prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import numpy as np from numpy import linalg as LA import sys import librosa from scipy import linalg import copy import random from math import log # import matplotlib.pyplot as plt from joblib import Parallel, delayed import multiprocessing import logging import argparse def sampleS(S, k): sample = [] if len(S) <= k: return S while len(sample) < k: new = S[random.randint(0, len(S) - 1)] if not new in sample: sample.append(new) return sample def buffer(signal, L, M): if M >= L: logging.info( 'Error: Overlapping windows cannot be larger than frame length!') sys.exit() # len_signal = len(signal) # logging.info('The signal length is %s: ' % (len_signal)) # K = np.ceil(len_signal / L).astype('int') # num_frames # logging.info('The number of frames \'K\' is %s: ' % (K)) logging.info('The length of each frame \'L\' is %s: ' % (L)) # X_tmp = [] k = 1 while (True): start_ind = ((k - 1) * (L - M) + 1) - 1 end_ind = ((k * L) - (k - 1) * M) if start_ind == len_signal: break elif (end_ind > len_signal): # logging.info(('k=%s, [%s, %s] ' % (k, start_ind, end_ind - 1)) val_in = len_signal - start_ind tmp_seg = np.zeros(L) tmp_seg[:val_in] = signal[start_ind:] X_tmp.append(tmp_seg) break else: # logging.info(('k=%s, [%s, %s] ' % (k, start_ind, end_ind - 1)) X_tmp.append(signal[start_ind:end_ind]) k += 1 # return X_tmp def unbuffer(X, hop): N, L = X.shape # T = N + L * hop K = np.arange(0, N) x = np.zeros(T) H = np.hanning(N) for k in xrange(0, L): x[K] = x[K] + np.multiply(H, X[:, k]) K = K + hop # return x class SpeechDenoise: def __init__( self, X, params, M, signal=[] ): # X is the np.vstacked transpose of the buffered signal (buffered==split up into overlapping windows) self.meaningfulNodes = range( X.shape[1]) # this is pretty much the same thing as self.I self.X = X self.D = [] self.params = params self.n_iter = self.params['rule_1']['n_iter'] # num_iterations self.error = self.params['rule_2']['error'] # num_iterations # self.verbose = self.params['verbose'] # # THE following K and L were typo/switched in the GAD.py code. they're fixed here: self.K = self.X.shape[0] # sample length self.L = self.X.shape[ 1] # maximum atoms to be learned (i.e. size of ground set) # self.I = np.arange( 0, self.L ) # self.I is the ground set of elements (dictionary atoms) we can choose self.set_ind = [] self.k_min_sum = 0.0 # Initializating the residual matrix 'R' by using 'X' self.R = self.X.copy() # The following are (sortof) optional. # we use the following 3 instance variables to calculate RMSE after each iter self.M = M self.signal = signal # we leave this empty unless we actually want to do the RMSE, which is computationall #intense and also requires sending the (big) signal across the line... self.rmse = [] # to hold RMSE after each iter # and this one to plot solution quality over time self.k_min_data = [] def function(self, S, big_number=25.0): # Note: this only works for f(S); it will NOT work on any input except S. to do that, would need to find # the elements in the function's argument that are not in S, then iteratively add to the value we return. return (len(S) * big_number - self.k_min_sum) def functionMarg_quickestimate(self, new_elements, curr_elements, big_number=25.0): new_elems = [ele for ele in new_elements if ele not in curr_elements] if not len(new_elems): return (0) # This is a bit of a hack... # Actually, the below version is unfair/inaccurate, as we should really update R by orthogonalizing # after we add each column. Here, I'm treating the function as a modular function within each # round of adaptive sampling (and submodular across rounds) which is entertainingly ridiculous. # BUT if it works at de-noising, then I don't care :) # NOTE that in the original GAD code, self.k_min_sum is similar to what I'm calling sum_of_norm_ratios. new_elems = [ele for ele in new_elements if ele not in curr_elements] R_copy = copy.copy(self.R) #sum_of_norm_ratios = np.sum(LA.norm(R_copy[:, new_elems], 1)) / np.sum([LA.norm(R_copy[:, I_ind_k_min], 2) for I_ind_k_min in new_elems]) sum_of_norm_ratios = np.sum([ LA.norm(R_copy[:, I_ind_k_min], 1) / LA.norm( R_copy[:, I_ind_k_min], 2) for I_ind_k_min in new_elems ]) return (len(new_elems) * big_number - sum_of_norm_ratios) def functionMarg(self, new_elements, curr_elements, big_number=25.0): # This is the more correct (but slower and more complicated) functionMarg. See note in other simpler version above. # NOTE: IT ASSUMES THAT S IS THE CURRENT S. IT WILL BE WRONG WHEN input S is NOT the current solution!!! new_elems = [ele for ele in new_elements if ele not in curr_elements] if not len(new_elems): return (0) # Copy everything important... we have to update them iteratively for each ele in the new sample, but # we might not use this sample so can't change the originals... R_copy = copy.copy(self.R) #print self.R.shape, '=self.R.shape' D_copy = copy.copy(self.D) I_copy = copy.copy(self.I) k_min_sum_copy = copy.copy(self.k_min_sum) set_ind_copy = self.set_ind marginal_k_min_sum_copy = 0 # New elements we compute marginal value for new_elems = [ele for ele in new_elements if ele not in curr_elements] # do the GAD find_column() routine, but we're not trying to find a new column; we're evaluating # the quality of ones in the set we sampled. Basically, that means checking for changes in k_min_sum_copy. # for I_ind_k_min in new_elems: sample_avg_k_min = 0 r_k = R_copy[:, I_ind_k_min] # k_min = LA.norm(r_k, 1) / LA.norm(r_k, 2) #logging.info('k_min inside a sample is %s: ' % k_min) sample_avg_k_min += k_min # marginal_k_min_sum_copy = marginal_k_min_sum_copy + k_min k_min_sum_copy = k_min_sum_copy + k_min # r_k_min = R_copy[:, I_ind_k_min] # # Set the l-th atom to equal to normalized r_k psi = r_k_min / LA.norm(r_k_min, 2) # # Add to the dictionary D and its index and shrinking set I D_copy.append(psi) set_ind_copy.append(I_ind_k_min) # Compute the new residual for all columns k for kk in I_copy: r_kk = R_copy[:, kk] alpha = np.dot(r_kk, psi) R_copy[:, kk] = r_kk - np.dot(psi, alpha) # I_copy = np.delete(I_copy, [I_ind_k_min]) #print 'sample avg k_min = ', sample_avg_k_min/np.float(len(new_elems)) #logging.info('marginal_k_min_sum_copy of a sample is %s: ' % marginal_k_min_sum_copy) #logging.info('some sample val is %s: ' % ( - marginal_k_min_sum_copy)) #logging.info('big number is %s: ' % ( big_number)) #logging.info('len(new_elems) %s: ' % ( len(new_elems))) return (len(new_elems) * big_number - marginal_k_min_sum_copy) def adaptiveSampling_adam(f, k, numSamples, r, opt, alpha1, alpha2, compute_rmse=False, speed_over_accuracy=False, parallel=False): # This large uncommented script is not complicated enough, so here we go: if speed_over_accuracy: def functionMarg_closure(new_elements, curr_elements, big_number=25.0): return f.functionMarg_quickestimate( new_elements, curr_elements, big_number=25.0) else: def functionMarg_closure(new_elements, curr_elements, big_number=25.0): return f.functionMarg(new_elements, curr_elements, big_number=25.0) S = copy.deepcopy(f.meaningfulNodes) X = [] while len(X) < k and len(S + X) > k: currentVal = f.function(X) logging.info([ currentVal, 'ground set remaining:', len(S), 'size of current solution:', len(X) ]) samples = [] samplesVal = [] # PARALLELIZE THIS LOOP it is emb. parallel def sample_elements(samples, samplesVal): #logging.info(len(S), 'is len(S)' sample = sampleS(S, k / r) #logging.info(len(S), 'is len(S);', k/r, 'is k/r', k,'is k', r, 'is r', len(sample), 'is len sample' sampleVal = functionMarg_closure(sample, X) samplesVal.append(sampleVal) samples.append(sample) if parallel: manager = multiprocessing.Manager() samples = manager.list() samplesVal = manager.list() jobs = [] for i in range(numSamples): p = multiprocessing.Process( target=sample_elements, args=(samples, samplesVal)) jobs.append(p) p.start() for proc in jobs: proc.join() samples = list(samples) samplesVal = list(samplesVal) else: samples = [] samplesVal = [] for i in range(numSamples): sample_elements(samples, samplesVal) maxSampleVal = max(samplesVal) #print 'max sample val / len', maxSampleVal/np.float(k/r), 'avg sample val', np.mean(samplesVal)/np.float(k/r) #print 'max sample val / len', maxSampleVal, 'avg sample val', np.mean(samplesVal) bestSample = samples[samplesVal.index(maxSampleVal)] if maxSampleVal >= (opt - currentVal) / (alpha1 * float(r)): X += bestSample #logging.info(len(X), 'is len(X)' for element in bestSample: S.remove(element) #logging.info(len(S), 'is len(S) after removing an element from best sample' # Now we need to do some bookkeeping just for the audio de-noising objective: for I_ind_k_min in bestSample: r_k_min = f.R[:, I_ind_k_min] #tmp.append(LA.norm(r_k, 1) / LA.norm(r_k, 2)) # #k_min = tmp[ind_k_min] k_min = LA.norm(r_k_min, 1) / LA.norm(r_k_min, 2) #print 'k_min added to soln', k_min # print 'k_min in best', k_min f.k_min_data.append(k_min) # This is just for logging purposes # f.k_min_sum = f.k_min_sum + k_min #logging.info(k_min # #r_k_min = f.R[:, I_ind_k_min] # # Set the l-th atom to equal to normalized r_k psi = r_k_min /
LA.norm(r_k_min, 2)
numpy.linalg.norm
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Nov 16 23:34:59 2020 @author: mlampert """ import os import pandas import copy import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from matplotlib.gridspec import GridSpec import pickle import numpy as np import matplotlib.cm as cm #Flap imports import flap import flap_nstx flap_nstx.register() import flap_mdsplus #Setting up FLAP flap_mdsplus.register('NSTX_MDSPlus') thisdir = os.path.dirname(os.path.realpath(__file__)) fn = os.path.join(thisdir,"../flap_nstx.cfg") flap.config.read(file_name=fn) #Plot settings for publications publication=True if publication: #figsize=(8.5/2.54, # 8.5/2.54/1.618*1.1) figsize=(17/2.54,10/2.54) plt.rc('font', family='serif', serif='Helvetica') labelsize=6 linewidth=0.5 major_ticksize=2 plt.rc('text', usetex=False) plt.rcParams['pdf.fonttype'] = 42 plt.rcParams['ps.fonttype'] = 42 plt.rcParams['lines.linewidth'] = linewidth plt.rcParams['axes.linewidth'] = linewidth plt.rcParams['axes.labelsize'] = labelsize plt.rcParams['axes.titlesize'] = labelsize plt.rcParams['xtick.labelsize'] = labelsize plt.rcParams['xtick.major.size'] = major_ticksize plt.rcParams['xtick.major.width'] = linewidth plt.rcParams['xtick.minor.width'] = linewidth/2 plt.rcParams['xtick.minor.size'] = major_ticksize/2 plt.rcParams['ytick.labelsize'] = labelsize plt.rcParams['ytick.major.width'] = linewidth plt.rcParams['ytick.major.size'] = major_ticksize plt.rcParams['ytick.minor.width'] = linewidth/2 plt.rcParams['ytick.minor.size'] = major_ticksize/2 plt.rcParams['legend.fontsize'] = labelsize else: figsize=None #TODO #These are for a different analysis and a different method #define pre ELM time #define ELM burst time #define the post ELM time based on the ELM burst time #Calculate the average, maximum and the variance of the results in those time ranges #Calculate the averaged velocity trace around the ELM time #Calculate the correlation coefficients between the +-tau us time range around the ELM time #Classify the ELMs based on the correlation coefficents def plot_nstx_gpi_velocity_distribution(window_average=500e-6, tau_range=[-500e-6,500e-6], sampling_time=2.5e-6, pdf=False, plot=True, return_results=False, return_error=False, plot_variance=True, plot_error=False, normalized_velocity=True, normalized_structure=True, subtraction_order=4, opacity=0.2, correlation_threshold=0.6, plot_max_only=False, plot_for_publication=False, gpi_plane_calculation=True, plot_scatter=True, elm_time_base='frame similarity', n_hist=50, min_max_range=False, nocalc=False, general_plot=True, plot_for_velocity=False, plot_for_structure=False, plot_for_dependence=False, structure_finding_method='contour', interpolation=False, ): if elm_time_base not in ['frame similarity', 'radial velocity']: raise ValueError('elm_time_base should be either "frame similarity" or "radial velocity"') wd=flap.config.get_all_section('Module NSTX_GPI')['Working directory'] all_results_file=wd+'/processed_data/all_results_file.pickle' database_file=wd+'/db/ELM_findings_mlampert_velocity_good.csv' db=pandas.read_csv(database_file, index_col=0) elm_index=list(db.index) n_elm=len(elm_index) nwin=int(window_average/sampling_time) time_vec=(np.arange(2*nwin)*sampling_time-window_average)*1e3 all_results={'Velocity ccf':np.zeros([2*nwin,n_elm,2]), 'Velocity str max':np.zeros([2*nwin,n_elm,2]), 'Acceleration ccf':np.zeros([2*nwin,n_elm,2]), 'Frame similarity':np.zeros([2*nwin,n_elm]), 'Correlation max':np.zeros([2*nwin,n_elm]), 'Size max':np.zeros([2*nwin,n_elm,2]), 'Position max':np.zeros([2*nwin,n_elm,2]), 'Separatrix dist max':np.zeros([2*nwin,n_elm]), 'Centroid max':np.zeros([2*nwin,n_elm,2]), 'COG max':np.zeros([2*nwin,n_elm,2]), 'Area max':np.zeros([2*nwin,n_elm]), 'Elongation max':np.zeros([2*nwin,n_elm]), 'Angle max':np.zeros([2*nwin,n_elm]), 'Str number':np.zeros([2*nwin,n_elm]), 'GPI Dalpha':np.zeros([2*nwin,n_elm]), } hist_range_dict={'Velocity ccf':{'Radial':[-5e3,15e3], 'Poloidal':[-25e3,5e3]}, 'Velocity str max':{'Radial':[-10e3,20e3], 'Poloidal':[-20e3,10e3]}, 'Size max':{'Radial':[0,0.1], 'Poloidal':[0,0.1]}, 'Separatrix dist max':[-0.05,0.150], 'Elongation max':[-0.5,0.5], 'Str number':[-0.5,10.5], } n_hist_str=int(hist_range_dict['Str number'][1]-hist_range_dict['Str number'][0])*4 result_histograms={'Velocity ccf':np.zeros([2*nwin,n_hist,2]), 'Velocity str max':np.zeros([2*nwin,n_hist,2]), 'Size max':np.zeros([2*nwin,n_hist,2]), 'Separatrix dist max':np.zeros([2*nwin,n_hist]), 'Elongation max':
np.zeros([2*nwin,n_hist])
numpy.zeros
from operator import add, sub import numpy as np from scipy.stats import norm class Elora: def __init__(self, times, labels1, labels2, values, biases=0): """ Elo regressor algorithm for paired comparison time series prediction Author: <NAME> Args: times (array of np.datetime64): comparison datetimes labels1 (array of str): comparison labels for first entity labels2 (array of str): comparison labels for second entity values (array of float): comparison outcome values biases (array of float or scalar, optional): comparison bias corrections Attributes: examples (np.recarray): time-sorted numpy record array of (time, label1, label2, bias, value, value_pred) samples first_update_time (np.datetime64): time of the first comparison last_update_time (np.datetime64): time of the last comparison labels (array of string): unique compared entity labels median_value (float): median expected comparison value """ times = np.array(times, dtype='datetime64[s]', ndmin=1) labels1 = np.array(labels1, dtype='str', ndmin=1) labels2 = np.array(labels2, dtype='str', ndmin=1) values = np.array(values, dtype='float', ndmin=1) if np.isscalar(biases): biases = np.full_like(times, biases, dtype='float') else: biases = np.array(biases, dtype='float', ndmin=1) self.first_update_time = times.min() self.last_update_time = times.max() self.labels = np.union1d(labels1, labels2) self.median_value = np.median(values) prior = self.median_value * np.ones_like(values, dtype=float) self.examples = np.sort( np.rec.fromarrays([ times, labels1, labels2, biases, values, prior, ], names=( 'time', 'label1', 'label2', 'bias', 'value', 'value_pred' )), order=['time', 'label1', 'label2'], axis=0) @property def initial_rating(self): """ Customize this function for a given subclass. It computes the initial rating, equal to the rating one would expect if all labels were interchangeable. Default behavior is to return one-half the median outcome value if the labels commute, otherwise 0. """ return .5*self.median_value if self.commutes else 0 def regression_coeff(self, elapsed_time): """ Customize this function for a given subclass. It computes the regression coefficient—prefactor multiplying the rating of each team evaluated at each update—as a function of elapsed time since the last rating update for that label. Default behavior is to return 1, i.e. no rating regression. """ return 1.0 def evolve_rating(self, rating, elapsed_time): """ Evolves 'state' to 'time', applying rating regression if necessary, and returns the evolved rating. Args: state (dict): state dictionary {'time': time, 'rating': rating} time (np.datetime64): time to evaluate state Returns: state (dict): evolved state dictionary {'time': time, 'rating': rating} """ regress = self.regression_coeff(elapsed_time) return regress * rating + (1.0 - regress) * self.initial_rating def fit(self, k, commutes, scale=1, burnin=0): """ Primary routine that performs model calibration. It is called recursively by the `fit` routine. Args: k (float): coefficient that multiplies the prediction error to determine the rating update. commutes (bool): false if the observed values change sign under label interchange and true otheriwse. """ self.commutes = commutes self.scale = scale self.commutator = 0. if commutes else self.median_value self.compare = add if commutes else sub record = {label: [] for label in self.labels} prior_state_dict = {} for idx, example in enumerate(self.examples): time, label1, label2, bias, value, value_pred = example default = (time, self.initial_rating) prior_time1, prior_rating1 = prior_state_dict.get(label1, default) prior_time2, prior_rating2 = prior_state_dict.get(label2, default) rating1 = self.evolve_rating(prior_rating1, time - prior_time1) rating2 = self.evolve_rating(prior_rating2, time - prior_time2) value_pred = self.compare(rating1, rating2) + self.commutator + bias self.examples[idx]['value_pred'] = value_pred rating_change = k * (value - value_pred) rating1 += rating_change rating2 += rating_change if self.commutes else -rating_change record[label1].append((time, rating1)) record[label2].append((time, rating2)) prior_state_dict[label1] = (time, rating1) prior_state_dict[label2] = (time, rating2) for label in record.keys(): record[label] = np.rec.array( record[label], dtype=[ ('time', 'datetime64[s]'), ('rating', 'float')]) self.record = record residuals = np.rec.fromarrays([ self.examples.time, self.examples.value - self.examples.value_pred ], names=('time', 'residual')) return residuals def get_rating(self, times, labels): """ Query label state(s) at the specified time accounting for rating regression. Args: times (array of np.datetime64): Comparison datetimes labels (array of string): Comparison entity labels Returns: rating (array): ratings for each time and label pair """ times = np.array(times, dtype='datetime64[s]', ndmin=1) labels = np.array(labels, dtype='str', ndmin=1) ratings =
np.empty_like(times, dtype='float')
numpy.empty_like
from typing import Union import cv2 import matplotlib.pyplot as plt import numpy as np import torch from astropy.coordinates import spherical_to_cartesian from matplotlib.collections import EllipseCollection from numba import njit from numpy import linalg as LA from scipy.spatial.distance import cdist import src.common.constants as const from src.common.camera import camera_matrix, projection_matrix, Camera from src.common.coordinates import ENU_system from src.common.robbins import load_craters, extract_robbins_dataset def matrix_adjugate(matrix): """Return adjugate matrix [1]. Parameters ---------- matrix : np.ndarray Input matrix Returns ------- np.ndarray Adjugate of input matrix References ---------- .. [1] https://en.wikipedia.org/wiki/Adjugate_matrix """ cofactor = LA.inv(matrix).T * LA.det(matrix) return cofactor.T def scale_det(matrix): """Rescale matrix such that det(A) = 1. Parameters ---------- matrix: np.ndarray, torch.Tensor Matrix input Returns ------- np.ndarray Normalised matrix. """ if isinstance(matrix, np.ndarray): return np.cbrt((1. / LA.det(matrix)))[..., None, None] * matrix elif isinstance(matrix, torch.Tensor): val = 1. / torch.det(matrix) return (torch.sign(val) * torch.pow(torch.abs(val), 1. / 3.))[..., None, None] * matrix def conic_matrix(a, b, psi, x=0, y=0): """Returns matrix representation for crater derived from ellipse parameters Parameters ---------- a: np.ndarray, torch.Tensor, int, float Semi-major ellipse axis b: np.ndarray, torch.Tensor, int, float Semi-minor ellipse axis psi: np.ndarray, torch.Tensor, int, float Ellipse angle (radians) x: np.ndarray, torch.Tensor, int, float X-position in 2D cartesian coordinate system (coplanar) y: np.ndarray, torch.Tensor, int, float Y-position in 2D cartesian coordinate system (coplanar) Returns ------- np.ndarray, torch.Tensor Array of ellipse matrices """ if isinstance(a, (int, float)): out = np.empty((3, 3)) pkg = np elif isinstance(a, torch.Tensor): out = torch.empty((len(a), 3, 3), device=a.device, dtype=torch.float32) pkg = torch elif isinstance(a, np.ndarray): out = np.empty((len(a), 3, 3)) pkg = np else: raise TypeError("Input must be of type torch.Tensor, np.ndarray, int or float.") A = (a ** 2) * pkg.sin(psi) ** 2 + (b ** 2) * pkg.cos(psi) ** 2 B = 2 * ((b ** 2) - (a ** 2)) * pkg.cos(psi) * pkg.sin(psi) C = (a ** 2) * pkg.cos(psi) ** 2 + b ** 2 * pkg.sin(psi) ** 2 D = -2 * A * x - B * y F = -B * x - 2 * C * y G = A * (x ** 2) + B * x * y + C * (y ** 2) - (a ** 2) * (b ** 2) out[:, 0, 0] = A out[:, 1, 1] = C out[:, 2, 2] = G out[:, 1, 0] = out[:, 0, 1] = B / 2 out[:, 2, 0] = out[:, 0, 2] = D / 2 out[:, 2, 1] = out[:, 1, 2] = F / 2 return out @njit def conic_center_numba(A): a = LA.inv(A[:2, :2]) b = np.expand_dims(-A[:2, 2], axis=-1) return a @ b def conic_center(A): if isinstance(A, torch.Tensor): return (torch.inverse(A[..., :2, :2]) @ -A[..., :2, 2][..., None])[..., 0] elif isinstance(A, np.ndarray): return (LA.inv(A[..., :2, :2]) @ -A[..., :2, 2][..., None])[..., 0] else: raise TypeError("Input conics must be of type torch.Tensor or np.ndarray.") def ellipse_axes(A): if isinstance(A, torch.Tensor): lambdas = torch.linalg.eigvalsh(A[..., :2, :2]) / (-torch.det(A) / torch.det(A[..., :2, :2]))[..., None] axes = torch.sqrt(1 / lambdas) elif isinstance(A, np.ndarray): lambdas = LA.eigvalsh(A[..., :2, :2]) / (-
LA.det(A)
numpy.linalg.det
#------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # #------------------------------------------------------------- # Make the `systemds` package importable import os import sys import warnings import unittest import numpy as np import scipy.stats as st import random import math path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../") sys.path.insert(0, path) from systemds.context import SystemDSContext shape = (random.randrange(1, 25), random.randrange(1, 25)) dist_shape = (10, 15) min_max = (0, 1) sparsity = random.uniform(0.0, 1.0) seed = 123 distributions = ["norm", "uniform"] sds = SystemDSContext() class TestRand(unittest.TestCase): def setUp(self): warnings.filterwarnings( action="ignore", message="unclosed", category=ResourceWarning) def tearDown(self): warnings.filterwarnings( action="ignore", message="unclosed", category=ResourceWarning) def test_rand_shape(self): m = sds.rand(rows=shape[0], cols=shape[1]).compute() self.assertTrue(m.shape == shape) def test_rand_min_max(self): m = sds.rand(rows=shape[0], cols=shape[1], min=min_max[0], max=min_max[1]).compute() self.assertTrue((m.min() >= min_max[0]) and (m.max() <= min_max[1])) def test_rand_sparsity(self): m = sds.rand(rows=shape[0], cols=shape[1], sparsity=sparsity, seed=0).compute() non_zero_value_percent = np.count_nonzero(m) * 100 /
np.prod(m.shape)
numpy.prod
# -*- coding: UTF-8 -*- import glob import numpy as np import pandas as pd from PIL import Image import random # h,w = 60,50 h, w = (60, 50) size = h * w # Receding_Hairline Wearing_Necktie Rosy_Cheeks Eyeglasses Goatee Chubby # Sideburns Blurry Wearing_Hat Double_Chin Pale_Skin Gray_Hair Mustache Bald label_cls = 'Eyeglasses' pngs = sorted(glob.glob('./data/img_align_celeba/*.jpg')) data = pd.read_table('./data/list_attr_celeba.txt', delim_whitespace=True, error_bad_lines=False) eyeglasses = np.array(data[label_cls]) eyeglasses_cls = (eyeglasses + 1)/2 label_glasses = np.zeros((202599, 2)) correct_list = [] correct_list_test = [] false_list = [] false_list_test = [] for i in range(len(label_glasses)): if eyeglasses_cls[i] == 1: label_glasses[i][1] = 1 if i < 160000: correct_list.append(i) else: correct_list_test.append(i) else: label_glasses[i][0] = 1 if i < 160000: false_list.append(i) else: false_list_test.append(i) print(len(correct_list_test), len(false_list_test)) training_set_label = label_glasses[0:160000, :] test_set_label = label_glasses[160000:, :] training_set_cls = eyeglasses_cls[0:160000] test_set_cls = eyeglasses_cls[160000:] def create_trainbatch(num=10, channel=0): train_num = random.sample(false_list, num) if channel == 0: train_set = np.zeros((num, h, w)) else: train_set = np.zeros((num, h, w, 3)) train_set_label_ = [] train_set_cls_ = [] for i in range(num): img = Image.open(pngs[train_num[i]]) img_grey = img.resize((w, h)) if channel == 0: img_grey = np.array(img_grey.convert('L')) train_set[i, :, :] = img_grey else: img_grey = np.array(img_grey) train_set[i, :, :, :] = img_grey train_set_label_.append(training_set_label[train_num[i]]) train_set_cls_.append(training_set_cls[train_num[i]]) # if channel == 0: # train_set = train_set.reshape(size,num).T train_set_label_new =
np.array(train_set_label_)
numpy.array
from torch.utils.data import Dataset import numpy as np import os import random import torchvision.transforms as transforms from PIL import Image, ImageOps import cv2 import torch from PIL.ImageFilter import GaussianBlur import trimesh import logging import json from math import sqrt import datetime log = logging.getLogger('trimesh') log.setLevel(40) def get_part(file, vertices, points, body_parts): def get_dist(pt1, pt2): return sqrt((pt1[0]-pt2[0])**2 +(pt1[1]-pt2[1])**2 + (pt1[2]-pt2[2])**2) part = [] for point in points: _min = float('inf') _idx = 0 for idx, vertice in enumerate(vertices[::5]): dist = get_dist(point, vertice) if _min > dist: _min = dist _idx = idx tmp = [0 for i in range(20)] tmp[ body_parts.index(file[str(_idx)]) ] = 1 # one-hot vector making part.append(tmp) part = np.array(part) return part def load_trimesh(root_dir): folders = os.listdir(root_dir) meshs = {} for i, f in enumerate(folders): sub_name = f meshs[sub_name] = trimesh.load(os.path.join(root_dir, f, '%s_posed.obj' % sub_name), process=False, maintain_order=True, skip_uv=True) #### mesh = trimesh.load("alvin_t_posed.obj",process=False, maintain_order=True, skip_uv=True) return meshs class PTFTrainDataset(Dataset): @staticmethod def modify_commandline_options(parser, is_train): return parser def __init__(self, opt, phase='train'): self.opt = opt self.projection_mode = 'orthogonal' # Path setup self.root = self.opt.dataroot self.RENDER = os.path.join(self.root, 'RENDER') self.PART = os.path.join(self.root, 'PART') self.MASK = os.path.join(self.root, 'MASK') self.PARAM = os.path.join(self.root, 'PARAM') self.UV_MASK = os.path.join(self.root, 'UV_MASK') self.UV_NORMAL = os.path.join(self.root, 'UV_NORMAL') self.UV_RENDER = os.path.join(self.root, 'UV_RENDER') self.UV_POS = os.path.join(self.root, 'UV_POS') self.OBJ = os.path.join(self.root, 'GEO', 'OBJ') self.T_OBJ = os.path.join(self.root, 'GEO', 'T') self.BG = self.opt.bg_path self.bg_img_list = [] if self.opt.random_bg: self.bg_img_list = [os.path.join(self.BG, x) for x in os.listdir(self.BG)] self.bg_img_list.sort() self.B_MIN = np.array([-128, -28, -128]) / 128 self.B_MAX =
np.array([128, 228, 128])
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Join Hypocenter-Velocity Inversion on Tetrahedral meshes (JHVIT). 6 functions can be called and run in this package: 1- jntHypoVel_T : Joint hypocenter-velocity inversion of P wave data, parametrized via the velocity model. 2- jntHyposlow_T : Joint hypocenter-velocity inversion of P wave data, parametrized via the slowness model. 3- jntHypoVelPS_T : Joint hypocenter-velocity inversion of P- and S-wave data, parametrized via the velocity models. 4- jntHyposlowPS_T : Joint hypocenter-velocity inversion of P- and S-wave data, parametrized via the slowness models. 5-jointHypoVel_T : Joint hypocenter-velocity inversion of P wave data. Input data and inversion parameters are downloaded automatically from external text files. 6-jointHypoVelPS_T : Joint hypocenter-velocity inversion of P- and S-wave data. Input data and inversion parameters are downloaded automatically from external text files. Notes: - The package ttcrpy must be installed in order to perform the raytracing step. This package can be downloaded from: https://ttcrpy.readthedocs.io/en/latest/ - To prevent bugs, it would be better to use python 3.7 Created on Sat Sep 14 2019 @author: <NAME> """ import numpy as np import scipy.sparse as sp import scipy.sparse.linalg as spl import scipy.stats as scps import re import sys import copy from mesh import MSHReader from ttcrpy import tmesh from multiprocessing import Pool, cpu_count, current_process, Manager import multiprocessing as mp from collections import OrderedDict try: import vtk from vtk.util.numpy_support import numpy_to_vtk except BaseException: print('VTK module not found, saving velocity model in vtk form is disabled') def msh2vtk(nodes, cells, velocity, outputFilename, fieldname="Velocity"): """ Generate a vtk file to store the velocity model. Parameters ---------- nodes : np.ndarray, shape (nnodes, 3) Node coordinates. cells : np.ndarray of int, shape (number of cells, 4) Indices of nodes forming each cell. velocity : np.ndarray, shape (nnodes, 1) Velocity model. outputFilename : string The output vtk filename. fieldname : string, optional The saved field title. The default is "Velocity". Returns ------- float return 0.0 if no bugs occur. """ ugrid = vtk.vtkUnstructuredGrid() tPts = vtk.vtkPoints() tPts.SetNumberOfPoints(nodes.shape[0]) for n in range(nodes.shape[0]): tPts.InsertPoint(n, nodes[n, 0], nodes[n, 1], nodes[n, 2]) ugrid.SetPoints(tPts) VtkVelocity = numpy_to_vtk(velocity, deep=0, array_type=vtk.VTK_DOUBLE) VtkVelocity.SetName(fieldname) ugrid.GetPointData().SetScalars(VtkVelocity) Tetra = vtk.vtkTetra() for n in np.arange(cells.shape[0]): Tetra.GetPointIds().SetId(0, cells[n, 0]) Tetra.GetPointIds().SetId(1, cells[n, 1]) Tetra.GetPointIds().SetId(2, cells[n, 2]) Tetra.GetPointIds().SetId(3, cells[n, 3]) ugrid.InsertNextCell(Tetra.GetCellType(), Tetra.GetPointIds()) gWriter = vtk.vtkUnstructuredGridWriter() gWriter.SetFileName(outputFilename) gWriter.SetInputData(ugrid) gWriter.SetFileTypeToBinary() gWriter.Update() return 0.0 def check_hypo_indomain(Hypo_new, P_Dimension, Mesh=None): """ Check if the new hypocenter is still inside the domain and project it onto the domain surface otherwise. Parameters ---------- Hypo_new : np.ndarray, shape (3, ) or (3,1) The updated hypocenter coordinates. P_Dimension : np.ndarray, shape (6, ) Domain borders: the maximum and minimum of its 3 dimensions. Mesh : instance of the class tmesh, optional The domain discretization. The default is None. Returns ------- Hypo_new : np.ndarray, shape (3, ) The input Hypo_new or its projections on the domain surface. outside : boolean True if Hypo_new was outside the domain. """ outside = False Hypo_new = Hypo_new.reshape([1, -1]) if Hypo_new[0, 0] < P_Dimension[0]: Hypo_new[0, 0] = P_Dimension[0] outside = True if Hypo_new[0, 0] > P_Dimension[1]: Hypo_new[0, 0] = P_Dimension[1] outside = True if Hypo_new[0, 1] < P_Dimension[2]: Hypo_new[0, 1] = P_Dimension[2] outside = True if Hypo_new[0, 1] > P_Dimension[3]: Hypo_new[0, 1] = P_Dimension[3] outside = True if Hypo_new[0, 2] < P_Dimension[4]: Hypo_new[0, 2] = P_Dimension[4] outside = True if Hypo_new[0, 2] > P_Dimension[5]: Hypo_new[0, 2] = P_Dimension[5] outside = True if Mesh: if Mesh.is_outside(Hypo_new): outside = True Hypout = copy.copy(Hypo_new) Hypin = np.array([[Hypo_new[0, 0], Hypo_new[0, 1], P_Dimension[4]]]) distance = np.sqrt(np.sum((Hypin - Hypout)**2)) while distance > 1.e-5: Hmiddle = 0.5 * Hypout + 0.5 * Hypin if Mesh.is_outside(Hmiddle): Hypout = Hmiddle else: Hypin = Hmiddle distance = np.sqrt(np.sum((Hypout - Hypin)**2)) Hypo_new = Hypin return Hypo_new.reshape([-1, ]), outside class Parameters: def __init__(self, maxit, maxit_hypo, conv_hypo, Vlim, VpVslim, dmax, lagrangians, max_sc, invert_vel=True, invert_VsVp=False, hypo_2step=False, use_sc=True, save_vel=False, uncrtants=False, confdce_lev=0.95, verbose=False): """ Parameters ---------- maxit : int Maximum number of iterations. maxit_hypo : int Maximum number of iterations to update hypocenter coordinates. conv_hypo : float Convergence criterion. Vlim : tuple of 3 or 6 floats Vlmin holds the maximum and the minimum values of P- and S-wave velocity models and the slopes of the penalty functions, example Vlim = (Vpmin, Vpmax, PAp, Vsmin, Vsmax, PAs). VpVslim : tuple of 3 floats Upper and lower limits of Vp/Vs ratio and the slope of the corresponding Vp/Vs penalty function. dmax : tuple of four floats It holds the maximum admissible corrections for the velocity models (dVp_max and dVs_max), the origin time (dt_max) and the hypocenter coordinates (dx_max). lagrangians : tuple of 6 floats Penalty and constraint weights: λ (smoothing constraint weight), γ (penalty constraint weight), α (weight of velocity data point const- raint), wzK (vertical smoothing weight), γ_vpvs (penalty constraint weight of Vp/Vs ratio), stig (weight of the constraint used to impose statistical moments on Vp/Vs model). invert_vel : boolean, optional Perform velocity inversion if True. The default is True. invert_VsVp : boolean, optional Find Vp/Vs ratio model rather than S wave model. The default is False. hypo_2step : boolean, optional Relocate hypocenter events in 2 steps. The default is False. use_sc : boolean, optional Use static corrections. The default is 'True'. save_vel : string, optional Save intermediate velocity models or the final model. The default is False. uncrtants : boolean, optional Calculate the uncertainty of the hypocenter parameters. The default is False. confdce_lev : float, optional The confidence coefficient to calculate the uncertainty. The default is 0.95. verbose : boolean, optional Print information messages about inversion progression. The default is False. Returns ------- None. """ self.maxit = maxit self.maxit_hypo = maxit_hypo self.conv_hypo = conv_hypo self.Vpmin = Vlim[0] self.Vpmax = Vlim[1] self.PAp = Vlim[2] if len(Vlim) > 3: self.Vsmin = Vlim[3] self.Vsmax = Vlim[4] self.PAs = Vlim[5] self.VpVsmin = VpVslim[0] self.VpVsmax = VpVslim[1] self.Pvpvs = VpVslim[2] self.dVp_max = dmax[0] self.dx_max = dmax[1] self.dt_max = dmax[2] if len(dmax) > 3: self.dVs_max = dmax[3] self.λ = lagrangians[0] self.γ = lagrangians[1] self.γ_vpvs = lagrangians[2] self.α = lagrangians[3] self.stig = lagrangians[4] self.wzK = lagrangians[5] self.invert_vel = invert_vel self.invert_VpVs = invert_VsVp self.hypo_2step = hypo_2step self.use_sc = use_sc self.max_sc = max_sc self.p = confdce_lev self.uncertainty = uncrtants self.verbose = verbose self.saveVel = save_vel def __str__(self): """ Encapsulate the attributes of the class Parameters in a string. Returns ------- output : string Attributes of the class Parameters written in string. """ output = "-------------------------\n" output += "\nParameters of Inversion :\n" output += "\n-------------------------\n" output += "\nMaximum number of iterations : {0:d}\n".format(self.maxit) output += "\nMaximum number of iterations to get hypocenters" output += ": {0:d}\n".format(self.maxit_hypo) output += "\nVp minimum : {0:4.2f} km/s\n".format(self.Vpmin) output += "\nVp maximum : {0:4.2f} km/s\n".format(self.Vpmax) if self.Vsmin: output += "\nVs minimum : {0:4.2f} km/s\n".format(self.Vsmin) if self.Vsmax: output += "\nVs maximum : {0:4.2f} km/s\n".format(self.Vsmax) if self.VpVsmin: output += "\nVpVs minimum : {0:4.2f} km/s\n".format(self.VpVsmin) if self.VpVsmax: output += "\nVpVs maximum : {0:4.2f} km/s\n".format(self.VpVsmax) output += "\nSlope of the penalty function (P wave) : {0:3f}\n".format( self.PAp) if self.PAs: output += "\nSlope of the penalty function (S wave) : {0:3f}\n".format( self.PAs) if self.Pvpvs: output += "\nSlope of the penalty function" output += "(VpVs ratio wave) : {0:3f}\n".format(self.Pvpvs) output += "\nMaximum time perturbation by step : {0:4.3f} s\n".format( self.dt_max) output += "\nMaximum distance perturbation by step : {0:4.3f} km\n".format( self.dx_max) output += "\nMaximum P wave velocity correction by step" output += " : {0:4.3f} km/s\n".format(self.dVp_max) if self.dVs_max: output += "\nMaximum S wave velocity correction by step" output += " : {0:4.3f} km/s\n".format(self.dVs_max) output += "\nLagrangians parameters : λ = {0:1.1e}\n".format(self.