (len(umin) > 0): minds = np.max(ds[umin]) else: minds = 1.0 print('using max distance:', maxds) print('using min distance:', minds) ds = np.linspace(minds,maxds,nsample) lh = distance_likelihood(input.plx, input.plxe, ds) prior = distance_prior(ds, L) dis = lh*prior dis2=dis/np.sum(dis) # sample distances following the discrete distance posterior np.random.seed(seed=10) dsamp = np.random.choice(ds, p=dis2, size=nsample) # interpolate dustmodel dataframe to determine values of reddening. if (isinstance(dustmodel,pd.DataFrame) == False): ebvs = np.zeros(len(dsamp)) avs = ebvs else: xp = np.concatenate( ([0.0], np.array(dustmodel.columns[2:].str[3:], dtype='float')) ) fp = np.concatenate(([0.0],
np.array(dustmodel.iloc[0][2:])
numpy.array
import tensorflow as tf from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split import math import numpy as np class DataGenerator: def __init__(self, config, features, labels): self.config = config self.features_train, self.features_test, self.labels_train, self.labels_test = train_test_split(features, labels, test_size=self.config.test_size, shuffle=False) self.features_scaler = MinMaxScaler() self.features_scaler.fit(self.features_train) self.labels_scaler = MinMaxScaler() self.labels_scaler.fit(self.labels_train) self.X_train, self.Y_train = self.sliding_window(self.features_scaler.transform(self.features_train), self.labels_scaler.transform(self.labels_train), self.config.sequence_length) self.X_test, self.Y_test = self.sliding_window(self.features_scaler.transform(self.features_test), self.labels_scaler.transform(self.labels_test), self.config.sequence_length) self.num_iter_per_epoch = math.ceil(len(self.X_train) / self.config.batch_size) def sliding_window(self, features, labels, sequence_length, step=1): X = [] Y = [] for i in range(0, len(features) - sequence_length, step): X.append(features[i:i + sequence_length]) Y.append(labels[i + sequence_length]) X = np.array(X) Y =
np.array(Y)
numpy.array
import os if not os.path.exists("temp"): os.mkdir("temp") def add_pi_obj_func_test(): import os import pyemu pst = os.path.join("utils","dewater_pest.pst") pst = pyemu.optimization.add_pi_obj_func(pst,out_pst_name=os.path.join("temp","dewater_pest.piobj.pst")) print(pst.prior_information.loc["pi_obj_func","equation"]) #pst._update_control_section() assert pst.control_data.nprior == 1 def fac2real_test(): import os import numpy as np import pyemu # pp_file = os.path.join("utils","points1.dat") # factors_file = os.path.join("utils","factors1.dat") # pyemu.utils.gw_utils.fac2real(pp_file,factors_file, # out_file=os.path.join("utils","test.ref")) pp_file = os.path.join("utils", "points2.dat") factors_file = os.path.join("utils", "factors2.dat") pyemu.geostats.fac2real(pp_file, factors_file, out_file=os.path.join("temp", "test.ref")) arr1 = np.loadtxt(os.path.join("utils","fac2real_points2.ref")) arr2 = np.loadtxt(os.path.join("temp","test.ref")) #print(np.nansum(np.abs(arr1-arr2))) #print(np.nanmax(np.abs(arr1-arr2))) nmax = np.nanmax(np.abs(arr1-arr2)) assert nmax < 0.01 # import matplotlib.pyplot as plt # diff = (arr1-arr2)/arr1 * 100.0 # diff[np.isnan(arr1)] = np.nan # p = plt.imshow(diff,interpolation='n') # plt.colorbar(p) # plt.show() def vario_test(): import numpy as np import pyemu contribution = 0.1 a = 2.0 for const in [pyemu.utils.geostats.ExpVario,pyemu.utils.geostats.GauVario, pyemu.utils.geostats.SphVario]: v = const(contribution,a) h = v._h_function(np.array([0.0])) assert h == contribution h = v._h_function(np.array([a*1000])) assert h == 0.0 v2 = const(contribution,a,anisotropy=2.0,bearing=90.0) print(v2._h_function(np.array([a]))) def aniso_test(): import pyemu contribution = 0.1 a = 2.0 for const in [pyemu.utils.geostats.ExpVario,pyemu.utils.geostats.GauVario, pyemu.utils.geostats.SphVario]: v = const(contribution,a) v2 = const(contribution,a,anisotropy=2.0,bearing=90.0) v3 = const(contribution,a,anisotropy=2.0,bearing=0.0) pt0 = (0,0) pt1 = (1,0) assert v.covariance(pt0,pt1) == v2.covariance(pt0,pt1) pt0 = (0,0) pt1 = (0,1) assert v.covariance(pt0,pt1) == v3.covariance(pt0,pt1) def geostruct_test(): import pyemu v1 = pyemu.utils.geostats.ExpVario(0.1,2.0) v2 = pyemu.utils.geostats.GauVario(0.1,2.0) v3 = pyemu.utils.geostats.SphVario(0.1,2.0) g = pyemu.utils.geostats.GeoStruct(0.2,[v1,v2,v3]) pt0 = (0,0) pt1 = (0,0) print(g.covariance(pt0,pt1)) assert g.covariance(pt0,pt1) == 0.5 pt0 = (0,0) pt1 = (1.0e+10,0) assert g.covariance(pt0,pt1) == 0.2 def struct_file_test(): import os import pyemu structs = pyemu.utils.geostats.read_struct_file( os.path.join("utils","struct.dat")) #print(structs[0]) pt0 = (0,0) pt1 = (0,0) for s in structs: assert s.covariance(pt0,pt1) == s.nugget + \ s.variograms[0].contribution with open(os.path.join("utils","struct_out.dat"),'w') as f: for s in structs: s.to_struct_file(f) structs1 = pyemu.utils.geostats.read_struct_file( os.path.join("utils","struct_out.dat")) for s in structs1: assert s.covariance(pt0,pt1) == s.nugget + \ s.variograms[0].contribution def covariance_matrix_test(): import os import pandas as pd import pyemu pts = pd.read_csv(os.path.join("utils","points1.dat"),delim_whitespace=True, header=None,names=["name","x","y"],usecols=[0,1,2]) struct = pyemu.utils.geostats.read_struct_file( os.path.join("utils","struct.dat"))[0] struct.variograms[0].covariance_matrix(pts.x,pts.y,names=pts.name) print(struct.covariance_matrix(pts.x,pts.y,names=pts.name).x) def setup_ppcov_simple(): import os import platform exe_file = os.path.join("utils","ppcov.exe") print(platform.platform()) if not os.path.exists(exe_file) or not platform.platform().lower().startswith("win"): print("can't run ppcov setup") return pts_file = os.path.join("utils","points1_test.dat") str_file = os.path.join("utils","struct_test.dat") args1 = [pts_file,'0.0',str_file,"struct1",os.path.join("utils","ppcov.struct1.out"),'',''] args2 = [pts_file,'0.0',str_file,"struct2",os.path.join("utils","ppcov.struct2.out"),'',''] args3 = [pts_file,'0.0',str_file,"struct3",os.path.join("utils","ppcov.struct3.out"),'',''] for args in [args1,args2,args3]: in_file = os.path.join("utils","ppcov.in") with open(in_file,'w') as f: f.write('\n'.join(args)) os.system(exe_file + '<' + in_file) def ppcov_simple_test(): import os import numpy as np import pandas as pd import pyemu pts_file = os.path.join("utils","points1_test.dat") str_file = os.path.join("utils","struct_test.dat") mat1_file = os.path.join("utils","ppcov.struct1.out") mat2_file = os.path.join("utils","ppcov.struct2.out") mat3_file = os.path.join("utils","ppcov.struct3.out") ppc_mat1 = pyemu.Cov.from_ascii(mat1_file) ppc_mat2 = pyemu.Cov.from_ascii(mat2_file) ppc_mat3 = pyemu.Cov.from_ascii(mat3_file) pts = pd.read_csv(pts_file,header=None,names=["name","x","y"],usecols=[0,1,2], delim_whitespace=True) struct1,struct2,struct3 = pyemu.utils.geostats.read_struct_file(str_file) print(struct1) print(struct2) print(struct3) for mat,struct in zip([ppc_mat1,ppc_mat2,ppc_mat3],[struct1,struct2,struct3]): str_mat = struct.covariance_matrix(x=pts.x,y=pts.y,names=pts.name) print(str_mat.row_names) delt = mat.x - str_mat.x assert np.abs(delt).max() < 1.0e-7 def setup_ppcov_complex(): import os import platform exe_file = os.path.join("utils","ppcov.exe") print(platform.platform()) if not os.path.exists(exe_file) or not platform.platform().lower().startswith("win"): print("can't run ppcov setup") return pts_file = os.path.join("utils","points1_test.dat") str_file = os.path.join("utils","struct_complex.dat") args1 = [pts_file,'0.0',str_file,"struct1",os.path.join("utils","ppcov.complex.struct1.out"),'',''] args2 = [pts_file,'0.0',str_file,"struct2",os.path.join("utils","ppcov.complex.struct2.out"),'',''] for args in [args1,args2]: in_file = os.path.join("utils","ppcov.in") with open(in_file,'w') as f: f.write('\n'.join(args)) os.system(exe_file + '<' + in_file) def ppcov_complex_test(): import os import numpy as np import pandas as pd import pyemu pts_file = os.path.join("utils","points1_test.dat") str_file = os.path.join("utils","struct_complex.dat") mat1_file = os.path.join("utils","ppcov.complex.struct1.out") mat2_file = os.path.join("utils","ppcov.complex.struct2.out") ppc_mat1 = pyemu.Cov.from_ascii(mat1_file) ppc_mat2 = pyemu.Cov.from_ascii(mat2_file) pts = pd.read_csv(pts_file,header=None,names=["name","x","y"],usecols=[0,1,2], delim_whitespace=True) struct1,struct2 = pyemu.utils.geostats.read_struct_file(str_file) print(struct1) print(struct2) for mat,struct in zip([ppc_mat1,ppc_mat2],[struct1,struct2]): str_mat = struct.covariance_matrix(x=pts.x,y=pts.y,names=pts.name) delt = mat.x - str_mat.x print(mat.x[:,0]) print(str_mat.x[:,0]) print(np.abs(delt).max()) assert np.abs(delt).max() < 1.0e-7 #break def pp_to_tpl_test(): import os import pyemu pp_file = os.path.join("utils","points1.dat") pp_df = pyemu.pp_utils.pilot_points_to_tpl(pp_file,name_prefix="test_") print(pp_df.columns) def tpl_to_dataframe_test(): import os import pyemu pp_file = os.path.join("utils","points1.dat") pp_df = pyemu.pp_utils.pilot_points_to_tpl(pp_file,name_prefix="test_") df_tpl = pyemu.pp_utils.pp_tpl_to_dataframe(pp_file+".tpl") assert df_tpl.shape[0] == pp_df.shape[0] # def to_mps_test(): # import os # import pyemu # jco_file = os.path.join("utils","dewater_pest.jcb") # jco = pyemu.Jco.from_binary(jco_file) # #print(jco.x) # pst = pyemu.Pst(jco_file.replace(".jcb",".pst")) # #print(pst.nnz_obs_names) # oc_dict = {oc:"l" for oc in pst.nnz_obs_names} # obj_func = {name:1.0 for name in pst.par_names} # # #pyemu.optimization.to_mps(jco=jco_file) # #pyemu.optimization.to_mps(jco=jco_file,obs_constraint_sense=oc_dict) # #pyemu.optimization.to_mps(jco=jco_file,obj_func="h00_00") # decision_var_names = pst.parameter_data.loc[pst.parameter_data.pargp=="q","parnme"].tolist() # pyemu.optimization.to_mps(jco=jco_file,obj_func=obj_func,decision_var_names=decision_var_names, # risk=0.975) def setup_pp_test(): import os import pyemu try: import flopy except: return model_ws = os.path.join("..","examples","Freyberg","extra_crispy") ml = flopy.modflow.Modflow.load("freyberg.nam",model_ws=model_ws,check=False) pp_dir = os.path.join("utils") #ml.export(os.path.join("temp","test_unrot_grid.shp")) sr = pyemu.helpers.SpatialReference().from_namfile( os.path.join(ml.model_ws, ml.namefile), delc=ml.dis.delc, delr=ml.dis.delr) sr.rotation = 0. par_info_unrot = pyemu.pp_utils.setup_pilotpoints_grid(sr=sr, prefix_dict={0: "hk1",1:"hk2"}, every_n_cell=2, pp_dir=pp_dir, tpl_dir=pp_dir, shapename=os.path.join("temp", "test_unrot.shp"), ) #print(par_info_unrot.parnme.value_counts()) gs = pyemu.geostats.GeoStruct(variograms=pyemu.geostats.ExpVario(a=1000,contribution=1.0)) ok = pyemu.geostats.OrdinaryKrige(gs,par_info_unrot) ok.calc_factors_grid(sr) sr2 = pyemu.helpers.SpatialReference.from_gridspec( os.path.join(ml.model_ws, "test.spc"), lenuni=2) par_info_drot = pyemu.pp_utils.setup_pilotpoints_grid(sr=sr2, prefix_dict={0: ["hk1_", "sy1_", "rch_"]}, every_n_cell=2, pp_dir=pp_dir, tpl_dir=pp_dir, shapename=os.path.join("temp", "test_unrot.shp"), ) ok = pyemu.geostats.OrdinaryKrige(gs, par_info_unrot) ok.calc_factors_grid(sr2) par_info_mrot = pyemu.pp_utils.setup_pilotpoints_grid(ml,prefix_dict={0:["hk1_","sy1_","rch_"]}, every_n_cell=2,pp_dir=pp_dir,tpl_dir=pp_dir, shapename=os.path.join("temp","test_unrot.shp")) ok = pyemu.geostats.OrdinaryKrige(gs, par_info_unrot) ok.calc_factors_grid(ml.sr) sr.rotation = 15 #ml.export(os.path.join("temp","test_rot_grid.shp")) #pyemu.gw_utils.setup_pilotpoints_grid(ml) par_info_rot = pyemu.pp_utils.setup_pilotpoints_grid(sr=sr,every_n_cell=2, pp_dir=pp_dir, tpl_dir=pp_dir, shapename=os.path.join("temp", "test_rot.shp")) ok = pyemu.geostats.OrdinaryKrige(gs, par_info_unrot) ok.calc_factors_grid(sr) print(par_info_unrot.x) print(par_info_drot.x) print(par_info_mrot.x) print(par_info_rot.x) def read_hob_test(): import os import pyemu hob_file = os.path.join("utils","HOB.txt") df = pyemu.gw_utils.modflow_hob_to_instruction_file(hob_file) print(df.obsnme) def read_pval_test(): import os import pyemu pval_file = os.path.join("utils", "meras_trEnhance.pval") pyemu.gw_utils.modflow_pval_to_template_file(pval_file) def pp_to_shapefile_test(): import os import pyemu try: import shapefile except: print("no pyshp") return pp_file = os.path.join("utils","points1.dat") shp_file = os.path.join("temp","points1.dat.shp") pyemu.pp_utils.write_pp_shapfile(pp_file) def write_tpl_test(): import os import pyemu tpl_file = os.path.join("utils","test_write.tpl") in_file = os.path.join("temp","tpl_test.dat") par_vals = {"q{0}".format(i+1):12345678.90123456 for i in range(7)} pyemu.pst_utils.write_to_template(par_vals,tpl_file,in_file) def read_pestpp_runstorage_file_test(): import os import pyemu rnj_file = os.path.join("utils","freyberg.rnj") #rnj_file = os.path.join("..", "..", "verification", "10par_xsec", "master_opt1","pest.rnj") p1,o1 = pyemu.helpers.read_pestpp_runstorage(rnj_file) p2,o2 = pyemu.helpers.read_pestpp_runstorage(rnj_file,9) diff = p1 - p2 diff.sort_values("parval1",inplace=True) def smp_to_ins_test(): import os import pyemu smp = os.path.join("utils","TWDB_wells.smp") ins = os.path.join('temp',"test.ins") try: pyemu.pst_utils.smp_to_ins(smp,ins) except: pass else: raise Exception("should have failed") pyemu.smp_utils.smp_to_ins(smp,ins,True) def master_and_workers(): import shutil import pyemu worker_dir = os.path.join("..","verification","10par_xsec","template_mac") master_dir = os.path.join("temp","master") if not os.path.exists(master_dir): os.mkdir(master_dir) assert os.path.exists(worker_dir) pyemu.helpers.start_workers(worker_dir,"pestpp","pest.pst",1, worker_root="temp",master_dir=master_dir) #now try it from within the master dir base_cwd = os.getcwd() os.chdir(master_dir) pyemu.helpers.start_workers(os.path.join("..","..",worker_dir), "pestpp","pest.pst",3, master_dir='.') os.chdir(base_cwd) def first_order_pearson_regul_test(): import os from pyemu import Schur from pyemu.utils.helpers import first_order_pearson_tikhonov,zero_order_tikhonov w_dir = "la" sc = Schur(jco=os.path.join(w_dir,"pest.jcb")) pt = sc.posterior_parameter zero_order_tikhonov(sc.pst) first_order_pearson_tikhonov(sc.pst,pt,reset=False) print(sc.pst.prior_information) sc.pst.rectify_pi() assert sc.pst.control_data.pestmode == "regularization" sc.pst.write(os.path.join('temp','test.pst')) def zero_order_regul_test(): import os import pyemu pst = pyemu.Pst(os.path.join("pst","inctest.pst")) pyemu.helpers.zero_order_tikhonov(pst) print(pst.prior_information) assert pst.control_data.pestmode == "regularization" pst.write(os.path.join('temp','test.pst')) pyemu.helpers.zero_order_tikhonov(pst,reset=False) assert pst.prior_information.shape[0] == pst.npar_adj * 2 def kl_test(): import os import numpy as np import pandas as pd import pyemu import matplotlib.pyplot as plt try: import flopy except: print("flopy not imported...") return model_ws = os.path.join("..","verification","Freyberg","extra_crispy") ml = flopy.modflow.Modflow.load("freyberg.nam",model_ws=model_ws,check=False) str_file = os.path.join("..","verification","Freyberg","structure.dat") arr_tru = np.loadtxt(os.path.join("..","verification", "Freyberg","extra_crispy", "hk.truth.ref")) + 20 basis_file = os.path.join("utils","basis.jco") tpl_file = os.path.join("utils","test.tpl") factors_file = os.path.join("temp","factors.dat") num_eig = 100 prefixes = ["hk1"] df = pyemu.utils.helpers.kl_setup(num_eig=num_eig, sr=ml.sr, struct=str_file, factors_file=factors_file, basis_file=basis_file, prefixes=prefixes,islog=False) basis = pyemu.Matrix.from_binary(basis_file) basis = basis[:,:num_eig] arr_tru = np.atleast_2d(arr_tru.flatten()).transpose() proj = np.dot(basis.T.x,arr_tru)[:num_eig] #proj.autoalign = False back = np.dot(basis.x, proj) back = back.reshape(ml.nrow,ml.ncol) df.parval1 = proj arr = pyemu.geostats.fac2real(df,factors_file,out_file=None) fig = plt.figure(figsize=(10, 10)) ax1, ax2 = plt.subplot(121),plt.subplot(122) mn,mx = arr_tru.min(),arr_tru.max() print(arr.max(), arr.min()) print(back.max(),back.min()) diff = np.abs(back - arr) print(diff.max()) assert diff.max() < 1.0e-5 def ok_test(): import os import pandas as pd import pyemu str_file = os.path.join("utils","struct_test.dat") pts_data = pd.DataFrame({"x":[1.0,2.0,3.0],"y":[0.,0.,0.],"name":["p1","p2","p3"]}) gs = pyemu.utils.geostats.read_struct_file(str_file)[0] ok = pyemu.utils.geostats.OrdinaryKrige(gs,pts_data) interp_points = pts_data.copy() kf = ok.calc_factors(interp_points.x,interp_points.y) #for ptname in pts_data.name: for i in kf.index: assert len(kf.loc[i,"inames"])== 1 assert kf.loc[i,"ifacts"][0] == 1.0 assert sum(kf.loc[i,"ifacts"]) == 1.0 print(kf) def ok_grid_test(): try: import flopy except: return import numpy as np import pandas as pd import pyemu nrow,ncol = 10,5 delr = np.ones((ncol)) * 1.0/float(ncol) delc = np.ones((nrow)) * 1.0/float(nrow) num_pts = 0 ptx = np.random.random(num_pts) pty = np.random.random(num_pts) ptname = ["p{0}".format(i) for i in range(num_pts)] pts_data = pd.DataFrame({"x":ptx,"y":pty,"name":ptname}) pts_data.index = pts_data.name pts_data = pts_data.loc[:,["x","y","name"]] sr = flopy.utils.SpatialReference(delr=delr,delc=delc) pts_data.loc["i0j0", :] = [sr.xcentergrid[0,0],sr.ycentergrid[0,0],"i0j0"] pts_data.loc["imxjmx", :] = [sr.xcentergrid[-1, -1], sr.ycentergrid[-1, -1], "imxjmx"] str_file = os.path.join("utils","struct_test.dat") gs = pyemu.utils.geostats.read_struct_file(str_file)[0] ok = pyemu.utils.geostats.OrdinaryKrige(gs,pts_data) kf = ok.calc_factors_grid(sr,verbose=False,var_filename=os.path.join("temp","test_var.ref"),minpts_interp=1) ok.to_grid_factors_file(os.path.join("temp","test.fac")) def ok_grid_zone_test(): try: import flopy except: return import numpy as np import pandas as pd import pyemu nrow,ncol = 10,5 delr = np.ones((ncol)) * 1.0/float(ncol) delc = np.ones((nrow)) * 1.0/float(nrow) num_pts = 0 ptx = np.random.random(num_pts) pty = np.random.random(num_pts) ptname = ["p{0}".format(i) for i in range(num_pts)] pts_data = pd.DataFrame({"x":ptx,"y":pty,"name":ptname}) pts_data.index = pts_data.name pts_data = pts_data.loc[:,["x","y","name"]] sr = flopy.utils.SpatialReference(delr=delr,delc=delc) pts_data.loc["i0j0", :] = [sr.xcentergrid[0,0],sr.ycentergrid[0,0],"i0j0"] pts_data.loc["imxjmx", :] = [sr.xcentergrid[-1, -1], sr.ycentergrid[-1, -1], "imxjmx"] pts_data.loc[:,"zone"] = 1 pts_data.zone.iloc[1] = 2 print(pts_data.zone.unique()) str_file = os.path.join("utils","struct_test.dat") gs = pyemu.utils.geostats.read_struct_file(str_file)[0] ok = pyemu.utils.geostats.OrdinaryKrige(gs,pts_data) zone_array = np.ones((nrow,ncol)) zone_array[0,0] = 2 kf = ok.calc_factors_grid(sr,verbose=False, var_filename=os.path.join("temp","test_var.ref"), minpts_interp=1,zone_array=zone_array) ok.to_grid_factors_file(os.path.join("temp","test.fac")) def ppk2fac_verf_test(): import os import numpy as np import pyemu try: import flopy except: return ws = os.path.join("..","verification","Freyberg") gspc_file = os.path.join(ws,"grid.spc") pp_file = os.path.join(ws,"pp_00_pp.dat") str_file = os.path.join(ws,"structure.complex.dat") ppk2fac_facfile = os.path.join(ws,"ppk2fac_fac.dat") pyemu_facfile = os.path.join("temp","pyemu_facfile.dat") sr = flopy.utils.SpatialReference.from_gridspec(gspc_file) ok = pyemu.utils.OrdinaryKrige(str_file,pp_file) ok.calc_factors_grid(sr,maxpts_interp=10) ok.to_grid_factors_file(pyemu_facfile) zone_arr = np.loadtxt(os.path.join(ws,"extra_crispy","ref","ibound.ref")) pyemu_arr = pyemu.utils.fac2real(pp_file,pyemu_facfile,out_file=None) ppk2fac_arr = pyemu.utils.fac2real(pp_file,ppk2fac_facfile,out_file=None) pyemu_arr[zone_arr == 0] = np.NaN pyemu_arr[zone_arr == -1] = np.NaN ppk2fac_arr[zone_arr == 0] = np.NaN ppk2fac_arr[zone_arr == -1] = np.NaN diff = np.abs(pyemu_arr - ppk2fac_arr) print(diff) assert np.nansum(diff) < 1.0e-6,np.nansum(diff) # def opt_obs_worth(): # import os # import pyemu # wdir = os.path.join("utils") # os.chdir(wdir) # pst = pyemu.Pst(os.path.join("supply2_pest.fosm.pst")) # zero_weight_names = [n for n,w in zip(pst.observation_data.obsnme,pst.observation_data.weight) if w == 0.0] # #print(zero_weight_names) # #for attr in ["base_jacobian","hotstart_resfile"]: # # pst.pestpp_options[attr] = os.path.join(wdir,pst.pestpp_options[attr]) # #pst.template_files = [os.path.join(wdir,f) for f in pst.template_files] # #pst.instruction_files = [os.path.join(wdir,f) for f in pst.instruction_files] # #print(pst.template_files) # df = pyemu.optimization.get_added_obs_importance(pst,obslist_dict={"zeros":zero_weight_names}) # os.chdir("..") # print(df) def mflist_budget_test(): import pyemu import os import pandas as pd try: import flopy except: print("no flopy...") return model_ws = os.path.join("..","examples","Freyberg_transient") ml = flopy.modflow.Modflow.load("freyberg.nam",model_ws=model_ws,check=False,load_only=[]) list_filename = os.path.join(model_ws,"freyberg.list") assert os.path.exists(list_filename) df = pyemu.gw_utils.setup_mflist_budget_obs(list_filename,start_datetime=ml.start_datetime) print(df) times = df.loc[df.index.str.startswith('vol_wells')].index.str.split( '_', expand=True).get_level_values(2)[::100] times = pd.to_datetime(times, yearfirst=True) df = pyemu.gw_utils.setup_mflist_budget_obs( list_filename, start_datetime=ml.start_datetime, specify_times=times) flx, vol = pyemu.gw_utils.apply_mflist_budget_obs( list_filename, 'flux.dat', 'vol.dat', start_datetime=ml.start_datetime, times='budget_times.config' ) assert (flx.index == vol.index).all() assert (flx.index == times).all() def mtlist_budget_test(): import pyemu import pandas as pd import os try: import flopy except: print("no flopy...") return list_filename = os.path.join("utils","mt3d.list") assert os.path.exists(list_filename) frun_line,ins_files, df = pyemu.gw_utils.setup_mtlist_budget_obs( list_filename,start_datetime='1-1-1970') assert len(ins_files) == 2 frun_line,ins_files, df = pyemu.gw_utils.setup_mtlist_budget_obs( list_filename,start_datetime='1-1-1970', gw_prefix='') assert len(ins_files) == 2 frun_line, ins_files, df = pyemu.gw_utils.setup_mtlist_budget_obs( list_filename, start_datetime=None) assert len(ins_files) == 2 list_filename = os.path.join("utils", "mt3d_imm_sor.lst") assert os.path.exists(list_filename) frun_line, ins_files, df = pyemu.gw_utils.setup_mtlist_budget_obs( list_filename, start_datetime='1-1-1970') def geostat_prior_builder_test(): import os import numpy as np import pyemu pst_file = os.path.join("pst","pest.pst") pst = pyemu.Pst(pst_file) # print(pst.parameter_data) tpl_file = os.path.join("utils", "pp_locs.tpl") str_file = os.path.join("utils", "structure.dat") cov = pyemu.helpers.geostatistical_prior_builder(pst_file,{str_file:tpl_file}) d1 = np.diag(cov.x) df = pyemu.pp_utils.pp_tpl_to_dataframe(tpl_file) df.loc[:,"zone"] = np.arange(df.shape[0]) gs = pyemu.geostats.read_struct_file(str_file) cov = pyemu.helpers.geostatistical_prior_builder(pst_file,{gs:df}, sigma_range=4) nnz = np.count_nonzero(cov.x) assert nnz == pst.npar_adj d2 = np.diag(cov.x) assert np.array_equiv(d1, d2) pst.parameter_data.loc[pst.par_names[1:10], "partrans"] = "tied" pst.parameter_data.loc[pst.par_names[1:10], "partied"] = pst.par_names[0] cov = pyemu.helpers.geostatistical_prior_builder(pst, {gs: df}, sigma_range=4) nnz = np.count_nonzero(cov.x) assert nnz == pst.npar_adj ttpl_file = os.path.join("temp", "temp.dat.tpl") with open(ttpl_file, 'w') as f: f.write("ptf ~\n ~ temp1 ~\n") pst.add_parameters(ttpl_file, ttpl_file.replace(".tpl", "")) pst.parameter_data.loc["temp1", "parubnd"] = 1.1 pst.parameter_data.loc["temp1", "parlbnd"] = 0.9 cov = pyemu.helpers.geostatistical_prior_builder(pst, {str_file: tpl_file}) assert cov.shape[0] == pst.npar_adj def geostat_draws_test(): import os import numpy as np import pyemu pst_file = os.path.join("pst","pest.pst") pst = pyemu.Pst(pst_file) print(pst.parameter_data) tpl_file = os.path.join("utils", "pp_locs.tpl") str_file = os.path.join("utils", "structure.dat") pe = pyemu.helpers.geostatistical_draws(pst_file,{str_file:tpl_file}) assert (pe.shape == pe.dropna().shape) pst.parameter_data.loc[pst.par_names[1:10], "partrans"] = "tied" pst.parameter_data.loc[pst.par_names[1:10], "partied"] = pst.par_names[0] pe = pyemu.helpers.geostatistical_draws(pst, {str_file: tpl_file}) assert (pe.shape == pe.dropna().shape) df = pyemu.pp_utils.pp_tpl_to_dataframe(tpl_file) df.loc[:,"zone"] = np.arange(df.shape[0]) gs = pyemu.geostats.read_struct_file(str_file) pe = pyemu.helpers.geostatistical_draws(pst_file,{gs:df}, sigma_range=4) ttpl_file = os.path.join("temp", "temp.dat.tpl") with open(ttpl_file, 'w') as f: f.write("ptf ~\n ~ temp1 ~\n") pst.add_parameters(ttpl_file, ttpl_file.replace(".tpl", "")) pst.parameter_data.loc["temp1", "parubnd"] = 1.1 pst.parameter_data.loc["temp1", "parlbnd"] = 0.9 pst.parameter_data.loc[pst.par_names[1:10],"partrans"] = "tied" pst.parameter_data.loc[pst.par_names[1:10], "partied"] = pst.par_names[0] pe = pyemu.helpers.geostatistical_draws(pst, {str_file: tpl_file}) assert (pe.shape == pe.dropna().shape) # def linearuniversal_krige_test(): # try: # import flopy # except: # return # # import numpy as np # import pandas as pd # import pyemu # nrow,ncol = 10,5 # delr = np.ones((ncol)) * 1.0/float(ncol) # delc = np.ones((nrow)) * 1.0/float(nrow) # # num_pts = 0 # ptx = np.random.random(num_pts) # pty = np.random.random(num_pts) # ptname = ["p{0}".format(i) for i in range(num_pts)] # pts_data = pd.DataFrame({"x":ptx,"y":pty,"name":ptname}) # pts_data.index = pts_data.name # pts_data = pts_data.loc[:,["x","y","name"]] # # # sr = flopy.utils.SpatialReference(delr=delr,delc=delc) # pts_data.loc["i0j0", :] = [sr.xcentergrid[0,0],sr.ycentergrid[0,0],"i0j0"] # pts_data.loc["imxjmx", :] = [sr.xcentergrid[-1, -1], sr.ycentergrid[-1, -1], "imxjmx"] # pts_data.loc["i0j0","value"] = 1.0 # pts_data.loc["imxjmx","value"] = 0.0 # # str_file = os.path.join("utils","struct_test.dat") # gs = pyemu.utils.geostats.read_struct_file(str_file)[0] # luk = pyemu.utils.geostats.LinearUniversalKrige(gs,pts_data) # df = luk.estimate_grid(sr,verbose=True, # var_filename=os.path.join("utils","test_var.ref"), # minpts_interp=1) def gslib_2_dataframe_test(): import os import pyemu gslib_file = os.path.join("utils","ch91pt.shp.gslib") df = pyemu.geostats.gslib_2_dataframe(gslib_file) print(df) def sgems_to_geostruct_test(): import os import pyemu xml_file = os.path.join("utils", "ch00") gs = pyemu.geostats.read_sgems_variogram_xml(xml_file) def load_sgems_expvar_test(): import os import numpy as np #import matplotlib.pyplot as plt import pyemu dfs = pyemu.geostats.load_sgems_exp_var(os.path.join("utils","ch00_expvar")) xmn,xmx = 1.0e+10,-1.0e+10 for d,df in dfs.items(): xmn = min(xmn,df.x.min()) xmx = max(xmx,df.x.max()) xml_file = os.path.join("utils", "ch00") gs = pyemu.geostats.read_sgems_variogram_xml(xml_file) v = gs.variograms[0] #ax = gs.plot(ls="--") #plt.show() #x = np.linspace(xmn,xmx,100) #y = v.inv_h(x) # #plt.plot(x,y) #plt.show() def read_hydmod_test(): import os import numpy as np import pandas as pd import pyemu try: import flopy except: return df, outfile = pyemu.gw_utils.modflow_read_hydmod_file(os.path.join('utils','freyberg.hyd.bin'), os.path.join('temp','freyberg.hyd.bin.dat')) df = pd.read_csv(os.path.join('temp', 'freyberg.hyd.bin.dat'), delim_whitespace=True) dftrue = pd.read_csv(os.path.join('utils', 'freyberg.hyd.bin.dat.true'), delim_whitespace=True) assert np.allclose(df.obsval.values, dftrue.obsval.values) def make_hydmod_insfile_test(): import os import shutil import pyemu try: import flopy except: return shutil.copy2(os.path.join('utils','freyberg.hyd.bin'),os.path.join('temp','freyberg.hyd.bin')) pyemu.gw_utils.modflow_hydmod_to_instruction_file(os.path.join('temp','freyberg.hyd.bin')) #assert open(os.path.join('utils','freyberg.hyd.bin.dat.ins'),'r').read() == open('freyberg.hyd.dat.ins', 'r').read() assert os.path.exists(os.path.join('temp','freyberg.hyd.bin.dat.ins')) def plot_summary_test(): import os import pandas as pd import pyemu try: import matplotlib.pyplot as plt except: return par_df = pd.read_csv(os.path.join("utils","freyberg_pp.par.usum.csv"), index_col=0) idx = list(par_df.index.map(lambda x: x.startswith("HK"))) par_df = par_df.loc[idx,:] ax = pyemu.plot_utils.plot_summary_distributions(par_df,label_post=True) plt.savefig(os.path.join("temp","hk_par.png")) plt.close() df = os.path.join("utils","freyberg_pp.pred.usum.csv") figs,axes = pyemu.plot_utils.plot_summary_distributions(df,subplots=True) #plt.show() for i,fig in enumerate(figs): plt.figure(fig.number) plt.savefig(os.path.join("temp","test_pred_{0}.png".format(i))) plt.close(fig) df = os.path.join("utils","freyberg_pp.par.usum.csv") figs, axes = pyemu.plot_utils.plot_summary_distributions(df,subplots=True) for i,fig in enumerate(figs): plt.figure(fig.number) plt.savefig(os.path.join("temp","test_par_{0}.png".format(i))) plt.close(fig) def hds_timeseries_test(): import os import shutil import numpy as np import pandas as pd try: import flopy except: return import pyemu model_ws =os.path.join("..","examples","Freyberg_transient") org_hds_file = os.path.join(model_ws, "freyberg.hds") hds_file = os.path.join("temp", "freyberg.hds") org_cbc_file = org_hds_file.replace(".hds",".cbc") cbc_file = hds_file.replace(".hds", ".cbc") shutil.copy2(org_hds_file, hds_file) shutil.copy2(org_cbc_file, cbc_file) m = flopy.modflow.Modflow.load("freyberg.nam", model_ws=model_ws, check=False) kij_dict = {"test1": [0, 0, 0], "test2": (1, 1, 1), "test": (0, 10, 14)} pyemu.gw_utils.setup_hds_timeseries(hds_file, kij_dict, include_path=True) # m.change_model_ws("temp",reset_external=True) # m.write_input() # pyemu.os_utils.run("mfnwt freyberg.nam",cwd="temp") cmd, df1 = pyemu.gw_utils.setup_hds_timeseries(cbc_file, kij_dict, include_path=True, prefix="stor", text="storage", fill=0.0) cmd,df2 = pyemu.gw_utils.setup_hds_timeseries(cbc_file, kij_dict, model=m, include_path=True, prefix="stor", text="storage",fill=0.0) print(df1) d = np.abs(df1.obsval.values - df2.obsval.values) print(d.max()) assert d.max() == 0.0,d try: pyemu.gw_utils.setup_hds_timeseries(cbc_file, kij_dict, model=m, include_path=True, prefix="consthead", text="constant head") except: pass else: raise Exception("should have failed") try: pyemu.gw_utils.setup_hds_timeseries(cbc_file, kij_dict, model=m, include_path=True, prefix="consthead", text="JUNK") except: pass else: raise Exception("should have failed") pyemu.gw_utils.setup_hds_timeseries(hds_file, kij_dict, include_path=True,prefix="hds") m = flopy.modflow.Modflow.load("freyberg.nam",model_ws=model_ws,load_only=[],check=False) pyemu.gw_utils.setup_hds_timeseries(hds_file, kij_dict,model=m,include_path=True) pyemu.gw_utils.setup_hds_timeseries(hds_file, kij_dict, model=m, include_path=True,prefix="hds") org_hds_file = os.path.join("utils", "MT3D001.UCN") hds_file = os.path.join("temp", "MT3D001.UCN") shutil.copy2(org_hds_file, hds_file) kij_dict = {"test1": [0, 0, 0], "test2": (1, 1, 1)} pyemu.gw_utils.setup_hds_timeseries(hds_file, kij_dict, include_path=True) pyemu.gw_utils.setup_hds_timeseries(hds_file, kij_dict, include_path=True, prefix="hds") m = flopy.modflow.Modflow.load("freyberg.nam", model_ws=model_ws, load_only=[], check=False) pyemu.gw_utils.setup_hds_timeseries(hds_file, kij_dict, model=m, include_path=True) pyemu.gw_utils.setup_hds_timeseries(hds_file, kij_dict, model=m, include_path=True, prefix="hds") # df1 = pd.read_csv(out_file, delim_whitespace=True) # pyemu.gw_utils.apply_hds_obs(hds_file) # df2 = pd.read_csv(out_file, delim_whitespace=True) # diff = df1.obsval - df2.obsval def grid_obs_test(): import os import shutil import numpy as np import pandas as pd try: import flopy except: return import pyemu m_ws = os.path.join("..", "examples", "freyberg_sfr_update") org_hds_file = os.path.join("..","examples","Freyberg_Truth","freyberg.hds") org_multlay_hds_file = os.path.join(m_ws, "freyberg.hds") # 3 layer version org_ucn_file = os.path.join(m_ws, "MT3D001.UCN") # mt example hds_file = os.path.join("temp","freyberg.hds") multlay_hds_file = os.path.join("temp", "freyberg_3lay.hds") ucn_file = os.path.join("temp", "MT3D001.UCN") out_file = hds_file+".dat" multlay_out_file = multlay_hds_file+".dat" ucn_out_file = ucn_file+".dat" shutil.copy2(org_hds_file,hds_file) shutil.copy2(org_multlay_hds_file, multlay_hds_file) shutil.copy2(org_ucn_file, ucn_file) pyemu.gw_utils.setup_hds_obs(hds_file) df1 = pd.read_csv(out_file,delim_whitespace=True) pyemu.gw_utils.apply_hds_obs(hds_file) df2 = pd.read_csv(out_file,delim_whitespace=True) diff = df1.obsval - df2.obsval assert abs(diff.max()) < 1.0e-6, abs(diff.max()) pyemu.gw_utils.setup_hds_obs(multlay_hds_file) df1 = pd.read_csv(multlay_out_file,delim_whitespace=True) assert len(df1) == 3*len(df2), "{} != 3*{}".format(len(df1), len(df2)) pyemu.gw_utils.apply_hds_obs(multlay_hds_file) df2 = pd.read_csv(multlay_out_file,delim_whitespace=True) diff = df1.obsval - df2.obsval assert np.allclose(df1.obsval,df2.obsval), abs(diff.max()) pyemu.gw_utils.setup_hds_obs(hds_file,skip=-999) df1 = pd.read_csv(out_file,delim_whitespace=True) pyemu.gw_utils.apply_hds_obs(hds_file) df2 = pd.read_csv(out_file,delim_whitespace=True) diff = df1.obsval - df2.obsval assert diff.max() < 1.0e-6 pyemu.gw_utils.setup_hds_obs(ucn_file, skip=1.e30, prefix='ucn') df1 = pd.read_csv(ucn_out_file, delim_whitespace=True) pyemu.gw_utils.apply_hds_obs(ucn_file) df2 = pd.read_csv(ucn_out_file, delim_whitespace=True) diff = df1.obsval - df2.obsval assert np.allclose(df1.obsval, df2.obsval), abs(diff.max()) # skip = lambda x : x < -888.0 skip = lambda x: x if x > -888.0 else np.NaN pyemu.gw_utils.setup_hds_obs(hds_file,skip=skip) df1 = pd.read_csv(out_file,delim_whitespace=True) pyemu.gw_utils.apply_hds_obs(hds_file) df2 = pd.read_csv(out_file,delim_whitespace=True) diff = df1.obsval - df2.obsval assert diff.max() < 1.0e-6 kperk_pairs = (0,0) pyemu.gw_utils.setup_hds_obs(hds_file,kperk_pairs=kperk_pairs, skip=skip) df1 = pd.read_csv(out_file,delim_whitespace=True) pyemu.gw_utils.apply_hds_obs(hds_file) df2 = pd.read_csv(out_file,delim_whitespace=True) diff = df1.obsval - df2.obsval assert diff.max() < 1.0e-6 kperk_pairs = [(0, 0), (0, 1), (0, 2)] pyemu.gw_utils.setup_hds_obs(multlay_hds_file, kperk_pairs=kperk_pairs, skip=skip) df1 = pd.read_csv(multlay_out_file, delim_whitespace=True) assert len(df1) == 3*len(df2), "{} != 3*{}".format(len(df1), len(df2)) pyemu.gw_utils.apply_hds_obs(multlay_hds_file) df2 = pd.read_csv(multlay_out_file, delim_whitespace=True) diff = df1.obsval - df2.obsval assert np.allclose(df1.obsval, df2.obsval), abs(diff.max()) kperk_pairs = [(0, 0), (0, 1), (0, 2), (2, 0), (2, 1), (2, 2)] pyemu.gw_utils.setup_hds_obs(multlay_hds_file, kperk_pairs=kperk_pairs, skip=skip) df1 = pd.read_csv(multlay_out_file, delim_whitespace=True) assert len(df1) == 2 * len(df2), "{} != 2*{}".format(len(df1), len(df2)) pyemu.gw_utils.apply_hds_obs(multlay_hds_file) df2 = pd.read_csv(multlay_out_file, delim_whitespace=True) diff = df1.obsval - df2.obsval assert np.allclose(df1.obsval, df2.obsval), abs(diff.max()) m = flopy.modflow.Modflow.load("freyberg.nam", model_ws=m_ws, load_only=["BAS6"],forgive=False,verbose=True) kperk_pairs = [(0, 0), (0, 1), (0, 2)] skipmask = m.bas6.ibound.array pyemu.gw_utils.setup_hds_obs(multlay_hds_file, kperk_pairs=kperk_pairs, skip=skipmask) df1 = pd.read_csv(multlay_out_file, delim_whitespace=True) pyemu.gw_utils.apply_hds_obs(multlay_hds_file) df2 = pd.read_csv(multlay_out_file, delim_whitespace=True) assert len(df1) == len(df2) == np.abs(skipmask).sum(), \ "array skip failing, expecting {0} obs but returned {1}".format(np.abs(skipmask).sum(), len(df1)) diff = df1.obsval - df2.obsval assert np.allclose(df1.obsval, df2.obsval), abs(diff.max()) kperk_pairs = [(0, 0), (0, 1), (0, 2), (2, 0), (2, 1), (2, 2)] skipmask = m.bas6.ibound.array[0] pyemu.gw_utils.setup_hds_obs(multlay_hds_file, kperk_pairs=kperk_pairs, skip=skipmask) df1 = pd.read_csv(multlay_out_file, delim_whitespace=True) pyemu.gw_utils.apply_hds_obs(multlay_hds_file) df2 = pd.read_csv(multlay_out_file, delim_whitespace=True) assert len(df1) == len(df2) == 2 * m.nlay * np.abs(skipmask).sum(), "array skip failing" diff = df1.obsval - df2.obsval assert np.allclose(df1.obsval, df2.obsval), abs(diff.max()) kperk_pairs = [(0, 0), (0, 1), (0, 2), (2, 0), (2, 1), (2, 2)] skipmask = m.bas6.ibound.array pyemu.gw_utils.setup_hds_obs(multlay_hds_file, kperk_pairs=kperk_pairs, skip=skipmask) df1 = pd.read_csv(multlay_out_file, delim_whitespace=True) pyemu.gw_utils.apply_hds_obs(multlay_hds_file) df2 = pd.read_csv(multlay_out_file, delim_whitespace=True) assert len(df1) == len(df2) == 2 * np.abs(skipmask).sum(), "array skip failing" diff = df1.obsval - df2.obsval assert np.allclose(df1.obsval, df2.obsval), abs(diff.max()) def postprocess_inactive_conc_test(): import os import shutil import numpy as np import pandas as pd try: import flopy except: return import pyemu bd = os.getcwd() model_ws = os.path.join("..", "examples", "Freyberg_transient") org_hds_file = os.path.join("utils", "MT3D001.UCN") hds_file = os.path.join("temp", "MT3D001.UCN") shutil.copy2(org_hds_file, hds_file) kij_dict = {"test1": [0, 0, 0], "test2": (1, 1, 1), "inact": [0, 81, 35]} m = flopy.modflow.Modflow.load("freyberg.nam", model_ws=model_ws, load_only=[], check=False) frun_line, df = pyemu.gw_utils.setup_hds_timeseries(hds_file, kij_dict, model=m, include_path=True, prefix="hds", postprocess_inact=1E30) os.chdir("temp") df0 = pd.read_csv("{0}_timeseries.processed".format(os.path.split(hds_file)[-1]), delim_whitespace=True).T df1 = pd.read_csv("{0}_timeseries.post_processed".format(os.path.split(hds_file)[-1]), delim_whitespace=True).T eval(frun_line) df2 = pd.read_csv("{0}_timeseries.processed".format(os.path.split(hds_file)[-1]), delim_whitespace=True).T df3 = pd.read_csv("{0}_timeseries.post_processed".format(os.path.split(hds_file)[-1]), delim_whitespace=True).T assert np.allclose(df0, df2) assert np.allclose(df2.test1, df3.test1) assert np.allclose(df2.test2, df3.test2) assert np.allclose(df3, df1) os.chdir(bd) def gw_sft_ins_test(): import os import pyemu sft_outfile = os.path.join("utils","test_sft.out") #pyemu.gw_utils.setup_sft_obs(sft_outfile) #pyemu.gw_utils.setup_sft_obs(sft_outfile,start_datetime="1-1-1970") df = pyemu.gw_utils.setup_sft_obs(sft_outfile, start_datetime="1-1-1970",times=[10950.00]) #print(df) def sfr_helper_test(): import os import shutil import pandas as pd import pyemu import flopy #setup the process m = flopy.modflow.Modflow.load("supply2.nam",model_ws="utils",check=False,verbose=True,forgive=False,load_only=["dis","sfr"]) sd = m.sfr.segment_data[0].copy() sd["flow"] = 1.0 sd["pptsw"] = 1.0 m.sfr.segment_data = {k:sd.copy() for k in range(m.nper)} df_sfr = pyemu.gw_utils.setup_sfr_seg_parameters( m, include_temporal_pars=['hcond1', 'flow']) print(df_sfr) os.chdir("utils") # change the name of the sfr file that will be created pars = {} with open("sfr_seg_pars.config") as f: for line in f: line = line.strip().split() pars[line[0]] = line[1] pars["sfr_filename"] = "test.sfr" with open("sfr_seg_pars.config", 'w') as f: for k, v in pars.items(): f.write("{0} {1}\n".format(k, v)) # change some hcond1 values df = pd.read_csv("sfr_seg_temporal_pars.dat", delim_whitespace=False, index_col=0) df.loc[:, "flow"] = 10.0 df.to_csv("sfr_seg_temporal_pars.dat", sep=',') sd1 = pyemu.gw_utils.apply_sfr_seg_parameters().segment_data m1 = flopy.modflow.Modflow.load("supply2.nam", load_only=["sfr"], check=False) os.chdir("..") for kper,sd in m1.sfr.segment_data.items(): #print(sd["flow"],sd1[kper]["flow"]) for i1,i2 in zip(sd["flow"],sd1[kper]["flow"]): assert i1 * 10 == i2,"{0},{1}".format(i1,i2) df_sfr = pyemu.gw_utils.setup_sfr_seg_parameters("supply2.nam", model_ws="utils", include_temporal_pars=True) os.chdir("utils") # change the name of the sfr file that will be created pars = {} with open("sfr_seg_pars.config") as f: for line in f: line = line.strip().split() pars[line[0]] = line[1] pars["sfr_filename"] = "test.sfr" with open("sfr_seg_pars.config", 'w') as f: for k, v in pars.items(): f.write("{0} {1}\n".format(k, v)) # change some hcond1 values df = pd.read_csv("sfr_seg_pars.dat", delim_whitespace=False,index_col=0) df.loc[:, "hcond1"] = 1.0 df.to_csv("sfr_seg_pars.dat", sep=',') # make sure the hcond1 mult worked... sd1 = pyemu.gw_utils.apply_sfr_seg_parameters().segment_data[0] m1 = flopy.modflow.Modflow.load("supply2.nam", load_only=["sfr"], check=False) sd2 = m1.sfr.segment_data[0] sd1 = pd.DataFrame.from_records(sd1) sd2 = pd.DataFrame.from_records(sd2) # print(sd1.hcond1) # print(sd2.hcond2) assert sd1.hcond1.sum() == sd2.hcond1.sum() # change some hcond1 values df = pd.read_csv("sfr_seg_pars.dat",delim_whitespace=False,index_col=0) df.loc[:,"hcond1"] = 0.5 df.to_csv("sfr_seg_pars.dat",sep=',') #change the name of the sfr file that will be created pars = {} with open("sfr_seg_pars.config") as f: for line in f: line = line.strip().split() pars[line[0]] = line[1] pars["sfr_filename"] = "test.sfr" with open("sfr_seg_pars.config",'w') as f: for k,v in pars.items(): f.write("{0} {1}\n".format(k,v)) #make sure the hcond1 mult worked... sd1 = pyemu.gw_utils.apply_sfr_seg_parameters().segment_data[0] m1 = flopy.modflow.Modflow.load("supply2.nam",load_only=["sfr"],check=False) sd2 = m1.sfr.segment_data[0] sd1 = pd.DataFrame.from_records(sd1) sd2 = pd.DataFrame.from_records(sd2) #print(sd1.hcond1) #print(sd2.hcond2) os.chdir("..") assert (sd1.hcond1 * 2.0).sum() == sd2.hcond1.sum() def sfr_obs_test(): import os import pyemu import flopy sfr_file = os.path.join("utils","freyberg.sfr.out") pyemu.gw_utils.setup_sfr_obs(sfr_file) pyemu.gw_utils.setup_sfr_obs(sfr_file,seg_group_dict={"obs1":[1,4],"obs2":[16,17,18,19,22,23]}) m = flopy.modflow.Modflow.load("freyberg.nam",model_ws="utils",load_only=[],check=False) pyemu.gw_utils.setup_sfr_obs(sfr_file,model=m) pyemu.gw_utils.apply_sfr_obs() pyemu.gw_utils.setup_sfr_obs(sfr_file, seg_group_dict={"obs1": [1, 4], "obs2": [16, 17, 18, 19, 22, 23]},model=m) def sfr_reach_obs_test(): import os import pyemu import flopy import pandas as pd import numpy as np sfr_file = os.path.join("utils","freyberg.sfr.out") pyemu.gw_utils.setup_sfr_reach_obs(sfr_file, seg_reach=[[1, 2], [4, 1], [2, 2]]) proc = pd.read_csv("{0}.reach_processed".format(sfr_file), sep=' ') assert proc.shape[0] == 3*2 # (nper*nobs) pyemu.gw_utils.setup_sfr_reach_obs(sfr_file, seg_reach=np.array([[1, 2], [4, 1], [2, 2]])) proc = pd.read_csv("{0}.reach_processed".format(sfr_file), sep=' ') assert proc.shape[0] == 3*2 # (nper*nobs) pyemu.gw_utils.setup_sfr_reach_obs(sfr_file) proc = pd.read_csv("{0}.reach_processed".format(sfr_file), sep=' ') assert proc.shape[0] == 3*40 # (nper*nobs) pyemu.gw_utils.setup_sfr_reach_obs(sfr_file,seg_reach={"obs1": [1, 2], "obs2": [4, 1]}) proc = pd.read_csv("{0}.reach_processed".format(sfr_file), sep=' ') assert proc.shape[0] == 3*2 # (nper*nobs) seg_reach_df = pd.DataFrame.from_dict({"obs1": [1, 2], "obs2": [4, 1]}, columns=['segment', 'reach'], orient='index') pyemu.gw_utils.setup_sfr_reach_obs(sfr_file, seg_reach=seg_reach_df) proc = pd.read_csv("{0}.reach_processed".format(sfr_file), sep=' ') assert proc.shape[0] == 3*2 # (nper*nobs) m = flopy.modflow.Modflow.load("freyberg.nam", model_ws="utils", load_only=[], check=False) pyemu.gw_utils.setup_sfr_reach_obs(sfr_file, model=m) pyemu.gw_utils.apply_sfr_reach_obs() proc = pd.read_csv("{0}.reach_processed".format(sfr_file), sep=' ') assert proc.shape[0] == 3*40 # (nper*nobs) pyemu.gw_utils.setup_sfr_reach_obs(sfr_file, seg_reach={"obs1": [1, 2], "obs2": [4, 1], "blah": [2, 1]}, model=m) proc = pd.read_csv("{0}.reach_processed".format(sfr_file), sep=' ') assert proc.shape[0] == 3*2 # (nper*nobs) pyemu.gw_utils.setup_sfr_reach_obs(sfr_file, model=m, seg_reach=seg_reach_df) proc = pd.read_csv("{0}.reach_processed".format(sfr_file), sep=' ') assert proc.shape[0] == 3*2 # (nper*nobs) def gage_obs_test(): import os import pyemu import numpy as np bd = os.getcwd() os.chdir("utils") gage_file = "RmSouth_pred_7d.gage1.go" gage = pyemu.gw_utils.setup_gage_obs(gage_file, start_datetime='2007-04-11') if gage is not None: print(gage[1], gage[2]) times = np.concatenate(([0], np.arange(7., 7. * 404, 7.))) gage = pyemu.gw_utils.setup_gage_obs(gage_file, start_datetime='2007-04-11', times=times) if gage is not None: print(gage[1], gage[2]) pyemu.gw_utils.apply_gage_obs() os.chdir(bd) def pst_from_parnames_obsnames_test(): import pyemu import os parnames = ['param1','par2','p3'] obsnames = ['obervation1','ob2','o6'] pst = pyemu.helpers.pst_from_parnames_obsnames(parnames, obsnames) pst.write('simpletemp.pst') newpst = pyemu.Pst('simpletemp.pst') assert newpst.nobs == len(obsnames) assert newpst.npar == len(parnames) def write_jactest_test(): import os import pyemu pst = pyemu.Pst(os.path.join("pst", "5.pst")) print(pst.parameter_data) #return df = pyemu.helpers.build_jac_test_csv(pst,num_steps=5) print(df) df = pyemu.helpers.build_jac_test_csv(pst, num_steps=5,par_names=["par1"]) print(df) df = pyemu.helpers.build_jac_test_csv(pst, num_steps=5,forward=False) print(df) df.to_csv(os.path.join("temp","sweep_in.csv")) print(pst.parameter_data) pst.write(os.path.join("temp","test.pst")) #pyemu.helpers.run("sweep test.pst",cwd="temp") def plot_id_bar_test(): import pyemu import matplotlib.pyplot as plt w_dir = "la" ev = pyemu.ErrVar(jco=os.path.join(w_dir, "pest.jcb")) id_df = ev.get_identifiability_dataframe(singular_value=15) pyemu.plot_utils.plot_id_bar(id_df) #plt.show() def jco_from_pestpp_runstorage_test(): import os import pyemu jco_file = os.path.join("utils","pest.jcb") jco = pyemu.Jco.from_binary(jco_file) rnj_file = jco_file.replace(".jcb",".rnj") pst_file = jco_file.replace(".jcb",".pst") jco2 = pyemu.helpers.jco_from_pestpp_runstorage(rnj_file,pst_file) diff = (jco - jco2).to_dataframe() print(diff) def hfb_test(): import os try: import flopy except: return import pyemu org_model_ws = os.path.join("..", "examples", "freyberg_sfr_update") nam_file = "freyberg.nam" m = flopy.modflow.Modflow.load(nam_file, model_ws=org_model_ws, check=False) try: pyemu.gw_utils.write_hfb_template(m) except: pass else: raise Exception() hfb_data = [] jcol1, jcol2 = 14,15 for i in range(m.nrow): hfb_data.append([0,i,jcol1,i,jcol2,0.001]) flopy.modflow.ModflowHfb(m,0,0,len(hfb_data),hfb_data=hfb_data) m.change_model_ws("temp") m.write_input() m.exe_name = "mfnwt" try: m.run_model() except: pass tpl_file,df = pyemu.gw_utils.write_hfb_template(m) assert os.path.exists(tpl_file) assert df.shape[0] == m.hfb6.hfb_data.shape[0] def hfb_zn_mult_test(): import os try: import flopy except: return import pyemu import pandas as pd org_model_ws = os.path.join("..", "examples", "freyberg_sfr_update") nam_file = "freyberg.nam" m = flopy.modflow.Modflow.load( nam_file, model_ws=org_model_ws, check=False) try: pyemu.gw_utils.write_hfb_template(m) except: pass else: raise Exception() hfb_data = [] jcol1, jcol2 = 14, 15 for i in range(m.nrow)[:11]: hfb_data.append([0, i, jcol1, i, jcol2, 0.001]) for i in range(m.nrow)[11:21]: hfb_data.append([0, i, jcol1, i, jcol2, 0.002]) for i in range(m.nrow)[21:]: hfb_data.append([0, i, jcol1, i, jcol2, 0.003]) flopy.modflow.ModflowHfb(m, 0, 0, len(hfb_data), hfb_data=hfb_data) orig_len = len(m.hfb6.hfb_data) m.change_model_ws("temp") m.write_input() m.exe_name = "mfnwt" try: m.run_model() except: pass orig_vals, tpl_file = pyemu.gw_utils.write_hfb_zone_multipliers_template(m) assert os.path.exists(tpl_file) hfb_pars = pd.read_csv(os.path.join(m.model_ws, 'hfb6_pars.csv')) hfb_tpl_contents = open(tpl_file, 'r').readlines() mult_str = ''.join(hfb_tpl_contents[1:]).replace( '~ hbz_0000 ~', '0.1').replace( '~ hbz_0001 ~', '1.0').replace( '~ hbz_0002 ~', '10.0') with open(hfb_pars.mlt_file.values[0], 'w') as mfp: mfp.write(mult_str) pyemu.gw_utils.apply_hfb_pars(os.path.join(m.model_ws, 'hfb6_pars.csv')) with open(hfb_pars.mlt_file.values[0], 'r') as mfp: for i, line in enumerate(mfp): pass mhfb = flopy.modflow.ModflowHfb.load(hfb_pars.model_file.values[0], m) assert i-1 == orig_len == len(mhfb.hfb_data) def read_runstor_test(): import os import numpy as np import pandas as pd import pyemu d = os.path.join("utils","runstor") pst = pyemu.Pst(os.path.join(d,"pest.pst")) par_df,obs_df = pyemu.helpers.read_pestpp_runstorage(os.path.join(d,"pest.rns"),"all") par_df2 = pd.read_csv(os.path.join(d,"sweep_in.csv"),index_col=0) obs_df2 = pd.read_csv(os.path.join(d,"sweep_out.csv"),index_col=0) obs_df2.columns = obs_df2.columns.str.lower() obs_df2 = obs_df2.loc[:,obs_df.columns] par_df2 = par_df2.loc[:,par_df.columns] pdif = np.abs(par_df.values - par_df2.values).max() odif = np.abs(obs_df.values - obs_df2.values).max() print(pdif,odif) assert pdif < 1.0e-6,pdif assert odif < 1.0e-6,odif try: pyemu.helpers.read_pestpp_runstorage(os.path.join(d, "pest.rns"), "junk") except: pass else: raise Exception() def smp_test(): import os from pyemu.utils import smp_to_dataframe, dataframe_to_smp, \ smp_to_ins from pyemu.pst.pst_utils import parse_ins_file smp_filename = os.path.join("misc", "gainloss.smp") df = smp_to_dataframe(smp_filename) print(df.dtypes) dataframe_to_smp(df, smp_filename + ".test") smp_to_ins(smp_filename) obs_names = parse_ins_file(smp_filename + ".ins") print(len(obs_names)) smp_filename = os.path.join("misc", "sim_hds_v6.smp") df = smp_to_dataframe(smp_filename) print(df.dtypes) dataframe_to_smp(df, smp_filename + ".test") smp_to_ins(smp_filename) obs_names = parse_ins_file(smp_filename + ".ins") print(len(obs_names)) def smp_dateparser_test(): import os import pyemu from pyemu.utils import smp_to_dataframe, dataframe_to_smp, \ smp_to_ins smp_filename = os.path.join("misc", "gainloss.smp") df = smp_to_dataframe(smp_filename, datetime_format="%d/%m/%Y %H:%M:%S") print(df.dtypes) dataframe_to_smp(df, smp_filename + ".test") smp_to_ins(smp_filename) obs_names = pyemu.pst_utils.parse_ins_file(smp_filename + ".ins") print(len(obs_names)) smp_filename = os.path.join("misc", "sim_hds_v6.smp") df = smp_to_dataframe(smp_filename) print(df.dtypes) dataframe_to_smp(df, smp_filename + ".test") smp_to_ins(smp_filename) obs_names = pyemu.pst_utils.parse_ins_file(smp_filename + ".ins") print(len(obs_names)) def fieldgen_dev(): import shutil import numpy as np import pandas as pd try: import flopy except: return import pyemu org_model_ws = os.path.join("..", "examples", "freyberg_sfr_update") nam_file = "freyberg.nam" m = flopy.modflow.Modflow.load(nam_file, model_ws=org_model_ws, check=False) flopy.modflow.ModflowRiv(m, stress_period_data={0: [[0, 0, 0, 30.0, 1.0, 25.0], [0, 0, 1, 31.0, 1.0, 25.0], [0, 0, 1, 31.0, 1.0, 25.0]]}) org_model_ws = "temp" m.change_model_ws(org_model_ws) m.write_input() new_model_ws = "temp_fieldgen" ph = pyemu.helpers.PstFromFlopyModel(nam_file, new_model_ws=new_model_ws, org_model_ws=org_model_ws, grid_props=[["upw.hk", 0], ["rch.rech", 0]], remove_existing=True,build_prior=False) v = pyemu.geostats.ExpVario(1.0,1000,anisotropy=10,bearing=45) gs = pyemu.geostats.GeoStruct(nugget=0.0,variograms=v,name="aniso") struct_dict = {gs:["hk","ss"]} df = pyemu.helpers.run_fieldgen(m,10,struct_dict,cwd=new_model_ws) import matplotlib.pyplot as plt i = df.index.map(lambda x: int(x.split('_')[0])) j = df.index.map(lambda x: int(x.split('_')[1])) arr = np.zeros((m.nrow,m.ncol)) arr[i,j] = df.iloc[:,0] plt.imshow(arr) plt.show() def ok_grid_invest(): try: import flopy except: return import numpy as np import pandas as pd import pyemu nrow,ncol = 50,50 delr = np.ones((ncol)) * 1.0/float(ncol) delc = np.ones((nrow)) * 1.0/float(nrow) num_pts = 100 ptx = np.random.random(num_pts) pty = np.random.random(num_pts) ptname = ["p{0}".format(i) for i in range(num_pts)] pts_data = pd.DataFrame({"x":ptx,"y":pty,"name":ptname}) pts_data.index = pts_data.name pts_data = pts_data.loc[:,["x","y","name"]] sr = flopy.utils.SpatialReference(delr=delr,delc=delc) pts_data.loc["i0j0", :] = [sr.xcentergrid[0,0],sr.ycentergrid[0,0],"i0j0"] pts_data.loc["imxjmx", :] = [sr.xcentergrid[-1, -1], sr.ycentergrid[-1, -1], "imxjmx"] str_file = os.path.join("utils","struct_test.dat") gs = pyemu.utils.geostats.read_struct_file(str_file)[0] ok = pyemu.utils.geostats.OrdinaryKrige(gs,pts_data) kf = ok.calc_factors_grid(sr,verbose=False,var_filename=os.path.join("temp","test_var.ref"),minpts_interp=1) kf2 = ok.calc_factors_grid(sr, verbose=False, var_filename=os.path.join("temp", "test_var.ref"), minpts_interp=1,num_threads=10) ok.to_grid_factors_file(os.path.join("temp","test.fac")) diff = (kf.err_var - kf2.err_var).apply(np.abs).sum() assert diff < 1.0e-10 def specsim_test(): try: import flopy except: return import numpy as np import pandas as pd import pyemu num_reals = 100 nrow,ncol = 40,20 a = 2500 contrib = 1.0 nugget = 0 delr = np.ones((ncol)) * 250 delc = np.ones((nrow)) * 250 variograms = [pyemu.geostats.ExpVario(contribution=contrib,a=a,anisotropy=1,bearing=10)] gs = pyemu.geostats.GeoStruct(variograms=variograms,transform="none",nugget=nugget) broke_delr = delr.copy() broke_delr[0] = 0.0 broke_delc = delc.copy() broke_delc[0] = 0.0 try: ss = pyemu.geostats.SpecSim2d(geostruct=gs,delx=broke_delr,dely=delc) except Exception as e: pass else: raise Exception("should have failed") variograms = [pyemu.geostats.ExpVario(contribution=contrib, a=a, anisotropy=1, bearing=00)] gs = pyemu.geostats.GeoStruct(variograms=variograms, transform="none", nugget=nugget) try: ss = pyemu.geostats.SpecSim2d(geostruct=gs,delx=broke_delr,dely=delc) except Exception as e: pass else: raise Exception("should have failed") try: ss = pyemu.geostats.SpecSim2d(geostruct=gs,delx=delr,dely=broke_delc) except Exception as e: pass else: raise Exception("should have failed") bd = os.getcwd() try: variograms = [pyemu.geostats.ExpVario(contribution=contrib, a=a, anisotropy=10, bearing=0)] gs = pyemu.geostats.GeoStruct(variograms=variograms, transform="log", nugget=nugget) np.random.seed(1) ss = pyemu.geostats.SpecSim2d(geostruct=gs, delx=delr, dely=delc) mean_value = 15.0 reals = ss.draw_arrays(num_reals=num_reals, mean_value=mean_value) assert reals.shape == (num_reals, nrow, ncol),reals.shape reals = np.log10(reals) mean_value = np.log10(mean_value) var = np.var(reals, axis=0).mean() mean = reals.mean() theo_var = ss.geostruct.sill print(var, theo_var) print(mean, mean_value) assert np.abs(var - theo_var) < 0.1 assert np.abs(mean - mean_value) < 0.1 np.random.seed(1) variograms = [pyemu.geostats.ExpVario(contribution=contrib, a=a, anisotropy=10, bearing=0)] gs = pyemu.geostats.GeoStruct(variograms=variograms, transform="none", nugget=nugget) ss = pyemu.geostats.SpecSim2d(geostruct=gs, delx=delr, dely=delc) mean_value = 25.0 reals = ss.draw_arrays(num_reals=num_reals,mean_value=mean_value) assert reals.shape == (num_reals,nrow,ncol) var =
np.var(reals,axis=0)
numpy.var
import os import itertools import numpy as np from skimage import data_dir from skimage.io import imread from skimage.transform import radon, iradon, iradon_sart, rescale from skimage._shared import testing from skimage._shared.testing import test_parallel from skimage._shared._warnings import expected_warnings PHANTOM = imread(os.path.join(data_dir, "phantom.png"), as_gray=True)[::2, ::2] PHANTOM = rescale(PHANTOM, 0.5, order=1, mode='constant', anti_aliasing=False, multichannel=False) def _debug_plot(original, result, sinogram=None): from matplotlib import pyplot as plt imkwargs = dict(cmap='gray', interpolation='nearest') if sinogram is None: plt.figure(figsize=(15, 6)) sp = 130 else: plt.figure(figsize=(11, 11)) sp = 221 plt.subplot(sp + 0) plt.imshow(sinogram, aspect='auto', **imkwargs) plt.subplot(sp + 1) plt.imshow(original, **imkwargs) plt.subplot(sp + 2) plt.imshow(result, vmin=original.min(), vmax=original.max(), **imkwargs) plt.subplot(sp + 3) plt.imshow(result - original, **imkwargs) plt.colorbar() plt.show() def _rescale_intensity(x): x = x.astype(float) x -= x.min() x /= x.max() return x def check_radon_center(shape, circle): # Create a test image with only a single non-zero pixel at the origin image = np.zeros(shape, dtype=np.float) image[(shape[0] // 2, shape[1] // 2)] = 1. # Calculate the sinogram theta = np.linspace(0., 180., max(shape), endpoint=False) sinogram = radon(image, theta=theta, circle=circle) # The sinogram should be a straight, horizontal line sinogram_max = np.argmax(sinogram, axis=0) print(sinogram_max) assert np.std(sinogram_max) < 1e-6 shapes_for_test_radon_center = [(16, 16), (17, 17)] circles_for_test_radon_center = [False, True] @testing.parametrize("shape, circle", itertools.product(shapes_for_test_radon_center, circles_for_test_radon_center)) def test_radon_center(shape, circle): check_radon_center(shape, circle) rectangular_shapes = [(32, 16), (33, 17)] @testing.parametrize("shape", rectangular_shapes) def test_radon_center_rectangular(shape): check_radon_center(shape, False) def check_iradon_center(size, theta, circle): debug = False # Create a test sinogram corresponding to a single projection # with a single non-zero pixel at the rotation center if circle: sinogram = np.zeros((size, 1), dtype=np.float) sinogram[size // 2, 0] = 1. else: diagonal = int(np.ceil(np.sqrt(2) * size)) sinogram = np.zeros((diagonal, 1), dtype=np.float) sinogram[sinogram.shape[0] // 2, 0] = 1. maxpoint = np.unravel_index(np.argmax(sinogram), sinogram.shape) print('shape of generated sinogram', sinogram.shape) print('maximum in generated sinogram', maxpoint) # Compare reconstructions for theta=angle and theta=angle + 180; # these should be exactly equal reconstruction = iradon(sinogram, theta=[theta], circle=circle) reconstruction_opposite = iradon(sinogram, theta=[theta + 180], circle=circle) print('rms deviance:', np.sqrt(np.mean((reconstruction_opposite - reconstruction)**2))) if debug: import matplotlib.pyplot as plt imkwargs = dict(cmap='gray', interpolation='nearest') plt.figure() plt.subplot(221) plt.imshow(sinogram, **imkwargs) plt.subplot(222) plt.imshow(reconstruction_opposite - reconstruction, **imkwargs) plt.subplot(223) plt.imshow(reconstruction, **imkwargs) plt.subplot(224) plt.imshow(reconstruction_opposite, **imkwargs) plt.show() assert np.allclose(reconstruction, reconstruction_opposite) sizes_for_test_iradon_center = [16, 17] thetas_for_test_iradon_center = [0, 90] circles_for_test_iradon_center = [False, True] @testing.parametrize("size, theta, circle", itertools.product(sizes_for_test_iradon_center, thetas_for_test_iradon_center, circles_for_test_radon_center)) def test_iradon_center(size, theta, circle): check_iradon_center(size, theta, circle) def check_radon_iradon(interpolation_type, filter_type): debug = False image = PHANTOM reconstructed = iradon(radon(image, circle=False), filter=filter_type, interpolation=interpolation_type, circle=False) delta = np.mean(np.abs(image - reconstructed)) print('\n\tmean error:', delta) if debug: _debug_plot(image, reconstructed) if filter_type in ('ramp', 'shepp-logan'): if interpolation_type == 'nearest': allowed_delta = 0.03 else: allowed_delta = 0.025 else: allowed_delta = 0.05 assert delta < allowed_delta filter_types = ["ramp", "shepp-logan", "cosine", "hamming", "hann"] interpolation_types = ['linear', 'nearest'] radon_iradon_inputs = list(itertools.product(interpolation_types, filter_types)) # cubic interpolation is slow; only run one test for it radon_iradon_inputs.append(('cubic', 'shepp-logan')) @testing.parametrize("interpolation_type, filter_type", radon_iradon_inputs) def test_radon_iradon(interpolation_type, filter_type): check_radon_iradon(interpolation_type, filter_type) def test_iradon_angles(): """ Test with different number of projections """ size = 100 # Synthetic data image = np.tri(size) +
np.tri(size)
numpy.tri
import unittest import numpy import pytest try: import scipy.sparse import scipy.stats scipy_available = True except ImportError: scipy_available = False import cupy from cupy import testing from cupy.testing import condition from cupyx.scipy import sparse @testing.parameterize(*testing.product({ 'dtype': [numpy.float32, numpy.float64], })) @unittest.skipUnless(scipy_available, 'requires scipy') class TestLsqr(unittest.TestCase): def setUp(self): rvs = scipy.stats.randint(0, 15).rvs self.A = scipy.sparse.random(50, 50, density=0.2, data_rvs=rvs) self.b = numpy.random.randint(15, size=50) def test_size(self): for xp, sp in ((numpy, scipy.sparse), (cupy, sparse)): A = sp.csr_matrix(self.A, dtype=self.dtype) b = xp.array(numpy.append(self.b, [1]), dtype=self.dtype) with pytest.raises(ValueError): sp.linalg.lsqr(A, b) def test_shape(self): for xp, sp in ((numpy, scipy.sparse), (cupy, sparse)): A = sp.csr_matrix(self.A, dtype=self.dtype) b = xp.array(
numpy.tile(self.b, (2, 1))
numpy.tile
"""OA """ import numpy as np from NNBlocks import tanh,sigm,relu,iden,isNone,expo,lrelu def boxcars(periods): periods = np.array(periods,dtype=int) phases = np.zeros(periods.shape,dtype=int) def filt(v,ph=phases,pd=periods,stored=[None]): if isNone(stored[0]): stored[0] = np.zeros(periods.shape+v.shape) stored[0][ph==0] = 0 stored[0] += v ph += 1 f = ph>=pd ph[f] = 0 return stored[0],f return filt REGULARIZATION_FACTOR = 0.01 MAX_GRADIENT_STEP = 0.1 class NN: one = np.array([1]) def __init__(self,shape=[1,8],af=tanh,history=4): self.hist = history self.hist_ind = 0 try: len(af) self.af = af except: self.af = [af]*(len(shape)-1) self.shape = shape self.weights = [np.zeros((shape[i+1],shape[i]+1),dtype=float) for i in range(len(shape)-1)] self.gd_deltas = [np.copy(w) for w in self.weights] self.vals = [np.zeros((history,s),dtype=float) for s in shape] self.fvals = [np.zeros((history,s),dtype=float) for s in shape] def reset_mem(self): for i in range(len(self.vals)): self.vals[i].fill(0) self.fvals[i].fill(0) def scramble(self,keep=0,mag=1): for w in self.weights: w *= keep w += np.random.normal(w)*mag def len(self): return self.shape[-1] def hi(self,o=0): return (self.hist_ind+o)%self.hist def __call__(self,inp=None): if not isNone(inp): h = self.hist_ind = self.hi(1) self.fvals[0][h][:]= inp for i in range(len(self.weights)): self.vals[i+1][h][:]=self.weights[i]@
np.concatenate((self.fvals[i][h],NN.one))
numpy.concatenate
#!/usr/bin/env python """Module with class for single video""" __author__ = '<NAME>' __date__ = 'August 2018' from collections import Counter import numpy as np import math as m import os from os.path import join from ute.utils.arg_pars import opt from ute.utils.logging_setup import logger from ute.utils.util_functions import dir_check from ute.viterbi_utils.viterbi_w_lenth import Viterbi from ute.viterbi_utils.grammar import Grammar, SingleTranscriptGrammar from ute.viterbi_utils.length_model import PoissonModel class Video(object): """Single video with respective for the algorithm parameters""" def __init__(self, path, K, *, gt=[], name='', start=0, with_bg=False, frame_sampling=1): """ Args: path (str): path to video representation K (int): number of subactivities in current video collection reset (bool): necessity of holding features in each instance gt (arr): ground truth labels gt_with_0 (arr): ground truth labels with SIL (0) label name (str): short name without any extension start (int): start index in mask for the whole video collection """ self.iter = 0 self.path = path self._K = K self.name = name self._frame_sampling = frame_sampling self._likelihood_grid = None self._valid_likelihood = None self._theta_0 = 0.1 self._subact_i_mask = np.eye(self._K) self.n_frames = 0 self._features = None self.global_start = start self.global_range = None self.gt = gt self._gt_unique = np.unique(self.gt) self.features() self._check_gt() # counting of subactivities np.array self.a = np.zeros(self._K) # ordering, init with canonical ordering self._pi = list(range(self._K)) self.inv_count_v = np.zeros(self._K - 1) # subactivity per frame self._z = [] self._z_idx = [] self._init_z_framewise() # temporal labels self.temp = None self._init_temporal_labels() # background self._with_bg = with_bg self.fg_mask = np.ones(self.n_frames, dtype=bool) if self._with_bg: self._init_fg_mask() self._subact_count_update() self.segmentation = {'gt': (self.gt, None)} def features(self): """Load features given path if haven't do it before""" if self._features is None: if opt.ext == 'npy': self._features = np.load(self.path) else: self._features = np.loadtxt(self.path) ###################################### # fixed.order._coffee_mlp_!pose_full_vae0_time10.0_epochs60_embed20_n1_!ordering_gmm1_one_!gt_lr0.0001_lr_zeros_b0_v1_l0_c1_.pth.tar # if self._features.shape[-1] == 65 and opt.feature_dim == 64: # self._features = self._features[1:, 1:] # np.savetxt(self.path, self._features) # if opt.data_type == 0 and opt.dataset == 'fs': # self._features = self._features.T if opt.f_norm: # normalize features mask = np.ones(self._features.shape[0], dtype=bool) for rdx, row in enumerate(self._features): if np.sum(row) == 0: mask[rdx] = False z = self._features[mask] - np.mean(self._features[mask], axis=0) z = z /
np.std(self._features[mask], axis=0)
numpy.std
""" Generate input data based on Section 7 in Kelly 2007 """ import numpy as np from scipy.stats.distributions import rv_continuous __all__ = ['simulation_kelly'] class simulation_dist(rv_continuous): def _pdf(self, x): # eq 110 return 0.796248 * np.exp(x) / (1 + np.exp(2.75 * x)) def simulation_kelly(size=50, low=-10, high=10, alpha=1, beta=0.5, epsilon=(0, 0.75), scalex=1, scaley=1, multidim=1): """ Data simulator from Kelly 2007 Parameters ========== size low high alpha beta epsilon scalex scaley multidim """ eps = np.random.normal(epsilon[0], scale=epsilon[1], size=size) dist = simulation_dist(a=low, b=high) # I'm sorry about ksi, but it's less ambigous than having # xi for greek and xi for vector x_i ksi = dist.rvs(size=(multidim, size)) # eq 1 beta = np.atleast_1d(beta) eta = alpha + np.dot(beta, ksi) + eps tau =
np.var(ksi)
numpy.var
from py4j.clientserver import ClientServer, JavaParameters, PythonParameters; import sys; import os; import numpy; import io; import re; import time; class DOCoMETRe(object): #global experiments; global jvmMode; def __init__(self, gateway): self.gateway = gateway; self.experiments = dict(); if(jvmMode): gateway.jvm.System.out.println("In __init__ gateway"); def shutDownServer(self, object): if(jvmMode): self.gateway.jvm.System.out.println("In shutdown server"); pass; def toString(self): if(jvmMode): self.gateway.jvm.System.out.println("In toString"); return "This is DOCoMETRe Python Entry Point"; def loadData(self, dataType, loadName, dataFilesList, sessionsProperties): if(dataType == "DOCOMETRE"): self.loadDataDocometre(loadName, dataFilesList, sessionsProperties); elif(dataType == "OPTITRACK_TYPE_1"): self.loadDataOptitrackType1(loadName, dataFilesList); else: pass; def loadDataDocometre(self, loadName, dataFilesList, sessionsProperties): if(jvmMode): self.gateway.jvm.System.out.println("In loadDataDocometre"); if ".sau" in dataFilesList: if(jvmMode): self.gateway.jvm.System.out.println("For now, sau files are not handled with Python"); elif ".samples" in dataFilesList: self.loadDataDocometreSAMPLES(loadName, dataFilesList, sessionsProperties); elif ".adw" in dataFilesList: if(jvmMode): self.gateway.jvm.System.out.println("For now, ADW files are not handled with Python"); else: if(jvmMode): self.gateway.jvm.System.out.println("Data files format not hanled with Python"); def loadDataOptitrackType1(self, loadName, dataFilesAbsolutePath): if(jvmMode): self.gateway.jvm.System.out.println("In loadDataOptitrackType1"); createdCategories = dict(); createdChannelsNames = list(); channelNames = list(); nbSamples = 0; firstTime = True; files = dataFilesAbsolutePath.split(";"); nbFiles = len(files); nbTrials = nbFiles; for n in range(0, nbFiles): fileName = os.path.basename(files[n]); fileName = os.path.splitext(fileName)[0]; fileNameSplitted = fileName.split("_"); criteria = fileNameSplitted[1]; if criteria in createdCategories: trialsList = createdCategories[criteria]; append = False; if isinstance(trialsList, numpy.ndarray): if n+1 not in trialsList: append = True; if append: trialsList =
numpy.append(trialsList, n+1)
numpy.append
import numpy as np from dqn_agent import DQNAgent from mix_ttn_agent_online_offline import TTNAgent_online_offline_mix import os import time # import matplotlib.pyplot as plt from collections import OrderedDict import itertools import torch as T import argparse # import datetime as date from datetime import datetime from replay_memory import ReplayBuffer from training3 import train_offline_online, train_online, train_offline import training3 np_load_old = np.load # modify the default parameters of np.load np.load = lambda *a, **k: np_load_old(*a, allow_pickle=True) import gym def main(alg_type, hyper_num, data_length_num, mem_size, num_rep, offline, fqi_rep_num, num_step_ratio_mem, en, dirfeature, feature, num_epoch ,batch_size, replace_target_cnt,target_separate, method_sarsa, data_dir, learning_feat): data_lengths = [mem_size, 6000, 10000, 20000, 30000] data_length = data_lengths[data_length_num] fqi_reps = [1, 10, 50, 100, 300] fqi_rep = fqi_reps[fqi_rep_num] if feature == 'tc': tilecoding = 1 else: tilecoding = 0 alg = alg_type gamma = 0.99 rand_seed = num_rep * 32 # 332 num_steps = num_step_ratio_mem # 200000 ## normolize states def process_state(state, normalize=True): # states = np.array([state['position'], state['vel']]) if normalize: if en == "Acrobot": states = np.array([state[0], state[1], state[2], state[3], state[4], state[5]]) states[0] = (states[0] + 1) / (2) states[1] = (states[1] + 1) / (2) states[2] = (states[2] + 1) / (2) states[3] = (states[3] + 1) / (2) states[4] = (states[4] + (4 * np.pi)) / (2 * 4 * np.pi) states[5] = (states[5] + (9 * np.pi)) / (2 * 4 * np.pi) elif en == "LunarLander": states = np.array([state[0], state[1], state[2], state[3], state[4], state[5], state[6], state[7]]) mean = [0, 0.9, 0, -0.6, 0, 0, 0, 0] deviation = [0.35, 0.6, 0.7, 0.6, 0.5, 0.5, 1.0, 1.0] states[0] = (states[0] - mean[0]) / (deviation[0]) states[1] = (states[1] - mean[1]) / (deviation[1]) states[2] = (states[2] - mean[2]) / (deviation[2]) states[3] = (states[3] - mean[3]) / (deviation[3]) states[4] = (states[4] - mean[4]) / (deviation[4]) states[5] = (states[5] - mean[5]) / (deviation[5]) elif en == "cartpole": states = np.array([state[0], state[1], state[2], state[3]]) states[0] = states[0] states[1] = states[1] states[2] = states[2] states[3] = states[3] elif en == "Mountaincar": states = np.array([state[0], state[1]]) states[0] = (states[0] + 1.2) / (0.6 + 1.2) states[1] = (states[1] + 0.07) / (0.07 + 0.07) elif en == "catcher": states = np.array([state['player_x'], state['player_vel'], state['fruit_x'], state['fruit_y']]) states[0] = (states[0] - 25.5) / 26 states[1] = states[1] / 10 states[2] = (states[2] - 30) / 22 states[3] = (states[3] - 18.5) / 47 return states ple_rewards = { "positive": 1.0, "negative": -1.0, "tick": 0.0, "loss": -0.0, "win": 5.0 } ## select environment if en == "Mountaincar": env = gym.make('MountainCar-v0') input_dim = env.observation_space.shape[0] num_act = 3 elif en == "Acrobot": env = gym.make('Acrobot-v1') input_dim = env.observation_space.shape[0] num_act = 3 elif en == "LunarLander": env = gym.make('LunarLander-v2') input_dim = env.observation_space.shape[0] num_act = 4 elif en == "cartpole": env = gym.make('CartPole-v0') input_dim = env.observation_space.shape[0] num_act = 2 env.seed(rand_seed) T.manual_seed(rand_seed) np.random.seed(rand_seed) # dqn: hyper_sets_DQN = OrderedDict([("nn_lr", np.power(10, [-3.25, -3.5, -3.75, -4.0, -4.25])), ("eps_decay_steps", [10000, 20000, 40000]), ]) ## DQN q_nnet_params = {"update_fqi_steps": 50000, "num_actions": num_act, "eps_init": 1.0, "eps_final": 0.01, "batch_size": 32, # TODO try big batches "replay_memory_size": mem_size, "replay_init_size": 5000, "update_target_net_steps": 1000 } ## TTN nnet_params = {"loss_features": 'semi_MSTDE', # "next_reward_state", next_state, semi_MSTDE "beta1": 0.0, "beta2": 0.99, "eps_init": 1.0, "eps_final": 0.01, "num_actions": num_act, "replay_memory_size": mem_size, # 200000 if using ER "replay_init_size": 5000, "batch_size": 32, "fqi_reg_type": "prev", # "l2" or "prev" } ## TTN hyper_sets_lstdq = OrderedDict([("nn_lr", np.power(10, [-4.0])), # [-2.0, -2.5, -3.0, -3.5, -4.0] ("reg_A", [10, 20, 30, 50, 70, 100, 2, 3, 5, 8, 1, 0, 0.01, 0.002, 0.0003, 0.001, 0.05]), # [0.0, -1.0, -2.0, -3.0] can also do reg towards previous weights ("eps_decay_steps", [1]), ("update_freq", [1000]), ("data_length", [data_length]), ("fqi_rep", [fqi_rep]), ]) files_name = "Data//{}_{}".format(en, mem_size) if rnd: files_name = "Data//{}_rnd_{}".format(en, mem_size) if alg == 'fqi': log_file = files_name+str(alg) if alg == 'dqn': log_file = files_name+str(alg) if alg in ("fqi"): hyper_sets = hyper_sets_lstdq TTN = True elif alg == "dqn": hyper_sets = hyper_sets_DQN TTN = False # hyperparams_all = list(itertools.product(*list(hyper_sets.values()))) hyperparams = hyperparams_all with open(log_file + ".txt", 'w') as f: print("Start! Seed: {}".format(rand_seed), file=f) times = [] start_time = time.perf_counter() # num_steps = 200000 prev_action_flag = 1 num_repeats = num_rep # 10 # TTN = True # for hyper in hyperparams: # run the algorithm hyper = hyperparams[hyper_num] hyperparam_returns = [] hyperparam_values = [] hyperparam_episodes = [] hyperparam_losses = [] data = dict([('state', []), ('action', []), ('reward', []), ('nstate', []), ('naction', []), ('done', [])]) if alg in ('lstdq', 'fqi'): params = OrderedDict([("nn_lr", hyper[0]), ("reg_A", hyper[1]), ("eps_decay_steps", hyper[2]), ("update_freq", hyper[3]), ("data_length", hyper[4]), ("fqi_rep", hyper[5]), ]) elif alg in ("dqn"): params = OrderedDict([("nn_lr", hyper[0]), ("eps_decay_steps", hyper[1])]) if TTN: nn = TTNAgent_online_offline_mix(gamma, nnet_params=nnet_params, other_params=params, input_dims=input_dim, num_units_rep=128, dir=dir, offline=offline, num_tiling=16, num_tile=4, method_sarsa=method_sarsa, tilecoding=tilecoding, replace_target_cnt=replace_target_cnt, target_separate=target_separate) else: nn = DQNAgent(gamma, q_nnet_params, params, input_dims=input_dim) def generate_data(): for rep in range(1): with open(log_file + ".txt", 'a') as f: print("new run for the current setting".format(rep), file=f) # saver = tf.train.Saver(keep_checkpoint_every_n_hours=2) # populate the replay buffer with some number of transitions if alg == 'dqn' or (TTN and nnet_params['replay_memory_size'] > 0): print("initialize buffer") frame_history = [] prev_state = None prev_action = None done = 0 state_unnormal = env.reset() state = process_state(state_unnormal) # populate the replay buffer while nn.memory.mem_cntr < mem_size: #nnet_params["replay_init_size"]: if done: state_unnormal = env.reset() state = process_state(state_unnormal) # get action action = np.random.randint(0, num_act) # add to buffer if prev_state is not None: if prev_action_flag == 1: nn.memory.store_transition_withnewaction(prev_state, np.squeeze(prev_action), reward, state, np.squeeze(action), int(done)) else: nn.memory.store_transition(prev_state, np.squeeze(prev_action), reward, state, int(done)) # do one step in the environment new_state_unnormal, reward, done, info = env.step(np.squeeze(action)) # action is a 1x1 matrix new_state = process_state(new_state_unnormal) # update saved states prev_state = state prev_action = action state = new_state ############################################# prev_state = None prev_action = None run_returns = [] run_episodes = [] run_episode_length = [] run_values = [] run_losses = [] start_run_time = time.perf_counter() episode_length = 0 done = 0 val = 0.0 ret = 0.0 episodes = 0 ctr = 0 ch = 0 state_unnormal = env.reset() state = process_state(state_unnormal) i = 0 for ij in range(num_steps): episode_length += 1 i += 1 if done: run_episodes.append(episodes) run_returns.append(ret) run_episode_length.append(episode_length) with open(log_file + ".txt", 'a') as f: print('time:', datetime.today().strftime("%H_%M_%S"), 'return', '{}'.format(int(val)).ljust(4), i, len(run_returns), "\t{:.2f}".format(np.mean(run_returns[-100:])), file=f) if TTN: print(episodes, ij, round(val, 2), round(ret, 2), round(np.mean(run_returns[-100:]), 3), np.mean(run_returns), episode_length) # nn.lin_values.data else: print(episodes, ij, round(val, 2), round(ret, 2), round(np.mean(run_returns[-100:]), 3), np.mean(run_returns), episode_length) # avg_returns.append(np.mean(all_returns[-100:])) print("episode length is:", episode_length, "return is:", ret) val = 0.0 ret = 0.0 i = 0 episodes += 1 episode_length = 0 state_unnormal = env.reset() state = process_state(state_unnormal) ## Get action if TTN: action = nn.choose_action(state) q_values = nn.lin_values else: # DQN action, q_values = nn.choose_action(state) # run_values.append(T.mean(q_values.data, axis=1)[0].detach()) # update parameters if prev_state is not None: if prev_action_flag == 1: if reward > 0: for ii in range(1): nn.memory.store_transition_withnewaction(prev_state,
np.squeeze(prev_action)
numpy.squeeze
"""This module defines the replay buffers. A replay buffer is a data structure that stores transitions coming from the environment, and allows sampling. This module provides a base class BaseReplayBuffer that defines the minimal interface that any replay buffer implementation should provide. Contents: Base classes: - BaseReplayBuffer Implementations: -FIFOReplayBuffer """ import collections import random import abc import numbers import numpy as np # --------------------------------------- REPLAY BUFFERS ------------------------------------------# class BaseReplayBuffer(abc.ABC, collections.UserList): """The base class for replay buffers. Any derived replay buffer must present an Iterable interface, therefore allowing iteration, sampling, etc. """ def add_iterable(self, iterable): for i in iterable: self.remember(i) def __add__(self, e): if hasattr(e, '__iter__'): return self.add_iterable(e) else: return self.remember(e) def append(self, e): self.remember(e) def extend(self, e): return self.add_iterable(e) @abc.abstractmethod def remember(self, transition, *args, **kwargs): """Remember the given transition. Args: transition (tuple): A transition in the form (s, a, r, s', *info). After s' any additional information can be passed. """ pass @abc.abstractmethod def sample(self, size, *args, **kwargs): """Sampling operation on the replay buffer. Args: size (int): Number of transitions to sample. Returns: A tuple (transitions, info) where transitions is a list of sampled transitions, and info is a dictionary with additional information. """ pass class FIFOReplayBuffer(BaseReplayBuffer): """Defines a simple fixed-size, FIFO evicted replay buffer, that stores transitions and allows sampling. Transitions are tuples in the form (s, a, r, s', ...), where after s' any additional information can be stored. """ def __init__(self, maxlen): """Instantiate the replay buffer. Args: maxlen (int): Maximum number of transitions to be stored. """ super().__init__() self.buffer = collections.deque(maxlen=maxlen) def remember(self, transition, *args, **kwargs): """Store the given transition Args: transition (list): List in the form [s, a, r, s', ...]. Note that s' should be None if the episode ended. After s' any additional information can be passed. Raises: AssertionError if given shapes do not match with those declared at initialization. """ self.buffer.append(transition) def sample(self, size, *args, **kwargs): """Sample uniformly from the replay buffer. Args: size (int): Number of transitions to sample. Returns: A tuple (transitions, info). transitions is a list with the sampled transitions. info is an empty dictionary. """ if size > len(self.buffer): raise ValueError( 'Trying to sample ' + str(size) + ' items when buffer has only ' + str(len(self.buffer)) + ' items.' ) indices = np.arange(len(self.buffer)) sampled_indices = np.random.choice(a=indices, size=size, replace=False) return [self.buffer[i] for i in sampled_indices], {} # Empty dict for compatibility class PrioritizedReplayBuffer(FIFOReplayBuffer): """Implementation of a prioritized replay buffer. This replay buffer stores transitions (s, a, r, s', w) where w is the weight. The sampling is done by sampling a chunk of the given chunk_size, and performing a weighted sampling on it. This allows sampling to be done in constant time. The probability of a transition i is given by w_i^alpha / sum w_k^alpha. If exceeding the maximum length, samples are evicted with a FIFO policy. """ def __init__(self, maxlen, alpha=0.8, chunk_size=2000): """Instantiate the replay buffer. Args: maxlen (int): Maximum number of transitions that the replay buffer will keep. alpha (float): Level of prioritization, between 0 and 1. chunk_size (int): Dimension of the random chunk from which transitions will be sampled. """ super().__init__(maxlen=maxlen) self.alpha = alpha self.chunk_size = chunk_size self.avg_td_error = 0 def remember(self, transition, *args, **kwargs): """Add the transition to the buffer. Args: transition (list): Transition in the form [s, a, r, s', w, ...] where w is the un-normalized weight of the transition. """ assert len(transition) >= 5, 'The given transition must be [s, a, r, s\', w, ...].' super().remember(transition) def sample(self, size, *args, **kwargs): """Sample the given number of transitions with probability proportional to the weights. Args: size (int): Number of transitions to sample. Returns: A tuple (transitions, info) where transitions is a list of the sampled transitions and info is a dictionary {'weights': weights} with weights being the normalized weights of the sampled transitions. """ if size > len(self.buffer): raise ValueError( 'Trying to sample ' + str(size) + ' items when buffer has only ' + str(len(self.buffer)) ) chunk = np.random.choice(a=np.arange(len(self.buffer)), size=self.chunk_size, replace=False) td_errors = np.array([self.buffer[i][4] + 1e-6 for i in chunk]) self.avg_td_error = td_errors.mean() # Update statistics # Compute probabilities and sample probabilities =
np.power(td_errors, self.alpha)
numpy.power
# Copyright (c) 2020 Mitsubishi Electric Research Laboratories (MERL). All rights reserved. The software, documentation and/or data in this file is provided on an "as is" basis, and MERL has no obligations to provide maintenance, support, updates, enhancements or modifications. MERL specifically disclaims any warranties, including, but not limited to, the implied warranties of merchantability and fitness for any particular purpose. In no event shall MERL be liable to any party for direct, indirect, special, incidental, or consequential damages, including lost profits, arising out of the use of this software and its documentation, even if MERL has been advised of the possibility of such damages. As more fully described in the license agreement that was required in order to download this software, documentation and/or data, permission to use, copy and modify this software without fee is granted, but only for educational, research and non-commercial purposes. import numpy as np import os from nuscenes.utils.data_classes import Box from pyquaternion import Quaternion from numba import njit import time def point_in_hull_slow(point, hull, tolerance=1e-12): """ Check if a point lies in a convex hull. This implementation is slow. :param point: nd.array (1 x d); d: point dimension :param hull: The scipy ConvexHull object :param tolerance: Used to compare to a small positive constant because of issues of numerical precision (otherwise, you may find that a vertex of the convex hull is not in the convex hull) """ return all((np.dot(eq[:-1], point) + eq[-1] <= tolerance) for eq in hull.equations) def point_in_hull_fast(points: np.array, bounding_box: Box): """ Check if a point lies in a bounding box. We first rotate the bounding box to align with axis. Meanwhile, we also rotate the whole point cloud. Finally, we just check the membership with the aid of aligned axis. This implementation is fast. :param points: nd.array (N x d); N: the number of points, d: point dimension :param bounding_box: the Box object return: The membership of points within the bounding box """ # Make sure it is a unit quaternion bounding_box.orientation = bounding_box.orientation.normalised # Rotate the point clouds pc = bounding_box.orientation.inverse.rotation_matrix @ points.T pc = pc.T orientation_backup = Quaternion(bounding_box.orientation) # Deep clone it bounding_box.rotate(bounding_box.orientation.inverse) corners = bounding_box.corners() # Test if the points are in the bounding box idx = np.where((corners[0, 7] <= pc[:, 0]) & (pc[:, 0] <= corners[0, 0]) & (corners[1, 1] <= pc[:, 1]) & (pc[:, 1] <= corners[1, 0]) & (corners[2, 2] <= pc[:, 2]) & (pc[:, 2] <= corners[2, 0]))[0] # recover bounding_box.rotate(orientation_backup) return idx def calc_displace_vector(points: np.array, curr_box: Box, next_box: Box): """ Calculate the displacement vectors for the input points. This is achieved by comparing the current and next bounding boxes. Specifically, we first rotate the input points according to the delta rotation angle, and then translate them. Finally we compute the displacement between the transformed points and the input points. :param points: The input points, (N x d). Note that these points should be inside the current bounding box. :param curr_box: Current bounding box. :param next_box: The future next bounding box in the temporal sequence. :return: Displacement vectors for the points. """ assert points.shape[1] == 3, "The input points should have dimension 3." # Make sure the quaternions are normalized curr_box.orientation = curr_box.orientation.normalised next_box.orientation = next_box.orientation.normalised delta_rotation = curr_box.orientation.inverse * next_box.orientation rotated_pc = (delta_rotation.rotation_matrix @ points.T).T rotated_curr_center = np.dot(delta_rotation.rotation_matrix, curr_box.center) delta_center = next_box.center - rotated_curr_center rotated_tranlated_pc = rotated_pc + delta_center pc_displace_vectors = rotated_tranlated_pc - points return pc_displace_vectors def get_static_and_moving_cells(batch_disp_field_gt, upper_thresh=0.1, frame_skip=3): """ Get the indices/masks of static and moving cells. Ths speed of static cells is bounded by upper_thresh. In particular, for a given cell, if its displacement over the past 1 second (about 20 sample data) is in the range [0, upper_thresh], we consider it as static cell, otherwise as moving cell. :param batch_disp_field_gt: Batch of ground-truth displacement fields. numpy array, shape (seq len, h, w) :param upper_thresh: The speed upper bound :param frame_skip: The number of skipped frame in the sweep sequence. This is used for computing the upper bound for defining static objects """ upper_bound = (frame_skip + 1) / 20 * upper_thresh disp_norm = np.linalg.norm(batch_disp_field_gt, ord=2, axis=-1) static_cell_mask = disp_norm <= upper_bound static_cell_mask = np.all(static_cell_mask, axis=0) # along the sequence axis moving_cell_mask = np.logical_not(static_cell_mask) return static_cell_mask, moving_cell_mask def voxelize(pts, voxel_size, extents=None, num_T=35, seed: float = None): """ Voxelize the input point cloud. Code modified from https://github.com/Yc174/voxelnet Voxels are 3D grids that represent occupancy info. The input for the voxelization is expected to be a PointCloud with N points in 4 dimension (x,y,z,i). Voxel size is the quantization size for the voxel grid. voxel_size: I.e. if voxel size is 1 m, the voxel space will be divided up within 1m x 1m x 1m space. This space will be -1 if free/occluded and 1 otherwise. min_voxel_coord: coordinates of the minimum on each axis for the voxel grid max_voxel_coord: coordinates of the maximum on each axis for the voxel grid num_divisions: number of grids in each axis leaf_layout: the voxel grid of size (numDivisions) that contain -1 for free, 0 for occupied :param pts: Point cloud as N x [x, y, z, i] :param voxel_size: Quantization size for the grid, vd, vh, vw :param extents: Optional, specifies the full extents of the point cloud. Used for creating same sized voxel grids. Shape (3, 2) :param num_T: Number of points in each voxel after sampling/padding :param seed: The random seed for fixing the data generation. """ # Check if points are 3D, otherwise early exit if pts.shape[1] < 3 or pts.shape[1] > 4: raise ValueError("Points have the wrong shape: {}".format(pts.shape)) if extents is not None: if extents.shape != (3, 2): raise ValueError("Extents are the wrong shape {}".format(extents.shape)) filter_idx = np.where((extents[0, 0] < pts[:, 0]) & (pts[:, 0] < extents[0, 1]) & (extents[1, 0] < pts[:, 1]) & (pts[:, 1] < extents[1, 1]) & (extents[2, 0] < pts[:, 2]) & (pts[:, 2] < extents[2, 1]))[0] pts = pts[filter_idx] # Discretize voxel coordinates to given quantization size discrete_pts = np.floor(pts[:, :3] / voxel_size).astype(np.int32) # Use Lex Sort, sort by x, then y, then z x_col = discrete_pts[:, 0] y_col = discrete_pts[:, 1] z_col = discrete_pts[:, 2] sorted_order = np.lexsort((z_col, y_col, x_col)) # Save original points in sorted order points = pts[sorted_order] discrete_pts = discrete_pts[sorted_order] # Format the array to c-contiguous array for unique function contiguous_array = np.ascontiguousarray(discrete_pts).view( np.dtype((np.void, discrete_pts.dtype.itemsize * discrete_pts.shape[1]))) # The new coordinates are the discretized array with its unique indexes _, unique_indices = np.unique(contiguous_array, return_index=True) # Sort unique indices to preserve order unique_indices.sort() voxel_coords = discrete_pts[unique_indices] # Number of points per voxel, last voxel calculated separately num_points_in_voxel = np.diff(unique_indices) num_points_in_voxel = np.append(num_points_in_voxel, discrete_pts.shape[0] - unique_indices[-1]) # Compute the minimum and maximum voxel coordinates if extents is not None: min_voxel_coord = np.floor(extents.T[0] / voxel_size) max_voxel_coord = np.ceil(extents.T[1] / voxel_size) - 1 else: min_voxel_coord = np.amin(voxel_coords, axis=0) max_voxel_coord = np.amax(voxel_coords, axis=0) # Get the voxel grid dimensions num_divisions = ((max_voxel_coord - min_voxel_coord) + 1).astype(np.int32) # Bring the min voxel to the origin voxel_indices = (voxel_coords - min_voxel_coord).astype(int) # Padding the points within each voxel padded_voxel_points = np.zeros([unique_indices.shape[0], num_T, pts.shape[1] + 3], dtype=np.float32) padded_voxel_points = padding_voxel(padded_voxel_points, unique_indices, num_points_in_voxel, points, num_T, seed) return padded_voxel_points, voxel_indices, num_divisions @njit def padding_voxel(padded_voxel_points, unique_indices, num_points_in_voxel, points, num_T, seed): if seed is not None: np.random.seed(seed) for i, v in enumerate(zip(unique_indices, num_points_in_voxel)): if v[1] < num_T: padded_voxel_points[i, :v[1], :4] = points[v[0]:v[0] + v[1], :] middle_points_x = np.mean(points[v[0]:v[0] + v[1], 0]) middle_points_y = np.mean(points[v[0]:v[0] + v[1], 1]) middle_points_z = np.mean(points[v[0]:v[0] + v[1], 2]) padded_voxel_points[i, :v[1], 4] = padded_voxel_points[i, :v[1], 0] - middle_points_x padded_voxel_points[i, :v[1], 5] = padded_voxel_points[i, :v[1], 1] - middle_points_y padded_voxel_points[i, :v[1], 6] = padded_voxel_points[i, :v[1], 2] - middle_points_z else: inds = np.random.choice(v[1], num_T) padded_voxel_points[i, :, :4] = points[v[0] + inds, :] middle_points_x = np.mean(points[v[0] + inds, 0]) middle_points_y = np.mean(points[v[0] + inds, 1]) middle_points_z = np.mean(points[v[0] + inds, 2]) padded_voxel_points[i, :, 4] = padded_voxel_points[i, :, 0] - middle_points_x padded_voxel_points[i, :, 5] = padded_voxel_points[i, :, 1] - middle_points_y padded_voxel_points[i, :, 6] = padded_voxel_points[i, :, 2] - middle_points_z return padded_voxel_points def gen_2d_grid_gt(data_dict: dict, grid_size: np.array, extents: np.array = None, frame_skip: int = 0, reordered: bool = False, proportion_thresh: float = 0.5, category_num: int = 5, one_hot_thresh: float = 0.8, h_flip: bool = False, min_point_num_per_voxel: int = -1, return_past_2d_disp_gt: bool = False, return_instance_map: bool = False): """ Generate the 2d grid ground-truth for the input point cloud. The ground-truth is: the displacement vectors of the occupied pixels in BEV image. The displacement is computed w.r.t the current time and the future time :param data_dict: The dictionary containing the data information :param grid_size: The size of each pixel :param extents: The extents of the point cloud on the 2D xy plane. Shape (3, 2) :param frame_skip: The number of sample frames that need to be skipped :param reordered: Whether need to reorder the results, so that the first element corresponds to the oldest past record. This option is only effective when return_past_2d_disp_gt = True. :param proportion_thresh: Within a given pixel, only when the proportion of foreground points exceeds this threshold will we compute the displacement vector for this pixel. :param category_num: The number of categories for points. :param one_hot_thresh: When the proportion of the majority points within a cell exceeds this threshold, we compute the (hard) one-hot category vector for this cell, otherwise compute the soft category vector. :param h_flip: Flip the point clouds horizontally :param min_point_num_per_voxel: Minimum point number inside each voxel (cell). If smaller than this threshold, we do not compute the displacement vector for this voxel (cell), and set the displacement to zero. :param return_past_2d_disp_gt: Whether to compute the ground-truth displacement filed for the past sweeps. :param return_instance_map: Whether to return the instance id map. :return: The ground-truth displacement field. Shape (num_sweeps, image height, image width, 2). """ num_sweeps = data_dict['num_sweeps'] times = data_dict['times'] num_past_sweeps = len(np.where(times >= 0)[0]) num_future_sweeps = len(np.where(times < 0)[0]) assert num_past_sweeps + num_future_sweeps == num_sweeps, "The number of sweeps is incorrect!" pc_list = [] for i in range(num_sweeps): pc = data_dict['pc_' + str(i)] if h_flip: pc[0, :] = -pc[0, :] # flip x coordinate pc_list.append(pc.T) # Retrieve the instance boxes num_instances = data_dict['num_instances'] instance_box_list = list() instance_cat_list = list() # for instance categories for i in range(num_instances): instance = data_dict['instance_boxes_' + str(i)] category = data_dict['category_' + str(i)] instance_box_list.append(instance) instance_cat_list.append(category) # ---------------------------------------------------- # Filter and sort the reference point cloud refer_pc = pc_list[0] refer_pc = refer_pc[:, 0:3] if extents is not None: if extents.shape != (3, 2): raise ValueError("Extents are the wrong shape {}".format(extents.shape)) filter_idx = np.where((extents[0, 0] < refer_pc[:, 0]) & (refer_pc[:, 0] < extents[0, 1]) & (extents[1, 0] < refer_pc[:, 1]) & (refer_pc[:, 1] < extents[1, 1]) & (extents[2, 0] < refer_pc[:, 2]) & (refer_pc[:, 2] < extents[2, 1]))[0] refer_pc = refer_pc[filter_idx] # -- Discretize pixel coordinates to given quantization size discrete_pts = np.floor(refer_pc[:, 0:2] / grid_size).astype(np.int32) # -- Use Lex Sort, sort by x, then y x_col = discrete_pts[:, 0] y_col = discrete_pts[:, 1] sorted_order = np.lexsort((y_col, x_col)) refer_pc = refer_pc[sorted_order] discrete_pts = discrete_pts[sorted_order] contiguous_array = np.ascontiguousarray(discrete_pts).view( np.dtype((np.void, discrete_pts.dtype.itemsize * discrete_pts.shape[1]))) # -- The new coordinates are the discretized array with its unique indexes _, unique_indices = np.unique(contiguous_array, return_index=True) # -- Sort unique indices to preserve order unique_indices.sort() pixel_coords = discrete_pts[unique_indices] # -- Number of points per voxel, last voxel calculated separately num_points_in_pixel = np.diff(unique_indices) num_points_in_pixel = np.append(num_points_in_pixel, discrete_pts.shape[0] - unique_indices[-1]) # -- Compute the minimum and maximum voxel coordinates if extents is not None: min_pixel_coord = np.floor(extents.T[0, 0:2] / grid_size) max_pixel_coord = np.ceil(extents.T[1, 0:2] / grid_size) - 1 else: min_pixel_coord = np.amin(pixel_coords, axis=0) max_pixel_coord = np.amax(pixel_coords, axis=0) # -- Get the voxel grid dimensions num_divisions = ((max_pixel_coord - min_pixel_coord) + 1).astype(np.int32) # -- Bring the min voxel to the origin pixel_indices = (pixel_coords - min_pixel_coord).astype(int) # ---------------------------------------------------- # ---------------------------------------------------- # Get the point cloud subsets, which are inside different instance bounding boxes refer_box_list = list() refer_pc_idx_per_bbox = list() points_category = np.zeros(refer_pc.shape[0], dtype=np.int) # store the point categories pixel_instance_id = np.zeros(pixel_indices.shape[0], dtype=np.uint8) points_instance_id = np.zeros(refer_pc.shape[0], dtype=np.int) for i in range(num_instances): instance_cat = instance_cat_list[i] instance_box = instance_box_list[i] instance_box_data = instance_box[0] assert not np.isnan(instance_box_data).any(), "In the keyframe, there should not be NaN box annotation!" if h_flip: tmp_quad = instance_box_data[6:].copy() tmp_quad[2] *= -1 # y tmp_quad[3] *= -1 # z tmp_quad = Quaternion(tmp_quad) tmp_center = instance_box_data[0:3].copy() tmp_center[0] = -tmp_center[0] tmp_box = Box(center=tmp_center, size=instance_box_data[3:6], orientation=Quaternion(tmp_quad)) else: tmp_box = Box(center=instance_box_data[:3], size=instance_box_data[3:6], orientation=Quaternion(instance_box_data[6:])) idx = point_in_hull_fast(refer_pc[:, 0:3], tmp_box) refer_pc_idx_per_bbox.append(idx) refer_box_list.append(tmp_box) points_category[idx] = instance_cat points_instance_id[idx] = i + 1 # object id starts from 1, background has id 0 assert np.max(points_instance_id) <= 255, "The instance id exceeds uint8 max." if len(refer_pc_idx_per_bbox) > 0: refer_pc_idx_inside_box = np.concatenate(refer_pc_idx_per_bbox).tolist() else: refer_pc_idx_inside_box = [] refer_pc_idx_outside_box = set(range(refer_pc.shape[0])) - set(refer_pc_idx_inside_box) refer_pc_idx_outside_box = list(refer_pc_idx_outside_box) # Compute pixel (cell) categories pixel_cat = np.zeros([unique_indices.shape[0], category_num], dtype=np.float32) most_freq_info = [] for h, v in enumerate(zip(unique_indices, num_points_in_pixel)): pixel_elements_categories = points_category[v[0]:v[0] + v[1]] elements_freq = np.bincount(pixel_elements_categories, minlength=category_num) assert np.sum(elements_freq) == v[1], "The frequency count is incorrect." elements_freq = elements_freq / float(v[1]) most_freq_cat, most_freq = np.argmax(elements_freq), np.max(elements_freq) most_freq_info.append([most_freq_cat, most_freq]) most_freq_elements_idx = np.where(pixel_elements_categories == most_freq_cat)[0] pixel_elements_instance_ids = points_instance_id[v[0]:v[0] + v[1]] most_freq_instance_id = pixel_elements_instance_ids[most_freq_elements_idx[0]] if most_freq >= one_hot_thresh: one_hot_cat = np.zeros(category_num, dtype=np.float32) one_hot_cat[most_freq_cat] = 1.0 pixel_cat[h] = one_hot_cat pixel_instance_id[h] = most_freq_instance_id else: pixel_cat[h] = elements_freq # use soft category probability vector. pixel_cat_map = np.zeros((num_divisions[0], num_divisions[1], category_num), dtype=np.float32) pixel_cat_map[pixel_indices[:, 0], pixel_indices[:, 1]] = pixel_cat[:] pixel_instance_map = np.zeros((num_divisions[0], num_divisions[1]), dtype=np.uint8) pixel_instance_map[pixel_indices[:, 0], pixel_indices[:, 1]] = pixel_instance_id[:] # Set the non-zero pixels to 1.0, which will be helpful for loss computation # Note that the non-zero pixels correspond to both the foreground and background objects non_empty_map = np.zeros((num_divisions[0], num_divisions[1]), dtype=np.float32) non_empty_map[pixel_indices[:, 0], pixel_indices[:, 1]] = 1.0 # Ignore the voxel/pillar which contains number of points less than min_point_num_per_voxel; only for fg points cell_pts_num = np.zeros((num_divisions[0], num_divisions[1]), dtype=np.float32) cell_pts_num[pixel_indices[:, 0], pixel_indices[:, 1]] = num_points_in_pixel[:] tmp_pixel_cat_map = np.argmax(pixel_cat_map, axis=2) ignore_mask = np.logical_and(cell_pts_num <= min_point_num_per_voxel, tmp_pixel_cat_map != 0) ignore_mask = np.logical_not(ignore_mask) ignore_mask = np.expand_dims(ignore_mask, axis=2) # Compute the displacement vectors w.r.t. the other sweeps all_disp_field_gt_list = list() all_valid_pixel_maps_list = list() # valid pixel map will be used for masking the computation of loss # -- Skip some frames if necessary past_part = list(range(0, num_past_sweeps, frame_skip + 1)) future_part = list(range(num_past_sweeps + frame_skip, num_sweeps, frame_skip + 1)) if return_past_2d_disp_gt: zero_disp_field = np.zeros((num_divisions[0], num_divisions[1], 2), dtype=np.float32) all_disp_field_gt_list.append(zero_disp_field) # append once, which corresponds to the current frame all_valid_pixel_maps_list.append(non_empty_map) frame_considered = np.asarray(past_part + future_part) frame_considered = frame_considered[1:] else: frame_considered = np.asarray(future_part) for i in frame_considered: curr_disp_vectors = np.zeros_like(refer_pc, dtype=np.float32) curr_disp_vectors.fill(np.nan) curr_disp_vectors[refer_pc_idx_outside_box,] = 0.0 # First, for each instance, compute the corresponding points displacement. for j in range(num_instances): instance_box = instance_box_list[j] instance_box_data = instance_box[i] # This is for the i-th sweep if np.isnan(instance_box_data).any(): # It is possible that in this sweep there is no annotation continue if h_flip: tmp_quad = instance_box_data[6:].copy() tmp_quad[2] *= -1 # y tmp_quad[3] *= -1 # z tmp_quad = Quaternion(tmp_quad) tmp_center = instance_box_data[0:3].copy() tmp_center[0] = -tmp_center[0] tmp_box = Box(center=tmp_center, size=instance_box_data[3:6], orientation=Quaternion(tmp_quad)) else: tmp_box = Box(center=instance_box_data[:3], size=instance_box_data[3:6], orientation=Quaternion(instance_box_data[6:])) pc_in_bbox_idx = refer_pc_idx_per_bbox[j] disp_vectors = calc_displace_vector(refer_pc[pc_in_bbox_idx], refer_box_list[j], tmp_box) curr_disp_vectors[pc_in_bbox_idx] = disp_vectors[:] # Second, compute the mean displacement vector and category for each non-empty pixel disp_field = np.zeros([unique_indices.shape[0], 2], dtype=np.float32) # we only consider the 2D field # We only compute loss for valid pixels where there are corresponding box annotations between two frames valid_pixels = np.zeros(unique_indices.shape[0], dtype=np.bool) for h, v in enumerate(zip(unique_indices, num_points_in_pixel)): # Only when the number of majority points exceeds predefined proportion, we compute # the displacement vector for this pixel. Otherwise, We consider it is background (possibly ground plane) # and has zero displacement. pixel_elements_categories = points_category[v[0]:v[0] + v[1]] most_freq_cat, most_freq = most_freq_info[h] if most_freq >= proportion_thresh: most_freq_cat_idx = np.where(pixel_elements_categories == most_freq_cat)[0] most_freq_cat_disp_vectors = curr_disp_vectors[v[0]:v[0] + v[1], :3] most_freq_cat_disp_vectors = most_freq_cat_disp_vectors[most_freq_cat_idx] if np.isnan(most_freq_cat_disp_vectors).any(): # contains invalid disp vectors valid_pixels[h] = 0.0 else: mean_disp_vector = np.mean(most_freq_cat_disp_vectors, axis=0) disp_field[h] = mean_disp_vector[0:2] # ignore the z direction valid_pixels[h] = 1.0 # Finally, assemble to a 2D image disp_field_sparse = np.zeros((num_divisions[0], num_divisions[1], 2), dtype=np.float32) disp_field_sparse[pixel_indices[:, 0], pixel_indices[:, 1]] = disp_field[:] disp_field_sparse = disp_field_sparse * ignore_mask valid_pixel_map = np.zeros((num_divisions[0], num_divisions[1]), dtype=np.float32) valid_pixel_map[pixel_indices[:, 0], pixel_indices[:, 1]] = valid_pixels[:] all_disp_field_gt_list.append(disp_field_sparse) all_valid_pixel_maps_list.append(valid_pixel_map) all_disp_field_gt_list = np.stack(all_disp_field_gt_list, axis=0) all_valid_pixel_maps_list = np.stack(all_valid_pixel_maps_list, axis=0) if reordered and return_past_2d_disp_gt: num_past = len(past_part) all_disp_field_gt_list[0:num_past] = all_disp_field_gt_list[(num_past - 1)::-1] all_valid_pixel_maps_list[0:num_past] = all_valid_pixel_maps_list[(num_past - 1)::-1] if return_instance_map: return all_disp_field_gt_list, all_valid_pixel_maps_list, non_empty_map, pixel_cat_map, pixel_indices, pixel_instance_map,instance_box_list,instance_cat_list else: return all_disp_field_gt_list, all_valid_pixel_maps_list, non_empty_map, pixel_cat_map, pixel_indices,instance_box_list,instance_cat_list def voxelize_occupy(pts, voxel_size, extents=None, return_indices=False): """ Voxelize the input point cloud. We only record if a given voxel is occupied or not, which is just binary indicator. The input for the voxelization is expected to be a PointCloud with N points in 4 dimension (x,y,z,i). Voxel size is the quantization size for the voxel grid. voxel_size: I.e. if voxel size is 1 m, the voxel space will be divided up within 1m x 1m x 1m space. This space will be 0 if free/occluded and 1 otherwise. min_voxel_coord: coordinates of the minimum on each axis for the voxel grid max_voxel_coord: coordinates of the maximum on each axis for the voxel grid num_divisions: number of grids in each axis leaf_layout: the voxel grid of size (numDivisions) that contain -1 for free, 0 for occupied :param pts: Point cloud as N x [x, y, z, i] :param voxel_size: Quantization size for the grid, vd, vh, vw :param extents: Optional, specifies the full extents of the point cloud. Used for creating same sized voxel grids. Shape (3, 2) :param return_indices: Whether to return the non-empty voxel indices. """ # Function Constants VOXEL_EMPTY = 0 VOXEL_FILLED = 1 # Check if points are 3D, otherwise early exit if pts.shape[1] < 3 or pts.shape[1] > 4: raise ValueError("Points have the wrong shape: {}".format(pts.shape)) if extents is not None: if extents.shape != (3, 2): raise ValueError("Extents are the wrong shape {}".format(extents.shape)) filter_idx = np.where((extents[0, 0] < pts[:, 0]) & (pts[:, 0] < extents[0, 1]) & (extents[1, 0] < pts[:, 1]) & (pts[:, 1] < extents[1, 1]) & (extents[2, 0] < pts[:, 2]) & (pts[:, 2] < extents[2, 1]))[0] pts = pts[filter_idx] # Discretize voxel coordinates to given quantization size discrete_pts = np.floor(pts[:, :3] / voxel_size).astype(np.int32) # Use Lex Sort, sort by x, then y, then z x_col = discrete_pts[:, 0] y_col = discrete_pts[:, 1] z_col = discrete_pts[:, 2] sorted_order = np.lexsort((z_col, y_col, x_col)) # Save original points in sorted order discrete_pts = discrete_pts[sorted_order] # Format the array to c-contiguous array for unique function contiguous_array = np.ascontiguousarray(discrete_pts).view( np.dtype((np.void, discrete_pts.dtype.itemsize * discrete_pts.shape[1]))) # The new coordinates are the discretized array with its unique indexes _, unique_indices = np.unique(contiguous_array, return_index=True) # Sort unique indices to preserve order unique_indices.sort() voxel_coords = discrete_pts[unique_indices] # Compute the minimum and maximum voxel coordinates if extents is not None: min_voxel_coord = np.floor(extents.T[0] / voxel_size) max_voxel_coord = np.ceil(extents.T[1] / voxel_size) - 1 else: min_voxel_coord = np.amin(voxel_coords, axis=0) max_voxel_coord = np.amax(voxel_coords, axis=0) # Get the voxel grid dimensions num_divisions = ((max_voxel_coord - min_voxel_coord) + 1).astype(np.int32) # Bring the min voxel to the origin voxel_indices = (voxel_coords - min_voxel_coord).astype(int) # Create Voxel Object with -1 as empty/occluded leaf_layout = VOXEL_EMPTY * np.ones(num_divisions.astype(int), dtype=np.float32) # Fill out the leaf layout leaf_layout[voxel_indices[:, 0], voxel_indices[:, 1], voxel_indices[:, 2]] = VOXEL_FILLED if return_indices: return leaf_layout, voxel_indices else: return leaf_layout def voxelize_pillar_indices(pts, voxel_size, extents=None): """ Voxelize the input point cloud into pillars. We only return the indices The input for the voxelization is expected to be a PointCloud with N points in 4 dimension (x,y,z,i). Voxel size is the quantization size for the voxel grid. voxel_size: I.e. if voxel size is 1 m, the voxel space will be divided up within 1m x 1m x 1m space. This space will be 0 if free/occluded and 1 otherwise. min_voxel_coord: coordinates of the minimum on each axis for the voxel grid max_voxel_coord: coordinates of the maximum on each axis for the voxel grid num_divisions: number of grids in each axis leaf_layout: the voxel grid of size (numDivisions) that contain -1 for free, 0 for occupied :param pts: Point cloud as N x [x, y, z, i] :param voxel_size: Quantization size for the grid, vh, vw :param extents: Optional, specifies the full extents of the point cloud. Used for creating same sized voxel grids. Shape (3, 2) """ # Check if points are 3D, otherwise early exit if pts.shape[1] < 3 or pts.shape[1] > 4: raise ValueError("Points have the wrong shape: {}".format(pts.shape)) if extents is not None: if extents.shape != (3, 2): raise ValueError("Extents are the wrong shape {}".format(extents.shape)) filter_idx = np.where((extents[0, 0] < pts[:, 0]) & (pts[:, 0] < extents[0, 1]) & (extents[1, 0] < pts[:, 1]) & (pts[:, 1] < extents[1, 1]) & (extents[2, 0] < pts[:, 2]) & (pts[:, 2] < extents[2, 1]))[0] pts = pts[filter_idx] # Discretize voxel coordinates to given quantization size discrete_pts = np.floor(pts[:, :2] / voxel_size).astype(np.int32) # Use Lex Sort, sort by x, then y x_col = discrete_pts[:, 0] y_col = discrete_pts[:, 1] sorted_order = np.lexsort((y_col, x_col)) # Save original points in sorted order points = pts[sorted_order] discrete_pts = discrete_pts[sorted_order] # Format the array to c-contiguous array for unique function contiguous_array = np.ascontiguousarray(discrete_pts).view( np.dtype((np.void, discrete_pts.dtype.itemsize * discrete_pts.shape[1]))) # The new coordinates are the discretized array with its unique indexes _, unique_indices = np.unique(contiguous_array, return_index=True) # Sort unique indices to preserve order unique_indices.sort() voxel_coords = discrete_pts[unique_indices] # Number of points per voxel, last voxel calculated separately num_points_in_pillar = np.diff(unique_indices) num_points_in_pillar = np.append(num_points_in_pillar, discrete_pts.shape[0] - unique_indices[-1]) # Compute the minimum and maximum voxel coordinates if extents is not None: min_voxel_coord = np.floor(extents.T[0, 0:2] / voxel_size) else: min_voxel_coord = np.amin(voxel_coords, axis=0) # Bring the min voxel to the origin voxel_indices = (voxel_coords - min_voxel_coord).astype(int) return points, voxel_indices, num_points_in_pillar def voxelize_point_pillar(pts, grid_size, extents=None, num_points=100, num_pillars=2500, seed=None, is_padded_pillar=False): """ Discretize the input point cloud into pillars. The input for the voxelization is expected to be a PointCloud with N points in 4 dimension (x,y,z,i). Grid size is the quantization size for the 2d grid. grid_size: I.e. if grid size is 1 m, the grid space will be divided up within 1m x 1m space. This space will be -1 if free/occluded and 1 otherwise. min_grid_coord: coordinates of the minimum on each axis for the 2d grid max_grid_coord: coordinates of the maximum on each axis for the 2d grid num_divisions: number of grids in each axis leaf_layout: the 2d grid of size (numDivisions) that contain -1 for free, 0 for occupied :param pts: Point cloud as N x [x, y, z, i] :param grid_size: Quantization size for the grid, (vh, vw) :param extents: Optional, specifies the full extents of the point cloud. Used for creating same sized voxel grids. Shape (3, 2) :param num_points: Number of points in each pillar after sampling/padding :param num_pillars: Number of pillars after sampling/padding :param seed: Random seed for fixing data generation. :param is_padded_pillar: Whether need to pad/sample the pillar """ if seed is not None: np.random.seed(seed) # Check if points are 3D, otherwise early exit if pts.shape[1] < 3 or pts.shape[1] > 4: raise ValueError("Points have the wrong shape: {}".format(pts.shape)) if extents is not None: if extents.shape != (3, 2): raise ValueError("Extents are the wrong shape {}".format(extents.shape)) filter_idx = np.where((extents[0, 0] < pts[:, 0]) & (pts[:, 0] < extents[0, 1]) & (extents[1, 0] < pts[:, 1]) & (pts[:, 1] < extents[1, 1]) & (extents[2, 0] < pts[:, 2]) & (pts[:, 2] < extents[2, 1]))[0] pts = pts[filter_idx] # Discretize point coordinates to given 2d quantization size discrete_pts = np.floor(pts[:, :2] / grid_size).astype(np.int32) # Use Lex Sort, sort by x, then y. We do not care about z x_col = discrete_pts[:, 0] y_col = discrete_pts[:, 1] sorted_order = np.lexsort((y_col, x_col)) # Save original points in sorted order points = pts[sorted_order] discrete_pts = discrete_pts[sorted_order] # Format the array to c-contiguous array for unique function contiguous_array = np.ascontiguousarray(discrete_pts).view( np.dtype((np.void, discrete_pts.dtype.itemsize * discrete_pts.shape[1]))) # The new coordinates are the discretized array with its unique indexes _, unique_indices = np.unique(contiguous_array, return_index=True) # Sort unique indices to preserve order unique_indices.sort() grid_coords = discrete_pts[unique_indices] # Number of points per voxel, last voxel calculated separately num_points_in_pillar = np.diff(unique_indices) num_points_in_pillar = np.append(num_points_in_pillar, discrete_pts.shape[0] - unique_indices[-1]) # Compute the minimum and maximum voxel coordinates if extents is not None: min_grid_coord = np.floor(extents.T[0, 0:2] / grid_size) max_grid_coord = np.ceil(extents.T[1, 0:2] / grid_size) - 1 else: min_grid_coord = np.amin(grid_coords, axis=0) max_grid_coord = np.amax(grid_coords, axis=0) # Get the voxel grid dimensions num_divisions = ((max_grid_coord - min_grid_coord) + 1).astype(np.int32) # Bring the min voxel to the origin pixel_indices = (grid_coords - min_grid_coord).astype(int) # Padding the points within each voxel x_offset = grid_size[0] / 2.0 + extents[0, 0] y_offset = grid_size[1] / 2.0 + extents[1, 0] padded_grid_points = np.zeros([unique_indices.shape[0], num_points, pts.shape[1] + 3 + 2], dtype=np.float32) padded_pillar = np.zeros([num_pillars, num_points, pts.shape[1] + 3 + 2], dtype=np.float32) padded_pixel_indices = np.zeros([num_pillars, pixel_indices.shape[1]], dtype=np.int64) padded_grid_points = padding_point_pillar(padded_grid_points, unique_indices, num_points, num_points_in_pillar, points, pixel_indices, grid_size, x_offset, y_offset, seed) if is_padded_pillar: # Padding or sampling the pillars TODO: early sampling to avoid unnecessary computation if unique_indices.shape[0] < num_pillars: padded_pillar[:unique_indices.shape[0], :, :] = padded_grid_points[:] padded_pixel_indices[:unique_indices.shape[0], :] = pixel_indices[:] else: pillar_inds = np.random.choice(unique_indices.shape[0], num_pillars) padded_pillar[:, :, :] = padded_grid_points[pillar_inds, :, :] padded_pixel_indices[:, :] = pixel_indices[pillar_inds, :] else: padded_pillar = padded_grid_points padded_pixel_indices = pixel_indices return padded_pillar, padded_pixel_indices, num_divisions @njit def padding_point_pillar(padded_grid_points, unique_indices, num_points, num_points_in_pillar, points, pixel_indices, grid_size, x_offset, y_offset, seed): if seed is not None: np.random.seed(seed) for i, v in enumerate(zip(unique_indices, num_points_in_pillar)): if v[1] < num_points: padded_grid_points[i, :v[1], :4] = points[v[0]:v[0] + v[1], :] middle_points_x = np.mean(points[v[0]:v[0] + v[1], 0]) middle_points_y = np.mean(points[v[0]:v[0] + v[1], 1]) middle_points_z = np.mean(points[v[0]:v[0] + v[1], 2]) padded_grid_points[i, :v[1], 4] = padded_grid_points[i, :v[1], 0] - middle_points_x padded_grid_points[i, :v[1], 5] = padded_grid_points[i, :v[1], 1] - middle_points_y padded_grid_points[i, :v[1], 6] = padded_grid_points[i, :v[1], 2] - middle_points_z center_offsets = np.zeros((v[1], 2), dtype=np.float32) center_offsets[:, 0] = padded_grid_points[i, :v[1], 0] - (pixel_indices[i, 0] * grid_size[0] + x_offset) center_offsets[:, 1] = padded_grid_points[i, :v[1], 1] - (pixel_indices[i, 1] * grid_size[1] + y_offset) padded_grid_points[i, :v[1], 7:] = center_offsets[:] else: inds = np.random.choice(v[1], num_points) padded_grid_points[i, :, :4] = points[v[0] + inds, :] middle_points_x = np.mean(points[v[0] + inds, 0]) middle_points_y = np.mean(points[v[0] + inds, 1]) middle_points_z = np.mean(points[v[0] + inds, 2]) padded_grid_points[i, :, 4] = padded_grid_points[i, :, 0] - middle_points_x padded_grid_points[i, :, 5] = padded_grid_points[i, :, 1] - middle_points_y padded_grid_points[i, :, 6] = padded_grid_points[i, :, 2] - middle_points_z center_offsets = np.zeros((num_points, 2), dtype=np.float32) center_offsets[:, 0] = padded_grid_points[i, :, 0] - (pixel_indices[i, 0] * grid_size[0] + x_offset) center_offsets[:, 1] = padded_grid_points[i, :, 1] - (pixel_indices[i, 1] * grid_size[1] + y_offset) padded_grid_points[i, :, 7:] = center_offsets[:] return padded_grid_points def compute_ratio_cat_and_motion(dataset_root=None, frame_skip=3, voxel_size=(0.4, 0.4, 0.4), split='train', area_extents=np.array([[-30., 30.], [-30., 30.], [-2., 2.]]), num_obj_cat=5, num_motion_cat=3): """ Compute the ratios between foreground and background (and static and moving) cells. The ratios will be used for non-uniform weighting to mitigate the class imbalance during training. :param dataset_root: The path to the dataset :param frame_skip: The number of frame skipped in a sample sequence :param voxel_size: Voxel size, which determines the "image" resolution :param split: The data split :param area_extents: The area of interest for point cloud :param num_obj_cat: The number of object categories. :param num_motion_cat: The number of motion categories. Currently it is 2 (ie, static and moving). """ if dataset_root is None: dataset_root = '/homes/pwu/_drives/cv0/data/homes/pwu/preprocessed_pc' scene_dirs = [d for d in os.listdir(dataset_root) if os.path.isdir(os.path.join(dataset_root, d))] if split == 'train': scene_dirs = scene_dirs[:len(scene_dirs) // 2] else: scene_dirs = scene_dirs[len(scene_dirs) // 2:] sample_seq_files = [] for s_dir in scene_dirs: sample_dir = os.path.join(dataset_root, s_dir) sample_files = [os.path.join(sample_dir, f) for f in os.listdir(sample_dir) if os.path.isfile(os.path.join(sample_dir, f))] sample_seq_files += sample_files num_sample_seqs = len(sample_seq_files) obj_cat_cnt = np.zeros(num_obj_cat, dtype=np.int64) motion_cat_cnt = np.zeros(num_motion_cat, dtype=np.int64) for idx in range(num_sample_seqs): sample_file = sample_seq_files[idx] all_disp_field_gt, all_valid_pixel_maps, non_empty_map, pixel_cat_map_gt \ = gen_2d_grid_gt(sample_file, grid_size=voxel_size[0:2], reordered=True, extents=area_extents, frame_skip=frame_skip) # -- Compute speed level ground truth motion_status_gt = compute_speed_level(all_disp_field_gt, frame_skip=frame_skip) # -- Count the object category number max_prob = np.amax(pixel_cat_map_gt, axis=-1) filter_mask = max_prob == 1.0 pixel_cat_map = np.argmax(pixel_cat_map_gt, axis=-1) + 1 # category starts from 1 (background), etc pixel_cat_map = (pixel_cat_map * non_empty_map * filter_mask).astype(np.int) for i in range(num_obj_cat): curr_cat_mask = pixel_cat_map == (i + 1) curr_cat_num = np.sum(curr_cat_mask) obj_cat_cnt[i] += curr_cat_num # -- Count the motion category number motion_cat_map = np.argmax(motion_status_gt, axis=-1) + 1 # category starts from 1 (static), etc motion_cat_map = (motion_cat_map * non_empty_map * filter_mask).astype(np.int) for i in range(num_motion_cat): curr_motion_mask = motion_cat_map == (i + 1) curr_motion_num = np.sum(curr_motion_mask) motion_cat_cnt[i] += curr_motion_num print("Finish {}".format(idx)) print("The category numbers: \n{}".format(obj_cat_cnt)) print("The motion numbers: \n{}\n".format(motion_cat_cnt)) # Convert to ratio obj_cat_ratio = obj_cat_cnt / np.sum(obj_cat_cnt) motion_cat_ratio = motion_cat_cnt / np.sum(motion_cat_cnt) print("The category ratios: \n{}".format(obj_cat_ratio)) print("The motion ratios: \n{}\n".format(motion_cat_ratio)) # Convert to inverse ratio obj_cat_ratio_inverse = np.exp(-obj_cat_ratio) motion_cat_ratio_inverse = np.exp(-motion_cat_ratio) print("The category reverse ratios: \n{}".format(obj_cat_ratio_inverse)) print("The motion reverse ratios: \n{}\n".format(motion_cat_ratio_inverse)) def compute_speed_level(all_disp_field_gt, total_future_sweeps=20, frame_skip=3): speed_intervals = np.array([[0, 5.0], [5.0, 20.0], [20.0, np.inf]]) # unit: m/s selected_future_sweeps = np.arange(0, total_future_sweeps + 1, frame_skip + 1) selected_future_sweeps = selected_future_sweeps[1:] last_future_sweep_id = selected_future_sweeps[-1] distance_intervals = speed_intervals * (last_future_sweep_id / 20.0) speed_level = np.zeros((all_disp_field_gt.shape[1], all_disp_field_gt.shape[2], speed_intervals.shape[0]), dtype=np.float32) last_frame_disp_norm = np.linalg.norm(all_disp_field_gt, ord=2, axis=-1) last_frame_disp_norm = last_frame_disp_norm[-1, :, :] for s, d in enumerate(distance_intervals): mask = np.logical_and(d[0] <= last_frame_disp_norm, last_frame_disp_norm < d[1]) one_hot_vector = np.zeros(speed_intervals.shape[0], dtype=np.float32) one_hot_vector[s] = 1.0 speed_level[mask] = one_hot_vector[:] return speed_level def compute_speed_level_with_static(all_disp_field_gt, total_future_sweeps=20, frame_skip=3): speed_intervals = np.array([[0.0, 0.0], [0, 5.0], [5.0, 20.0], [20.0, np.inf]]) # unit: m/s # First, compute the static and moving cell masks all_disp_field_gt_norm = np.linalg.norm(all_disp_field_gt, ord=2, axis=-1) upper_thresh = 0.2 upper_bound = (frame_skip + 1) / 20 * upper_thresh selected_future_sweeps = np.arange(0, total_future_sweeps + 1, frame_skip + 1) selected_future_sweeps = selected_future_sweeps[1:] future_sweeps_disp_field_gt_norm = all_disp_field_gt_norm[-len(selected_future_sweeps):, ...] static_cell_mask = future_sweeps_disp_field_gt_norm <= upper_bound static_cell_mask = np.all(static_cell_mask, axis=0) # along the sequence axis moving_cell_mask =
np.logical_not(static_cell_mask)
numpy.logical_not
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jul 13 09:58:50 2020 @author: duttar Description: Solving the problem A = Bx A is the timeseries stack of InSAR pixel wise B is matrix including time and ADDT x is a vector containing seasonal and overall subsidence """ import os import numpy as np import matplotlib.pyplot as plt import h5py from datetime import datetime as dt import multiprocessing from joblib import Parallel, delayed from functools import partial import scipy.io as sio def datenum(d): ''' Serial date number used for SBI_Year ''' return 366 + d.toordinal() + (d - dt.fromordinal(d.toordinal())).total_seconds()/(24*60*60) def SBI_Year(imd): ''' A simple script that takes in numbers on the format '19990930' and changes to a number format 1999.7590 imd - numpy (n,1) Vector with dates in strings out - numpy (n,1) Vector with dates in int created by <NAME> ''' dstr = imd nd = imd.shape[0] out = np.zeros((nd,1)) for k in range(nd): # get first day of year, minus 1/2 a day: d1 = dt.strptime(dstr[k][0][0:4]+'0101', '%Y%m%d') dn1 = datenum(d1) - 0.5 # get last day of year, plus 0.5 d2 = dt.strptime(dstr[k][0][0:4]+'1231', '%Y%m%d') dne = datenum(d2) + 0.5 # get number of days in that year: ndays = dne - dn1 # get day of year: d3 = dt.strptime(dstr[k][0], '%Y%m%d') doy = datenum(d3) - dn1 # get fractional year: fracyr = doy/ndays out[k] = int(dstr[k][0][0:4])+ fracyr return out # work directory proj_dir = os.path.expanduser('/data/not_backed_up/rdtta/Permafrost/Alaska/North_slope/DT102/Stack/timeseries') # file in geo coordinates geom_file = os.path.join(proj_dir, 'geo/geo_geometryRadar.h5') ts_file = os.path.join(proj_dir, 'geo/geo_timeseries_ramp_demErr.h5') maskfile = os.path.join(proj_dir, 'geo/geo_maskTempCoh.h5') with h5py.File(ts_file, "r") as f: # read the timeseries file a_group_key = list(f.keys())[2] ts_data = list(f[a_group_key]) a_group_key = list(f.keys())[1] dates = list(f[a_group_key]) with h5py.File(geom_file, "r") as f: # read the geometry file a_group_key = list(f.keys())[0] azim_angle = list(f[a_group_key]) a_group_key = list(f.keys())[1] height = list(f[a_group_key]) a_group_key = list(f.keys())[2] inc_angle = list(f[a_group_key]) a_group_key = list(f.keys())[3] latitude = list(f[a_group_key]) a_group_key = list(f.keys())[4] longitude = list(f[a_group_key]) with h5py.File(maskfile, "r") as f: a_group_key = list(f.keys())[0] maskbool = list(f[a_group_key]) maskbool = np.array(maskbool) # convert dates from type 'bytes' to string numdates = np.size(dates) datesn = np.empty([numdates, 1], dtype="<U10") dates_int = np.zeros((numdates,1)) for i in range(numdates): datesn[i] = dates[i].decode("utf-8") dates_int[i] = int(dates[i].decode("utf-8")) dates_frac = SBI_Year(datesn) # select the dates to put in matrix A inddates = np.zeros((numdates,1)) for i in range(numdates): dates_i = dates_frac[i] frac_part = dates_i - np.floor(dates_i) if frac_part < .41506849 : inddates[i] = 0 elif frac_part > .81506849 : inddates[i] = 0 else: inddates[i] = 1 include_dates = np.where(inddates == 1)[0] print('included dates for estimation are: \n', datesn[include_dates]) dates_frac_included = dates_frac[include_dates] # load the addt files dates_floor = np.floor(dates_frac_included) for i in range(include_dates.shape[0]-1): if i == 0: years_incl = dates_floor[i] if dates_floor[i+1] != dates_floor[i]: years_incl = np.concatenate((years_incl, dates_floor[i+1]), axis=0) a_dictionary = {} mat_c1 = np.empty(()) for years in years_incl: varmat_load = 'data_temp_addt/ds633/addt' + str(np.int(years)) + '.mat' mat_c1 = sio.loadmat(varmat_load) lonlat = mat_c1['lonlat'] var_addt = 'addt' + str(np.int(years)) a_dictionary["addt_%s" %np.int(years)] = mat_c1[var_addt] a_dictionary["detailsaddt_%s" %np.int(years)] = mat_c1['details_addt'] # get the timeseries data attributes ifglen = np.shape(longitude)[0] ifgwid = np.shape(longitude)[1] ts_data = np.array(ts_data) longitude = np.array(longitude) latitude = np.array(latitude) numpixels = ifglen*ifgwid lonvals_addt = lonlat[:,0] - 360 latvals_addt = lonlat[:,1] # normalize the addt values with the overall maximum value maxaddt = np.zeros((years_incl.shape[0], 1)) i = 0 for years in years_incl: varaddt = "addt_" + str(np.int(years)) maxaddt[i] = np.max(a_dictionary[varaddt]) i = i+1 maxaddtall = np.max(maxaddt) # maximum addt value addt_pixelwise = np.zeros((include_dates.shape[0], ifglen, ifgwid)) for i in range(numpixels): if np.mod(i, 50000) == 0: print('loops completed: ', i) ind_len = np.mod(i+1, ifglen) - 1 if np.mod(i+1, ifglen) == 0: ind_len = ifglen -1 ind_wid = np.int(np.floor((i+1)/ifglen)) - 1 if maskbool[ind_len, ind_wid] == False: continue # get the latitude and longitude at the index lon_valind = longitude[ind_len, ind_wid] lat_valind = latitude[ind_len, ind_wid] # find the closest lonlat of the addt values abs_dist_lon = np.abs(lonvals_addt - lon_valind) abs_dist_lat = np.abs(latvals_addt - lat_valind) ind_close1 = np.where(abs_dist_lon == np.min(abs_dist_lon)) ind_close2 = np.where(abs_dist_lat == np.min(abs_dist_lat)) indcommon = np.intersect1d(ind_close1, ind_close2) if indcommon.shape[0] > 1: indcommon = indcommon[0] ind_tsdate = 0 # go through the time series dates and find the corresponding addt values for day in dates_frac_included: if np.mod(np.floor(day),4) > 0: leapdays = 365 else: leapdays = 366 dayindex = (day - np.floor(day))* leapdays + .5 varaddt1 = "detailsaddt_" + str(np.int(np.floor(day)[0])) firstday_addt = a_dictionary[varaddt1][indcommon, 1] varaddt2 = "addt_" + str(np.int(
np.floor(day)
numpy.floor
import unittest import numpy as np import fastpli.objects import fastpli.tools class MainTest(unittest.TestCase): def setUp(self): self.fiber = fastpli.objects.Fiber([[0, 0, 0, 1], [1, 1, 1, 2]]) self.fiber_bundle = fastpli.objects.FiberBundle(self.fiber.copy()) self.fiber_bundles = fastpli.objects.FiberBundles(self.fiber.copy()) def test_init(self): fastpli.objects.FiberBundle() fastpli.objects.FiberBundles() a = np.array([0, 0, 0, 0]) _ = fastpli.objects.Fiber([[0, 0, 0, 1], [0, 0, 1, 2]]) f = fastpli.objects.Fiber(a) self.assertTrue(isinstance(f, fastpli.objects.Fiber)) f = fastpli.objects.Fiber(f) self.assertTrue(isinstance(f, fastpli.objects.Fiber)) fb = fastpli.objects.FiberBundle([a]) self.assertTrue(isinstance(fb, fastpli.objects.FiberBundle)) fb = fastpli.objects.FiberBundle(f) self.assertTrue(isinstance(fb, fastpli.objects.FiberBundle)) fb = fastpli.objects.FiberBundle(fb) self.assertTrue(isinstance(fb, fastpli.objects.FiberBundle)) fbs = fastpli.objects.FiberBundles([[a]]) self.assertTrue(isinstance(fbs, fastpli.objects.FiberBundles)) fbs = fastpli.objects.FiberBundles(f) self.assertTrue(isinstance(fbs, fastpli.objects.FiberBundles)) fbs = fastpli.objects.FiberBundles([f, f]) self.assertTrue(isinstance(fbs, fastpli.objects.FiberBundles)) fbs = fastpli.objects.FiberBundles(fbs) self.assertTrue(isinstance(fbs, fastpli.objects.FiberBundles)) fb = fastpli.objects.FiberBundle([[[0, 0, 0, 1], [1, 1, 1, 1], [2, 2, 2, 1]], [[1, 0, 0, 1], [1, 1, 1, 1], [2, 2, 2, 1]]]) for f in fb: self.assertTrue(isinstance(f, fastpli.objects.Fiber)) self.assertTrue(isinstance(f._data, np.ndarray)) fbs = fastpli.objects.FiberBundles([[[[0, 0, 0, 1], [1, 1, 1, 1], [2, 2, 2, 1]], [[1, 0, 0, 1], [1, 1, 1, 1], [2, 2, 2, 1]]], [[[0, 1, 2, 3], [1, 2, 3, 4], [2, 4, 5, 5]], [[1, 1, 2, 3], [1, 2, 3, 4], [2, 4, 5, 5]], [[1, 1, 2, 3], [1, 2, 3, 4], [2, 4, 5, 5]]]]) for fb in fbs: self.assertTrue(isinstance(fb, fastpli.objects.FiberBundle)) for f in fb: self.assertTrue(isinstance(f, fastpli.objects.Fiber)) self.assertTrue(isinstance(f._data, np.ndarray)) def test_type(self): self.assertTrue(isinstance(self.fiber[:], np.ndarray)) self.assertTrue(self.fiber[:].dtype == float) self.assertTrue( fastpli.objects.Fiber([[1, 1, 1, 1]], np.float32).dtype == np.float32) def test_layers(self): fastpli.objects.FiberBundle(self.fiber_bundle, [(0.333, -0.004, 10, 'p'), (0.666, 0, 5, 'b'), (1.0, 0.004, 1, 'r')]) fastpli.objects.FiberBundles(self.fiber_bundles, [[(0.333, -0.004, 10, 'p'), (0.666, 0, 5, 'b'), (1.0, 0.004, 1, 'r')]]) fb = fastpli.objects.FiberBundle([[[0, 0, 0, 1], [1, 1, 1, 1], [2, 2, 2, 1]], [[1, 0, 0, 1], [1, 1, 1, 1], [2, 2, 2, 1]]]) fb = fastpli.objects.FiberBundle(fb, [(0.333, -0.004, 10, 'p'), (0.666, 0, 5, 'b'), (1.0, 0.004, 1, 'r')]) fbs = [[[[0, 0, 0, 1], [1, 1, 1, 1], [2, 2, 2, 1]], [[1, 0, 0, 1], [1, 1, 1, 1], [2, 2, 2, 1]]], [[[0, 1, 2, 3], [1, 2, 3, 4], [2, 4, 5, 5]], [[1, 1, 2, 3], [1, 2, 3, 4], [2, 4, 5, 5]], [[1, 1, 2, 3], [1, 2, 3, 4], [2, 4, 5, 5]]]] fbs = fastpli.objects.FiberBundles(fbs, [[(0.333, -0.004, 10, 'p'), (0.666, 0, 5, 'b'), (1.0, 0.004, 1, 'r')]] * len(fbs)) def test_resize(self): fiber = self.fiber.scale(10) self.assertTrue(np.array_equal(fiber[:], self.fiber[:] * 10)) fb = self.fiber_bundle.scale(10) for f in fb: self.assertTrue(np.array_equal(f[:], self.fiber[:] * 10)) fbs = self.fiber_bundles.scale(10) for fb in fbs: for f in fb: self.assertTrue(np.array_equal(f[:], self.fiber[:] * 10)) fiber = self.fiber.scale(10, mode='points') self.assertTrue(np.array_equal(fiber[:, :-2], self.fiber[:, :-2] * 10)) self.assertTrue(np.array_equal(fiber[:, -1], self.fiber[:, -1])) fiber = self.fiber.scale(10, mode='radii') self.assertTrue(np.array_equal(fiber[:, :-2], self.fiber[:, :-2])) self.assertTrue(np.array_equal(fiber[:, -1], self.fiber[:, -1] * 10)) def test_rotation(self): fiber = self.fiber.rotate(fastpli.tools.rotation.x(0)) self.assertTrue(np.array_equal(self.fiber[:], fiber[:])) fiber = self.fiber.rotate(fastpli.tools.rotation.x(np.deg2rad(90))) self.assertTrue( np.allclose(fiber[:], np.array([[0, 0, 0, 1], [1, -1, 1, 2]]))) fiber = self.fiber.rotate(fastpli.tools.rotation.x(np.deg2rad(90)), [1, 1, 1]) self.assertTrue( np.allclose(fiber[:], np.array([[0, 2, 0, 1], [1, 1, 1, 2]]))) fiber_bundle = self.fiber_bundle.rotate( fastpli.tools.rotation.x(np.deg2rad(90)), [1, 1, 1]) self.assertTrue(len(fiber_bundle) == len(self.fiber_bundle)) for f in fiber_bundle: self.assertTrue( np.allclose(f[:], np.array([[0, 2, 0, 1], [1, 1, 1, 2]]))) for fb in self.fiber_bundles: for f in fb: fiber = f.rotate(fastpli.tools.rotation.x(np.deg2rad(90)), [1, 1, 1]) self.assertTrue( np.allclose(fiber[:], np.array([[0, 2, 0, 1], [1, 1, 1, 2]]))) def test_translate(self): fiber = self.fiber.translate([1, 1, 1]) self.assertTrue( np.array_equal(fiber[:, :3], self.fiber[:, :3] + np.array([1, 1, 1]))) self.assertTrue(np.array_equal(fiber[:, -1], self.fiber[:, -1])) fiber_bundle = self.fiber_bundle.translate([1, 1, 1]) self.assertTrue(len(fiber_bundle) == len(self.fiber_bundle)) for f in fiber_bundle: self.assertTrue( np.array_equal(fiber[:, :3], self.fiber[:, :3] + np.array([1, 1, 1]))) self.assertTrue(np.array_equal(f[:, -1], self.fiber[:, -1])) for fb in self.fiber_bundles: for f in fb: fiber = f.translate([1, 1, 1]) self.assertTrue( np.array_equal(fiber[:, :3], self.fiber[:, :3] + np.array([1, 1, 1]))) self.assertTrue(np.array_equal(f[:, -1], self.fiber[:, -1])) def test_apply(self): # Fiber fiber = fastpli.objects.Fiber([[0, 0, 0, 1], [1, 1, 1, 2]], dtype=float) fiber_ = fiber.apply(lambda x: x + 1) self.assertTrue(isinstance(fiber_, fastpli.objects.Fiber)) self.assertTrue(np.array_equal(fiber[:] + 1, fiber_[:])) fiber_ = fiber.apply_to_points(lambda x: x + 1) self.assertTrue(isinstance(fiber_, fastpli.objects.Fiber)) self.assertTrue(np.array_equal(fiber[:, :-1] + 1, fiber_[:, :-1])) self.assertTrue(
np.array_equal(fiber[:, -1], fiber_[:, -1])
numpy.array_equal