λ) output += " : γ = {0:1.1e}\n".format(self.γ) if self.γ_vpvs: output += " : γ VpVs ratio = {0:1.1e}\n".format( self.γ_vpvs) output += " : α = {0:1.1e}\n".format(self.α) output += " : wzK factor = {0:4.2f}\n".format( self.wzK) if self.stig: output += " : stats. moment. penalty" output += "coef. = {0:1.1e}\n".format(self.stig) output += "\nOther parameters : Inverse Velocity = {0}\n".format( self.invert_vel) output += "\n : Use Vs/Vp instead of Vs = {0}\n".format( self.invert_VpVs) output += "\n : Use static correction = {0}\n".format( self.use_sc) output += "\n : Hyp. parameter Uncertainty estimation = " output += "{0}\n".format(self.uncertainty) if self.uncertainty: output += "\n with a confidence level of" output += " {0:3.2f}\n".format(self.p) if self.saveVel == 'last': output += "\n : Save intermediate velocity models = " output += "last iteration only\n" elif self.saveVel == 'all': output += "\n : Save intermediate velocity models = " output += "all iterations\n" else: output += "\n : Save intermediate velocity models = " output += "False\n" output += "\n : Relocate hypoctenters using 2 steps = " output += "{0}\n".format(self.hypo_2step) output += "\n : convergence criterion = {0:3.4f}\n".format( self.conv_hypo) if self.use_sc: output += "\n : Maximum static correction = " output += "{0:3.2f}\n".format(self.max_sc) return output class fileReader: def __init__(self, filename): """ Parameters ---------- filename : string List of data files and other inversion parameters. Returns ------- None. """ try: open(filename, 'r') except IOError: print("Could not read file:", filename) sys.exit() self.filename = filename assert(self.readParameter('base name')), 'invalid base name' assert(self.readParameter('mesh file')), 'invalid mesh file' assert(self.readParameter('rcvfile')), 'invalid rcv file' assert(self.readParameter('Velocity')), 'invalid Velocity file' assert(self.readParameter('Time calibration') ), 'invalid calibration data file' def readParameter(self, parameter, dtype=None): """ Read the data filename or the inversion parameter value specified by the argument parameter. Parameters ---------- parameter : string Filename or inversion parameter to read. dtype : data type, optional Explicit data type of the filename or the parameter read. The default is None. Returns ------- param : string/int/float File or inversion parameter. """ try: f = open(self.filename, 'r') for line in f: if line.startswith(parameter): position = line.find(':') param = line[position + 1:] param = param.rstrip("\n\r") if dtype is None: break if dtype == int: param = int(param) elif dtype == float: param = float(param) elif dtype == bool: if param == 'true' or param == 'True' or param == '1': param = True elif param == 'false' or param == 'False' or param == '0': param = False else: print(" non recognized format") break return param except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not convert data to a float for " + parameter + "\n") except NameError as NErr: print( parameter + " is not indicated or has bad value:{0}".format(NErr)) except BaseException: print("Unexpected error:", sys.exc_info()[0]) raise finally: f.close() def saveVel(self): """ Method to read the specified option for saving the velocity model(s). Returns ------- bool/string Save or not the velocity model(s) and for which iteration. """ try: f = open(self.filename, 'r') for line in f: if line.startswith('Save Velocity'): position = line.find(':') if position > 0: sv = line[position + 1:].strip() break f.close() if sv == 'last' or sv == 'Last': return 'last' elif sv == 'all' or sv == 'All': return 'all' elif sv == 'false' or sv == 'False' or sv == '0': return False else: print('bad option to save velocity: default value will be used') return False except OSError as err: print("OS error: {0}".format(err)) except NameError as NErr: print("save velocity is not indicated :{0}".format(NErr)) except BaseException: print("Unexpected error:", sys.exc_info()[0]) raise def getIversionParam(self): """ Read the inversion parameters and store them in an object of the class Parameters. Returns ------- Params : instance of the class Parameters Inversion parameters and options. """ maxit = self.readParameter('number of iterations', int) maxit_hypo = self.readParameter('num. iters. to get hypo.', int) conv_hypo = self.readParameter('convergence Criterion', float) Vpmin = self.readParameter('Vpmin', float) Vpmax = self.readParameter('Vpmax', float) PAp = self.readParameter('PAp', float) if PAp is None or PAp < 0: print('PAp : default value will be considered\n') PAp = 1. # default value Vsmin = self.readParameter('Vsmin', float) Vsmax = self.readParameter('Vsmax', float) PAs = self.readParameter('PAs', float) if PAs is None or PAs < 0: print('PAs : default value will be considered\n') PAs = 1. # default value VpVsmax = self.readParameter('VpVs_max', float) if VpVsmax is None or VpVsmax < 0: print('default value will be considered (5)\n') VpVsmax = 5. # default value VpVsmin = self.readParameter('VpVs_min', float) if VpVsmin is None or VpVsmin < 0: print('default value will be considered (1.5)\n') VpVsmin = 1.5 # default value Pvpvs = self.readParameter('Pvpvs', float) if Pvpvs is None or Pvpvs < 0: print('default value will be considered\n') Pvpvs = 1. # default value dVp_max = self.readParameter('dVp max', float) dVs_max = self.readParameter('dVs max', float) dx_max = self.readParameter('dx max', float) dt_max = self.readParameter('dt max', float) Alpha = self.readParameter('alpha', float) Lambda = self.readParameter('lambda', float) Gamma = self.readParameter('Gamma', float) Gamma_ps = self.readParameter('Gamma_vpvs', float) stigma = self.readParameter('stigma', float) if stigma is None or stigma < 0: stigma = 0. # default value VerSmooth = self.readParameter('vertical smoothing', float) InverVel = self.readParameter('inverse velocity', bool) InverseRatio = self.readParameter('inverse Vs/Vp', bool) Hyp2stp = self.readParameter('reloc.hypo.in 2 steps', bool) Sc = self.readParameter('use static corrections', bool) if Sc: Sc_max = self.readParameter('maximum stat. correction', float) else: Sc_max = 0. uncrtants = self.readParameter('uncertainty estm.', bool) if uncrtants: confdce_lev = self.readParameter('confidence level', float) else: confdce_lev = np.NAN Verb = self.readParameter('Verbose ', bool) saveVel = self.saveVel() Params = Parameters(maxit, maxit_hypo, conv_hypo, (Vpmin, Vpmax, PAp, Vsmin, Vsmax, PAs), (VpVsmin, VpVsmax, Pvpvs), (dVp_max, dx_max, dt_max, dVs_max), (Lambda, Gamma, Gamma_ps, Alpha, stigma, VerSmooth), Sc_max, InverVel, InverseRatio, Hyp2stp, Sc, saveVel, uncrtants, confdce_lev, Verb) return Params class RCVReader: def __init__(self, p_rcvfile): """ Parameters ---------- p_rcvfile : string File holding receiver coordinates. Returns ------- None. """ self.rcv_file = p_rcvfile assert(self.__ChekFormat()), 'invalid format for rcv file' def getNumberOfStation(self): """ Return the number of receivers. Returns ------- Nstations : int Receiver number. """ try: fin = open(self.rcv_file, 'r') Nstations = int(fin.readline()) fin.close() return Nstations except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not convert data to an integer for the station number.") except BaseException: print("Unexpected error:", sys.exc_info()[0]) raise def getStation(self): """ Return coordinates of receivers. Returns ------- coordonates : np.ndarray, shape(receiver number,3) Receiver coordinates. """ try: fin = open(self.rcv_file, 'r') Nsta = int(fin.readline()) coordonates = np.zeros([Nsta, 3]) for n in range(Nsta): line = fin.readline() Coord = re.split(r' ', line) coordonates[n, 0] = float(Coord[0]) coordonates[n, 1] = float(Coord[2]) coordonates[n, 2] = float(Coord[4]) fin.close() return coordonates except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not convert data to a float in rcvfile.") except BaseException: print("Unexpected error:", sys.exc_info()[0]) raise def __ChekFormat(self): try: fin = open(self.rcv_file) n = 0 for line in fin: if n == 0: Nsta = int(line) num_lines = sum(1 for line in fin) if(num_lines != Nsta): fin.close() return False if n > 0: Coord = re.split(r' ', line) if len(Coord) != 5: fin.close() return False n += 1 fin.close() return True except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not convert data to a float in rcvfile.") except BaseException: print("Unexpected error:", sys.exc_info()[0]) raise def readEventsFiles(time_file, waveType=False): """ Read a list of seismic events and corresponding data from a text file. Parameters ---------- time_file : string Event data filename. waveType : bool True if the seismic phase of each event is identified. The default is False. Returns ------- data : np.ndarray or a list of two np.ndarrays Event arrival time data """ if (time_file == ""): if not waveType: return (np.array([])) elif waveType: return (np.array([]), np.array([])) try: fin = open(time_file, 'r') lstart = 0 for line in fin: lstart += 1 if line.startswith('Ev_idn'): break if not waveType: data = np.loadtxt(time_file, skiprows=lstart, ndmin=2) elif waveType: data = np.loadtxt(fname=time_file, skiprows=2, dtype='S15', ndmin=2) ind = np.where(data[:, -1] == b'P')[0] dataP = data[ind, :-1].astype(float) ind = np.where(data[:, -1] == b'S')[0] dataS = data[ind, :-1].astype(float) data = (dataP, dataS) return data except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not convert data to a float in " + time_file + " file.") except BaseException: print("Unexpected error:", sys.exc_info()[0]) raise def readVelpoints(vlpfile): """ Read known velocity points from a text file. Parameters ---------- vlpfile : string Name of the file containing the known velocity points. Returns ------- data : np.ndarray, shape (number of points , 3) Data corresponding to the known velocity points. """ if (vlpfile == ""): return (np.array([])) try: fin = open(vlpfile, 'r') lstart = 0 for line in fin: lstart += 1 if line.startswith('Pt_id'): break data = np.loadtxt(vlpfile, skiprows=lstart) return data except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not convert data to a float in " + vlpfile + " file.") except BaseException: print("Unexpected error:", sys.exc_info()[0]) raise def _hypo_relocation(ev, evID, hypo, data, rcv, sc, convergence, par): """ Location of a single hypocenter event using P arrival time data. Parameters ---------- ev : int Event index in the array evID. evID : np.ndarray, shape (number of events ,) Event indices. hypo : np.ndarray, shape (number of events ,5) Current hypocenter coordinates and origin time for each event. data : np.ndarray, shape (arrival times number,3) Arrival times for all events. rcv : np.ndarray, shape (receiver number,3) Coordinates of receivers. sc : np.ndarray, shape (receiver number or 0 ,1) Static correction values. convergence : boolean list, shape (event number) Convergence state of each event. par : instance of the class Parameters The inversion parameters. Returns ------- Hypocenter : np.ndarray, shape (5,) Updated origin time and coordinates of event evID[ev]. """ indh = np.where(hypo[:, 0] == evID[ev])[0] if par.verbose: print("\nEven N {0:d} is relacated in the ".format( int(hypo[ev, 0])) + current_process().name + '\n') sys.stdout.flush() indr = np.where(data[:, 0] == evID[ev])[0] rcv_ev = rcv[data[indr, 2].astype(int) - 1, :] if par.use_sc: sc_ev = sc[data[indr, 2].astype(int) - 1] else: sc_ev = 0. nst = indr.size Hypocenter = hypo[indh[0]].copy() if par.hypo_2step: print("\nEven N {0:d}: Update longitude and latitude\n".format( int(hypo[ev, 0]))) sys.stdout.flush() T0 = np.kron(hypo[indh, 1], np.ones([nst, 1])) for It in range(par.maxit_hypo): Tx = np.kron(Hypocenter[2:], np.ones([nst, 1])) src = np.hstack((ev*np.ones([nst, 1]), T0 + sc_ev, Tx)) tcal, rays = Mesh3D.raytrace(source=src, rcv=rcv_ev, slowness=None, aggregate_src=False, compute_L=False, return_rays=True) slow_0 = Mesh3D.get_s0(src) Hi = np.ones((nst, 2)) for nr in range(nst): rayi = rays[nr] if rayi.shape[0] == 1: print('\033[43m' + '\nWarning: raypath failed to converge' ' for even N {0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and ' 'receiver N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(data[indr[nr], 0]), Tx[nr, 0], Tx[nr, 1], Tx[nr, 2], int(data[indr[nr], 2]), rcv_ev[nr, 0], rcv_ev[nr, 1], rcv_ev[nr, 2]) + '\033[0m') sys.stdout.flush() continue slw0 = slow_0[nr] dx = rayi[1, 0] - Hypocenter[2] dy = rayi[1, 1] - Hypocenter[3] dz = rayi[1, 2] - Hypocenter[4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 0] = -dx * slw0 / ds Hi[nr, 1] = -dy * slw0 / ds convrays = np.where(tcal != 0)[0] res = data[indr, 1] - tcal if convrays.size < nst: res = res[convrays] Hi = Hi[convrays, :] deltaH = np.linalg.lstsq(Hi, res, rcond=1.e-6)[0] if not np.all(np.isfinite(deltaH)): try: U, S, VVh = np.linalg.svd(Hi.T.dot(Hi) + 1e-9 * np.eye(2)) VV = VVh.T deltaH = np.dot(VV, np.dot(U.T, Hi.T.dot(res)) / S) except np.linalg.linalg.LinAlgError: print('\nEvent could not be relocated (iteration no ' + str(It) + '), skipping') sys.stdout.flush() break indH = np.abs(deltaH) > par.dx_max deltaH[indH] = par.dx_max * np.sign(deltaH[indH]) updatedHypo = np.hstack((Hypocenter[2:4] + deltaH, Hypocenter[-1])) updatedHypo, _ = check_hypo_indomain(updatedHypo, Dimensions, Mesh3D) Hypocenter[2:] = updatedHypo if np.all(np.abs(deltaH[1:]) < par.conv_hypo): break if par.verbose: print("\nEven N {0:d}: Update all parameters\n".format(int(hypo[ev, 0]))) sys.stdout.flush() for It in range(par.maxit_hypo): Tx = np.kron(Hypocenter[2:], np.ones([nst, 1])) T0 = np.kron(Hypocenter[1], np.ones([nst, 1])) src = np.hstack((ev*np.ones([nst, 1]), T0 + sc_ev, Tx)) tcal, rays = Mesh3D.raytrace(source=src, rcv=rcv_ev, slowness=None, aggregate_src=False, compute_L=False, return_rays=True) slow_0 = Mesh3D.get_s0(src) Hi = np.ones([nst, 4]) for nr in range(nst): rayi = rays[nr] if rayi.shape[0] == 1: print('\033[43m' + '\nWarning: raypath failed to converge ' 'for even N {0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and ' 'receiver N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(data[indr[nr], 0]), Tx[nr, 0], Tx[nr, 1], Tx[nr, 2], int(data[indr[nr], 2]), rcv_ev[nr, 0], rcv_ev[nr, 1], rcv_ev[nr, 2]) + '\033[0m') sys.stdout.flush() continue slw0 = slow_0[nr] dx = rayi[1, 0] - Hypocenter[2] dy = rayi[1, 1] - Hypocenter[3] dz = rayi[1, 2] - Hypocenter[4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 1] = -dx * slw0 / ds Hi[nr, 2] = -dy * slw0 / ds Hi[nr, 3] = -dz * slw0 / ds convrays = np.where(tcal != 0)[0] res = data[indr, 1] - tcal if convrays.size < nst: res = res[convrays] Hi = Hi[convrays, :] deltaH = np.linalg.lstsq(Hi, res, rcond=1.e-6)[0] if not np.all(np.isfinite(deltaH)): try: U, S, VVh = np.linalg.svd(Hi.T.dot(Hi) + 1e-9 * np.eye(4)) VV = VVh.T deltaH = np.dot(VV, np.dot(U.T, Hi.T.dot(res)) / S) except np.linalg.linalg.LinAlgError: print('\nEvent cannot be relocated (iteration no ' + str(It) + '), skipping') sys.stdout.flush() break if np.abs(deltaH[0]) > par.dt_max: deltaH[0] = par.dt_max * np.sign(deltaH[0]) if np.linalg.norm(deltaH[1:]) > par.dx_max: deltaH[1:] *= par.dx_max / np.linalg.norm(deltaH[1:]) updatedHypo = Hypocenter[2:] + deltaH[1:] updatedHypo, outside = check_hypo_indomain(updatedHypo, Dimensions, Mesh3D) Hypocenter[1:] = np.hstack((Hypocenter[1] + deltaH[0], updatedHypo)) if outside and It == par.maxit_hypo - 1: print('\nEvent N {0:d} cannot be relocated inside the domain\n'.format( int(hypo[ev, 0]))) convergence[ev] = 'out' return Hypocenter if np.all(np.abs(deltaH[1:]) < par.conv_hypo): convergence[ev] = True if par.verbose: print('\033[42m' + '\nEven N {0:d} has converged at {1:d}' ' iteration(s)\n'.format(int(hypo[ev, 0]), It + 1) + '\n' + '\033[0m') sys.stdout.flush() break else: if par.verbose: print('\nEven N {0:d} : maximum number of iterations' ' was reached\n'.format(int(hypo[ev, 0])) + '\n') sys.stdout.flush() return Hypocenter def _hypo_relocationPS(ev, evID, hypo, data, rcv, sc, convergence, slow, par): """ Relocate a single hypocenter event using P- and S-wave arrival times. Parameters ---------- ev : int Event index in the array evID. evID : np.ndarray, shape (event number ,) Event indices. hypo : np.ndarray, shape (event number ,5) Current hypocenter coordinates and origin times for each event. data : tuple of two np.ndarrays Arrival times of P- and S-waves. rcv : np.ndarray, shape (receiver number,3) Coordinates of receivers. sc : tuple of two np.ndarrays (shape(receiver number or 0,1)) Static correction values of P- and S-waves. convergence : boolean list, shape (event number) The convergence state of each event. slow : tuple of two np.ndarrays (shape(nnodes,1)) P and S slowness models. par : instance of the class Parameters The inversion parameters. Returns ------- Hypocenter : np.ndarray, shape (5,) Updated origin time and coordinates of event evID[ev]. """ (slowP, slowS) = slow (scp, scs) = sc (dataP, dataS) = data indh = np.where(hypo[:, 0] == evID[ev])[0] if par.verbose: print("Even N {0:d} is relacated in the ".format( int(hypo[ev, 0])) + current_process().name + '\n') sys.stdout.flush() indrp = np.where(dataP[:, 0] == evID[ev])[0] rcv_evP = rcv[dataP[indrp, 2].astype(int) - 1, :] nstP = indrp.size indrs = np.where(dataS[:, 0] == evID[ev])[0] rcv_evS = rcv[dataS[indrs, 2].astype(int) - 1, :] nstS = indrs.size Hypocenter = hypo[indh[0]].copy() if par.use_sc: scp_ev = scp[dataP[indrp, 2].astype(int) - 1] scs_ev = scs[dataS[indrs, 2].astype(int) - 1] else: scp_ev = np.zeros([nstP, 1]) scs_ev = np.zeros([nstS, 1]) if par.hypo_2step: if par.verbose: print("\nEven N {0:d}: Update longitude and latitude\n".format( int(hypo[ev, 0]))) sys.stdout.flush() for It in range(par.maxit_hypo): Txp = np.kron(Hypocenter[1:], np.ones([nstP, 1])) Txp[:, 0] += scp_ev[:, 0] srcP = np.hstack((ev*np.ones([nstP, 1]), Txp)) tcalp, raysP = Mesh3D.raytrace(source=srcP, rcv=rcv_evP, slowness=slowP, aggregate_src=False, compute_L=False, return_rays=True) slowP_0 = Mesh3D.get_s0(srcP) Txs = np.kron(Hypocenter[1:], np.ones([nstS, 1])) Txs[:, 0] += scs_ev[:, 0] srcS = np.hstack((ev*np.ones([nstS, 1]), Txs)) tcals, raysS = Mesh3D.raytrace(source=srcS, rcv=rcv_evS, slowness=slowS, aggregate_src=False, compute_L=False, return_rays=True) slowS_0 = Mesh3D.get_s0(srcS) Hi = np.ones((nstP + nstS, 2)) for nr in range(nstP): rayi = raysP[nr] if rayi.shape[0] == 1: if par.verbose: print('\033[43m' + '\nWarning: raypath failed to converge for even ' 'N {0:d} :({1:5.4f},{2:5.4f},{3:5.4f})and receiver ' 'N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(dataP[indrp[nr], 0]), Txp[nr, 1], Txp[nr, 2], Txp[nr, 3], int(dataP[indrp[nr], 2]), rcv_evP[nr, 0], rcv_evP[nr, 1], rcv_evP[nr, 2]) + '\033[0m') sys.stdout.flush() continue slw0 = slowP_0[nr] dx = rayi[1, 0] - Hypocenter[2] dy = rayi[1, 1] - Hypocenter[3] dz = rayi[1, 2] - Hypocenter[4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 0] = -dx * slw0 / ds Hi[nr, 1] = -dy * slw0 / ds for nr in range(nstS): rayi = raysS[nr] if rayi.shape[0] == 1: if par.verbose: print('\033[43m' + '\nWarning: raypath failed to converge for even ' 'N {0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and receiver ' 'N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(dataS[indrs[nr], 0]), Txs[nr, 1], Txs[nr, 2], Txs[nr, 3], int(dataS[indrs[nr], 2]), rcv_evS[nr, 0], rcv_evS[nr, 1], rcv_evS[nr, 2]) + '\033[0m') sys.stdout.flush() continue slw0 = slowS_0[nr] dx = rayi[1, 0] - Hypocenter[2] dy = rayi[1, 1] - Hypocenter[3] dz = rayi[1, 2] - Hypocenter[4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr + nstP, 0] = -dx * slw0 / ds Hi[nr + nstP, 1] = -dy * slw0 / ds tcal = np.hstack((tcalp, tcals)) res = np.hstack((dataP[indrp, 1], dataS[indrs, 1])) - tcal convrays = np.where(tcal != 0)[0] if convrays.size < (nstP + nstS): res = res[convrays] Hi = Hi[convrays, :] deltaH = np.linalg.lstsq(Hi, res, rcond=1.e-6)[0] if not np.all(np.isfinite(deltaH)): try: U, S, VVh = np.linalg.svd(Hi.T.dot(Hi) + 1e-9 * np.eye(2)) VV = VVh.T deltaH = np.dot(VV, np.dot(U.T, Hi.T.dot(res)) / S) except np.linalg.linalg.LinAlgError: if par.verbose: print('\nEvent could not be relocated (iteration no ' + str(It) + '), skipping') sys.stdout.flush() break indH = np.abs(deltaH) > par.dx_max deltaH[indH] = par.dx_max * np.sign(deltaH[indH]) updatedHypo = np.hstack((Hypocenter[2:4] + deltaH, Hypocenter[-1])) updatedHypo, _ = check_hypo_indomain(updatedHypo, Dimensions, Mesh3D) Hypocenter[2:] = updatedHypo if np.all(np.abs(deltaH) < par.conv_hypo): break if par.verbose: print("\nEven N {0:d}: Update all parameters\n".format(int(hypo[ev, 0]))) sys.stdout.flush() for It in range(par.maxit_hypo): Txp = np.kron(Hypocenter[1:], np.ones([nstP, 1])) Txp[:, 0] += scp_ev[:, 0] srcP = np.hstack((ev*np.ones([nstP, 1]), Txp)) tcalp, raysP = Mesh3D.raytrace(source=srcP, rcv=rcv_evP, slowness=slowP, aggregate_src=False, compute_L=False, return_rays=True) slowP_0 = Mesh3D.get_s0(srcP) Txs = np.kron(Hypocenter[1:], np.ones([nstS, 1])) Txs[:, 0] += scs_ev[:, 0] srcS = np.hstack((ev*np.ones([nstS, 1]), Txs)) tcals, raysS = Mesh3D.raytrace(source=srcS, rcv=rcv_evS, slowness=slowS, aggregate_src=False, compute_L=False, return_rays=True) slowS_0 = Mesh3D.get_s0(srcS) Hi = np.ones((nstP + nstS, 4)) for nr in range(nstP): rayi = raysP[nr] if rayi.shape[0] == 1: if par.verbose: print('\033[43m' + '\nWarning: raypath failed to converge for ' 'even N {0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and receiver ' 'N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(dataP[indrp[nr], 0]), Txp[nr, 1], Txp[nr, 2], Txp[nr, 3], int(dataP[indrp[nr], 2]), rcv_evP[nr, 0], rcv_evP[nr, 1], rcv_evP[nr, 2]) + '\033[0m') sys.stdout.flush() continue slw0 = slowP_0[nr] dx = rayi[2, 0] - Hypocenter[2] dy = rayi[2, 1] - Hypocenter[3] dz = rayi[2, 2] - Hypocenter[4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 1] = -dx * slw0 / ds Hi[nr, 2] = -dy * slw0 / ds Hi[nr, 3] = -dz * slw0 / ds for nr in range(nstS): rayi = raysS[nr] if rayi.shape[0] == 1: if par.verbose: print('\033[43m' + '\nWarning: raypath failed to converge for ' 'even N {0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and receiver ' 'N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(dataS[indrs[nr], 0]), Txs[nr, 1], Txs[nr, 2], Txs[nr, 3], int(dataS[indrs[nr], 2]), rcv_evS[nr, 0], rcv_evS[nr, 1], rcv_evS[nr, 2]) + '\033[0m') sys.stdout.flush() continue slw0 = slowS_0[nr] dx = rayi[1, 0] - Hypocenter[2] dy = rayi[1, 1] - Hypocenter[3] dz = rayi[1, 2] - Hypocenter[4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr + nstP, 1] = -dx * slw0 / ds Hi[nr + nstP, 2] = -dy * slw0 / ds Hi[nr + nstP, 3] = -dz * slw0 / ds tcal = np.hstack((tcalp, tcals)) res = np.hstack((dataP[indrp, 1], dataS[indrs, 1])) - tcal convrays = np.where(tcal != 0)[0] if convrays.size < (nstP + nstS): res = res[convrays] Hi = Hi[convrays, :] deltaH = np.linalg.lstsq(Hi, res, rcond=1.e-6)[0] if not np.all(np.isfinite(deltaH)): try: U, S, VVh = np.linalg.svd(Hi.T.dot(Hi) + 1e-9 * np.eye(4)) VV = VVh.T deltaH = np.dot(VV, np.dot(U.T, Hi.T.dot(res)) / S) except np.linalg.linalg.LinAlgError: if par.verbose: print('\nEvent could not be relocated (iteration no ' + str(It) + '), skipping\n') sys.stdout.flush() break if np.abs(deltaH[0]) > par.dt_max: deltaH[0] = par.dt_max * np.sign(deltaH[0]) if np.linalg.norm(deltaH[1:]) > par.dx_max: deltaH[1:] *= par.dx_max / np.linalg.norm(deltaH[1:]) updatedHypo = Hypocenter[2:] + deltaH[1:] updatedHypo, outside = check_hypo_indomain(updatedHypo, Dimensions, Mesh3D) Hypocenter[1:] = np.hstack((Hypocenter[1] + deltaH[0], updatedHypo)) if outside and It == par.maxit_hypo - 1: if par.verbose: print('\nEvent N {0:d} could not be relocated inside ' 'the domain\n'.format(int(hypo[ev, 0]))) sys.stdout.flush() convergence[ev] = 'out' return Hypocenter if np.all(np.abs(deltaH[1:]) < par.conv_hypo): convergence[ev] = True if par.verbose: print('\033[42m' + '\nEven N {0:d} has converged at ' ' iteration {1:d}\n'.format(int(hypo[ev, 0]), It + 1) + '\n' + '\033[0m') sys.stdout.flush() break else: if par.verbose: print('\nEven N {0:d} : maximum number of iterations was' ' reached'.format(int(hypo[ev, 0])) + '\n') sys.stdout.flush() return Hypocenter def _uncertaintyEstimat(ev, evID, hypo, data, rcv, sc, slow, par, varData=None): """ Estimate origin time uncertainty and confidence ellipsoid. Parameters ---------- ev : int Event index in the array evID. evID : np.ndarray, shape (event number,) Event indices. hypo : np.ndarray, shape (event number,5) Estimated hypocenter coordinates and origin time. data : np.ndarray, shape (arrival time number,3) or tuple if both P and S waves are used. Arrival times of seismic events. rcv : np.ndarray, shape (receiver number ,3) coordinates of receivers. sc : np.ndarray, shape (receiver number or 0 ,1) or tuple if both P and S waves are used. Static correction values. slow : np.ndarray or tuple, shape(nnodes,1) P or P and S slowness models. par : instance of the class Parameters The inversion parameters. varData : list of two lists Number of arrival times and the sum of residuals needed to compute the noise variance. See Block's Thesis, 1991 (P. 63) The default is None. Returns ------- to_confInterv : float Origin time uncertainty interval. axis1 : np.ndarray, shape(3,) Coordinates of the 1st confidence ellipsoid axis (vector). axis2 : np.ndarray, shape(3,) Coordinates of the 2nd confidence ellipsoid axis (vector). axis3 : np.ndarray, shape(3,) Coordinates of the 3rd confidence ellipsoid axis (vector). """ if par.verbose: print("Uncertainty estimation for the Even N {0:d}".format( int(hypo[ev, 0])) + '\n') sys.stdout.flush() indh = np.where(hypo[:, 0] == evID[ev])[0] if len(slow) == 2: (slowP, slowS) = slow (dataP, dataS) = data (scp, scs) = sc indrp = np.where(dataP[:, 0] == evID[ev])[0] rcv_evP = rcv[dataP[indrp, 2].astype(int) - 1, :] nstP = indrp.size T0p = np.kron(hypo[indh, 1], np.ones([nstP, 1])) indrs = np.where(dataS[:, 0] == evID[ev])[0] rcv_evS = rcv[dataS[indrs, 2].astype(int) - 1, :] nstS = indrs.size T0s = np.kron(hypo[indh, 1], np.ones([nstS, 1])) Txp = np.kron(hypo[indh, 2:], np.ones([nstP, 1])) Txs = np.kron(hypo[indh, 2:], np.ones([nstS, 1])) if par.use_sc: scp_ev = scp[dataP[indrp, 2].astype(int) - 1, :] scs_ev = scs[dataS[indrs, 2].astype(int) - 1, :] else: scp_ev = np.zeros([nstP, 1]) scs_ev = np.zeros([nstS, 1]) srcp = np.hstack((ev*np.ones([nstP, 1]), T0p + scp_ev, Txp)) srcs = np.hstack((ev*np.ones([nstS, 1]), T0s + scs_ev, Txs)) tcalp, raysP = Mesh3D.raytrace(source=srcp, rcv=rcv_evP, slowness=slowP, aggregate_src=False, compute_L=False, return_rays=True) tcals, raysS = Mesh3D.raytrace(source=srcs, rcv=rcv_evS, slowness=slowS, aggregate_src=False, compute_L=False, return_rays=True) slowP_0 = Mesh3D.get_s0(srcp) slowS_0 = Mesh3D.get_s0(srcs) Hi = np.ones((nstP + nstS, 4)) for nr in range(nstP): rayi = raysP[nr] if rayi.shape[0] == 1: continue slw0 = slowP_0[nr] dx = rayi[1, 0] - hypo[indh, 2] dy = rayi[1, 1] - hypo[indh, 3] dz = rayi[1, 2] - hypo[indh, 4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 1] = -dx * slw0 / ds Hi[nr, 2] = -dy * slw0 / ds Hi[nr, 3] = -dz * slw0 / ds for nr in range(nstS): rayi = raysS[nr] if rayi.shape[0] == 1: continue slw0 = slowS_0[nr] dx = rayi[1, 0] - hypo[indh, 2] dy = rayi[1, 1] - hypo[indh, 3] dz = rayi[1, 2] - hypo[indh, 4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 1] = -dx * slw0 / ds Hi[nr, 2] = -dy * slw0 / ds Hi[nr, 3] = -dz * slw0 / ds tcal = np.hstack((tcalp, tcals)) res = np.hstack((dataP[indrp, 1], dataS[indrs, 1])) - tcal convrays = np.where(tcal != 0)[0] if convrays.size < (nstP + nstS): res = res[convrays] Hi = Hi[convrays, :] elif len(slow) == 1: indr = np.where(data[0][:, 0] == evID[ev])[0] rcv_ev = rcv[data[0][indr, 2].astype(int) - 1, :] if par.use_sc: sc_ev = sc[data[0][indr, 2].astype(int) - 1] else: sc_ev = 0. nst = indr.size T0 = np.kron(hypo[indh, 1], np.ones([nst, 1])) Tx = np.kron(hypo[indh, 2:], np.ones([nst, 1])) src = np.hstack((ev*np.ones([nst, 1]), T0+sc_ev, Tx)) tcal, rays = Mesh3D.raytrace(source=src, rcv=rcv_ev, slowness=slow[0], aggregate_src=False, compute_L=False, return_rays=True) slow_0 = Mesh3D.get_s0(src) Hi = np.ones([nst, 4]) for nr in range(nst): rayi = rays[nr] if rayi.shape[0] == 1: # unconverged ray continue slw0 = slow_0[nr] dx = rayi[1, 0] - hypo[indh, 2] dy = rayi[1, 1] - hypo[indh, 3] dz = rayi[1, 2] - hypo[indh, 4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 1] = -dx * slw0 / ds Hi[nr, 2] = -dy * slw0 / ds Hi[nr, 3] = -dz * slw0 / ds convrays = np.where(tcal != 0)[0] res = data[0][indr, 1] - tcal if convrays.size < nst: res = res[convrays] Hi = Hi[convrays, :] N = res.shape[0] try: Q = np.linalg.inv(Hi.T @ Hi) except np.linalg.linalg.LinAlgError: if par.verbose: print("ill-conditioned Jacobian matrix") sys.stdout.flush() U, S, V = np.linalg.svd(Hi.T @ Hi) Q = V.T @ np.diag(1./(S + 1.e-9)) @ U.T eigenVals, eigenVec = np.linalg.eig(Q[:3, :3]) ind = np.argsort(eigenVals) if varData: s2 = 1 varData[0] += [np.sum(res**2)] varData[1] += [N] else: s2 = np.sum(res**2) / (N - 4) alpha = 1 - par.p coef = scps.t.ppf(1 - alpha / 2., N - 4) axis1 = np.sqrt(eigenVals[ind[2]] * s2) * coef * eigenVec[:, ind[2]] axis2 = np.sqrt(eigenVals[ind[1]] * s2) * coef * eigenVec[:, ind[1]] axis3 = np.sqrt(eigenVals[ind[0]] * s2) * coef * eigenVec[:, ind[0]] to_confInterv = np.sqrt(Q[-1, -1] * s2) * coef return to_confInterv, axis1, axis2, axis3 def jntHypoVel_T(data, caldata, Vinit, cells, nodes, rcv, Hypo0, par, threads=1, vPoints=np.array([]), basename='Vel'): """ Joint hypocenter-velicoty inversion from P wave arrival time data parametrized using the velocity model. Parameters ---------- data : np.ndarray, shape(arrival time number, 3) Arrival times and corresponding receivers for each event.. caldata : np.ndarray, shape(number of calibration shots, 3) Calibration shot data. Vinit : np.ndarray, shape(nnodes,1) or (1,1) Initial velocity model. cells : np.ndarray of int, shape (cell number, 4) Indices of nodes forming the cells. nodes : np.ndarray, shape (nnodes, 3) Node coordinates. rcv : np.ndarray, shape (receiver number,3) Coordinates of receivers. Hypo0 : np.ndarray, shape(event number, 5) First guesses of the hypocenter coordinates (must be all diffirent). par : instance of the class Parameters The inversion parameters. threads : int, optional Thread number. The default is 1. vPoints : np.ndarray, shape(point number,4), optional Known velocity points. The default is np.array([]). basename : string, optional The filename used to save the output file. The default is 'Vel'. Returns ------- output : python dictionary It contains the estimated hypocenter coordinates and their origin times, static correction values, velocity model, convergence states, parameter uncertainty and residual norm in each iteration. """ if par.verbose: print(par) print('inversion involves the velocity model\n') sys.stdout.flush() if par.use_sc: nstation = rcv.shape[0] else: nstation = 0 Static_Corr = np.zeros([nstation, 1]) nnodes = nodes.shape[0] # observed traveltimes if data.shape[0] > 0: evID = np.unique(data[:, 0]).astype(int) tObserved = data[:, 1] numberOfEvents = evID.size else: tObserved = np.array([]) numberOfEvents = 0 rcvData = np.zeros([data.shape[0], 3]) for ev in range(numberOfEvents): indr = np.where(data[:, 0] == evID[ev])[0] rcvData[indr] = rcv[data[indr, 2].astype(int) - 1, :] # calibration data if caldata.shape[0] > 0: calID = np.unique(caldata[:, 0]) ncal = calID.size time_calibration = caldata[:, 1] TxCalib = np.zeros((caldata.shape[0], 5)) TxCalib[:, 2:] = caldata[:, 3:] TxCalib[:, 0] = caldata[:, 0] rcvCalib = np.zeros([caldata.shape[0], 3]) if par.use_sc: Msc_cal = [] for nc in range(ncal): indr = np.where(caldata[:, 0] == calID[nc])[0] rcvCalib[indr] = rcv[caldata[indr, 2].astype(int) - 1, :] if par.use_sc: Msc_cal.append(sp.csr_matrix( (np.ones([indr.size, ]), (range(indr.size), caldata[indr, 2]-1)), shape=(indr.size, nstation))) else: ncal = 0 time_calibration = np.array([]) # initial velocity model if Vinit.size == 1: Velocity = Vinit * np.ones([nnodes, 1]) Slowness = 1. / Velocity elif Vinit.size == nnodes: Velocity = Vinit Slowness = 1. / Velocity else: print("invalid Velocity Model\n") sys.stdout.flush() return 0 # used threads nThreadsSystem = cpu_count() nThreads = np.min((threads, nThreadsSystem)) global Mesh3D, Dimensions Mesh3D = tmesh.Mesh3d(nodes, tetra=cells, method='DSPM', cell_slowness=0, n_threads=nThreads, n_secondary=2, n_tertiary=1, process_vel=1, radius_factor_tertiary=2, translate_grid=1) Mesh3D.set_slowness(Slowness) Dimensions = np.empty(6) Dimensions[0] = min(nodes[:, 0]) Dimensions[1] = max(nodes[:, 0]) Dimensions[2] = min(nodes[:, 1]) Dimensions[3] = max(nodes[:, 1]) Dimensions[4] = min(nodes[:, 2]) Dimensions[5] = max(nodes[:, 2]) # Hypocenter if numberOfEvents > 0 and Hypo0.shape[0] != numberOfEvents: print("invalid Hypocenters0 format\n") sys.stdout.flush() return 0 else: Hypocenters = Hypo0.copy() ResidueNorm = np.zeros([par.maxit]) if par.invert_vel: if par.use_sc: U = sp.bsr_matrix( np.vstack((np.zeros([nnodes, 1]), np.ones([nstation, 1])))) nbre_param = nnodes + nstation if par.max_sc > 0. and par.max_sc < 1.: N = sp.bsr_matrix( np.hstack((np.zeros([nstation, nnodes]), np.eye(nstation)))) NtN = (1. / par.max_sc**2) * N.T.dot(N) else: U = sp.csr_matrix(np.zeros([nnodes, 1])) nbre_param = nnodes # build matrix D if vPoints.size > 0: if par.verbose: print('\nBuilding velocity data point matrix D\n') sys.stdout.flush() D = Mesh3D.compute_D(vPoints[:, 2:]) D = sp.hstack((D, sp.csr_matrix((D.shape[0], nstation)))).tocsr() DtD = D.T @ D nD = spl.norm(DtD) # Build regularization matrix if par.verbose: print('\n...Building regularization matrix K\n') sys.stdout.flush() kx, ky, kz = Mesh3D.compute_K(order=2, taylor_order=2, weighting=1, squared=0, s0inside=0, additional_points=3) KX = sp.hstack((kx, sp.csr_matrix((nnodes, nstation)))) KX_Square = KX.transpose().dot(KX) KY = sp.hstack((ky, sp.csr_matrix((nnodes, nstation)))) KY_Square = KY.transpose().dot(KY) KZ = sp.hstack((kz, sp.csr_matrix((nnodes, nstation)))) KZ_Square = KZ.transpose().dot(KZ) KtK = KX_Square + KY_Square + par.wzK * KZ_Square nK = spl.norm(KtK) if nThreads == 1: hypo_convergence = list(np.zeros(numberOfEvents, dtype=bool)) else: manager = Manager() hypo_convergence = manager.list(np.zeros(numberOfEvents, dtype=bool)) for i in range(par.maxit): if par.verbose: print("Iteration N : {0:d}\n".format(i + 1)) sys.stdout.flush() if par.invert_vel: if par.verbose: print('Iteration {0:d} - Updating velocity model\n'.format(i + 1)) print("Updating penalty vector\n") sys.stdout.flush() # Build vector C cx = kx.dot(Velocity) cy = ky.dot(Velocity) cz = kz.dot(Velocity) # build matrix P and dP indVmin = np.where(Velocity < par.Vpmin)[0] indVmax = np.where(Velocity > par.Vpmax)[0] indPinality = np.hstack([indVmin, indVmax]) dPinality_V = np.hstack( [-par.PAp * np.ones(indVmin.size), par.PAp * np.ones(indVmax.size)]) pinality_V = np.vstack( [par.PAp * (par.Vpmin - Velocity[indVmin]), par.PAp * (Velocity[indVmax] - par.Vpmax)]) d_Pinality = sp.csr_matrix( (dPinality_V, (indPinality, indPinality)), shape=( nnodes, nbre_param)) Pinality = sp.csr_matrix( (pinality_V.reshape([-1, ]), (indPinality, np.zeros([indPinality.shape[0]]))), shape=(nnodes, 1)) if par.verbose: print('Penalties applied at {0:d} nodes\n'.format( dPinality_V.size)) print('...Start Raytracing\n') sys.stdout.flush() if numberOfEvents > 0: sources = np.empty((data.shape[0], 5)) if par.use_sc: sc_data = np.empty((data.shape[0], )) for ev in np.arange(numberOfEvents): indr = np.where(data[:, 0] == evID[ev])[0] indh = np.where(Hypocenters[:, 0] == evID[ev])[0] sources[indr, :] = Hypocenters[indh, :] if par.use_sc: sc_data[indr] = Static_Corr[data[indr, 2].astype(int) - 1, 0] if par.use_sc: sources[:, 1] += sc_data tt, rays, M0 = Mesh3D.raytrace(source=sources, rcv=rcvData, slowness=None, aggregate_src=False, compute_L=True, return_rays=True) else: tt, rays, M0 = Mesh3D.raytrace(source=sources, rcv=rcvData, slowness=None, aggregate_src=False, compute_L=True, return_rays=True) v0 = 1. / Mesh3D.get_s0(sources) if par.verbose: inconverged = np.where(tt == 0)[0] for icr in inconverged: print('\033[43m' + '\nWarning: raypath failed to converge for even ' 'N {0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and receiver ' 'N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(data[icr, 0]), sources[icr, 2], sources[icr, 3], sources[icr, 4], int(data[icr, 2]), rcvData[icr, 0], rcvData[icr, 1], rcvData[icr, 2]) + '\033[0m') print('\033[43m' + 'ray will be temporary removed' + '\033[0m') sys.stdout.flush() else: tt = np.array([]) if ncal > 0: if par.use_sc: TxCalib[:, 1] = Static_Corr[caldata[:, 2].astype(int) - 1, 0] tt_Calib, Mcalib = Mesh3D.raytrace( source=TxCalib, rcv=rcvCalib, slowness=None, aggregate_src=False, compute_L=True, return_rays=False) else: tt_Calib, Mcalib = Mesh3D.raytrace( source=TxCalib, rcv=rcvCalib, slowness=None, aggregate_src=False, compute_L=True, return_rays=False) if par.verbose: inconverged = np.where(tt_Calib == 0)[0] for icr in inconverged: print('\033[43m' + '\nWarning: raypath failed to converge ' 'for calibration shot N ' '{0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and receiver' ' N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(caldata[icr, 0]), TxCalib[icr, 2], TxCalib[icr, 3], TxCalib[icr, 4], int(caldata[icr, 2]), rcvCalib[icr, 0], rcvCalib[icr, 1], rcvCalib[icr, 2]) + '\033[0m') print('\033[43m' + 'ray will be temporary removed' + '\033[0m') sys.stdout.flush() else: tt_Calib = np.array([]) Resid = tObserved - tt convrayData = np.where(tt != 0)[0] convrayClib = np.where(tt_Calib != 0)[0] if Resid.size == 0: Residue = time_calibration[convrayClib] - tt_Calib[convrayClib] else: Residue = np.hstack( (np.zeros([np.count_nonzero(tt) - 4 * numberOfEvents]), time_calibration[convrayClib] - tt_Calib[convrayClib])) ResidueNorm[i] = np.linalg.norm(np.hstack( (Resid[convrayData], time_calibration[convrayClib] - tt_Calib[convrayClib]))) if par.verbose: print('...Building matrix M\n') sys.stdout.flush() M = sp.csr_matrix((0, nbre_param)) ir = 0 for even in range(numberOfEvents): indh = np.where(Hypocenters[:, 0] == evID[even])[0] indr = np.where(data[:, 0] == evID[even])[0] Mi = M0[even] nst_ev = Mi.shape[0] Hi = np.ones([indr.size, 4]) for nr in range(indr.size): rayi = rays[indr[nr]] if rayi.shape[0] == 1: continue vel0 = v0[indr[nr]] dx = rayi[1, 0] - Hypocenters[indh[0], 2] dy = rayi[1, 1] - Hypocenters[indh[0], 3] dz = rayi[1, 2] - Hypocenters[indh[0], 4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 1] = -dx / (vel0 * ds) Hi[nr, 2] = -dy / (vel0 * ds) Hi[nr, 3] = -dz / (vel0 * ds) convrays = np.where(tt[indr] != 0)[0] if convrays.shape[0] < nst_ev: Hi = Hi[convrays, :] nst_ev = convrays.size Q, _ = np.linalg.qr(Hi, mode='complete') Ti = sp.csr_matrix(Q[:, 4:]) Ti = Ti.T if par.use_sc: Lsc = sp.csr_matrix((np.ones(nst_ev,), (range(nst_ev), data[indr[convrays], 2] - 1)), shape=(nst_ev, nstation)) Mi = sp.hstack((Mi, Lsc)) Mi = sp.csr_matrix(Ti @ Mi) M = sp.vstack([M, Mi]) Residue[ir:ir + (nst_ev - 4)] = Ti.dot(Resid[indr[convrays]]) ir += nst_ev - 4 for evCal in range(len(Mcalib)): Mi = Mcalib[evCal] if par.use_sc: indrCal = np.where(caldata[:, 0] == calID[evCal])[0] convraysCal = np.where(tt_Calib[indrCal] != 0)[0] Mi = sp.hstack((Mi, Msc_cal[evCal][convraysCal])) M = sp.vstack([M, Mi]) if par.verbose: print('Assembling matrices and solving system\n') sys.stdout.flush() S = np.sum(Static_Corr) term1 = (M.T).dot(M) nM = spl.norm(term1[:nnodes, :nnodes]) term2 = (d_Pinality.T).dot(d_Pinality) nP = spl.norm(term2) term3 = U.dot(U.T) λ = par.