import numpy as np from numpy import pi import logging import h5py from numpy import pi import logging, os from .Diagnostics import * from .Saving import * class Model(object): """ Python class that represents the barotropic quasigeostrophic pseudospectral model in a doubly periodic domain. Physical parameters observe SI units. Parameters ----------- nx: integer (optional) Number of grid points in the x-direction. The number of modes is nx/2+1. ny: integer (optional) Number of grid points in the y-direction. If None, then ny=nx. L: float (optional) Domain size. dt: float (optional) Time step for time integration. twrite: integer (optional) Print model status to screen every twrite time steps. tmax: float (optional) Total time of simulation. U: float (optional) Uniform zonal flow use_filter: bool (optional) If True, then uses exponential spectral filter. nu4: float (optional) Fouth-order hyperdiffusivity of potential vorticity. nu: float (optional) Diffusivity of potential vorticity. mu: float (optional) Linear drag of potential vorticity. passive_scalar: bool (optional) If True, then calculates passive scalar solution. nu4c: float (optional) Fouth-order hyperdiffusivity of passive scalar. nuc: float (optional) Diffusivity of passive scalar. muc: float (optional) Linear drag of passive scalar. dealias: bool (optional) If True, then dealias solution using 2/3 rule. save_to_disk: bool (optional) If True, then save parameters and snapshots to disk. overwrite: bool (optional) If True, then overwrite extant files. tsave_snapshots: integer (optional) Save snapshots every tsave_snapshots time steps. tdiags: integer (optional) Calculate diagnostics every tdiags time steps. path: string (optional) Location for saving output files. """ def __init__( self, nx=128, ny=None, L=5e5, dt=10000., twrite=1000, tswrite=10, tmax=250000., use_filter = True, U = .0, nu4=5.e9, nu = 0, mu = 0, beta = 0, passive_scalar = False, nu4c = 5.e9, nuc = 0, muc = 0, dealias = False, save_to_disk=False, overwrite=True, tsave_snapshots=10, tdiags = 10, path = 'output/', use_mkl=False, nthreads=1): self.nx = nx self.ny = nx self.L = L self.W = L self.dt = dt self.twrite = twrite self.tswrite = tswrite self.tmax = tmax self.tdiags = tdiags self.passive_scalar = passive_scalar self.dealias = dealias self.U = U self.beta = beta self.nu4 = nu4 self.nu = nu self.mu = mu self.nu4c = nu4c self.nuc = nuc self.muc = muc self.save_to_disk = save_to_disk self.overwrite = overwrite self.tsnaps = tsave_snapshots self.path = path self.use_filter = use_filter self.use_mkl = use_mkl self.nthreads = nthreads self._initialize_logger() self._initialize_grid() self._allocate_variables() self._initialize_filter() self._initialize_etdrk4() self._initialize_time() initialize_save_snapshots(self, self.path) save_setup(self, ) self.cflmax = .5 self._initialize_fft() self._initialize_diagnostics() def _allocate_variables(self): """ Allocate variables so that variable addresses are close in memory. """ self.dtype_real = np.dtype('float64') self.dtype_cplx = np.dtype('complex128') self.shape_real = (self.ny, self.nx) self.shape_cplx = (self.ny, self.nx//2+1) # vorticity self.q = np.zeros(self.shape_real, self.dtype_real) self.qh = np.zeros(self.shape_cplx, self.dtype_cplx) self.qh0 = np.zeros(self.shape_cplx, self.dtype_cplx) self.qh1 = np.zeros(self.shape_cplx, self.dtype_cplx) # stream function self.p = np.zeros(self.shape_real, self.dtype_real) self.ph = np.zeros(self.shape_cplx, self.dtype_cplx) def run_with_snapshots(self, tsnapstart=0., tsnapint=432000.): """ Run the model for prescribed time and yields to user code. Parameters ---------- tsnapstart : float The timestep at which to begin yielding. tstapint : int (number of time steps) The interval at which to yield. """ tsnapints = np.ceil(tsnapint/self.dt) while(self.t < self.tmax): self._step_forward() if self.t>=tsnapstart and (self.tc%tsnapints)==0: yield self.t return def run(self): """ Run the model until the end (`tmax`). The algorithm is: 1) Save snapshots (i.e., save the initial condition). 2) Take a tmax/dt steps forward. 3) Save diagnostics. """ # save initial conditions if self.save_to_disk: if self.passive_scalar: save_snapshots(self,fields=['t','q','c']) else: save_snapshots(self,fields=['t','q']) # run the model while(self.t < self.tmax): self._step_forward() # save diagnostics if self.save_to_disk: save_diagnostics(self) def _step_forward(self): """ Step solutions forwards. The algorithm is: 1) Take one time step with ETDRK4 scheme. 2) Incremente diagnostics. 3) Print status. 4) Save snapshots. """ self._step_etdrk4() increment_diagnostics(self,) self._print_status() save_snapshots(self,fields=['t','q','c']) def _initialize_time(self): """ Initialize model clock and other time variables. """ self.t=0 # time self.tc=0 # time-step number ### initialization routines, only called once at the beginning ### def _initialize_grid(self): """ Create spatial and spectral grids and normalization constants. """ self.x,self.y = np.meshgrid( np.arange(0.5,self.nx,1.)/self.nx*self.L, np.arange(0.5,self.ny,1.)/self.ny*self.W ) self.dk = 2.*pi/self.L self.dl = 2.*pi/self.L # wavenumber grids self.nl = self.ny self.nk = self.nx//2+1 self.ll = self.dl*np.append( np.arange(0.,self.nx/2), np.arange(-self.nx/2,0.) ) self.kk = self.dk*np.arange(0.,self.nk) self.k, self.l = np.meshgrid(self.kk, self.ll) self.ik = 1j*self.k self.il = 1j*self.l # physical grid spacing self.dx = self.L / self.nx self.dy = self.W / self.ny # constant for spectral normalizations self.M = self.nx*self.ny # isotropic wavenumber^2 grid # the inversion is not defined at kappa = 0 self.wv2 = self.k**2 + self.l**2 self.wv = np.sqrt( self.wv2 ) self.wv4 = self.wv2**2 iwv2 = self.wv2 != 0. self.wv2i = np.zeros_like(self.wv2) self.wv2i[iwv2] = self.wv2[iwv2]**-1 def _initialize_background(self): raise NotImplementedError( 'needs to be implemented by Model subclass') def _initialize_inversion_matrix(self): raise NotImplementedError( 'needs to be implemented by Model subclass') def _initialize_forcing(self): raise NotImplementedError( 'needs to be implemented by Model subclass') def _initialize_filter(self): """Set up spectral filter or dealiasing.""" if self.use_filter: cphi=0.65*pi wvx=np.sqrt((self.k*self.dx)**2.+(self.l*self.dy)**2.) self.filtr = np.exp(-23.6*(wvx-cphi)**4.) self.filtr[wvx<=cphi] = 1. self.logger.info(' Using filter') elif self.dealias: self.filtr = np.ones_like(self.wv2) self.filtr[self.nx/3:2*self.nx/3,:] = 0. self.filtr[:,self.ny/3:2*self.ny/3] = 0. self.logger.info(' Dealiasing with 2/3 rule') else: self.filtr = np.ones_like(self.wv2) self.logger.info(' No dealiasing; no filter') def _do_external_forcing(self): pass def _initialize_logger(self): """ Initialize logger. """ self.logger = logging.getLogger(__name__) fhandler = logging.StreamHandler() formatter = logging.Formatter('%(levelname)s: %(message)s') fhandler.setFormatter(formatter) if not self.logger.handlers: self.logger.addHandler(fhandler) self.logger.setLevel(10) # this prevents the logger from propagating into the ipython notebook log self.logger.propagate = False self.logger.info(' Logger initialized') def _step_etdrk4(self): """ Take one step forward using an exponential time-dfferencing method with a Runge-Kutta 4 scheme. Rereferences ------------ See Cox and Matthews, J. Comp. Physics., 176(2):430-455, 2002. Kassam and Trefethen, IAM J. Sci. Comput., 26(4):1214-233, 2005. """ self.qh0 = self.qh.copy() Fn0 = -self.jacobian_psi_q() self.qh = (self.expch_h*self.qh0 + Fn0*self.Qh)*self.filtr self.qh1 = self.qh.copy() if self.passive_scalar: self.ch0 = self.ch.copy() Fn0c = -self.jacobian_psi_c() self.ch = (self.expch_hc*self.ch0 + Fn0c*self.Qhc)*self.filtr self.ch1 = self.ch.copy() self._calc_derived_fields() c1 = self._calc_ep_c() self._invert() k1 = self._calc_ep_psi() Fna = -self.jacobian_psi_q() self.qh = (self.expch_h*self.qh0 + Fna*self.Qh)*self.filtr if self.passive_scalar: Fnac = -self.jacobian_psi_c() self.ch = (self.expch_hc*self.ch0 + Fnac*self.Qhc)*self.filtr self._calc_derived_fields() c2 = self._calc_ep_c() self._invert() k2 = self._calc_ep_psi() Fnb = -self.jacobian_psi_q() self.qh = (self.expch_h*self.qh1 + ( 2.*Fnb - Fn0 )*self.Qh)*self.filtr if self.passive_scalar: Fnbc = -self.jacobian_psi_c() self.ch = (self.expch_hc*self.ch1 + ( 2.*Fnbc - Fn0c )*self.Qhc)*self.filtr self._calc_derived_fields() c3 = self._calc_ep_c() self._invert() k3 = self._calc_ep_psi() Fnc = -self.jacobian_psi_q() self.qh = (self.expch*self.qh0 + Fn0*self.f0 + 2.*(Fna+Fnb)*self.fab\ + Fnc*self.fc)*self.filtr if self.passive_scalar: Fncc = -self.jacobian_psi_c() self.ch = (self.expchc*self.ch0 + Fn0c*self.f0c+ 2.*(Fnac+Fnbc)*self.fabc\ + Fncc*self.fcc)*self.filtr self._calc_derived_fields() c4 = self._calc_ep_c() self.cvar += self.dt*(c1 + 2*(c2+c3) + c4)/6. # invert self._invert() # calcuate q self.q = self.ifft(self.qh).real if self.passive_scalar: self.c = self.ifft(self.ch).real k4 = self._calc_ep_psi() self.Ke += self.dt*(k1 + 2*(k2+k3) + k4)/6. def _initialize_etdrk4(self): """ Compute coefficients of the exponential time-dfferencing method with a Runge-Kutta 4 scheme. Rereferences ------------ See Cox and Matthews, J. Comp. Physics., 176(2):430-455, 2002. Kassam and Trefethen, IAM J. Sci. Comput., 26(4):1214-233, 2005. """ # # coefficients for q-equation # # the exponent for the linear part c = np.zeros((self.nl,self.nk),self.dtype_cplx) c += -self.nu4*self.wv4 - self.nu*self.wv2 - self.mu - 1j*self.k*self.U c += self.beta*self.ik*self.wv2i ch = c*self.dt self.expch = np.exp(ch) self.expch_h = np.exp(ch/2.) self.expch2 = np.exp(2.*ch) M = 32. # number of points for line integral in the complex plane rho = 1. # radius for complex integration r = rho*np.exp(2j*np.pi*((np.arange(1.,M+1))/M)) # roots for integral LR = ch[...,np.newaxis] + r[np.newaxis,np.newaxis,...] LR2 = LR*LR LR3 = LR2*LR self.Qh = self.dt*(((np.exp(LR/2.)-1.)/LR).mean(axis=-1)) self.f0 = self.dt*( ( ( -4. - LR + ( np.exp(LR)*( 4. - 3.*LR + LR2 ) ) )/ LR3 ).mean(axis=-1) ) self.fab = self.dt*( ( ( 2. + LR + np.exp(LR)*( -2. + LR ) )/ LR3 ).mean(axis=-1) ) self.fc = self.dt*( ( ( -4. -3.*LR - LR2 + np.exp(LR)*(4.-LR) )/ LR3 ).mean(axis=-1) ) if self.passive_scalar: # # coefficients for c-equation # # the exponent for the linear part c = np.zeros((self.nl,self.nk),self.dtype_cplx) c += -self.nu4c*self.wv4 - self.nuc*self.wv2 - self.muc ch = c*self.dt self.expchc = np.exp(ch) self.expch_hc = np.exp(ch/2.) self.expch2c = np.exp(2.*ch) r = rho*np.exp(2j*np.pi*((np.arange(1.,M+1))/M)) # roots for integral LR = ch[...,np.newaxis] + r[np.newaxis,np.newaxis,...] LR2 = LR*LR LR3 = LR2*LR self.Qhc = self.dt*(((np.exp(LR/2.)-1.)/LR).mean(axis=-1)) self.f0c = self.dt*( ( ( -4. - LR + ( np.exp(LR)*( 4. - 3.*LR + LR2 ) ) )/ LR3 ).mean(axis=-1) ) self.fabc = self.dt*( ( ( 2. + LR + np.exp(LR)*( -2. + LR ) )/ LR3 ).mean(axis=-1) ) self.fcc = self.dt*( ( ( -4. -3.*LR - LR2 + np.exp(LR)*(4.-LR) )/ LR3 ).mean(axis=-1) ) def jacobian_psi_q(self): """ Compute the advective term–––the Jacobian between psi and q. Returns ------- complex array of floats The Fourier transform of Jacobian(psi,q) """ self.u, self.v = self.ifft(-self.il*self.ph).real, self.ifft(self.ik*self.ph).real q = self.ifft(self.qh).real return self.ik*self.fft(self.u*q) + self.il*self.fft(self.v*q) def jacobian_psi_c(self): """ Compute the advective term of the passive scalar equation–––the Jacobian between psi and c. Returns ------- complex array of floats The Fourier transform of Jacobian(psi,c) """ self.c = self.ifft(self.ch).real return self.ik*self.fft(self.u*self.c) + self.il*self.fft(self.v*self.c) def _invert(self): """ Calculate the streamfunction given the potential vorticity. """ # invert for psi self.ph = -self.wv2i*(self.qh) # physical space self.p = self.ifft(self.ph) def set_q(self,q): """ Initialize the potential vorticity. Parameters ---------- q: an array of floats of dimension (nx,ny): The potential vorticity in physical space. """ self.q = q self.qh = self.fft(self.q) self._invert() self.Ke = self._calc_ke_qg() def set_c(self,c): """ Initialize the potential vorticity. Parameters ---------- c: an array of floats of dimension (nx,ny): The passive scalar in physical space. """ self.c = c self.ch = self.fft(self.c) self.cvar = self.spec_var(self.ch) def _initialize_fft(self): """ Define the two-dimensional FFT methods. """ # need to fix bug in mkl_fft.irfft2 if self.use_mkl: #import mkl #mkl.set_num_threads(self.nthreads) #import mkl_fft #self.fft = (lambda x : mkl_fft.rfft2(x)) #self.ifft = (lambda x : mkl_fft.irfft2(x)) pass else: pass self.fft = (lambda x : np.fft.rfft2(x)) self.ifft = (lambda x : np.fft.irfft2(x)) def _print_status(self): """ Print out the the model status. Step: integer Number of time steps completed Time: float The elapsed time. P: float The percentage of simulation completed. Ke: float The geostrophic kinetic energy. CFL: float The CFL number. """ self.tc += 1 self.t += self.dt if (self.tc % self.twrite)==0: self.ke = self._calc_ke_qg() self.cfl = self._calc_cfl() self.logger.info('Step: %i, Time: %4.3e, P: %4.3e , Ke: %4.3e, CFL: %4.3f' , self.tc,self.t, self.t/self.tmax, self.ke, self.cfl ) assert self.cfl<self.cflmax, self.logger.error('CFL condition violated') def _calc_ke_qg(self): """ Compute geostrophic kinetic energy, Ke. """ return 0.5*self.spec_var(self.wv*self.ph) def _calc_ens(self): """ Compute geostrophic potential enstrophy. """ return 0.5*self.spec_var(self.qh) def _calc_ep_psi(self): """ Compute dissipation of Ke """ lap2psi = self.ifft(self.wv4*self.ph) lapq = self.ifft(-self.wv2*self.qh) return self.nu4*(self.q*lap2psi).mean() - self.nu*(self.p*lapq).mean()\ + self.mu*(self.p*self.q).mean() def _calc_ep_c(self): """ Compute dissipation of C2 """ return -2*self.nu4c*(self.lapc**2).mean() - 2*self.nu*self.gradC2\ - 2*self.muc*self.C2 def _calc_chi_c(self): """ Compute dissipation of gradC2 """ lap2c = self.ifft(self.wv4*self.ch) return 2*self.nu4c*(lap2c*self.lapc).mean() - 2*self.nu*(self.lapc**2).mean()\ - 2*self.muc*self.gradC2 def _calc_chi_q(self): """" Calculates dissipation of geostrophic potential enstrophy, S. """ return -self.nu4*self.spec_var(self.wv2*self.qh) def spec_var(self, ph): """ Compute variance of a variable `p` from its Fourier transform `ph` """ var_dens = 2. *
np.abs(ph)
numpy.abs
from __future__ import print_function from __future__ import absolute_import from __future__ import division import sys from numpy import array from numpy import eye from numpy import zeros from numpy import float64 from numpy.linalg import cond from scipy.linalg import solve from scipy.linalg import lstsq from compas.numerical import normrow from compas.numerical import normalizerow from compas.geometry import midpoint_point_point_xy __all__ = [ 'update_q_from_qind', 'update_form_from_force' ] EPS = 1 / sys.float_info.epsilon def update_q_from_qind(E, q, dep, ind): """Update the full set of force densities using the values of the independent edges. Parameters ---------- E : sparse csr matrix The equilibrium matrix. q : array The force densities of the edges. dep : list The indices of the dependent edges. ind : list The indices of the independent edges. Returns ------- None The force densities are modified in-place. Examples -------- >>> """ m = E.shape[0] - len(dep) qi = q[ind] Ei = E[:, ind] Ed = E[:, dep] if m > 0: Edt = Ed.transpose() A = Edt.dot(Ed).toarray() b = Edt.dot(Ei).dot(qi) else: A = Ed.toarray() b = Ei.dot(qi) if
cond(A)
numpy.linalg.cond
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den =
N.array([2,2,1])
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # ============================================================================= # Created By : <NAME> # Date Last Modified: Aug 1 2021 # ============================================================================= import numpy as np import matplotlib.pyplot as plt import warnings from astropy.utils.exceptions import AstropyWarning warnings.simplefilter('ignore', category=AstropyWarning) warnings.filterwarnings('ignore') import random import seaborn as sns sns.set_theme() # Function that describes the period distribution of a particular type of # variable star in the LMC def get_period_distribution(type, ogle_dir): # Read in OGLE catalog of variables stars dt = np.dtype([('id', 'U40'), ('I', float), ('V', float), ('P', float), ('eP', float), ('t0', float), ('Iamp', float), ('R21', float), ('phi21', float), ('R31', float), ('phi31', float)]) if type == 'CEP': fo_vars = np.loadtxt(ogle_dir+'ccep/cep1O.dat', dtype=dt) fu_vars = np.loadtxt(ogle_dir+'ccep/cepF.dat', dtype=dt) bins = np.linspace(0.2, 40.2, 401) elif type == 'AC': fo_vars = np.loadtxt(ogle_dir+'acep/acep1O.dat', dtype=dt) fu_vars = np.loadtxt(ogle_dir+'acep/acepF.dat', dtype=dt) bins = np.linspace(0.3, 3.0, 28) elif type == 'T2C': t2c = np.loadtxt(ogle_dir+'t2cep/t2cep.dat', dtype=dt) dt2 = np.dtype([('id', 'U40'), ('type', 'U10')]) t2c2 = np.loadtxt(ogle_dir+'t2cep/ident.dat', dtype=dt2, usecols=(0,1)) fo_vars = t2c[t2c2['type'] == 'BLHer'] fu_vars = t2c[t2c2['type'] == 'WVir'] bins = np.linspace(1.0, 40.0, 79) elif type == 'RRL': fu_vars = np.loadtxt(ogle_dir+'rrl/RRab.dat', dtype=dt) fo_vars = np.loadtxt(ogle_dir+'rrl/RRc.dat', dtype=dt) bins = np.linspace(0.2, 1.0, 81) bins_centered = (bins[:-1] + bins[1:]) / 2 bin_size = bins[1] - bins[0] fig, ax = plt.subplots(1,1) sns.histplot(fu_vars['P'], bins=bins, color='xkcd:rose') sns.histplot(fo_vars['P'], bins=bins, color='xkcd:steel blue') n_fu, _ = np.histogram(fu_vars['P'], bins=bins, density=True) n_fo, _ = np.histogram(fo_vars['P'], bins=bins, density=True) ax.set_xlabel('Period') ax.set_ylabel('Normalized N') plt.title('{} simulated period distribution'.format(type)) plt.show() # probability of each period bin p_prob_fu = n_fu*bin_size p_prob_fo = n_fo*bin_size return bins_centered, p_prob_fo, p_prob_fu # Function that describes the amplitude distribution of a particular type of # variable star in the LMC def get_amp_distribution(type, ogle_dir): # Read in OGLE catalog of variables stars dt = np.dtype([('id', 'U40'), ('I', float), ('V', float), ('P', float), ('eP', float), ('t0', float), ('Iamp', float), ('R21', float), ('phi21', float), ('R31', float), ('phi31', float)]) if type == 'CEP': fo_vars = np.loadtxt(ogle_dir+'ccep/cep1O.dat', dtype=dt) fu_vars = np.loadtxt(ogle_dir+'ccep/cepF.dat', dtype=dt) elif type == 'AC': fo_vars = np.loadtxt(ogle_dir+'acep/acep1O.dat', dtype=dt) fu_vars = np.loadtxt(ogle_dir+'acep/acepF.dat', dtype=dt) elif type == 'T2C': t2c = np.loadtxt(ogle_dir+'t2cep/t2cep.dat', dtype=dt) dt2 = np.dtype([('id', 'U40'), ('type', 'U10')]) t2c2 = np.loadtxt(ogle_dir+'t2cep/ident.dat', dtype=dt2, usecols=(0,1)) fo_vars = t2c[t2c2['type'] == 'BLHer'] fu_vars = t2c[t2c2['type'] == 'WVir'] elif type == 'RRL': fu_vars = np.loadtxt(ogle_dir+'rrl/RRab.dat', dtype=dt) fo_vars = np.loadtxt(ogle_dir+'rrl/RRc.dat', dtype=dt) if (type == 'RRL') | (type == 'CEP'): bins = np.linspace(0.0, 1.0, 101) else: bins = np.linspace(0.0, 1.0, 11) bins_centered = (bins[:-1] + bins[1:]) / 2 bin_size = bins[1] - bins[0] fig, ax = plt.subplots(1,1) sns.histplot(fu_vars['Iamp'], bins=bins, color='xkcd:rose') sns.histplot(fo_vars['Iamp'], bins=bins, color='xkcd:steel blue') n_fu, _ = np.histogram(fu_vars['Iamp'], bins=bins, density=True) n_fo, _ = np.histogram(fo_vars['Iamp'], bins=bins, density=True) ax.set_xlabel('Amplitude') ax.set_ylabel('Normalized N') plt.title('{} simulated amp distribution'.format(type)) plt.show() # probability of each amplitude bin amp_prob_fu = n_fu*bin_size amp_prob_fo = n_fo*bin_size return bins_centered, amp_prob_fo, amp_prob_fu # Generates the parameters of simulated stars def simulate_params(var_types, num_stars, ogle_dir, id_offset=0, seed=0): dt = np.dtype([('id', int), ('type', 'U3'), ('mode', 'U2'), ('period', float), ('mag', float), ('amp', float)]) sim_data = np.zeros(num_stars*2*len(var_types), dtype=dt) for i in range(len(var_types)): type = var_types[i] ### First, pick period bins, prob_fo, prob_fu = get_period_distribution(type, ogle_dir) # pick approximate periods from distribution if seed != 0: np.random.seed(seed) periods_fu = np.random.choice(bins, num_stars, p=prob_fu) periods_fo = np.random.choice(bins, num_stars, p=prob_fo) bin_size = bins[1] - bins[0] periods_fu += np.random.normal(0, bin_size, num_stars) periods_fo += np.random.normal(0, bin_size, num_stars) # put in hard limits for periods of certain types # NOTE: for T2C, fo/fu is actually BL Her/W Virginis if type == 'T2C': for j in range(num_stars): # this causes a bit of weirdness, but ok for now periods_fo[j] = np.max([periods_fo[j], 1.0]) periods_fo[j] = np.min([periods_fo[j], 4.0]) periods_fu[j] = np.max([periods_fu[j], 4.0]) ### Now do amplitudes if type == 'RRL': # Use period-amplitude relation to assign amplitudes # period-amplitude relaiton is defined by OGLE IV LMC RRL PA_coeff_fu = np.array([-1.58, -2.99, -0.08]) PA_coeff_fo = np.array([-4.11, -3.94, -0.66]) PA_fu_sig = 0.14 PA_fo_sig = 0.06 fu_amp = PA_coeff_fu[0]*np.log10(periods_fu)**2 + \ PA_coeff_fu[1]*np.log10(periods_fu) + PA_coeff_fu[2] fo_amp = PA_coeff_fo[0]*np.log10(periods_fo)**2 + \ PA_coeff_fo[1]*np.log10(periods_fo) + PA_coeff_fo[2] fu_amp += np.random.normal(0, PA_fu_sig, num_stars) fo_amp += np.random.normal(0, PA_fo_sig, num_stars) # no other variables follow a period-amplitude relation, so # randomly assign an amplitude else: # Pick amplitudes from probability distribution bins, prob_fo, prob_fu = get_amp_distribution(type, ogle_dir) fu_amp = np.random.choice(bins, num_stars, p=prob_fu) fo_amp = np.random.choice(bins, num_stars, p=prob_fo) # perturb the amplitudes bin_size = bins[1] - bins[0] fu_amp += np.random.normal(0, bin_size, num_stars) fo_amp += np.random.normal(0, bin_size, num_stars) ### Now assign mean magnitudes if type == 'RRL': # Use I band PL relation to assign magnitudes from periods fu_pl_sig = 0.15 fo_pl_sig = 0.16 fo_mag = -2.014*np.log10(periods_fo) + 17.743 fu_mag = -1.889*np.log10(periods_fu) + 18.164 # add some noise fo_mag += np.random.normal(0, fo_pl_sig, num_stars) fu_mag += np.random.normal(0, fu_pl_sig, num_stars) if type == 'CEP': fu_pl_sig = 0.15 fo_pl_sig = 0.16 fo_mag = -3.311*(np.log10(periods_fo)-1.0) + 12.897 fu_mag = -2.912*(np.log10(periods_fu)-1.0) + 13.741 fo_mag += np.random.normal(0, fo_pl_sig, num_stars) fu_mag += np.random.normal(0, fu_pl_sig, num_stars) if type == 'AC': fu_pl_sig = 0.23 fo_pl_sig = 0.16 fo_mag = -3.302*np.log10(periods_fo) + 16.656 fu_mag = -2.962*np.log10(periods_fu) + 17.368 fo_mag += np.random.normal(0, fo_pl_sig, num_stars) fu_mag += np.random.normal(0, fu_pl_sig, num_stars) if type == 'T2C': fo_pl_sig = 0.40 fu_pl_sig = 0.40 fo_mag = -2.033*np.log10(periods_fo) + 18.015 fu_mag = -2.033*np.log10(periods_fu) + 18.015 fo_mag += np.random.normal(0, fo_pl_sig, num_stars) fu_mag += np.random.normal(0, fu_pl_sig, num_stars) start_fo = i*num_stars*2 start_fu = i*num_stars + (i+1)*num_stars stop_fu = (i+1)*num_stars*2 sim_data['id'] = np.arange(num_stars*2*len(var_types))+1+id_offset sim_data['type'][start_fo:stop_fu] = type sim_data['mode'][start_fo:start_fu] = 'FO' sim_data['mode'][start_fu:stop_fu] = 'FU' sim_data['period'][start_fo:start_fu] = periods_fo sim_data['period'][start_fu:stop_fu] = periods_fu sim_data['mag'][start_fo:start_fu] = fo_mag sim_data['mag'][start_fu:stop_fu] = fu_mag sim_data['amp'][start_fo:start_fu] = fo_amp sim_data['amp'][start_fu:stop_fu] = fu_amp return sim_data # Generates the lcv files of simulated stars, which can be run through your # fitting algorithm. # Will create true_params.txt, as well as .fitlc files for each of your simulated # stars. def make_simulated_lcv(sim_data, mjds, filters, exptimes, mu, scatter_array, error_key, error_array, output_dir, period_search_range=[0.1, 3.0], append=False, rrl_cutoff=99, template_file = 'var_templates.txt', seed=0): if seed != 0: np.random.seed(seed) num_stars = len(sim_data['id']) if append == False: params = open(output_dir+'true_params.txt', 'w') params.write('#id type mode temp period t0 mag1 amp1 sig1 mag2 amp2 sig2\n') else: params = open(output_dir+'true_params.txt', 'a') # transform parameters to desired filters # first define shift in zero point according to the approximate distance modulus zp_shift = mu - 18.477 # estimated target distance modulus - LMC distance modulus # Now transform magnitudes into desired filters using period color relations # and amplitudes using amplitude ratios filters_unique = np.unique(filters) num_filters = len(filters_unique) mags = np.zeros((num_stars, num_filters)) amps = np.zeros((num_stars, num_filters)) for i in range(num_filters): # need to add in other colors! filter = filters_unique[i] if filter == 'B': rrl = sim_data['type'] == 'RRL' if len(sim_data['id'][rrl]) > 0: logP = np.log10(sim_data['period'][rrl]) fo = sim_data['mode'][rrl] == 'FO' logP[fo] += 0.127 color = 1.072 + 1.325*logP # CRRP (B-I) color += np.random.normal(0, 0.10, len(logP)) mags[rrl,i] = sim_data['mag'][rrl] + zp_shift + color amps[rrl,i] = sim_data['amp'][rrl]*2.06 # amp ratio from CRRP RRL cep = ~rrl if len(sim_data['id'][cep]) > 0: P = sim_data['period'][cep] fo = sim_data['mode'][cep] == 'FO' logP = np.log10(sim_data['period'][cep]) color = 0.636*logP + 0.685 # Sandage 2009 color += np.random.normal(0, 0.10, len(logP)) mags[cep,i] = sim_data['mag'][cep] + zp_shift + color amps[cep,i] = sim_data['amp'][cep]*2.06 # amp ratio from CRRP RRL if filter == 'V': rrl = sim_data['type'] == 'RRL' if len(sim_data['id'][rrl]) > 0: logP = np.log10(sim_data['period'][rrl]) fo = sim_data['mode'][rrl] == 'FO' logP[fo] += 0.127 color = 0.606 + 0.676*logP # CRRP (V-I) color += np.random.normal(0, 0.05, len(logP)) mags[rrl,i] = sim_data['mag'][rrl] + zp_shift + color amps[rrl,i] = sim_data['amp'][rrl]*1.57 # amp ratio from CRRP RRL cep = ~rrl if len(sim_data['id'][cep]) > 0: P = sim_data['period'][cep] fo = sim_data['mode'][cep] == 'FO' logP = np.log10(sim_data['period'][cep]) color = 0.276*logP + 0.450 # Sandage 2009 - apply to all types of cepheids color += np.random.normal(0, 0.08, len(logP)) mags[cep,i] = sim_data['mag'][cep] + zp_shift + color amps[cep,i] = sim_data['amp'][cep]*1.57 # amp ratio from CRRP RRL # if filter == 'R': if filter == 'I': mags[:,i] = sim_data['mag'] + zp_shift amps[:,i] = sim_data['amp'] # if filter == 'J': # if filter == 'H': # if filter == 'K': # if filter == '[3.6]': # if filter == '[4.5]': # force amplitude to be positive amps = np.abs(amps) fo_temps = np.array([6]) fu_temps = np.array([0, 1, 2,3, 4, 5, 7, 8]) template_number = np.zeros(num_stars) template_number[sim_data['mode'] == 'FO'] = np.random.choice(fo_temps, int(num_stars/2)) template_number[sim_data['mode'] == 'FU'] = np.random.choice(fu_temps, int(num_stars/2)) mjd_range = np.array([np.min(mjds), np.max(mjds)]) t0 = np.random.uniform(low=mjd_range[0], high=mjd_range[1], size=num_stars) # Get template light curves dt = np.dtype([('phase', float), ('ab1', float), ('ab2', float), ('ab3', float), ('ab4', float), ('ab5', float), ('ab6', float), ('c', float), ('ab7', float), ('ab8', float)]) templates = np.loadtxt(template_file, dtype=dt) templates_new = np.c_[templates['ab1'], templates['ab2'], templates['ab3'], templates['ab4'], templates['ab5'], templates['ab6'], templates['c'], templates['ab7'], templates['ab8']] templates_mean = np.mean(templates_new, axis=0) for i in range(num_stars): ph = templates['phase']# + np.random.uniform() #ncycles = 50 ### make smarter # calculate how many pulsation cycles we need for this star mjd_window = mjd_range[1] - mjd_range[0] ncycles = int(np.ceil(mjd_window/sim_data['period'][i]))*2 mags_all = np.zeros(len(mjds)) errs_all = np.zeros(len(mjds)) xx = int(template_number[i]) lcv_scatter = np.zeros(num_filters) for j in range(num_filters): # build template with correct period, amp, mean mag mag_temp = (templates_new[:,xx]-templates_mean[xx])*amps[i,j] + mags[i,j] t_one_cycle = ph*sim_data['period'][i] + t0[i] t_repeated = [] for k in np.arange(0,ncycles): t_repeated = np.append(t_repeated, t_one_cycle+(k-ncycles/2)*sim_data['period'][i]) mag_repeated = np.tile(mag_temp, ncycles) # sample template at proper mjds mjds_in_filter = mjds[filters == filters_unique[j]] num_obs_in_filter = len(mjds_in_filter) mag_sim = np.interp(mjds_in_filter, t_repeated, mag_repeated) # add in scatter to light curve # scatter is a function of magnitude, as described in inputs # to this functiion if scatter_array.ndim == 2: lcv_scatter[j] = np.random.normal(scatter_array[j,0], scatter_array[j,1]) lcv_scatter[j] = np.abs(lcv_scatter[j]) elif scatter_array.ndim == 3: temp_scatter = np.interp(mags[i,j], scatter_array[j,:,0], scatter_array[j,:,1]) temp_sig = np.interp(mags[i,j], scatter_array[j,:,0], scatter_array[j,:,2]) lcv_scatter[j] = np.random.normal(temp_scatter, temp_sig, 1) lcv_scatter[j] = np.abs(lcv_scatter[j]) mag_sim += np.random.normal(0, lcv_scatter[j], num_obs_in_filter) mags_all[filters == filters_unique[j]] = mag_sim # assign photometric uncertainty to each point # photometric uncertainty is also a function of magnitude if error_array.ndim == 3: err_sim = np.zeros(len(mag_sim)) for k in range(num_obs_in_filter): this_exptime = exptimes[filters == filters_unique[j]][k] # find right row in error_array for this filter and exptime row = (error_key['filter'] == filters_unique[j]) & \ (error_key['exptime'] == this_exptime) temp_err = np.interp(mag_sim[k], error_array[row,:,0][0], error_array[row,:,1][0]) temp_sig = np.interp(mag_sim[k], error_array[row,:,0][0], error_array[row,:,2][0]) # put in safeguard to avoid negative numbers err_sim[k] = np.random.normal(temp_err, temp_sig, 1) err_sim[k] = np.abs(err_sim[k]) # put in error floor so we don't get unrealisticaly low numbers if err_sim[k] < 0.005: err_sim[k] = 0.005 elif error_array.ndim == 2: err_sim = np.random.normal(error_array[j,0], error_array[j,1], len(mag_sim)) err_sim = np.abs(err_sim) errs_all[filters == filters_unique[j]] = err_sim # save simulated light curve into file filters_int = np.zeros(len(filters)) for j in range(num_filters): filters_int[filters == filters_unique[j]] = j data_save = np.c_[filters_int, mjds, mags_all, errs_all] f = open(output_dir+'sim_{}.fitlc'.format(sim_data['id'][i]), 'w') if rrl_cutoff < 99: if mags[i,-1] > rrl_cutoff: f.write('amoeba\nperst=0.1\npered=1.0\n') else: f.write('amoeba\nperst={}\npered={}\n'.format(period_search_range[0], period_search_range[1])) else: f.write('amoeba\nperst={}\npered={}\n'.format(period_search_range[0], period_search_range[1])) np.savetxt(f, data_save, fmt='%2i %12.6f %7.4f %6.4f') f.close() format_1 = '{:4} {:4} {:4} {:4} {:8.5f} {:10.4f}' string_1 = format_1.format(int(sim_data['id'][i]), sim_data['type'][i], sim_data['mode'][i], int(template_number[i]), sim_data['period'][i], t0[i]) string_2 = '' for j in range(num_filters): format_2 = ' {:6.3f} {:4.2f} {:4.2f}' string_2 += format_2.format(mags[i,j], amps[i,j], lcv_scatter[j]) line = string_1 + string_2 + '\n' params.write(line) params.close() def make_simulated_lcv_single_snr(sim_data, mjds, filters, exptimes, mu, scatter_mean_snr, scatter_std_snr, error_mean_snr, error_std_snr, output_dir, period_search_range=[0.1, 1.0], append=False, rrl_cutoff=99, template_file='var_templates.txt'): num_stars = len(sim_data['id']) if append == False: params = open(output_dir+'true_params.txt', 'w') params.write('#id type mode temp period t0 mag1 amp1 sig1 mag2 amp2 sig2\n') else: params = open(output_dir+'true_params.txt', 'a') # transform parameters to desired filters # first transform from I band LMC magnitude to I band target magnitude zp_shift = mu - 18.477 # estimated target distance modulus - LMC distance modulus # Now transform magnitudes into desired filters using period color relations # and amplitudes using amplitude ratios filters_unique = np.unique(filters) num_filters = len(filters_unique) mags = np.zeros((num_stars, num_filters)) amps = np.zeros((num_stars, num_filters)) for i in range(num_filters): # need to add in other colors! filter = filters_unique[i] if filter == 'B': rrl = sim_data['type'] == 'RRL' if len(sim_data['id'][rrl]) > 0: logP = np.log10(sim_data['period'][rrl]) fo = sim_data['mode'][rrl] == 'FO' logP[fo] += 0.127 color = 1.072 + 1.325*logP # CRRP (B-I) color += np.random.normal(0, 0.10, len(logP)) mags[rrl,i] = sim_data['mag'][rrl] + zp_shift + color amps[rrl,i] = sim_data['amp'][rrl]*2.06 cep = ~rrl if len(sim_data['id'][cep]) > 0: P = sim_data['period'][cep] fo = sim_data['mode'][cep] == 'FO' logP = np.log10(sim_data['period'][cep]) color = 0.636*logP + 0.685 # Sandage 2009 color += np.random.normal(0, 0.10, len(logP)) mags[cep,i] = sim_data['mag'][cep] + zp_shift + color amps[cep,i] = sim_data['amp'][cep]*2.06 if filter == 'V': rrl = sim_data['type'] == 'RRL' if len(sim_data['id'][rrl]) > 0: logP = np.log10(sim_data['period'][rrl]) fo = sim_data['mode'][rrl] == 'FO' logP[fo] += 0.127 color = 0.606 + 0.676*logP # CRRP (V-I) ### something is off here color += np.random.normal(0, 0.05, len(logP)) mags[rrl,i] = sim_data['mag'][rrl] + zp_shift + color amps[rrl,i] = sim_data['amp'][rrl]*1.57 cep = ~rrl if len(sim_data['id'][cep]) > 0: P = sim_data['period'][cep] fo = sim_data['mode'][cep] == 'FO' logP = np.log10(sim_data['period'][cep]) color = 0.276*logP + 0.450 # Sandage 2009 - apply to all types of cepheids color += np.random.normal(0, 0.08, len(logP)) mags[cep,i] = sim_data['mag'][cep] + zp_shift + color amps[cep,i] = sim_data['amp'][cep]*1.57 # if filter == 'R': if filter == 'I': mags[:,i] = sim_data['mag'] + zp_shift amps[:,i] = sim_data['amp'] # if filter == 'J': # if filter == 'H': # if filter == 'K': # if filter == '[3.6]': # if filter == '[4.5]': # force amplitude to be positive amps = np.abs(amps) fo_temps = np.array([6]) fu_temps = np.array([0, 1, 2,3, 4, 5, 7, 8]) template_number = np.zeros(num_stars) template_number[sim_data['mode'] == 'FO'] = np.random.choice(fo_temps, int(num_stars/2)) template_number[sim_data['mode'] == 'FU'] = np.random.choice(fu_temps, int(num_stars/2)) mjd_range = np.array([np.min(mjds), np.max(mjds)]) t0 = np.random.uniform(low=mjd_range[0], high=mjd_range[1], size=num_stars) # Get template light curves dt = np.dtype([('phase', float), ('ab1', float), ('ab2', float), ('ab3', float), ('ab4', float), ('ab5', float), ('ab6', float), ('c', float), ('ab7', float), ('ab8', float)]) templates = np.loadtxt(template_file, dtype=dt) templates_new = np.c_[templates['ab1'], templates['ab2'], templates['ab3'], templates['ab4'], templates['ab5'], templates['ab6'], templates['c'], templates['ab7'], templates['ab8']] templates_mean = np.mean(templates_new, axis=0) for i in range(num_stars): ph = templates['phase']# + np.random.uniform() #ncycles = 50 ### make smarter # calculate how many pulsation cycles we need for this star mjd_window = mjd_range[1] - mjd_range[0] ncycles = int(np.ceil(mjd_window/sim_data['period'][i]))*2 mags_all = np.zeros(len(mjds)) errs_all = np.zeros(len(mjds)) xx = int(template_number[i]) lcv_scatter = np.zeros(num_filters) for j in range(num_filters): # build template with correct period, amp, mean mag mag_temp = (templates_new[:,xx]-templates_mean[xx])*amps[i,j] + mags[i,j] t_one_cycle = ph*sim_data['period'][i] + t0[i] t_repeated = [] for k in np.arange(0,ncycles): t_repeated =
np.append(t_repeated, t_one_cycle+(k-ncycles/2)*sim_data['period'][i])
numpy.append
import argparse import cv2 import json import numpy as np import os import pickle import torch from argparse import Namespace from scipy.special import softmax from sklearn.externals import joblib from pyquaternion import Quaternion from tqdm import tqdm from network import CameraBranch class Camera_Branch_Inference(): def __init__(self, cfg, device): self.cfg = cfg # img preprocess self.img_input_shape = tuple([int(_) for _ in cfg.img_resize.split('x')]) self.img_mean = np.load(cfg.img_mean) # device self.device = device # Model self.model = CameraBranch(cfg) self.model = torch.nn.DataParallel(self.model) self.model = self.model.to(device) self.model.load_state_dict(torch.load(cfg.model_weight)) self.model = self.model.eval() self.model = self.model.to(device) # bin -> vectors self.kmeans_trans = joblib.load(cfg.kmeans_trans_path) self.kmeans_rots = joblib.load(cfg.kmeans_rots_path) def inference(self, img1_path, img2_path): img1 = cv2.imread(img1_path) img2 = cv2.imread(img2_path) img1 = cv2.resize(img1, self.img_input_shape) - self.img_mean img2 = cv2.resize(img2, self.img_input_shape) - self.img_mean img1 = np.transpose(img1, (2, 0, 1)) img2 =
np.transpose(img2, (2, 0, 1))
numpy.transpose
from typing import Union import pandas as pd import numpy as np from pandas import Series, DataFrame from pandas.core.arrays import ExtensionArray from sklearn import preprocessing import time def convert_date_2_timestamp(date_str): time_array = time.strptime(date_str, "%Y%m%d") return int(time.mktime(time_array)); def normalization(data): _range = np.max(data) -
np.min(data)
numpy.min
''' All DUT alignment functions in space and time are listed here plus additional alignment check functions''' from __future__ import division import logging import sys import os from collections import Iterable import math import tables as tb import numpy as np import scipy from matplotlib.backends.backend_pdf import PdfPages from tqdm import tqdm from beam_telescope_analysis.telescope.telescope import Telescope from beam_telescope_analysis.tools import analysis_utils from beam_telescope_analysis.tools import plot_utils from beam_telescope_analysis.tools import geometry_utils from beam_telescope_analysis.tools import data_selection from beam_telescope_analysis.track_analysis import find_tracks, fit_tracks, line_fit_3d, _fit_tracks_kalman_loop from beam_telescope_analysis.result_analysis import calculate_residuals, histogram_track_angle, get_angles from beam_telescope_analysis.tools.storage_utils import save_arguments default_alignment_parameters = ["translation_x", "translation_y", "translation_z", "rotation_alpha", "rotation_beta", "rotation_gamma"] default_cluster_shapes = [1, 3, 5, 13, 14, 7, 11, 15] kfa_alignment_descr = np.dtype([('translation_x', np.float64), ('translation_y', np.float64), ('translation_z', np.float64), ('rotation_alpha', np.float64), ('rotation_beta', np.float64), ('rotation_gamma', np.float64), ('translation_x_err', np.float64), ('translation_y_err', np.float64), ('translation_z_err', np.float64), ('rotation_alpha_err', np.float64), ('rotation_beta_err', np.float64), ('rotation_gamma_err', np.float64), ('translation_x_delta', np.float64), ('translation_y_delta', np.float64), ('translation_z_delta', np.float64), ('rotation_alpha_delta', np.float64), ('rotation_beta_delta', np.float64), ('rotation_gamma_delta', np.float64), ('annealing_factor', np.float64)]) @save_arguments def apply_alignment(telescope_configuration, input_file, output_file=None, local_to_global=True, align_to_beam=False, chunk_size=1000000): '''Convert local to global coordinates and vice versa. Note: ----- This function cannot be easily made faster with multiprocessing since the computation function (apply_alignment_to_chunk) does not contribute significantly to the runtime (< 20 %), but the copy overhead for not shared memory needed for multipgrocessing is higher. Also the hard drive IO can be limiting (30 Mb/s read, 20 Mb/s write to the same disk) Parameters ---------- telescope_configuration : string Filename of the telescope configuration file. input_file : string Filename of the input file (merged or tracks file). output_file : string Filename of the output file with the converted coordinates (merged or tracks file). local_to_global : bool If True, convert from local to global coordinates. align_to_beam : bool If True, use telescope alignment to align to the beam (beam along z axis). chunk_size : uint Chunk size of the data when reading from file. Returns ------- output_file : string Filename of the output file with new coordinates. ''' telescope = Telescope(telescope_configuration) n_duts = len(telescope) logging.info('=== Apply alignment to %d DUTs ===', n_duts) if output_file is None: output_file = os.path.splitext(input_file)[0] + ('_global_coordinates.h5' if local_to_global else '_local_coordinates.h5') def convert_data(dut, dut_index, node, conv, data): if isinstance(dut, Telescope): data['x_dut_%d' % dut_index], data['y_dut_%d' % dut_index], data['z_dut_%d' % dut_index] = conv( x=data['x_dut_%d' % dut_index], y=data['y_dut_%d' % dut_index], z=data['z_dut_%d' % dut_index], translation_x=dut.translation_x, translation_y=dut.translation_y, translation_z=dut.translation_z, rotation_alpha=dut.rotation_alpha, rotation_beta=dut.rotation_beta, rotation_gamma=dut.rotation_gamma) else: data['x_dut_%d' % dut_index], data['y_dut_%d' % dut_index], data['z_dut_%d' % dut_index] = conv( x=data['x_dut_%d' % dut_index], y=data['y_dut_%d' % dut_index], z=data['z_dut_%d' % dut_index]) if "Tracks" in node.name: format_strings = ['offset_{dimension}_dut_{dut_index}'] if "DUT%d" % dut_index in node.name: format_strings.extend(['offset_{dimension}']) for format_string in format_strings: if format_string.format(dimension='x', dut_index=dut_index) in node.dtype.names: data[format_string.format(dimension='x', dut_index=dut_index)], data[format_string.format(dimension='y', dut_index=dut_index)], data[format_string.format(dimension='z', dut_index=dut_index)] = conv( x=data[format_string.format(dimension='x', dut_index=dut_index)], y=data[format_string.format(dimension='y', dut_index=dut_index)], z=data[format_string.format(dimension='z', dut_index=dut_index)], translation_x=dut.translation_x, translation_y=dut.translation_y, translation_z=dut.translation_z, rotation_alpha=dut.rotation_alpha, rotation_beta=dut.rotation_beta, rotation_gamma=dut.rotation_gamma) format_strings = ['slope_{dimension}_dut_{dut_index}'] if "DUT%d" % dut_index in node.name: format_strings.extend(['slope_{dimension}']) for format_string in format_strings: if format_string.format(dimension='x', dut_index=dut_index) in node.dtype.names: data[format_string.format(dimension='x', dut_index=dut_index)], data[format_string.format(dimension='y', dut_index=dut_index)], data[format_string.format(dimension='z', dut_index=dut_index)] = conv( x=data[format_string.format(dimension='x', dut_index=dut_index)], y=data[format_string.format(dimension='y', dut_index=dut_index)], z=data[format_string.format(dimension='z', dut_index=dut_index)], # no translation for the slopes translation_x=0.0, translation_y=0.0, translation_z=0.0, rotation_alpha=dut.rotation_alpha, rotation_beta=dut.rotation_beta, rotation_gamma=dut.rotation_gamma) format_strings = ['{dimension}_err_dut_{dut_index}'] for format_string in format_strings: if format_string.format(dimension='x', dut_index=dut_index) in node.dtype.names: data[format_string.format(dimension='x', dut_index=dut_index)], data[format_string.format(dimension='y', dut_index=dut_index)], data[format_string.format(dimension='z', dut_index=dut_index)] = np.abs(conv( x=data[format_string.format(dimension='x', dut_index=dut_index)], y=data[format_string.format(dimension='y', dut_index=dut_index)], z=data[format_string.format(dimension='z', dut_index=dut_index)], # no translation for the errors translation_x=0.0, translation_y=0.0, translation_z=0.0, rotation_alpha=dut.rotation_alpha, rotation_beta=dut.rotation_beta, rotation_gamma=dut.rotation_gamma)) # Looper over the hits of all DUTs of all hit tables in chunks and apply the alignment with tb.open_file(input_file, mode='r') as in_file_h5: with tb.open_file(output_file, mode='w') as out_file_h5: for node in in_file_h5.root: # Loop over potential hit tables in data file logging.info('== Apply alignment to node %s ==', node.name) hits_aligned_table = out_file_h5.create_table( where=out_file_h5.root, name=node.name, description=node.dtype, title=node.title, filters=tb.Filters( complib='blosc', complevel=5, fletcher32=False)) pbar = tqdm(total=node.shape[0], ncols=80) for data_chunk, index in analysis_utils.data_aligned_at_events(node, chunk_size=chunk_size): # Loop over the hits for dut_index, dut in enumerate(telescope): # Loop over the DUTs if local_to_global: conv = dut.local_to_global_position else: conv = dut.global_to_local_position if align_to_beam and not local_to_global: convert_data(dut=telescope, dut_index=dut_index, node=node, conv=conv, data=data_chunk) convert_data(dut=dut, dut_index=dut_index, node=node, conv=conv, data=data_chunk) if align_to_beam and local_to_global: convert_data(dut=telescope, dut_index=dut_index, node=node, conv=conv, data=data_chunk) hits_aligned_table.append(data_chunk) pbar.update(data_chunk.shape[0]) pbar.close() return output_file def prealign(telescope_configuration, input_correlation_file, output_telescope_configuration=None, select_duts=None, select_reference_dut=0, reduce_background=True, use_location=False, plot=True): '''Deduce a pre-alignment from the correlations, by fitting the correlations with a straight line (gives offset, slope, but no tild angles). The user can define cuts on the fit error and straight line offset in an interactive way. Parameters ---------- telescope_configuration : string Filename of the telescope configuration file. input_correlation_file : string Filename of the input correlation file. output_telescope_configuration : string Filename of the output telescope configuration file. select_duts : iterable List of duts for which the prealignment is done. If None, prealignment is done for all duts. select_reference_dut : uint DUT index of the reference plane. Default is DUT 0. reduce_background : bool If True, use correlation histograms with reduced background (by applying SVD method to the correlation matrix). plot : bool If True, create additional output plots. ''' telescope = Telescope(telescope_configuration) n_duts = len(telescope) logging.info('=== Pre-alignment of %d DUTs ===' % n_duts) if output_telescope_configuration is None: output_telescope_configuration = os.path.splitext(telescope_configuration)[0] + '_prealigned.yaml' elif output_telescope_configuration == telescope_configuration: raise ValueError('Output telescope configuration file must be different from input telescope configuration file.') # remove reference DUT from list of all DUTs if select_duts is None: select_duts = list(set(range(n_duts)) - set([select_reference_dut])) else: select_duts = list(set(select_duts) - set([select_reference_dut])) if plot is True: output_pdf = PdfPages(os.path.splitext(input_correlation_file)[0] + '_prealigned.pdf', keep_empty=False) else: output_pdf = None with tb.open_file(input_correlation_file, mode="r") as in_file_h5: # loop over DUTs for pre-alignment for actual_dut_index in select_duts: actual_dut = telescope[actual_dut_index] logging.info("== Pre-aligning %s ==" % actual_dut.name) x_global_pixel, y_global_pixel, z_global_pixel = [], [], [] for column in range(1, actual_dut.n_columns + 1): global_positions = actual_dut.index_to_global_position( column=[column] * actual_dut.n_rows, row=range(1, actual_dut.n_rows + 1)) x_global_pixel = np.hstack([x_global_pixel, global_positions[0]]) y_global_pixel = np.hstack([y_global_pixel, global_positions[1]]) z_global_pixel = np.hstack([z_global_pixel, global_positions[2]]) # calculate rotation matrix for later rotation corrections rotation_alpha = actual_dut.rotation_alpha rotation_beta = actual_dut.rotation_beta rotation_gamma = actual_dut.rotation_gamma R = geometry_utils.rotation_matrix( alpha=rotation_alpha, beta=rotation_beta, gamma=rotation_gamma) select = None # loop over x- and y-axis for x_direction in [True, False]: if reduce_background: node = in_file_h5.get_node(in_file_h5.root, 'Correlation_%s_%d_%d_reduced_background' % ('x' if x_direction else 'y', select_reference_dut, actual_dut_index)) else: node = in_file_h5.get_node(in_file_h5.root, 'Correlation_%s_%d_%d' % ('x' if x_direction else 'y', select_reference_dut, actual_dut_index)) dut_name = actual_dut.name ref_name = telescope[select_reference_dut].name pixel_size = actual_dut.column_size if x_direction else actual_dut.row_size logging.info('Pre-aligning data from %s', node.name) bin_size = node.attrs.resolution ref_hist_extent = node.attrs.ref_hist_extent ref_hist_size = (ref_hist_extent[1] - ref_hist_extent[0]) dut_hist_extent = node.attrs.dut_hist_extent dut_hist_size = (dut_hist_extent[1] - dut_hist_extent[0]) # retrieve data data = node[:] # Calculate the positions on the x axis dut_pos = np.linspace(start=dut_hist_extent[0] + bin_size / 2.0, stop=dut_hist_extent[1] - bin_size / 2.0, num=data.shape[0], endpoint=True) # calculate maximum per column max_select = np.argmax(data, axis=1) hough_data = np.zeros_like(data) hough_data[np.arange(data.shape[0]), max_select] = 1 # transpose for correct angle hough_data = hough_data.T accumulator, theta, rho, theta_edges, rho_edges = analysis_utils.hough_transform(hough_data, theta_res=0.1, rho_res=1.0, return_edges=True) def largest_indices(ary, n): ''' Returns the n largest indices from a numpy array. https://stackoverflow.com/questions/6910641/how-to-get-indices-of-n-maximum-values-in-a-numpy-array ''' flat = ary.flatten() indices = np.argpartition(flat, -n)[-n:] indices = indices[np.argsort(-flat[indices])] return np.unravel_index(indices, ary.shape) # finding correlation # check for non-zero values to improve speed count_nonzero = np.count_nonzero(accumulator) indices = np.vstack(largest_indices(accumulator, count_nonzero)).T for index in indices: rho_idx, th_idx = index[0], index[1] rho_val, theta_val = rho[rho_idx], theta[th_idx] slope_idx, offset_idx = -np.cos(theta_val) / np.sin(theta_val), rho_val / np.sin(theta_val) slope = slope_idx offset = offset_idx * bin_size + ref_hist_extent[0] + 0.5 * bin_size # check for proper slope if np.isclose(slope, 1.0, rtol=0.0, atol=0.1) or np.isclose(slope, -1.0, rtol=0.0, atol=0.1): break else: raise RuntimeError('Cannot find %s correlation between %s and %s' % ("X" if x_direction else "Y", telescope[select_reference_dut].name, actual_dut.name)) # offset in the center of the pixel matrix offset_center = offset + slope * (0.5 * dut_hist_size - 0.5 * bin_size) # calculate offset for local frame offset_plot = offset - slope * dut_pos[0] # find loactions where the max. correlation is close to expected value x_list = find_inliers( x=dut_pos[max_select != 0], y=(max_select[max_select != 0] * bin_size - ref_hist_size / 2.0 + bin_size / 