λ * nM / nK if nP != 0: γ = par.γ * nM / nP else: γ = par.γ A = term1 + λ * KtK + γ * term2 + term3 if par.use_sc and par.max_sc > 0. and par.max_sc < 1.: A += NtN term1 = (M.T).dot(Residue) term1 = term1.reshape([-1, 1]) term2 = (KX.T).dot(cx) + (KY.T).dot(cy) + par.wzK * (KZ.T).dot(cz) term3 = (d_Pinality.T).dot(Pinality) term4 = U.dot(S) b = term1 - λ * term2 - γ * term3 - term4 if vPoints.size > 0: α = par.α * nM / nD A += α * DtD b += α * D.T @ (vPoints[:, 1].reshape(-1, 1) - D[:, :nnodes] @ Velocity) x = spl.minres(A, b, tol=1.e-8) deltam = x[0].reshape(-1, 1) # update velocity vector and static correction dVmax = np.max(abs(deltam[:nnodes])) if dVmax > par.dVp_max: deltam[:nnodes] *= par.dVp_max / dVmax if par.use_sc and par.max_sc > 0. and par.max_sc < 1.: sc_mean = np.mean(abs(deltam[nnodes:])) if sc_mean > par.max_sc * np.mean(abs(Residue)): deltam[nnodes:] *= par.max_sc * np.mean(abs(Residue)) / sc_mean Velocity += np.matrix(deltam[:nnodes]) Slowness = 1. / Velocity Static_Corr += deltam[nnodes:] if par.saveVel == 'all': if par.verbose: print('...Saving Velocity models\n') sys.stdout.flush() try: msh2vtk(nodes, cells, Velocity, basename + 'it{0}.vtk'.format(i + 1)) except ImportError: print('vtk module is not installed\n') sys.stdout.flush() elif par.saveVel == 'last' and i == par.maxit - 1: try: msh2vtk(nodes, cells, Velocity, basename + '.vtk') except ImportError: print('vtk module is not installed\n') sys.stdout.flush() ####################################### # relocate Hypocenters ####################################### Mesh3D.set_slowness(Slowness) if numberOfEvents > 0: print("\nIteration N {0:d} : Relocation of events\n".format(i + 1)) sys.stdout.flush() if nThreads == 1: for ev in range(numberOfEvents): Hypocenters[ev, :] = _hypo_relocation( ev, evID, Hypocenters, data, rcv, Static_Corr, hypo_convergence, par) else: p = mp.get_context("fork").Pool(processes=nThreads) updatedHypo = p.starmap(_hypo_relocation, [(int(ev), evID, Hypocenters, data, rcv, Static_Corr, hypo_convergence, par)for ev in range(numberOfEvents)]) p.close() # pool won't take any new tasks p.join() Hypocenters = np.array([updatedHypo])[0] # Calculate the hypocenter parameter uncertainty uncertnty = [] if par.uncertainty and numberOfEvents > 0: print("\nUncertainty evaluation\n") sys.stdout.flush() # estimate data variance if nThreads == 1: varData = [[], []] for ev in range(numberOfEvents): uncertnty.append( _uncertaintyEstimat(ev, evID, Hypocenters, (data,), rcv, Static_Corr, (Slowness,), par, varData)) else: varData = manager.list([[], []]) with Pool(processes=nThreads) as p: uncertnty = p.starmap( _uncertaintyEstimat, [(int(ev), evID, Hypocenters, (data, ), rcv, Static_Corr, (Slowness, ), par, varData) for ev in range(numberOfEvents)]) p.close() # pool won't take any new tasks p.join() sgmData = np.sqrt(np.sum(varData[0]) / (np.sum(varData[1]) - 4 * numberOfEvents - Static_Corr.size)) for ic in range(numberOfEvents): uncertnty[ic] = tuple([sgmData * x for x in uncertnty[ic]]) output = OrderedDict() output['Hypocenters'] = Hypocenters output['Convergence'] = list(hypo_convergence) output['Uncertainties'] = uncertnty output['Velocity'] = Velocity output['Sts_Corrections'] = Static_Corr output['Residual_norm'] = ResidueNorm return output def jntHyposlow_T(data, caldata, Vinit, cells, nodes, rcv, Hypo0, par, threads=1, vPoints=np.array([]), basename='Slowness'): """ Joint hypocenter-velicoty inversion from P wave arrival time data parametrized using the slowness model. Parameters ---------- data : np.ndarray, shape(arrival time number, 3) Arrival times and corresponding receivers for each event. caldata : np.ndarray, shape(number of calibration shots, 6) Calibration shot data. Vinit : np.ndarray, shape(nnodes,1) or (1,1) Initial velocity model. Cells : np.ndarray of int, shape (cell number, 4) Indices of nodes forming the cells. nodes : np.ndarray, shape (nnodes, 3) Node coordinates. rcv : np.ndarray, shape (receiver number,3) Coordinates of receivers. Hypo0 : np.ndarray, shape(event number, 5) First guesses of the hypocenter coordinates (must be all diffirent). par : instance of the class Parameters The inversion parameters. threads : int, optional Thread number. The default is 1. vPoints : np.ndarray, shape(point number,4), optional Known velocity points. The default is np.array([]). basename : string, optional The filename used to save the output files. The default is 'Slowness'. Returns ------- output : python dictionary It contains the estimated hypocenter coordinates and their origin times, static correction values, velocity model, convergence states, parameter uncertainty and residual norm in each iteration. """ if par.verbose: print(par) print('inversion involves the slowness model\n') sys.stdout.flush() if par.use_sc: nstation = rcv.shape[0] else: nstation = 0 Static_Corr = np.zeros([nstation, 1]) nnodes = nodes.shape[0] # observed traveltimes if data.shape[0] > 0: evID = np.unique(data[:, 0]).astype(int) tObserved = data[:, 1] numberOfEvents = evID.size else: tObserved = np.array([]) numberOfEvents = 0 rcvData = np.zeros([data.shape[0], 3]) for ev in range(numberOfEvents): indr = np.where(data[:, 0] == evID[ev])[0] rcvData[indr] = rcv[data[indr, 2].astype(int) - 1, :] # get calibration data if caldata.shape[0] > 0: calID = np.unique(caldata[:, 0]) ncal = calID.size time_calibration = caldata[:, 1] TxCalib = np.zeros((caldata.shape[0], 5)) TxCalib[:, 2:] = caldata[:, 3:] TxCalib[:, 0] = caldata[:, 0] rcvCalib = np.zeros([caldata.shape[0], 3]) if par.use_sc: Msc_cal = [] for nc in range(ncal): indr = np.where(caldata[:, 0] == calID[nc])[0] rcvCalib[indr] = rcv[caldata[indr, 2].astype(int) - 1, :] if par.use_sc: Msc_cal.append(sp.csr_matrix( (np.ones([indr.size, ]), (range(indr.size), caldata[indr, 2]-1)), shape=(indr.size, nstation))) else: ncal = 0 time_calibration = np.array([]) # initial velocity model if Vinit.size == 1: Slowness = 1. / (Vinit * np.ones([nnodes, 1])) elif Vinit.size == nnodes: Slowness = 1. / Vinit else: print("invalid Velocity Model") sys.stdout.flush() return 0 # Hypocenter if numberOfEvents > 0 and Hypo0.shape[0] != numberOfEvents: print("invalid Hypocenters0 format\n") sys.stdout.flush() return 0 else: Hypocenters = Hypo0.copy() # number of threads nThreadsSystem = cpu_count() nThreads = np.min((threads, nThreadsSystem)) global Mesh3D, Dimensions # build mesh object Mesh3D = tmesh.Mesh3d(nodes, tetra=cells, method='DSPM', cell_slowness=0, n_threads=nThreads, n_secondary=2, n_tertiary=1, radius_factor_tertiary=2, translate_grid=1) Mesh3D.set_slowness(Slowness) Dimensions = np.empty(6) Dimensions[0] = min(nodes[:, 0]) Dimensions[1] = max(nodes[:, 0]) Dimensions[2] = min(nodes[:, 1]) Dimensions[3] = max(nodes[:, 1]) Dimensions[4] = min(nodes[:, 2]) Dimensions[5] = max(nodes[:, 2]) ResidueNorm = np.zeros([par.maxit]) if par.invert_vel: if par.use_sc: U = sp.bsr_matrix(np.vstack((np.zeros([nnodes, 1]), np.ones([nstation, 1])))) nbre_param = nnodes + nstation if par.max_sc > 0. and par.max_sc < 1.: N = sp.bsr_matrix( np.hstack((np.zeros([nstation, nnodes]), np.eye(nstation)))) NtN = (1. / par.max_sc**2) * N.T.dot(N) else: U = sp.csr_matrix(np.zeros([nnodes, 1])) nbre_param = nnodes # build matrix D if vPoints.size > 0: if par.verbose: print('\nBuilding velocity data point matrix D\n') sys.stdout.flush() D = Mesh3D.compute_D(vPoints[:, 2:]) D = sp.hstack((D, sp.csr_matrix((D.shape[0], nstation)))).tocsr() DtD = D.T @ D nD = spl.norm(DtD) # Build regularization matrix if par.verbose: print('\n...Building regularization matrix K\n') sys.stdout.flush() kx, ky, kz = Mesh3D.compute_K(order=2, taylor_order=2, weighting=1, squared=0, s0inside=0, additional_points=3) KX = sp.hstack((kx, sp.csr_matrix((nnodes, nstation)))) KX_Square = KX.transpose().dot(KX) KY = sp.hstack((ky, sp.csr_matrix((nnodes, nstation)))) KY_Square = KY.transpose().dot(KY) KZ = sp.hstack((kz, sp.csr_matrix((nnodes, nstation)))) KZ_Square = KZ.transpose().dot(KZ) KtK = KX_Square + KY_Square + par.wzK * KZ_Square nK = spl.norm(KtK) if nThreads == 1: hypo_convergence = list(np.zeros(numberOfEvents, dtype=bool)) else: manager = Manager() hypo_convergence = manager.list(np.zeros(numberOfEvents, dtype=bool)) for i in range(par.maxit): if par.verbose: print("\nIteration N : {0:d}\n".format(i + 1)) sys.stdout.flush() if par.invert_vel: if par.verbose: print( '\nIteration {0:d} - Updating velocity model\n'.format(i + 1)) print("\nUpdating penalty vector\n") sys.stdout.flush() # Build vector C cx = kx.dot(Slowness) cy = ky.dot(Slowness) cz = kz.dot(Slowness) # build matrix P and dP indSmin = np.where(Slowness < 1. / par.Vpmax)[0] indSmax = np.where(Slowness > 1. / par.Vpmin)[0] indPinality = np.hstack([indSmin, indSmax]) dPinality_V = np.hstack( [-par.PAp * np.ones(indSmin.size), par.PAp * np.ones(indSmax.size)]) pinality_V = np.vstack([par.PAp * (1. / par.Vpmax - Slowness[indSmin]), par.PAp * (Slowness[indSmax] - 1. / par.Vpmin)]) d_Pinality = sp.csr_matrix( (dPinality_V, (indPinality, indPinality)), shape=( nnodes, nbre_param)) Pinality = sp.csr_matrix(( pinality_V.reshape([-1, ]), (indPinality, np.zeros([indPinality.shape[0]]))), shape=(nnodes, 1)) if par.verbose: print('\nPenalties applied at {0:d} nodes\n'.format( dPinality_V.size)) print('...Start Raytracing\n') sys.stdout.flush() if numberOfEvents > 0: sources = np.empty((data.shape[0], 5)) if par.use_sc: sc_data = np.empty((data.shape[0], )) for ev in np.arange(numberOfEvents): indr = np.where(data[:, 0] == evID[ev])[0] indh = np.where(Hypocenters[:, 0] == evID[ev])[0] sources[indr, :] = Hypocenters[indh, :] if par.use_sc: sc_data[indr] = Static_Corr[data[indr, 2].astype(int) - 1, 0] if par.use_sc: sources[:, 1] += sc_data tt, rays, M0 = Mesh3D.raytrace(source=sources, rcv=rcvData, slowness=None, aggregate_src=False, compute_L=True, return_rays=True) else: tt, rays, M0 = Mesh3D.raytrace(source=sources, rcv=rcvData, slowness=None, aggregate_src=False, compute_L=True, return_rays=True) slow_0 = Mesh3D.get_s0(sources) if par.verbose: inconverged = np.where(tt == 0)[0] for icr in inconverged: print('\033[43m' + '\nWarning: raypath failed to converge for even ' 'N {0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and receiver' ' N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(data[icr, 0]), sources[icr, 2], sources[icr, 3], sources[icr, 4], int(data[icr, 2]), rcvData[icr, 0], rcvData[icr, 1], rcvData[icr, 2]) + '\033[0m') print('\033[43m' + 'ray will be temporary removed' + '\033[0m') sys.stdout.flush() else: tt = np.array([]) if ncal > 0: if par.use_sc: # add static corrections for each station TxCalib[:, 1] = Static_Corr[caldata[:, 2].astype(int) - 1, 0] tt_Calib, Mcalib = Mesh3D.raytrace( source=TxCalib, rcv=rcvCalib, slowness=None, aggregate_src=False, compute_L=True, return_rays=False) else: tt_Calib, Mcalib = Mesh3D.raytrace( source=TxCalib, rcv=rcvCalib, slowness=None, aggregate_src=False, compute_L=True, return_rays=False) if par.verbose: inconverged = np.where(tt_Calib == 0)[0] for icr in inconverged: print('\033[43m' + '\nWarning: raypath failed to converge' 'for calibration shot N ' '{0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and receiver' ' N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(caldata[icr, 0]), TxCalib[icr, 2], TxCalib[icr, 3], TxCalib[icr, 4], int(caldata[icr, 2]), rcvCalib[icr, 0], rcvCalib[icr, 1], rcvCalib[icr, 2]) + '\033[0m') print('\033[43m' + 'ray will be temporary removed' + '\033[0m') sys.stdout.flush() else: tt_Calib = np.array([]) Resid = tObserved - tt convrayData = np.where(tt != 0)[0] convrayClib = np.where(tt_Calib != 0)[0] if Resid.size == 0: Residue = time_calibration[convrayClib] - tt_Calib[convrayClib] else: Residue = np.hstack((np.zeros([np.count_nonzero(tt) - 4 * numberOfEvents]), time_calibration[convrayClib] - tt_Calib[convrayClib])) ResidueNorm[i] = np.linalg.norm(np.hstack( (Resid[convrayData], time_calibration[convrayClib] - tt_Calib[convrayClib]))) if par.verbose: print('\n...Building matrix M\n') sys.stdout.flush() M = sp.csr_matrix((0, nbre_param)) ir = 0 for even in range(numberOfEvents): indh = np.where(Hypocenters[:, 0] == evID[even])[0] indr = np.where(data[:, 0] == evID[even])[0] Mi = M0[even] nst_ev = Mi.shape[0] Hi = np.ones([indr.size, 4]) for nr in range(indr.size): rayi = rays[indr[nr]] if rayi.shape[0] == 1: continue slw0 = slow_0[indr[nr]] dx = rayi[1, 0] - Hypocenters[indh[0], 2] dy = rayi[1, 1] - Hypocenters[indh[0], 3] dz = rayi[1, 2] - Hypocenters[indh[0], 4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 1] = -slw0 * dx / ds Hi[nr, 2] = -slw0 * dy / ds Hi[nr, 3] = -slw0 * dz / ds convrays = np.where(tt[indr] != 0)[0] if convrays.shape[0] < indr.size: Hi = Hi[convrays, :] Q, _ = np.linalg.qr(Hi, mode='complete') Ti = sp.csr_matrix(Q[:, 4:]) Ti = Ti.T if par.use_sc: Lsc = sp.csr_matrix((np.ones(nst_ev,), (range(nst_ev), data[indr[convrays], 2] - 1)), shape=(nst_ev, nstation)) Mi = sp.hstack((Mi, Lsc)) Mi = sp.csr_matrix(Ti @ Mi) M = sp.vstack([M, Mi]) Residue[ir:ir + (nst_ev - 4)] = Ti.dot(Resid[indr[convrays]]) ir += nst_ev - 4 for evCal in range(len(Mcalib)): Mi = Mcalib[evCal] if par.use_sc: indrCal = np.where(caldata[:, 0] == calID[evCal])[0] convraysCal = np.where(tt_Calib[indrCal] != 0)[0] Mi = sp.hstack((Mi, Msc_cal[evCal][convraysCal])) M = sp.vstack([M, Mi]) if par.verbose: print('Assembling matrices and solving system\n') sys.stdout.flush() S = np.sum(Static_Corr) term1 = (M.T).dot(M) nM = spl.norm(term1[:nnodes, :nnodes]) term2 = (d_Pinality.T).dot(d_Pinality) nP = spl.norm(term2) term3 = U.dot(U.T) λ = par.λ * nM / nK if nP != 0: γ = par.γ * nM / nP else: γ = par.γ A = term1 + λ * KtK + γ * term2 + term3 if par.use_sc and par.max_sc > 0. and par.max_sc < 1.: A += NtN term1 = (M.T).dot(Residue) term1 = term1.reshape([-1, 1]) term2 = (KX.T).dot(cx) + (KY.T).dot(cy) + par.wzK * (KZ.T).dot(cz) term3 = (d_Pinality.T).dot(Pinality) term4 = U.dot(S) b = term1 - λ * term2 - γ * term3 - term4 if vPoints.size > 0: α = par.α * nM / nD A += α * DtD b += α * D.T @ (1. / (vPoints[:, 1].reshape(-1, 1)) - D[:, :nnodes] @ Slowness) x = spl.minres(A, b, tol=1.e-8) deltam = x[0].reshape(-1, 1) # update velocity vector and static correction deltaV_max = np.max( abs(1. / (Slowness + deltam[:nnodes]) - 1. / Slowness)) if deltaV_max > par.dVp_max: print('\n...Rescale P slowness vector\n') sys.stdout.flush() L1 = np.max(deltam[:nnodes] / (-par.dVp_max * (Slowness**2) / (1 + par.dVp_max * Slowness))) L2 = np.max(deltam[:nnodes] / (par.dVp_max * (Slowness**2) / (1 - par.dVp_max * Slowness))) deltam[:nnodes] /= np.max([L1, L2]) print('P wave: maximum ds = {0:4.3f}, ' 'maximum dV = {1:4.3f}\n'.format(max(abs( deltam[:nnodes]))[0], np.max( abs(1. / (Slowness + deltam[:nnodes]) - 1. / Slowness)))) sys.stdout.flush() if par.use_sc and par.max_sc > 0. and par.max_sc < 1.: sc_mean = np.mean(abs(deltam[nnodes:])) if sc_mean > par.max_sc * np.mean(abs(Residue)): deltam[nnodes:] *= par.max_sc * np.mean(abs(Residue)) / sc_mean Slowness += np.matrix(deltam[:nnodes]) Mesh3D.set_slowness(Slowness) Static_Corr += deltam[nnodes:] if par.saveVel == 'all': if par.verbose: print('...Saving Velocity models') try: msh2vtk(nodes, cells, 1. / Slowness, basename + 'it{0}.vtk'.format(i + 1)) except ImportError: print('vtk module is not installed or encouters problems') elif par.saveVel == 'last' and i == par.maxit - 1: try: msh2vtk(nodes, cells, 1. / Slowness, basename + '.vtk') except ImportError: print('vtk module is not installed or encouters problems') ####################################### # relocate Hypocenters ####################################### if numberOfEvents > 0: print("\nIteration N {0:d} : Relocation of events".format( i + 1) + '\n') sys.stdout.flush() if nThreads == 1: for ev in range(numberOfEvents): Hypocenters[ev, :] = _hypo_relocation( ev, evID, Hypocenters, data, rcv, Static_Corr, hypo_convergence, par) else: with Pool(processes=nThreads) as p: updatedHypo = p.starmap(_hypo_relocation, [(int(ev), evID, Hypocenters, data, rcv, Static_Corr, hypo_convergence, par) for ev in range(numberOfEvents)]) p.close() # pool won't take any new tasks p.join() Hypocenters = np.array([updatedHypo])[0] # Calculate the hypocenter parameter uncertainty uncertnty = [] if par.uncertainty and numberOfEvents > 0: print("\nUncertainty evaluation\n") sys.stdout.flush() # estimate data variance if nThreads == 1: varData = [[], []] for ev in range(numberOfEvents): uncertnty.append(_uncertaintyEstimat(ev, evID, Hypocenters, (data,), rcv, Static_Corr, (Slowness,), par, varData)) else: varData = manager.list([[], []]) with Pool(processes=nThreads) as p: uncertnty = p.starmap(_uncertaintyEstimat, [(int(ev), evID, Hypocenters, (data,), rcv, Static_Corr, (Slowness,), par, varData) for ev in range(numberOfEvents)]) p.close() # pool won't take any new tasks p.join() sgmData = np.sqrt(np.sum(varData[0]) / (
np.sum(varData[1])
numpy.sum
# BSD 3-Clause License # Copyright (c) 2019, regain authors # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import pandas as pd from sklearn.metrics import v_measure_score from regain.utils import error_norm_time, structure_error def convert_dict_to_df(input_dict, max_samples=5000): neww = {} for k, v in input_dict.items(): if k[1] > max_samples: continue new = {} for kk, vv in v.items(): new.update({(kk, i): vvv for i, vvv in enumerate(vv)}) neww[k] = new res_df = pd.DataFrame(neww) res_df.index.name = ('measure', 'iter') rr = res_df.T.reset_index() rr = rr.rename(columns={'level_0': 'method', 'level_1': 'samples'}) rr.method = rr.method.str.upper() return rr.set_index(['method', 'samples']) def ensure_ticc_valid(new_r): for i in range(10): new_r['valid', i] = True for r in new_r.loc['TICC', 'model'].iterrows(): sampl = r[0] for k, rrr in (r[1].iteritems()): if np.alltrue(rrr.labels_ == np.zeros_like(rrr.labels_)): new_r.loc[('TICC', sampl), ('structure_error', k)] = None format_2e = lambda x: "{:.2e} (\pm {:.2e})".format( (np.nanmean(np.array(x).astype(float))), (np.nanstd(np.array(x).astype(float)))) format_3f = lambda x: "{:.3f} \pm {:.3f}".format( (np.nanmean(np.array(x).astype(float))), (np.nanstd(np.array(x).astype(float)))) def set_results( vs, model, name, i, labels_true, labels_pred, thetas_true_sparse, thetas_true_rep, obs_precs_sparse, obs_precs, tac): th = name in ['wp', 'ticc'] vs.setdefault((name, i), {}).setdefault('model', []).append(model) vs.setdefault( (name, i), {}).setdefault('v_measure', []).append(v_measure_score(labels_true, labels_pred)) vs.setdefault((name, i), {}).setdefault('structure_error', []).append( structure_error( thetas_true_sparse, obs_precs_sparse, no_diagonal=True, thresholding=th, eps=1e-5)) vs.setdefault( (name, i), {}).setdefault('error_norm', []).append(error_norm_time(thetas_true_rep, obs_precs)) vs.setdefault((name, i), {}).setdefault('error_norm_sparse', []).append( error_norm_time(thetas_true_sparse, obs_precs_sparse)) vs.setdefault((name, i), {}).setdefault('time', []).append(tac) def highlight_max(s): ''' highlight the maximum in a Series yellow. ''' is_max = s == (s.min() if s.name in ['time', 'error_norm'] else s.max()) s.loc[is_max] = s[is_max].apply(lambda x: '\\textbf{%s}' % (x)) return ['background-color: yellow' if v else '' for v in is_max] def highlight_max_std(s): ''' highlight the maximum in a Series yellow. ''' attr = 'background-color: yellow' if s.ndim == 1: # Series from .apply(axis=0) or axis=1 ss = s.str.split(' ').apply(lambda x: x[0]).astype(float) is_max = ss.astype(float) == ( ss.min() if s.name in ['time', 'error_norm'] else ss.max()) s.loc[is_max] = s[is_max].apply(lambda x: '\\bm{%s}' % (x)) return [attr if v else '' for v in is_max] else: ss = s.applymap(lambda s: float(s.split(' ')[0])) is_min = ss.groupby(level=0).transform( lambda x: x.min() if x.name in ['time', 'error_norm'] else x.max()) == ss ret = pd.DataFrame(
np.where(is_min, attr, '')
numpy.where
import json import os from typing import Dict, List, Tuple import numpy as np from continuum import download from continuum.datasets.base import _ContinuumDataset class MultiNLI(_ContinuumDataset): """Continuum version of the MultiNLI dataset. References: * A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference Williams, Nangia, and Bowman ACL 2018 * Progressive Memory Banks for Incremental Domain Adaptation Asghar & Mou ICLR 2020 The dataset is based on the NLI task. For each example, two sentences are given. The goal is to determine whether this pair of sentences has: - Opposite meaning (contradiction) - Similar meaning (entailment) - no relation to each other (neutral) :param data_path: The folder extracted from the official zip file. :param download: An option useless in this case. """ data_url = "https://cims.nyu.edu/~sbowman/multinli/multinli_1.0.zip" def __init__(self, data_path: str = "", download: bool = True) -> None: super().__init__(data_path, download) def _download(self): if os.path.exists(os.path.join(self.data_path, "multinli_1.0")): print("Dataset already extracted.") else: path = download.download(self.data_url, self.data_path) download.unzip(path) print("Dataset extracted.") @property def data_type(self) -> str: return "text" @property def transformations(self): return [] def original_targets(self) -> List[str]: return ["contradiction", "entailment", "neutral"] def init(self, train: bool) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """Generate the MultiNLI data. The dataset has several domains, but always the same targets ("contradiction", "entailment", "neutral"). 5 domains are allocated for the train set ("fiction", "government", "slate", "telephone", "travel"), and 5 to the test set ("facetoface", "letters", "nineeleven", "oup", "verbatim"). While the train is given different task id for each domain, the test set always has a dummy 0 domain id, as it is supposed to be fixed. """ texts, targets, genres = [], [], [] available_targets = ["contradiction", "entailment", "neutral"] available_genres = [ "fiction", "government", "slate", "telephone", "travel", # /train "facetoface", "letters", "nineeleven", "oup", "verbatim" # /test ] if train: json_path = os.path.join(self.data_path, "multinli_1.0", "multinli_1.0_train.jsonl") else: json_path = os.path.join( self.data_path, "multinli_1.0", "multinli_1.0_dev_mismatched.jsonl" ) with open(json_path) as f: for line in f: line_parsed: Dict[str, str] = json.loads(line) if line_parsed["gold_label"] not in available_targets: continue # A few cases exist w/o targets. texts.append((line_parsed["sentence1"], line_parsed["sentence2"])) targets.append(available_targets.index(line_parsed["gold_label"])) if train: # We add a new domain id for the train set. genres.append(available_genres.index(line_parsed["genre"])) else: # Test set is fixed, therefore we artificially give a unique domain. genres.append(0) texts = np.array(texts) targets = np.array(targets) genres =
np.array(genres)
numpy.array
import unittest import unittest.mock import numpy as np from ConfigSpace import CategoricalHyperparameter, \ UniformFloatHyperparameter, UniformIntegerHyperparameter, \ OrdinalHyperparameter, EqualsCondition from smac.epm.rf_with_instances import RandomForestWithInstances from smac.epm.util_funcs import get_types import smac import smac.configspace class TestRFWithInstances(unittest.TestCase): def _get_cs(self, n_dimensions): configspace = smac.configspace.ConfigurationSpace() for i in range(n_dimensions): configspace.add_hyperparameter(UniformFloatHyperparameter('x%d' % i, 0, 1)) return configspace def test_predict_wrong_X_dimensions(self): rs = np.random.RandomState(1) model = RandomForestWithInstances( configspace=self._get_cs(10), types=np.zeros((10,), dtype=np.uint), bounds=list(map(lambda x: (0, 10), range(10))), seed=1, ) X = rs.rand(10) self.assertRaisesRegex(ValueError, "Expected 2d array, got 1d array!", model.predict, X) X = rs.rand(10, 10, 10) self.assertRaisesRegex(ValueError, "Expected 2d array, got 3d array!", model.predict, X) X = rs.rand(10, 5) self.assertRaisesRegex(ValueError, "Rows in X should have 10 entries " "but have 5!", model.predict, X) def test_predict(self): rs = np.random.RandomState(1) X = rs.rand(20, 10) Y = rs.rand(10, 1) model = RandomForestWithInstances( configspace=self._get_cs(10), types=np.zeros((10,), dtype=np.uint), bounds=list(map(lambda x: (0, 10), range(10))), seed=1, ) model.train(X[:10], Y[:10]) m_hat, v_hat = model.predict(X[10:]) self.assertEqual(m_hat.shape, (10, 1)) self.assertEqual(v_hat.shape, (10, 1)) def test_train_with_pca(self): rs = np.random.RandomState(1) X = rs.rand(20, 20) F = rs.rand(10, 10) Y = rs.rand(20, 1) model = RandomForestWithInstances( configspace=self._get_cs(10), types=np.zeros((20,), dtype=np.uint), bounds=list(map(lambda x: (0, 10), range(10))), seed=1, pca_components=2, instance_features=F, ) model.train(X, Y) self.assertEqual(model.n_params, 10) self.assertEqual(model.n_feats, 10) self.assertIsNotNone(model.pca) self.assertIsNotNone(model.scaler) def test_predict_marginalized_over_instances_wrong_X_dimensions(self): rs = np.random.RandomState(1) model = RandomForestWithInstances( configspace=self._get_cs(10), types=np.zeros((10,), dtype=np.uint), instance_features=rs.rand(10, 2), seed=1, bounds=list(map(lambda x: (0, 10), range(10))), ) X = rs.rand(10) self.assertRaisesRegex(ValueError, "Expected 2d array, got 1d array!", model.predict_marginalized_over_instances, X) X = rs.rand(10, 10, 10) self.assertRaisesRegex(ValueError, "Expected 2d array, got 3d array!", model.predict_marginalized_over_instances, X) @unittest.mock.patch.object(RandomForestWithInstances, 'predict') def test_predict_marginalized_over_instances_no_features(self, rf_mock): """The RF should fall back to the regular predict() method.""" rs = np.random.RandomState(1) X = rs.rand(20, 10) Y = rs.rand(10, 1) model = RandomForestWithInstances( configspace=self._get_cs(10), types=np.zeros((10,), dtype=np.uint), bounds=list(map(lambda x: (0, 10), range(10))), seed=1, ) model.train(X[:10], Y[:10]) model.predict(X[10:]) self.assertEqual(rf_mock.call_count, 1) def test_predict_marginalized_over_instances(self): rs = np.random.RandomState(1) X = rs.rand(20, 10) F = rs.rand(10, 5) Y = rs.rand(len(X) * len(F), 1) X_ = rs.rand(200, 15) model = RandomForestWithInstances( configspace=self._get_cs(10), types=np.zeros((15,), dtype=np.uint), instance_features=F, bounds=list(map(lambda x: (0, 10), range(10))), seed=1, ) model.train(X_, Y) means, vars = model.predict_marginalized_over_instances(X) self.assertEqual(means.shape, (20, 1)) self.assertEqual(vars.shape, (20, 1)) @unittest.mock.patch.object(RandomForestWithInstances, 'predict') def test_predict_marginalized_over_instances_mocked(self, rf_mock): """Use mock to count the number of calls to predict()""" class SideEffect(object): def __call__(self, X): # Numpy array of number 0 to X.shape[0] rval = np.array(list(range(X.shape[0]))).reshape((-1, 1)) # Return mean and variance return rval, rval rf_mock.side_effect = SideEffect() rs = np.random.RandomState(1) F = rs.rand(10, 5) model = RandomForestWithInstances( configspace=self._get_cs(10), types=np.zeros((15,), dtype=np.uint), instance_features=F, bounds=list(map(lambda x: (0, 10), range(10))), seed=1, ) X = rs.rand(20, 10) F = rs.rand(10, 5) Y = rs.randint(1, size=(len(X) * len(F), 1)) * 1. X_ = rs.rand(200, 15) model.train(X_, Y) means, vars = model.predict_marginalized_over_instances(rs.rand(11, 10)) # expected to be 0 as the predict is replaced by manual unloggin the trees self.assertEqual(rf_mock.call_count, 0) self.assertEqual(means.shape, (11, 1)) self.assertEqual(vars.shape, (11, 1)) for i in range(11): self.assertEqual(means[i], 0.) self.assertEqual(vars[i], 1.e-10) def test_predict_with_actual_values(self): X = np.array([ [0., 0., 0.], [0., 0., 1.], [0., 1., 0.], [0., 1., 1.], [1., 0., 0.], [1., 0., 1.], [1., 1., 0.], [1., 1., 1.]], dtype=np.float64) y = np.array([ [.1], [.2], [9], [9.2], [100.], [100.2], [109.], [109.2]], dtype=np.float64) model = RandomForestWithInstances( configspace=self._get_cs(3), types=np.array([0, 0, 0], dtype=np.uint), bounds=[(0, np.nan), (0, np.nan), (0, np.nan)], instance_features=None, seed=12345, ratio_features=1.0, ) model.train(np.vstack((X, X, X, X, X, X, X, X)), np.vstack((y, y, y, y, y, y, y, y))) y_hat, _ = model.predict(X) for y_i, y_hat_i in zip(y.reshape((1, -1)).flatten(), y_hat.reshape((1, -1)).flatten()): self.assertAlmostEqual(y_i, y_hat_i, delta=0.1) def test_with_ordinal(self): cs = smac.configspace.ConfigurationSpace() _ = cs.add_hyperparameter(CategoricalHyperparameter('a', [0, 1], default_value=0)) _ = cs.add_hyperparameter(OrdinalHyperparameter('b', [0, 1], default_value=1)) _ = cs.add_hyperparameter(UniformFloatHyperparameter('c', lower=0., upper=1., default_value=1)) _ = cs.add_hyperparameter(UniformIntegerHyperparameter('d', lower=0, upper=10, default_value=1)) cs.seed(1) feat_array = np.array([0, 0, 0]).reshape(1, -1) types, bounds = get_types(cs, feat_array) model = RandomForestWithInstances( configspace=cs, types=types, bounds=bounds, instance_features=feat_array, seed=1, ratio_features=1.0, pca_components=9, ) self.assertEqual(bounds[0][0], 2) self.assertTrue(bounds[0][1] is np.nan) self.assertEqual(bounds[1][0], 0) self.assertEqual(bounds[1][1], 1) self.assertEqual(bounds[2][0], 0.) self.assertEqual(bounds[2][1], 1.) self.assertEqual(bounds[3][0], 0.) self.assertEqual(bounds[3][1], 1.) X = np.array([ [0., 0., 0., 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0., 0.], [0., 1., 0., 9., 0., 0., 0.], [0., 1., 1., 4., 0., 0., 0.]], dtype=np.float64) y = np.array([0, 1, 2, 3], dtype=np.float64) X_train = np.vstack((X, X, X, X, X, X, X, X, X, X)) y_train = np.vstack((y, y, y, y, y, y, y, y, y, y)) model.train(X_train, y_train.reshape((-1, 1))) mean, _ = model.predict(X) for idx, m in enumerate(mean): self.assertAlmostEqual(y[idx], m, 0.05) def test_rf_on_sklearn_data(self): import sklearn.datasets X, y = sklearn.datasets.load_boston(return_X_y=True) rs = np.random.RandomState(1) types = np.zeros(X.shape[1]) bounds = [(np.min(X[:, i]),
np.max(X[:, i])
numpy.max
#!/usr/bin/env python3 # Document Scanner __author__ = "<NAME>" __date__ = "September 16, 2021" __email__ = "<EMAIL>" import cv2 import numpy as np def preProcessing(image): imgGray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) imgBlur = cv2.GaussianBlur(imgGray, ksize=(5, 5), sigmaX=1) imgCanny = cv2.Canny(imgBlur, threshold1=75, threshold2=75) k = np.ones((3, 3)) imgDilate = cv2.dilate(imgCanny, kernel=k, iterations=2) imgThresh = cv2.erode(imgDilate, kernel=k, iterations=1) cv2.imshow('Threshold', imgThresh) return imgThresh def getCorners(image): w = image.shape[0] h = image.shape[1] biggest = np.array([[[0, 0], [w, 0], [w, h], [0, h]]]) maxArea = 0 imgContour = image.copy() image = preProcessing(image) contours, _ = cv2.findContours( image, mode=cv2.RETR_EXTERNAL, method=cv2.CHAIN_APPROX_NONE) for cnt in contours: area = cv2.contourArea(cnt) if area > 5000: # cv2.drawContours(imgContour, contours=cnt, contourIdx=-1, color=(255,0,0), thickness=3) peri = cv2.arcLength(cnt, closed=True) approx = cv2.approxPolyDP(cnt, epsilon=0.02*peri, closed=True) if area > maxArea and len(approx) == 4: biggest = approx maxArea = area cv2.drawContours(imgContour, contours=biggest, contourIdx=-1, color=(255, 0, 0), thickness=20) cv2.imshow('Contours', imgContour) return biggest def reorder(corners): corners = corners.reshape((4,2)) newCorners = np.zeros((4,1,2)) add = np.sum(corners, axis=1) newCorners[0] = corners[
np.argmin(add)
numpy.argmin
import numpy as np from .onshore_cost_model import onshore_tcc def offshore_turbine_capex(capacity, hub_height, rotor_diam, depth, distance_to_shore, distance_to_bus=3, foundation="monopile", mooring_count=3, anchor="DEA", turbine_count=80, turbine_spacing=5, turbine_row_spacing=9): """ A cost and scaling model (CSM) to calculate the total cost of a 3-bladed, direct drive offshore wind turbine according to the cost model proposed by Fingersh et al. [1] and Maples et al. [2]. The CSM distinguises between seaflor-fixed foundation types; "monopile" and "jacket" and floating foundation types; "semisubmersible" and "spar". The total turbine cost includes the contributions of the turbine capital cost (TCC), amounting 32.9% for fixed or 23.9% for floating structures, the balance of system costs (BOS) contribution, amounting 46.2% and 60.8% respectively, as well as the finantial costs as the complementary percentage contribution (15.9% and 20.9%) in the same manner [3]. A CSM normalization is done such that a chosen baseline offshore turbine taken by Caglayan et al. [4] (see notes for details) corresponds to an expected specific cost of 2300 €/kW in a 2050 European context as suggested by the 2016 cost of wind energy review by Stehly [3]. Parameters ---------- capacity : numeric or array-like Turbine's nominal capacity in kW. hub_height : numeric or array-like Turbine's hub height in m. rotor_diam : numeric or array-like Turbine's rotor diameter in m. depth : numeric or array-like Water depth in m (absolute value) at the turbine's location. distance_to_shore : numeric or array-like Distance from the turbine's location to the nearest shore in km. distance_to_bus : numeric or array-like, optional Distance from the wind farm's bus in km from the turbine's location. foundation : str or array-like of strings, optional Turbine's foundation type. Accepted types are: "monopile", "jacket", "semisubmersible" or "spar", by default "monopile" mooring_count : numeric, optional Refers to the number of mooring lines are there attaching a turbine only applicable for floating foundation types. By default 3 assuming a triangular attachment to the seafloor. anchor : str, optional Turbine's anchor type only applicable for floating foundation types, by default as reccomended by [1]. Arguments accepted are "dea" (drag embedment anchor) or "spa" (suction pile anchor). turbine_count : numeric, optional Number of turbines in the offshore windpark. CSM valid for the range [3-200], by default 80 turbine_spacing : numeric, optional Spacing distance in a row of turbines (turbines that share the electrical connection) to the bus. The value must be a multiplyer of rotor diameter. CSM valid for the range [4-9], by default 5 turbine_row_spacing : numeric, optional Spacing distance between rows of turbines. The value must be a multiplyer of rotor diameter. CSM valid for the range [4-10], by default 9 Returns -------- numeric or array-like Offshore turbine total cost See also -------- onshore_turbine_capex(capacity, hub_height, rotor_diam, base_capex, base_capacity, base_hub_height, base_rotor_diam, tcc_share, bos_share) Notes ------- The baseline offshore turbine correspongs to the optimal desing for Europe according to Caglayan et al. [4]: capacity = 9400 kW, hub height = 135 m, rotor diameter = 210 m, "monopile" foundation, reference water depth = 40 m, and reference distance to shore = 60 km. Sources ------- [1] Fingersh, L., <NAME>., & <NAME>. (2006). Wind Turbine Design Cost and Scaling Model. Nrel. https://www.nrel.gov/docs/fy07osti/40566.pdf [2] <NAME>., <NAME>., & <NAME>. (2010). Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines. Energy. https://doi.org/10.2172/991560 [3] <NAME>., <NAME>., & <NAME>. (2016). Cost of Wind Energy Review. Technical Report. https://www.nrel.gov/docs/fy18osti/70363.pdf [4] <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2019). The techno-economic potential of offshore wind energy with optimized future turbine designs in Europe. Applied Energy. https://doi.org/10.1016/j.apenergy.2019.113794 [5] <NAME>., <NAME>., & <NAME>. (2017). NREL Offshore Balance-of- System Model NREL Offshore Balance-of- System Model. https://www.nrel.gov/docs/fy17osti/66874.pdf [6] <NAME>., <NAME>., <NAME>., & <NAME>. (2014). Levelised cost of energy for offshore floating wind turbines in a life cycle perspective. Renewable Energy, 66, 714–728. https://doi.org/10.1016/j.renene.2014.01.017 [7] <NAME>., & <NAME>. (2013). Levelised Costs Of Energy For Offshore Floating Wind Turbine Concepts [Norwegian University of Life Sciences]. https://nmbu.brage.unit.no/nmbu-xmlui/bitstream/handle/11250/189073/Bjerkseter%2C C. %26 Ågotnes%2C A. %282013%29 - Levelised Costs of Energy for Offshore Floating Wind Turbine Concepts.pdf?sequence=1&isAllowed=y [8] <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2016). IEA Wind Task 26: Offshore Wind Farm Baseline Documentation. https://doi.org/10.2172/1259255 [9] RPG CABLES, & KEC International limited. (n.d.). EXTRA HIGH VOLTAGE cables. RPG CABLES. www.rpgcables.com/images/product/EHV-catalogue.pdf """ # TODO: Generalize this function further(like with the onshore cost model) # PREPROCESS INPUTS cp = np.array(capacity / 1000) # rr = np.array(rotor_diam / 2) rd = np.array(rotor_diam) hh = np.array(hub_height) depth = np.abs(np.array(depth)) distance_to_shore = np.array(distance_to_shore) distance_to_bus = np.array(distance_to_bus) # COMPUTE COSTS tcc = onshore_tcc(cp=cp * 1000, hh=hh, rd=rd) tcc *= 0.7719832742256006 bos = offshore_bos(cp=cp, rd=rd, hh=hh, depth=depth, distance_to_shore=distance_to_shore, distance_to_bus=distance_to_bus, foundation=foundation, mooring_count=mooring_count, anchor=anchor, turbine_count=turbine_count, turbine_spacing=turbine_spacing, turbine_row_spacing=turbine_row_spacing, ) bos *= 0.3669156255898912 if foundation == 'monopile' or foundation == 'jacket': fin = (tcc + bos) * 20.9 / (32.9 + 46.2) # Scaled according to tcc [7] else: fin = (tcc + bos) * 15.6 / (60.8 + 23.6) # Scaled according to tcc [7] return tcc + bos + fin # return np.array([tcc,bos,fin]) def offshore_bos(cp, rd, hh, depth, distance_to_shore, distance_to_bus, foundation, mooring_count, anchor, turbine_count, turbine_spacing, turbine_row_spacing): """ A function to determine the balance of the system cost (BOS) of an offshore turbine based on the capacity, hub height and rotor diamter values according to Fingersh et al. [1]. Parameters ---------- cp : numeric or array-like Turbine's nominal capacity in kW rd : numeric or array-like Turbine's rotor diameter in m hh : numeric or array-like Turbine's hub height in m depth : numeric or array-like Water depth in m (absolute value) at the turbine's location. distance_to_shore : numeric or array-like Distance from the turbine's location to the nearest shore in km. distance_to_bus : numeric or array-like, optional Distance from the wind farm's bus in km from the turbine's location. foundation : str or array-like of strings, optional Turbine's foundation type. Accepted types are: "monopile", "jacket", "semisubmersible" or "spar", by default "monopile" mooring_count : numeric, optional Refers to the number of mooring lines are there attaching a turbine only applicable for floating foundation types. By default 3 assuming a triangular attachment to the seafloor. anchor : str, optional Turbine's anchor type only applicable for floating foundation types, by default as reccomended by [1]. Arguments accepted are "dea" (drag embedment anchor) or "spa" (suction pile anchor). turbine_count : numeric, optional Number of turbines in the offshore windpark. CSM valid for the range [3-200], by default 80 turbine_spacing : numeric, optional Spacing distance in a row of turbines (turbines that share the electrical connection) to the bus. The value must be a multiplyer of rotor diameter. CSM valid for the range [4-9], by default 5 turbine_row_spacing : numeric, optional Spacing distance between rows of turbines. The value must be a multiplyer of rotor diameter. CSM valid for the range [4-10], by default 9 Returns ------- numeric Offshore turbine's BOS in monetary units. Notes ------ Assembly and installation costs could not be implemented due to the excessive number of unspecified constants considered by Smart et al. [8]. Therefore empirical equations were derived which fit the sensitivities to the baseline plants shown in [8]. These ended up being linear equations in turbine capacity and sea depth (only for floating turbines). Sources --------- [1] <NAME>., <NAME>., & <NAME>. (2006). Wind Turbine Design Cost and Scaling Model. Nrel. https://www.nrel.gov/docs/fy07osti/40566.pdf [2] <NAME>., <NAME>., & <NAME>. (2010). Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines. Energy. https://doi.org/10.2172/991560 [3] <NAME>., <NAME>., & <NAME>. (2016). Cost of Wind Energy Review. Technical Report. https://www.nrel.gov/docs/fy18osti/70363.pdf [4] <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2019). The techno-economic potential of offshore wind energy with optimized future turbine designs in Europe. Applied Energy. https://doi.org/10.1016/j.apenergy.2019.113794 [5] <NAME>., <NAME>., & <NAME>. (2017). NREL Offshore Balance-of- System Model NREL Offshore Balance-of- System Model. https://www.nrel.gov/docs/fy17osti/66874.pdf [6] <NAME>., <NAME>., <NAME>., & <NAME>. (2014). Levelised cost of energy for offshore floating wind turbines in a life cycle perspective. Renewable Energy, 66, 714–728. https://doi.org/10.1016/j.renene.2014.01.017 [7] <NAME>., & <NAME>. (2013). Levelised Costs Of Energy For Offshore Floating Wind Turbine Concepts [Norwegian University of Life Sciences] [8] <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2016). IEA Wind Task 26: Offshore Wind Farm Baseline Documentation. https://doi.org/10.2172/1259255 [9] RPG CABLES, & KEC International limited. (n.d.). EXTRA HIGH VOLTAGE cables. RPG CABLES. www.rpgcables.com/images/product/EHV-catalogue.pdf """ # rr = rd / 2 # prevent problems with negative depth values depth = np.abs(depth) foundation = foundation.lower() anchor = anchor.lower() if foundation == "monopile" or foundation == "jacket": fixedType = True elif foundation == "spar" or foundation == "semisubmersible": fixedType = False else: raise ValueError("Please choose one of the four foundation types: monopile, jacket, spar, or semisubmersible") # CONSTANTS AND ASSUMPTIONS (all from [1] except where noted) # Stucture are foundation # embedmentDepth = 30 # meters monopileCostRate = 2250 # dollars/tonne monopileTPCostRate = 3230 # dollars/tonne sparSCCostRate = 3120 # dollars/tonne sparTCCostRate = 4222 # dollars/tonne sparBallCostRate = 100 # dollars/tonne jacketMLCostRate = 4680 # dollars/tonne jacketTPCostRate = 4500 # dollars/tonne jacketPileCostRate = 2250 # dollars/tonne semiSubmersibleSCCostRate = 3120 # dollars/tonne semiSubmersibleTCostRate = 6250 # dollars/tonne semiSubmersibleHPCostRate = 6250 # dollars/tonne mooringCostRate = 721 # dollars/tonne -- 0.12m diameter is chosen since it is the median in [1] outfittingSteelCost = 7250 # dollars/tonne # the values of anchor cost is calculated from Table8 in [2] by assuming a euro to dollar rate of 1.35 DEA_anchorCost = 154 # dollars [2] SPA_anchorCost = 692 # dollars [2] # Electrical # current rating values are taken from source an approximate number is chosen from tables[4] cable1CurrentRating = 400 # [4] cable2CurrentRating = 600 # [4] # exportCableCurrentRating = 1000 # [4] arrayVoltage = 33 # exportCableVoltage = 220 powerFactor = 0.95 # buriedDepth = 1 # this value is chosen from [5] IF THIS CHANGES FROM ONE "singleStringPower1" needs to be updated catenaryLengthFactor = 0.04 excessCableFactor = 0.1 numberOfSubStations = 1 # From the example used in [5] arrayCableCost = 281000 * 1.35 # dollars/km (converted from EUR) [3] externalCableCost = 443000 * 1.35 # dollars/km (converted from EUR) [3] singleTurbineInterfaceCost = 0 # Could not find a number... substationInterfaceCost = 0 # Could not find a number... dynamicCableFactor = 2 mainPowerTransformerCostRate = 12500 # dollers/MVA highVoltageSwitchgearCost = 950000 # dollars mediumVoltageSwitchgearCost = 500000 # dollars shuntReactorCostRate = 35000 # dollars/MVA dieselGeneratorBackupCost = 1000000 # dollars workspaceCost = 2000000 # dollars otherAncillaryCosts = 3000000 # dollars fabricationCostRate = 14500 # dollars/tonne topsideDesignCost = 4500000 # dollars assemblyFactor = 1 # could not find a number... offshoreSubstationSubstructureCostRate = 6250 # dollars/tonne substationSubstructurePileCostRate = 2250 # dollars/tonne interconnectVoltage = 345 # kV # GENERAL (APEENDIX B in NREL BOS MODEL) # hubDiam = cp / 4 + 2 # bladeLength = (rd - hubDiam) / 2 # nacelleWidth = hubDiam + 1.5 # nacelleLength = 2 * nacelleWidth # RNAMass is rotor nacelle assembly RNAMass = 2.082 * cp * cp + 44.59 * cp + 22.48 # towerDiam = cp / 2 + 4 # towerMass = (0.4 * np.pi * np.power(rr, 2) * hh - 1500) / 1000 # STRUCTURE AND FOUNDATION if foundation == 'monopile': # monopileLength = depth + embedmentDepth + 5 monopileMass = (np.power((cp * 1000), 1.5) + (np.power(hh, 3.7) / 10) + 2100 * np.power(depth, 2.25) + np.power((RNAMass * 1000), 1.13)) / 10000 monopileCost = monopileMass * monopileCostRate # monopile transition piece mass is called as monopileTPMass monopileTPMass = np.exp(2.77 + 1.04 * np.power(cp, 0.5) + 0.00127 * np.power(depth, 1.5)) monopileTPCost = monopileTPMass * monopileTPCostRate foundationCost = monopileCost + monopileTPCost mooringAndAnchorCost = 0 elif foundation == 'jacket': # jacket main lattice mass is called as jacketMLMass jacketMLMass = np.exp(3.71 + 0.00176 * np.power(cp, 2.5) + 0.645 * np.log(np.power(depth, 1.5))) jacketMLCost = jacketMLMass * jacketMLCostRate # jacket transition piece mass is called as jacketTPMass jacketTPMass = 1 / (((-0.0131 + 0.0381) / np.log(cp)) - 0.00000000227 * np.power(depth, 3)) jacketTPCost = jacketTPMass * jacketTPCostRate # jacket pile mass is called as jacketPileMass jacketPileMass = 8 * np.power(jacketMLMass, 0.5574) jacketPileCost = jacketPileMass * jacketPileCostRate foundationCost = jacketMLCost + jacketTPCost + jacketPileCost mooringAndAnchorCost = 0 elif foundation == 'spar': # spar stiffened column mass is called as sparSCMass sparSCMass = 535.93 + 17.664 * np.power(cp, 2) + 0.02328 * depth * np.log(depth) sparSCCost = sparSCMass * sparSCCostRate # spar tapered column mass is called as sparTCMass sparTCMass = 125.81 * np.log(cp) + 58.712 sparTCCost = sparTCMass * sparTCCostRate # spar ballast mass is called as sparBallMass sparBallMass = -16.536 * np.power(cp, 2) + 1261.8 * cp - 1554.6 sparBallCost = sparBallMass * sparBallCostRate foundationCost = sparSCCost + sparTCCost + sparBallCost if anchor == 'dea': anchorCost = DEA_anchorCost # the equation is derived from [3] mooringLength = 1.5 * depth + 350 elif anchor == 'spa': anchorCost = SPA_anchorCost # since it is assumed to have an angle of 45 degrees it is multiplied by 1.41 which is squareroot of 2 [3] mooringLength = 1.41 * depth else: raise ValueError("Please choose an anchor type!") mooringAndAnchorCost = mooringLength * mooringCostRate + anchorCost elif foundation == 'semisubmersible': # semiSubmersible stiffened column mass is called as semiSubmersibleSCMass semiSubmersibleSCMass = -0.9571 * np.power(cp, 2) + 40.89 * cp + 802.09 semiSubmersibleSCCost = semiSubmersibleSCMass * semiSubmersibleSCCostRate # semiSubmersible truss mass is called as semiSubmersibleTMass semiSubmersibleTMass = 2.7894 * np.power(cp, 2) + 15.591 * cp + 266.03 semiSubmersibleTCost = semiSubmersibleTMass * semiSubmersibleTCostRate # semiSubmersible heavy plate mass is called as semiSubmersibleHPMass semiSubmersibleHPMass = -0.4397 * np.power(cp, 2) + 21.145 * cp + 177.42 semiSubmersibleHPCost = semiSubmersibleHPMass * semiSubmersibleHPCostRate foundationCost = semiSubmersibleSCCost + semiSubmersibleTCost + semiSubmersibleHPCost if anchor == 'dea': anchorCost = DEA_anchorCost # the equation is derived from [3] mooringLength = 1.5 * depth + 350 elif anchor == 'spa': anchorCost = SPA_anchorCost # since it is assumed to have an angle of 45 degrees it is multiplied by 1.41 which is squareroot of 2 [3] mooringLength = 1.41 * depth else: raise ValueError("Please choose an anchor type!") mooringAndAnchorCost = mooringLength * mooringCostRate + anchorCost if fixedType: if cp > 4: secondarySteelSubstructureMass = 40 + (0.8 * (18 + depth)) else: secondarySteelSubstructureMass = 35 + (0.8 * (18 + depth)) elif foundation == 'spar': secondarySteelSubstructureMass = np.exp(3.58 + 0.196 * np.power(cp, 0.5) * np.log(cp) + 0.00001 * depth * np.log(depth)) elif foundation == 'semisubmersible': secondarySteelSubstructureMass = -0.153 * np.power(cp, 2) + 6.54 * cp + 128.34 secondarySteelSubstructureCost = secondarySteelSubstructureMass * outfittingSteelCost totalStructureAndFoundationCosts = foundationCost +\ mooringAndAnchorCost * mooring_count +\ secondarySteelSubstructureCost # ELECTRICAL INFRASTRUCTURE # in the calculation of singleStringPower1 and 2, bur depth is assumed to be 1. Because of that the equation is simplified. singleStringPower1 = np.sqrt(3) * cable1CurrentRating * arrayVoltage * powerFactor / 1000 singleStringPower2 = np.sqrt(3) * cable2CurrentRating * arrayVoltage * powerFactor / 1000 numberofStrings = np.floor_divide(turbine_count * cp, singleStringPower2) # Only no partial string will be implemented numberofTurbinesperPartialString = 0 # np.round(np.remainder((turbine_count*cp) , singleStringPower2)) numberofTurbinesperArrayCable1 = np.floor_divide(singleStringPower1, cp) numberofTurbinesperArrayCable2 = np.floor_divide(singleStringPower2, cp) numberofTurbineInterfacesPerArrayCable1 = numberofTurbinesperArrayCable1 * numberofStrings * 2 max1_Cable1 = np.maximum(numberofTurbinesperArrayCable1 - numberofTurbinesperArrayCable2, 0) max2_Cable1 = 0 numberofTurbineInterfacesPerArrayCable2 = (max1_Cable1 * numberofStrings + max2_Cable1) * 2 numberofArrayCableSubstationInterfaces = numberofStrings if fixedType: arrayCable1Length = (turbine_spacing * rd + depth * 2) * (numberofTurbineInterfacesPerArrayCable1 / 2) * (1 + excessCableFactor) arrayCable1Length /= 1000 # convert to km #print("arrayCable1Length:", arrayCable1Length) else: systemAngle = -0.0047 * depth + 18.743 freeHangingCableLength = (depth / np.cos(systemAngle * np.pi / 180) * (catenaryLengthFactor + 1)) + 190 fixedCableLength = (turbine_spacing * rd) - (2 * np.tan(systemAngle * np.pi / 180) * depth) - 70 arrayCable1Length = (2 * freeHangingCableLength) * (numberofTurbineInterfacesPerArrayCable1 / 2) * (1 + excessCableFactor) arrayCable1Length /= 1000 # convert to km max1_Cable2 = np.maximum(numberofTurbinesperArrayCable2 - 1, 0) max2_Cable2 = np.maximum(numberofTurbinesperPartialString - numberofTurbinesperArrayCable2 - 1, 0) strFac = numberofStrings / numberOfSubStations if fixedType: arrayCable2Length = (turbine_spacing * rd + 2 * depth) * (max1_Cable2 * numberofStrings + max2_Cable2) +\ numberOfSubStations * (strFac * (rd * turbine_row_spacing) + (np.sqrt(np.power((rd * turbine_spacing * (strFac - 1)), 2) + np.power((rd * turbine_row_spacing), 2)) / 2) + strFac * depth) * (excessCableFactor + 1) arrayCable2Length /= 1000 # convert to km arrayCable1AndAncillaryCost = arrayCable1Length * arrayCableCost + singleTurbineInterfaceCost *\ (numberofTurbineInterfacesPerArrayCable1 + numberofTurbineInterfacesPerArrayCable2) arrayCable2AndAncillaryCost = arrayCable2Length * arrayCableCost +\ singleTurbineInterfaceCost * (numberofTurbineInterfacesPerArrayCable1 + numberofTurbineInterfacesPerArrayCable2) +\ substationInterfaceCost * numberofArrayCableSubstationInterfaces else: arrayCable2Length = (fixedCableLength + 2 * freeHangingCableLength) * (max1_Cable2 * numberofStrings + max2_Cable2) +\ numberOfSubStations * (strFac * (rd * turbine_row_spacing) + np.sqrt(np.power(((2 * freeHangingCableLength) * (strFac - 1) + (rd * turbine_row_spacing) - (2 * np.tan(systemAngle * np.pi / 180) * depth) - 70), 2) + np.power(fixedCableLength + 2 * freeHangingCableLength, 2)) / 2) * (excessCableFactor + 1) arrayCable2Length /= 1000 # convert to km arrayCable1AndAncillaryCost = dynamicCableFactor * (arrayCable1Length * arrayCableCost + singleTurbineInterfaceCost * (numberofTurbineInterfacesPerArrayCable1 + numberofTurbineInterfacesPerArrayCable2)) arrayCable2AndAncillaryCost = dynamicCableFactor * (arrayCable2Length * arrayCableCost + singleTurbineInterfaceCost * (numberofTurbineInterfacesPerArrayCable1 + numberofTurbineInterfacesPerArrayCable2) + substationInterfaceCost * numberofArrayCableSubstationInterfaces) singleExportCablePower =
np.sqrt(3)
numpy.sqrt
"""Vehicle detector""" import collections import cv2 import glob import numpy as np import os.path import time from sklearn import svm from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.utils import shuffle from scipy.ndimage.measurements import label from utils import (read_image, convert_color, get_color_features, get_spatial_features, get_hog_features, get_channel_hog_features) SEARCH_OPTIONS = [ # scale, ystart, ystop, cells_per_step, min_confidence (1.0, 384, 640, 2, 0.1), (1.5, 376, 640, 2, 0.1), (2.0, 368, 640, 2, 0.1), ] HEATMAP_DECAY = 0.8 BBOX_CONFIDENCE_THRESHOLD = 0.8 HEATMAP_THRESHOLD = 0.8 # Class to holds feature parameters. class FeatureParams(collections.namedtuple('FeatureParams', ' '.join([ 'color_space', 'spatial_size', 'window_size', 'color_nbins', 'orient', 'pix_per_cell', 'cell_per_block' ]))): pass class Trainer(object): """ Class to train car classifier and vector scaler. """ def __init__(self, feature_params, car_dir='vehicles', noncar_dir='non-vehicles'): """ Initialize Trainer. """ self.P = feature_params self.car_dir = car_dir self.noncar_dir = noncar_dir # Loads car and non-car images. self.car_images = [] for fpath in glob.glob(os.path.join(self.car_dir, '*', '*.png')): self.car_images.append(read_image(fpath)) self.noncar_images = [] for fpath in glob.glob(os.path.join(self.noncar_dir, '*', '*.png')): self.noncar_images.append(read_image(fpath)) self.car_features = [] self.noncar_features = [] self.scaler = None self.clf = svm.LinearSVC() def extract_image_features(self, img): """ Extract features from single image """ features = [] cvt_img = convert_color(img, self.P.color_space) spatial_features = get_spatial_features(cvt_img, size=self.P.spatial_size) features.append(spatial_features) color_features = get_color_features(cvt_img, size=self.P.window_size, nbins=self.P.color_nbins) features.append(color_features) if self.P.window_size != (cvt_img.shape[0], cvt_img.shape[1]): cvt_img = cv2.resize(cvt_img, self.P.window_size) hog_features = get_hog_features(cvt_img, orient=self.P.orient, pix_per_cell=self.P.pix_per_cell, cell_per_block=self.P.cell_per_block) features.append(hog_features) return np.concatenate(features) def extract_features(self): """ Extracts features from images. """ t = time.time() print('Extracting features...') for image in self.car_images: self.car_features.append(self.extract_image_features(image)) for image in self.noncar_images: self.noncar_features.append(self.extract_image_features(image)) print(round(time.time() - t, 2), 'Seconds to extract features.') def train(self): """ Trains classifier and set scaler and clf. """ if not self.car_features or not self.noncar_features: print("Features not extract, run extract_feature() first.") return # Train classifier. # Create an array stack of feature vectors x = np.vstack((self.car_features, self.noncar_features)).astype(np.float64) # Define the labels vector y = np.hstack((np.ones(len(self.car_features)), np.zeros(len(self.noncar_features)))) # Split up data into randomized training and test sets rand_state = np.random.randint(0, 100) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=rand_state) # Fit a per-column scaler self.scaler = StandardScaler().fit(x_train) # Apply the scaler to X x_train = self.scaler.transform(x_train) x_test = self.scaler.transform(x_test) # Shuffle x_train, y_train = shuffle(x_train, y_train) print('Feature vector length:', len(x_train[0])) # Use linear SVC t = time.time() print('Training linear SVC...') self.clf.fit(x_train, y_train) t2 = time.time() print(round(t2 - t, 2), 'Seconds to train.') print('Test Accuracy of linear SVC = ', round(self.clf.score(x_test, y_test), 4)) return self.clf, self.scaler class VehicleDetector(object): """Class to detect vehicles.""" def __init__(self, clf, scaler, feature_params, search_options=SEARCH_OPTIONS, threshold=HEATMAP_THRESHOLD, decay=HEATMAP_DECAY): self.clf = clf self.scaler = scaler self.P = feature_params self.search_options = search_options self.threshold = threshold self.decay = decay self.scale_bbox_confs = None self.history_heatmap = None self.unfiltered_heatmap = None def search_cars_with_option(self, img, scale, cells_per_step, ystart, ystop, conf_thresh): """ Detects car bboxes of image with given scale in region of img[ystart:ystop:,:,:] :param img: input image :param scale: window scale. :param cells_per_step: cells per step. :param ystart: y-range start. :param ystop: y-range stop. :param conf_thresh: classifier confidence threshold. :return: list of (bbox, confidence) """ cvt_img = convert_color(img, self.P.color_space) # Crop image on in y-region ystart = 0 if ystart is None else ystart ystop = img.shape[1] if ystop is None else ystop cvt_img = cvt_img[ystart:ystop,:,:] # Scale the image. if scale != 1: cvt_img = cv2.resize(cvt_img, (np.int(cvt_img.shape[1] / scale), np.int(cvt_img.shape[0] / scale))) # Define blocks and steps as above nxblocks = (cvt_img.shape[1] // self.P.pix_per_cell) - self.P.cell_per_block + 1 nyblocks = (cvt_img.shape[0] // self.P.pix_per_cell) - self.P.cell_per_block + 1 nblocks_per_window = (self.P.window_size[0] // self.P.pix_per_cell) - self.P.cell_per_block + 1 nxsteps = (nxblocks - nblocks_per_window) // cells_per_step + 1 nysteps = (nyblocks - nblocks_per_window) // cells_per_step + 1 # Compute individual channel HOG features for the entire image hogs = [] for ch in range(cvt_img.shape[2]): hogs.append(get_channel_hog_features( img=cvt_img[:,:,ch], orient=self.P.orient, pix_per_cell=self.P.pix_per_cell, cell_per_block=self.P.cell_per_block, feature_vec=False, vis=False)) bbox_confs = [] for xb in range(nxsteps): for yb in range(nysteps): ypos = yb * cells_per_step xpos = xb * cells_per_step hog_features = [] for ch in range(cvt_img.shape[2]): hog_features.append( hogs[ch][ypos:ypos + nblocks_per_window, xpos:xpos + nblocks_per_window].ravel()) hog_features = np.hstack((hog_features[0], hog_features[1], hog_features[2])) # Extract the image patch xleft = xpos * self.P.pix_per_cell ytop = ypos * self.P.pix_per_cell subimg = cv2.resize(cvt_img[ytop:ytop + self.P.window_size[0], xleft:xleft + self.P.window_size[0]], self.P.window_size) # Get spatial features spatial_features = get_spatial_features(subimg, self.P.spatial_size) # Get color features color_features = get_color_features(subimg, size=self.P.window_size, nbins=self.P.color_nbins) window_features = self.scaler.transform(np.hstack( (spatial_features, color_features, hog_features)).reshape(1, -1)) if self.clf.predict(window_features) == 1: xbox_left = np.int(xleft * scale) ytop_draw = np.int(ytop * scale) box_draw = np.int(self.P.window_size[0] * scale) confidence = self.clf.decision_function(window_features)[0] if confidence < conf_thresh: # Only consider window with confidence score >= threshold. continue bbox = [(xbox_left, ytop_draw+ystart), (xbox_left+box_draw,ytop_draw+ystart+box_draw)] bbox_conf = (bbox, confidence) bbox_confs.append(bbox_conf) return bbox_confs def search_cars(self, img, search_options): """ Find cars by all scale-region sets provided. """ scale_bbox_confs = {} for (scale, ystart, ystop, cells_per_step, conf_thresh) in search_options: bbox_confs = self.search_cars_with_option( img=img, cells_per_step=cells_per_step, scale=scale, ystart=ystart, ystop=ystop, conf_thresh=conf_thresh) scale_bbox_confs[scale] = bbox_confs return scale_bbox_confs def get_heatmap(self, img, scale_bbox_confs): """ Gets heat map from list of bounding box-confidence. :param img: input image. :param scale_bbox_confs: a map of scale to list of (bbox, confidence). """ heatmap = np.zeros_like(
np.zeros_like(img[:, :, 0])
numpy.zeros_like
import pytest from mvlearn.datasets import make_gaussian_mixture from numpy.testing import assert_equal import numpy as np n_samples = 100 centers = [[-1, 0], [1, 0]] covariances = [[[1, 0], [0, 1]], [[1, 0], [1, 2]]] class_probs = [0.3, 0.7] @pytest.mark.parametrize("centers, covariances, class_probs", [ (centers, covariances, class_probs), (centers[0], covariances[0], None)] ) def test_formats(centers, covariances, class_probs): Xs, y, latents = make_gaussian_mixture( n_samples, centers, covariances, class_probs=class_probs, return_latents=True) assert_equal(n_samples, len(latents)) assert_equal(len(covariances[0]), latents.shape[1]) assert_equal(Xs[0], latents) if class_probs is not None: for i, p in enumerate(class_probs): assert_equal(int(p * n_samples), list(y).count(i)) @pytest.mark.parametrize( "transform", ["linear", "poly", "sin", lambda x: 2 * x + 1]) def test_transforms(transform): Xs, y, latents = make_gaussian_mixture( n_samples, centers, covariances, class_probs=class_probs, return_latents=True, transform=transform, noise_dims=2) assert_equal(len(Xs), 2) assert_equal(Xs[0].shape, (n_samples, 4)) assert_equal(Xs[1].shape, (n_samples, 4)) def test_bad_class_probs(): with pytest.raises(ValueError) as e: make_gaussian_mixture( n_samples, centers, covariances, class_probs=[0.3, 0.4] ) assert str(e.value) == "elements of `class_probs` must sum to 1" @pytest.mark.parametrize( "transform", [list(), None]) def test_bad_transform_value(transform): with pytest.raises(TypeError): make_gaussian_mixture( n_samples, centers, covariances, transform=transform) @pytest.mark.parametrize( "transform", ["error"]) def test_bad_transform_type(transform): with pytest.raises(ValueError): make_gaussian_mixture( n_samples, centers, covariances, transform=transform) def test_bad_shapes(): with pytest.raises(ValueError) as e: make_gaussian_mixture(n_samples, None, covariances) assert str(e.value) == "centers is of the incorrect shape" # Wrong Length with pytest.raises(ValueError) as e: make_gaussian_mixture(n_samples, [1], covariances) assert str(e.value) == \ "The first dimensions of 2D centers and 3D covariances must be equal" # Inconsistent dimension with pytest.raises(ValueError) as e: make_gaussian_mixture( n_samples, centers, [np.eye(2), np.eye(3)], class_probs=class_probs ) assert str(e.value) == "covariance matrix is of the incorrect shape" # Wrong uni dimensions with pytest.raises(ValueError) as e: make_gaussian_mixture(n_samples, [1, 0], [1, 0]) assert str(e.value) == "covariance matrix is of the incorrect shape" # Wrong centerslti sizes with pytest.raises(ValueError) as e: make_gaussian_mixture( n_samples, centers, covariances, class_probs=[0.3, 0.1, 0.6] ) assert str(e.value) == \ "centers, covariances, and class_probs must be of equal length" @pytest.mark.parametrize("noise", [None, 0, 1]) def test_random_state(noise): Xs_1, y_1 = make_gaussian_mixture( 10, centers, covariances, class_probs=class_probs, transform='poly', random_state=42, noise=noise ) Xs_2, y_2 = make_gaussian_mixture( 10, centers, covariances, class_probs=class_probs, transform='poly', random_state=42, noise=noise ) for view1, view2 in zip(Xs_1, Xs_2): assert np.allclose(view1, view2) assert np.allclose(y_1, y_2) def test_noise_dims_not_same_but_reproducible(): Xs_1, _ = make_gaussian_mixture( 20, centers, covariances, class_probs=class_probs, random_state=42, transform="poly", noise_dims=2 ) view1_noise, view2_noise = Xs_1[0][:, -2:], Xs_1[1][:, -2:] assert not np.allclose(view1_noise, view2_noise) Xs_2, _ = make_gaussian_mixture( 20, centers, covariances, class_probs=class_probs, random_state=42, transform="poly", noise_dims=2 ) view1_noise2, view2_noise2 = Xs_2[0][:, -2:], Xs_2[1][:, -2:] assert np.allclose(view1_noise, view1_noise2) assert np.allclose(view2_noise, view2_noise2) @pytest.mark.parametrize( "transform", ["linear", "poly", "sin", lambda x: 2 * x + 1]) def test_signal_noise_not_same_but_reproducible(transform): Xs_1, _ = make_gaussian_mixture( 20, centers, covariances, class_probs=class_probs, random_state=42, transform=transform, noise=1 ) view1_noise, view2_noise = Xs_1[0], Xs_1[1] Xs_2, _ = make_gaussian_mixture( 20, centers, covariances, class_probs=class_probs, random_state=42, transform=transform, noise=1 ) view1_noise2, view2_noise2 = Xs_2[0], Xs_2[1] # Noise is reproducible and signal is the same assert np.allclose(view1_noise, view1_noise2) assert np.allclose(view2_noise, view2_noise2) Xs_3, _ = make_gaussian_mixture( 20, centers, covariances, class_probs=class_probs, random_state=42, transform=transform ) view1_noise3, view2_noise3 = Xs_3[0], Xs_3[1] # Noise varies view1, but keeps view 2 unaffects (i.e. the latents) assert not np.allclose(view1_noise, view1_noise3) assert np.allclose(view2_noise, view2_noise3) def test_shuffle():
np.random.seed(42)
numpy.random.seed