2.0), m=slope, c=offset_plot, threshold=pixel_size * np.sqrt(12) * 2) # 1-dimensional clustering of calculated locations kernel = scipy.stats.gaussian_kde(x_list) densities = kernel(dut_pos) max_density = np.max(densities) # calculate indices where value is close to max. density indices = np.where(densities > max_density * 0.5) # get locations from indices x_list = dut_pos[indices] # calculate range where correlation exists dut_pos_limit = [np.min(x_list), np.max(x_list)] plot_utils.plot_hough( dut_pos=dut_pos, data=hough_data, accumulator=accumulator, offset=offset_plot, slope=slope, dut_pos_limit=dut_pos_limit, theta_edges=theta_edges, rho_edges=rho_edges, ref_hist_extent=ref_hist_extent, dut_hist_extent=dut_hist_extent, ref_name=ref_name, dut_name=dut_name, x_direction=x_direction, reduce_background=reduce_background, output_pdf=output_pdf) if select is None: select = np.ones_like(x_global_pixel, dtype=np.bool) if x_direction: select &= (x_global_pixel >= dut_pos_limit[0]) & (x_global_pixel <= dut_pos_limit[1]) if slope < 0.0: R = np.linalg.multi_dot([geometry_utils.rotation_matrix_y(beta=np.pi), R]) translation_x = offset_center else: select &= (y_global_pixel >= dut_pos_limit[0]) & (y_global_pixel <= dut_pos_limit[1]) if slope < 0.0: R = np.linalg.multi_dot([geometry_utils.rotation_matrix_x(alpha=np.pi), R]) translation_y = offset_center # Setting new parameters # Only use new limits if they are narrower # Convert from global to local coordinates local_coordinates = actual_dut.global_to_local_position( x=x_global_pixel[select], y=y_global_pixel[select], z=z_global_pixel[select]) if actual_dut.x_limit is None: actual_dut.x_limit = (min(local_coordinates[0]), max(local_coordinates[0])) else: actual_dut.x_limit = (max((min(local_coordinates[0]), actual_dut.x_limit[0])), min((max(local_coordinates[0]), actual_dut.x_limit[1]))) if actual_dut.y_limit is None: actual_dut.y_limit = (min(local_coordinates[1]), max(local_coordinates[1])) else: actual_dut.y_limit = (max((min(local_coordinates[1]), actual_dut.y_limit[0])), min((max(local_coordinates[1]), actual_dut.y_limit[1]))) # Setting geometry actual_dut.translation_x = translation_x actual_dut.translation_y = translation_y rotation_alpha, rotation_beta, rotation_gamma = geometry_utils.euler_angles(R=R) actual_dut.rotation_alpha = rotation_alpha actual_dut.rotation_beta = rotation_beta actual_dut.rotation_gamma = rotation_gamma telescope.save_configuration(configuration_file=output_telescope_configuration) if output_pdf is not None: output_pdf.close() return output_telescope_configuration def find_inliers(x, y, m, c, threshold=1.0): ''' Find inliers. Parameters ---------- x : list X coordinates. y : list Y coordinates. threshold : float Maximum distance of the data points for inlier selection. Returns ------- x_list : array X coordianates of inliers. ''' # calculate distance to reference hit dist = np.abs(m * x + c - y) sel = dist < threshold return x[sel] def find_line_model(points): """ find a line model for the given points :param points selected points for model fitting :return line model """ # [WARNING] vertical and horizontal lines should be treated differently # here we just add some noise to avoid division by zero # find a line model for these points m = (points[1, 1] - points[0, 1]) / (points[1, 0] - points[0, 0] + sys.float_info.epsilon) # slope (gradient) of the line c = points[1, 1] - m * points[1, 0] # y-intercept of the line return m, c def find_intercept_point(m, c, x0, y0): """ find an intercept point of the line model with a normal from point (x0,y0) to it :param m slope of the line model :param c y-intercept of the line model :param x0 point's x coordinate :param y0 point's y coordinate :return intercept point """ # intersection point with the model x = (x0 + m * y0 - m * c) / (1 + m**2) y = (m * x0 + (m**2) * y0 - (m**2) * c) / (1 + m**2) + c return x, y def find_ransac(x, y, iterations=100, threshold=1.0, ratio=0.5): ''' RANSAC implementation Note ---- Implementation from <NAME>, https://salzis.wordpress.com/2014/06/10/robust-linear-model-estimation-using-ransac-python-implementation/ Parameters ---------- x : list X coordinates. y : list Y coordinates. iterations : int Maximum number of iterations. threshold : float Maximum distance of the data points for inlier selection. ratio : float Break condition for inliers. Returns ------- model_ratio : float Ration of inliers to outliers. model_m : float Slope. model_c : float Offset. model_x_list : array X coordianates of inliers. model_y_list : array Y coordianates of inliers. ''' data = np.column_stack((x, y)) n_samples = x.shape[0] model_ratio = 0.0 model_m = 0.0 model_c = 0.0 # perform RANSAC iterations for it in range(iterations): all_indices = np.arange(n_samples) np.random.shuffle(all_indices) indices_1 = all_indices[:2] # pick up two random points indices_2 = all_indices[2:] maybe_points = data[indices_1, :] test_points = data[indices_2, :] # find a line model for these points m, c = find_line_model(maybe_points) x_list = [] y_list = [] num = 0 # find orthogonal lines to the model for all testing points for ind in range(test_points.shape[0]): x0 = test_points[ind, 0] y0 = test_points[ind, 1] # find an intercept point of the model with a normal from point (x0,y0) x1, y1 = find_intercept_point(m, c, x0, y0) # distance from point to the model dist = math.sqrt((x1 - x0)**2 + (y1 - y0)**2) # check whether it's an inlier or not if dist < threshold: x_list.append(x0) y_list.append(y0) num += 1 # in case a new model is better - cache it if num / float(n_samples) > model_ratio: model_ratio = num / float(n_samples) model_m = m model_c = c model_x_list = np.array(x_list) model_y_list = np.array(y_list) # we are done in case we have enough inliers if num > n_samples * ratio: break return model_ratio, model_m, model_c, model_x_list, model_y_list def align(telescope_configuration, input_merged_file, output_telescope_configuration=None, select_duts=None, alignment_parameters=None, select_telescope_duts=None, select_extrapolation_duts=None, select_fit_duts=None, select_hit_duts=None, max_iterations=3, max_events=None, fit_method='fit', beam_energy=None, particle_mass=None, scattering_planes=None, track_chi2=10.0, cluster_shapes=None, quality_distances=(250.0, 250.0), isolation_distances=(500.0, 500.0), use_limits=True, plot=True, chunk_size=1000000): ''' This function does an alignment of the DUTs and sets translation and rotation values for all DUTs. The reference DUT defines the global coordinate system position at 0, 0, 0 and should be well in the beam and not heavily rotated. To solve the chicken-and-egg problem that a good dut alignment needs hits belonging to one track, but good track finding needs a good dut alignment this function work only on already prealigned hits belonging to one track. Thus this function can be called only after track finding. These steps are done 1. Take the found tracks and revert the pre-alignment 2. Take the track hits belonging to one track and fit tracks for all DUTs 3. Calculate the residuals for each DUT 4. Deduce rotations from the residuals and apply them to the hits 5. Deduce the translation of each plane 6. Store and apply the new alignment repeat step 3 - 6 until the total residual does not decrease (RMS_total = sqrt(RMS_x_1^2 + RMS_y_1^2 + RMS_x_2^2 + RMS_y_2^2 + ...)) Parameters ---------- telescope_configuration : string Filename of the telescope configuration file. input_merged_file : string Filename of the input merged file. output_telescope_configuration : string Filename of the output telescope configuration file. select_duts : iterable or iterable of iterable The combination of duts that are algined at once. One should always align the high resolution planes first. E.g. for a telesope (first and last 3 planes) with 2 devices in the center (3, 4): select_duts=[[0, 1, 2, 5, 6, 7], # align the telescope planes first [4], # align first DUT [3]] # align second DUT alignment_parameters : list of lists of strings The list of alignment parameters for each align_dut. Valid parameters: - translation_x: horizontal axis - translation_y: vertical axis - translation_z: beam axis - rotation_alpha: rotation around x-axis - rotation_beta: rotation around y-axis - rotation_gamma: rotation around z-axis (beam axis) If None, all paramters will be selected. select_telescope_duts : iterable The given DUTs will be used to align the telescope along the z-axis. Usually the coordinates of these DUTs are well specified. At least 2 DUTs need to be specified. The z-position of the selected DUTs will not be changed by default. select_extrapolation_duts : list The given DUTs will be used for track extrapolation for improving track finding efficiency. In some rare cases, removing DUTs with a coarse resolution might improve track finding efficiency. If None, select all DUTs. If list is empty or has a single entry, disable extrapolation (at least 2 DUTs are required for extrapolation to work). select_fit_duts : iterable or iterable of iterable Defines for each select_duts combination wich devices to use in the track fit. E.g. To use only the telescope planes (first and last 3 planes) but not the 2 center devices select_fit_duts=[0, 1, 2, 5, 6, 7] select_hit_duts : iterable or iterable of iterable Defines for each select_duts combination wich devices must have a hit to use the track for fitting. The hit does not have to be used in the fit itself! This is useful for time reference planes. E.g. To use telescope planes (first and last 3 planes) + time reference plane (3) select_hit_duts = [0, 1, 2, 4, 5, 6, 7] max_iterations : uint Maximum number of iterations of calc residuals, apply rotation refit loop until constant result is expected. Usually the procedure converges rather fast (< 5 iterations). Non-telescope DUTs usually require 2 itearations. max_events: uint Radomly select max_events for alignment. If None, use all events, which might slow down the alignment. fit_method : string Available methods are 'kalman', which uses a Kalman Filter for track calculation, and 'fit', which uses a simple straight line fit for track calculation. beam_energy : float Energy of the beam in MeV, e.g., 2500.0 MeV for ELSA beam. Only used for the Kalman Filter. particle_mass : float Mass of the particle in MeV, e.g., 0.511 MeV for electrons. Only used for the Kalman Filter. scattering_planes : list or dict Specifies additional scattering planes in case of DUTs which are not used or additional material in the way of the tracks. The list must contain dictionaries containing the following keys: material_budget: material budget of the scattering plane translation_x/translation_y/translation_z: x/y/z position of the plane (in um) rotation_alpha/rotation_beta/rotation_gamma: alpha/beta/gamma angle of scattering plane (in radians) The material budget is defined as the thickness devided by the radiation length. If scattering_planes is None, no scattering plane will be added. track_chi2 : float or list Setting the limit on the track chi^2. If None or 0.0, no cut will be applied. A smaller value reduces the number of tracks for the alignment. A large value increases the number of tracks but at the cost of alignment efficiency bacause of potentially bad tracks. A good start value is 5.0 to 10.0 for high energy beams and 15.0 to 50.0 for low energy beams. cluster_shapes : iterable or iterable of iterables List of cluster shapes (unsigned integer) for each DUT. Only the selected cluster shapes will be used for the alignment. Cluster shapes have impact on precision of the alignment. Larger clusters and certain cluster shapes can have a significant uncertainty for the hit position. If None, use default cluster shapes [1, 3, 5, 13, 14, 7, 11, 15], i.e. 1x1, 2x1, 1x2, 3-pixel cluster, 4-pixel cluster. If empty list, all cluster sizes will be used. The cluster shape can be calculated with the help of beam_telescope_analysis.tools.analysis_utils.calculate_cluster_array/calculate_cluster_shape. quality_distances : 2-tuple or list of 2-tuples X and y distance (in um) for each DUT to calculate the quality flag. The selected track and corresponding hit must have a smaller distance to have the quality flag to be set to 1. The purpose of quality_distances is to find good tracks for the alignment. A good start value is 1-2x the pixel pitch for large pixels and high-energy beams and 5-10x the pixel pitch for small pixels and low-energy beams. A too small value will remove good tracks, a too large value will allow bad tracks to contribute to the alignment. If None, set distance to infinite. isolation_distances : 2-tuple or list of 2-tuples X and y distance (in um) for each DUT to calculate the isolated track/hit flag. Any other occurence of tracks or hits from the same event within this distance will prevent the flag from beeing set. The purpose of isolation_distances is to find good tracks for the alignment. Hits and tracks which are too close to each other should be removed. The value given by isolation_distances should be larger than the quality_distances value to be effective, A too small value will remove almost no tracks, a too large value will remove good tracks. If None, set distance to 0. isolation_distances : 2-tuple or list of 2-tuples X and y distance (in um) for each DUT to calculate the quality flag. Any other occurence of tracks or hits from the same event within this distance will reject the quality flag. The purpose of isolation_distances is to remove tracks from alignment that could be potentially fake tracks (noisy detector / high beam density). If None, use infinite distance. use_limits : bool If True, use column and row limits from pre-alignment for selecting the data. plot : bool If True, create additional output plots. chunk_size : uint Chunk size of the data when reading from file. ''' telescope = Telescope(telescope_configuration) n_duts = len(telescope) logging.info('=== Alignment of %d DUTs ===' % len(set(np.unique(np.hstack(np.array(select_duts))).tolist()))) # Create list with combinations of DUTs to align if select_duts is None: # If None: align all DUTs select_duts = list(range(n_duts)) # Check for value errors if not isinstance(select_duts, Iterable): raise ValueError("Parameter select_duts is not an iterable.") elif not select_duts: # empty iterable raise ValueError("Parameter select_duts has no items.") # Check if only non-iterable in iterable if all(map(lambda val: not isinstance(val, Iterable), select_duts)): select_duts = [select_duts] # Check if only iterable in iterable if not all(map(lambda val: isinstance(val, Iterable), select_duts)): raise ValueError("Not all items in parameter select_duts are iterable.") # Finally check length of all iterables in iterable for dut in select_duts: if not dut: # check the length of the items raise ValueError("Item in parameter select_duts has length 0.") # Check if some DUTs will not be aligned non_select_duts = set(range(n_duts)) - set(np.unique(np.hstack(np.array(select_duts))).tolist()) if non_select_duts: logging.info('These DUTs will not be aligned: %s' % ", ".join(telescope[dut_index].name for dut_index in non_select_duts)) # Create list if alignment_parameters is None: alignment_parameters = [[None] * len(duts) for duts in select_duts] # Check for value errors if not isinstance(alignment_parameters, Iterable): raise ValueError("Parameter alignment_parameters is not an iterable.") elif not alignment_parameters: # empty iterable raise ValueError("Parameter alignment_parameters has no items.") # Finally check length of all arrays if len(alignment_parameters) != len(select_duts): # empty iterable raise ValueError("Parameter alignment_parameters has the wrong length.") for index, alignment_parameter in enumerate(alignment_parameters): if alignment_parameter is None: alignment_parameters[index] = [None] * len(select_duts[index]) if len(alignment_parameters[index]) != len(select_duts[index]): # check the length of the items raise ValueError("Item in parameter alignment_parameter has the wrong length.") # Create track, hit selection if select_hit_duts is None: # If None: use all DUTs select_hit_duts = [] # copy each item for duts in select_duts: select_hit_duts.append(duts[:]) # require a hit for each fit DUT # Check iterable and length if not isinstance(select_hit_duts, Iterable): raise ValueError("Parameter select_hit_duts is not an iterable.") elif not select_hit_duts: # empty iterable raise ValueError("Parameter select_hit_duts has no items.") # Check if only non-iterable in iterable if all(map(lambda val: not isinstance(val, Iterable), select_hit_duts)): select_hit_duts = [select_hit_duts[:] for _ in select_duts] # Check if only iterable in iterable if not all(map(lambda val: isinstance(val, Iterable), select_hit_duts)): raise ValueError("Not all items in parameter select_hit_duts are iterable.") # Finally check length of all arrays if len(select_hit_duts) != len(select_duts): # empty iterable raise ValueError("Parameter select_hit_duts has the wrong length.") for hit_dut in select_hit_duts: if len(hit_dut) < 2: # check the length of the items raise ValueError("Item in parameter select_hit_duts has length < 2.") # Create track, hit selection if select_fit_duts is None: # If None: use all DUTs select_fit_duts = [] # copy each item from select_hit_duts for hit_duts in select_hit_duts: select_fit_duts.append(hit_duts[:]) # require a hit for each fit DUT # Check iterable and length if not isinstance(select_fit_duts, Iterable): raise ValueError("Parameter select_fit_duts is not an iterable.") elif not select_fit_duts: # empty iterable raise ValueError("Parameter select_fit_duts has no items.") # Check if only non-iterable in iterable if all(map(lambda val: not isinstance(val, Iterable), select_fit_duts)): select_fit_duts = [select_fit_duts[:] for _ in select_duts] # Check if only iterable in iterable if not all(map(lambda val: isinstance(val, Iterable), select_fit_duts)): raise ValueError("Not all items in parameter select_fit_duts are iterable.") # Finally check length of all arrays if len(select_fit_duts) != len(select_duts): # empty iterable raise ValueError("Parameter select_fit_duts has the wrong length.") for index, fit_dut in enumerate(select_fit_duts): if len(fit_dut) < 2: # check the length of the items raise ValueError("Item in parameter select_fit_duts has length < 2.") if set(fit_dut) - set(select_hit_duts[index]): # fit DUTs are required to have a hit raise ValueError("DUT in select_fit_duts is not in select_hit_duts.") # Create chi2 array if not isinstance(track_chi2, Iterable): track_chi2 = [track_chi2] * len(select_duts) # Finally check length if len(track_chi2) != len(select_duts): raise ValueError("Parameter track_chi2 has the wrong length.") # expand dimensions # Check iterable and length for each item for index, chi2 in enumerate(track_chi2): # Check if non-iterable if not isinstance(chi2, Iterable): track_chi2[index] = [chi2] * len(select_duts[index]) # again check for consistency for index, chi2 in enumerate(track_chi2): # Check iterable and length if not isinstance(chi2, Iterable): raise ValueError("Item in parameter track_chi2 is not an iterable.") if len(chi2) != len(select_duts[index]): # empty iterable raise ValueError("Item in parameter track_chi2 has the wrong length.") # Create cluster shape selection if cluster_shapes is None: # If None: set default value for all DUTs cluster_shapes = [cluster_shapes] * len(select_duts) # Check iterable and length if not isinstance(cluster_shapes, Iterable): raise ValueError("Parameter cluster_shapes is not an iterable.") # elif not cluster_shapes: # empty iterable # raise ValueError("Parameter cluster_shapes has no items.") # Check if only non-iterable in iterable if all(map(lambda val: not isinstance(val, Iterable) and val is not None, cluster_shapes)): cluster_shapes = [cluster_shapes[:] for _ in select_duts] # Check if only iterable in iterable if not all(map(lambda val: isinstance(val, Iterable) or val is None, cluster_shapes)): raise ValueError("Not all items in parameter cluster_shapes are iterable or None.") # Finally check length of all arrays if len(cluster_shapes) != len(select_duts): # empty iterable raise ValueError("Parameter cluster_shapes has the wrong length.") # expand dimensions # Check iterable and length for each item for index, shapes in enumerate(cluster_shapes): # Check if only non-iterable in iterable if shapes is None: cluster_shapes[index] = [shapes] * len(select_duts[index]) elif all(map(lambda val: not isinstance(val, Iterable) and val is not None, shapes)): cluster_shapes[index] = [shapes[:] for _ in select_duts[index]] # again check for consistency for index, shapes in enumerate(cluster_shapes): # Check iterable and length if not isinstance(shapes, Iterable): raise ValueError("Item in parameter cluster_shapes is not an iterable.") elif not shapes: # empty iterable raise ValueError("Item in parameter cluster_shapes has no items.") # Check if only iterable in iterable if not all(map(lambda val: isinstance(val, Iterable) or val is None, shapes)): raise ValueError("Not all items of item in cluster_shapes are iterable or None.") if len(shapes) != len(select_duts[index]): # empty iterable raise ValueError("Item in parameter cluster_shapes has the wrong length.") # Create quality distance if isinstance(quality_distances, tuple) or quality_distances is None: quality_distances = [quality_distances] * n_duts # Check iterable and length if not isinstance(quality_distances, Iterable): raise ValueError("Parameter quality_distances is not an iterable.") elif not quality_distances: # empty iterable raise ValueError("Parameter quality_distances has no items.") # Finally check length of all arrays if len(quality_distances) != n_duts: # empty iterable raise ValueError("Parameter quality_distances has the wrong length.") # Check if only iterable in iterable if not all(map(lambda val: isinstance(val, Iterable) or val is None, quality_distances)): raise ValueError("Not all items in parameter quality_distances are iterable or None.") # Finally check length of all arrays for distance in quality_distances: if distance is not None and len(distance) != 2: # check the length of the items raise ValueError("Item in parameter quality_distances has length != 2.") # Create reject quality distance if isinstance(isolation_distances, tuple) or isolation_distances is None: isolation_distances = [isolation_distances] * n_duts # Check iterable and length if not isinstance(isolation_distances, Iterable): raise ValueError("Parameter isolation_distances is no iterable.") elif not isolation_distances: # empty iterable raise ValueError("Parameter isolation_distances has no items.") # Finally check length of all arrays if len(isolation_distances) != n_duts: # empty iterable raise ValueError("Parameter isolation_distances has the wrong length.") # Check if only iterable in iterable if not all(map(lambda val: isinstance(val, Iterable) or val is None, isolation_distances)): raise ValueError("Not all items in Parameter isolation_distances are iterable or None.") # Finally check length of all arrays for distance in isolation_distances: if distance is not None and len(distance) != 2: # check the length of the items raise ValueError("Item in parameter isolation_distances has length != 2.") if not isinstance(max_iterations, Iterable): max_iterations = [max_iterations] * len(select_duts) # Finally check length of all arrays if len(max_iterations) != len(select_duts): # empty iterable raise ValueError("Parameter max_iterations has the wrong length.") if not isinstance(max_events, Iterable): max_events = [max_events] * len(select_duts) # Finally check length if len(max_events) != len(select_duts): raise ValueError("Parameter max_events has the wrong length.") if output_telescope_configuration is None: if 'prealigned' in telescope_configuration: output_telescope_configuration = telescope_configuration.replace('prealigned', 'aligned') else: output_telescope_configuration = os.path.splitext(telescope_configuration)[0] + '_aligned.yaml' elif output_telescope_configuration == telescope_configuration: raise ValueError('Output telescope configuration file must be different from input telescope configuration file.') if os.path.isfile(output_telescope_configuration): logging.info('Output telescope configuration file already exists. Keeping telescope configuration file.') aligned_telescope = Telescope(configuration_file=output_telescope_configuration) # For the case where not all DUTs are aligned, # only revert the alignment for the DUTs that will be aligned. for align_duts in select_duts: for dut in align_duts: aligned_telescope[dut] = telescope[dut] aligned_telescope.save_configuration() else: telescope.save_configuration(configuration_file=output_telescope_configuration) prealigned_track_candidates_file = os.path.splitext(input_merged_file)[0] + '_track_candidates_prealigned_tmp.h5' # clean up remaining files if os.path.isfile(prealigned_track_candidates_file): os.remove(prealigned_track_candidates_file) for index, align_duts in enumerate(select_duts): # Find pre-aligned tracks for the 1st step of the alignment. # This file can be used for different sets of alignment DUTs, # so keep the file and remove later. if not os.path.isfile(prealigned_track_candidates_file): logging.info('= Alignment step 1: Finding pre-aligned tracks =') find_tracks( telescope_configuration=telescope_configuration, input_merged_file=input_merged_file, output_track_candidates_file=prealigned_track_candidates_file, select_extrapolation_duts=select_extrapolation_duts, align_to_beam=True, max_events=None) logging.info('== Aligning %d DUTs: %s ==', len(align_duts), ", ".join(telescope[dut_index].name for dut_index in align_duts)) _duts_alignment( output_telescope_configuration=output_telescope_configuration, # aligned configuration merged_file=input_merged_file, prealigned_track_candidates_file=prealigned_track_candidates_file, align_duts=align_duts, alignment_parameters=alignment_parameters[index], select_telescope_duts=select_telescope_duts, select_extrapolation_duts=select_extrapolation_duts, select_fit_duts=select_fit_duts[index], select_hit_duts=select_hit_duts[index], max_iterations=max_iterations[index], max_events=max_events[index], fit_method=fit_method, beam_energy=beam_energy, particle_mass=particle_mass, scattering_planes=scattering_planes, track_chi2=track_chi2[index], cluster_shapes=cluster_shapes[index], quality_distances=quality_distances, isolation_distances=isolation_distances, use_limits=use_limits, plot=plot, chunk_size=chunk_size) if os.path.isfile(prealigned_track_candidates_file): os.remove(prealigned_track_candidates_file) return output_telescope_configuration def align_kalman(telescope_configuration, input_merged_file, output_telescope_configuration=None, output_alignment_file=None, select_duts=None, alignment_parameters=None, select_telescope_duts=None, select_extrapolation_duts=None, select_fit_duts=None, select_hit_duts=None, max_events=None, beam_energy=None, particle_mass=None, scattering_planes=None, track_chi2=10.0, cluster_shapes=None, annealing_factor=10000, annealing_tracks=5000, max_tracks=10000, alignment_parameters_errors=None, use_limits=True, plot=True, chunk_size=1000): ''' This function does an alignment of the DUTs and sets translation and rotation values for all DUTs. The reference DUT defines the global coordinate system position at 0, 0, 0 and should be well in the beam and not heavily rotated. To solve the chicken-and-egg problem that a good dut alignment needs hits belonging to one track, but good track finding needs a good dut alignment this function work only on already prealigned hits belonging to one track. Thus this function can be called only after track finding. These steps are done 1. Take the found tracks and revert the pre-alignment 2. Take the track hits belonging to one track and fit tracks for all DUTs 3. Calculate the residuals for each DUT 4. Deduce rotations from the residuals and apply them to the hits 5. Deduce the translation of each plane 6. Store and apply the new alignment repeat step 3 - 6 until the total residual does not decrease (RMS_total = sqrt(RMS_x_1^2 + RMS_y_1^2 + RMS_x_2^2 + RMS_y_2^2 + ...)) Parameters ---------- telescope_configuration : string Filename of the telescope configuration file. input_merged_file : string Filename of the input merged file. output_telescope_configuration : string Filename of the output telescope configuration file. select_duts : iterable or iterable of iterable The combination of duts that are algined at once. One should always align the high resolution planes first. E.g. for a telesope (first and last 3 planes) with 2 devices in the center (3, 4): select_duts=[[0, 1, 2, 5, 6, 7], # align the telescope planes first [4], # align first DUT [3]] # align second DUT alignment_parameters : list of lists of strings The list of alignment parameters for each align_dut. Valid parameters: - translation_x: horizontal axis - translation_y: vertical axis - translation_z: beam axis - rotation_alpha: rotation around x-axis - rotation_beta: rotation around y-axis - rotation_gamma: rotation around z-axis (beam axis) If None, all paramters will be selected. select_telescope_duts : iterable The given DUTs will be used to align the telescope along the z-axis. Usually the coordinates of these DUTs are well specified. At least 2 DUTs need to be specified. The z-position of the selected DUTs will not be changed by default. select_extrapolation_duts : list The given DUTs will be used for track extrapolation for improving track finding efficiency. In some rare cases, removing DUTs with a coarse resolution might improve track finding efficiency. If None, select all DUTs. If list is empty or has a single entry, disable extrapolation (at least 2 DUTs are required for extrapolation to work). select_fit_duts : iterable or iterable of iterable Defines for each select_duts combination wich devices to use in the track fit. E.g. To use only the telescope planes (first and last 3 planes) but not the 2 center devices select_fit_duts=[0, 1, 2, 5, 6, 7] select_hit_duts : iterable or iterable of iterable Defines for each select_duts combination wich devices must have a hit to use the track for fitting. The hit does not have to be used in the fit itself! This is useful for time reference planes. E.g. To use telescope planes (first and last 3 planes) + time reference plane (3) select_hit_duts = [0, 1, 2, 4, 5, 6, 7] max_iterations : uint Maximum number of iterations of calc residuals, apply rotation refit loop until constant result is expected. Usually the procedure converges rather fast (< 5 iterations). Non-telescope DUTs usually require 2 itearations. max_events: uint Radomly select max_events for alignment. If None, use all events, which might slow down the alignment. fit_method : string Available methods are 'kalman', which uses a Kalman Filter for track calculation, and 'fit', which uses a simple straight line fit for track calculation. beam_energy : float Energy of the beam in MeV, e.g., 2500.0 MeV for ELSA beam. Only used for the Kalman Filter. particle_mass : float Mass of the particle in MeV, e.g., 0.511 MeV for electrons. Only used for the Kalman Filter. scattering_planes : list or dict Specifies additional scattering planes in case of DUTs which are not used or additional material in the way of the tracks. The list must contain dictionaries containing the following keys: material_budget: material budget of the scattering plane translation_x/translation_y/translation_z: x/y/z position of the plane (in um) rotation_alpha/rotation_beta/rotation_gamma: alpha/beta/gamma angle of scattering plane (in radians) The material budget is defined as the thickness devided by the radiation length. If scattering_planes is None, no scattering plane will be added. track_chi2 : float or list Setting the limit on the track chi^2. If None or 0.0, no cut will be applied. A smaller value reduces the number of tracks for the alignment. A large value increases the number of tracks but at the cost of alignment efficiency bacause of potentially bad tracks. A good start value is 5.0 to 10.0 for high energy beams and 15.0 to 50.0 for low energy beams. cluster_shapes : iterable or iterable of iterables List of cluster shapes (unsigned integer) for each DUT. Only the selected cluster shapes will be used for the alignment. Cluster shapes have impact on precision of the alignment. Larger clusters and certain cluster shapes can have a significant uncertainty for the hit position. If None, use default cluster shapes [1, 3, 5, 13, 14, 7, 11, 15], i.e. 1x1, 2x1, 1x2, 3-pixel cluster, 4-pixel cluster. If empty list, all cluster sizes will be used. The cluster shape can be calculated with the help of beam_telescope_analysis.tools.analysis_utils.calculate_cluster_array/calculate_cluster_shape. quality_distances : 2-tuple or list of 2-tuples X and y distance (in um) for each DUT to calculate the quality flag. The selected track and corresponding hit must have a smaller distance to have the quality flag to be set to 1. The purpose of quality_distances is to find good tracks for the alignment. A good start value is 1-2x the pixel pitch for large pixels and high-energy beams and 5-10x the pixel pitch for small pixels and low-energy beams. A too small value will remove good tracks, a too large value will allow bad tracks to contribute to the alignment. If None, set distance to infinite. isolation_distances : 2-tuple or list of 2-tuples X and y distance (in um) for each DUT to calculate the isolated track/hit flag. Any other occurence of tracks or hits from the same event within this distance will prevent the flag from beeing set. The purpose of isolation_distances is to find good tracks for the alignment. Hits and tracks which are too close to each other should be removed. The value given by isolation_distances should be larger than the quality_distances value to be effective, A too small value will remove almost no tracks, a too large value will remove good tracks. If None, set distance to 0. isolation_distances : 2-tuple or list of 2-tuples X and y distance (in um) for each DUT to calculate the quality flag. Any other occurence of tracks or hits from the same event within this distance will reject the quality flag. The purpose of isolation_distances is to remove tracks from alignment that could be potentially fake tracks (noisy detector / high beam density). If None, use infinite distance. use_limits : bool If True, use column and row limits from pre-alignment for selecting the data. plot : bool If True, create additional output plots. chunk_size : uint Chunk size of the data when reading from file. ''' telescope = Telescope(telescope_configuration) n_duts = len(telescope) logging.info('=== Alignment of %d DUTs ===' % len(set(np.unique(np.hstack(np.array(select_duts))).tolist()))) # Create list with combinations of DUTs to align if select_duts is None: # If None: align all DUTs select_duts = list(range(n_duts)) # Check for value errors if not isinstance(select_duts, Iterable): raise ValueError("Parameter select_duts is not an iterable.") elif not select_duts: # empty iterable raise ValueError("Parameter select_duts has no items.") # Check if only non-iterable in iterable if all(map(lambda val: not isinstance(val, Iterable), select_duts)): select_duts = [select_duts] # Check if only iterable in iterable if not all(map(lambda val: isinstance(val, Iterable), select_duts)): raise ValueError("Not all items in parameter select_duts are iterable.") # Finally check length of all iterables in iterable for dut in select_duts: if not dut: # check the length of the items raise ValueError("Item in parameter select_duts has length 0.") # Check if some DUTs will not be aligned non_select_duts = set(range(n_duts)) - set(np.unique(np.hstack(np.array(select_duts))).tolist()) if non_select_duts: logging.info('These DUTs will not be aligned: %s' % ", ".join(telescope[dut_index].name for dut_index in non_select_duts)) # Create list if alignment_parameters is None: alignment_parameters = [[None] * len(duts) for duts in select_duts] # Check for value errors if not isinstance(alignment_parameters, Iterable): raise ValueError("Parameter alignment_parameters is not an iterable.") elif not alignment_parameters: # empty iterable raise ValueError("Parameter alignment_parameters has no items.") # Finally check length of all arrays if len(alignment_parameters) != len(select_duts): # empty iterable raise ValueError("Parameter alignment_parameters has the wrong length.") # for index, alignment_parameter in enumerate(alignment_parameters): # if alignment_parameter is None: # alignment_parameters[index] = [None] * len(select_duts[index]) # if len(alignment_parameters[index]) != len(select_duts[index]): # check the length of the items # raise ValueError("Item in parameter alignment_parameter has the wrong length.") # Create track, hit selection if select_hit_duts is None: # If None: use all DUTs select_hit_duts = [] # copy each item for duts in select_duts: select_hit_duts.append(duts[:]) # require a hit for each fit DUT # Check iterable and length if not isinstance(select_hit_duts, Iterable): raise ValueError("Parameter select_hit_duts is not an iterable.") elif not select_hit_duts: # empty iterable raise ValueError("Parameter select_hit_duts has no items.") # Check if only non-iterable in iterable if all(map(lambda val: not isinstance(val, Iterable), select_hit_duts)): select_hit_duts = [select_hit_duts[:] for _ in select_duts] # Check if only iterable in iterable if not all(map(lambda val: isinstance(val, Iterable), select_hit_duts)): raise ValueError("Not all items in parameter select_hit_duts are iterable.") # Finally check length of all arrays if len(select_hit_duts) != len(select_duts): # empty iterable raise ValueError("Parameter select_hit_duts has the wrong length.") for hit_dut in select_hit_duts: if len(hit_dut) < 2: # check the length of the items raise ValueError("Item in parameter select_hit_duts has length < 2.") # Create track, hit selection if select_fit_duts is None: # If None: use all DUTs select_fit_duts = [] # copy each item from select_hit_duts for hit_duts in select_hit_duts: select_fit_duts.append(hit_duts[:]) # require a hit for each fit DUT # Check iterable and length if not isinstance(select_fit_duts, Iterable): raise ValueError("Parameter select_fit_duts is not an iterable.") elif not select_fit_duts: # empty iterable raise ValueError("Parameter select_fit_duts has no items.") # Check if only non-iterable in iterable if all(map(lambda val: not isinstance(val, Iterable), select_fit_duts)): select_fit_duts = [select_fit_duts[:] for _ in select_duts] # Check if only iterable in iterable if not all(map(lambda val: isinstance(val, Iterable), select_fit_duts)): raise ValueError("Not all items in parameter select_fit_duts are iterable.") # Finally check length of all arrays if len(select_fit_duts) != len(select_duts): # empty iterable raise ValueError("Parameter select_fit_duts has the wrong length.") for index, fit_dut in enumerate(select_fit_duts): if len(fit_dut) < 2: # check the length of the items raise ValueError("Item in parameter select_fit_duts has length < 2.") if set(fit_dut) - set(select_hit_duts[index]): # fit DUTs are required to have a hit raise ValueError("DUT in select_fit_duts is not in select_hit_duts.") # Create cluster shape selection if cluster_shapes is None: # If None: set default value for all DUTs cluster_shapes = [cluster_shapes] * len(select_duts) # Check iterable and length if not isinstance(cluster_shapes, Iterable): raise ValueError("Parameter cluster_shapes is not an iterable.") # elif not cluster_shapes: # empty iterable # raise ValueError("Parameter cluster_shapes has no items.") # Check if only non-iterable in iterable if all(map(lambda val: not isinstance(val, Iterable) and val is not None, cluster_shapes)): cluster_shapes = [cluster_shapes[:] for _ in select_duts] # Check if only iterable in iterable if not all(map(lambda val: isinstance(val, Iterable) or val is None, cluster_shapes)): raise ValueError("Not all items in parameter cluster_shapes are iterable or None.") # Finally check length of all arrays if len(cluster_shapes) != len(select_duts): # empty iterable raise ValueError("Parameter cluster_shapes has the wrong length.") # expand dimensions # Check iterable and length for each item for index, shapes in enumerate(cluster_shapes): # Check if only non-iterable in iterable if shapes is None: cluster_shapes[index] = [shapes] * len(select_duts[index]) elif all(map(lambda val: not isinstance(val, Iterable) and val is not None, shapes)): cluster_shapes[index] = [shapes[:] for _ in select_duts[index]] # again check for consistency for index, shapes in enumerate(cluster_shapes): # Check iterable and length if not isinstance(shapes, Iterable): raise ValueError("Item in parameter cluster_shapes is not an iterable.") elif not shapes: # empty iterable raise ValueError("Item in parameter cluster_shapes has no items.") # Check if only iterable in iterable if not all(map(lambda val: isinstance(val, Iterable) or val is None, shapes)): raise ValueError("Not all items of item in cluster_shapes are iterable or None.") if len(shapes) != len(select_duts[index]): # empty iterable raise ValueError("Item in parameter cluster_shapes has the wrong length.") if not isinstance(max_events, Iterable): max_events = [max_events] * len(select_duts) # Finally check length if len(max_events) != len(select_duts): raise ValueError("Parameter max_events has the wrong length.") if not isinstance(max_tracks, Iterable): max_tracks = [max_tracks] * len(select_duts) # Finally check length if len(max_tracks) != len(select_duts): raise ValueError("Parameter max_tracks has the wrong length.") if output_telescope_configuration is None: if 'prealigned' in telescope_configuration: output_telescope_configuration = telescope_configuration.replace('prealigned', 'aligned_kalman') else: output_telescope_configuration = os.path.splitext(telescope_configuration)[0] + '_aligned_kalman.yaml' elif output_telescope_configuration == telescope_configuration: raise ValueError('Output telescope configuration file must be different from input telescope configuration file.') if os.path.isfile(output_telescope_configuration): logging.info('Output telescope configuration file already exists. Keeping telescope configuration file.') aligned_telescope = Telescope(configuration_file=output_telescope_configuration) # For the case where not all DUTs are aligned, # only revert the alignment for the DUTs that will be aligned. for align_duts in select_duts: for dut in align_duts: aligned_telescope[dut] = telescope[dut] aligned_telescope.save_configuration() else: telescope.save_configuration(configuration_file=output_telescope_configuration) if output_alignment_file is None: output_alignment_file = os.path.splitext(input_merged_file)[0] + '_KFA_alignment.h5' else: output_alignment_file = output_alignment_file for index, align_duts in enumerate(select_duts): # Find pre-aligned tracks for the 1st step of the alignment. # This file can be used for different sets of alignment DUTs, # so keep the file and remove later. prealigned_track_candidates_file = os.path.splitext(input_merged_file)[0] + '_track_candidates_prealigned_%i_tmp.h5' % index find_tracks( telescope_configuration=telescope_configuration, input_merged_file=input_merged_file, output_track_candidates_file=prealigned_track_candidates_file, select_extrapolation_duts=select_extrapolation_duts, align_to_beam=True, max_events=max_events[index]) logging.info('== Aligning %d DUTs: %s ==', len(align_duts), ", ".join(telescope[dut_index].name for dut_index in align_duts)) _duts_alignment_kalman( telescope_configuration=output_telescope_configuration, # aligned configuration output_alignment_file=output_alignment_file, input_track_candidates_file=prealigned_track_candidates_file, select_duts=align_duts, alignment_parameters=alignment_parameters[index], select_telescope_duts=select_telescope_duts, select_fit_duts=select_fit_duts[index], select_hit_duts=select_hit_duts[index], beam_energy=beam_energy, particle_mass=particle_mass, scattering_planes=scattering_planes, track_chi2=track_chi2[index], annealing_factor=annealing_factor, annealing_tracks=annealing_tracks, max_tracks=max_tracks[index], alignment_parameters_errors=alignment_parameters_errors, use_limits=use_limits, plot=plot, chunk_size=chunk_size, iteration_index=index) return output_telescope_configuration def _duts_alignment(output_telescope_configuration, merged_file, align_duts, prealigned_track_candidates_file, alignment_parameters, select_telescope_duts, select_extrapolation_duts, select_fit_duts, select_hit_duts, max_iterations, max_events, fit_method, beam_energy, particle_mass, scattering_planes, track_chi2, cluster_shapes, quality_distances, isolation_distances, use_limits, plot=True, chunk_size=100000): # Called for each list of DUTs to align alignment_duts = "_".join(str(dut) for dut in align_duts) aligned_telescope = Telescope(configuration_file=output_telescope_configuration) output_track_candidates_file = None iteration_steps = range(max_iterations) for iteration_step in iteration_steps: # aligning telescope DUTs to the beam axis (z-axis) if set(align_duts) & set(select_telescope_duts): align_telescope( telescope_configuration=output_telescope_configuration, select_telescope_duts=list(set(align_duts) & set(select_telescope_duts))) actual_align_duts = align_duts actual_fit_duts = select_fit_duts # reqire hits in each DUT that will be aligned actual_hit_duts = [list(set(select_hit_duts) | set([dut_index])) for dut_index in actual_align_duts] actual_quality_duts = actual_hit_duts fit_quality_distances = np.zeros_like(quality_distances) for index, item in enumerate(quality_distances): if index in align_duts: fit_quality_distances[index, 0] = np.linspace(item[0] * 1.08447**max_iterations, item[0], max_iterations)[iteration_step] fit_quality_distances[index, 1] = np.linspace(item[1] * 1.08447**max_iterations, item[1], max_iterations)[iteration_step] else: fit_quality_distances[index, 0] = item[0] fit_quality_distances[index, 1] = item[1] fit_quality_distances = fit_quality_distances.tolist() if iteration_step > 0: logging.info('= Alignment step 1 - iteration %d: Finding tracks for %d DUTs =', iteration_step, len(align_duts)) # remove temporary file if output_track_candidates_file is not None: os.remove(output_track_candidates_file) output_track_candidates_file = os.path.splitext(merged_file)[0] + '_track_candidates_aligned_duts_%s_tmp_%d.h5' % (alignment_duts, iteration_step) find_tracks( telescope_configuration=output_telescope_configuration, input_merged_file=merged_file, output_track_candidates_file=output_track_candidates_file, select_extrapolation_duts=select_extrapolation_duts, align_to_beam=True, max_events=max_events) # The quality flag of the actual align DUT depends on the alignment calculated # in the previous iteration, therefore this step has to be done every time logging.info('= Alignment step 2 - iteration %d: Fitting tracks for %d DUTs =', iteration_step, len(align_duts)) output_tracks_file = os.path.splitext(merged_file)[0] + '_tracks_aligned_duts_%s_tmp_%d.h5' % (alignment_duts, iteration_step) fit_tracks( telescope_configuration=output_telescope_configuration, input_track_candidates_file=prealigned_track_candidates_file if iteration_step == 0 else output_track_candidates_file, output_tracks_file=output_tracks_file, max_events=None if iteration_step > 0 else max_events, select_duts=actual_align_duts, select_fit_duts=actual_fit_duts, select_hit_duts=actual_hit_duts, exclude_dut_hit=False, # for biased residuals select_align_duts=actual_align_duts, # correct residual offset for align DUTs method=fit_method, beam_energy=beam_energy, particle_mass=particle_mass, scattering_planes=scattering_planes, quality_distances=quality_distances, isolation_distances=isolation_distances, use_limits=use_limits, plot=plot, chunk_size=chunk_size) logging.info('= Alignment step 3a - iteration %d: Selecting tracks for %d DUTs =', iteration_step, len(align_duts)) output_selected_tracks_file = os.path.splitext(merged_file)[0] + '_tracks_aligned_selected_tracks_duts_%s_tmp_%d.h5' % (alignment_duts, iteration_step) # generate query for select_tracks # generate default selection of cluster shapes: 1x1, 2x1, 1x2, 3-pixel cluster, 4-pixel cluster for index, shapes in enumerate(cluster_shapes): if shapes is None: cluster_shapes[index] = default_cluster_shapes query_string = [((('(track_chi_red < %f)' % track_chi2[index]) if track_chi2[index] else '') + (' & ' if (track_chi2[index] and cluster_shapes[index]) else '') + (('(' + ' | '.join([('(cluster_shape_dut_{0} == %d)' % cluster_shape) for cluster_shape in cluster_shapes[index]]).format(dut_index) + ')') if cluster_shapes[index] else '')) for index, dut_index in enumerate(actual_align_duts)] data_selection.select_tracks( telescope_configuration=output_telescope_configuration, input_tracks_file=output_tracks_file, output_tracks_file=output_selected_tracks_file, select_duts=actual_align_duts, select_hit_duts=actual_hit_duts, select_quality_duts=actual_quality_duts, select_isolated_track_duts=actual_quality_duts, select_isolated_hit_duts=actual_quality_duts, query=query_string, max_events=None, chunk_size=chunk_size) # if fit DUTs were aligned, update telescope alignment if set(align_duts) & set(select_fit_duts): logging.info('= Alignment step 3b - iteration %d: Aligning telescope =', iteration_step) output_track_angles_file = os.path.splitext(merged_file)[0] + '_tracks_angles_aligned_selected_tracks_duts_%s_tmp_%d.h5' % (alignment_duts, iteration_step) histogram_track_angle( telescope_configuration=output_telescope_configuration, input_tracks_file=output_selected_tracks_file, output_track_angle_file=output_track_angles_file, select_duts=actual_align_duts, n_bins=100, plot=plot) # Read and store beam angle to improve track finding if (set(align_duts) & set(select_fit_duts)): with tb.open_file(output_track_angles_file, mode="r") as in_file_h5: if not np.isnan(in_file_h5.root.Global_alpha_track_angle_hist.attrs.mean) and not np.isnan(in_file_h5.root.Global_beta_track_angle_hist.attrs.mean): aligned_telescope = Telescope(configuration_file=output_telescope_configuration) aligned_telescope.rotation_alpha = in_file_h5.root.Global_alpha_track_angle_hist.attrs.mean aligned_telescope.rotation_beta = in_file_h5.root.Global_beta_track_angle_hist.attrs.mean aligned_telescope.save_configuration() else: logging.warning("Cannot read track angle histograms, track finding might be spoiled") os.remove(output_track_angles_file) if plot: logging.info('= Alignment step 3c - iteration %d: Calculating residuals =', iteration_step) output_residuals_file = os.path.splitext(merged_file)[0] + '_residuals_aligned_selected_tracks_%s_tmp_%d.h5' % (alignment_duts, iteration_step) calculate_residuals( telescope_configuration=output_telescope_configuration, input_tracks_file=output_selected_tracks_file, output_residuals_file=output_residuals_file, select_duts=actual_align_duts, use_limits=use_limits, plot=True, chunk_size=chunk_size) os.remove(output_residuals_file) logging.info('= Alignment step 4 - iteration %d: Calculating transformation matrix for %d DUTs =', iteration_step, len(align_duts)) calculate_transformation( telescope_configuration=output_telescope_configuration, input_tracks_file=output_selected_tracks_file, select_duts=actual_align_duts, select_alignment_parameters=[(["translation_x", "translation_y", "rotation_alpha", "rotation_beta", "rotation_gamma"] if (dut_index in select_telescope_duts and (alignment_parameters is None or alignment_parameters[i] is None)) else (default_alignment_parameters if (alignment_parameters is None or alignment_parameters[i] is None) else alignment_parameters[i])) for i, dut_index in enumerate(actual_align_duts)], use_limits=use_limits, max_iterations=100, chunk_size=chunk_size) # Delete temporary files os.remove(output_tracks_file) os.remove(output_selected_tracks_file) # Delete temporary files if output_track_candidates_file is not None: os.remove(output_track_candidates_file) def _duts_alignment_kalman(telescope_configuration, output_alignment_file, input_track_candidates_file, alignment_parameters, select_telescope_duts, select_duts=None, select_hit_duts=None, select_fit_duts=None, min_track_hits=None, beam_energy=2500, particle_mass=0.511, scattering_planes=None, track_chi2=25.0, use_limits=True, iteration_index=0, exclude_dut_hit=False, annealing_factor=10000, annealing_tracks=5000, max_tracks=10000, alignment_parameters_errors=None, plot=True, chunk_size=1000): '''Calculate tracks and set tracks quality flag for selected DUTs. Two methods are available to generate tracks: a linear fit (method="fit") and a Kalman Filter (method="kalman"). Parameters ---------- telescope_configuration : string Filename of the telescope configuration file. input_track_candidates_file : string Filename of the input track candidate file. output_tracks_file : string Filename of the output tracks file. max_events : uint Maximum number of randomly chosen events. If None, all events are taken. select_duts : list Specify the fit DUTs for which tracks will be fitted and a track array will be generated. If None, for all DUTs are selected. select_hit_duts : list or list of lists Specifying DUTs that are required to have a hit for each selected DUT. If None, no DUT is required to have a hit. select_fit_duts : list or list of lists Specifying DUTs that are used for the track fit for each selected DUT. If None, all DUTs are used for the track fit. Note: This parameter needs to be set correctly. Usually not all available DUTs should be used for track fitting. The list usually only contains DUTs, which are part of the telescope. min_track_hits : uint or list Minimum number of track hits for each selected DUT. If None or list item is None, the minimum number of track hits is the length of select_fit_duts. exclude_dut_hit : bool or list Decide whether or not to use hits in the actual fit DUT for track fitting (for unconstrained residuals). If False (default), use all DUTs as specified in select_fit_duts and use them for track fitting if hits are available (potentially constrained residuals). If True, do not use hits form the actual fit DUT for track fitting, even if specified in select_fit_duts (unconstrained residuals). method : string Available methods are 'kalman', which uses a Kalman Filter for track calculation, and 'fit', which uses a simple straight line fit for track calculation. beam_energy : float Energy of the beam in MeV, e.g., 2500.0 MeV for ELSA beam. Only used for the Kalman Filter. particle_mass : float Mass of the particle in MeV, e.g., 0.511 MeV for electrons. Only used for the Kalman Filter. scattering_planes : list of Dut objects Specifies additional scattering planes in case of DUTs which are not used or additional material in the way of the tracks. Scattering planes must contain the following attributes: name: name of the scattering plane material_budget: material budget of the scattering plane translation_x/translation_y/translation_z: x/y/z position of the plane (in um) rotation_alpha/rotation_beta/rotation_gamma: alpha/beta/gamma angle of scattering plane (in radians) The material budget is defined as the thickness devided by the radiation length. If scattering_planes is None, no scattering plane will be added. Only available when using the Kalman Filter. See the example on how to create scattering planes in the example script folder. quality_distances : 2-tuple or list of 2-tuples X and y distance (in um) for each DUT to calculate the quality flag. The selected track and corresponding hit must have a smaller distance to have the quality flag to be set to 1. If None, set distance to infinite. isolation_distances : 2-tuple or list of 2-tuples X and y distance (in um) for each DUT to calculate the isolated track/hit flag. Any other occurence of tracks or hits from the same event within this distance will prevent the flag from beeing set. If None, set distance to 0. use_limits : bool If True, use column and row limits from pre-alignment for selecting the data. keep_data : bool Keep all track candidates in data and add track info only to fitted tracks. Necessary for purity calculations. full_track_info : bool If True, the track vector and position of all DUTs is appended to track table in order to get the full track information. If False, only the track vector and position of the actual fit DUT is appended to track table. chunk_size : uint Chunk size of the data when reading from file. Returns ------- output_tracks_file : string Filename of the output tracks file. ''' def _store_alignment_data(alignment_values, n_tracks_processed, chi2s, chi2s_probs, deviation_cuts): ''' Helper function to write alignment data to output file. ''' # Do not forget to save configuration to .yaml file. telescope.save_configuration() # Store alignment results in file for dut_index, _ in enumerate(telescope): try: # Check if table exists already, then append data alignment_table = out_file_h5.get_node('/Alignment_DUT%i' % dut_index) except tb.NoSuchNodeError: # Table does not exist, thus create new alignment_table = out_file_h5.create_table( where=out_file_h5.root, name='Alignment_DUT%i' % dut_index, description=alignment_values[dut_index].dtype, title='Alignment_DUT%i' % dut_index, filters=tb.Filters( complib='blosc', complevel=5, fletcher32=False)) alignment_table.append(alignment_values[dut_index]) alignment_table.attrs.deviation_cuts = deviation_cuts alignment_table.attrs.n_tracks_processed = n_tracks_processed[dut_index] alignment_table.flush() # Store chi2 values try: # Check if table exists already, then append data out_chi2s = out_file_h5.get_node('/TrackChi2') out_chi2s_probs = out_file_h5.get_node('/TrackpValue') except tb.NoSuchNodeError: # Table does not exist, thus create new out_chi2s = out_file_h5.create_earray( where=out_file_h5.root, name='TrackChi2', title='Track Chi2', atom=tb.Atom.from_dtype(chi2s.dtype), shape=(0,), filters=tb.Filters( complib='blosc', complevel=5, fletcher32=False)) out_chi2s_probs = out_file_h5.create_earray( where=out_file_h5.root, name='TrackpValue', title='Track pValue', atom=tb.Atom.from_dtype(chi2s.dtype), shape=(0,), filters=tb.Filters( complib='blosc', complevel=5, fletcher32=False)) out_chi2s.append(chi2s) out_chi2s.flush() out_chi2s_probs.append(chi2s_probs) out_chi2s_probs.flush() out_chi2s.attrs.max_track_chi2 = track_chi2 def _alignment_loop(actual_align_state, actual_align_cov, initial_rotation_matrix, initial_position_vector): ''' Helper function which loops over track chunks and performs the alignnment. ''' # Init progressbar n_tracks = in_file_h5.root.TrackCandidates.shape[0] pbar = tqdm(total=n_tracks, ncols=80) # Number of processed tracks for every DUT n_tracks_processed = np.zeros(shape=(len(telescope)), dtype=np.int) # Number of tracks fulfilling hit requirement total_n_tracks_valid_hits = 0 # Maximum allowed relative change for each alignment parameter. Can be adjusted. deviation_cuts = [0.05, 0.05, 0.05, 0.05, 0.05, 0.05] alpha = np.zeros(shape=len(telescope), dtype=np.float64) # annealing factor # Loop in chunks over tracks. After each chunk, alignment values are stored. for track_candidates_chunk, index_chunk in analysis_utils.data_aligned_at_events(in_file_h5.root.TrackCandidates, chunk_size=10000): # Select only tracks for which hit requirement is fulfilled track_candidates_chunk_valid_hits = track_candidates_chunk[track_candidates_chunk['hit_flag'] & dut_hit_mask == dut_hit_mask] total_n_tracks_valid_hits_chunk = track_candidates_chunk_valid_hits.shape[0] total_n_tracks_valid_hits += total_n_tracks_valid_hits_chunk # Per chunk variables chi2s = np.zeros(shape=(total_n_tracks_valid_hits_chunk), dtype=np.float64) # track chi2s chi2s_probs = np.zeros(shape=(total_n_tracks_valid_hits_chunk), dtype=np.float64) # track pvalues alignment_values = np.full(shape=(len(telescope), total_n_tracks_valid_hits_chunk), dtype=kfa_alignment_descr, fill_value=np.nan) # alignment values # Loop over tracks in chunk for track_index, track in enumerate(track_candidates_chunk_valid_hits): track_hits = np.full((1, n_duts, 6), fill_value=np.nan, dtype=np.float64) # Compute aligned position and apply the alignment for dut_index, dut in enumerate(telescope): # Get local track hits track_hits[:, dut_index, 0] = track['x_dut_%s' % dut_index] track_hits[:, dut_index, 1] = track['y_dut_%s' % dut_index] track_hits[:, dut_index, 2] = track['z_dut_%s' % dut_index] track_hits[:, dut_index, 3] = track['x_err_dut_%s' % dut_index] track_hits[:, dut_index, 4] = track['y_err_dut_%s' % dut_index] track_hits[:, dut_index, 5] = track['z_err_dut_%s' % dut_index] # Calculate new alignment (takes initial alignment and actual *change* of parameters) new_rotation_matrix, new_position_vector = _update_alignment(initial_rotation_matrix[dut_index], initial_position_vector[dut_index], actual_align_state[dut_index]) # Get euler angles from rotation matrix alpha_average, beta_average, gamma_average = geometry_utils.euler_angles(R=new_rotation_matrix) # Set new alignment to DUT dut._translation_x = float(new_position_vector[0]) dut._translation_y = float(new_position_vector[1]) dut._translation_z = float(new_position_vector[2]) dut._rotation_alpha = float(alpha_average) dut._rotation_beta = float(beta_average) dut._rotation_gamma = float(gamma_average) alignment_values[dut_index, track_index]['translation_x'] = dut.translation_x alignment_values[dut_index, track_index]['translation_y'] = dut.translation_y alignment_values[dut_index, track_index]['translation_z'] = dut.translation_z alignment_values[dut_index, track_index]['rotation_alpha'] = dut.rotation_alpha alignment_values[dut_index, track_index]['rotation_beta'] = dut.rotation_beta alignment_values[dut_index, track_index]['rotation_gamma'] = dut.rotation_gamma C = actual_align_cov[dut_index] alignment_values[dut_index, track_index]['translation_x_err'] = np.sqrt(C[0, 0]) alignment_values[dut_index, track_index]['translation_y_err'] = np.sqrt(C[1, 1]) alignment_values[dut_index, track_index]['translation_z_err'] = np.sqrt(C[2, 2]) alignment_values[dut_index, track_index]['rotation_alpha_err'] = np.sqrt(C[3, 3]) alignment_values[dut_index, track_index]['rotation_beta_err'] = np.sqrt(C[4, 4]) alignment_values[dut_index, track_index]['rotation_gamma_err'] = np.sqrt(C[5, 5]) # Calculate deterministic annealing (scaling factor for covariance matrix) in order to take into account misalignment alpha[dut_index] = _calculate_annealing(k=n_tracks_processed[dut_index], annealing_factor=annealing_factor, annealing_tracks=annealing_tracks) # Store annealing factor alignment_values[dut_index, track_index]['annealing_factor'] = alpha[dut_index] # Run Kalman Filter try: offsets, slopes, chi2s_reg, chi2s_red, chi2s_prob, x_err, y_err, cov, cov_obs, obs_mat = _fit_tracks_kalman_loop(track_hits, telescope, fit_duts, beam_energy, particle_mass, scattering_planes, alpha) except Exception as e: print(e, 'TRACK FITTING') continue # Store chi2 and pvalue chi2s[track_index] = chi2s_red chi2s_probs[track_index] = chi2s_prob # Data quality check I: Check chi2 of track if chi2s_red > track_chi2: continue # Actual track states p0 = np.column_stack((offsets[0, :, 0], offsets[0, :, 1], slopes[0, :, 0], slopes[0, :, 1])) # Covariance matrix (x, y, dx, dy) of track estimates C0 = cov[0, :, :, :] # Covariance matrix (x, y, dx, dy) of observations V = cov_obs[0, :, :, :] # Measurement matrix H = obs_mat[0, :, :, :] # Actual alignment parameters and its covariance a0 = actual_align_state.copy() E0 = actual_align_cov.copy() # Updated alignment parameters and its covariance E1 = np.zeros_like(E0) a1 = np.zeros_like(a0) # Update all alignables actual_align_state, actual_align_cov, alignment_values, n_tracks_processed = _update_alignment_parameters( telescope, H, V, C0, p0, a0, E0, track_hits, a1, E1, alignment_values, deviation_cuts, actual_align_state, actual_align_cov, n_tracks_processed, track_index) # Reached number of max. specified tracks. Stop alignment if n_tracks_processed.min() > max_tracks: pbar.update(track_index) pbar.write('Processed {0} tracks (per DUT) out of {1} tracks'.format(n_tracks_processed, total_n_tracks_valid_hits)) pbar.close() logging.info('Maximum number of tracks reached! Stopping alignment...') # Store alignment data _store_alignment_data(alignment_values[:, :track_index + 1], n_tracks_processed, chi2s[:track_index + 1], chi2s_probs[:track_index + 1], deviation_cuts) return pbar.update(track_candidates_chunk.shape[0]) pbar.write('Processed {0} tracks (per DUT) out of {1} tracks'.format(n_tracks_processed, total_n_tracks_valid_hits)) # Store alignment data _store_alignment_data(alignment_values, n_tracks_processed, chi2s, chi2s_probs, deviation_cuts) pbar.close() telescope = Telescope(telescope_configuration) n_duts = len(telescope) logging.info('= Alignment step 2 - Fitting tracks for %d DUTs =', len(select_duts)) if iteration_index == 0: # clean up before starting alignment. In case different sets of DUTs are aligned after each other only clean up once. if os.path.exists(output_alignment_file): os.remove(output_alignment_file) logging.info('=== Fitting tracks of %d DUTs ===' % n_duts) if not beam_energy: raise ValueError('Beam energy not given (in MeV).') if not particle_mass: raise ValueError('Particle mass not given (in MeV).') if select_duts is None: select_duts = list(range(n_duts)) # standard setting: fit tracks for all DUTs elif not isinstance(select_duts, Iterable): select_duts = [select_duts] # Check for duplicates if len(select_duts) != len(set(select_duts)): raise ValueError("Found douplicate in select_duts.") # Check if any iterable in iterable if any(map(lambda val: isinstance(val, Iterable), select_duts)): raise ValueError("Item in parameter select_duts is iterable.") # Create track, hit selection if select_fit_duts is None: # If None: use all DUTs select_fit_duts = list(range(n_duts)) # # copy each item # for hit_duts in select_hit_duts: # select_fit_duts.append(hit_duts[:]) # require a hit for each fit DUT # Check iterable and length if not isinstance(select_fit_duts, Iterable): raise ValueError("Parameter select_fit_duts is not an iterable.") elif not select_fit_duts: # empty iterable raise ValueError("Parameter select_fit_duts has no items.") # Check if only non-iterable in iterable if all(map(lambda val: not isinstance(val, Iterable) and val is not None, select_fit_duts)): select_fit_duts = [select_fit_duts[:] for _ in select_duts] # if None use all DUTs for index, item in enumerate(select_fit_duts): if item is None: select_fit_duts[index] = list(range(n_duts)) # Check if only iterable in iterable if not all(map(lambda val: isinstance(val, Iterable), select_fit_duts)): raise ValueError("Not all items in parameter select_fit_duts are iterable.") # Finally check length of all arrays if len(select_fit_duts) != len(select_duts): # empty iterable raise ValueError("Parameter select_fit_duts has the wrong length.") for index, fit_dut in enumerate(select_fit_duts): if len(fit_dut) < 2: # check the length of the items raise ValueError("Item in parameter select_fit_duts has length < 2.") # Create track, hit selection if select_hit_duts is None: # If None, require no hit # select_hit_duts = list(range(n_duts)) select_hit_duts = [] # Check iterable and length if not isinstance(select_hit_duts, Iterable): raise ValueError("Parameter select_hit_duts is not an iterable.") # elif not select_hit_duts: # empty iterable # raise ValueError("Parameter select_hit_duts has no items.") # Check if only non-iterable in iterable if all(map(lambda val: not isinstance(val, Iterable) and val is not None, select_hit_duts)): select_hit_duts = [select_hit_duts[:] for _ in select_duts] # If None, require no hit for index, item in enumerate(select_hit_duts): if item is None: select_hit_duts[index] = [] # Check if only iterable in iterable if not all(map(lambda val: isinstance(val, Iterable), select_hit_duts)): raise ValueError("Not all items in parameter select_hit_duts are iterable.") # Finally check length of all arrays if len(select_hit_duts) != len(select_duts): # empty iterable raise ValueError("Parameter select_hit_duts has the wrong length.") # Check iterable and length if not isinstance(exclude_dut_hit, Iterable): exclude_dut_hit = [exclude_dut_hit] * len(select_duts) elif not exclude_dut_hit: # empty iterable raise ValueError("Parameter exclude_dut_hit has no items.") # Finally check length of all array if len(exclude_dut_hit) != len(select_duts): # empty iterable raise ValueError("Parameter exclude_dut_hit has the wrong length.") # Check if only bools in iterable if not all(map(lambda val: isinstance(val, (bool,)), exclude_dut_hit)): raise ValueError("Not all items in parameter exclude_dut_hit are boolean.") # Check iterable and length if not isinstance(min_track_hits, Iterable): min_track_hits = [min_track_hits] * len(select_duts) # Finally check length of all arrays if len(min_track_hits) != len(select_duts): # empty iterable raise ValueError("Parameter min_track_hits has the wrong length.") fitted_duts = [] with tb.open_file(input_track_candidates_file, mode='r') as in_file_h5: with tb.open_file(output_alignment_file, mode='a') as out_file_h5: for fit_dut_index, actual_fit_dut in enumerate(select_duts): # Loop over the DUTs where tracks shall be fitted for # Test whether other DUTs have identical tracks # if yes, save some CPU time and fit only once. # This following list contains all DUT indices that will be fitted # during this step of the loop. if actual_fit_dut in fitted_duts: continue # calculate all DUTs with identical tracks to save processing time actual_fit_duts = [] for curr_fit_dut_index, curr_fit_dut in enumerate(select_duts): if (curr_fit_dut == actual_fit_dut or (((exclude_dut_hit[curr_fit_dut_index] is False and exclude_dut_hit[fit_dut_index] is False and set(select_fit_duts[curr_fit_dut_index]) == set(select_fit_duts[fit_dut_index])) or (exclude_dut_hit[curr_fit_dut_index] is False and exclude_dut_hit[fit_dut_index] is True and set(select_fit_duts[curr_fit_dut_index]) == (set(select_fit_duts[fit_dut_index]) - set([actual_fit_dut]))) or (exclude_dut_hit[curr_fit_dut_index] is True and exclude_dut_hit[fit_dut_index] is False and (set(select_fit_duts[curr_fit_dut_index]) - set([curr_fit_dut])) == set(select_fit_duts[fit_dut_index])) or (exclude_dut_hit[curr_fit_dut_index] is True and exclude_dut_hit[fit_dut_index] is True and (set(select_fit_duts[curr_fit_dut_index]) - set([curr_fit_dut])) == (set(select_fit_duts[fit_dut_index]) - set([actual_fit_dut])))) and set(select_hit_duts[curr_fit_dut_index]) == set(select_hit_duts[fit_dut_index]) and min_track_hits[curr_fit_dut_index] == min_track_hits[fit_dut_index])): actual_fit_duts.append(curr_fit_dut) # continue with fitting logging.info('== Fit tracks for %s ==', ', '.join([telescope[curr_dut].name for curr_dut in actual_fit_duts])) # select hit DUTs based on input parameters # hit DUTs are always enforced hit_duts = select_hit_duts[fit_dut_index] dut_hit_mask = 0 # DUTs required to have hits for dut_index in hit_duts: dut_hit_mask |= ((1 << dut_index)) logging.info('Require hits in %d DUTs for track selection: %s', len(hit_duts), ', '.join([telescope[curr_dut].name for curr_dut in hit_duts])) # select fit DUTs based on input parameters # exclude actual DUTs from fit DUTs if exclude_dut_hit parameter is set (for, e.g., unbiased residuals) fit_duts = list(set(select_fit_duts[fit_dut_index]) - set([actual_fit_dut])) if exclude_dut_hit[fit_dut_index] else select_fit_duts[fit_dut_index] if min_track_hits[fit_dut_index] is None: actual_min_track_hits = len(fit_duts) else: actual_min_track_hits = min_track_hits[fit_dut_index] if actual_min_track_hits < 2: raise ValueError('The number of required hits is smaller than 2. Cannot fit tracks for %s.', telescope[actual_fit_dut].name) dut_fit_mask = 0 # DUTs to be used for the fit for dut_index in fit_duts: dut_fit_mask |= ((1 << dut_index)) if actual_min_track_hits > len(fit_duts): raise RuntimeError("min_track_hits for DUT%d is larger than the number of fit DUTs" % (actual_fit_dut,)) logging.info('Require at least %d hits in %d DUTs for track selection: %s', actual_min_track_hits, len(fit_duts), ', '.join([telescope[curr_dut].name for curr_dut in fit_duts])) if scattering_planes is not None: logging.info('Adding the following scattering planes: %s', ', '.join([scp.name for scp in scattering_planes])) # Actual *change* of alignment parameters and covariance actual_align_state = np.zeros(shape=(len(telescope), 6), dtype=np.float64) # No change at beginning actual_align_cov = np.zeros(shape=(len(telescope), 6, 6), dtype=np.float64) # Calculate initial alignment initial_rotation_matrix, initial_position_vector, actual_align_cov = _calculate_initial_alignment(telescope, select_duts, select_telescope_duts, alignment_parameters, actual_align_cov, alignment_parameters_errors) # Loop over tracks in chunks and perform alignment. _alignment_loop(actual_align_state, actual_align_cov, initial_rotation_matrix, initial_position_vector) fitted_duts.extend(actual_fit_duts) output_pdf_file = output_alignment_file[:-3] + '.pdf' # Plot alignment result plot_utils.plot_kf_alignment(output_alignment_file, telescope, output_pdf_file) # Delete tmp track candidates file os.remove(input_track_candidates_file) def align_telescope(telescope_configuration, select_telescope_duts, reference_dut=None): telescope = Telescope(telescope_configuration) logging.info('= Beam-alignment of the telescope =') logging.info('Use %d DUTs for beam-alignment: %s', len(select_telescope_duts), ', '.join([telescope[index].name for index in select_telescope_duts])) telescope_duts_positions = np.full((len(select_telescope_duts), 3), fill_value=np.nan, dtype=np.float64) for index, dut_index in enumerate(select_telescope_duts): telescope_duts_positions[index, 0] = telescope[dut_index].translation_x telescope_duts_positions[index, 1] = telescope[dut_index].translation_y telescope_duts_positions[index, 2] = telescope[dut_index].translation_z # the x and y translation for the reference DUT will be set to 0 if reference_dut is not None: first_telescope_dut_index = reference_dut else: # calculate reference DUT, use DUT with the smallest z position first_telescope_dut_index = select_telescope_duts[np.argmin(telescope_duts_positions[:, 2])] offset, slope = line_fit_3d(positions=telescope_duts_positions) first_telescope_dut = telescope[first_telescope_dut_index] logging.info('Reference DUT for beam-alignment: %s', first_telescope_dut.name) first_dut_translation_x = first_telescope_dut.translation_x first_dut_translation_y = first_telescope_dut.translation_y first_telescope_dut_intersection = geometry_utils.get_line_intersections_with_dut( line_origins=offset[np.newaxis, :], line_directions=slope[np.newaxis, :], translation_x=first_telescope_dut.translation_x, translation_y=first_telescope_dut.translation_y, translation_z=first_telescope_dut.translation_z, rotation_alpha=first_telescope_dut.rotation_alpha, rotation_beta=first_telescope_dut.rotation_beta, rotation_gamma=first_telescope_dut.rotation_gamma) for actual_dut in telescope: dut_intersection = geometry_utils.get_line_intersections_with_dut( line_origins=offset[np.newaxis, :], line_directions=slope[np.newaxis, :], translation_x=actual_dut.translation_x, translation_y=actual_dut.translation_y, translation_z=actual_dut.translation_z, rotation_alpha=actual_dut.rotation_alpha, rotation_beta=actual_dut.rotation_beta, rotation_gamma=actual_dut.rotation_gamma) actual_dut.translation_x -= (dut_intersection[0, 0] - first_telescope_dut_intersection[0, 0] + first_dut_translation_x) actual_dut.translation_y -= (dut_intersection[0, 1] - first_telescope_dut_intersection[0, 1] + first_dut_translation_y) # set telescope alpha/beta rotation for a better beam alignment and track finding improvement # this is compensating the previously made changes to the DUT coordinates total_angles, alpha_angles, beta_angles = get_angles( slopes=slope[np.newaxis, :], xz_plane_normal=np.array([0.0, 1.0, 0.0]), yz_plane_normal=np.array([1.0, 0.0, 0.0]), dut_plane_normal=np.array([0.0, 0.0, 1.0])) telescope.rotation_alpha -= alpha_angles[0] telescope.rotation_beta -= beta_angles[0] telescope.save_configuration() def calculate_transformation(telescope_configuration, input_tracks_file, select_duts, select_alignment_parameters=None, use_limits=True, max_iterations=None, chunk_size=1000000): '''Takes the tracks and calculates and stores the transformation parameters. Parameters ---------- telescope_configuration : string Filename of the telescope configuration file. input_tracks_file : string Filename of the input tracks file. select_duts : list Selecting DUTs that will be processed. select_alignment_parameters : list Selecting the transformation parameters that will be stored to the telescope configuration file for each selected DUT. If None, all 6 transformation parameters will be calculated. use_limits : bool If True, use column and row limits from pre-alignment for selecting the data. chunk_size : int Chunk size of the data when reading from file. ''' telescope = Telescope(telescope_configuration) logging.info('== Calculating transformation for %d DUTs ==' % len(select_duts)) if select_alignment_parameters is None: select_alignment_parameters = [default_alignment_parameters] * len(select_duts) if len(select_duts) != len(select_alignment_parameters): raise ValueError("Parameter select_alignment_parameters has the wrong length.") for index, actual_alignment_parameters in enumerate(select_alignment_parameters): if actual_alignment_parameters is None: select_alignment_parameters[index] = default_alignment_parameters else: non_valid_paramters = set(actual_alignment_parameters) - set(default_alignment_parameters) if non_valid_paramters: raise ValueError("Found invalid values in parameter select_alignment_parameters: %s." % ", ".join(non_valid_paramters)) with tb.open_file(input_tracks_file, mode='r') as in_file_h5: for index, actual_dut_index in enumerate(select_duts): actual_dut = telescope[actual_dut_index] node = in_file_h5.get_node(in_file_h5.root, 'Tracks_DUT%d' % actual_dut_index) logging.info('= Calculate transformation for %s =', actual_dut.name) logging.info("Modify alignment parameters: %s", ', '.join([alignment_paramter for alignment_paramter in select_alignment_parameters[index]])) if use_limits: limit_x_local = actual_dut.x_limit # (lower limit, upper limit) limit_y_local = actual_dut.y_limit # (lower limit, upper limit) else: limit_x_local = None limit_y_local = None rotation_average = None translation_average = None # euler_angles_average = None # calculate equal chunk size start_val = max(int(node.nrows / chunk_size), 2) while True: chunk_indices = np.linspace(0, node.nrows, start_val).astype(np.int) if np.all(np.diff(chunk_indices) <= chunk_size): break start_val += 1 chunk_index = 0 n_tracks = 0 total_n_tracks = 0 while chunk_indices[chunk_index] < node.nrows: tracks_chunk = node.read(start=chunk_indices[chunk_index], stop=chunk_indices[chunk_index + 1]) # select good hits and tracks selection = np.logical_and(~np.isnan(tracks_chunk['x_dut_%d' % actual_dut_index]), ~np.isnan(tracks_chunk['track_chi2'])) tracks_chunk = tracks_chunk[selection] # Take only tracks where actual dut has a hit, otherwise residual wrong # Coordinates in global coordinate system (x, y, z) hit_x_local, hit_y_local, hit_z_local = tracks_chunk['x_dut_%d' % actual_dut_index], tracks_chunk['y_dut_%d' % actual_dut_index], tracks_chunk['z_dut_%d' % actual_dut_index] offsets = np.column_stack(actual_dut.local_to_global_position( x=tracks_chunk['offset_x'], y=tracks_chunk['offset_y'], z=tracks_chunk['offset_z'])) slopes = np.column_stack(actual_dut.local_to_global_position( x=tracks_chunk['slope_x'], y=tracks_chunk['slope_y'], z=tracks_chunk['slope_z'], translation_x=0.0, translation_y=0.0, translation_z=0.0, rotation_alpha=actual_dut.rotation_alpha, rotation_beta=actual_dut.rotation_beta, rotation_gamma=actual_dut.rotation_gamma)) if not np.allclose(hit_z_local, 0.0): raise RuntimeError("Transformation into local coordinate system gives z != 0") limit_xy_local_sel = np.ones_like(hit_x_local, dtype=np.bool) if limit_x_local is not None and np.isfinite(limit_x_local[0]): limit_xy_local_sel &= hit_x_local >= limit_x_local[0] if limit_x_local is not None and np.isfinite(limit_x_local[1]): limit_xy_local_sel &= hit_x_local <= limit_x_local[1] if limit_y_local is not None and np.isfinite(limit_y_local[0]): limit_xy_local_sel &= hit_y_local >= limit_y_local[0] if limit_y_local is not None and np.isfinite(limit_y_local[1]): limit_xy_local_sel &= hit_y_local <= limit_y_local[1] hit_x_local = hit_x_local[limit_xy_local_sel] hit_y_local = hit_y_local[limit_xy_local_sel] hit_z_local = hit_z_local[limit_xy_local_sel] hit_local = np.column_stack([hit_x_local, hit_y_local, hit_z_local]) slopes = slopes[limit_xy_local_sel] offsets = offsets[limit_xy_local_sel] n_tracks =
np.count_nonzero(limit_xy_local_sel)
numpy.count_nonzero
import tensorflow_advanced_segmentation_models as tasm import os import cv2 import numpy as np from time import time import tensorflow as tf import albumentations as A import matplotlib.pyplot as plt import tensorflow.keras.backend as K from labelme.utils import lblsave as label_save from common.utils import visualize_segmentation from PIL import Image DATA_DIR = "/home/minouei/Downloads/datasets/contract/version2" x_train_dir = os.path.join(DATA_DIR, 'images/train') y_train_dir = os.path.join(DATA_DIR, 'annotations/train') x_valid_dir = os.path.join(DATA_DIR, 'images/val') y_valid_dir = os.path.join(DATA_DIR, 'annotations/val') x_test_dir = os.path.join(DATA_DIR, 'images/val') y_test_dir = os.path.join(DATA_DIR, 'annotations/val') """### Helper Functions""" # helper function for data visualization def visualize(**images): """PLot images in one row.""" n = len(images) plt.figure(figsize=(16, 5)) ns='' for i, (name, image) in enumerate(images.items()): plt.subplot(1, n, i + 1) plt.xticks([]) plt.yticks([]) plt.title(' '.join(name.split('_')).title()) plt.imshow(image) ns=f'{name}_{i}' # plt.show() plt.savefig(ns+'.png', bbox_inches='tight') # helper function for data visualization def denormalize(x): """Scale image to range 0..1 for correct plot""" x_max = np.percentile(x, 98) x_min = np.percentile(x, 2) x = (x - x_min) / (x_max - x_min) x = x.clip(0, 1) return x def round_clip_0_1(x, **kwargs): return x.round().clip(0, 1) """## Data Augmentation Functions""" # define heavy augmentations def get_training_augmentation(height, width): train_transform = [ A.PadIfNeeded(min_height=height, min_width=width, always_apply=True, border_mode=0), A.Resize(height, width, always_apply=True) ] return A.Compose(train_transform) def get_validation_augmentation(height, width): """Add paddings to make image shape divisible by 32""" test_transform = [ A.PadIfNeeded(height, width), A.Resize(height, width, always_apply=True) ] return A.Compose(test_transform) def data_get_preprocessing(preprocessing_fn): """Construct preprocessing transform Args: preprocessing_fn (callbale): data normalization function (can be specific for each pretrained neural network) Return: transform: albumentations.Compose """ _transform = [ A.Lambda(image=preprocessing_fn), ] return A.Compose(_transform) """## Define some global variables""" TOTAL_CLASSES = ['background', 'headerlogo', 'twocoltabel', 'recieveraddress', 'text', 'senderaddress', 'ortdatum', 'companyinfo', 'fulltabletyp1', 'fulltabletyp2', 'copylogo', 'footerlogo', 'footertext', 'signatureimage', 'fulltabletyp3', 'unlabelled'] MODEL_CLASSES = TOTAL_CLASSES ALL_CLASSES = False if MODEL_CLASSES == TOTAL_CLASSES: MODEL_CLASSES = MODEL_CLASSES[:-1] ALL_CLASSES = True BATCH_SIZE = 1 N_CLASSES = 16 HEIGHT = 704 WIDTH = 704 BACKBONE_NAME = "efficientnetb3" WEIGHTS = "imagenet" WWO_AUG = False # train data with and without augmentation """### Functions to calculate appropriate class weights""" ################################################################################ # Class Weights ################################################################################ def get_dataset_counts(d): pixel_count = np.array([i for i in d.values()]) sum_pixel_count = 0 for i in pixel_count: sum_pixel_count += i return pixel_count, sum_pixel_count def get_dataset_statistics(pixel_count, sum_pixel_count): pixel_frequency = np.round(pixel_count / sum_pixel_count, 4) mean_pixel_frequency = np.round(
np.mean(pixel_frequency)
numpy.mean
# -*- coding: utf-8 -*- from context import matext as mx import numpy as np import time import operator as op def time_function(times, f, *args): tic = time.time() for i in range(times): f(*args) toc = time.time() return toc - tic def print_result (operation, matext_time, numpy_time, difference): print('[{}]\t Matex runtime: {:.3f} sec,\ Numpy runtime: {:.3f} sec,\ Maximum elementwise difference: {}'\ .format(operation, matext_time, numpy_time, difference)) if __name__ == '__main__': # Let's compare with numpy how fast the implementations are times = 1 N = 400 M = 600 np_array1 =
np.random.rand(N,N)
numpy.random.rand
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from lib.ops import * import collections import os import math import scipy.misc as sic import numpy as np # Define the dataloader def data_loader(FLAGS): with tf.device('/cpu:0'): # Define the returned data batches Data = collections.namedtuple('Data', 'paths_LR, paths_HR, inputs, targets, image_count, steps_per_epoch') #Check the input directory if (FLAGS.input_dir_LR == 'None') or (FLAGS.input_dir_HR == 'None'): raise ValueError('Input directory is not provided') if (not os.path.exists(FLAGS.input_dir_LR)) or (not os.path.exists(FLAGS.input_dir_HR)): raise ValueError('Input directory not found') image_list_LR = os.listdir(FLAGS.input_dir_LR) image_list_LR = [_ for _ in image_list_LR if _.endswith('.png')] if len(image_list_LR)==0: raise Exception('No png files in the input directory') image_list_LR_temp = sorted(image_list_LR) image_list_LR = [os.path.join(FLAGS.input_dir_LR, _) for _ in image_list_LR_temp] image_list_HR = [os.path.join(FLAGS.input_dir_HR, _) for _ in image_list_LR_temp] image_list_LR_tensor = tf.convert_to_tensor(image_list_LR, dtype=tf.string) image_list_HR_tensor = tf.convert_to_tensor(image_list_HR, dtype=tf.string) with tf.variable_scope('load_image'): # define the image list queue # image_list_LR_queue = tf.train.string_input_producer(image_list_LR, shuffle=False, capacity=FLAGS.name_queue_capacity) # image_list_HR_queue = tf.train.string_input_producer(image_list_HR, shuffle=False, capacity=FLAGS.name_queue_capacity) #print('[Queue] image list queue use shuffle: %s'%(FLAGS.mode == 'Train')) output = tf.train.slice_input_producer([image_list_LR_tensor, image_list_HR_tensor], shuffle=False, capacity=FLAGS.name_queue_capacity) # Reading and decode the images reader = tf.WholeFileReader(name='image_reader') image_LR = tf.read_file(output[0]) image_HR = tf.read_file(output[1]) input_image_LR = tf.image.decode_png(image_LR, channels=3) input_image_HR = tf.image.decode_png(image_HR, channels=3) input_image_LR = tf.image.convert_image_dtype(input_image_LR, dtype=tf.float32) input_image_HR = tf.image.convert_image_dtype(input_image_HR, dtype=tf.float32) assertion = tf.assert_equal(tf.shape(input_image_LR)[2], 3, message="image does not have 3 channels") with tf.control_dependencies([assertion]): input_image_LR = tf.identity(input_image_LR) input_image_HR = tf.identity(input_image_HR) # Normalize the low resolution image to [0, 1], high resolution to [-1, 1] a_image = preprocessLR(input_image_LR) b_image = preprocess(input_image_HR) inputs, targets = [a_image, b_image] # The data augmentation part with tf.name_scope('data_preprocessing'): with tf.name_scope('random_crop'): # Check whether perform crop if (FLAGS.random_crop is True) and FLAGS.mode == 'train': print('[Config] Use random crop') # Set the shape of the input image. the target will have 4X size input_size = tf.shape(inputs) target_size = tf.shape(targets) offset_w = tf.cast(tf.floor(tf.random_uniform([], 0, tf.cast(input_size[1], tf.float32) - FLAGS.crop_size)), dtype=tf.int32) offset_h = tf.cast(tf.floor(tf.random_uniform([], 0, tf.cast(input_size[0], tf.float32) - FLAGS.crop_size)), dtype=tf.int32) if FLAGS.task == 'SRGAN' or FLAGS.task == 'SRResnet': inputs = tf.image.crop_to_bounding_box(inputs, offset_h, offset_w, FLAGS.crop_size, FLAGS.crop_size) targets = tf.image.crop_to_bounding_box(targets, offset_h*4, offset_w*4, FLAGS.crop_size*4, FLAGS.crop_size*4) elif FLAGS.task == 'denoise': inputs = tf.image.crop_to_bounding_box(inputs, offset_h, offset_w, FLAGS.crop_size, FLAGS.crop_size) targets = tf.image.crop_to_bounding_box(targets, offset_h, offset_w, FLAGS.crop_size, FLAGS.crop_size) # Do not perform crop else: inputs = tf.identity(inputs) targets = tf.identity(targets) with tf.variable_scope('random_flip'): # Check for random flip: if (FLAGS.flip is True) and (FLAGS.mode == 'train'): print('[Config] Use random flip') # Produce the decision of random flip decision = tf.random_uniform([], 0, 1, dtype=tf.float32) input_images = random_flip(inputs, decision) target_images = random_flip(targets, decision) else: input_images = tf.identity(inputs) target_images = tf.identity(targets) if FLAGS.task == 'SRGAN' or FLAGS.task == 'SRResnet': input_images.set_shape([FLAGS.crop_size, FLAGS.crop_size, 3]) target_images.set_shape([FLAGS.crop_size*4, FLAGS.crop_size*4, 3]) elif FLAGS.task == 'denoise': input_images.set_shape([FLAGS.crop_size, FLAGS.crop_size, 3]) target_images.set_shape([FLAGS.crop_size, FLAGS.crop_size, 3]) if FLAGS.mode == 'train': paths_LR_batch, paths_HR_batch, inputs_batch, targets_batch = tf.train.shuffle_batch([output[0], output[1], input_images, target_images], batch_size=FLAGS.batch_size, capacity=FLAGS.image_queue_capacity+4*FLAGS.batch_size, min_after_dequeue=FLAGS.image_queue_capacity, num_threads=FLAGS.queue_thread) else: paths_LR_batch, paths_HR_batch, inputs_batch, targets_batch = tf.train.batch([output[0], output[1], input_images, target_images], batch_size=FLAGS.batch_size, num_threads=FLAGS.queue_thread, allow_smaller_final_batch=True) steps_per_epoch = int(math.ceil(len(image_list_LR) / FLAGS.batch_size)) if FLAGS.task == 'SRGAN' or FLAGS.task == 'SRResnet': inputs_batch.set_shape([FLAGS.batch_size, FLAGS.crop_size, FLAGS.crop_size, 3]) targets_batch.set_shape([FLAGS.batch_size, FLAGS.crop_size*4, FLAGS.crop_size*4, 3]) elif FLAGS.task == 'denoise': inputs_batch.set_shape([FLAGS.batch_size, FLAGS.crop_size, FLAGS.crop_size, 3]) targets_batch.set_shape([FLAGS.batch_size, FLAGS.crop_size, FLAGS.crop_size, 3]) return Data( paths_LR=paths_LR_batch, paths_HR=paths_HR_batch, inputs=inputs_batch, targets=targets_batch, image_count=len(image_list_LR), steps_per_epoch=steps_per_epoch ) # The test data loader. Allow input image with different size def test_data_loader(FLAGS): # Get the image name list if (FLAGS.input_dir_LR == 'None') or (FLAGS.input_dir_HR == 'None'): raise ValueError('Input directory is not provided') if (not os.path.exists(FLAGS.input_dir_LR)) or (not os.path.exists(FLAGS.input_dir_HR)): raise ValueError('Input directory not found') image_list_LR_temp = os.listdir(FLAGS.input_dir_LR) image_list_LR = [os.path.join(FLAGS.input_dir_LR, _) for _ in image_list_LR_temp if _.split('.')[-1] == 'png'] image_list_HR = [os.path.join(FLAGS.input_dir_HR, _) for _ in image_list_LR_temp if _.split('.')[-1] == 'png'] # Read in and preprocess the images def preprocess_test(name, mode): im = sic.imread(name, mode="RGB").astype(np.float32) # check grayscale image if im.shape[-1] != 3: h, w = im.shape temp = np.empty((h, w, 3), dtype=np.uint8) temp[:, :, :] = im[:, :, np.newaxis] im = temp.copy() if mode == 'LR': im = im / np.max(im) elif mode == 'HR': im = im / np.max(im) im = im * 2 - 1 return im image_LR = [preprocess_test(_, 'LR') for _ in image_list_LR] image_HR = [preprocess_test(_, 'HR') for _ in image_list_HR] # Push path and image into a list Data = collections.namedtuple('Data', 'paths_LR, paths_HR, inputs, targets') return Data( paths_LR = image_list_LR, paths_HR = image_list_HR, inputs = image_LR, targets = image_HR ) # The inference data loader. Allow input image with different size def inference_data_loader(FLAGS): # Get the image name list if (FLAGS.input_dir_LR == 'None'): raise ValueError('Input directory is not provided') if not os.path.exists(FLAGS.input_dir_LR): raise ValueError('Input directory not found') image_list_LR_temp = os.listdir(FLAGS.input_dir_LR) image_list_LR = [os.path.join(FLAGS.input_dir_LR, _) for _ in image_list_LR_temp if _.split('.')[-1] == 'png'] # Read in and preprocess the images def preprocess_test(name): im = sic.imread(name, mode="RGB").astype(np.float32) # check grayscale image if im.shape[-1] != 3: h, w = im.shape temp =