# -*- coding: utf-8 -*- # Copyright (c) 2019 the HERA Project # Licensed under the MIT License import pytest import os import shutil import hera_qm.xrfi as xrfi import numpy as np import pyuvdata.tests as uvtest from pyuvdata import UVData from pyuvdata import UVCal import hera_qm.utils as utils from hera_qm.data import DATA_PATH from pyuvdata import UVFlag import glob test_d_file = os.path.join(DATA_PATH, 'zen.2457698.40355.xx.HH.uvcAA') test_uvfits_file = os.path.join(DATA_PATH, 'zen.2457698.40355.xx.HH.uvcAA.uvfits') test_uvh5_file = os.path.join(DATA_PATH, 'zen.2457698.40355.xx.HH.uvh5') test_c_file = os.path.join(DATA_PATH, 'zen.2457698.40355.xx.HH.uvcAA.omni.calfits') test_f_file = test_d_file + '.testuvflag.h5' test_f_file_flags = test_d_file + '.testuvflag.flags.h5' # version in 'flag' mode test_outfile = os.path.join(DATA_PATH, 'test_output', 'uvflag_testout.h5') xrfi_path = os.path.join(DATA_PATH, 'test_output') test_flag_integrations= os.path.join(DATA_PATH, 'a_priori_flags_integrations.yaml') test_flag_jds= os.path.join(DATA_PATH, 'a_priori_flags_jds.yaml') test_flag_lsts= os.path.join(DATA_PATH, 'a_priori_flags_lsts.yaml') test_uvh5_files = ['zen.2457698.40355191.xx.HH.uvh5', 'zen.2457698.40367619.xx.HH.uvh5', 'zen.2457698.40380046.xx.HH.uvh5'] test_c_files = ['zen.2457698.40355191.xx.HH.uvcAA.omni.calfits', 'zen.2457698.40367619.xx.HH.uvcAA.omni.calfits', 'zen.2457698.40380046.xx.HH.uvcAA.omni.calfits'] for cnum, cf, uvf in zip(range(3), test_c_files, test_uvh5_files): test_c_files[cnum] = os.path.join(DATA_PATH, cf) test_uvh5_files[cnum] = os.path.join(DATA_PATH, uvf) pytestmark = pytest.mark.filterwarnings( "ignore:The uvw_array does not match the expected values given the antenna positions.", "ignore:telescope_location is not set. Using known values for HERA.", "ignore:antenna_positions is not set. Using known values for HERA." ) def test_uvdata(): uv = UVData() uv.read_miriad(test_d_file) xant = uv.get_ants()[0] xrfi.flag_xants(uv, xant) assert np.all(uv.flag_array[uv.ant_1_array == xant, :, :, :]) assert np.all(uv.flag_array[uv.ant_2_array == xant, :, :, :]) def test_uvcal(): uvc = UVCal() uvc.read_calfits(test_c_file) xant = uvc.ant_array[0] xrfi.flag_xants(uvc, xant) assert np.all(uvc.flag_array[0, :, :, :, :]) def test_uvflag(): uvf = UVFlag(test_f_file) uvf.to_flag() xant = uvf.ant_1_array[0] xrfi.flag_xants(uvf, xant) assert np.all(uvf.flag_array[uvf.ant_1_array == xant, :, :, :]) assert np.all(uvf.flag_array[uvf.ant_2_array == xant, :, :, :]) def test_input_error(): pytest.raises(ValueError, xrfi.flag_xants, 4, 0) def test_uvflag_waterfall_error(): uvf = UVFlag(test_f_file) uvf.to_waterfall() uvf.to_flag() pytest.raises(ValueError, xrfi.flag_xants, uvf, 0) def test_uvflag_not_flag_error(): uvf = UVFlag(test_f_file) pytest.raises(ValueError, xrfi.flag_xants, uvf, 0) def test_not_inplace_uvflag(): uvf = UVFlag(test_f_file) xant = uvf.ant_1_array[0] uvf2 = xrfi.flag_xants(uvf, xant, inplace=False) assert np.all(uvf2.flag_array[uvf2.ant_1_array == xant, :, :, :]) assert np.all(uvf2.flag_array[uvf2.ant_2_array == xant, :, :, :]) def test_not_inplace_uvdata(): uv = UVData() uv.read_miriad(test_d_file) xant = uv.get_ants()[0] uv2 = xrfi.flag_xants(uv, xant, inplace=False) assert np.all(uv2.flag_array[uv2.ant_1_array == xant, :, :, :]) assert np.all(uv2.flag_array[uv2.ant_2_array == xant, :, :, :]) def test_resolve_xrfi_path_given(): dirname = xrfi.resolve_xrfi_path(xrfi_path, test_d_file) assert xrfi_path == dirname def test_resolve_xrfi_path_empty(): dirname = xrfi.resolve_xrfi_path('', test_d_file) assert os.path.dirname(os.path.abspath(test_d_file)) == dirname def test_resolve_xrfi_path_does_not_exist(): dirname = xrfi.resolve_xrfi_path(os.path.join(xrfi_path, 'foogoo'), test_d_file) assert os.path.dirname(os.path.abspath(test_d_file)) == dirname def test_resolve_xrfi_path_jd_subdir(): dirname = xrfi.resolve_xrfi_path('', test_d_file, jd_subdir=True) expected_dir = os.path.join(os.path.dirname(os.path.abspath(test_d_file)), '.'.join(os.path.basename(test_d_file).split('.')[0:3]) + '.xrfi') assert dirname == expected_dir assert os.path.exists(expected_dir) shutil.rmtree(expected_dir) def test_check_convolve_dims_3D(): # Error if d.ndims != 2 pytest.raises(ValueError, xrfi._check_convolve_dims, np.ones((3, 2, 3)), 1, 2) def test_check_convolve_dims_1D(): size = 10 d = np.ones(size) with uvtest.check_warnings( UserWarning, match=f"K1 value {size + 1} is larger than the data", nwarnings=1 ): K = xrfi._check_convolve_dims(d, size + 1) assert K == size def test_check_convolve_dims_kernel_not_given(): size = 10 d = np.ones((size, size)) with uvtest.check_warnings( UserWarning, match=["No K1 input provided.", "No K2 input provided"], nwarnings=2 ): K1, K2 = xrfi._check_convolve_dims(d) assert K1 == size assert K2 == size def test_check_convolve_dims_Kt_too_big(): size = 10 d = np.ones((size, size)) with uvtest.check_warnings( UserWarning, match=f"K1 value {size + 1} is larger than the data", nwarnings=1, ): Kt, Kf = xrfi._check_convolve_dims(d, size + 1, size) assert Kt == size assert Kf == size def test_check_convolve_dims_Kf_too_big(): size = 10 d = np.ones((size, size)) with uvtest.check_warnings( UserWarning, match=f"K2 value {size + 1} is larger than the data", nwarnings=1, ): Kt, Kf = xrfi._check_convolve_dims(d, size, size + 1) assert Kt == size assert Kf == size def test_check_convolve_dims_K1K2_lt_one(): size = 10 data = np.ones((size, size)) pytest.raises(ValueError, xrfi._check_convolve_dims, data, 0, 2) pytest.raises(ValueError, xrfi._check_convolve_dims, data, 2, 0) def test_robus_divide(): a = np.array([1., 1., 1.], dtype=np.float32) b = np.array([2., 0., 1e-9], dtype=np.float32) c = xrfi.robust_divide(a, b) assert np.array_equal(c, np.array([1. / 2., np.inf, np.inf])) @pytest.fixture(scope='function') def fake_data(): size = 100 fake_data = np.zeros((size, size)) # yield returns the data and lets us do post test clean up after yield fake_data # post-test clean up del(fake_data) return def test_medmin(fake_data): # make fake data for i in range(fake_data.shape[1]): fake_data[:, i] = i * np.ones_like(fake_data[:, i]) # medmin should be .size - 1 for these data medmin = xrfi.medmin(fake_data) assert np.allclose(medmin, fake_data.shape[0] - 1) # Test error when wrong dimensions are passed pytest.raises(ValueError, xrfi.medmin, np.ones((5, 4, 3))) def test_medminfilt(fake_data): # make fake data for i in range(fake_data.shape[1]): fake_data[:, i] = i * np.ones_like(fake_data[:, i]) # run medmin filt Kt = 8 Kf = 8 d_filt = xrfi.medminfilt(fake_data, Kt=Kt, Kf=Kf) # build up "answer" array ans = np.zeros_like(fake_data) for i in range(fake_data.shape[1]): if i < fake_data.shape[0] - Kf: ans[:, i] = i + (Kf - 1) else: ans[:, i] = fake_data.shape[0] - 1 assert np.allclose(d_filt, ans) def test_detrend_deriv(fake_data): # make fake data for i in range(fake_data.shape[0]): for j in range(fake_data.shape[1]): fake_data[i, j] = j * i**2 + j**3 # run detrend_deriv in both dimensions dtdf = xrfi.detrend_deriv(fake_data, df=True, dt=True) ans = np.ones_like(dtdf) assert np.allclose(dtdf, ans) # only run along frequency for i in range(fake_data.shape[0]): for j in range(fake_data.shape[1]): fake_data[i, j] = j**3 df = xrfi.detrend_deriv(fake_data, df=True, dt=False) ans = np.ones_like(df) assert np.allclose(df, ans) # only run along time for i in range(fake_data.shape[0]): for j in range(fake_data.shape[1]): fake_data[i, j] = i**3 dt = xrfi.detrend_deriv(fake_data, df=False, dt=True) ans = np.ones_like(dt) assert np.allclose(dt, ans) # catch error of df and dt both being False pytest.raises(ValueError, xrfi.detrend_deriv, fake_data, dt=False, df=False) # Test error when wrong dimensions are passed pytest.raises(ValueError, xrfi.detrend_deriv, np.ones((5, 4, 3))) def test_detrend_medminfilt(fake_data): # make fake data for i in range(fake_data.shape[1]): fake_data[:, i] = i * np.ones_like(fake_data[:, i]) # run detrend_medminfilt Kt = 8 Kf = 8 dm = xrfi.detrend_medminfilt(fake_data, Kt=Kt, Kf=Kf) # read in "answer" array # this is output that corresponds to .size==100, Kt==8, Kf==8 ans_fn = os.path.join(DATA_PATH, 'test_detrend_medminfilt_ans.txt') ans =
np.loadtxt(ans_fn)
numpy.loadtxt
# -*- coding: utf-8 -*- """ Created on Fri May 18 10:15:13 2018 @author: <NAME> We are going to do basins of attraction, wohoooo Basically, color the particles according to the end location where they end up First, we will do the total currents """ from netCDF4 import Dataset from parcels import plotTrajectoriesFile,ParticleSet,JITParticle,FieldSet import numpy as np from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt import matplotlib.animation as animation import matplotlib.patches as patches from matplotlib import colors as c from datetime import datetime, timedelta from matplotlib.patches import Polygon def BasinShaper(finalLon,finalLat,firstLon,firstLat): lonGrid=np.linspace(-180,179,360) latGrid=np.linspace(-90,90,181) identifier=np.zeros((len(latGrid),len(lonGrid))) for i in range(len(lon)): if 0<finalLat[i]<50: #so, first north Atlantic if -80<finalLon[i]<30: Endspot=7 if -100<finalLon[i]<-80: if finalLat[i]>10: Endspot=7 else: Endspot=5 #North Pacific if -100>finalLon[i]>-180: Endspot=5 if 180>finalLon[i]>100: Endspot=5 #Indian Ocean if 40<finalLon[i]<100: Endspot=3 #Red Sea, which we won't plot if 10<finalLat[i]<30: if 20<finalLon[i]<43: Endspot=np.nan if 50<finalLat[i]<60: #North Atlantic if -80<finalLon[i]<80: Endspot=7 #North Pacific if -100>finalLon[i]>-180: Endspot=5 if 180>finalLon[i]>100: Endspot=5 if 60<finalLat[i]: if -120<finalLon[i]<90: Endspot=1 #arctic Ocean if -50<finalLat[i]<0: #South Atlantic if 20>finalLon[i]>-70: Endspot=6 #South Pacific if -70>finalLon[i]>-180: Endspot=4 if 180>finalLon[i]>150: Endspot=4 #indian Ocean if 150>finalLon[i]>20: Endspot=3 #southern ocean if finalLat[i]<-50: Endspot=2 identifier[np.argmin(np.abs(firstLat[i]-latGrid)),np.argmin(np.abs(firstLon[i]-lonGrid))]=Endspot LonG,LatG=
np.meshgrid(lonGrid,latGrid)
numpy.meshgrid
# -*- coding: utf-8 -*- """ Created on Mon Apr 11 09:11:51 2016 @author: tvzyl """ import numpy as np import pandas as pd from numpy import linalg as la from numpy.linalg import det, inv from scipy.stats import multivariate_normal, norm from math import factorial from numpy import ones, sum, ndarray, array, pi, dot, sqrt, newaxis, exp from sklearn.utils.extmath import cartesian from sklearn.base import BaseEstimator from ellipsoidpy import Sk class TrueBlobDensity(BaseEstimator): def __init__(self, means, covs, ratios=None): self.means = means self.covs = covs self.ratios = ratios def fit(self, X=None, y=None): self.norms_ = [multivariate_normal(mean=mean, cov=cov) for mean, cov in zip(self.means,self.covs)] return self def predict(self, data): if self.ratios is not None: return np.sum( np.c_[[ratio*norm.pdf(data) for norm, ratio in zip(self.norms_,self.ratios)]], axis=0) else: return np.mean(np.c_[[norm.pdf(data) for norm in self.norms_]], axis=0) def getSampleSizes(self, n_samples, n_folds): ranges = ndarray((n_folds)) ranges[0:int(n_samples%n_folds)] = n_samples//n_folds + 1 ranges[int(n_samples%n_folds):] = n_samples//n_folds return ranges def getIntegratedSquaredPDF(self): result = 0 for fi, fj in cartesian([np.arange(3),np.arange(3)]): sigma_sum = self.covs[fi]+self.covs[fj] inv_sigma_sum = inv(sigma_sum) det_sigma_sum = det(sigma_sum) mu_diff = (self.means[fi] - self.means[fj])[newaxis] normalising_const = sqrt(2*pi*det_sigma_sum)*exp(-0.5*dot(dot(mu_diff,inv_sigma_sum), mu_diff.T)) result += self.ratios[fi]*self.ratios[fj]/normalising_const return result def sample(self, n_samples=1, random_state=None, withclasses=False): n_folds, d = self.means.shape if self.ratios is not None: sizes = (n_samples*ones((n_folds))*self.ratios).astype(int) sizes[-1] += n_samples-sum(sizes) else: sizes = self.getSampleSizes(n_samples, n_folds) samples = ndarray((int(n_samples), int(d))) classes = ndarray((int(d))) start = 0 for i in range(n_folds): end = start+int(sizes[i]) samples[start:end] = np.random.multivariate_normal( self.means[i], self.covs[i], size=int(sizes[i]) ) classes[start:end] = i start=end if withclasses: return samples, classes else: return samples class TrueBallDensity(BaseEstimator): def __init__(self, mean, cov, inner_trials=10): self.mean = array(mean) self.cov = cov self.inner_trials = inner_trials self.dimensions_ = self.mean.shape[0] def fit(self, X=None, y=None): self.a_ = multivariate_normal(mean=self.mean, cov=self.cov) self.b_ = multivariate_normal(mean=self.mean, cov=self.cov) return self def predict(self, data): return self.normal_fact()**-1. * self.a_.pdf(data)*(1.-self.b_.pdf(data))**self.inner_trials def normal_fact(self): #https://en.wikipedia.org/wiki/Triangular_number #https://en.wikipedia.org/wiki/Tetrahedral_number tri_num = lambda n,c: factorial(n)/factorial(n-c)/factorial(c) po = self.inner_trials+1 cov = self.cov k = self.dimensions_ return sum((1 if term%2==0 else -1)*tri_num(po,term)/sqrt(term+1)/sqrt((2*pi)**k*det(cov))**term for term in range(0,po+1)) def getIntegratedSquaredPDF(self): raise NotImplemented def sample(self, n_samples=1, random_state=None, withclasses=False): if withclasses: raise NotImplementedError("withclasses") c_samples = 0 s = ndarray((n_samples,self.dimensions_)) try: while c_samples < n_samples: u = np.random.uniform(size=n_samples) y = self.a_.rvs(n_samples) tmp_samples = y[u < (1-self.b_.pdf(y))**self.inner_trials/10.0 ] c_tmp_samples = tmp_samples.shape[0] s[c_samples:c_samples+c_tmp_samples] = tmp_samples c_samples += c_tmp_samples except ValueError: s[c_samples:] = tmp_samples[:n_samples-c_samples] return s class TrueEllipsoidDensity(BaseEstimator): def __init__(self, radii, var): self.radii_ = array(radii) self.dimensions_ = self.radii_.shape[0] self.var_ = var def fit(self, X=None, y=None): return self def predict(self, data): radii_ = self.radii_ var_ = self.var_ x2 = np.dot(data, np.diag(1./radii_) ) r2 = la.norm(x2, axis=1) e2 = np.dot(1./r2[:,np.newaxis]*x2, np.diag(radii_)) v2 = la.norm(e2, axis=1) u2 = la.norm(e2-data, axis=1) p = np.array([ norm.pdf(j, loc=0, scale=i*var_) for i, j in zip(v2,u2) ]) return p*(1./Sk(np.ones(1), self.dimensions_)) def getIntegratedSquaredPDF(self): raise NotImplemented def sample(self, n_samples=1, random_state=None, withclasses=False): if withclasses: raise NotImplementedError("withclasses") dimensions_ = self.dimensions_ radii_ = self.radii_ var_ = self.var_ x = np.random.normal(size=(n_samples,dimensions_)) r = la.norm(x, axis=1) e = np.dot(1./r[:,np.newaxis]*x, np.diag(radii_)) v = la.norm(e, axis=1) u = np.array([norm.rvs(loc=0.,scale=i*var_) for i in v]) s = e + e/
la.norm(e, axis=1)
numpy.linalg.norm
""" """ from __future__ import absolute_import, division, print_function import numpy as np import pytest from astropy.utils.misc import NumpyRNGContext from ..mean_los_velocity_vs_rp import mean_los_velocity_vs_rp from ...tests.cf_helpers import generate_locus_of_3d_points __all__ = ('test_mean_los_velocity_vs_rp_correctness1', 'test_mean_los_velocity_vs_rp_correctness2', 'test_mean_los_velocity_vs_rp_correctness3', 'test_mean_los_velocity_vs_rp_correctness4', 'test_mean_los_velocity_vs_rp_parallel', 'test_mean_los_velocity_vs_rp_auto_consistency', 'test_mean_los_velocity_vs_rp_cross_consistency') fixed_seed = 43 def pure_python_mean_los_velocity_vs_rp( sample1, velocities1, sample2, velocities2, rp_min, rp_max, pi_max, Lbox=None): """ Brute force pure python function calculating mean los velocities in a single bin of separation. """ if Lbox is None: xperiod, yperiod, zperiod = np.inf, np.inf, np.inf else: xperiod, yperiod, zperiod = Lbox, Lbox, Lbox npts1, npts2 = len(sample1), len(sample2) running_tally = [] for i in range(npts1): for j in range(npts2): dx = sample1[i, 0] - sample2[j, 0] dy = sample1[i, 1] - sample2[j, 1] dz = sample1[i, 2] - sample2[j, 2] dvz = velocities1[i, 2] - velocities2[j, 2] if dx > xperiod/2.: dx = xperiod - dx elif dx < -xperiod/2.: dx = -(xperiod + dx) if dy > yperiod/2.: dy = yperiod - dy elif dy < -yperiod/2.: dy = -(yperiod + dy) if dz > zperiod/2.: dz = zperiod - dz zsign_flip = -1 elif dz < -zperiod/2.: dz = -(zperiod + dz) zsign_flip = -1 else: zsign_flip = 1 d_rp = np.sqrt(dx*dx + dy*dy) if (d_rp > rp_min) & (d_rp < rp_max) & (abs(dz) < pi_max): if abs(dz) > 0: vlos = dvz*dz*zsign_flip/abs(dz) else: vlos = dvz running_tally.append(vlos) if len(running_tally) > 0: return np.mean(running_tally) else: return 0. def test_mean_radial_velocity_vs_r_vs_brute_force_pure_python(): """ This function tests that the `~halotools.mock_observables.mean_radial_velocity_vs_r` function returns results that agree with a brute force pure python implementation for a random distribution of points, both with and without PBCs. """ npts = 99 with NumpyRNGContext(fixed_seed): sample1 = np.random.random((npts, 3)) sample2 = np.random.random((npts, 3)) velocities1 = np.random.uniform(-10, 10, npts*3).reshape((npts, 3)) velocities2 = np.random.uniform(-10, 10, npts*3).reshape((npts, 3)) rp_bins, pi_max = np.array([0, 0.1, 0.2, 0.3]), 0.1 ############################################ # Run the test with PBCs turned off s1s2 = mean_los_velocity_vs_rp(sample1, velocities1, rp_bins, pi_max, sample2=sample2, velocities2=velocities2, do_auto=False) rmin, rmax = rp_bins[0], rp_bins[1] pure_python_s1s2 = pure_python_mean_los_velocity_vs_rp( sample1, velocities1, sample2, velocities2, rmin, rmax, pi_max) assert np.allclose(s1s2[0], pure_python_s1s2, rtol=0.01) rmin, rmax = rp_bins[1], rp_bins[2] pure_python_s1s2 = pure_python_mean_los_velocity_vs_rp( sample1, velocities1, sample2, velocities2, rmin, rmax, pi_max) assert np.allclose(s1s2[1], pure_python_s1s2, rtol=0.01) rmin, rmax = rp_bins[2], rp_bins[3] pure_python_s1s2 = pure_python_mean_los_velocity_vs_rp( sample1, velocities1, sample2, velocities2, rmin, rmax, pi_max) assert np.allclose(s1s2[2], pure_python_s1s2, rtol=0.01) # ############################################ # # Run the test with PBCs operative s1s2 = mean_los_velocity_vs_rp(sample1, velocities1, rp_bins, pi_max, sample2=sample2, velocities2=velocities2, do_auto=False, period=1) rmin, rmax = rp_bins[0], rp_bins[1] pure_python_s1s2 = pure_python_mean_los_velocity_vs_rp( sample1, velocities1, sample2, velocities2, rmin, rmax, pi_max, Lbox=1) assert
np.allclose(s1s2[0], pure_python_s1s2, rtol=0.01)
numpy.allclose
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Classes and functions that support unsupervised clustering of data using Simulated Annealing (SA) based algorithms """ from abc import ABC, abstractmethod import time from scipy.spatial.distance import pdist, cdist import numpy as np class AbstractCoolingSchedule(ABC): ''' Encapsulates a cooling schedule for a simulated annealing algorithm. Abstract base class. Concrete implementations can be customised to extend the range of cooling schedules available to the SA. ''' def __init__(self, starting_temp): self.starting_temp = starting_temp @abstractmethod def cool_temperature(self, k): pass class ExponentialCoolingSchedule(AbstractCoolingSchedule): ''' Expenontial Cooling Scheme. Source: https://uk.mathworks.com/help/gads/how-simulated-annealing-works.html ''' def cool_temperature(self, k): ''' Cool the temperature using the scheme T = T0 * 0.95^k. Where T = temperature after cooling T0 = starting temperature k = iteration number (within temperature?) Keyword arguments: ------ k -- int, iteration number (within temp?) Returns: ------ float, new temperature ''' return self.starting_temp * (0.95**k) class CoruCoolingSchedule(AbstractCoolingSchedule): def __init__(self, starting_temp, max_iter): AbstractCoolingSchedule.__init__(self, starting_temp) self._max_iter = max_iter def cool_temperature(self, k): ''' Returns a temperature from 1 tending to 0 Keyword arguments: ------ iteration --int. the iteration number Returns: ------ float, new temperature ''' #where did this cooling scheme come from? #some standard methods: # https://uk.mathworks.com/help/gads/how-simulated-annealing-works.html t = np.exp(-(k - 1) * 10 / self._max_iter) return t class SACluster(object): ''' Encapsulates a simulated annealing clustering algorithm Public methods: fit() -- runs the SA and fits data to clusters ''' def __init__(self, n_clusters, cooling_schedule, dist_metric='correlation', max_iter=
np.int32(1e5)
numpy.int32
import logging import warnings from typing import Dict, Tuple, Union import numpy as np import pandas as pd from pandas.core.frame import DataFrame import xarray as xr from scipy import signal, spatial import matlab.engine # import pharedox_registration # import matlab from pharedox import utils import pkgutil def to_dataframe(data: xr.DataArray, *args, **kwargs) -> pd.DataFrame: """ Replacement for `xr.DataArray.to_dataframe` that adds the attrs for the given DataArray into the resultant DataFrame. Parameters ---------- data : xr.DataArray the data to convert to DataFrame Returns ------- pd.DataFrame a pandas DataFrame containing the data in the given DataArray, including the global attributes """ df = data.to_dataframe(*args, **kwargs) for k, v in data.attrs.items(): df[k] = v return df def align_pa( intensity_data: xr.DataArray, reference_wavelength: str = "410", reference_pair: int = 0, reference_timepoint: int = 0, ) -> xr.DataArray: """ Given intensity profile data, flip each animal along their anterior-posterior axis if necessary, so that all face the same direction Parameters ---------- intensity_data the data to align reference_wavelength: optional the wavelength to calculate the alignment for reference_pair: optional the pair to calculate the alignment for reference_timepoint the timepoint to calculate the alignment for Returns ------- aligned_intensity_data the PA-aligned intensity data Notes ----- The alignments are calculated for a single wavelength and pair for each animal, then applied to all wavelengths and pairs for that animal. The algorithm works as follows: - take the derivative of the (trimmed) intensity profiles (this accounts for differences in absolute intensity between animals) - use the first animal in the stack as the reference profile - for all animals: - compare a forward and reverse profile to the reference profile (using the cosine-similarity metric) - keep either the forward or reverse profile accordingly - finally, determine the location of the peaks in the *average* profile - reverse all profiles if necessary (this will be necessary if the first animal happens to be reversed) """ data = intensity_data ref_data = data.sel( wavelength=reference_wavelength, pair=reference_pair, timepoint=reference_timepoint, ) ref_profile = ref_data.isel(animal=0).data ref_vecs = np.tile(ref_profile, (data.animal.size, 1)) unflipped = data.sel( wavelength=reference_wavelength, pair=reference_pair, timepoint=reference_timepoint, ).data flipped = np.fliplr(unflipped) # cosine-similarity measurements should_flip = ( spatial.distance.cdist(ref_vecs, unflipped, "cosine")[0, :] > spatial.distance.cdist(ref_vecs, flipped, "cosine")[0, :] ) # Do the actual flip # position needs to be reindexed, otherwise xarray freaks out intensity_data[should_flip] = np.flip( intensity_data[should_flip].values, axis=intensity_data.get_axis_num("position") ) intensity_data = intensity_data.reindex( position=np.linspace(0, 1, intensity_data.position.size) ) mean_intensity = trim_profile( np.mean( intensity_data.sel( wavelength=reference_wavelength, pair=reference_pair, timepoint=reference_timepoint, ), axis=0, ).data, threshold=2000, new_length=100, ) # parameters found experimentally # TODO these could use some tweaking peaks, _ = signal.find_peaks( mean_intensity, distance=0.2 * len(mean_intensity), prominence=200, wlen=10 ) if len(peaks) < 2: return intensity_data if peaks[0] < len(mean_intensity) - peaks[1]: logging.warning("Skipping second data flip. Needs further investigation!") return intensity_data # intensity_data = np.flip( # intensity_data, axis=intensity_data.get_axis_num("position") # ) return intensity_data def summarize_over_regions( data: xr.DataArray, regions: Dict, eGFP_correction: Dict, rescale: bool = True, value_name: str = "value", pointwise: Union[bool, str] = False, **redox_params, ): if pointwise == "both": # recursively call this function for pointwise=T/F and concat the results return pd.concat( [ summarize_over_regions( data, regions, rescale, value_name, pointwise=False ), summarize_over_regions( data, regions, rescale, value_name, pointwise=True ), ] ) if rescale: regions = utils.scale_region_boundaries(regions, data.shape[-1]) try: # Ensure that derived wavelengths are present data = utils.add_derived_wavelengths(data, **redox_params) except ValueError: pass with warnings.catch_warnings(): warnings.simplefilter("ignore") all_region_data = [] for _, bounds in regions.items(): if isinstance(bounds, (int, float)): all_region_data.append(data.interp(position=bounds)) else: all_region_data.append( data.sel(position=slice(bounds[0], bounds[1])).mean( dim="position", skipna=True ) ) region_data = xr.concat(all_region_data, pd.Index(regions.keys(), name="region")) region_data = region_data.assign_attrs(**data.attrs) try: region_data.loc[dict(wavelength="r")] = region_data.sel( wavelength=redox_params["ratio_numerator"] ) / region_data.sel(wavelength=redox_params["ratio_denominator"]) region_data.loc[dict(wavelength="oxd")] = r_to_oxd( region_data.sel(wavelength="r"), r_min=redox_params["r_min"], r_max=redox_params["r_max"], instrument_factor=redox_params["instrument_factor"], ) region_data.loc[dict(wavelength="e")] = oxd_to_redox_potential( region_data.sel(wavelength="oxd"), midpoint_potential=redox_params["midpoint_potential"], z=redox_params["z"], temperature=redox_params["temperature"], ) except ValueError: pass # add corrections if eGFP_correction["should_do_corrections"]: # add data using xr.to_dataframe so correction values can be added directly next to value column df = region_data.to_dataframe(value_name) corrections = eGFP_corrections(df, eGFP_correction, **redox_params) df["correction_ratio"] = corrections["correction_ratio"] df["corrected_value"] = corrections["corrected_value"] df["oxd"] = corrections["oxd"] df["e"] = corrections["e"] # add attributes for k, v in region_data.attrs.items(): df[k] = v for i in range(df.shape[0]): x = i % 6 pd.options.mode.chained_assignment = None # default='warn' # TODO fix chain indexing error warning. Will leave for now but may cause issues if data["wavelength"][x] == "TL": df["e"][i] = None else: df = to_dataframe(region_data, value_name) df["pointwise"] = pointwise try: df.set_index(["experiment_id"], append=True, inplace=True) except ValueError: pass return df def eGFP_corrections( data: DataFrame, eGFP_correction: Dict, **redox_params, ): logging.info("Doing eGFP corrections") # find the correction factor based of experiment specific eGFP number correction_ratio = ( eGFP_correction["Cata_Number"] / eGFP_correction["Experiment_Number"] ) # create empty lists that will contain column values correction_ratio = [correction_ratio] * data.shape[0] corrected_value = [None] * data.shape[0] oxd = [None] * data.shape[0] e = [None] * data.shape[0] values = data["value"].tolist() # loop through all the values for i in range(data.shape[0]): # find corrected value corrected_value[i] = values[i] * correction_ratio[i] # find oxd using formula oxd[i] = r_to_oxd( corrected_value[i], redox_params["r_min"], redox_params["r_max"], redox_params["instrument_factor"], ) # find e based on oxd e[i] = oxd_to_redox_potential(oxd[i]) return { "correction_ratio": correction_ratio, "corrected_value": corrected_value, "oxd": oxd, "e": e, } def smooth_profile_data( profile_data: Union[np.ndarray, xr.DataArray], lambda_: float = 100.0, order: float = 4.0, n_basis: float = 100.0, n_deriv=0.0, eng=None, ): """ Smooth profile data by fitting smoothing B-splines Implemented in MATLAB as smooth_profiles """ # eng = pharedox_registration.initialize() try: import matlab.engine except ImportError: logging.warn("MATLAB engine not installed. Skipping smoothing.") return profile_data if eng is None: eng = matlab.engine.start_matlab() resample_resolution = profile_data.position.size return xr.apply_ufunc( lambda x: np.array( eng.smooth_profiles( matlab.double(x.tolist()), resample_resolution, n_basis, order, lambda_, n_deriv, ) ).T, profile_data, input_core_dims=[["position"]], output_core_dims=[["position"]], vectorize=True, ) def standardize_profiles( profile_data: xr.DataArray, redox_params, template: Union[xr.DataArray, np.ndarray] = None, eng=None, **reg_kwargs, ) -> Tuple[xr.DataArray, xr.DataArray]: """ Standardize the A-P positions of the pharyngeal intensity profiles. Parameters ---------- profile_data The data to standardize. Must have the following dimensions: ``["animal", "timepoint", "pair", "wavelength"]``. redox_params the parameters used to map R -> OxD -> E template a 1D profile to register all intensity profiles to. If None, intensity profiles are registered to the population mean of the ratio numerator. eng The MATLAB engine to use for registration. If ``None``, a new engine is started. reg_kwargs Keyword arguments to use for registration. See `registration kwargs` for more information. Returns ------- standardized_data: xr.DataArray the standardized data warp_functions: xr.DataArray the warp functions generated to standardize the data """ # eng = pharedox_registration.initialize() if eng is None: eng = matlab.engine.start_matlab() std_profile_data = profile_data.copy() std_warp_data = profile_data.copy().isel(wavelength=0) if template is None: template = profile_data.sel(wavelength=redox_params["ratio_numerator"]).mean( dim=["animal", "pair"] ) try: template = matlab.double(template.values.tolist()) except AttributeError: template = matlab.double(template.tolist()) for tp in profile_data.timepoint: for pair in profile_data.pair: data = std_profile_data.sel(timepoint=tp, pair=pair) i_num = matlab.double( data.sel(wavelength=redox_params["ratio_numerator"]).values.tolist() ) i_denom = matlab.double( data.sel(wavelength=redox_params["ratio_denominator"]).values.tolist() ) resample_resolution = float(profile_data.position.size) reg_num, reg_denom, warp_data = eng.standardize_profiles( i_num, i_denom, template, resample_resolution, reg_kwargs["warp_n_basis"], reg_kwargs["warp_order"], reg_kwargs["warp_lambda"], reg_kwargs["smooth_lambda"], reg_kwargs["smooth_n_breaks"], reg_kwargs["smooth_order"], reg_kwargs["rough_lambda"], reg_kwargs["rough_n_breaks"], reg_kwargs["rough_order"], reg_kwargs["n_deriv"], nargout=3, ) reg_num, reg_denom = np.array(reg_num).T, np.array(reg_denom).T std_profile_data.loc[ dict( timepoint=tp, pair=pair, wavelength=redox_params["ratio_numerator"] ) ] = reg_num std_profile_data.loc[ dict( timepoint=tp, pair=pair, wavelength=redox_params["ratio_denominator"], ) ] = reg_denom std_warp_data.loc[dict(timepoint=tp, pair=pair)] = np.array(warp_data).T std_profile_data = std_profile_data.assign_attrs(**reg_kwargs) std_profile_data = utils.add_derived_wavelengths(std_profile_data, **redox_params) return std_profile_data, std_warp_data def channel_register( profile_data: xr.DataArray, redox_params: dict, reg_params: dict, eng: matlab.engine.MatlabEngine = None, ) -> Tuple[xr.DataArray, xr.DataArray]: """ Perform channel-registration on the given profile data Parameters ---------- profile_data the data to register redox_params the redox parameters reg_params the registration parameters eng the MATLAB engine (optional) Returns ------- reg_data: xr.DataArray the registered data warp_data: xr.DataArray the warp functions used to register the data """ if eng is None: eng = matlab.engine.start_matlab() # eng = pharedox_registration.initialize() reg_profile_data = profile_data.copy() warp_data = profile_data.copy().isel(wavelength=0) for p in profile_data.pair: for tp in profile_data.timepoint: i_num = matlab.double( profile_data.sel( timepoint=tp, pair=p, wavelength=redox_params["ratio_numerator"] ).values.tolist() ) i_denom = matlab.double( profile_data.sel( timepoint=tp, pair=p, wavelength=redox_params["ratio_denominator"] ).values.tolist() ) resample_resolution = float(profile_data.position.size) reg_num, reg_denom, warps = eng.channel_register( i_num, i_denom, resample_resolution, reg_params["warp_n_basis"], reg_params["warp_order"], reg_params["warp_lambda"], reg_params["smooth_lambda"], reg_params["smooth_n_breaks"], reg_params["smooth_order"], reg_params["rough_lambda"], reg_params["rough_n_breaks"], reg_params["rough_order"], reg_params["n_deriv"], nargout=3, ) reg_num, reg_denom = np.array(reg_num).T,
np.array(reg_denom)
numpy.array
#!/usr/bin/env python3 from PIL import Image, ImageTk import tkinter import numpy as np from scipy import misc, signal, ndimage import sys INF = float("infinity") def show_image(I): Image.fromarray(np.uint8(I)).show() def total_gradient(I, seam=None): # TODO: only recompute gradient for cells adjacent to removed seam kernel_h = np.array([[1, 0, -1]]) r_h = signal.convolve2d(I[:, :, 0], kernel_h, mode="same", boundary="symm") g_h = signal.convolve2d(I[:, :, 1], kernel_h, mode="same", boundary="symm") b_h = signal.convolve2d(I[:, :, 2], kernel_h, mode="same", boundary="symm") kernel_v = np.array([[1], [0], [-1]]) r_v = signal.convolve2d(I[:, :, 0], kernel_v, mode="same", boundary="symm") g_v = signal.convolve2d(I[:, :, 1], kernel_v, mode="same", boundary="symm") b_v = signal.convolve2d(I[:, :, 2], kernel_v, mode="same", boundary="symm") return (np.square(r_h) + np.square(g_h) + np.square(b_h) + np.square(r_v) + np.square(g_v) + np.square(b_v)) def min_neighbor_index(M, i, j): rows, cols = M.shape c = M[i-1, j] if j > 0 and M[i-1, j-1] < c: return -1 elif j < cols - 1 and M[i-1, j+1] < c: return 1 return 0 def calc_dp(G): rows, cols = G.shape a = np.copy(G) kernel_l = np.array([0, 0, 1]) kernel_c = np.array([0, 1, 0]) kernel_r = np.array([1, 0, 0]) for i in range(rows): lefts = ndimage.filters.convolve1d(a[i-1], kernel_l) centers = ndimage.filters.convolve1d(a[i-1], kernel_c) rights = ndimage.filters.convolve1d(a[i-1], kernel_r) a[i] += np.minimum(np.minimum(lefts, centers), rights) return a def find_seam(dp, start_col): rows, cols = dp.shape seam = np.zeros((rows,), dtype=np.uint32) j = seam[-1] = start_col for i in range(rows - 2, -1, -1): dc = min_neighbor_index(dp, i + 1, j) j += dc seam[i] = j return seam def find_best_seam(dp): start_col = np.argmin(dp[-1]) return find_seam(dp, start_col) def remove_seam(M, seam): rows, cols = M.shape[:2] return np.array([M[i, :][np.arange(cols) != seam[i]] for i in range(rows)]) def resize(I, new_width, new_height): rows, cols = I.shape[:2] dr = rows - new_height dc = cols - new_width for i in range(dc): G = total_gradient(I) dp_v = calc_dp(G) seam = find_best_seam(dp_v) I = remove_seam(I, seam) I = np.swapaxes(I, 0, 1) for i in range(dr): G = total_gradient(I) dp_h = calc_dp(G) seam = find_best_seam(dp_h) I = remove_seam(I, seam) return np.swapaxes(I, 0, 1) def add_image_to_canvas(I, canvas): height, width = I.shape[:2] canvas.img_tk = ImageTk.PhotoImage(Image.fromarray(
np.uint8(I)
numpy.uint8
import itertools import logging import math from copy import deepcopy import numpy as np import pandas as pd from scipy.ndimage.filters import uniform_filter1d import basty.utils.misc as misc np.seterr(all="ignore") class SpatioTemporal: def __init__(self, fps, stft_cfg={}): self.stft_cfg = deepcopy(stft_cfg) self.logger = logging.getLogger("main") assert fps > 0 self.get_delta = lambda x, scale: self.calc_delta(x, scale, fps) self.get_moving_mean = lambda x, winsize: self.calc_moving_mean(x, winsize, fps) self.get_moving_std = lambda x, winsize: self.calc_moving_std(x, winsize, fps) delta_scales_ = [100, 300, 500] window_sizes_ = [300, 500] if "delta_scales" not in stft_cfg.keys(): self.logger.info( "Scale valuess can not be found in configuration for delta features." + f"Default values are {str(delta_scales_)[1:-1]}." ) if "window_sizes" not in stft_cfg.keys(): self.logger.info( "Window sizes can not be found in configuration for window features." + f"Default values are {str(window_sizes_)[1:-1]}." ) self.stft_cfg["delta_scales"] = stft_cfg.get("delta_scales", delta_scales_) self.stft_cfg["window_sizes"] = stft_cfg.get("window_sizes", window_sizes_) self.stft_set = ["pose", "distance", "angle"] for ft_set in self.stft_set: ft_set_dt = ft_set + "_delta" self.stft_cfg[ft_set] = stft_cfg.get(ft_set, []) self.stft_cfg[ft_set_dt] = stft_cfg.get(ft_set_dt, []) self.angle_between = self.angle_between_atan @staticmethod def angle_between_arccos(v1, v2): """ Returns the abs(angle) in radians between vectors 'v1' and 'v2'. angle_between((1, 0, 0), (0, 1, 0)) --> 1.5707963267948966 angle_between((1, 0, 0), (1, 0, 0)) --> 0.0 angle_between((1, 0, 0), (-1, 0, 0)) --> 3.141592653589793 """ assert isinstance(v1, np.ndarray) and isinstance(v2, np.ndarray) v1_u = v1 / np.linalg.norm(v1) v2_u = v2 / np.linalg.norm(v2) return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0)) @staticmethod def angle_between_atan(v1, v2): """ Returns the abs(angle) in radians between vectors 'v1' and 'v2'. """ assert isinstance(v1, np.ndarray) and isinstance(v2, np.ndarray) angle = np.math.atan2(
np.linalg.det([v1, v2])
numpy.linalg.det
import numpy as np from numba import njit from numpy.testing import assert_allclose from pytest import approx, raises import utilities.percentile as perc _ = perc # to prevent it appearing to be an unused import @njit def np_percentile_jit(x, q): return np.percentile(x, q) @njit def np_nanpercentile_jit(x, q): return np.nanpercentile(x, q) def test_scalar_q(): arr = np.array([1, 4, 3, 3.3, 6, 5, 2.2]) q = 2.2 output = np_percentile_jit(arr, q) expected = np.percentile(arr, q) assert output == approx(expected) def test_tuple_q(): arr = np.array([1, 4, 3, 3.3, 6, 5, 2.2]) q = (2.2, 34, 4) output = np_percentile_jit(arr, q) expected = np.percentile(arr, q) assert output == approx(expected) def test_array_q(): arr = np.array([1, 4, 3, 3.3, 6, 5, 2.2]) q = np.array([0, 2.2, 34, 100]) output = np_percentile_jit(arr, q) expected = np.percentile(arr, q) assert output == approx(expected) def test_array_q_contains_nan(): arr = np.array([1, 4, 3, 3.3, 6, 5, 2.2]) q = np.array([0, 2.2, np.nan, 100]) with raises(ValueError): _ = np.percentile(arr, q) with raises(ValueError): _ = np_percentile_jit(arr, q) def test_array_arr_contains_nan(): arr = np.array([1, 4, 3, 3.3, 6, np.nan, 2.2]) q =
np.array([0, 2.2, 100])
numpy.array
from Segmentation.utilities import * import json import numpy as np import matplotlib.pyplot as plt from glob import glob from scipy.misc import imread from scipy import ndimage, signal from skimage import morphology, feature, exposure import neurofinder import cv2 as cv import ast from PIL import Image def tomask(coords, dims): mask = np.zeros(dims,dtype=bool) coords=np.array(coords) mask[coords[:,0],coords[:,1]] = 1 return mask # load the regions (training data only) def plotregions(filename, dims): with open(filename+'.json') as f: regions = json.load(f) masks = np.array([tomask(s['coordinates'], dims) for s in regions]) # generate a list of all masks based on the regions return masks #turning the maskes into the json file # def mask_to_json(mask, filename, prelabeled=False): # """Receive a mask and a file name and save to a json file""" # if not prelabeled: # labeled, n = ndimage.label(mask) # creates one image with numerical labels for each neuron # else: # prelabeled # labeled = mask # labeled mask, from watershed # n = np.max(labeled) # highest label # myRegions = [] # initialize # # We don't need size selection anymore, so the loop looks like this now: # elem_gen = (np.nonzero(labeled == i) for i in range(1, n+1)) # selected_elem_gen = (elem for elem in elem_gen if len(elem[0]) != 0 and len(elem[1]) != 0) # # elem_gen = (elem for elem in (np.nonzero(labeled == i) for i in range(1, n+1)) if len(elem[0]) != 0 and len(elem[1]) != 0) # myRegions = [{"id":i, "coordinates":[[x[0], x[1]] for x in zip(elem)]} for i, elem in enumerate(selected_elem_gen)] # print(myRegions) # # saving as json # json.dump(myRegions, open(fix_json_fname(filename),'w')) # for elem in elem_gen: # myRegions.append({"id":elem, "coordinates":list(zip(elem))}) # for i,j in zip(xelem, yelem): # myRegions[-1]["coordinates"].append([int(i),int(j)]) # # for elem in range(1, n+1): # # xelem, yelem = np.nonzero(labeled == elem) # # if len(xelem) == 0 or len(yelem) == 0: # skip empty elements # # continue # myRegions.append({"id":elem, "coordinates":[]}) # add coordinates as json # for i,j in zip(xelem, yelem): # myRegions[-1]["coordinates"].append([int(i),int(j)]) #turning the maskes into the json file def mask_to_json(mask, filename, prelabeled=False): """Receive a mask and a file name and save to a json file""" if not prelabeled: labeled, n = ndimage.label(mask) # creates one image with numerical labels for each neuron else: # prelabeled labeled = mask # labeled mask, from watershed n = np.max(labeled) # highest label myRegions = [] # initialize # We don't need size selection anymore, so the loop looks like this now: for elem in range(1, n+1): xelem, yelem = np.nonzero(labeled == elem) if len(xelem) == 0 or len(yelem) == 0: # skip empty elements continue myRegions.append({"id":elem, "coordinates":[]}) # add coordinates as json for i,j in zip(xelem, yelem): myRegions[-1]["coordinates"].append([int(i),int(j)]) # saving as json json.dump(myRegions, open(fix_json_fname(filename),'w')) def plotRandomNeuron(imgs, masks): """Chooses and plots a random neuron and a random image out of the imgs matrix""" plt.figure(figsize=(12,12)) i = np.random.randint(0, len(masks)) plt.subplot(1, 2, 1) plt.imshow(imgs[i], cmap='gray') plt.title(f'All Neurons - sum of all images ({len(imgs)} timepoints)') plt.subplot(1, 2, 2) plt.imshow(masks[i], cmap='gray') plt.title(f'Neuron #{i} - mask') plt.tight_layout() def bandPassFilter(img, radIn=50, radOut=10000, plot=False): """Receive image, inner radius size, outer radius size. Return an image filtered with a disk, using FFT.""" # FFT fft=np.fft.fftshift(np.fft.fft2(img)) # shape x,y=np.shape(fft) xg, yg = np.ogrid[-x//2:x//2, -y//2:y//2] # define filter disk inner_circle_pixels = xg**2 + yg**2 <= radIn^2 outer_circle_pixels=xg**2 + yg**2 <= radOut^2 filter_disk = np.ones_like(inner_circle_pixels) filter_disk[
np.invert(outer_circle_pixels)
numpy.invert
from os import path as osp import h5py import numpy as np from scipy.interpolate import interp1d from scipy.spatial.transform import Rotation from utils.logging import logging from utils.math_utils import unwrap_rpy, wrap_rpy class DataIO: def __init__(self): # raw dataset - ts in us self.ts_all = None self.acc_all = None self.gyr_all = None self.dataset_size = None self.init_ts = None self.R_init = np.eye(3) # vio data self.vio_ts = None self.vio_p = None self.vio_v = None self.vio_eul = None self.vio_R = None self.vio_rq = None self.vio_ba = None self.vio_bg = None # attitude filter data self.filter_ts = None self.filter_eul = None def load_all(self, dataset, args): """ load timestamps, accel and gyro data from dataset """ with h5py.File(osp.join(args.root_dir, dataset, "data.hdf5"), "r") as f: ts_all = np.copy(f["ts"]) * 1e6 acc_all =
np.copy(f["accel_dcalibrated"])
numpy.copy
# coding: utf-8 # In[1]: #first commit -Richie import pandas as pd import numpy as np # In[2]: data_message = pd.read_csv('../../data/raw_data/AAPL_05222012_0930_1300_message.tar.gz',compression='gzip') data_lob = pd.read_csv('../../data/raw_data/AAPL_05222012_0930_1300_LOB_2.tar.gz',compression='gzip') # In[3]: #drop redundant time col_names=data_lob.columns delete_list=[i for i in col_names if 'UPDATE_TIME' in i] for i in delete_list: data_lob=data_lob.drop(i,1) # In[4]: #functions for renaming def rename(txt): txt=txt[16:].split('..')[0] index=0 ask_bid='' p_v='' if txt[-2].isdigit(): index=txt[-2:] else: index=txt[-1] if txt[:3]=="BID": ask_bid='bid' else: ask_bid='ask' if txt[4:9]=="PRICE": p_v='P' else: p_v='V' return('_'.join([p_v,index,ask_bid])) # In[5]: #rename columns col_names=data_lob.columns new_col_names=[] new_col_names.append('index') new_col_names.append('Time') for i in col_names[2:]: new_col_names.append(rename(i)) len(new_col_names) data_lob.columns=new_col_names # In[6]: #feature: bid-ask spreads and mid price for i in list(range(1, 11)): bid_ask_col_name='_'.join(['spreads',str(i)]) p_i_ask='_'.join(['P',str(i),'ask']) p_i_bid='_'.join(['P',str(i),'bid']) data_lob[bid_ask_col_name]=data_lob[p_i_ask]-data_lob[p_i_bid] mid_price_col_name = '_'.join(['mid_price',str(i)]) data_lob[mid_price_col_name]=(data_lob[p_i_ask]+data_lob[p_i_bid])/2 # In[7]: #convert time def timetransform(r): # transform the time to millisecond, starting from 0 timestr = r return (int(timestr[11:13]) - 9) * 60**2 + (int(timestr[14:16]) - 30) * 60 + float(timestr[17:]) time = list(data_lob['Time']) time_new = [timetransform(i) for i in time] data_lob["Time"] = time_new # In[8]: time = list(data_message['Time']) time_new = [timetransform(i) for i in time] data_message["Time"] = time_new # In[9]: #price difference data_lob['P_diff_ask_10_1']=data_lob['P_10_ask']-data_lob['P_1_ask'] data_lob['P_diff_bid_1_10']=data_lob['P_1_bid']-data_lob['P_1_bid'] for i in list(range(1, 10)): P_diff_ask_i_name='_'.join(['P','diff','ask',str(i),str(i+1)]) P_diff_bid_i_name='_'.join(['P','diff','bid',str(i),str(i+1)]) P_i_ask='_'.join(['P',str(i),'ask']) P_i1_ask='_'.join(['P',str(i+1),'ask']) P_i_bid='_'.join(['P',str(i),'bid']) P_i1_bid='_'.join(['P',str(i+1),'bid']) data_lob[P_diff_ask_i_name]=abs(data_lob[P_i1_ask]-data_lob[P_i_ask]) data_lob[P_diff_bid_i_name]=abs(data_lob[P_i1_bid]-data_lob[P_i_bid]) # In[10]: #mean price and volumns p_ask_list=['_'.join(['P',str(i),'ask']) for i in list(range(1, 11))] p_bid_list=['_'.join(['P',str(i),'bid']) for i in list(range(1, 11))] v_ask_list=['_'.join(['V',str(i),'ask']) for i in list(range(1, 11))] v_bid_list=['_'.join(['V',str(i),'bid']) for i in list(range(1, 11))] data_lob['Mean_ask_price']=0.0 data_lob['Mean_bid_price']=0.0 data_lob['Mean_ask_volumn']=0.0 data_lob['Mean_bid_volumn']=0.0 for i in list(range(0, 10)): data_lob['Mean_ask_price']+=data_lob[p_ask_list[i]] data_lob['Mean_bid_price']+=data_lob[p_bid_list[i]] data_lob['Mean_ask_volumn']+=data_lob[v_ask_list[i]] data_lob['Mean_bid_volumn']+=data_lob[v_bid_list[i]] data_lob['Mean_ask_price']/=10 data_lob['Mean_bid_price']/=10 data_lob['Mean_ask_volumn']/=10 data_lob['Mean_bid_volumn']/=10 # In[11]: #accumulated difference p_ask_list=['_'.join(['P',str(i),'ask']) for i in list(range(1, 11))] p_bid_list=['_'.join(['P',str(i),'bid']) for i in list(range(1, 11))] v_ask_list=['_'.join(['V',str(i),'ask']) for i in list(range(1, 11))] v_bid_list=['_'.join(['V',str(i),'bid']) for i in list(range(1, 11))] data_lob['Accum_diff_price']=0.0 data_lob['Accum_diff_volumn']=0.0 for i in list(range(0, 10)): data_lob['Accum_diff_price']+=data_lob[p_ask_list[i]]-data_lob[p_bid_list[i]] data_lob['Accum_diff_volumn']+=data_lob[v_ask_list[i]]-data_lob[v_bid_list[i]] data_lob['Accum_diff_price']/=10 data_lob['Accum_diff_volumn']/=10 # In[12]: # #price and volumn derivatives # p_ask_list=['_'.join(['P',str(i),'ask']) for i in list(range(1, 11))] # p_bid_list=['_'.join(['P',str(i),'bid']) for i in list(range(1, 11))] # v_ask_list=['_'.join(['V',str(i),'ask']) for i in list(range(1, 11))] # v_bid_list=['_'.join(['V',str(i),'bid']) for i in list(range(1, 11))] # #data_lob['Time_diff']=list(np.zeros(30)+1)+list(np.array(data_lob['Time'][30:])-np.array(data_lob['Time'][:-30])) # for i in list(range(0, 10)): # P_ask_i_deriv='_'.join(['P','ask',str(i+1),'deriv']) # P_bid_i_deriv='_'.join(['P','bid',str(i+1),'deriv']) # V_ask_i_deriv='_'.join(['V','ask',str(i+1),'deriv']) # V_bid_i_deriv='_'.join(['V','bid',str(i+1),'deriv']) # data_lob[P_ask_i_deriv]=list(np.zeros(30))+list(np.array(data_lob[p_ask_list[i]][30:])-np.array(data_lob[p_ask_list[i]][:-30])) # data_lob[P_bid_i_deriv]=list(np.zeros(30))+list(np.array(data_lob[p_bid_list[i]][30:])-np.array(data_lob[p_bid_list[i]][:-30])) # data_lob[V_ask_i_deriv]=list(np.zeros(30))+list(np.array(data_lob[v_ask_list[i]][30:])-np.array(data_lob[v_ask_list[i]][:-30])) # data_lob[V_bid_i_deriv]=list(np.zeros(30))+list(np.array(data_lob[v_bid_list[i]][30:])-np.array(data_lob[v_bid_list[i]][:-30])) # data_lob[P_ask_i_deriv]/=30 # data_lob[P_bid_i_deriv]/=30 # data_lob[V_ask_i_deriv]/=30 # data_lob[V_bid_i_deriv]/=30 # #price and volumn derivatives p_ask_list=['_'.join(['P',str(i),'ask']) for i in list(range(1, 11))] p_bid_list=['_'.join(['P',str(i),'bid']) for i in list(range(1, 11))] v_ask_list=['_'.join(['V',str(i),'ask']) for i in list(range(1, 11))] v_bid_list=['_'.join(['V',str(i),'bid']) for i in list(range(1, 11))] #data_lob['Time_diff']=list(np.zeros(30)+1)+list(np.array(data_lob['Time'][30:])-np.array(data_lob['Time'][:-30])) for i in list(range(0, 10)): P_ask_i_deriv='_'.join(['P','ask',str(i+1),'deriv']) P_bid_i_deriv='_'.join(['P','bid',str(i+1),'deriv']) V_ask_i_deriv='_'.join(['V','ask',str(i+1),'deriv']) V_bid_i_deriv='_'.join(['V','bid',str(i+1),'deriv']) data_lob[P_ask_i_deriv]=list(np.zeros(1000))+list(np.array(data_lob[p_ask_list[i]][1000:])-np.array(data_lob[p_ask_list[i]][:-1000])) data_lob[P_bid_i_deriv]=list(np.zeros(1000))+list(np.array(data_lob[p_bid_list[i]][1000:])-np.array(data_lob[p_bid_list[i]][:-1000])) data_lob[V_ask_i_deriv]=list(np.zeros(1000))+list(np.array(data_lob[v_ask_list[i]][1000:])-np.array(data_lob[v_ask_list[i]][:-1000])) data_lob[V_bid_i_deriv]=list(np.zeros(1000))+list(np.array(data_lob[v_bid_list[i]][1000:])-np.array(data_lob[v_bid_list[i]][:-1000])) data_lob[P_ask_i_deriv]/=1000 data_lob[P_bid_i_deriv]/=1000 data_lob[V_ask_i_deriv]/=1000 data_lob[V_bid_i_deriv]/=1000 # In[ ]: #set labels diff=data_lob['mid_price_1'] diff_30=np.array(diff[30:])-np.array(diff[:-30]) label=[] for i in diff_30: if i>0.01: label.append('1') elif i<(-0.01): label.append('-1') else: label.append('0') data_lob['labels']=label+list(
np.zeros(30)
numpy.zeros
import numpy as np class Weno: def __init__(self): self.epsilon = 1e-6 def weno(self, NumFl, Fl, L, In, Out): """ Interface reconstruction using WENO scheme. """ # Built an extenday array with phantom cells to deal with periodicity #data = np.concatenate((In[-2:], In, In[0:2])) data =
np.concatenate((In[-3:], In, In[0:2]))
numpy.concatenate
import logging import numpy as np from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.ensemble import ExtraTreesClassifier import os import dateparser import joblib from .compat import string_, str_cast, unicode_ from .util import get_and_union_features, convert_segmentation_to_text, fix_encoding from .blocks import TagCountReadabilityBlockifier from .features.author import AuthorFeatures from .sequence_tagger.models import word2features from sklearn.base import clone BASE_EXTRACTOR_DIR = __file__.replace('/extractor.py','') class MultiExtractor(BaseEstimator, ClassifierMixin): """ An sklearn-style classifier that extracts the main content (and/or comments) from an HTML document. Args: blockifier (``Blockifier``) features (str or List[str], ``Features`` or List[``Features``], or List[Tuple[str, ``Features``]]): One or more features to be used to transform blocks into a matrix of numeric values. If more than one, a :class:`FeatureUnion` is automatically constructed. See :func:`get_and_union_features`. model (:class:`ClassifierMixin`): A scikit-learn classifier that takes a numeric matrix of features and outputs a binary prediction of 1 for content or 0 for not-content. If None, a :class:`ExtraTreesClassifier` with default parameters is used. to_extract (str or Sequence[str]): Type of information to extract from an HTML document: 'content', 'comments', or both via ['content', 'comments']. prob_threshold (float): Minimum prediction probability of a block being classified as "content" for it actually be taken as such. max_block_weight (int): Maximum weight that a single block may be given when training the extractor model, where weights are set equal to the number of tokens in each block. Note: If ``prob_threshold`` is not None, then ``model`` must implement the ``predict_proba()`` method. """ FIELD_INDEX = { 'content': 0, 'description': 1, 'headlines': 2, 'breadcrumbs': 3 } INVERTED_INDEX = { value: key for key, value in FIELD_INDEX.items() } def state_dict(self): return { 'params': self.params, 'pca': self.auth_feat.pca, 'classifiers': self.classifiers } def __init__(self, blockifier=TagCountReadabilityBlockifier, features=('kohlschuetter', 'weninger', 'readability'), model=None, css_tokenizer_path=None, text_tokenizer_path=None, num_labels=2, prob_threshold=0.5, max_block_weight=200, features_type=None, author_feature_transforms=None): if css_tokenizer_path is None: css_tokenizer_path = os.path.join(BASE_EXTRACTOR_DIR, 'models/css_tokenizer.pkl.gz') if text_tokenizer_path is None: text_tokenizer_path = os.path.join(BASE_EXTRACTOR_DIR, 'models/text_tokenizer.pkl.gz') self.params = { 'features': features, 'num_labels': num_labels, 'prob_threshold': prob_threshold, 'max_block_weight': max_block_weight, 'features_type': features_type, } self.blockifier = blockifier self.features = features css_tokenizer = joblib.load(css_tokenizer_path) text_tokenizer = joblib.load(text_tokenizer_path) if author_feature_transforms is None: author_feature_transforms = AuthorFeatures(css_tokenizer, text_tokenizer, features=('kohlschuetter', 'weninger', 'readability', 'css'), ) self.auth_feat = author_feature_transforms self.feature_func = [ self.auth_feat, self.features, ] # initialize model if model is None: self.model = ExtraTreesClassifier() elif isinstance(model, list): self.classifiers = model else: self.classifiers = [ clone(model) for _ in range(num_labels)] if features_type is None: self.features_type = [0]*len(self.classifiers) else: self.features_type = features_type self.target_features = list(range(len(self.classifiers))) self.prob_threshold = prob_threshold self.max_block_weight = max_block_weight self._positive_idx = None @staticmethod def from_pretrained(filename): checkpoint = joblib.load(filename) extractor = MultiExtractor(model=checkpoint['classifiers'], **checkpoint['params']) extractor.auth_feat.pca = checkpoint['pca'] return extractor @property def features(self): return self._features @features.setter def features(self, feats): self._features = get_and_union_features(feats) @staticmethod def validate(labels, block_groups, weights=None): clean_labels, clean_weights, clean_block_groups = [], [], [] # iterate through all documents for idx, label in enumerate(labels): # make sure all labels, weights, block size can be matched if weights is None and len(label) == len(block_groups[idx]): clean_labels.append(labels[idx]) clean_block_groups.append(block_groups[idx]) elif len(label) == len(block_groups[idx]) and len(label) == len(weights[idx]): clean_labels.append(labels[idx]) clean_weights.append(weights[idx]) clean_block_groups.append(block_groups[idx]) if weights is None: return np.array(clean_labels), np.array(clean_block_groups) return np.array(clean_labels), np.array(clean_weights), np.array(clean_block_groups) def fit(self, documents, labels, weights=None, init_models=None, **kwargs): """ Fit :class`Extractor` features and model to a training dataset. Args: blocks (List[Block]) labels (``np.ndarray``) weights (``np.ndarray``) Returns: :class`Extractor` """ mask, block_groups = [], [] for doc in documents: block_groups.append(self.blockifier.blockify(doc)) mask.append(self._has_enough_blocks(block_groups[-1])) block_groups = np.array(block_groups, dtype=object) # filter out mask and validate each document size if weights is None: labels, block_groups = self.validate(np.array(labels)[mask], block_groups[mask]) else: labels, weights, block_groups = self.validate( np.array(labels)[mask], block_groups[mask], np.array(weights)[mask]) weights = np.concatenate(weights) labels = np.concatenate(labels) complex_feat_mat = self.auth_feat.fit_transform( np.concatenate(block_groups) ) if 1 in self.features_type: features_mat = np.concatenate([self.features.fit_transform(blocks) for blocks in block_groups]) for idx, clf in enumerate(self.classifiers): print('fit model ', idx) input_feat = complex_feat_mat if self.features_type[idx] == 0 else features_mat print(input_feat.shape) init_model = None if not(init_models is None) and isinstance(init_models, list): init_model = init_models[idx] if weights is None: self.classifiers[idx] = clf.fit(input_feat, labels[:, idx], init_model=init_model, **kwargs) else: self.classifiers[idx] = clf.fit(input_feat, labels[:, idx], sample_weight=weights[:, idx], init_model=init_model, **kwargs) return self def get_html_multi_labels_weights(self, data, attribute_indexes=[0], not_skip_indexes = []): """ Gather the html, labels, and weights of many files' data. Primarily useful for training/testing an :class`Extractor`. Args: data: Output of :func:`extractnet.data_processing.prepare_all_data`. Returns: Tuple[List[Block], np.array(int), np.array(int)]: All blocks, all labels, and all weights, respectively. """ all_html = [] all_labels = [] all_weights = [] for row in data: html = row[0] attributes = row[1:] skip = False multi_label = [] multi_weights = [] for attribute_idx in attribute_indexes: labels, weights = self._get_labels_and_weights(attributes, attribute_idx=attribute_idx) multi_label.append(labels) multi_weights.append(weights) if skip: continue if len(html) > 0 and len(multi_label) == len(attribute_indexes): all_html.append(html) all_labels.append(np.stack(multi_label, -1)) all_weights.append(np.stack(multi_weights, -1)) return np.array(all_html, dtype=object),
np.array(all_labels, dtype=object)
numpy.array
import numpy as np import os import matplotlib.pyplot as plt import matplotlib.cm as cm import gudhi as gd import dataIO as io import torch import torch.nn as nn from topologylayer.nn.features import pad_k from mpl_toolkits.mplot3d import axes3d from topologylayer.functional.persistence import SimplicialComplex from topologylayer.util.construction import unique_simplices from scipy.spatial import Delaunay from tqdm import trange # calculate jaccard def jaccard(im1, im2): im1 = np.asarray(im1).astype(np.bool) im2 = np.asarray(im2).astype(np.bool) if im1.shape != im2.shape: raise ValueError("Shape mismatch: im1 and im2 must have the same shape.") return np.double(np.bitwise_and(im1, im2).sum()) / np.double(np.bitwise_or(im1, im2).sum()) # calculate L1 def L1norm(im1, im2): im1 =
np.asarray(im1)
numpy.asarray
# -*- coding: utf-8 -*- """ Python wrapper for LazyMole <NAME>, University of Tübingen 2018 (<EMAIL>) Uses LazyMole by <NAME>, University of Southern California (<EMAIL>) """ import os from os.path import join import numpy as np import yaml import subprocess import errno class model(): def __init__(self, basepath, in_field, in_source, in_target, dx, dy, dz, # model grid cell dimensions nx, ny, nz, # number of grid cells in model rx=1, ry=1, rz=1, # graph theory refinement in_skip=0, in_log=True, # Is K field logarithmic? out_config='config.yaml', # Name of configuration file output foldername='lazymole', # Name of folder where output is saved exe_path=r'src\lazymole.exe'): # Location of executable. """ Run LazyMole connectivity metric Parameters ---------- basepath : str basepath for simulations in_field : numpy array K values (same dimensions as connectivity grid) in_source : numpy array Source cells in_target : numpy array Target cells Filepath to .npz file """ self.basepath = basepath self.in_field = in_field self.in_source = in_source self.in_target = in_target self.in_skip = in_skip self.in_log = in_log self.out_config = out_config self.dx = dx self.dy = dy self.dz = dz self.nx = nx self.ny = ny self.nz = nz self.rx = rx self.ry = ry self.rz = rz self.exe_path = exe_path self.foldername = foldername self.fname_field = 'field.dat' self.fname_source = 'source.dat' self.fname_target = 'target.dat' self.fname_res = 'hres.dat' self.fname_path = 'path.dat' """ Preliminaries """ # Load K data # data = np.loadtxt(self.in_field) # Create folder for the connectivity run self.lm_path = join(os.path.abspath(basepath), self.foldername) try_makefolder(self.lm_path) """ Convert dataset """ # if not os.path.isfile(join(self.lm_path, self.fname_field)): xvec, yvec, zvec = np.meshgrid(
np.arange(0, nx)
numpy.arange
# Hungarian algorithm (Kuhn-Munkres) for solving the linear sum assignment # problem. Taken from scikit-learn. Based on original code by <NAME>, # adapted to NumPy by <NAME>. # Further improvements by <NAME>, <NAME> and <NAME>. # # Copyright (c) 2008 <NAME> <<EMAIL>>, <NAME> # Author: <NAME>, <NAME> # License: 3-clause BSD import numpy as np def linear_sum_assignment(cost_matrix): """Solve the linear sum assignment problem. The linear sum assignment problem is also known as minimum weight matching in bipartite graphs. A problem instance is described by a matrix C, where each C[i,j] is the cost of matching vertex i of the first partite set (a "worker") and vertex j of the second set (a "job"). The goal is to find a complete assignment of workers to jobs of minimal cost. Formally, let X be a boolean matrix where :math:`X[i,j] = 1` iff row i is assigned to column j. Then the optimal assignment has cost .. math:: \min \sum_i \sum_j C_{i,j} X_{i,j} s.t. each row is assignment to at most one column, and each column to at most one row. This function can also solve a generalization of the classic assignment problem where the cost matrix is rectangular. If it has more rows than columns, then not every row needs to be assigned to a column, and vice versa. The method used is the Hungarian algorithm, also known as the Munkres or Kuhn-Munkres algorithm. Parameters ---------- cost_matrix : array The cost matrix of the bipartite graph. Returns ------- row_ind, col_ind : array An array of row indices and one of corresponding column indices giving the optimal assignment. The cost of the assignment can be computed as ``cost_matrix[row_ind, col_ind].sum()``. The row indices will be sorted; in the case of a square cost matrix they will be equal to ``numpy.arange(cost_matrix.shape[0])``. Notes ----- .. versionadded:: 0.17.0 Examples -------- >>> cost = np.array([[4, 1, 3], [2, 0, 5], [3, 2, 2]]) >>> from scipy.optimize import linear_sum_assignment >>> row_ind, col_ind = linear_sum_assignment(cost) >>> col_ind array([1, 0, 2]) >>> cost[row_ind, col_ind].sum() 5 References ---------- 1. http://csclab.murraystate.edu/bob.pilgrim/445/munkres.html 2. <NAME>. The Hungarian Method for the assignment problem. *Naval Research Logistics Quarterly*, 2:83-97, 1955. 3. <NAME>. Variants of the Hungarian method for assignment problems. *Naval Research Logistics Quarterly*, 3: 253-258, 1956. 4. <NAME>. Algorithms for the Assignment and Transportation Problems. *J. SIAM*, 5(1):32-38, March, 1957. 5. https://en.wikipedia.org/wiki/Hungarian_algorithm """ cost_matrix = np.asarray(cost_matrix) if len(cost_matrix.shape) != 2: raise ValueError("expected a matrix (2-d array), got a %r array" % (cost_matrix.shape,)) # The algorithm expects more columns than rows in the cost matrix. if cost_matrix.shape[1] < cost_matrix.shape[0]: cost_matrix = cost_matrix.T transposed = True else: transposed = False state = _Hungary(cost_matrix) # No need to bother with assignments if one of the dimensions # of the cost matrix is zero-length. step = None if 0 in cost_matrix.shape else _step1 while step is not None: step = step(state) if transposed: marked = state.marked.T else: marked = state.marked return np.where(marked == 1) class _Hungary(object): """State of the Hungarian algorithm. Parameters ---------- cost_matrix : 2D matrix The cost matrix. Must have shape[1] >= shape[0]. """ def __init__(self, cost_matrix): self.C = cost_matrix.copy() n, m = self.C.shape self.row_uncovered = np.ones(n, dtype=bool) self.col_uncovered = np.ones(m, dtype=bool) self.Z0_r = 0 self.Z0_c = 0 self.path = np.zeros((n + m, 2), dtype=int) self.marked = np.zeros((n, m), dtype=int) def _clear_covers(self): """Clear all covered matrix cells""" self.row_uncovered[:] = True self.col_uncovered[:] = True # Individual steps of the algorithm follow, as a state machine: they return # the next step to be taken (function to be called), if any. def _step1(state): """Steps 1 and 2 in the Wikipedia page.""" # Step 1: For each row of the matrix, find the smallest element and # subtract it from every element in its row. state.C -= state.C.min(axis=1)[:, np.newaxis] # Step 2: Find a zero (Z) in the resulting matrix. If there is no # starred zero in its row or column, star Z. Repeat for each element # in the matrix. for i, j in zip(*np.where(state.C == 0)): if state.col_uncovered[j] and state.row_uncovered[i]: state.marked[i, j] = 1 state.col_uncovered[j] = False state.row_uncovered[i] = False state._clear_covers() return _step3 def _step3(state): """ Cover each column containing a starred zero. If n columns are covered, the starred zeros describe a complete set of unique assignments. In this case, Go to DONE, otherwise, Go to Step 4. """ marked = (state.marked == 1) state.col_uncovered[np.any(marked, axis=0)] = False if marked.sum() < state.C.shape[0]: return _step4 def _step4(state): """ Find a noncovered zero and prime it. If there is no starred zero in the row containing this primed zero, Go to Step 5. Otherwise, cover this row and uncover the column containing the starred zero. Continue in this manner until there are no uncovered zeros left. Save the smallest uncovered value and Go to Step 6. """ # We convert to int as numpy operations are faster on int C = (state.C == 0).astype(int) covered_C = C * state.row_uncovered[:, np.newaxis] covered_C *= np.asarray(state.col_uncovered, dtype=int) n = state.C.shape[0] m = state.C.shape[1] while True: # Find an uncovered zero row, col = np.unravel_index(np.argmax(covered_C), (n, m)) if covered_C[row, col] == 0: return _step6 else: state.marked[row, col] = 2 # Find the first starred element in the row star_col = np.argmax(state.marked[row] == 1) if state.marked[row, star_col] != 1: # Could not find one state.Z0_r = row state.Z0_c = col return _step5 else: col = star_col state.row_uncovered[row] = False state.col_uncovered[col] = True covered_C[:, col] = C[:, col] * ( np.asarray(state.row_uncovered, dtype=int)) covered_C[row] = 0 def _step5(state): """ Construct a series of alternating primed and starred zeros as follows. Let Z0 represent the uncovered primed zero found in Step 4. Let Z1 denote the starred zero in the column of Z0 (if any). Let Z2 denote the primed zero in the row of Z1 (there will always be one). Continue until the series terminates at a primed zero that has no starred zero in its column. Unstar each starred zero of the series, star each primed zero of the series, erase all primes and uncover every line in the matrix. Return to Step 3 """ count = 0 path = state.path path[count, 0] = state.Z0_r path[count, 1] = state.Z0_c while True: # Find the first starred element in the col defined by # the path. row =
np.argmax(state.marked[:, path[count, 1]] == 1)
numpy.argmax
import zerorpc import pandas as pd import logging import numpy as np logging.basicConfig() def rand_weights(n): k =
np.random.rand(n)
numpy.random.rand
import numpy as np import itertools from scipy.sparse.linalg import cg, LinearOperator from functions import material_coef_at_grid_points, get_matinc, square_weights # PARAMETERS dim = 2 # dimension (works for 2D and 3D) N = 5*np.ones(dim, dtype=np.int) # number of grid points phase = 10. # material contrast assert(np.array_equal(N % 2, np.ones(dim, dtype=np.int))) dN = 2*N-1 # grid value vec_shape=(dim,)+tuple(dN) # shape of the vector for storing DOFs # OPERATORS Agani = material_coef_at_grid_points(N, phase) dot = lambda A, B: np.einsum('ij...,j...->i...', A, B) fft = lambda x, N: np.fft.fftshift(np.fft.fftn(np.fft.ifftshift(x), N)) / np.prod(N) ifft = lambda x, N: np.fft.fftshift(np.fft.ifftn(np.fft.ifftshift(x), N)) * np.prod(N) freq = [np.arange(np.fix(-n/2.), np.fix(n/2.+0.5)) for n in dN] # SYSTEM MATRIX for Galerkin approximation with exact integration (FFTH-Ga) mat, inc = get_matinc(dim, phase) h = 0.6*np.ones(dim) # size of square (rectangle) / cube char_square = ifft(square_weights(h, dN, freq), dN).real Aga = np.einsum('ij...,...->ij...', mat+inc, char_square) \ + np.einsum('ij...,...->ij...', mat, 1.-char_square) # PROJECTION Ghat = np.zeros((dim,dim)+ tuple(dN)) # zero initialize indices = [range(int((dN[k]-N[k])/2), int((dN[k]-N[k])/2+N[k])) for k in range(dim)] for i,j in itertools.product(range(dim),repeat=2): for ind in itertools.product(*indices): q = np.array([freq[ii][ind[ii]] for ii in range(dim)]) # frequency vector if not q.dot(q) == 0: # zero freq. -> mean Ghat[(i,j)+ind] = -(q[i]*q[j])/(q.dot(q)) # OPERATORS G_fun = lambda X: np.real(ifft(dot(Ghat, fft(X, dN)), dN)).reshape(-1) A_fun = lambda x: dot(Aga, x.reshape(vec_shape)) GA_fun = lambda x: G_fun(A_fun(x)) # CONJUGATE GRADIENT SOLVER X = np.zeros((dim,) + tuple(dN), dtype=np.float) E =
np.zeros(vec_shape)
numpy.zeros
from __future__ import division, print_function, absolute_import import os import datetime from timeit import time import warnings import cv2 import numpy as np import argparse from PIL import Image from yolo import YOLO from deep_sort import preprocessing from deep_sort import nn_matching from deep_sort.detection import Detection from deep_sort.tracker import Tracker from tools import generate_detections as gdet from deep_sort.detection import Detection as ddet from collections import deque from keras import backend backend.clear_session() ap = argparse.ArgumentParser() ap.add_argument("-i", "--input",help="path to input video", default = "test_video/video.avi") ap.add_argument("-c", "--class",help="name of class",default = "person") args = vars(ap.parse_args()) pts = [deque(maxlen=30) for _ in range(9999)] warnings.filterwarnings('ignore') # initialize a list of colors to represent each possible class label np.random.seed(100) COLORS = np.random.randint(0, 255, size=(200, 3), dtype="uint8") def main(yolo): start = time.time() #Definition of the parameters max_cosine_distance = 0.9 nn_budget = None nms_max_overlap = 0.3 #非极大抑制的阈值 counter1 = [] counter2 = [] counter3 = [] counter4 = [] counter5 = [] counter6 = [] counter7 = [] counter8 = [] counter9 = [] counter10 = [] counter1x = 0 counter2x = 0 counter3x = 0 counter4x = 0 counter5x = 0 counter6x = 0 counter7x = 0 counter8x = 0 counter9x = 0 counter10x = 0 #deep_sort model_filename = 'model_data/market1501.pb' encoder = gdet.create_box_encoder(model_filename, batch_size=1) metric = nn_matching.NearestNeighborDistanceMetric("cosine", max_cosine_distance, nn_budget) tracker = Tracker(metric) writeVideo_flag = True #video_path = "../../yolo_dataset/t1_video/test_video/det_t1_video_00025_test.avi" video_capture = cv2.VideoCapture(args["input"]) if writeVideo_flag: # Define the codec and create VideoWriter object w = int(video_capture.get(3)) h = int(video_capture.get(4)) fourcc = cv2.VideoWriter_fourcc(*'MJPG') out = cv2.VideoWriter('output/output.avi', fourcc, 30, (w, h)) list_file = open('detection.txt', 'w') frame_index = -1 fps = 0.0 while True: ret, frame = video_capture.read() # frame shape 640*480*3 if ret != True: break t1 = time.time() # image = Image.fromarray(frame) image = Image.fromarray(frame[...,::-1]) #bgr to rgb boxs,class_names = yolo.detect_image(image) features = encoder(frame,boxs) # score to 1.0 here). detections = [Detection(bbox, 1.0, feature) for bbox, feature in zip(boxs, features)] # Run non-maxima suppression. boxes = np.array([d.tlwh for d in detections]) scores =
np.array([d.confidence for d in detections])
numpy.array
# -*- coding: utf-8 -*- """ Created on Wed Mar 18 17:29:25 2020 @author: <NAME> """ import numpy as np import AlgoritmiAlgebraLineare as al # -------- Test del metodo di sostituzione all'indietro ------ print('\n TESTING BACKWARD SUBSTITION') print(' -------------------------------------') print(' Dimension: 5x5') matrix = np.array([[1, 2, 3, 5, 8], [0, 1, 5, 1, 7], [0, 0, 2, 5, 2], [0, 0, 0, 5, 2], [0, 0, 0, 0, 2]]) #Fisso ad uno le soluzioni del sistema xsol = np.ones(5) #Calcolo il vettore dei termini noti b = np.dot(matrix,xsol) #Applico backwardSubstition a matrix e b e mi aspetto #di ritrovare xsol findSol = al.backwardSubstition(matrix, b) print(' Solution of linear system:\n ', findSol) print('\n TESTING BACKWARD SUBSTITION') print(' -------------------------------------') print(' Dimension: 50x50') #Dimensione matrice n = 50 M = 10 #Creo una matrice 50x50 con valori compresi tra 0 e 20 matrix = np.random.random((n, n))*2*M #converto in float tipo dei coefficienti matrix = matrix.astype(float) #trasformo la matrice in una matrice triangolare superiore matrix =
np.triu(matrix)
numpy.triu