np.empty((h, w, 3), dtype=np.uint8)
numpy.empty
import glob import logging import os import numpy as np import pickle import sys import torch from torch_geometric.data import Data from torch_geometric.nn.pool import radius_graph from tqdm import tqdm from typing import Callable, List, Optional from aegnn.utils.multiprocessing import TaskManager from .utils.normalization import normalize_time from .base.event_dm import EventDataModule class Gen1(EventDataModule): def __init__(self, batch_size: int = 64, shuffle: bool = True, num_workers: int = 8, pin_memory: bool = False, transform: Optional[Callable[[Data], Data]] = None): super(Gen1, self).__init__(img_shape=(304, 240), batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=pin_memory, transform=transform) pre_processing_params = {"r": 3.0, "d_max": 128, "n_samples": 25000, "sampling": True} self.save_hyperparameters({"preprocessing": pre_processing_params}) def _prepare_dataset(self, mode: str): raw_files = self.raw_files(mode) logging.debug(f"Found {len(raw_files)} raw files in dataset (mode = {mode})") total_bbox_count = self._total_bbox_count(raw_files) logging.debug(f"Total count of (filtered) bounding boxes = {total_bbox_count}") task_manager = TaskManager(self.num_workers, queue_size=self.num_workers) for rf in tqdm(raw_files): task_manager.queue(self._processing, rf=rf, root=self.root, read_annotations=self._read_annotations, read_label=self._read_label, buffer_to_data=self._buffer_to_data) task_manager.join() def _processing(self, rf: str, root: str, read_annotations, read_label, buffer_to_data): data_loader = PSEELoader(rf) params = self.hparams.preprocessing bounding_boxes = read_annotations(rf) labels = np.array(read_label(bounding_boxes)) for i, bbox in enumerate(bounding_boxes): processed_dir = os.path.join(root, "processed") processed_file = rf.replace(root, processed_dir).replace(".dat", f"{i}.pkl") if os.path.exists(processed_file): continue # Determine temporal window around the current bounding box [t_start, t_end]. Add all of the # bounding boxes within this window to the sample. sample_dict = dict() t_bbox = bbox[0] t_start = t_bbox - 100000 # 100 ms t_end = t_bbox + 300000 # 300 ms bbox_mask = np.logical_and(t_start < bounding_boxes['ts'], bounding_boxes['ts'] < t_end) sample_dict['bbox'] = torch.tensor(bounding_boxes[bbox_mask].tolist()) sample_dict['label'] = labels[bbox_mask] sample_dict['raw_file'] = rf # Load raw data around bounding box. idx_start = data_loader.seek_time(t_start) data = data_loader.load_delta_t(t_end - t_start) sample_dict['raw'] = (idx_start, data.size) # offset and number of events if data.size < 4000: continue # Normalize data to same number of events per sample. Therefore, either use subsampling to get # a larger temporal window or do not to get a more connected graph. num_samples = params["n_samples"] if data.size <= num_samples: sample_idx = np.arange(data.size) elif params["sampling"]: # sub-sampling -> random N events sample_idx = np.random.choice(np.arange(data.size), size=num_samples, replace=False) else: # no sub-sampling -> first N events sample_idx = np.arange(num_samples) sample = buffer_to_data(data[sample_idx]) sample_dict['sample_idx'] = sample_idx # Graph generation (edges w.r.t. sub-sampled graph). device = torch.device(torch.cuda.current_device()) sample.pos[:, 2] = normalize_time(sample.pos[:, 2]) edge_index = radius_graph(sample.pos.to(device), r=params["r"], max_num_neighbors=params["d_max"]) sample_dict['edge_index'] = edge_index.cpu() # Store resulting dictionary in file, however, the data only contains the data necessary # to re-create the graph, not the raw data itself. os.makedirs(os.path.dirname(processed_file), exist_ok=True) with open(processed_file, 'wb') as f: pickle.dump(sample_dict, f) ######################################################################################################### # Processing ############################################################################################ ######################################################################################################### @staticmethod def _read_annotations(raw_file: str, skip_ts=int(5e5), min_box_diagonal=60, min_box_side=20) -> np.ndarray: boxes = np.load(raw_file.replace("_td.dat", "_bbox.npy")) # Bounding box filtering to avoid dealing with too small or initial bounding boxes. # See https://github.com/prophesee-ai/prophesee-automotive-dataset-toolbox/blob/master/src/io/box_filtering.py # Format: (ts, x, y, w, h, class_id, confidence = 1, track_id) ts = boxes['ts'] width = boxes['w'] height = boxes['h'] diagonal_square = width**2+height**2 mask = (ts > skip_ts)*(diagonal_square >= min_box_diagonal**2)*(width >= min_box_side)*(height >= min_box_side) return boxes[mask] @staticmethod def _read_label(bounding_boxes: np.ndarray) -> List[str]: class_id = bounding_boxes['class_id'].tolist() label_dict = {0: "car", 1: "pedestrian"} return [label_dict.get(cid, None) for cid in class_id] @staticmethod def _buffer_to_data(buffer: np.ndarray, **kwargs) -> Data: x = torch.from_numpy(buffer['x'].astype(np.float32)) y = torch.from_numpy(buffer['y'].astype(np.float32)) t = torch.from_numpy(buffer['t'].astype(np.float32)) p = torch.from_numpy(buffer['p'].astype(np.float32)).view(-1, 1) pos = torch.stack([x, y, t], dim=1) return Data(x=p, pos=pos, **kwargs) def _load_processed_file(self, f_path: str) -> Data: with open(f_path, 'rb') as f: data_dict = pickle.load(f) data_loader = PSEELoader(data_dict['raw_file']) raw_start, raw_num_events = data_dict['raw'] data_loader.seek_event(raw_start) data = data_loader.load_n_events(raw_num_events) data = data[data_dict['sample_idx']] data = self._buffer_to_data(data, label=data_dict['label'], file_id=f_path) data.bbox = data_dict['bbox'][:, 1:6].long() # (x, y, w, h, class_id) data.y = data.bbox[:, -1] data.pos[:, 2] = normalize_time(data.pos[:, 2]) # time normalization data.edge_index = data_dict['edge_index'] return data ######################################################################################################### # Files ################################################################################################# ######################################################################################################### def raw_files(self, mode: str) -> List[str]: return glob.glob(os.path.join(self.root, mode, "*_td.dat")) def processed_files(self, mode: str) -> List[str]: processed_dir = os.path.join(self.root, "processed") return glob.glob(os.path.join(processed_dir, mode, "*.pkl")) def _total_bbox_count(self, raw_files: List[str]) -> int: num_bbox = 0 for rf in raw_files: bounding_boxes = self._read_annotations(rf) num_bbox += bounding_boxes.size return num_bbox @property def classes(self) -> List[str]: return ["car", "pedestrian"] ######################################################################################################### # Gen1 specific loader function from https://github.com/prophesee-ai/prophesee-automotive-dataset-toolbox ######################################################################################################### EV_TYPE = [('t', 'u4'), ('_', 'i4')] # Event2D EV_STRING = 'Event2D' class PSEELoader(object): """ PSEELoader loads a dat or npy file and stream events """ def __init__(self, datfile): """ ctor :param datfile: binary dat or npy file """ self._extension = datfile.split('.')[-1] assert self._extension in ["dat", "npy"], 'input file path = {}'.format(datfile) self._file = open(datfile, "rb") self._start, self.ev_type, self._ev_size, self._size = _parse_header(self._file) assert self._ev_size != 0 self._dtype = EV_TYPE self._decode_dtype = [] for dtype in self._dtype: if dtype[0] == '_': self._decode_dtype += [('x', 'u2'), ('y', 'u2'), ('p', 'u1')] else: self._decode_dtype.append(dtype) # size self._file.seek(0, os.SEEK_END) self._end = self._file.tell() self._ev_count = (self._end - self._start) // self._ev_size self.done = False self._file.seek(self._start) # If the current time is t, it means that next event that will be loaded has a # timestamp superior or equal to t (event with timestamp exactly t is not loaded yet) self.current_time = 0 self.duration_s = self.total_time() * 1e-6 def reset(self): """reset at beginning of file""" self._file.seek(self._start) self.done = False self.current_time = 0 def event_count(self): """ getter on event_count :return: """ return self._ev_count def get_size(self): """"(height, width) of the imager might be (None, None)""" return self._size def __repr__(self): """ prints properties :return: """ wrd = '' wrd += 'PSEELoader:' + '\n' wrd += '-----------' + '\n' if self._extension == 'dat': wrd += 'Event Type: ' + str(EV_STRING) + '\n' elif self._extension == 'npy': wrd += 'Event Type: numpy array element\n' wrd += 'Event Size: ' + str(self._ev_size) + ' bytes\n' wrd += 'Event Count: ' + str(self._ev_count) + '\n' wrd += 'Duration: ' + str(self.duration_s) + ' s \n' wrd += '-----------' + '\n' return wrd def load_n_events(self, ev_count): """ load batch of n events :param ev_count: number of events that will be loaded :return: events Note that current time will be incremented to reach the timestamp of the first event not loaded yet """ event_buffer = np.empty((ev_count + 1,), dtype=self._decode_dtype) pos = self._file.tell() count = (self._end - pos) // self._ev_size if ev_count >= count: self.done = True ev_count = count _stream_td_data(self._file, event_buffer, self._dtype, ev_count) self.current_time = event_buffer['t'][ev_count - 1] + 1 else: _stream_td_data(self._file, event_buffer, self._dtype, ev_count + 1) self.current_time = event_buffer['t'][ev_count] self._file.seek(pos + ev_count * self._ev_size) return event_buffer[:ev_count] def load_delta_t(self, delta_t): """ loads a slice of time. :param delta_t: (us) slice thickness :return: events Note that current time will be incremented by delta_t. If an event is timestamped at exactly current_time it will not be loaded. """ if delta_t < 1: raise ValueError("load_delta_t(): delta_t must be at least 1 micro-second: {}".format(delta_t)) if self.done or (self._file.tell() >= self._end): self.done = True return np.empty((0,), dtype=self._decode_dtype) final_time = self.current_time + delta_t tmp_time = self.current_time start = self._file.tell() pos = start nevs = 0 batch = 100000 event_buffer = [] # data is read by buffers until enough events are read or until the end of the file while tmp_time < final_time and pos < self._end: count = (min(self._end, pos + batch * self._ev_size) - pos) // self._ev_size buffer = np.empty((count,), dtype=self._decode_dtype) _stream_td_data(self._file, buffer, self._dtype, count) tmp_time = buffer['t'][-1] event_buffer.append(buffer) nevs += count pos = self._file.tell() if tmp_time >= final_time: self.current_time = final_time else: self.current_time = tmp_time + 1 assert len(event_buffer) > 0 idx = np.searchsorted(event_buffer[-1]['t'], final_time) event_buffer[-1] = event_buffer[-1][:idx] event_buffer = np.concatenate(event_buffer) idx = len(event_buffer) self._file.seek(start + idx * self._ev_size) self.done = self._file.tell() >= self._end return event_buffer def seek_event(self, ev_count): """ seek in the file by ev_count events :param ev_count: seek in the file after ev_count events Note that current time will be set to the timestamp of the next event. """ if ev_count <= 0: self._file.seek(self._start) self.current_time = 0 elif ev_count >= self._ev_count: # we put the cursor one event before and read the last event # which puts the file cursor at the right place # current_time is set to the last event timestamp + 1 self._file.seek(self._start + (self._ev_count - 1) * self._ev_size) self.current_time = np.fromfile(self._file, dtype=self._dtype, count=1)['t'][0] + 1 else: # we put the cursor at the *ev_count*nth event self._file.seek(self._start + ev_count * self._ev_size) # we read the timestamp of the following event (this change the position in the file) self.current_time = np.fromfile(self._file, dtype=self._dtype, count=1)['t'][0] # this is why we go back at the right position here self._file.seek(self._start + ev_count * self._ev_size) self.done = self._file.tell() >= self._end def seek_time(self, final_time, term_criterion: int = 100000): """ go to the time final_time inside the file. This is implemented using a binary search algorithm :param final_time: expected time :param term_criterion: (nb event) binary search termination criterion it will load those events in a buffer and do a numpy searchsorted so the result is always exact """ if final_time > self.total_time(): self._file.seek(self._end) self.done = True self.current_time = self.total_time() + 1 return if final_time <= 0: self.reset() return low = 0 high = self._ev_count # binary search while high - low > term_criterion: middle = (low + high) // 2 self.seek_event(middle) mid = np.fromfile(self._file, dtype=self._dtype, count=1)['t'][0] if mid > final_time: high = middle elif mid < final_time: low = middle + 1 else: self.current_time = final_time self.done = self._file.tell() >= self._end return # we now know that it is between low and high self.seek_event(low) final_buffer = np.fromfile(self._file, dtype=self._dtype, count=high - low)['t'] final_index = np.searchsorted(final_buffer, final_time) self.seek_event(low + final_index) self.current_time = final_time self.done = self._file.tell() >= self._end return low + final_index def total_time(self): """ get total duration of video in mus, providing there is no overflow :return: """ if not self._ev_count: return 0 # save the state of the class pos = self._file.tell() current_time = self.current_time done = self.done # read the last event's timestamp self.seek_event(self._ev_count - 1) time = np.fromfile(self._file, dtype=self._dtype, count=1)['t'][0] # restore the state self._file.seek(pos) self.current_time = current_time self.done = done return time def __del__(self): self._file.close() def _parse_header(f): """ Parses the header of a dat file Args: - f file handle to a dat file return : - int position of the file cursor after the header - int type of event - int size of event in bytes - size (height, width) tuple of int or None """ f.seek(0, os.SEEK_SET) bod = None end_of_header = False header = [] num_comment_line = 0 size = [None, None] # parse header while not end_of_header: bod = f.tell() line = f.readline() if sys.version_info > (3, 0): first_item = line.decode("latin-1")[:2] else: first_item = line[:2] if first_item != '% ': end_of_header = True else: words = line.split() if len(words) > 1: if words[1] == 'Date': header += ['Date', words[2] + ' ' + words[3]] if words[1] == 'Height' or words[1] == b'Height': # compliant with python 3 (and python2) size[0] = int(words[2]) header += ['Height', words[2]] if words[1] == 'Width' or words[1] == b'Width': # compliant with python 3 (and python2) size[1] = int(words[2]) header += ['Width', words[2]] else: header += words[1:3] num_comment_line += 1 # parse data f.seek(bod, os.SEEK_SET) if num_comment_line > 0: # Ensure compatibility with previous files. # Read event type ev_type = np.frombuffer(f.read(1), dtype=np.uint8)[0] # Read event size ev_size = np.frombuffer(f.read(1), dtype=np.uint8)[0] else: ev_type = 0 ev_size = sum([int(n[-1]) for _, n in EV_TYPE]) bod = f.tell() return bod, ev_type, ev_size, size def _stream_td_data(file_handle, buffer, dtype, ev_count=-1): """ Streams data from opened file_handle args : - file_handle: file object - buffer: pre-allocated buffer to fill with events - dtype: expected fields - ev_count: number of events """ dat = np.fromfile(file_handle, dtype=dtype, count=ev_count) count = len(dat['t']) for name, _ in dtype: if name == '_': buffer['x'][:count] = np.bitwise_and(dat["_"], 16383) buffer['y'][:count] = np.right_shift(np.bitwise_and(dat["_"], 268419072), 14) buffer['p'][:count] = np.right_shift(
np.bitwise_and(dat["_"], 268435456)
numpy.bitwise_and
import random import numpy as np from sklearn.model_selection import StratifiedKFold def run_neural_network(prepare_input_data, build_neural_network, evaluate_model): """ Performs cross validation for the clean classifier, using 5 splits. :param prepare_input_data: callback to prepare input data :param build_neural_network: callback to build the neural network :param evaluate_model: callback to prepare and evaluate the model :return: """ input_data = prepare_input_data() random.shuffle(input_data) images = [elem['data'] for elem in input_data] labels = [elem['image_type'] for elem in input_data] images = np.array(images) labels = np.array(labels) kfold = StratifiedKFold(n_splits=5, shuffle=True, random_state=None) cvscores = [] cvlosses = [] i = 0 for train, test in kfold.split(images, labels): i += 1 print("cross validation: ", i) model = build_neural_network() val_loss, val_acc = evaluate_model(model, images[test], labels[test], images[train], labels[train]) print('Loss value ' + str(val_loss)) print('Accuracy ' + str(val_acc)) cvscores.append(val_acc * 100) cvlosses.append(val_loss) print("%.2f%% (+/- %.2f%%)" % (
np.mean(cvscores)
numpy.mean
""" Command line scripts for managing HDeepRM experiments. """ import argparse as ap import csv import json import os import os.path as path import random as rnd import subprocess as sp import evalys.jobset as ej import evalys.utils as eu import evalys.visu.core as evc import evalys.visu.gantt as evg import evalys.visu.legacy as evleg import evalys.visu.lifecycle as evl import evalys.visu.series as evs import matplotlib.pyplot as plt import matplotlib.ticker as mtick import numpy as np from hdeeprm.util import generate_workload, generate_platform def launch() -> None: """Utility for launching HDeepRM experiments. It takes care of creating the Platform XML file, the Workload JSON file and the Resource Hierarcy. It also runs both Batsim and PyBatsim. Command line arguments: | ``options_file`` - Options file in JSON. | ``customworkload`` - (Optional) Path to the custom workload in case one is used. | ``agent`` (Optional) File with the learning agent definition. | ``inmodel`` - (Optional) Path for previous model loading. | ``outmodel`` - (Optional) Path for saving new model. | ``nbruns`` - (Optional) Number of train runs for the learning agent. """ parser = ap.ArgumentParser(description='Launches HDeepRM experiments') parser.add_argument('options_file', type=str, help='Options file defining the experiment') parser.add_argument('-cw', '--customworkload', type=str, help='Path for the custom workload') parser.add_argument('-a', '--agent', type=str, help='File with the learning agent definition') parser.add_argument('-im', '--inmodel', type=str, help='Path for previous model loading') parser.add_argument('-om', '--outmodel', type=str, help='Path for saving new model') parser.add_argument('-nr', '--nbruns', type=int, default=1, help='Number of simulations to be run') args = parser.parse_args() # Load the options print('Loading options') with open(args.options_file, 'r') as in_f: options = json.load(in_f) options['pybatsim']['seed'] = options['seed'] if args.agent: options['pybatsim']['agent']['file'] = path.abspath(args.agent) if args.inmodel: options['pybatsim']['agent']['input_model'] = path.abspath(args.inmodel) if args.outmodel: options['pybatsim']['agent']['output_model'] = path.abspath(args.outmodel) # Set the seed for random libraries print('Setting the random seed') rnd.seed(options['seed']) np.random.seed(options['seed']) # Check if Platform, Resource Hierarchy, Workload and Job Limits are already present files = ('platform.xml', 'res_hierarchy.pkl', 'workload.json', 'job_limits.pkl') skipped = [] present = {} for fil in files: if path.isfile(f'./{fil}'): present[fil] = True else: present[fil] = False # Generate the Platform and Resource Hierarchy new_reference_speed = False if not present['platform.xml'] or not present['res_hierarchy.pkl']: if not present['platform.xml']: print('Generating platform XML') else: skipped.append('platform') if not present['res_hierarchy.pkl']: print('Generating resource hierarchy') new_reference_speed = True else: skipped.append('res_hierarchy') generate_platform(options['platform_file_path'], gen_platform_xml=not present['platform.xml'], gen_res_hierarchy=not present['res_hierarchy.pkl']) print('Saved "platform.xml" and "res_hierarchy.pkl" in current directory') else: skipped.extend(('platform', 'res_hierarchy')) # If a custom workload is provided, just calculate the operations with respect to the reference # speed if args.customworkload: print(f'Utilizing {args.customworkload} as workload, adjusting operations') generate_workload(options['workload_file_path'], options['nb_resources'], options['nb_jobs'], custom_workload_path=args.customworkload) print('Saved "workload.json" and "job_limits.pkl" in current directory') # Generate the Workload elif not present['workload.json'] or not present['job_limits.pkl'] or new_reference_speed: print('Generating workload JSON and job limits') generate_workload(options['workload_file_path'], options['nb_resources'], options['nb_jobs']) print('Saved "workload.json" and "job_limits.pkl" in current directory') else: skipped.extend(('workload', 'job_limits')) for skip in skipped: print(f'Skipping {skip} generation - Using file in current directory') # Launch both PyBatsim and Batsim instances for running the simulation for _ in range(args.nbruns): with open('pybatsim.log', 'w+') as out_f: pybs = sp.Popen(('pybatsim', '-o', json.dumps(options['pybatsim']), path.join(path.dirname(path.realpath(__file__)), 'entrypoints/HDeepRMWorkloadManager.py')), stdout=out_f, stderr=out_f) sp.run(('batsim', '-E', '-w', 'workload.json', '-p', 'platform.xml'), check=True) pybs.communicate() def visual() -> None: """Utility for analysing stats from HDeepRM outcomes. It utilizes `Evalys <https://gitlab.inria.fr/batsim/evalys>`_ for plotting useful information from output files. Supports *queue_size*, *utilization*, *lifecycle*, *gantt*, *gantt_no_label*, *core_bubbles*, *mem_bubbles*, *mem_bw_overutilization*, *losses*, *rewards*, *action_preferences*. Command line arguments: | ``visualization`` - Type of visualization to be printed. | ``save`` - (Optional) Save the plot in the provided file path. """ parser = ap.ArgumentParser(description='Plots information about the simulation outcome') parser.add_argument('visualization', type=str, choices=('queue_size', 'utilization', 'lifecycle', 'gantt', 'gantt_no_label', 'core_bubbles', 'mem_bubbles', 'mem_bw_overutilization', 'losses', 'rewards', 'action_preferences'), help='Statistic to visualise') parser.add_argument('-s', '--save', type=str, help='Save the plot in the specified file path') args = parser.parse_args() # Obtain the title for the plots given the agent configuration with open('./options.json', 'r') as in_f: options = json.load(in_f) agent_options = options['pybatsim']['agent'] env_options = options['pybatsim']['env'] if agent_options['type'] == 'CLASSIC': job_sel, core_sels = tuple( env_options["actions"]["selection"][0].items() )[0] title = f'{agent_options["type"]} {job_sel}-{core_sels[0]}' elif agent_options['type'] == 'LEARNING': title = (f'{agent_options["type"]} {agent_options["run"]} {agent_options["hidden"]} ' f'{agent_options["lr"]} {agent_options["gamma"]}') else: raise ValueError('Invalid agent type in "options.json"') # Job visualizations if args.visualization in ('queue_size', 'utilization', 'lifecycle', 'gantt', 'gantt_no_label'): jobset = ej.JobSet.from_csv('./out_jobs.csv', resource_bounds=(0, options['nb_resources'])) if args.visualization == 'queue_size': _fixed_plot_series(jobset, name='queue', title=f'Queue size over time for {title}', legend_label='Queue size') plt.xlabel('Simulation time') plt.ylabel('Pending jobs') elif args.visualization == 'utilization': _fixed_plot_series(jobset, name='utilization', title=f'Utilization over time for {title}', legend_label='Load') plt.xlabel('Simulation time') plt.ylabel('Active cores') elif args.visualization == 'lifecycle': evl.plot_lifecycle(jobset, title=f'Job lifecycle for {title}') elif args.visualization == 'gantt': evg.plot_gantt(jobset, title=f'Gantt chart for {title}') plt.xlabel('Simulation time') elif args.visualization == 'gantt_no_label': evg.plot_gantt(jobset, title=f'Gantt chart for {title}', labeler=lambda _: '') plt.xlabel('Simulation time') # Over-utilization visualizations elif args.visualization in ('core_bubbles', 'mem_bubbles', 'mem_bw_overutilization'): with open('overutilizations.json', 'r') as in_f: overutilizations = json.load(in_f) with open('out_schedule.csv', 'r') as in_f: _, values = [row for row in csv.reader(in_f, delimiter=',')] makespan = float(values[2]) _, ax = plt.subplots() ax.set_xlim(0, makespan) ax.set_xlabel('Simulation time') ax.grid(True) if args.visualization == 'core_bubbles': ax.set_title(f'Core bubbles for {title}') ax.set_ylim(0, len(overutilizations['core'])) ax.plot(overutilizations['core'], range(len(overutilizations['core']))) elif args.visualization == 'mem_bubbles': ax.set_title(f'Memory bubbles for {title}') ax.set_ylim(0, len(overutilizations['mem'])) ax.plot(overutilizations['mem'], range(len(overutilizations['mem']))) elif args.visualization == 'mem_bw_overutilization': ax.set_title(f'Mem BW overutilization spans for {title}') ax.set_ylim(0, overutilizations['mem_bw']['nb_procs']) ax.set_ylabel('Processors') for proc_id in overutilizations['mem_bw']['procs']: ax.broken_barh(overutilizations['mem_bw']['procs'][proc_id]['values'], (int(proc_id), int(proc_id))) # Learning visualizations elif args.visualization in ('losses', 'rewards', 'action_preferences'): _, ax = plt.subplots() ax.set_xlabel('Episodes') ax.grid(True) if args.visualization == 'losses': with open('losses.log', 'r') as in_f: losses = in_f.readlines() ax.set_title(f'Loss evolution for {title}') ax.set_ylabel('Loss value') ax.plot(tuple(range(len(losses))), tuple(map(float, losses)), 'r') elif args.visualization == 'rewards': with open('rewards.log', 'r') as in_f: rewards = in_f.readlines() ax.set_title(f'Reward evolution for {title}') ax.set_ylabel('Reward') ax.plot(tuple(range(len(rewards))), tuple(map(float, rewards))) elif args.visualization == 'action_preferences': ax.set_title(f'Action preferences for {title}') ax.set_ylabel('Probability') action_names = [] for sel in env_options['actions']['selection']: for job_sel, core_sels in sel.items(): for core_sel in core_sels: action_names.append(f'{job_sel}-{core_sel}') with open('probs.json', 'r') as in_f: all_probs = json.load(in_f)['probs'] for action_name, probs in zip(action_names, all_probs): ax.plot(tuple(range(len(probs))), tuple(map(float, probs)), label=action_name) ax.legend() ax.set_ylim(bottom=0) if args.save: plt.savefig(args.save, format='svg', dpi=1200) plt.show() def metrics() -> None: """Utility for comparing metrics between simulation runs. Plots a grid with different metrics resulting from *out_schedule.csv*. Command line arguments: | ``res1`` - *out_schedule.csv* file from run 1. | ``res2`` - *out_schedule.csv* file from run 2. """ parser = ap.ArgumentParser(description='Compares metrics between simulation runs') parser.add_argument('res1', type=str, help='out_schedule.csv file from run 1') parser.add_argument('res2', type=str, help='out_schedule.csv file from run 2') parser.add_argument('-n1', '--name1', type=str, default='A1', help='Name of the first policy or agent') parser.add_argument('-n2', '--name2', type=str, default='A2', help='Name of the second policy or agent') parser.add_argument('-s', '--save', type=str, help='Save the plot in the specified file path') args = parser.parse_args() with open(args.res1, 'r') as res1_f,\ open(args.res2, 'r') as res2_f: res1_reader = csv.reader(res1_f, delimiter=',') res2_reader = csv.reader(res2_f, delimiter=',') names = ('Energy (joules)', 'Makespan', 'Max. slowdown', 'Max. turnaround time', 'Max. waiting time', 'Mean slowdown', 'Mean turnaround time', 'Mean waiting time') _, res1_metrics = [row for row in res1_reader] _, res2_metrics = [row for row in res2_reader] _, axes = plt.subplots(nrows=2, ncols=4, constrained_layout=True, figsize=(12, 4)) for i, row in enumerate(axes): for j, col in enumerate(row): metric1 = float(res1_metrics[i * 4 + j + 1]) metric2 = float(res2_metrics[i * 4 + j + 1]) x = (1, 2) bars = col.bar(x, (metric1, metric2), color=('green', 'blue'), edgecolor='black', width=0.6) col.set_xlim(0, 3) col.set_ylim(0, max(1.0, 1.15 * max(metric1, metric2))) col.set_xticks(x) col.set_xticklabels((args.name1, args.name2)) col.yaxis.set_major_formatter(mtick.ScalarFormatter()) col.ticklabel_format(axis='y', style='sci', scilimits=(0, 3)) for rect in bars: height = rect.get_height() if height >= 1e7: text = f'{height:.2e}' else: text = f'{int(height)}' col.text(rect.get_x() + rect.get_width() / 2.0, height, text, ha='center', va='bottom') col.set_title(names[i * 4 + j]) if args.save: plt.savefig(args.save, format='svg', dpi=1200) plt.show() def jobstat() -> None: """Utility for obtaining statistics about jobs in the workload trace. It can calculate several statistics by parsing the *workload.json* file. Command line arguments: | ``workload`` - *workload.json* with the trace. | ``datafield`` - Job data field from which to obtain information. One of *req_time*, *size*, *mem* or *mem_bw*. | ``statistic`` - Statistic to be calculated. One of *min*, *max*, *mean*, *median*, *p95* or *p99*. """ parser = ap.ArgumentParser(description='Compares metrics between simulation runs') parser.add_argument('workload', type=str, help='JSON workload file with the trace') parser.add_argument('datafield', type=str, choices=('req_time', 'size', 'mem', 'mem_bw'), help='Job data field from which to obtain information') parser.add_argument('statistic', type=str, choices=('min', 'max', 'mean', 'median', 'p95', 'p99'), help='Statistic to be calculated') args = parser.parse_args() with open(args.workload, 'r') as in_f: workload = json.load(in_f) if args.datafield == 'size': data = np.array( [job['res'] for job in workload['jobs']] ) else: data = np.array( [workload['profiles'][job['profile']][args.datafield] for job in workload['jobs']] ) if args.statistic == 'min': print(
np.min(data)
numpy.min
# coding=utf-8 """ Module containing definition of a gym_acnsim observation and factory functions for different builtin observations. See the SimObservation docstring for more information on the SimObservation class. Each factory function takes no arguments and returns an instance of type SimObservation. Each factory function defines a space_function and and an obs_function with the following signatures: space_function: Callable[[GymInterface], spaces.Space] obs_function: Callable[[GymInterface], np.ndarray] The space_function gives a gym space for a given observation type. The obs_function gives a gym observation for a given observation type. The observation returned by obs_function is a point in the space returned by space_function. """ from typing import Callable import numpy as np from gym import spaces from acnportal.acnsim import EV from ..interfaces import GymTrainedInterface class SimObservation: """ Class representing an OpenAI Gym observation of an ACN-Sim simulation. An instance of SimObservation contains a space_function, which generates a gym space from an input Interface using attributes and functions of the input Interface, and an obs_function, which generates a gym observation from an input Interface using attributes and functions of the input Interface. Each instance also requires a name (given as a string). This class enables Simulation environments with customizable observations, as a SimObservation object with user-defined or built in space and obs functions can be input to a BaseSimEnv-like object to enable a new observation without creating a new environment. Each type of observation is the same type of object, but the details of the space and obs functions are different. This was done because space and obs functions are static, as observations of a specific type do not have any attributes. However, each observation type requires both a space and observation generating function, so a wrapping data structure is required. Attributes: _space_function (Callable[[GymInterface], spaces.Space]): Function that accepts a GymInterface and generates a gym space in which all observations for this instance exist. _obs_function (Callable[[GymInterface], np.ndarray]): Function that accepts a GymInterface and generates a gym observation based on the input interface. name (str): Name of this observation. This attribute allows an environment to distinguish between different types of observation. """ _space_function: Callable[[GymTrainedInterface], spaces.Space] _obs_function: Callable[[GymTrainedInterface], np.ndarray] name: str def __init__( self, space_function: Callable[[GymTrainedInterface], spaces.Space], obs_function: Callable[[GymTrainedInterface], np.ndarray], name: str, ) -> None: """ Args: space_function (Callable[[GymInterface], spaces.Space]): Function that accepts a GymInterface and generates a gym space in which all observations for this instance exist. obs_function (Callable[[GymInterface], np.ndarray]): Function that accepts a GymInterface and generates a gym observation based on the input interface. name (str): Name of this observation. This attribute allows an environment to distinguish between different types of observation. Returns: None. """ self._space_function = space_function self._obs_function = obs_function self.name = name def get_space(self, interface: GymTrainedInterface) -> spaces.Space: """ Returns the gym space in which all observations for this observation type exist. The characteristics of the interface (for example, number of EVSEs if station demands are observed) may change the dimensions of the returned space, so this method requires a GymInterface as input. Args: interface (GymTrainedInterface): Interface to an ACN-Sim Simulation that contains details of and functions to generate details about the current Simulation. Returns: spaces.Space: A gym space in which all observations for this observation type exist. """ return self._space_function(interface) def get_obs(self, interface: GymTrainedInterface) -> np.ndarray: """ Returns a gym observation for the state of the simulation given by interface. The exact observation depends on both the input interface and the observation generating function obs_func with which this object was initialized. Args: interface (GymTrainedInterface): Interface to an ACN-Sim Simulation that contains details of and functions to generate details about the current Simulation. Returns: np.ndarray: A gym observation generated by _obs_function with this interface. """ return self._obs_function(interface) # Per active EV observation factory functions. Note that all EV data # is shifted up by 1, as 0's indicate no EV is plugged in. def _ev_observation( attribute_function: Callable[[GymTrainedInterface, EV], float], name: str ) -> SimObservation: # noinspection PyMissingOrEmptyDocstring def space_function(interface: GymTrainedInterface) -> spaces.Space: return spaces.Box( low=0, high=np.inf, shape=(len(interface.station_ids),), dtype="float" ) # noinspection PyMissingOrEmptyDocstring def obs_function(interface: GymTrainedInterface) -> np.ndarray: attribute_values: dict = {station_id: 0 for station_id in interface.station_ids} for ev in interface.active_evs: attribute_values[ev.station_id] = attribute_function(interface, ev) + 1 return np.array(list(attribute_values.values())) return SimObservation(space_function, obs_function, name=name) def arrival_observation() -> SimObservation: """ Generates a SimObservation instance that wraps functions to observe active EV arrivals. Zeros in the output observation array indicate no EV is plugged in; as such, all observations are shifted up by 1. """ return _ev_observation(lambda _, ev: ev.arrival, "arrivals") def departure_observation() -> SimObservation: """ Generates a SimObservation instance that wraps functions to observe active EV departures. Zeros in the output observation array indicate no EV is plugged in; as such, all observations are shifted up by 1. """ return _ev_observation(lambda _, ev: ev.departure, "departures") def remaining_demand_observation() -> SimObservation: """ Generates a SimObservation instance that wraps functions to observe active EV remaining energy demands in amp periods. Zeros in the output observation array indicate no EV is plugged in; as such, all observations are shifted up by 1. """ return _ev_observation( lambda interface, ev: interface.remaining_amp_periods(ev), "demands" ) # Network-wide observation factory functions. def _constraints_observation(attribute: str, name: str) -> SimObservation: # noinspection PyMissingOrEmptyDocstring def space_function(interface: GymTrainedInterface) -> spaces.Space: return spaces.Box( low=-np.inf, high=np.inf, shape=getattr(interface.get_constraints(), attribute).shape, dtype="float", ) # noinspection PyMissingOrEmptyDocstring def obs_function(interface: GymTrainedInterface) -> np.ndarray: return getattr(interface.get_constraints(), attribute) return SimObservation(space_function, obs_function, name=name) def constraint_matrix_observation() -> SimObservation: """ Generates a SimObservation instance that wraps functions to observe the network constraint matrix. """ return _constraints_observation("constraint_matrix", "constraint matrix") def magnitudes_observation() -> SimObservation: """ Generates a SimObservation instance that wraps functions to observe the network limiting current magnitudes in amps. """ return _constraints_observation("magnitudes", "magnitudes") def phases_observation() -> SimObservation: """ Generates a SimObservation instance that wraps functions to observe the network phases. """ # noinspection PyMissingOrEmptyDocstring def space_function(interface: GymTrainedInterface) -> spaces.Space: return spaces.Box( low=-np.inf, high=np.inf, shape=interface.infrastructure_info().phases.shape, dtype="float", ) # noinspection PyMissingOrEmptyDocstring def obs_function(interface: GymTrainedInterface) -> np.ndarray: return interface.infrastructure_info().phases return SimObservation(space_function, obs_function, name="phases") def timestep_observation() -> SimObservation: """ Generates a SimObservation instance that wraps functions to observe the current timestep of the simulation, in periods. To comply with the timesteps returned by arrival and departure observations, the observed timestep is one greater than than that returned by the simulation. Simulations thus start at timestep 1 from an RL agent's perspective. """ # noinspection PyUnusedLocal # noinspection PyMissingOrEmptyDocstring def space_function(interface: GymTrainedInterface) -> spaces.Space: return spaces.Box(low=0, high=np.inf, shape=(1,), dtype="float") # noinspection PyMissingOrEmptyDocstring def obs_function(interface: GymTrainedInterface) -> np.ndarray: return
np.array(interface.current_time + 1)
numpy.array
import numpy as np import icesatUtils as iu def index_1d_pd(x, bins): import pandas as pd df = pd.DataFrame({'x': x}) edges = [b[0] for b in bins] + [bins[-1][1]] df['x_range'] = pd.cut(df['x'], edges) d = df.groupby('x_range').indices x_index = [] for i, key in enumerate(d): index = d[key] if len(index) > 0: x_index.append([i, index]) return x_index def bin_linear(x, bins, loading_bar=False): return index_1d(x, bins, loading_bar) def index_1d(x, bins, loading_bar=False): """ Function to support variable binning in 1d. Meant to be used in combination with bin_1d. Bins are created with bin_1d, but useful bin indices are made by this function. Input: x - array to be indexed bins - array of start/end times/locations, such as [[-1,1],[1,3],[3,5],...] Output: a bin index for every x value, so, for instance, given bins [[-1,1],[1,3],[3,5]], and x is np.linspace(-1,5), then all x values within [-1,1] will be given a value of 0, all x-values within [1,3] are given a value of 1, and all x-values within [3,5] are given a value of 2, such as [0,0,0,...,1,1,1,...,2,2,2] Example: # print values of x within bins # defined by A import region_detect as rd import numpy as np A = [0,2,4,6,8] x = np.linspace(0,10) bins = rd.bin_1d(A,2) index = rd.index_1d(x,bins) for i in sorted(np.unique(index)): if i != -1: b = index == i print(x[b]) Caveats: For cases when x is exactly equal to bin edges, the index will favor the left side of the bin. i.e., import region_detect as rd import numpy as np A = [0,2,4,6,8] x = np.arange(10) bins = rd.bin_1d(A,2) index = rd.index_1d(x,bins) print(index) print(x) -1 is assigned to values of x that do not fall in a bin Function does not handle nans """ # import pandas as pd # df = pd.DataFrame({'x': x}) # edges = [b[0] for b in bins] + [bins[-1][1]] # df['x_range'] = pd.cut(df['x'], edges) # d = df.groupby('x_range').indices # x_index = [] # for i, key in enumerate(d): # index = d[key] # if len(index) > 0: # x_index.append([i, index]) if np.isnan(x).any(): raise ValueError('nans cannot exist in x') index_s = np.argsort(x) index_s_rev = np.argsort(index_s) x_s = x[index_s] if ((x_s[index_s_rev] - x) != 0.0).any(): # check that x_s is increasing, and sorting # is reversible raise ValueError('indexing error') n = len(x_s) iterator = range(n) if loading_bar: from tqdm import tqdm iterator = tqdm(range(n)) i_index_s = np.full(n,-1).astype(int) in_reg = 0 # in region i = 0 # bin index for j in iterator: if bins[i][0] <= x_s[j] <= bins[i][1]: # i_index_s[index_s_rev[j]] = i i_index_s[j] = i in_reg = 1 else: if in_reg: in_reg = 0 if i < len(bins)-1: i += 1 if bins[i][0] <= x_s[j] <= bins[i][1]: # i_index_s[index_s_rev[j]] = i i_index_s[j] = i else: break else: # skipped over region while x_s[j] > bins[i][1]: if i < len(bins)-1: i += 1 else: break i_index = i_index_s[index_s_rev] return i_index def bin_reg(A, dx, safety_factor=1.5, check_overlap=False): return bin_1d(A, dx, safety_factor, check_overlap) def bin_1d(A, dx, safety_factor=1.5, check_overlap=False): """ Function to create variable 1d binning. This works similar to find_region, except that this bins exact lengths, based on the separation in values of A. For example, A = [0,2,4,6,8,...] dx = 2 , bin_reg will output [[-1,1],[1,3],[3,5],[5,7],[7,9],...] The advantage is that, if values were unevenly spaced (as in ATL08), then one could set A = df_08['alongtrack'] dx = 100 # meters bin_reg() will make 1d regions of nearly 100m length; dx is more for what happens when values are truly spaced much further than 100m Input: A - numpy array, already increasing dx - some nominal change in A values safety_factor - if a change in A far exceeds the given dx, then the binning code will simply bin that as if it were a 1km ATL08 bin; we know that not to be the case, but we know the upper limit of 08 bins to be around 105m(?). So, one can set this to specify what the error might be. check_overlap - bins should never overlap (up to roundoff), so this performs an additional check to ensure this is the case, and notifies the user otherwise Output: binned regions, return bin_dim """ def check_bin_overlap(bins, tag, loading_bar=False, tol=1e-6): print('checking bin overlap for %s..' % tag) iterator = range(len(bins)) if loading_bar and tqdm_found: from tqdm import tqdm iterator = tqdm(range(len(bins))) # for i, bin1 in enumerate(bins): for i in iterator: bin1 = bins[i] for j, bin2 in enumerate(bins): if i == j: continue # bin1, bin2 = list(np.round(bin1,8)), list(np.round(bin2,8)) reg = rd.inner_region(bin1, bin2, equal=False) if reg != []: if reg[1]-reg[0] < tol: continue print('warning: %s overlap' % tag) print(i, bin1) print(j, bin2) print(reg) iu.pause() if (np.diff(A) < 0.0).any(): print('warning: x decreasing') if dx <= 0: print('warning: dx < 0') A = np.append(min(A) - dx, A) A = np.append(A, max(A) + dx) dx_lim = safety_factor*dx bin_dim = [] for j in range(1,len(A)-1): da1 = A[j] - A[j-1] da2 = A[j+1] - A[j] if da1 > dx_lim: da1 = dx_lim if da2 > dx_lim: da2 = dx_lim bin_dim.append([A[j] - da1/2.0, A[j] + da2/2.0]) if check_overlap: check_bin_overlap(bin_dim, 'debug', loading_bar=True, tol=1e-6) return bin_dim def calc_overlap(x1, x2, dx, dx_overlap=0.0, dx2=None): """ Find the inner overlaps between arrays x1 and x2 Input: x1 - 1d array x2 - 1d array dx - change in x assigned to each point dx_overlap - addition on either end of each region dx2 - optional dx for x2, if sampling rates are different i.e. overlaps in 03 and 08 Output return regions_overlap regions of start/end ttg Example: import region_detect as rd # ... load in 03 data dt0 = 1.0 / 10000 # change in time for ATL03 regions_overlap = rd.calc_overlap(t1, t2, 10*dt0, dt0) """ dt1 = dx regions2, _ = find_region(x2, dx, dx_overlap) regions2 = combine_region(regions2) if type(dx2) == type(None): dx2 = dx regions1, _ = find_region(x1, dx2, dx_overlap) regions1 = combine_region(regions1) regions_overlap = [] for reg2 in regions2: for reg1 in regions1: reg = inner_region(reg2, reg1) if reg != []: regions_overlap.append(reg) return regions_overlap def filt_reg_x(x, regions, equal=False): """ Given a list of regions, this filters the array x for only values in those regions. Input: x - numpy array of values regions - list of 1d start/end values i.e., [[t0,t1], [t2,t3], ...] equal - boolean to include end-points in 1d regions or not Output: the filtered x values and corresponding boolean indexing, which may concievably be applied to some corresponding y values return x_filt, jr Example: import numpy as np import region_detect as rd x = np.linspace(0,10) y = np.linspace(10,20) regions = [[0,3], [6,7]] x_filt, jr = rd.filt_reg_x(x, regions) y_filt = y[jr] # x_filt contains values only within (0,3) # and (6,7) """ if type(x) != np.ndarray: x =