################################################################################ # Copyright (c) 2009-2021, National Research Foundation (SARAO) # # Licensed under the BSD 3-Clause License (the "License"); you may not use # this file except in compliance with the License. You may obtain a copy # of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ """Target object used for pointing and flux density calculation.""" from __future__ import print_function, division, absolute_import from builtins import object, range from past.builtins import basestring import numpy as np import ephem from .timestamp import Timestamp from .flux import FluxDensityModel from .ephem_extra import (StationaryBody, NullBody, is_iterable, lightspeed, deg2rad, rad2deg, angle_from_degrees, angle_from_hours) from .conversion import azel_to_enu from .projection import sphere_to_plane, sphere_to_ortho, plane_to_sphere class NonAsciiError(ValueError): """Exception when non-ascii characters are found.""" pass class Target(object): """A target which can be pointed at by an antenna. This is a wrapper around a PyEphem :class:`ephem.Body` that adds flux density, alternate names and descriptive tags. For convenience, a default antenna and flux frequency can be set, to simplify the calling of pointing and flux density methods. These are not stored as part of the target object, however. The object can be constructed from its constituent components or from a description string. The description string contains up to five comma-separated fields, with the format:: <name list>, <tags>, <longitudinal>, <latitudinal>, <flux model> The <name list> contains a pipe-separated list of alternate names for the target, with the preferred name either indicated by a prepended asterisk or assumed to be the first name in the list. The names may contain spaces, and the list may be empty. The <tags> field contains a space-separated list of descriptive tags for the target. The first tag is mandatory and indicates the body type of the target, which should be one of (*azel*, *radec*, *gal*, *tle*, *special*, *star*, *xephem*). The longitudinal and latitudinal fields are only relevant to *azel*, *radec* and *gal* targets, in which case they contain the relevant coordinates. The following angle string formats are supported:: - Decimal, always in degrees (e.g. '12.5') - Sexagesimal, in hours for right ascension and degrees for the rest, with a colon or space separator (e.g. '12:30:00' or '12 30') - Decimal or sexagesimal with explicit unit suffix 'd' or 'h', e.g. '12.5h' (hours, not degrees!) or '12:30d' The <flux model> is a space-separated list of numbers used to represent the flux density of the target. The first two numbers specify the frequency range for which the flux model is valid (in MHz), and the rest of the numbers are model coefficients. The <flux model> may be enclosed in parentheses to distinguish it from the other fields. An example string is:: name1 | *name 2, radec cal, 12:34:56.7, -04:34:34.2, (1000.0 2000.0 1.0) For *special* and *star* body types, only the target name is required. The *special* body name is assumed to be a PyEphem class name, and is typically one of the major solar system objects. Alternatively, it could be "Nothing", which indicates a dummy target with no position (useful as a placeholder but not much else). The *star* name is looked up in the PyEphem star database, which contains a modest list of bright stars. For *tle* bodies, the final field in the description string should contain the three lines of the TLE. If the name list is empty, the target name is taken from the TLE instead. The *xephem* body contains a string in XEphem EDB database format as the final field, with commas replaced by tildes. If the name list is empty, the target name is taken from the XEphem string instead. When specifying a description string, the rest of the target parameters are ignored, except for the default antenna and flux frequency (which do not form part of the description string). Parameters ---------- body : :class:`ephem.Body` object or :class:`Target` object or string Pre-constructed PyEphem Body object to embed in target object, or existing target object or description string tags : list of strings, or whitespace-delimited string, optional Descriptive tags associated with target, starting with its body type aliases : list of strings, optional Alternate names of target flux_model : :class:`FluxDensity` object, optional Object encapsulating spectral flux density model antenna : :class:`Antenna` object, optional Default antenna to use for position calculations flux_freq_MHz : float, optional Default frequency at which to evaluate flux density, in MHz Arguments --------- name : string Name of target Raises ------ ValueError If description string has the wrong format """ def __init__(self, body, tags=None, aliases=None, flux_model=None, antenna=None, flux_freq_MHz=None): if isinstance(body, Target): body = body.description # If the first parameter is a description string, extract the relevant target parameters from it if isinstance(body, basestring): body, tags, aliases, flux_model = construct_target_params(body) self.body = body self.name = self.body.name self.tags = [] self.add_tags(tags) if aliases is None: self.aliases = [] else: self.aliases = aliases self.flux_model = flux_model self.antenna = antenna self.flux_freq_MHz = flux_freq_MHz def __str__(self): """Verbose human-friendly string representation of target object.""" descr = str(self.name) if self.aliases: descr += ' (%s)' % (', '.join(self.aliases),) descr += ', tags=%s' % (' '.join(self.tags),) if 'radec' in self.tags: descr += ', %s %s' % (self.body._ra, self.body._dec) if self.body_type == 'azel': descr += ', %s %s' % (self.body.az, self.body.el) if self.body_type == 'gal': l, b = ephem.Galactic(ephem.Equatorial(self.body._ra, self.body._dec)).get() descr += ', %.4f %.4f' % (rad2deg(l), rad2deg(b)) if self.flux_model is None: descr += ', no flux info' else: descr += ', flux defined for %g - %g MHz' % (self.flux_model.min_freq_MHz, self.flux_model.max_freq_MHz) if self.flux_freq_MHz is not None: flux = self.flux_model.flux_density(self.flux_freq_MHz) if not np.isnan(flux): descr += ', flux=%.1f Jy @ %g MHz' % (flux, self.flux_freq_MHz) return descr def __repr__(self): """Short human-friendly string representation of target object.""" sub_type = (' (%s)' % self.tags[1]) if (self.body_type == 'xephem') and (len(self.tags) > 1) else '' return "<katpoint.Target '%s' body=%s at 0x%x>" % (self.name, self.body_type + sub_type, id(self)) def __reduce__(self): """Custom pickling routine based on description string.""" return (self.__class__, (self.description,)) def __eq__(self, other): """Equality comparison operator.""" return self.description == (other.description if isinstance(other, Target) else other) def __ne__(self, other): """Inequality comparison operator.""" return not (self == other) def __lt__(self, other): """Less-than comparison operator (needed for sorting and np.unique).""" return self.description < (other.description if isinstance(other, Target) else other) def __hash__(self): """Base hash on description string, just like equality operator.""" return hash(self.description) def format_katcp(self): """String representation if object is passed as parameter to KATCP command.""" return self.description def _set_timestamp_antenna_defaults(self, timestamp, antenna): """Set defaults for timestamp and antenna, if they are unspecified. If *timestamp* is None, it is replaced by the current time. If *antenna* is None, it is replaced by the default antenna for the target. Parameters ---------- timestamp : :class:`Timestamp` object or equivalent, or sequence, or None Timestamp(s) in UTC seconds since Unix epoch (None means now) antenna : :class:`Antenna` object, or None Antenna which points at target Returns ------- timestamp : :class:`Timestamp` object or equivalent, or sequence Timestamp(s) in UTC seconds since Unix epoch antenna : :class:`Antenna` object Antenna which points at target Raises ------ ValueError If no antenna is specified, and no default antenna was set either """ if timestamp is None: timestamp = Timestamp() if antenna is None: antenna = self.antenna if antenna is None: raise ValueError('Antenna object needed to calculate target position') return timestamp, antenna @property def body_type(self): """Type of target body, as a string tag.""" return self.tags[0].lower() @property def description(self): """Complete string representation of target object, sufficient to reconstruct it.""" names = ' | '.join([self.name] + self.aliases) tags = ' '.join(self.tags) fluxinfo = self.flux_model.description if self.flux_model is not None else None fields = [names, tags] if self.body_type == 'azel': # Check if it's an unnamed target with a default name if names.startswith('Az:'): fields = [tags] fields += [str(self.body.az), str(self.body.el)] if fluxinfo: fields += [fluxinfo] elif self.body_type == 'radec': # Check if it's an unnamed target with a default name if names.startswith('Ra:'): fields = [tags] fields += [str(self.body._ra), str(self.body._dec)] if fluxinfo: fields += [fluxinfo] elif self.body_type == 'gal': # Check if it's an unnamed target with a default name if names.startswith('Galactic l:'): fields = [tags] l, b = ephem.Galactic(ephem.Equatorial(self.body._ra, self.body._dec)).get() fields += ['%.4f' % (rad2deg(l),), '%.4f' % (rad2deg(b),)] if fluxinfo: fields += [fluxinfo] elif self.body_type == 'tle': # Switch body type to xephem, as XEphem only saves bodies in xephem edb format (no TLE output) tags = tags.replace(tags.partition(' ')[0], 'xephem tle') edb_string = self.body.writedb().replace(',', '~') # Suppress name if it's the same as in the xephem db string edb_name = edb_string[:edb_string.index('~')] if edb_name == names: fields = [tags, edb_string] else: fields = [names, tags, edb_string] elif self.body_type == 'xephem': # Replace commas in xephem string with tildes, to avoid clashing with main string structure # Also remove extra spaces added into string by writedb edb_string = '~'.join([edb_field.strip() for edb_field in self.body.writedb().split(',')]) # Suppress name if it's the same as in the xephem db string edb_name = edb_string[:edb_string.index('~')] if edb_name == names: fields = [tags] fields += [edb_string] return ', '.join(fields) def add_tags(self, tags): """Add tags to target object. This adds tags to a target, while checking the sanity of the tags. It also prevents duplicate tags without resorting to a tag set, which would be problematic since the tag order is meaningful (tags[0] is the body type). Since tags should not contain whitespace, any string consisting of whitespace-delimited words will be split into separate tags. Parameters ---------- tags : string, list of strings, or None Tag or list of tags to add (strings will be split on whitespace) Returns ------- target : :class:`Target` object Updated target object """ if tags is None: tags = [] if isinstance(tags, basestring): tags = [tags] for tag_str in tags: for tag in tag_str.split(): if tag not in self.tags: self.tags.append(tag) return self def azel(self, timestamp=None, antenna=None): """Calculate target (az, el) coordinates as seen from antenna at time(s). Parameters ---------- timestamp : :class:`Timestamp` object or equivalent, or sequence, optional Timestamp(s) in UTC seconds since Unix epoch (defaults to now) antenna : :class:`Antenna` object, optional Antenna which points at target (defaults to default antenna) Returns ------- az : :class:`ephem.Angle` object, or array of same shape as *timestamp* Azimuth angle(s), in radians el : :class:`ephem.Angle` object, or array of same shape as *timestamp* Elevation angle(s), in radians Raises ------ ValueError If no antenna is specified, and no default antenna was set either """ if self.body_type == 'azel': if is_iterable(timestamp): return np.tile(self.body.az, len(timestamp)), np.tile(self.body.el, len(timestamp)) else: return self.body.az, self.body.el timestamp, antenna = self._set_timestamp_antenna_defaults(timestamp, antenna) def _scalar_azel(t): """Calculate (az, el) coordinates for a single time instant.""" antenna.observer.date = Timestamp(t).to_ephem_date() self.body.compute(antenna.observer) return self.body.az, self.body.alt if is_iterable(timestamp): azel = np.array([_scalar_azel(t) for t in timestamp]) return azel[:, 0], azel[:, 1] else: return _scalar_azel(timestamp) def apparent_radec(self, timestamp=None, antenna=None): """Calculate target's apparent (ra, dec) coordinates as seen from antenna at time(s). This calculates the *apparent topocentric position* of the target for the epoch-of-date in equatorial coordinates. Take note that this is *not* the "star-atlas" position of the target, but the position as is actually seen from the antenna at the given times. The difference is on the order of a few arcminutes. These are the coordinates that a telescope with an equatorial mount would use to track the target. Some targets are unable to provide this (due to a limitation of pyephem), notably stationary (*azel*) targets, and provide the *astrometric geocentric position* instead. Parameters ---------- timestamp : :class:`Timestamp` object or equivalent, or sequence, optional Timestamp(s) in UTC seconds since Unix epoch (defaults to now) antenna : :class:`Antenna` object, optional Antenna which points at target (defaults to default antenna) Returns ------- ra : :class:`ephem.Angle` object, or array of same shape as *timestamp* Right ascension, in radians dec : :class:`ephem.Angle` object, or array of same shape as *timestamp* Declination, in radians Raises ------ ValueError If no antenna is specified, and no default antenna was set either """ timestamp, antenna = self._set_timestamp_antenna_defaults(timestamp, antenna) def _scalar_radec(t): """Calculate (ra, dec) coordinates for a single time instant.""" antenna.observer.date = Timestamp(t).to_ephem_date() self.body.compute(antenna.observer) return self.body.ra, self.body.dec if is_iterable(timestamp): radec = np.array([_scalar_radec(t) for t in timestamp]) return radec[:, 0], radec[:, 1] else: return _scalar_radec(timestamp) def astrometric_radec(self, timestamp=None, antenna=None): """Calculate target's astrometric (ra, dec) coordinates as seen from antenna at time(s). This calculates the J2000 *astrometric geocentric position* of the target, in equatorial coordinates. This is its star atlas position for the epoch of J2000. Parameters ---------- timestamp : :class:`Timestamp` object or equivalent, or sequence, optional Timestamp(s) in UTC seconds since Unix epoch (defaults to now) antenna : :class:`Antenna` object, optional Antenna which points at target (defaults to default antenna) Returns ------- ra : :class:`ephem.Angle` object, or array of same shape as *timestamp* Right ascension, in radians dec : :class:`ephem.Angle` object, or array of same shape as *timestamp* Declination, in radians Raises ------ ValueError If no antenna is specified, and no default antenna was set either """ if self.body_type == 'radec': # Convert to J2000 equatorial coordinates original_radec = ephem.Equatorial(self.body._ra, self.body._dec, epoch=self.body._epoch) ra, dec = ephem.Equatorial(original_radec, epoch=ephem.J2000).get() if is_iterable(timestamp): return np.tile(ra, len(timestamp)), np.tile(dec, len(timestamp)) else: return ra, dec timestamp, antenna = self._set_timestamp_antenna_defaults(timestamp, antenna) def _scalar_radec(t): """Calculate (ra, dec) coordinates for a single time instant.""" antenna.observer.date = Timestamp(t).to_ephem_date() self.body.compute(antenna.observer) return self.body.a_ra, self.body.a_dec if is_iterable(timestamp): radec = np.array([_scalar_radec(t) for t in timestamp]) return radec[:, 0], radec[:, 1] else: return _scalar_radec(timestamp) # The default (ra, dec) coordinates are the astrometric ones radec = astrometric_radec def galactic(self, timestamp=None, antenna=None): """Calculate target's galactic (l, b) coordinates as seen from antenna at time(s). This calculates the galactic coordinates of the target, based on the J2000 *astrometric* equatorial coordinates. This is its position relative to the Galactic reference frame for the epoch of J2000. Parameters ---------- timestamp : :class:`Timestamp` object or equivalent, or sequence, optional Timestamp(s) in UTC seconds since Unix epoch (defaults to now) antenna : :class:`Antenna` object, optional Antenna which points at target (defaults to default antenna) Returns ------- l : :class:`ephem.Angle` object, or array of same shape as *timestamp* Galactic longitude, in radians b : :class:`ephem.Angle` object, or array of same shape as *timestamp* Galactic latitude, in radians Raises ------ ValueError If no antenna is specified, and no default antenna was set either """ if self.body_type == 'gal': l, b = ephem.Galactic(ephem.Equatorial(self.body._ra, self.body._dec)).get() if is_iterable(timestamp): return np.tile(l, len(timestamp)), np.tile(b, len(timestamp)) else: return l, b ra, dec = self.astrometric_radec(timestamp, antenna) if is_iterable(ra): lb = np.array([ephem.Galactic(ephem.Equatorial(ra[n], dec[n])).get() for n in range(len(ra))]) return lb[:, 0], lb[:, 1] else: return ephem.Galactic(ephem.Equatorial(ra, dec)).get() def parallactic_angle(self, timestamp=None, antenna=None): """Calculate parallactic angle on target as seen from antenna at time(s). This calculates the *parallactic angle*, which is the position angle of the observer's vertical on the sky, measured from north toward east. This is the angle between the great-circle arc connecting the celestial North pole to the target position, and the great-circle arc connecting the zenith above the antenna to the target, or the angle between the *hour circle* and *vertical circle* through the target, at the given timestamp(s). Parameters ---------- timestamp : :class:`Timestamp` object or equivalent, or sequence, optional Timestamp(s) in UTC seconds since Unix epoch (defaults to now) antenna : :class:`Antenna` object, optional Antenna which points at target (defaults to default antenna) Returns ------- parangle : float, or array of same shape as *timestamp* Parallactic angle, in radians Raises ------ ValueError If no antenna is specified, and no default antenna was set either Notes ----- The formula can be found in the `AIPS++ glossary`_ or in the SLALIB source code (file pa.f, function sla_PA) which is part of the now defunct `Starlink project`_. .. _`AIPS++ Glossary`: http://www.astron.nl/aips++/docs/glossary/p.html .. _`Starlink Project`: http://www.starlink.rl.ac.uk """ timestamp, antenna = self._set_timestamp_antenna_defaults(timestamp, antenna) # Get apparent hour angle and declination ra, dec = self.apparent_radec(timestamp, antenna) ha = antenna.local_sidereal_time(timestamp) - ra return np.arctan2(np.sin(ha), np.tan(antenna.observer.lat) * np.cos(dec) - np.sin(dec) * np.cos(ha)) def geometric_delay(self, antenna2, timestamp=None, antenna=None): """Calculate geometric delay between two antennas pointing at target. An incoming plane wavefront travelling along the direction from the target to the reference antenna *antenna* arrives at this antenna at the given timestamp(s), and *delay* seconds later (or earlier, if *delay* is negative) at the second antenna, *antenna2*. This delay is known as the *geometric delay*, also represented by the symbol :math:`\tau_g`, and is associated with the *baseline* vector from the reference antenna to the second antenna. Additionally, the rate of change of the delay at the given timestamp(s) is estimated from the change in delay during a short interval spanning the timestamp(s). Parameters ---------- antenna2 : :class:`Antenna` object Second antenna of baseline pair (baseline vector points toward it) timestamp : :class:`Timestamp` object or equivalent, or sequence, optional Timestamp(s) in UTC seconds since Unix epoch (defaults to now) antenna : :class:`Antenna` object, optional First (reference) antenna of baseline pair, which also serves as pointing reference (defaults to default antenna) Returns ------- delay : float, or array of same shape as *timestamp* Geometric delay, in seconds delay_rate : float, or array of same shape as *timestamp* Rate of change of geometric delay, in seconds per second Raises ------ ValueError If no reference antenna is specified and no default antenna was set Notes ----- This is a straightforward dot product between the unit vector pointing from the reference antenna to the target, and the baseline vector pointing from the reference antenna to the second antenna, all in local ENU coordinates relative to the reference antenna. """ timestamp, antenna = self._set_timestamp_antenna_defaults(timestamp, antenna) # Obtain baseline vector from reference antenna to second antenna baseline_m = antenna.baseline_toward(antenna2) # Obtain direction vector(s) from reference antenna to target az, el = self.azel(timestamp, antenna) targetdir = azel_to_enu(az, el) # Dot product of vectors is w coordinate, and delay is time taken by EM wave to traverse this delay = - np.dot(baseline_m, targetdir) / lightspeed # Numerically estimate delay rate from difference across 1-second interval spanning timestamp(s) targetdir_before = azel_to_enu(*self.azel(np.array(timestamp) - 0.5, antenna)) targetdir_after = azel_to_enu(*self.azel(np.array(timestamp) + 0.5, antenna)) delay_rate = - (np.dot(baseline_m, targetdir_after) -
np.dot(baseline_m, targetdir_before)
numpy.dot
import numpy as np import matplotlib.pyplot as plt import stanpy as stp np.set_printoptions(precision=5, linewidth=500) def assembly(*s_list, deg_freedom=3): number_elements = len(s_list) nodes = np.zeros((2 * number_elements, 3)) nodes[0::2, :] = np.array([s["Xi"] for s in s_list]).astype(int) nodes[1::2, :] = np.array([s["Xk"] for s in s_list]).astype(int) global_nodes = np.unique(nodes, axis=0) num_global_nodes = global_nodes.shape[0] indices = (np.arange(num_global_nodes) * deg_freedom).astype(int) a = np.zeros((number_elements, 2, num_global_nodes)) a_full = np.zeros((number_elements, 2 * deg_freedom, num_global_nodes * deg_freedom)) for i, node in enumerate(nodes.reshape(number_elements, -1, 3)): a[i, 0] = (global_nodes == node[0]).all(axis=1).astype(int) a[i, 1] = (global_nodes == node[1]).all(axis=1).astype(int) mask = a[i, 0] == 1 a_full[i, 0:deg_freedom, indices[mask].item() : indices[mask].item() + deg_freedom] = np.eye( deg_freedom, deg_freedom ) mask = a[i, 1] == 1 a_full[ i, deg_freedom : 2 * deg_freedom, indices[mask].item() : indices[mask].item() + deg_freedom, ] = np.eye(deg_freedom, deg_freedom) return a_full # def assembly_univ(*elements, deg_freedom=3): # number_elements = len(elements) # nodes = np.zeros((2 * number_elements, 3)) # 3Dimensional # nodes[0::2, :] = np.array([s["Xi"] for s in elements]) # nodes[1::2, :] = np.array([s["Xk"] for s in elements]) # global_nodes = np.unique(nodes, axis=0) # num_global_nodes = global_nodes.shape[0] # indices = (np.arange(num_global_nodes) * deg_freedom).astype(int) # a = np.zeros((number_elements, 2, num_global_nodes)) # a_full = np.zeros((number_elements, 2 * deg_freedom, num_global_nodes * deg_freedom)) # for i, node in enumerate(nodes.reshape(number_elements, -1, 3)): # a[i, 0] = (global_nodes == node[0]).all(axis=1).astype(int) # a[i, 1] = (global_nodes == node[1]).all(axis=1).astype(int) # mask = a[i, 0] == 1 # a_full[i, 0:deg_freedom, indices[mask].item() : indices[mask].item() + deg_freedom] = np.eye( # deg_freedom, deg_freedom # ) # mask = a[i, 1] == 1 # a_full[ # i, # deg_freedom : 2 * deg_freedom, # indices[mask].item() : indices[mask].item() + deg_freedom, # ] = np.eye(deg_freedom, deg_freedom) # return a_full def element_stiffness_matrix(**s): R = rotation_matrix(**s) vec_i = np.array(s["Xi"]) vec_k = np.array(s["Xk"]) vec_R = vec_k - vec_i QeT = np.array([[1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]]).dot(R) l = np.linalg.norm(vec_R).item() K = s["EA"] / l * QeT.T.dot(np.array([[1, -1], [-1, 1]])).dot(QeT) return K def system_stiffness_matrix(*s_list): a = assembly(*s_list) K = a[0].T.dot(element_stiffness_matrix(**s_list[0])).dot(a[0]) for i, s in enumerate(s_list): if i == 0: pass else: K += a[i].T.dot(element_stiffness_matrix(**s_list[i])).dot(a[i]) K[0, :] = 0 diag = np.copy(np.diag(K)) diag[diag == 0] = 1 np.fill_diagonal(K, diag) return K def rotation_matrix(**s): vec_i = np.array(s["Xi"]) vec_k = np.array(s["Xk"]) vec_R = vec_k - vec_i norm_R = np.linalg.norm(vec_R) theta = np.radians(90) c, s = np.cos(theta), np.sin(theta) rot_mat = np.array(((c, -s, 0), (s, c, 0), (0, 0, 1))) e1 = vec_R / norm_R e2 = rot_mat.dot(e1) e3 = np.cross(e1, e2) e_global = np.eye(3, 3) R = np.zeros((6, 6)) R[0, :3] = e1.dot(e_global) R[1, :3] = e2.dot(e_global) R[2, :3] = e3.dot(e_global) R[3, 3:] = e1.dot(e_global) R[4, 3:] = e2.dot(e_global) R[5, 3:] = e3.dot(e_global) return R def cosine_alpha(nod): pass if __name__ == "__main__": L = 1 roller = {"w": 0, "M": 0, "H": 0} hinged = {"w": 0, "M": 0} node1 = (0, 0, 0) node2 = (L, 0, 0) node3 = (2 * L, 0, 0) node4 = (3 * L, 0, 0) s1 = {"EA": 1, "Xi": node1, "Xk": node2, "bc_i": hinged} s2 = {"EA": 1, "Xi": node2, "Xk": node3, "bc_i": roller} s3 = {"EA": 1, "Xi": node3, "Xk": node4, "bc_i": roller, "bc_k": roller} s = [s1, s2, s3] R = rotation_matrix(**s1) K = system_stiffness_matrix(*s) P =
np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0])
numpy.array
""" Matrix profile anomaly detection. Reference: <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>. (2016, December). Matrix profile I: all pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets. In Data Mining (ICDM), 2016 IEEE 16th International Conference on (pp. 1317-1322). IEEE. """ # Authors: <NAME>, 2018. import math import numpy as np import pandas as pd import scipy.signal as sps from tqdm import tqdm from .BaseDetector import BaseDetector # ------------- # CLASSES # ------------- class MatrixProfileAD(BaseDetector): """ Anomaly detection in time series using the matrix profile Parameters ---------- m : int (default=10) Window size. contamination : float (default=0.1) Estimate of the expected percentage of anomalies in the data. Comments -------- - This only works on time series data. """ def __init__(self, m=10, contamination=0.1, tol=1e-8, verbose=False): super(MatrixProfileAD, self).__init__() self.m = int(m) self.contamination = float(contamination) self.tol = float(tol) self.verbose = bool(verbose) def ab_join(self, T, split): """ Compute the ABjoin and BAjoin side-by-side, where `split` determines the splitting point. """ # algorithm options excZoneLen = int(np.round(self.m * 0.5)) radius = 1.1 dataLen = len(T) proLen = dataLen - self.m + 1 # change Nan and Inf to zero T = np.nan_to_num(T) # precompute the mean, standard deviation s = pd.Series(T) dataMu = s.rolling(self.m).mean().values[self.m-1:dataLen] dataSig = s.rolling(self.m).std().values[self.m-1:dataLen] matrixProfile = np.ones(proLen) * np.inf idxOrder = excZoneLen + np.arange(0, proLen, 1) idxOrder = idxOrder[np.random.permutation(len(idxOrder))] # construct the matrixprofile for i, idx in enumerate(idxOrder): # query query = T[idx:idx+self.m-1] # distance profile distProfile = self._diagonal_dist(T, idx, dataLen, self.m, proLen, dataMu, dataSig) distProfile = abs(distProfile) distProfile = np.sqrt(distProfile) # position magic pos1 = np.arange(idx, proLen, 1) pos2 = np.arange(0, proLen-idx+1, 1) # split magic distProfile = distProfile[np.where((pos2 <= split) & (pos1 > split))[0]] pos1Split = pos1[np.where((pos2 <= split) & (pos1 > split))[0]] pos2Split = pos2[np.where((pos2 <= split) & (pos1 > split))[0]] pos1 = pos1Split pos2 = pos2Split # update magic updatePos = np.where(matrixProfile[pos1] > distProfile)[0] matrixProfile[pos1[updatePos]] = distProfile[updatePos] updatePos = np.where(matrixProfile[pos2] > distProfile)[0] matrixProfile[pos2[updatePos]] = distProfile[updatePos] return matrixProfile def fit_predict(self, T): """ Fit the model to the time series T. :param T : np.array(), shape (n_samples) The time series data for which to compute the matrix profile. :returns y_score : np.array(), shape (n_samples) Anomaly score for the samples in T. :returns y_pred : np.array(), shape (n_samples) Returns -1 for inliers and +1 for anomalies/outliers. """ return self.fit(np.array([])).predict(T) def fit(self, T=np.array([])): """ Fit the model to the time series T. :param T : np.array(), shape (n_samples) The time series data for which to compute the matrix profile. :returns self : object """ self.T_train = T return self def predict(self, T=
np.array([])
numpy.array
# <NAME> # python 3.7 """ To calculate the extremes of the carbon fluxes based on carbon flux anomalies in gC. The code is fairly flexible to pass multiple filters to the code. Output: * Saving the binarys of extremes * Saving the TCE binaries at multiple lags [0-4 months) """ import os import netCDF4 as nc4 import numpy as np import pandas as pd import datetime as dt import seaborn as sns import argparse from scipy import stats from functions import time_dim_dates, index_and_dates_slicing, norm, geo_idx, patch_with_gaps_and_eventsize """ Arguments to input while running the python file --percentile (-per) : percentile under consideration looking at the negative/positive tail of gpp events: {eg.1,5,10,90,95,99} --th_type : Thresholds can be computed at each tail i.e. 'ind' or 'common'. 'common' means that total number of events greater that the modulus of anomalies represent 'per' percentile --sources (-src) : the models that you want to analyze, separated by hyphens or 'all' for all the models --variable (-var) : the variable to analyze gpp/nep/npp/nbp --window (wsize) : time window size in years # Running: run calc_extremes.py -src cesm -var gpp """ print ("Last edit on May 08, 2020") # The abriviation of the models that will be analyzed: source_code = { 'cesm' : 'CESM2', 'can' : 'CanESM5', 'ipsl' : 'IPSL-CM6A-LR', 'bcc' : 'BCC-CSM2-MR', 'cnrn-e': 'CNRM-ESM2-1', 'cnrn-c': 'CNRM-CM6-1' } parser = argparse.ArgumentParser() parser.add_argument('--percentile' ,'-per' , help = "Threshold Percentile?" , type= int, default= 5 ) parser.add_argument('--th_type' ,'-th' , help = "Threshold Percentile?" , type= str, default= 'common' ) parser.add_argument('--sources' ,'-src' , help = "Which model(s) to analyse?" , type= str, default= 'all' ) parser.add_argument('--variable' ,'-var' , help = "variable? gpp/npp/nep/nbp,,,," , type= str, default= 'gpp' ) parser.add_argument('--window' ,'-wsize' , help = "window size (25 years)?" , type= int, default= 25 ) args = parser.parse_args() # The inputs: per = int (args.percentile) th_type = str (args.th_type) src = str (args.sources) variable_run= str (args.variable) window = int (args.window) # Model(s) to analyze: # -------------------- source_selected = [] if len(src.split('-')) >1: source_selected = src.split('-') elif src in ['all', 'a']: source_selected = list(source_code.values() ) elif len(src.split('-')) == 1: if src in source_code.keys(): source_selected = [source_code[src]] else: print (" Enter a valid source id") #running : run calc_extremes.py -per 5 -var nbp -src cesm # Reading the dataframe of the selected files # ------------------------------------------- cori_scratch = '/global/cscratch1/sd/bharat/' # where the anomalies per slave rank are saved in_path = '/global/homes/b/bharat/results/data_processing/' # to read the filters #cmip6_filepath_head = '/global/homes/b/bharat/cmip6_data/CMIP6/' cmip6_filepath_head = '/global/cfs/cdirs/m3522/cmip6/CMIP6/' #web_path = '/project/projectdirs/m2467/www/bharat/' web_path = '/global/homes/b/bharat/results/web/' # exp is actually 'historical + ssp585' but saved as 'ssp585' exp = 'ssp585' # Common members per model # ------------------------ common_members = {} for source_run in source_selected: common_members [source_run] = pd.read_csv (cori_scratch + 'add_cmip6_data/common_members/%s_%s_common_members.csv'%(source_run,exp), header=None).iloc[:,0] # The spreadsheet with all the available data of cmip 6 # ----------------------------------------------------- df_files = pd.read_csv(in_path + 'df_data_selected.csv') temp = df_files.copy(deep = True) # Saving the path of area and lf filepath_areacella = {} filepath_sftlf = {} for s_idx, source_run in enumerate(source_selected): filters = (temp['source_id'] == source_run) & (temp['variable_id'] == variable_run) # original Variable filters_area = (temp['source_id'] == source_run) & (temp['variable_id'] == 'areacella') # areacella filters_lf = (temp['source_id'] == source_run) & (temp['variable_id'] == 'sftlf') # land fraction #passing the filters to the dataframe df_tmp = temp[filters] df_tmp_area = temp[filters_area] df_tmp_lf = temp[filters_lf] for member_run in common_members [source_run]: if source_run == 'BCC-CSM2-MR': filepath_area = "/global/homes/b/bharat/extra_cmip6_data/areacella_fx_BCC-CSM2-MR_hist-resIPO_r1i1p1f1_gn.nc" filepath_lf = "/global/homes/b/bharat/extra_cmip6_data/sftlf_fx_BCC-CSM2-MR_hist-resIPO_r1i1p1f1_gn.nc" else: filters_area = (temp['variable_id'] == 'areacella') & (temp['source_id'] == source_run) filters_lf = (temp['variable_id'] == 'sftlf') & (temp['source_id'] == source_run) filepath_area = cmip6_filepath_head + "/".join(np.array(temp[filters_area].iloc[-1])) filepath_lf = cmip6_filepath_head + "/".join(np.array(temp[filters_lf].iloc[-1])) filepath_areacella [source_run] = filepath_area filepath_sftlf [source_run] = filepath_lf # Extracting the area and land fractions of different models # ========================================================== data_area = {} data_lf = {} for source_run in source_selected: data_area [source_run] = nc4.Dataset (filepath_areacella[source_run]) . variables['areacella'] data_lf [source_run] = nc4.Dataset (filepath_sftlf [source_run]) . variables['sftlf'] # Saving the paths of anomalies # hier. : source_id > member_id # ------------------------------------ paths = {} for source_run in source_selected: paths[source_run] = {} for source_run in source_selected: for member_run in common_members [source_run]: saved_ano = cori_scratch + 'add_cmip6_data/%s/%s/%s/%s/'%(source_run,exp,member_run,variable_run) paths[source_run][member_run] = saved_ano del saved_ano # Reading and saving the data: # ---------------------------- nc_ano = {} for source_run in source_selected: nc_ano[source_run] = {} for source_run in source_selected: for member_run in common_members [source_run]: nc_ano[source_run][member_run] = nc4.Dataset(paths[source_run][member_run] + '%s_%s_%s_%s_anomalies_gC.nc'%(source_run,exp,member_run,variable_run)) # Arranging Time Array for plotting and calling # -------------------------------------------- win_len = 12 * window #number of months in window years total_years = 251 #years from 1850 to 2100 total_months= total_years * 12 dates_ar = time_dim_dates( base_date = dt.date(1850,1,1), total_timestamps = 3012 ) start_dates = np.array( [dates_ar[i*win_len] for i in range(int(total_months/win_len))]) #list of start dates of 25 year window end_dates = np.array( [dates_ar[i*win_len+win_len -1] for i in range(int(total_months/win_len))]) #list of end dates of the 25 year window idx_yr_2100 = 3012 # upper open index 2100 from the year 1850 if the data is monthly i.e. for complete TS write ts[:3012] idx_yr_2014 = 1980 # upper open index 2014 from the year 1850 if the data is monthly i.e. for complete TS write ts[:1980] idx_yr_2099 = 3000 # upper open index 2099 from the year 1850 if the data is monthly i.e. for complete TS write ts[:3000] # Initiation: # ----------- def TS_Dates_and_Index (dates_ar = dates_ar,start_dates = start_dates, end_dates=end_dates ): """ Returns the TS of the dates and index of consecutive windows of len 25 years Parameters: ----------- dates_ar : an array of dates in datetime.date format the dates are chosen from this array start_dates: an array of start dates, the start date will decide the dates and index of the first entry for final time series for that window end_dates: similar to start_dates but for end date Returns: -------- dates_win: a 2-d array with len of start dates/ total windows and each row containing the dates between start and end date idx_dates_win : a 2-d array with len of start dates/ total windows and each row containing the index of dates between start and end date """ idx_dates_win = [] #indicies of time in 25yr windows dates_win = [] #sel dates from time variables in win_len windows for i in range(len(start_dates)): idx_loc, dates_loc = index_and_dates_slicing(dates_ar,start_dates[i],end_dates[i]) # see functions.py idx_dates_win . append (idx_loc) dates_win . append (dates_loc) return np.array(dates_win), np.array(idx_dates_win) # Calling the function "ts_dates_and_index"; Universal for rest of the code dates_win, idx_dates_win = TS_Dates_and_Index () # The saving the results in a dictionary # -------------------------------------- Results = {} for source_run in source_selected: Results[source_run] = {} for member_run in common_members [source_run]: Results[source_run][member_run] = {} # Calculation of thresholds (rth percentile at each tail): # ------------------------------------------------------------ def Threshold_and_Binary_Ar(data = nc_ano[source_run][member_run].variables[variable_run][...], per = per): """ In this method the 1 percentile threshold is calculated are both tails of the pdf of anomalies... i.e. the same number of values are selected on either tails. returns the global percentile based thresholds and binary arrays of consecutive windows Parameters: ----------- data : The anomalies whose threshold you want to calculate Universal: --------- start_dates, idx_dates_win, per Returns: -------- threshold_neg: the threshold for negative extremes; size = # windows threshold_pos: the threshold for positive extremes; size = # windows bin_ext_neg: the binary array 1's are extremes based on the threshold_neg; shape = same as data bin_ext_pos: the binary array 1's are extremes based on the threshold_pos; shape = same as data """ thresholds_1= [] #thresholds for consecutive windows of defined size for a 'per' percentile thresholds_2= [] #thresholds for consecutive windows of defined size for a '100-per' percentile bin_ext_neg = np.ma.zeros((data.shape)) #3d array to capture the True binaray extmalies w.r.t. gpp loss events bin_ext_pos = np.ma.zeros((data.shape)) #3d array to capture the True binaray extmalies w.r.t. gpp gain events for i in range(len(start_dates)): ano_loc = data[idx_dates_win[i][0]:idx_dates_win[i][-1]+1,:,:] threshold_loc_1 = np.percentile(ano_loc[ano_loc.mask == False],per) # calculation of threshold for the local anomalies thresholds_1 . append(threshold_loc_1) threshold_loc_2 = np.percentile(ano_loc[ano_loc.mask == False],(100-per)) thresholds_2 . append(threshold_loc_2) # Binary arrays: if per <=50: bin_ext_neg[idx_dates_win[i][0]:idx_dates_win[i][-1]+1,:,:] = ano_loc < threshold_loc_1 bin_ext_pos[idx_dates_win[i][0]:idx_dates_win[i][-1]+1,:,:] = ano_loc > threshold_loc_2 