np.array(x)
numpy.array
# -*- coding: utf-8 -*- """ Master Thesis <NAME> Data File """ ############################################################################### ## IMPORT PACKAGES & SCRIPTS ## ############################################################################### ### PACKAGES ### import numpy as np import pandas as pd from scipy.stats import norm from scipy.linalg import block_diag import pickle as pkl import os ### SCRIPTS ### import param as pm import forecast as fcst ############################################################################### ## FUNCTIONS DEFINITIONS ## ############################################################################### ### EXPORT / IMPORT SOLUTIONS TO PKL FILE ### def sol_export(filename, data): rltDir = 'rlt/case%s_t%s_loadVar%s_pvVar%s_%s_cc%s_drcc%s_flx%s_%s_bat%s/'\ %(pm.N_BUS,pm.T,pm.FLGVAR_LOAD,pm.FLGVAR_PV,pm.FCSTCASE[0],\ pm.FLGCC, pm.FLGDRCC,pm.FLGSHIFT,pm.UNBALANCE,pm.FLGBAT) if os.path.exists(rltDir): output = open(rltDir + filename + ".pkl", 'wb') # create output file pkl.dump(data, output) # write data to output file output.close() # close output file else: os.mkdir(rltDir) # create new directory output = open(rltDir + filename + ".pkl", 'wb') # create output file pkl.dump(data, output) # write data to output file output.close() # close output file def sol_import(filename): rltDir = 'rlt/case%s_t%s_loadVar%s_pvVar%s_%s_cc%s_drcc%s_flx%s_%s_bat%s/'\ %(pm.N_BUS,pm.T,pm.FLGVAR_LOAD,pm.FLGVAR_PV,pm.FCSTCASE[0],\ pm.FLGCC, pm.FLGDRCC,pm.FLGSHIFT,pm.UNBALANCE,pm.FLGBAT) file = open(rltDir + filename + ".pkl", 'rb') # open results file tmp = pkl.load(file) # create arry from file file.close() # close file return tmp ### SYMMETRIC INPUT DATA FOR N PHASES ### def phase_multiplication(data): dim = len(data) # get dimension of input data phase = np.ones((pm.N_PH)) # array to multiply input with number of phases tmp = [] for i in range(dim): tmp = np.append(tmp,data[i]*phase, axis=0) return tmp ############################################################################### ## READ DATA FROM CSV FILES ## ############################################################################### def read_data(src): srcDir = 'src/case%s/'%pm.N_BUS return pd.read_csv(srcDir + src +"Data.csv", delimiter=',') busData = read_data('bus') branchData = read_data('branch') costData = read_data('cost') impData = read_data('imp') loadData = read_data('load') batData = read_data('bat') genData = read_data('gen') invData = read_data('inv') oltcData = read_data('oltc') ############################################################################### ## AUXILIARX PARAMETERS ## ############################################################################### n = len(busData) # number of nodes l = len(branchData) # number of branches loadCase = len(pm.LOADCASE) pvCase = len(pm.PVCASE) vBase = busData.values[:,1] # base value voltage [kV] zBase = (vBase*1e3)**2/(pm.S_BASE*1e6) # base value impedance [Ohm] iBase = pm.S_BASE*1e6/(vBase[1:]*1e3) # base value current [A] ############################################################################### ## GRID DATA ## ############################################################################### ### VOLTAGES ### class bus: # reference voltage at slack node magnitude vSlack = busData.values[0,4] # voltage phasors a = np.exp(1j*120*np.pi/180) # symmetrical components operator if pm.N_PH == 3: phasor_slack = np.array([1,a**2,a]) # slack voltage phasor phasor_rot = np.array([1,a,a**2]) # rotation phasor else: phasor_slack = np.array([1]) # slack voltage phasor phasor_rot = np.array([1]) # rotation phasor # slack voltage real & imag part vSlackRe = np.tile(vSlack*np.real(phasor_slack[0:pm.N_PH]),n) vSlackIm = np.tile(vSlack*np.imag(phasor_slack[0:pm.N_PH]),n) # rotation of voltage phasor real & imag part rotRe = np.tile(np.real(phasor_rot[0:pm.N_PH]),n) rotIm = np.tile(np.imag(phasor_rot[0:pm.N_PH]),n) # VUF vufMax = busData.values[:,6] # maximum vuf [-] # bounds vBus_ub = phase_multiplication(busData.values[:,3]) # upper bound vBus_lb = phase_multiplication(busData.values[:,2]) # lower bound ### BRANCHES ### class branch: # stacked impedance matrix def z_stack(config): zBr = np.zeros((l,pm.N_PH,pm.N_PH), dtype=complex) # pre-allocate length = branchData.values[:,5] # length of branch [km] data = (impData.values[:,1:].astype(float)) # impedance [Ohm/km] for k in range(l): idx = int(np.where(impData.values[:,0] == config[k])[0]) tmp = data[idx:idx+pm.N_PH,:]/zBase[k+1] # array with R & X for branch k [p.u.] zBr[k,:,:] = np.array([[tmp[i,j] + 1j*tmp[i,j+1] for j in range(0,2*pm.N_PH,2)]\ for i in range(pm.N_PH)])*length[k] # impedance return zBr fbus = branchData.values[:,2].astype(int) # from bus tbus = branchData.values[:,3].astype(int) # to bus zBrStacked = z_stack(branchData.values[:,1]) # stacked impedance matrix zBr = block_diag(*zBrStacked) # (block) diagonal matrix with impedances rBr = np.real(zBr) # diagonal matrix with resistances xBr = np.imag(zBr) # diagonal matrix with reactances # bounds iBr_ub = phase_multiplication(branchData.values[:,4]/iBase) # thermal limit [p.u.] ### SETS OF NODES ### class sets: bat = list(np.where(batData.values[:,1]>0,1,0)) # battery node flx = list(np.where(loadData.values[:,3]!=0,1,0)) # flexible loads flxPhase = list(phase_multiplication(flx).astype(int)) # extended for n phases ren = list(np.where(loadData.values[:,1]>0,1,0)) # renewable generators # list with location of sets def idx_list(data, rng): tmp = [i for i in range(rng) if data[i] == 1] return tmp idxRen = idx_list(phase_multiplication(ren), n*pm.N_PH) # set of PV Buses idxBat = idx_list(phase_multiplication(bat), n*pm.N_PH) # set of bat Buses idxFlx = idx_list(phase_multiplication(flx), n*pm.N_PH) # set of flexible loads Buses ### LOADS ### class load: # normalize load profiles & assign to node def load_profile(i): profile = pd.read_csv('src/load_profiles/Load_profile_%s.csv'%i) load_max = np.max(profile.values[:,1]) # maximum load # normalized load profile profile_norm = (profile.values[:,1]/load_max).astype(float) # discretized load profile into T steps nMeasure = int(24/pm.TIMESTEP) profile_disc = np.array([np.mean(profile_norm[j*int(pm.TIMESTEP*60):\ (j+1)*int(pm.TIMESTEP*60)])\ for j in range(nMeasure)]) ### TAKE VALUES FROM 12:00 +- T/2 ### t_middle = 1/pm.TIMESTEP*12 t_start = int(t_middle - pm.T/2) t_end = int(t_middle + pm.T/2) # export profile_load = profile_disc[t_start:t_end] return profile_load # index of load profile profile = loadData.values[:,5].astype(int) # peak load and power factor per node sPeak = loadData.values[:,1]/(pm.S_BASE*1e3) pf = loadData.values[:,2] # active & reactive power demand [p.u] pDem = np.zeros((n*pm.N_PH,pm.T,loadCase)) qDem = np.zeros((n*pm.N_PH,pm.T,loadCase)) for c in range(loadCase): for i in range(n): for j in range(pm.N_PH): if pm.FLGLOAD == 1: # active power demand pDem[i*pm.N_PH+j,:,c] = pm.LOADCASE[c]*pm.LOADSHARE[j]*\ sPeak[i]*pf[i]*\ load_profile(profile[i]) # reactive power demand qDem[i*pm.N_PH+j,:,c] = pm.LOADCASE[c]*pm.LOADSHARE[j]*\ sPeak[i]*np.sin(np.arccos(pf[i]))*\ load_profile(profile[i]) else: pDem[i*pm.N_PH+j,:,c] = pm.LOADCASE[c]*pm.LOADSHARE[j]*\ sPeak[i]*pf[i] qDem[i*pm.N_PH+j,:,c] = pm.LOADCASE[c]*pm.LOADSHARE[j]*\ sPeak[i]*np.sin(np.arccos(pf[i])) # bounds # max/min load shifting sShift_ub = pm.FLGSHIFT*phase_multiplication(sets.flx*loadData.values[:,4]) sShift_lb = pm.FLGSHIFT*phase_multiplication(sets.flx*loadData.values[:,3]) # load shedding pShed_ub = pm.FLGSHED*pDem qShed_ub = pm.FLGSHED*qDem ### BESS ### class bess: icBat = pm.FLGBAT*batData.values[:,1]/pm.S_BASE # installed capacity [p.u.] etaBat = batData.values[:,2] # efficiency socMin = batData.values[:,3] # soc min socMax = batData.values[:,4] # soc max socInit = batData.values[:,5] # initial soc e2p = batData.values[:,6] # energy-to-power ratio [MWh/MW] # bounds pCh_ub = pm.FLGBAT*(sets.bat*icBat/e2p) # battery charging pDis_ub = pm.FLGBAT*(sets.bat*icBat/e2p) # battery discharging eBat_ub = icBat*socMax # soc max eBat_lb = icBat*socMin # soc min ### GENERATORS ### class gen: ### IC PV EITHER FROM INPUT DATA OR FACTOR OF PEAK LOAD ### if pm.FLGPV == 0: # from input data - installed capacity [p.u.] icPV = [] for i in range(loadCase): for j in range(pvCase): icPV.append(pm.PVCASE[j]*genData.values[:,1]/pm.S_BASE) icPV = np.array(icPV).transpose() else: # dependent on load icPV = [] # installed capacity [p.u.] for i in range(loadCase): for j in range(pvCase): icPV.append(pm.PVCASE[j]*pm.LOADCASE[i]*load.sPeak) # create array from list icPV = np.array(icPV).transpose() pfMax = phase_multiplication(genData.values[:,2]) # maximum power factor cos(phi) pfMin = -phase_multiplication(genData.values[:,2]) # minimum power factor cos(phi) prMax = np.sqrt((1-pfMax**2)/pfMax**2) # maximum power ratio gamma prMin = -np.sqrt((1-np.square(pfMin))/np.square(pfMin)) # minimum power ratio gamma ### INVERTERS ### class inverter: def phase_selection(data,phase): dim = len(data) # get dimension of input data nPhase = np.ones((pm.N_PH)) # array to multiply input with number of phases tmp = [] for i in range(dim): if phase[i] == 3: tmp = np.append(tmp,data[i]*nPhase/pm.N_PH, axis=0) else: tmp = np.append(tmp,np.zeros((pm.N_PH)), axis=0) tmp[i*pm.N_PH + phase[i]] = data[i] return tmp phase_pv = invData.values[:,3].astype(int) # to which phases PV is connected to phase_bat = invData.values[:,4].astype(int) # to which phases bat is connected to # maximum renewable inverter capacity [p.u] capPV = [] for c in range(pvCase*loadCase): capPV.append(phase_selection(invData.values[:,1]*gen.icPV[:,c],phase_pv)) capPV = np.array(capPV).transpose() # maximum bat inverter capacity [p.u.] capBat = phase_selection(invData.values[:,2]*bess.icBat/bess.e2p,phase_bat) ### COSTS ### class cost: def cost_pu(data): # calculate costs in [euro/p.u.] and per timestep return data*pm.TIMESTEP*pm.S_BASE curt = cost_pu(phase_multiplication(costData.values[:,1])) # active power curtailment ren = cost_pu(phase_multiplication(costData.values[:,2])) # renewable energy source bat = cost_pu(costData.values[:,3]) # battery shed = cost_pu(phase_multiplication(costData.values[:,4])) # load shedding shift = cost_pu(phase_multiplication(costData.values[:,5])) # load shifting qSupport = cost_pu(phase_multiplication(costData.values[:,6])) # reactive power injection loss = cost_pu(phase_multiplication(costData.values[:-1,7])) # active power losses slackRev = cost_pu(costData.values[0,8]) # revenue for selling to upper level grid slackCost = cost_pu(costData.values[0,9]) # active power from upper level grid slackQ = cost_pu(costData.values[0,10]) # reactive power from upper level grid ### OLTC TRAFO ### class oltc: oltc_min = oltcData.values[:,1] # minimum value [p.u.] oltc_max = oltcData.values[:,2] # maximum value [p.u.] oltc_steps = oltcData.values[:,3] # number of steps [-] oltcSum = int(oltcData.values[:,4]) # max number of shifts per time horizon [-] symmetry = int(oltcData.values[:,5]) # symmetric = 1, asymmetric = 0 # voltage difference per shift [p.u.] dV = float((oltc_max - oltc_min)/oltc_steps) dVRe = dV*bus.vSlackRe # real part [p.u.] dVIm = dV*bus.vSlackIm # imag part [p.u.] # bound tauMax = int(pm.FLGOLTC*(oltc_steps/2)) tauMin = int(pm.FLGOLTC*(-oltc_steps/2)) ############################################################################### ## PV FORECAST ## ############################################################################### class pv: def pv_phase(data,phase): dim = len(data) # get dimension of input data nPhase = np.array(pm.PVSHARE) # array to multiply input with number of phases tmp = [] for i in range(dim): if phase[i] == 3: tmp = np.append(tmp,data[i]*nPhase, axis=0) else: tmp = np.append(tmp,np.zeros((pm.N_PH)), axis=0) tmp[i*pm.N_PH + phase[i]] = data[i] return tmp ### CHECK IF FORECAST FILE EXISTS ### fcstFile = 'src/fcst/forecastPV_v%s_%s_t%s.pkl'%(pm.V_FCST,pm.FCSTCASE[0],pm.T) if os.path.exists(fcstFile): ### READ FCST FILE ### file = open(fcstFile, 'rb') # open results file pvFcst = pkl.load(file) # create arry from file file.close() # close file else: ### RUN FORECAST ### print('Run forecasting script ...') pvFcst = fcst.pv_fcst() print('... done!') nSamples = np.size(pvFcst[3],1) # number of samples dataFcst = pvFcst[3] # all forecast data # installed capacity per phase icPhase = np.zeros((l*pm.N_PH,loadCase*pvCase)) for c in range(loadCase*pvCase): icPhase[:,c] = pv_phase(gen.icPV[1:,c],inverter.phase_pv[1:]) # forecasted PV infeed per phase pPV = np.zeros((n*pm.N_PH,pm.T,pvCase*loadCase)) for c in range(pvCase*loadCase): pPV[:,:,c] = np.append(np.zeros((pm.N_PH,pm.T)),\ np.dot(icPhase[:,c].reshape(l*pm.N_PH,1),\ pvFcst[0].reshape(1,pm.T)),axis=0) ### COVARIANCE MATRIX ### # covariance matrix for all timesteps cov = np.zeros((l*pm.N_PH,l*pm.N_PH,pm.T,pvCase*loadCase)) for c in range(pvCase*loadCase): for t in range(pm.T): # full covariance matrix cov[:,:,t,c] = np.cov(np.dot(icPhase[:,c].reshape(l*pm.N_PH,1),\ dataFcst[t,:].reshape(1,nSamples))) # delete empty columnds and rows rowDel = [] for i in range(l*pm.N_PH): if np.all(cov[i,:,int(pm.T/2),:] == 0): rowDel.append(i) covRed = np.delete(cov,rowDel,1) covRed = np.delete(covRed,rowDel,0) # independent measurements nMeas = np.size(covRed,axis=0) covInd = np.zeros((nMeas,nMeas,pm.T,pvCase*loadCase)) for i in range(nMeas): for j in range(nMeas): for t in range(pm.T): for c in range(pvCase*loadCase): if i != j: covInd[i,j,t,c] = 0 else: covInd[i,j,t,c] = covRed[i,j,t,c] # sqrt of covariance matrix covSqrt =
np.sqrt(covInd)
numpy.sqrt
from keras.layers import ZeroPadding2D, BatchNormalization, Input, MaxPooling2D, AveragePooling2D, Conv2D, LeakyReLU, Flatten, Conv2DTranspose, Activation, add, Lambda, GaussianNoise, merge, concatenate, Dropout from keras_contrib.layers.normalization import InstanceNormalization from keras.layers.core import Dense, Flatten, Reshape from keras.models import Model, load_model from keras.optimizers import Adam, adam from keras.activations import tanh from keras.regularizers import l2 import keras.backend as K from keras.initializers import RandomNormal import cv2 from tensorflow.contrib.kfac.python.ops import optimizer from collections import OrderedDict from time import localtime, strftime from scipy.misc import imsave, toimage import numpy as np import json import sys import time import datetime sys.path.append('..') import load_data import os import csv class UNIT(): def __init__(self, lr = 1e-4, date_time_string_addition=''): self.channels = 3 # 1 for grayscale 3 RGB weight_decay = 0.0001/2 # Load data nr_A_train_imgs = 1 nr_B_train_imgs = 1 nr_A_test_imgs = 1 nr_B_test_imgs = None image_folder = 'dataset-name/' # Fetch data during training instead of pre caching all images - might be necessary for large datasets self.use_data_generator = False if self.use_data_generator: print('--- Using dataloader during training ---') else: print('--- Caching data ---') sys.stdout.flush() if self.use_data_generator: self.data_generator = load_data.load_data( self.channels, generator=True, subfolder=image_folder) nr_A_train_imgs=2 nr_B_train_imgs=2 data = load_data.load_data(self.channels, nr_A_train_imgs=nr_A_train_imgs, nr_B_train_imgs=nr_B_train_imgs, nr_A_test_imgs=nr_A_test_imgs, nr_B_test_imgs=nr_B_test_imgs, subfolder=image_folder) self.A_train = data["trainA_images"] self.B_train = data["trainB_images"] self.A_test = data["testA_images"] self.B_test = data["testB_images"] self.testA_image_names = data["testA_image_names"] self.testB_image_names = data["testB_image_names"] self.img_width = self.A_train.shape[2] self.img_height = self.A_train.shape[1] self.latent_dim = (int(self.img_height / 4), int(self.img_width / 4), 256) self.img_shape = (self.img_height, self.img_width, self.channels) self.date_time = strftime("%Y%m%d-%H%M%S", localtime()) + date_time_string_addition self.learning_rate = lr self.beta_1 = 0.5 self.beta_2 = 0.999 self.lambda_0 = 10 self.lambda_1 = 0.1 self.lambda_2 = 100 self.lambda_3 = self.lambda_1 # cycle self.lambda_4 = self.lambda_2 # cycle # Optimizer opt = Adam(self.learning_rate, self.beta_1, self.beta_2) optStandAdam = Adam() # Simple Model self.superSimple = self.modelSimple() self.superSimple.compile(optimizer=optStandAdam, loss="mae") # Discriminator self.discriminatorA = self.modelMultiDiscriminator("discriminatorA") self.discriminatorB = self.modelMultiDiscriminator("discriminatorB") for layer in self.discriminatorA.layers: if hasattr(layer, 'kernel_regularizer'): layer.kernel_regularizer= l2(weight_decay) layer.bias_regularizer = l2(weight_decay) if hasattr(layer, 'kernel_initializer'): layer.kernel_initializer = RandomNormal(mean=0.0, stddev=0.02) layer.bias_initializer = RandomNormal(mean=0.0, stddev=0.02) for layer in self.discriminatorB.layers: if hasattr(layer, 'kernel_regularizer'): layer.kernel_regularizer= l2(weight_decay) layer.bias_regularizer = l2(weight_decay) if hasattr(layer, 'kernel_initializer'): layer.kernel_initializer = RandomNormal(mean=0.0, stddev=0.02) layer.bias_initializer = RandomNormal(mean=0.0, stddev=0.02) self.discriminatorA.compile(optimizer=opt, loss=['binary_crossentropy', 'binary_crossentropy', 'binary_crossentropy'], loss_weights=[self.lambda_0, self.lambda_0, self.lambda_0]) self.discriminatorB.compile(optimizer=opt, loss=['binary_crossentropy', 'binary_crossentropy', 'binary_crossentropy'], loss_weights=[self.lambda_0, self.lambda_0, self.lambda_0]) # Encoder self.encoderA = self.modelEncoder("encoderA") self.encoderB = self.modelEncoder("encoderB") self.encoderShared = self.modelSharedEncoder("encoderShared") self.decoderShared = self.modelSharedDecoder("decoderShared") # Generator self.generatorA = self.modelGenerator("generatorA") self.generatorB = self.modelGenerator("generatorB") # Input Encoder Decoder imgA = Input(shape=(self.img_shape)) imgB = Input(shape=(self.img_shape)) encodedImageA = self.encoderA(imgA) encodedImageB = self.encoderB(imgB) sharedA = self.encoderShared(encodedImageA) sharedB = self.encoderShared(encodedImageB) outSharedA = self.decoderShared(sharedA) outSharedB = self.decoderShared(sharedB) # Input Generator outAa = self.generatorA(outSharedA) outBa = self.generatorA(outSharedB) outAb = self.generatorB(outSharedA) outBb = self.generatorB(outSharedB) guess_outBa = self.discriminatorA(outBa) guess_outAb = self.discriminatorB(outAb) # Cycle cycle_encodedImageA = self.encoderA(outBa) cycle_encodedImageB = self.encoderB(outAb) cycle_sharedA = self.encoderShared(cycle_encodedImageA) cycle_sharedB = self.encoderShared(cycle_encodedImageB) cycle_outSharedA = self.decoderShared(cycle_sharedA) cycle_outSharedB = self.decoderShared(cycle_sharedB) cycle_Ab_Ba = self.generatorA(cycle_outSharedB) cycle_Ba_Ab = self.generatorB(cycle_outSharedA) # Train only generators self.discriminatorA.trainable = False self.discriminatorB.trainable = False self.encoderGeneratorModel = Model(inputs=[imgA, imgB], outputs=[sharedA, sharedB, cycle_sharedA, cycle_sharedB, outAa, outBb, cycle_Ab_Ba, cycle_Ba_Ab, guess_outBa[0], guess_outAb[0], guess_outBa[1], guess_outAb[1], guess_outBa[2], guess_outAb[2]]) for layer in self.encoderGeneratorModel.layers: if hasattr(layer, 'kernel_regularizer'): layer.kernel_regularizer= l2(weight_decay) layer.bias_regularizer = l2(weight_decay) if hasattr(layer, 'kernel_initializer'): layer.kernel_initializer = RandomNormal(mean=0.0, stddev=0.02) layer.bias_initializer = RandomNormal(mean=0.0, stddev=0.02) self.encoderGeneratorModel.compile(optimizer=opt, loss=[self.vae_loss_CoGAN, self.vae_loss_CoGAN, self.vae_loss_CoGAN, self.vae_loss_CoGAN, 'mae', 'mae', 'mae', 'mae', 'binary_crossentropy', 'binary_crossentropy', 'binary_crossentropy', 'binary_crossentropy', 'binary_crossentropy', 'binary_crossentropy'], loss_weights=[self.lambda_1, self.lambda_1, self.lambda_3, self.lambda_3, self.lambda_2, self.lambda_2, self.lambda_4, self.lambda_4, self.lambda_0, self.lambda_0, self.lambda_0, self.lambda_0, self.lambda_0, self.lambda_0]) #=============================================================================== # Decide what to Run self.trainFullModel() #self.load_model_and_generate_synthetic_images("name_of_saved_model", epoch) # eg. "20180504-140511_test1", 180 #self.loadAllWeightsToModelsIncludeDisc("name_of_saved_model", epoch) #=============================================================================== # Architecture functions def resblk(self, x0, k): # first layer x = Conv2D(filters=k, kernel_size=3, strides=1, padding="same")(x0) x = BatchNormalization(axis=3, momentum=0.9, epsilon=1e-05, center=True)(x, training=True) x = Activation('relu')(x) # second layer x = Conv2D(filters=k, kernel_size=3, strides=1, padding="same")(x) x = BatchNormalization(axis=3, momentum=0.9, epsilon=1e-05, center=True)(x, training=True) x = Dropout(0.5)(x, training=True) # merge x = add([x, x0]) return x #=============================================================================== # Loss function from PyTorch implementation from original article def vae_loss_CoGAN(self, y_true, y_pred): y_pred_2 = K.square(y_pred) encoding_loss = K.mean(y_pred_2) return encoding_loss #=============================================================================== # Models def modelMultiDiscriminator(self, name): x1 = Input(shape=self.img_shape) x2 = AveragePooling2D(pool_size=(2, 2), strides=None, padding='valid', data_format=None)(x1) x4 = AveragePooling2D(pool_size=(2, 2), strides=None, padding='valid', data_format=None)(x2) x1_out = self.modelDiscriminator(x1) x2_out = self.modelDiscriminator(x2) x4_out = self.modelDiscriminator(x4) return Model(inputs=x1, outputs=[x1_out, x2_out, x4_out], name=name) def modelDiscriminator(self, x): # Layer 1 x = Conv2D(64, kernel_size=3, strides=2, padding='same')(x) x = LeakyReLU(alpha=0.01)(x) # Layer 2 x = Conv2D(128, kernel_size=3, strides=2, padding='same')(x) x = LeakyReLU(alpha=0.01)(x) # Layer 3 x = Conv2D(256, kernel_size=3, strides=2, padding='same')(x) x = LeakyReLU(alpha=0.01)(x) # Layer 4 x = Conv2D(512, kernel_size=3, strides=2, padding='same')(x) x = LeakyReLU(alpha=0.01)(x) # Layer 5 x = Conv2D(1, kernel_size=1, strides=1)(x) prediction = Activation('sigmoid')(x) return prediction def modelEncoder(self, name): inputImg = Input(shape=self.img_shape) # Layer 1 x = ZeroPadding2D(padding=(3, 3))(inputImg) x = Conv2D(64, kernel_size=7, strides=1, padding='valid')(x) x = LeakyReLU(alpha=0.01)(x) # Layer 2 x = ZeroPadding2D(padding=(1, 1))(x) x = Conv2D(128, kernel_size=3, strides=2, padding='valid')(x) x = LeakyReLU(alpha=0.01)(x) # Layer 3 x = ZeroPadding2D(padding=(1, 1))(x) x = Conv2D(256, kernel_size=3, strides=2, padding='valid')(x) x = LeakyReLU(alpha=0.01)(x) # Layer 4: 2 res block x = self.resblk(x, 256) # Layer 5: 3 res block x = self.resblk(x, 256) # Layer 6: 3 res block z = self.resblk(x, 256) return Model(inputs=inputImg, outputs=z, name=name) def modelSharedEncoder(self, name): input = Input(shape=self.latent_dim) x = self.resblk(input, 256) z = GaussianNoise(stddev=1)(x, training=True) return Model(inputs=input, outputs=z, name=name) def modelSharedDecoder(self, name): input = Input(shape=self.latent_dim) x = self.resblk(input, 256) return Model(inputs=input, outputs=x, name=name) def modelGenerator(self, name): inputImg = Input(shape=self.latent_dim) # Layer 1: 1 res block x = self.resblk(inputImg, 256) # Layer 2: 2 res block x = self.resblk(x, 256) # Layer 3: 3 res block x = self.resblk(x, 256) # Layer 4: x = Conv2DTranspose(128, kernel_size=3, strides=2, padding='same')(x) x = LeakyReLU(alpha=0.01)(x) # Layer 5: x = Conv2DTranspose(64, kernel_size=3, strides=2, padding='same')(x) x = LeakyReLU(alpha=0.01)(x) # Layer 6 x = Conv2DTranspose(self.channels, kernel_size=1, strides=1, padding='valid')(x) z = Activation("tanh")(x) return Model(inputs=inputImg, outputs=z, name=name) def modelSimple(self): inputImg = Input(shape=self.img_shape) x = Conv2D(256, kernel_size=1, strides=1, padding='same')(inputImg) x = Activation('relu')(x) prediction = Conv2D(1, kernel_size=5, strides=1, padding='same')(x) return Model(input=inputImg, output=prediction) #=============================================================================== # Training def trainFullModel(self, epochs=100, batch_size=1, save_interval=1): def run_training_iteration(loop_index, epoch_iterations, imgA, imgB): # Flip was not done in article # if np.random.rand(1) > 0.5: # imgA = cv2.flip(imgA[0], 1) # imgA = imgA[np.newaxis,:,:,:] # if np.random.rand(1) > 0.5: # imgB = cv2.flip(imgB[0], 1) # imgB = imgB[np.newaxis,:,:,:] # Generate fake images encodedImageA = self.encoderA.predict(imgA) encodedImageB = self.encoderB.predict(imgB) sharedA = self.encoderShared.predict(encodedImageA) sharedB = self.encoderShared.predict(encodedImageB) outSharedA = self.decoderShared.predict(sharedA) outSharedB = self.decoderShared.predict(sharedB) outAa = self.generatorA.predict(outSharedA) outBa = self.generatorA.predict(outSharedB) outAb = self.generatorB.predict(outSharedA) outBb = self.generatorB.predict(outSharedB) # Train discriminator dA_loss_real = self.discriminatorA.train_on_batch(imgA, real_labels) dA_loss_fake = self.discriminatorA.train_on_batch(outBa, synthetic_labels) dA_loss = np.add(dA_loss_real, dA_loss_fake) dB_loss_real = self.discriminatorB.train_on_batch(imgB, real_labels) dB_loss_fake = self.discriminatorB.train_on_batch(outAb, synthetic_labels) dB_loss = np.add(dB_loss_real, dB_loss_fake) # Train generator g_loss = self.encoderGeneratorModel.train_on_batch([imgA, imgB], [dummy, dummy, dummy, dummy, imgA, imgB, imgA, imgB, real_labels1, real_labels1, real_labels2, real_labels2, real_labels3, real_labels3]) # Store training data epoch_list.append(epoch) loop_index_list.append(loop_index) # Discriminator loss loss_dA_real_list.append(dA_loss_real[0]) loss_dA_fake_list.append(dA_loss_fake[0]) loss_dB_real_list.append(dB_loss_real[0]) loss_dB_fake_list.append(dB_loss_fake[0]) dA_sum_loss_list.append(dA_loss[0]) dB_sum_loss_list.append(dB_loss[0]) # Generator loss loss_gen_list_1.append(g_loss[0]) loss_gen_list_2.append(g_loss[1]) loss_gen_list_3.append(g_loss[2]) loss_gen_list_4.append(g_loss[3]) loss_gen_list_5.append(g_loss[4]) loss_gen_list_6.append(g_loss[5]) loss_gen_list_7.append(g_loss[6]) loss_gen_list_8.append(g_loss[7]) loss_gen_list_9.append(g_loss[8]) loss_gen_list_10.append(g_loss[9]) loss_gen_list_11.append(g_loss[10]) print('----------------Epoch-------640x480---------', epoch, '/', epochs - 1) print('----------------Loop index-----------', loop_index, '/', epoch_iterations - 1) print('Discriminator TOTAL loss: ', dA_loss[0] + dB_loss[0]) print('Discriminator A loss total: ', dA_loss[0]) print('Discriminator B loss total: ', dB_loss[0]) print('Genarator loss total: ', g_loss[0]) print('----------------Discriminator loss----') print('dA_loss_real: ', dA_loss_real[0]) print('dA_loss_fake: ', dA_loss_fake[0]) print('dB_loss_real: ', dB_loss_real[0]) print('dB_loss_fake: ', dB_loss_fake[0]) print('----------------Generator loss--------') print('Shared A: ', g_loss[1]) print('Shared B: ', g_loss[2]) print('Cycle shared A: ', g_loss[3]) print('Cycle shared B: ', g_loss[4]) print('OutAa MAE: ', g_loss[5]) print('OutBb MAE: ', g_loss[6]) print('Cycle_Ab_Ba MAE: ', g_loss[7]) print('Cycle_Ba_Ab MAE: ', g_loss[8]) print('guess_outBa: ', g_loss[9]) print('guess_outAb: ', g_loss[10]) print('guess_outBa: ', g_loss[11]) print('guess_outAb: ', g_loss[12]) print('guess_outBa: ', g_loss[13]) print('guess_outAb: ', g_loss[14]) sys.stdout.flush() if loop_index % 5 == 0: # Save temporary images continously self.save_tmp_images(imgA, imgB) self.print_ETA(start_time, epoch, epoch_iterations, loop_index) A_train = self.A_train B_train = self.B_train self.history = OrderedDict() self.epochs = epochs self.batch_size = batch_size loss_dA_real_list = [] loss_dA_fake_list = [] loss_dB_real_list = [] loss_dB_fake_list = [] dA_sum_loss_list = [] dB_sum_loss_list = [] loss_gen_list_1 = [] loss_gen_list_2 = [] loss_gen_list_3 = [] loss_gen_list_4 = [] loss_gen_list_5 = [] loss_gen_list_6 = [] loss_gen_list_7 = [] loss_gen_list_8 = [] loss_gen_list_9 = [] loss_gen_list_10 = [] loss_gen_list_11 = [] epoch_list = [] loop_index_list = [] #dummy = [] #dummy = shape=self.latent_dim #dummy = np.zeros(shape=self.latent_dim) #dummy = np.expand_dims(dummy, 0) dummy = np.zeros(shape = ((self.batch_size,) + self.latent_dim)) self.writeMetaDataToJSON() self.saveImages('init', 1) sys.stdout.flush() # Start stopwatch for ETAs start_time = time.time() label_shape1 = (batch_size,) + self.discriminatorA.output_shape[0][1:] label_shape2 = (batch_size,) + self.discriminatorA.output_shape[1][1:] label_shape3 = (batch_size,) + self.discriminatorA.output_shape[2][1:] real_labels1 = np.ones(label_shape1) real_labels2 = np.ones(label_shape2) real_labels3 = np.ones(label_shape3) synthetic_labels1 =
np.zeros(label_shape1)
numpy.zeros
import numpy as np import matplotlib import matplotlib.pyplot as plt from magpylib.source.magnet import Box,Cylinder from magpylib import Collection, displaySystem, Sensor from scipy.optimize import fsolve, least_squares import matplotlib.animation as manimation import random import MDAnalysis import MDAnalysis.visualization.streamlines_3D import mayavi from mayavi import mlab import math, os, time from multiprocessing import Pool, freeze_support from pathlib import Path all = True iterations = 180 num_processes = 30 printouts = False axis = 0 movie_path = '/home/letrend/Videos/magnetic_arrangements/more_sensors' # def gen_magnets(): # magnets = [Box(mag=(0,0,2000),dim=(5,5,5),pos=(0,0,10))] # return magnets # define sensor sensor_pos = [[-22.7,7.7,0],[-14.7,-19.4,0],[14.7,-19.4,0],[22.7,7.7,0]]#[[22.7,7.7,0],[14.7,-19.4,0],[-14.7,-19.4,0],[-22.7,7.7,0]] # sensor_rot = [[0,[0,0,1]],[0,[0,0,1]],[0,[0,0,1]],[0,[0,0,1]],[0,[0,0,1]],[0,[0,0,1]],[0,[0,0,1]],[0,[0,0,1]]] sensors = [] for pos in sensor_pos: # sensors.append(Sensor(pos=pos,angle=sensor_rot[i][0], axis=sensor_rot[i][1])) s = Sensor(pos=pos,angle=90,axis=(0,0,1)) sensors.append(s) # for i in np.linspace(0,360,10): # # sensors.append(Sensor(pos=pos,angle=sensor_rot[i][0], axis=sensor_rot[i][1])) # s = Sensor(pos=(math.sin(i)*15,math.cos(i)*15,15),angle=90,axis=(0,0,1)) # sensors.append(s) # def gen_magnets(): # return [Box(mag=(500,0,0),dim=(10,10,10),pos=(0,12,0)), Box(mag=(0,500,0),dim=(10,10,10),pos=(10.392304845,-6,0),angle=60, axis=(0,0,1)), Box(mag=(0,0,500),dim=(10,10,10),pos=(-10.392304845,-6,0),angle=-60, axis=(0,0,1))] cs = 5 dimx,dimy,dimz = 3,3,3 mag_pos = [4, 0, 1, 0, 0, 4, 1, 3, 5, 6, 0, 4, 6, 1, 6, 0, 6, 5, 5, 4, 5, 1, 5, 2, 3, 5, 1,] field_strength = 1000 # # hallbach 0, works well # def gen_magnets(mag_pos): # magnets = [] # for i in range(0,dimx): # for j in range(0,dimy): # for k in range(0,dimz): # if mag_pos[i*dimx+j*dimy+k*dimz]==1: # magnets.append(Box(mag=(field_strength,0,0),dim=(cs,cs,cs),pos=((i-dimx//2)*(cs+1),(j-dimy//2)*(cs+1),(k-dimz//2)*(cs+1)))) # if mag_pos[i*dimx+j*dimy+k*dimz]==2: # magnets.append(Box(mag=(-field_strength,0,0),dim=(cs,cs,cs),pos=((i-dimx//2)*(cs+1),(j-dimy//2)*(cs+1),(k-dimz//2)*(cs+1)))) # if mag_pos[i*dimx+j*dimy+k*dimz]==3: # magnets.append(Box(mag=(0,field_strength,0),dim=(cs,cs,cs),pos=((i-dimx//2)*(cs+1),(j-dimy//2)*(cs+1),(k-dimz//2)*(cs+1)))) # if mag_pos[i*dimx+j*dimy+k*dimz]==4: # magnets.append(Box(mag=(0,-field_strength,0),dim=(cs,cs,cs),pos=((i-dimx//2)*(cs+1),(j-dimy//2)*(cs+1),(k-dimz//2)*(cs+1)))) # if mag_pos[i*dimx+j*dimy+k*dimz]==5: # magnets.append(Box(mag=(0,0,field_strength),dim=(cs,cs,cs),pos=((i-dimx//2)*(cs+1),(j-dimy//2)*(cs+1),(k-dimz//2)*(cs+1)))) # if mag_pos[i*dimx+j*dimy+k*dimz]==6: # magnets.append(Box(mag=(0,0,-field_strength),dim=(cs,cs,cs),pos=((i-dimx//2)*(cs+1),(j-dimy//2)*(cs+1),(k-dimz//2)*(cs+1)))) # return magnets cs = 10 field_strenght = 1000 # # hallbach 0, works well # def gen_magnets(mag_pos): # magnets = [] # magnets.append(Box(mag=(field_strenght,0,0),dim=(cs,cs,cs),pos=(0,0,15))) # # magnets.append(Box(mag=(0,-field_strenght,0),dim=(cs,cs,cs),pos=(-(cs+1),0,0))) # # magnets.append(Box(mag=(0,field_strenght,0),dim=(cs,cs,cs),pos=(cs+1,0,0))) # # magnets.append(Box(mag=(0,-field_strenght,0),dim=(cs,cs,cs),pos=(0,-(cs+1),0))) # # magnets.append(Box(mag=(0,field_strenght,0),dim=(cs,cs,cs),pos=(0,cs+1,0))) # # magnets.append(Box(mag=(0,-field_strenght,0),dim=(cs,cs,cs),pos=(-(cs+1),(cs+1),0))) # # magnets.append(Box(mag=(0,field_strenght,0),dim=(cs,cs,cs),pos=(-(cs+1),-(cs+1),0))) # # magnets.append(Box(mag=(0,0,field_strenght),dim=(cs,cs,cs),pos=((cs+1),-(cs+1),0))) # # magnets.append(Box(mag=(0,field_strenght,0),dim=(cs,cs,cs),pos=((cs+1),(cs+1),0))) # # return magnets # hallbach 0, works well def gen_magnets(mag_pos): magnets = [] magnets.append(Box(mag=(0,0,-500),dim=(5,5,5),pos=(0,0,0))) magnets.append(Box(mag=(-500,0,0),dim=(5,5,5),pos=(-5,5,0))) magnets.append(Box(mag=(-500,0,0),dim=(5,5,5),pos=(-5,0,0))) magnets.append(Box(mag=(-500,0,0),dim=(5,5,5),pos=(-5,-5,0))) magnets.append(Box(mag=(500,0,0),dim=(5,5,5),pos=(5,0,0))) magnets.append(Box(mag=(500,0,0),dim=(5,5,5),pos=(5,-5,0))) magnets.append(Box(mag=(0,-500,0),dim=(5,5,5),pos=(0,-5,0))) magnets.append(Box(mag=(500,0,0),dim=(5,5,5),pos=(5,5,0))) magnets.append(Box(mag=(0,500,0),dim=(5,5,5),pos=(0,5,0))) return magnets # def gen_magnets(): # magnets = [] # j = 0 # for i in range(0,360,15): # if j%2==0: # magnets.append(Box(mag=(0,500,0),dim=(5,5,5),angle=-i,axis=(0,0,1),pos=(math.sin(i/180.0*math.pi)*12,math.cos(i/180.0*math.pi)*12,0))) # else: # magnets.append(Box(mag=(500,0,0),dim=(5,5,5),angle=-i,axis=(0,0,1),pos=(math.sin(i/180.0*math.pi)*12,math.cos(i/180.0*math.pi)*12,0))) # if i!=60 and i!=240: # if j%2==0: # magnets.append(Box(mag=(0,0,-500),dim=(5,5,5),angle=-i,axis=(1,0,0),pos=(0,math.sin((i+30)/180.0*math.pi)*12,math.cos((i+30)/180.0*math.pi)*12))) # else: # magnets.append(Box(mag=(0,500,0),dim=(5,5,5),angle=-i,axis=(1,0,0),pos=(0,math.sin((i+30)/180.0*math.pi)*12,math.cos((i+30)/180.0*math.pi)*12))) # j=j+1 # return magnets # def gen_magnets(): # magnets = [] # j = 0 # k = 0 # for i in range(0,360,60): # if j<3: # magnets.append(Box(mag=(0,500,0),dim=(5,5,5),angle=-i,axis=(0,0,1),pos=(math.sin(i/180.0*math.pi)*12,math.cos(i/180.0*math.pi)*12,0))) # else: # magnets.append(Box(mag=(0,-500,0),dim=(5,5,5),angle=-i,axis=(0,0,1),pos=(math.sin(i/180.0*math.pi)*12,math.cos(i/180.0*math.pi)*12,0))) # j = j+1 # if i!=60 and i!=240: # if k<2: # magnets.append(Box(mag=(0,0,-500),dim=(5,5,5),angle=-i-30,axis=(1,0,0),pos=(0,math.sin((i+30)/180.0*math.pi)*12,math.cos((i+30)/180.0*math.pi)*12))) # else: # magnets.append(Box(mag=(0,0,500),dim=(5,5,5),angle=-i-30,axis=(1,0,0),pos=(0,math.sin((i+30)/180.0*math.pi)*12,math.cos((i+30)/180.0*math.pi)*12))) # k = k+1 # return magnets # # alternating 2rings # def gen_magnets(): # magnets = [] # j = 0 # k = 0 # for i in range(0,360,120): # if j%2==0: # magnets.append(Box(mag=(0,500,0),dim=(5,5,5),angle=-i,axis=(0,0,1),pos=(math.sin(i/180.0*math.pi)*12,math.cos(i/180.0*math.pi)*12,0))) # else: # magnets.append(Box(mag=(0,-500,0),dim=(5,5,5),angle=-i,axis=(0,0,1),pos=(math.sin(i/180.0*math.pi)*12,math.cos(i/180.0*math.pi)*12,0))) # if j%2==0: # magnets.append(Box(mag=(0,0,-500),dim=(5,5,5),angle=-i-90,axis=(1,0,0),pos=(0,math.sin((i+90)/180.0*math.pi)*12,math.cos((i+90)/180.0*math.pi)*12))) # else: # magnets.append(Box(mag=(0,0,500),dim=(5,5,5),angle=-i-90,axis=(1,0,0),pos=(0,math.sin((i+90)/180.0*math.pi)*12,math.cos((i+90)/180.0*math.pi)*12))) # j = j+1 # return magnets # #two rings not alterating # def gen_magnets(): # magnets = [] # j= 0 # for i in range(0,360,120): # if j==0: # magnets.append(Box(mag=(0,500,0),dim=(5,5,5),angle=-i,axis=(0,0,1),pos=(math.sin(i/180.0*math.pi)*12,math.cos(i/180.0*math.pi)*12,0))) # elif j==1: # magnets.append(Box(mag=(0,0,-500),dim=(5,5,5),angle=-i+j*10,axis=(0,0,1),pos=(math.sin(i/180.0*math.pi)*12,math.cos(i/180.0*math.pi)*12,0))) # else: # magnets.append(Box(mag=(500,0,0),dim=(5,5,5),angle=-i+j*10,axis=(0,0,1),pos=(math.sin(i/180.0*math.pi)*12,math.cos(i/180.0*math.pi)*12,0))) # if j!=1: # magnets.append(Box(mag=(0,0,500),dim=(5,5,5),angle=j*10,axis=(1,0,0),pos=(0,math.sin((i)/180.0*math.pi)*12,math.cos((i)/180.0*math.pi)*12))) # j = j+1 # # return magnets matplotlib.use('Agg') mlab.options.offscreen = True def func1(iter): c = Collection(gen_magnets(mag_pos)) if axis==0: rot = [iter-90,0,0] if axis==1: rot = [0,iter-90,0] if axis==2: rot = [0,0,iter-90] c.rotate(rot[0],(1,0,0), anchor=(0,0,0)) c.rotate(rot[1],(0,1,0), anchor=(0,0,0)) c.rotate(rot[2],(0,0,1), anchor=(0,0,0)) x_lower,x_upper = -30, 30 y_lower,y_upper = -30, 30 z_lower,z_upper = -30, 30 grid_spacing_value = 2#0.25 xd = int((x_upper-x_lower)/grid_spacing_value) yd = int((y_upper-y_lower)/grid_spacing_value) zd = int((z_upper-z_lower)/grid_spacing_value) x, y, z = np.mgrid[x_lower:x_upper:xd*1j, y_lower:y_upper:yd*1j, z_lower:z_upper:zd*1j] xs = np.linspace(x_lower,x_upper,xd) ys = np.linspace(y_lower,y_upper,yd) zs = np.linspace(z_lower,z_upper,zd) U = np.zeros((xd,yd,zd)) V = np.zeros((xd,yd,zd)) W = np.zeros((xd,yd,zd)) i = 0 if printouts: print("simulating magnetic data") for zi in zs: POS = np.array([(x,y,zi) for x in xs for y in ys]) Bs = c.getB(POS).reshape(len(xs),len(ys),3) U[:,:,i]=Bs[:,:,0] V[:,:,i]=Bs[:,:,1] W[:,:,i]=Bs[:,:,2] i=i+1 if printouts: print("(%d/%d)"%(i,zd)) i = 0 if printouts: print("generating flow whole cube") fig = mlab.figure(bgcolor=(1,1,1), size=(1500, 1500), fgcolor=(0, 0, 0)) fig.scene.disable_render = True for xi in xs: st = mlab.flow(x, y, z, U,V,W, line_width=0.1, seedtype='plane', integration_direction='both',figure=fig,opacity=0.05) st.streamline_type = 'tube' st.seed.visible = False st.tube_filter.radius = 0.1 st.seed.widget.origin = np.array([ xi, y_lower, z_upper]) st.seed.widget.point1 = np.array([ xi, y_upper, z_upper]) st.seed.widget.point2 = np.array([ xi, y_lower, z_lower]) st.seed.widget.resolution = 10#int(xs.shape[0]) st.seed.widget.enabled = True st.seed.widget.handle_property.opacity = 0 st.seed.widget.plane_property.opacity = 0 if printouts: print("(%d/%d)"%(i,xd)) i= i+1 fig.scene.disable_render = False mayavi.mlab.view(azimuth=-50, elevation=70) mlab.axes(extent = [x_lower, x_upper, y_lower, y_upper, z_lower, z_upper],figure=fig) if axis==0: mlab.savefig(movie_path+'/x-axis/movie001/'+'anim%05d.png'%(iter)) if axis==1: mlab.savefig(movie_path+'/y-axis/movie001/'+'anim%05d.png'%(iter)) if axis==2: mlab.savefig(movie_path+'/z-axis/movie001/'+'anim%05d.png'%(iter)) mlab.clf(fig) fig = mlab.figure(bgcolor=(1,1,1), size=(1500, 1500), fgcolor=(0, 0, 0)) fig.scene.disable_render = True if printouts: print("generating flow sensor plane") for zi in np.linspace(-1,1,10): st = mlab.flow(x, y, z, U,V,W, line_width=0.1, seedtype='plane', integration_direction='both',figure=fig,opacity=0.05) st.streamline_type = 'tube' st.seed.visible = False st.tube_filter.radius = 0.1 st.seed.widget.origin = np.array([ x_lower, y_upper, zi]) st.seed.widget.point1 = np.array([ x_upper, y_upper, zi]) st.seed.widget.point2 = np.array([ x_lower, y_lower, zi]) st.seed.widget.resolution = 10#int(xs.shape[0]) st.seed.widget.enabled = True st.seed.widget.handle_property.opacity = 0 st.seed.widget.plane_property.opacity = 0 if printouts: print("(%d/%d)"%(i,xd)) i= i+1 fig.scene.disable_render = False mayavi.mlab.view(azimuth=-50, elevation=70) mlab.axes(extent = [x_lower, x_upper, y_lower, y_upper, z_lower, z_upper],figure=fig) if axis==0: mlab.savefig(movie_path+'/x-axis/movie002/'+'anim%05d.png'%(iter)) if axis==1: mlab.savefig(movie_path+'/y-axis/movie002/'+'anim%05d.png'%(iter)) if axis==2: mlab.savefig(movie_path+'/z-axis/movie002/'+'anim%05d.png'%(iter)) mlab.clf(fig) angle_error = np.zeros(360) b_field_error = np.zeros(360) def func2(iter): c = Collection(gen_magnets(mag_pos)) if axis==0: rot = [iter-90,0,0] if axis==1: rot = [0,iter-90,0] if axis==2: rot = [0,0,iter-90] c.rotate(rot[0],(1,0,0), anchor=(0,0,0)) c.rotate(rot[1],(0,1,0), anchor=(0,0,0)) c.rotate(rot[2],(0,0,1), anchor=(0,0,0)) b_target = [] for sens in sensors: b_target.append(sens.getB(c)) # calculate B-field on a grid xs = np.linspace(-30,30,33) ys =
np.linspace(-30,30,44)
numpy.linspace
import numpy as np import pandas as pd _EPSILON = 1e-6 # 交易日历 tradeDays = pd.read_hdf("emulator_v0/tradeDays.h5").iloc[22:] tradeDays.reset_index(drop=True, inplace=True) # 股票池 dataset_universe = pd.read_hdf("emulator_v0/universe_SH50.h5") # 报价单 dataset_open = pd.read_hdf("emulator_v0/dataset_open.h5") dataset_open.fillna(0, inplace=True) dataset_close = pd.read_hdf("emulator_v0/dataset_close.h5") dataset_close.fillna(0, inplace=True) dataset_universe = pd.DataFrame( data=-1, index=dataset_open.index, columns=dataset_open.columns) class Trading(object): def __init__(self, buy_fee, sell_fee): self.tradeDays = tradeDays self.universe = dataset_universe self.open = np.array(dataset_open) self.close = np.array(dataset_close) self.buy_fee = buy_fee self.sell_fee = sell_fee self.reset() def reset(self): self.portfolio = np.zeros_like(self.universe.iloc[0], dtype="float") self.cash = 1e8 self.valuation = 0 # 持仓估值 self.total_value = self.cash + self.valuation def step(self, order, universe, counter): # 转换交易指令 day = self.tradeDays[counter] order = order - 1 order = self.get_order(order, universe, day) # 买卖操作信号 mask = np.sign(np.maximum(self.open[counter] - 1, 0)) buy_op = np.maximum(order, 0) * mask sell_op = np.minimum(order, 0) * mask # 卖买交易 self.sell(sell_op, counter) self.buy(buy_op, counter) # 当日估值 new_value = self.assess(counter) reward = np.log(new_value / self.total_value) self.total_value = new_value # MAX EPISODE if counter >= 468: done = True elif self.total_value < 1e8 * 0.2: done = True else: done = False return reward, done, self.total_value, self.portfolio def get_order(self, order, universe, day): self.universe.loc[day, universe] = order return
np.array(dataset_universe.loc[day])
numpy.array
import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import import xml.etree.ElementTree as ET from os.path import isfile, join from os import getcwd from scipy.spatial import distance ############################## # MACROS ################################# # # Geometry data # A = -65 # B = 25 # YMAX = 20 # THICKNESS = -10 # negative to match equation # # Mesh data # VERTICAL_RES = 60 # N_LAYERS = 4 # from endo to epi, not including endo # CIRCUNFERENTIAL_RES = 30 # Geo A = -65 B = 25 H = 0 K = 0 YMAX = 20 _TYPE = 1 N_INTERNAL_LAYERS = 8 # Horizontal res --> will add two layers (internal and external) N_NODES_PER_LAYER = 32 # Vertical res --> will add one or 2 nodes to fix top/bottom constrains N_REVS = 36 # Circf. res --> need to be multiple of 3 and 2 ############################## # 2D Functions ################################# class vector2d: def __init__(self, p1, p2, has_normal=True): self.p1 = p1 self.p2 = p2 self.vec = self.vector2d() self.unit = self.unit_vector() self.to_plot = [[p1[0], p2[0]], [p1[1],p2[1]]] self.normal = vector2d([-self.vec[1], self.vec[0]], [self.vec[1], -self.vec[0]], has_normal=False) if has_normal else None def __call__(self): return self.vec def __str__(self): return "Vector2d: p1: {p1:} p2: {p2:}".format(p1=self.p1, p2=self.p2) def vector2d(self): return np.array([self.p2[a] - self.p1[a] for a in range(len(self.p1))]) def unit_vector(self): return self.vec / np.linalg.norm(self.vec) def rotate(self,theta): rotation_matrix = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) p2 = np.matmul(rotation_matrix, self.vec) p2 += np.array(self.p1) return vector2d(self.p1, p2) class dataPoint: def __init__(self, coord, l=-1, s=-1, rh=-1, n=-1): self.coord = coord self.layer = l self.section = s self.refH = rh self.nodeNumber = n def copy(self): return dataPoint(self.coord, self.layer, self.section, self.refH, self.nodeNumber) def vector2dFromP1(center, length, dir): p1 = np.array(center) p2 = np.array([length * dir[0], length * dir[1]]) + p1 return vector2d(p1,p2) def angle_between(v1, v2): """ Returns the angle in radians between vectors 'v1' and 'v2' """ return np.arccos(np.clip(np.dot(v1.unit, v2.unit), -1.0, 1.0)) def regress(xs,ys,deg): coeffs = np.polyfit(xs,ys,deg) # if _print == True: # a = ['(x^'+str(len(coeffs)-(i+1))+") * "+str(y) if i+1 !=len(coeffs) else str(y) for i, y in enumerate(coeffs)] # print("Coeffs: " + str(coeffs) + " | " + " + ".join(a)[:-1:]) # return lambda x: np.sum([(x**len(coeffs)-(i+1))*y if i+1 !=len(coeffs) else y for i, y in enumerate(coeffs)]) return np.poly1d(coeffs) # Ellipse Functions def ellipse(a, b, h=0, k=0, _type=0, ref=-1): def eq(val): if _type == 0: # solved for y (return y, given x) return (a/b) * -ref * np.sqrt(b**2 - (val-h)**2) + k # return np.sqrt((1 - (val - h)**2 ) /b**2) + k elif _type == 1: # solved for x (return x, given y) return (b/a) * ref * np.sqrt(a**2 - (val-k)**2) + h return eq def ellipse_focci(a,b,h=0,k=0): c = np.sqrt(a**2 - b**2) return np.array([h, k + c]), np.array([h, k - c]) def sctattered_ellipse(a,b,h,k, yrange, xrange, x_res, y_res): # Define eq of elipse y_ellpisis = ellipse(a,b,h,k,1) x_ellpisis = ellipse(a,b,h,k,0) # Get min and max values ymin = np.min(yrange) ymax = np.max(yrange) xmin = np.min(xrange) xmax = np.max(xrange) # Calculate undistributed points ys_ybased = np.linspace(ymin, ymax, x_res) xs_ybased = np.array([y_ellpisis(y) for y in ys_ybased ]) xs_xbased = np.linspace(xmin, xmax, y_res) ys_xbased = np.array([x_ellpisis(x) for x in xs_xbased ]) # Set points in a single array xs = np.append(xs_ybased, xs_xbased) ys = np.append(ys_ybased, ys_xbased) # Sort points s1 = np.zeros((len(xs), 2)) for i, x in enumerate(xs): s1[i][0] = x s1[i][1] = ys[i] s1 = s1[np.argsort(s1[:, 1])] s2 = np.zeros((2,len(s1))) for i in range(len(s1)): s2[0][i] = s1[i][0] s2[1][i] = s1[i][1] return s1, s2 def regressed_ellipse(a,b,h,k, yrange, xrange, yswitch=0.80, breakpoints=[0], res=100, deg=2, axis=1): # Define min and max values ymin =
np.min(yrange)
numpy.min