else: bin_ext_pos[idx_dates_win[i][0]:idx_dates_win[i][-1]+1,:,:] = ano_loc > threshold_loc_1 bin_ext_neg[idx_dates_win[i][0]:idx_dates_win[i][-1]+1,:,:] = ano_loc < threshold_loc_2 # Thresholds for consecutive windows: if per < 50: threshold_neg = np.ma.array(thresholds_1) threshold_pos = np.ma.array(thresholds_2) elif per > 50: threshold_neg = np.ma.array(thresholds_2) threshold_pos = np.ma.array(thresholds_1) return threshold_neg, threshold_pos, bin_ext_neg, bin_ext_pos # Calculation of thresholds (rth percentile combines for both tails): # ------------------------------------------------------------ def Threshold_and_Binary_Ar_Common(data = nc_ano[source_run][member_run].variables[variable_run][...], per = per ): """ In this method the rth percentile threshold is calculated at sum of both tails of the pdf of anomalies... i.e. total number of elements on left and right tail make up for rth percentile (jakob 2014, anex A2)... This can be done by taking a modulus of anomalies and then calcuate the rth percentile th = q Negative extremes: anomalies < -q Positive extremes: anomalies > q Returns the global percentile based thresholds and binary arrays of consecutive windows Parameters: ----------- data : The anomalies whose threshold you want to calculate Universal: --------- start_dates, idx_dates_win, per Returns: -------- threshold_neg: the threshold for negative extremes; size = # windows threshold_pos: the threshold for positive extremes; size = # windows bin_ext_neg: the binary array 1's are extremes based on the threshold_neg; shape = same as data bin_ext_pos: the binary array 1's are extremes based on the threshold_pos; shape = same as data """ thresholds_p= [] #thresholds for consecutive windows of defined size for a 'per' percentile thresholds_n= [] #thresholds for consecutive windows of defined size for a '100-per' percentile bin_ext_neg = np.ma.zeros((data.shape)) #3d array to capture the True binaray extmalies w.r.t. gpp loss events bin_ext_pos = np.ma.zeros((data.shape)) #3d array to capture the True binaray extmalies w.r.t. gpp gain events assert per <50, "Percentile must be less than 50" for i in range(len(start_dates)): ano_loc = data[idx_dates_win[i][0]:idx_dates_win[i][-1]+1,:,:] threshold_loc = np.percentile(np.abs(ano_loc[ano_loc.mask == False]), (100-per) ) # calculation of threshold for the local anomalies # The (100-per) is used because after taking the modulus negative extremes fall along positive on the right hand thresholds_p . append(threshold_loc) thresholds_n . append(-threshold_loc) # Binary arrays: # -------------- bin_ext_neg[idx_dates_win[i][0]:idx_dates_win[i][-1]+1,:,:] = ano_loc < -threshold_loc bin_ext_pos[idx_dates_win[i][0]:idx_dates_win[i][-1]+1,:,:] = ano_loc > threshold_loc # Thresholds for consecutive windows: # ----------------------------------- threshold_neg = np.ma.array(thresholds_n) threshold_pos = np.ma.array(thresholds_p) return threshold_neg, threshold_pos, bin_ext_neg, bin_ext_pos limits = {} limits ['min'] = {} limits ['max'] = {} limits ['min']['th_pos'] = 0 limits ['max']['th_pos'] = 0 limits ['min']['th_neg'] = 0 limits ['max']['th_neg'] = 0 p =0 for source_run in source_selected: for member_run in common_members [source_run]: p = p+1 # threshold at each tail if th_type == 'ind': A,B,C,D = Threshold_and_Binary_Ar(data = nc_ano[source_run][member_run].variables[variable_run][...], per = per ) if th_type == 'common': A,B,C,D = Threshold_and_Binary_Ar_Common(data = nc_ano[source_run][member_run].variables[variable_run][...], per = per ) Results[source_run][member_run]['th_neg'] = A Results[source_run][member_run]['th_pos'] = B Results[source_run][member_run]['bin_ext_neg'] = C Results[source_run][member_run]['bin_ext_pos'] = D Results[source_run][member_run]['ts_th_neg'] = np.array([np.array([A[i]]*win_len) for i in range(len(A))]).flatten() Results[source_run][member_run]['ts_th_pos'] = np.array([np.array([B[i]]*win_len) for i in range(len(B))]).flatten() # Checking if p%3 == 0: print ("Calculating Thresholds ......") elif p%3 == 1: print ("Calculating Thresholds ....") else: print ("Calculating Thresholds ..") del A,B,C,D # Saving the binary data # ---------------------- save_binary_common = 'n' if save_binary_common in ['y','yy','Y','yes']: """ To save the binary matrix of the so that the location and duration of the extremes can be identified. If you want to save the binary matrix of extremes as nc files this was done so that this coulld be used as input the attribution analysis """ for source_run in source_selected: for member_run in common_members [source_run]: path_TCE = cori_scratch + 'add_cmip6_data/%s/%s/%s/%s_TCE/'%(source_run,exp,member_run,variable_run) # Check if the directory 'path_TCE' already exists? If not, then create one: if os.path.isdir(path_TCE) == False: os.makedirs(path_TCE) for ext_type in ['neg','pos']: print("Saving the binary matrix for %s,%s,%s"%(source_run,member_run,ext_type)) with nc4.Dataset( path_TCE + '%s_%s_bin_%s.nc'%(source_run,member_run,ext_type), mode = 'w') as dset: dset .createDimension( "time" ,size = nc_ano[source_run][member_run].variables['time'].size) dset .createDimension( "lat" ,size = nc_ano[source_run][member_run].variables['lat'].size) dset .createDimension( "lon" ,size = nc_ano[source_run][member_run].variables['lon'].size) t = dset.createVariable(varname = "time" ,datatype = float, dimensions = ("time"), fill_value = 1e+36) x = dset.createVariable(varname = "lon" ,datatype = float, dimensions = ("lon") , fill_value = 1e+36) y = dset.createVariable(varname = "lat" ,datatype = float, dimensions = ("lat") , fill_value = 1e+36) z = dset.createVariable(varname = variable_run +'_bin' ,datatype = float, dimensions = ("time","lat","lon"),fill_value = 1e+36) #varible = gpp_bin_ext t.axis = "T" x.axis = "X" y.axis = "Y" t[...] = nc_ano[source_run][member_run].variables['time'] [...] x[...] = nc_ano[source_run][member_run].variables['lon'][...] y[...] = nc_ano[source_run][member_run].variables['lat'][...] z[...] = Results[source_run][member_run]['bin_ext_%s'%ext_type] z.missing_value = 1e+36 z.stardard_name = variable_run+" binarys for %s extremes based on %dth percentile"%(ext_type,per) z.units = "0,1" x.units = nc_ano[source_run][member_run].variables['lon'].units x.missing_value = 1e+36 x.setncattr ("standard_name",nc_ano[source_run][member_run].variables['lon'].standard_name) y.units = nc_ano[source_run][member_run].variables['lat'].units y.missing_value = 1e+36 y.setncattr ("standard_name",nc_ano[source_run][member_run].variables['lat'].standard_name) t.units = nc_ano[source_run][member_run].variables['time'].units t.setncattr ("calendar", nc_ano[source_run][member_run].variables['time'].calendar) t.setncattr ("standard_name", nc_ano[source_run][member_run].variables['time'].standard_name) t.missing_value = 1e+36 # TCE: Calculations: # ------------------ lags_TCE = np.asarray([0,1,2,3,4], dtype = int) def Binary_Mat_TCE_Win (bin_ar, win_start_year=2000,lags = lags_TCE, land_frac= data_lf [source_run]): """ Aim: ---- To save the binary matrix of the Time Continuous Extremes(TCEs) so that the location and duration of the extremes can be identified. Returns: -------- bin_TCE_01s: are the binary values of extreme values in a TCE only at qualified locations with gaps ( actual as value 0) [hightlight extreme values] bin_TCE_1s : are the binary values of extreme values in a TCE only at qualified locations with gaps ( 0 replaced with value 1) [selecting full TCE with only 1s] bin_TCE_len : are the len of TCE extreme events, the length of TCE is captured at the trigger locations shape : These matrix are of shape (5,300,192,288) i.e. lags(0-4 months), time(300 months or 25 years {2000-24}), lat(192) and lon(288). """ from functions import create_seq_mat for i,date in enumerate(start_dates): if date.year in [win_start_year]: start_yr_idx = i data = bin_ar[start_yr_idx*win_len: (start_yr_idx+1)*win_len] del bin_ar bin_TCE_1s = np.ma.zeros((len(lags), data.shape[0],data.shape[1],data.shape[2])) bin_TCE_01s = np.ma.zeros((len(lags), data.shape[0],data.shape[1],data.shape[2])) bin_TCE_len = np.ma.zeros((len(lags), data.shape[0],data.shape[1],data.shape[2])) for lag in lags: for lat_i in range( data.shape[1] ): for lon_i in range( data.shape[2] ): if land_frac[...][lat_i,lon_i] != 0: #print lag, lat_i, lon_i try: tmp = patch_with_gaps_and_eventsize (data[:,lat_i,lon_i], max_gap =2, min_cont_event_size=3, lag=lag) for idx, trig in enumerate (tmp[1]): bin_TCE_01s [lag, trig:trig+len(tmp[0][idx]), lat_i, lon_i] = tmp[0][idx] bin_TCE_1s [lag, trig:trig+len(tmp[0][idx]), lat_i, lon_i] = np.ones(tmp[0][idx].shape) bin_TCE_len [lag, trig, lat_i, lon_i] = np.sum(np.ones(tmp[0][idx].shape)) except: bin_TCE_01s[lag, :, lat_i, lon_i] = np.ma.masked_all(data.shape[0]) bin_TCE_1s [lag, :, lat_i, lon_i] = np.ma.masked_all(data.shape[0]) bin_TCE_len[lag, :, lat_i, lon_i] = np.ma.masked_all(data.shape[0]) else: bin_TCE_01s[lag, :, lat_i, lon_i] = np.ma.masked_all(data.shape[0]) bin_TCE_1s [lag, :, lat_i, lon_i] = np.ma.masked_all(data.shape[0]) bin_TCE_len[lag, :, lat_i, lon_i] = np.ma.masked_all(data.shape[0]) return bin_TCE_01s, bin_TCE_1s, bin_TCE_len all_win_start_years = np.arange(1850,2100,25) # To do TCE analysis for all windows win_start_years = np.arange(1850,2100,25) # To check only for win starting at 2000 #win_start_years = [2000] # Testing with the year 2000-24 dataset first save_TCE_binary = 'n' if save_TCE_binary in ['y','yy','Y','yes']: """ To save the binary matrix of the Time Continuous Extremes(TCEs) so that the location and duration of the extremes can be identified. If you want to save the binary matrix of extremes as nc files this was done so that this coulld be used as input the attribution analysis """ for start_yr in win_start_years: win_idx = np.where( all_win_start_years == start_yr)[0][0] for source_run in source_selected: for member_run in common_members [source_run]: Binary_Data_TCE = {} # Dictionary to save negative and positive Binary TCEs Binary_Data_TCE ['neg'] = {} Binary_Data_TCE ['pos'] = {} bin_neg = Results[source_run][member_run]['bin_ext_neg'] bin_pos = Results[source_run][member_run]['bin_ext_pos'] # Starting with Negative TCEs first # --------------------------------- Binary_Data_TCE ['neg']['bin_TCE_01s'], Binary_Data_TCE ['neg']['bin_TCE_1s'], Binary_Data_TCE ['neg']['bin_TCE_len'] = Binary_Mat_TCE_Win (bin_ar = bin_neg, win_start_year = start_yr,lags = lags_TCE, land_frac= data_lf [source_run]) Binary_Data_TCE ['pos']['bin_TCE_01s'], Binary_Data_TCE ['pos']['bin_TCE_1s'], Binary_Data_TCE ['pos']['bin_TCE_len'] = Binary_Mat_TCE_Win (bin_ar = bin_pos, win_start_year = start_yr,lags = lags_TCE, land_frac= data_lf [source_run]) path_TCE = cori_scratch + 'add_cmip6_data/%s/%s/%s/%s_TCE/'%(source_run,exp,member_run,variable_run) # Check if the directory 'path_TCE' already exists? If not, then create one: if os.path.isdir(path_TCE) == False: os.makedirs(path_TCE) for ext_type in ['neg','pos']: print("Saving the 01 TCE for %s,%s,%d,%s"%(source_run,member_run,start_yr,ext_type)) with nc4.Dataset( path_TCE + 'bin_TCE_01s_'+ext_type+'_%d.nc'%start_yr, mode = 'w') as dset: dset .createDimension( "lag",size = lags_TCE.size) dset .createDimension( "time",size = win_len) dset .createDimension( "lat" ,size = nc_ano[source_run][member_run].variables['lat'].size) dset .createDimension( "lon" ,size = nc_ano[source_run][member_run].variables['lon'].size) w = dset.createVariable(varname = "lag" ,datatype = float, dimensions = ("lag") , fill_value = 1e+36) t = dset.createVariable(varname = "time" ,datatype = float, dimensions = ("time"), fill_value = 1e+36) x = dset.createVariable(varname = "lon" ,datatype = float, dimensions = ("lon") , fill_value = 1e+36) y = dset.createVariable(varname = "lat" ,datatype = float, dimensions = ("lat") , fill_value = 1e+36) z = dset.createVariable(varname = variable_run +'_TCE_01s' ,datatype = float, dimensions = ("lag","time","lat","lon"),fill_value = 1e+36) #varible = gpp_bin_ext w.axis = "T" t.axis = "T" x.axis = "X" y.axis = "Y" w[...] = lags_TCE t[...] = nc_ano[source_run][member_run].variables['time'] [...][win_idx * win_len : (win_idx+1)*win_len] x[...] = nc_ano[source_run][member_run].variables['lon'][...] y[...] = nc_ano[source_run][member_run].variables['lat'][...] z[...] = Binary_Data_TCE [ext_type]['bin_TCE_01s'] z.missing_value = 1e+36 z.stardard_name = variable_run+" binary TCE (01s) matrix for 25 years starting at the year %d"%start_yr z.units = "0,1" x.units = nc_ano[source_run][member_run].variables['lon'].units x.missing_value = 1e+36 x.setncattr ("standard_name",nc_ano[source_run][member_run].variables['lon'].standard_name) y.units = nc_ano[source_run][member_run].variables['lat'].units y.missing_value = 1e+36 y.setncattr ("standard_name",nc_ano[source_run][member_run].variables['lat'].standard_name) t.units = nc_ano[source_run][member_run].variables['time'].units t.setncattr ("calendar", nc_ano[source_run][member_run].variables['time'].calendar) t.setncattr ("standard_name", nc_ano[source_run][member_run].variables['time'].standard_name) t.missing_value = 1e+36 w.units = "month" w.setncattr ("standard_name","lags in months") w.missing_value = 1e+36 print("Saving the 1s TCE for %s,%s,%d,%s"%(source_run,member_run,start_yr,ext_type)) with nc4.Dataset( path_TCE + 'bin_TCE_1s_'+ext_type+'_%d.nc'%start_yr, mode = 'w') as dset: dset .createDimension( "lag",size = lags_TCE.size) dset .createDimension( "time",size = win_len) dset .createDimension( "lat" ,size = nc_ano[source_run][member_run].variables['lat'].size) dset .createDimension( "lon" ,size = nc_ano[source_run][member_run].variables['lon'].size) w = dset.createVariable(varname = "lag" ,datatype = float, dimensions = ("lag") , fill_value = 1e+36) t = dset.createVariable(varname = "time" ,datatype = float, dimensions = ("time"), fill_value = 1e+36) x = dset.createVariable(varname = "lon" ,datatype = float, dimensions = ("lon") , fill_value = 1e+36) y = dset.createVariable(varname = "lat" ,datatype = float, dimensions = ("lat") , fill_value = 1e+36) z = dset.createVariable(varname = variable_run+'_TCE_1s' ,datatype = float, dimensions = ("lag","time","lat","lon"),fill_value = 1e+36) #varible = gpp_bin_ext w.axis = "T" t.axis = "T" x.axis = "X" y.axis = "Y" w[...] = lags_TCE t[...] = nc_ano[source_run][member_run].variables['time'] [...][win_idx * win_len : (win_idx+1)*win_len] x[...] = nc_ano[source_run][member_run].variables['lon'][...] y[...] = nc_ano[source_run][member_run].variables['lat'][...] z[...] = Binary_Data_TCE [ext_type]['bin_TCE_1s'] z.missing_value = 1e+36 z.stardard_name = variable_run +" binary TCE (1s) matrix for 25 years starting at the year %d"%start_yr z.units = "0,1" x.units = nc_ano[source_run][member_run].variables['lon'].units x.missing_value = 1e+36 x.setncattr ("standard_name",nc_ano[source_run][member_run].variables['lon'].standard_name) y.units = nc_ano[source_run][member_run].variables['lat'].units y.missing_value = 1e+36 y.setncattr ("standard_name",nc_ano[source_run][member_run].variables['lat'].standard_name) t.units = nc_ano[source_run][member_run].variables['time'].units t.setncattr ("calendar", nc_ano[source_run][member_run].variables['time'].calendar) t.setncattr ("standard_name", nc_ano[source_run][member_run].variables['time'].standard_name) t.missing_value = 1e+36 w.units = "month" w.setncattr ("standard_name","lags in months") w.missing_value = 1e+36 # Calculation of TS of gain or loss of carbon uptake # -------------------------------------------------- def Global_TS_of_Extremes(bin_ar, ano_gC, area = 0, lf = 0): """ Returns the global TS of : 1. total carbon loss/gain associated neg/pos extremes 2. total freq of extremes 3. total area affected by extremes Parameters: ----------- bin_ar : the binary array of extremes (pos/neg) ano_gC : the array which will use the mask or binary arrays to calc the carbon loss/gain Universal: ---------- 2-d area array (nlat, nlon), dates_win (# wins, win_size) Returns: -------- 1d array of length # wins x win_size for all : ext_gC_ts, ext_freq_ts, ext_area_ts """ print (" Calculating Extremes ... " ) ext_ar = bin_ar * ano_gC # extremes array if (area == 0) and (lf == 0) : print ("The area under extreme will not be calculated... \nGrid area input and land fraction is not provided ... \nThe returned area is 0 (zeros)") ext_area_ar = bin_ar * area[...] * lf[...] # area array of extremes ext_gC_ts = [] ext_freq_ts = [] ext_area_ts = [] for i in range(dates_win.flatten().size): ext_gC_ts . append(np.ma.sum(ext_ar[i])) ext_freq_ts . append(np.ma.sum(bin_ar[i])) ext_area_ts . append(np.ma.sum(ext_area_ar[i])) return np.ma.array(ext_gC_ts), np.ma.array(ext_freq_ts),np.ma.array(ext_area_ts) # Calculating the slopes of GPP extremes # -------------------------------------- def Slope_Intercept_Pv_Trend_Increase ( time, ts, until_idx1=2100, until_idx2=None): """ Returns the slope, intercept, r value , p value and trend line points for time period 1850-2100 (as '_21') and 2101-2300 ('_23') Parameters: ----------- One dimentional time series of len 5400 from 1850 through 2299 Returns: -------- single values for slope, intercept, r value , p value, increase percentage** 1d array for same legnth as 'ts' for 'trend' ** it return the percent increase of trend line relavtive to the year 1850 (mean trend line value),.. """ until_idx1 = int (until_idx1) if until_idx2 != None: until_idx2 = int (until_idx2) # calculation of the magnitudes of global gpp loss and trend from 1850- until idx-1 slope_1, intercept_1,rv_1,pv_1,std_e1 = stats.linregress(time[...][:until_idx1],ts[:until_idx1]) trend_1 = slope_1*time[...][:until_idx1]+intercept_1 increase_1 = (trend_1[-1]-trend_1[0])*100/trend_1[0] # calculation of the magnitudes of global gpp loss and trend from index-1 to until-idx2 if until_idx2 != None: slope_2, intercept_23,rv_23,pv_23,std_e23 = stats.linregress(time[...][until_idx1:until_idx2],ts[until_idx1:until_idx22]) trend_2 = slope_2*time[...][until_idx1:until_idx2]+intercept_23 increase_2 = (trend_2[-1]-trend_2[0])*100/trend_2[0] increase_2_r1850 = (trend_2[-1]-trend_1[0])*100/trend_1[0] return slope_1,intercept_1,pv_1,trend_1,increase_1,slope_2,intercept_2,pv_2,trend_2,increase_2,increase_2_r1850 else: return slope_1,intercept_1,pv_1,trend_1,increase_1 # Saving the results of TS carbon loss/gain for source_run in source_selected: for member_run in common_members [source_run]: Results[source_run][member_run]['ts_global_gC'] = {} Results[source_run][member_run]['ts_global_area'] = {} Results[source_run][member_run]['ts_global_freq'] = {} Results[source_run][member_run]['ts_global_gC']['neg_ext'] = {} Results[source_run][member_run]['ts_global_gC']['pos_ext'] = {} Results[source_run][member_run]['ts_global_area']['neg_ext']= {} Results[source_run][member_run]['ts_global_area']['pos_ext']= {} Results[source_run][member_run]['ts_global_freq']['neg_ext']= {} Results[source_run][member_run]['ts_global_freq']['pos_ext']= {} for source_run in source_selected: print ("Calculating the global TS of Extremes for %s"%source_run) for member_run in common_members [source_run]: # Negative Extremes: # ------------------ ts_ext , ts_freq, ts_area = Global_TS_of_Extremes(bin_ar = Results[source_run][member_run]['bin_ext_neg'], ano_gC = nc_ano[source_run][member_run].variables[variable_run][...], area = data_area [source_run], lf = data_lf [source_run]) Results[source_run][member_run]['ts_global_gC' ]['neg_ext']['ts'] = ts_ext Results[source_run][member_run]['ts_global_area']['neg_ext']['ts'] = ts_area Results[source_run][member_run]['ts_global_freq']['neg_ext']['ts'] = ts_freq del ts_ext , ts_freq, ts_area # Positive Extremes: # ----------------- ts_ext , ts_freq, ts_area = Global_TS_of_Extremes(bin_ar = Results[source_run][member_run]['bin_ext_pos'], ano_gC = nc_ano[source_run][member_run].variables[variable_run][...], area = data_area [source_run], lf = data_lf [source_run]) Results[source_run][member_run]['ts_global_gC' ]['pos_ext']['ts'] = ts_ext Results[source_run][member_run]['ts_global_area']['pos_ext']['ts'] = ts_area Results[source_run][member_run]['ts_global_freq']['pos_ext']['ts'] = ts_freq del ts_ext , ts_freq, ts_area # ----------------- for source_run in source_selected: for member_run in common_members [source_run]: # Negative Extremes gC: # --------------------- slope,intercept,pv,trend,increase = Slope_Intercept_Pv_Trend_Increase ( time = nc_ano[source_run][member_run].variables['time'], ts = Results[source_run][member_run]['ts_global_gC']['neg_ext']['ts'], until_idx1 = idx_yr_2099) Results[source_run][member_run]['ts_global_gC']['neg_ext']['s21' ] = slope Results[source_run][member_run]['ts_global_gC']['neg_ext']['pv21' ] = pv Results[source_run][member_run]['ts_global_gC']['neg_ext']['trend_21'] = trend Results[source_run][member_run]['ts_global_gC']['neg_ext']['inc_21' ] = increase del slope,intercept,pv,trend,increase # Positive Extremes gC: # --------------------- slope,intercept,pv,trend,increase = Slope_Intercept_Pv_Trend_Increase ( time = nc_ano[source_run][member_run].variables['time'], ts = Results[source_run][member_run]['ts_global_gC']['pos_ext']['ts'], until_idx1 = idx_yr_2099) Results[source_run][member_run]['ts_global_gC']['pos_ext']['s21' ] = slope Results[source_run][member_run]['ts_global_gC']['pos_ext']['pv21' ] = pv Results[source_run][member_run]['ts_global_gC']['pos_ext']['trend_21'] = trend Results[source_run][member_run]['ts_global_gC']['pos_ext']['inc_21' ] = increase del slope,intercept,pv,trend,increase # ----------------------------------- # ----------------------------------- # Negative Extremes freq: # ----------------------- slope,intercept,pv,trend,increase = Slope_Intercept_Pv_Trend_Increase ( time = nc_ano[source_run][member_run].variables['time'], ts = Results[source_run][member_run]['ts_global_freq']['neg_ext']['ts'], until_idx1 = idx_yr_2099) Results[source_run][member_run]['ts_global_freq']['neg_ext']['s21' ] = slope Results[source_run][member_run]['ts_global_freq']['neg_ext']['pv21' ] = pv Results[source_run][member_run]['ts_global_freq']['neg_ext']['trend_21']= trend Results[source_run][member_run]['ts_global_freq']['neg_ext']['inc_21' ]= increase del slope,intercept,pv,trend,increase # Positive Extremes freq: # ----------------------- slope,intercept,pv,trend,increase = Slope_Intercept_Pv_Trend_Increase ( time = nc_ano[source_run][member_run].variables['time'], ts = Results[source_run][member_run]['ts_global_freq']['pos_ext']['ts'], until_idx1 = idx_yr_2099) Results[source_run][member_run]['ts_global_freq']['pos_ext']['s21' ] = slope Results[source_run][member_run]['ts_global_freq']['pos_ext']['pv21' ] = pv Results[source_run][member_run]['ts_global_freq']['pos_ext']['trend_21']= trend Results[source_run][member_run]['ts_global_freq']['pos_ext']['inc_21' ]= increase del slope,intercept,pv,trend,increase # ----------------------------------- # ----------------------------------- # Negative Extremes area: # ----------------------- slope,intercept,pv,trend,increase = Slope_Intercept_Pv_Trend_Increase ( time = nc_ano[source_run][member_run].variables['time'], ts = Results[source_run][member_run]['ts_global_area']['neg_ext']['ts'], until_idx1 = idx_yr_2099) Results[source_run][member_run]['ts_global_area']['neg_ext']['s21' ] = slope Results[source_run][member_run]['ts_global_area']['neg_ext']['pv21' ] = pv Results[source_run][member_run]['ts_global_area']['neg_ext']['trend_21']= trend Results[source_run][member_run]['ts_global_area']['neg_ext']['inc_21' ]= increase del slope,intercept,pv,trend,increase # Positive Extremes area: # ----------------------- slope,intercept,pv,trend,increase = Slope_Intercept_Pv_Trend_Increase ( time = nc_ano[source_run][member_run].variables['time'], ts = Results[source_run][member_run]['ts_global_area']['pos_ext']['ts'], until_idx1 = idx_yr_2099) Results[source_run][member_run]['ts_global_area']['pos_ext']['s21' ] = slope Results[source_run][member_run]['ts_global_area']['pos_ext']['pv21' ] = pv Results[source_run][member_run]['ts_global_area']['pos_ext']['trend_21']= trend Results[source_run][member_run]['ts_global_area']['pos_ext']['inc_21' ]= increase del slope,intercept,pv,trend,increase # ----------------------------------- def Sum_and_Diff_of_Fluxes_perWin(ano_gC, bin_ar = None, data_type = 'ext', diff_ref_yr = 1850): """ returns a 2-d array sum of fluxes and difference of the sum of fluxes with reference to the ref yr Parameters: ---------- bin_ar: the binary array of extremes (pos/neg) ano_gC : the array which will use the mask or binary arrays to calc the carbon loss/gain diff_ref_yr : the starting year of the reference time window for differencing data_type : do you want to calculate the sum and difference of extremes or original fluxes? ... 'ext' is for extremes and will mask based on the 'bin_ar' in calculation ... otherwise it will not multiply by bin_ar and the original flux difference will be calculated. 'ext' will calculate the extremes and anything else with calc on original flux diff Universal: ---------- start_dates : the start_dates of every 25 year window, size = # wins Returns: -------- sum_flux : shape (# wins, nlat,nlon), sum of fluxes per window diff_flux : shape (# wins, nlat,nlon), difference of sum of fluxes per window and reference window """ if data_type != 'ext': bin_ar = np.ma.ones(ano_gC.shape) sum_ext = [] for i in range(len(start_dates)): ext_gC = bin_ar[idx_dates_win[i][0] : idx_dates_win [i][-1]+1,:,:] * ano_gC[idx_dates_win[i][0] : idx_dates_win [i][-1]+1,:,:] sum_ext . append (np.ma.sum(ext_gC, axis = 0)) sum_ext = np.ma.asarray(sum_ext) #to calculate the index of the reference year starting window: for i,date in enumerate(start_dates): if date.year in [diff_ref_yr]: diff_yr_idx = i diff_ext = [] for i in range(len(start_dates)): diff = sum_ext[i] - sum_ext[diff_yr_idx] diff_ext . append (diff) diff_ext = np.ma.asarray(diff_ext) return sum_ext , diff_ext # ---------------------------------------------------------- # Preparing the storage # ---------------------------------------------------------- for source_run in source_selected: for member_run in common_members [source_run]: # Negative Extremes: sum_neg_ext , diff_neg_ext = Sum_and_Diff_of_Fluxes_perWin ( bin_ar = Results[source_run][member_run]['bin_ext_neg'], ano_gC = nc_ano[source_run][member_run].variables[variable_run][...], data_type = 'ext', diff_ref_yr = 1850) Results[source_run][member_run]['sum_neg_ext'] = sum_neg_ext Results[source_run][member_run]['diff_neg_ext'] = diff_neg_ext # Positive extremes: sum_pos_ext , diff_pos_ext = Sum_and_Diff_of_Fluxes_perWin ( bin_ar = Results[source_run][member_run]['bin_ext_pos'], ano_gC = nc_ano[source_run][member_run].variables[variable_run][...], data_type = 'ext', diff_ref_yr = 1850) Results[source_run][member_run]['sum_pos_ext'] = sum_pos_ext Results[source_run][member_run]['diff_pos_ext'] = diff_pos_ext del sum_neg_ext , diff_neg_ext, sum_pos_ext , diff_pos_ext #Negative Flux/Ori #sum_neg_ori , diff_neg_ori = Sum_and_Diff_of_Fluxes_perWin ( bin_ar = None, # ano_gC = nc_ano[source_run][member_run].variables[variable_run][...], # data_type = 'ori', # diff_ref_yr = 1850) # Results[source_run][member_run]['sum_neg_ori'] = sum_neg_ori # Results[source_run][member_run]['diff_neg_ori'] = diff_neg_ori # Results[source_run][member_run]['sum_pos_ext'] = {} # Results[source_run][member_run]['diff_neg_ext'] = {} # Results[source_run][member_run]['diff_pos_ext'] = {} # Regional analysis # ----------------- import regionmask # Selection the member_run manually member_run = common_members[source_run] [0] lon = nc_ano[source_run][member_run].variables ['lon'] lat = nc_ano[source_run][member_run].variables ['lat'] # for the plotting lon_bounds = nc_ano[source_run][member_run].variables [lon.bounds] lat_bounds = nc_ano[source_run][member_run].variables [lat.bounds] lon_edges = np.hstack (( lon_bounds[:,0], lon_bounds[-1,-1])) lat_edges = np.hstack (( lat_bounds[:,0], lat_bounds[-1,-1])) # Creating mask of the regions based on the resolution of the model mask = regionmask.defined_regions.srex.mask(lon[...], lat[...]).values # important information: srex_abr = regionmask.defined_regions.srex.abbrevs srex_names = regionmask.defined_regions.srex.names srex_nums = regionmask.defined_regions.srex.numbers srex_centroids = regionmask.defined_regions.srex.centroids srex_polygons = regionmask.defined_regions.srex.polygons mask_ma = np.ma.masked_invalid(mask) import matplotlib.pyplot as plt import os """ Basemaps not working anymore =========================== #1- Hack to fix missing PROJ4 env var import os import conda conda_file_dir = conda.__file__ conda_dir = conda_file_dir.split('lib')[0] proj_lib = os.path.join(os.path.join(conda_dir, 'share'), 'proj') os.environ["PROJ_LIB"] = proj_lib #-1 Hack end import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap """ """ Regional Plots -------------- #fig = plt.figure() #ax = plt.subplot(111, projection=ccrs.PlateCarree()) fig,ax = plt.subplots(tight_layout = True, figsize = (9,5), dpi = 400) bmap = Basemap( projection = 'eck4', lon_0 = 0., resolution = 'c') LON,LAT = np.meshgrid(lon_edges,lat_edges) ax = bmap.pcolormesh(LON,LAT, mask_ma, cmap ='viridis') bmap .drawparallels(np.arange(-90., 90., 30.),fontsize=14, linewidth = .2) bmap .drawmeridians(np.arange(0., 360., 60.),fontsize=14, linewidth = .2) bmap .drawcoastlines(linewidth = .25,color='lightgrey') plt.colorbar(ax, orientation='horizontal', pad=0.04) fig.savefig (web_path + "SREX_regions.pdf") # Cartopy Plotting # ---------------- import cartopy.crs as ccrs from shapely.geometry.polygon import Polygon import cartopy.feature as cfeature # Fixing the error {'GeoAxesSubplot' object has no attribute '_hold'} from matplotlib.axes import Axes from cartopy.mpl.geoaxes import GeoAxes GeoAxes._pcolormesh_patched = Axes.pcolormesh proj_trans = ccrs.PlateCarree() fig = plt.figure(figsize = (9,5)) ax = fig.add_subplot(111, projection=ccrs.PlateCarree()) mask_ma = np.ma.masked_invalid(mask) h = ax.pcolormesh(lon_edges[...], lat_edges[...], mask_ma, transform = proj_trans)#, cmap='viridis') ax.coastlines() plt.colorbar(h, orientation='horizontal', pad=0.04) # Plot the abs at the centroids for idx, abr in enumerate(srex_abr): plt.text ( srex_centroids[idx][0], srex_centroids[idx][-1], srex_abr[idx], horizontalalignment='center', transform = proj_trans) ax.add_geometries([srex_polygons[idx]], crs = proj_trans, facecolor='none', edgecolor='red', alpha=0.8) fig.savefig (web_path + "SREX_regions_cpy.pdf") plt.close(fig) """ # ================================================================================================= # ================================================================================================= ## # ## ######## # # # ## ## ## ## # # # ## # # ## ## ## # ##### ## ## # ================================================================================================= # ================================================================================================= # Creating a lis to Unique colors for multiple models: # --------------------------------------------------- NUM_COLORS = len(source_selected) LINE_STYLES = ['solid', 'dashed', 'dashdot', 'dotted'] NUM_STYLES = len(LINE_STYLES) sns.reset_orig() # get default matplotlib styles back clrs = sns.color_palette('husl', n_colors=NUM_COLORS) # Creating the ticks for x axis (every 25 years): # ---------------------------------------------- tmp_idx = np.arange(0, 3013, 300) #for x ticks tmp_idx[-1]=tmp_idx[-1]-1 dates_ticks = [] years_ticks = [] for i in tmp_idx: a = dates_win.flatten()[i] dates_ticks.append(a) years_ticks.append(a.year) # Creating the x-axis years (Monthly) # ----------------------------------- x_years = [d.year for d in dates_win.flatten()] # Caption (optional): This dictionary could be used to save the captions of the figures # ------------------------------------------------------------------------------------- Captions = {} # PLOTING THE THRESHOLD FOR QUALIFICATION OF EXTREME EVENTS: fig[1-9] # =================================================================== if th_type == 'ind': fig1,ax2 = plt.subplots(tight_layout = True, figsize = (9,5), dpi = 400) ymin = 400 ymax = 8000 for s_idx, source_run in enumerate(source_selected): for m_idx, member_run in enumerate(common_members [source_run]): # ax2.plot( dates_win.flatten(), abs(Results[source_run][member_run]['ts_th_neg'])/10**9, # 'r', label = "Th$-$ %s"%source_run, alpha = .7) # ax2.plot( dates_win.flatten(), abs(Results[source_run][member_run]['ts_th_neg'])/10**9, # clrs[s_idx], ls='--', label = "Th$-$ %s"%source_run, alpha = .7) ax2.plot( dates_win.flatten(), abs(Results[source_run][member_run]['ts_th_neg'])/10**9, 'r', ls='--', label = "Th$-$ %s"%source_run, alpha = .3) ax2.set_ylabel("Negative Extremes (GgC)", {'color': 'r'},fontsize =14) ax2.set_xlabel("Time", fontsize = 14) ax2.set_ylim([ymin,ymax]) #ax2.set_yticks(np.arange(int(np.floor(ymin/100)*100),int(np.ceil(ymax/100)*100),25)) #ax2.set_yticklabels(-np.arange(int(np.floor(ymin/100)*100),int(np.ceil(ymax/100)*100),25)) #ax2.tick_params(axis='y', colors='red') # ax2.set_xticks(dates_ticks) ax2.grid(which='major', linestyle=':', linewidth='0.3', color='gray') ax1=ax2.twinx() # ax1.plot( dates_win.flatten(), abs(Results[source_run][member_run]['ts_th_pos'])/10**9, # 'g', label = "Th+ %s"%source_run, alpha = .7) ax1.plot( dates_win.flatten(), abs(Results[source_run][member_run]['ts_th_pos'])/10**9, 'g', label = "Th+ %s"%source_run, alpha = .3) ax1.set_ylabel("Positive Extremes (GgC)", {'color': 'g'},fontsize =14) ax1.set_ylim([ymin,ymax]) #ax1.set_yticks(np.arange(int(np.floor(ymin/100)*100),int(np.ceil(ymax/100)*100),25)) #ax1.tick_params(axis='y', colors='green') # ax1.set_xticks(dates_ticks) # ax1.grid(which='major', linestyle=':', linewidth='0.3', color='gray') lines, labels = ax1.get_legend_handles_labels() lines2, labels2 = ax2.get_legend_handles_labels() labels, ids = np.unique(labels, return_index=True) labels2, ids2 = np.unique(labels2, return_index=True) lines = [lines[i] for i in ids] lines2 = [lines2[i] for i in ids2] # ax2.legend(lines + lines2, labels + labels2, loc= 'best',fontsize =12) #continue fig1.savefig(web_path + 'Threshold/ts_threshold_all_scenario_%s_per_%s.pdf'%(variable_run,int(per))) plt.close(fig1) del fig1 # Threshold per model for the 'th_type' == 'ind' and per = 1.0 # ------------------------------------------------------------- for source_run in source_selected: fig2,ax2 = plt.subplots(tight_layout = True, figsize = (9,5), dpi = 400) pd.plotting.deregister_matplotlib_converters() if source_run == 'CESM2' : ymin = 400 ; ymax = 700 if source_run == 'CanESM5' : ymin = 2000 ; ymax = 8000 if source_run == 'IPSL-CM6A-LR' : ymin = 1700 ; ymax = 2900 if source_run == 'BCC-CSM2-MR' : ymin = 400 ; ymax = 1000 if source_run == 'CNRM-ESM2-1' : ymin = 1000 ; ymax = 1500 if source_run == 'CNRM-CM6-1' : ymin = 1000 ; ymax = 1800 for m_idx, member_run in enumerate(common_members [source_run]): L1= ax2.plot( dates_win.flatten(), abs(Results[source_run][member_run]['ts_th_neg'])/10**9, 'r', label = "Th$-$ %s"%member_run, linewidth = 0.3, alpha = .7) L1[0].set_linestyle(LINE_STYLES[m_idx%NUM_STYLES]) ax2.set_ylabel("Negative Extremes (GgC)", {'color': 'r'},fontsize =14) ax2.set_xlabel("Time", fontsize = 14) #ax2.set_xlim([dates_ticks[0],dates_ticks[-1]]) #ax2.set_yticks(np.arange(int(np.floor(ymin/100)*100),int(np.ceil(ymax/100)*100),25)) #ax2.set_yticklabels(-np.arange(int(np.floor(ymin/100)*100),int(np.ceil(ymax/100)*100),25)) #ax2.tick_params(axis='y', colors='red') ax2.grid(which='major', linestyle='--', linewidth='0.3', color='gray') ax1=ax2.twinx() for m_idx, member_run in enumerate(common_members [source_run]): L2= ax1.plot( dates_win.flatten(), abs(Results[source_run][member_run]['ts_th_pos'])/10**9, 'g', label = "Th+ %s"%member_run, linewidth = 0.3, alpha = .7) L2[0].set_linestyle(LINE_STYLES[m_idx%NUM_STYLES]) ax1.set_ylabel("Positive Extremes (GgC)", {'color': 'g'},fontsize =14) #ax1.set_yticklabels([]) #ax1.set_yticks(np.arange(int(np.floor(ymin/100)*100),int(np.ceil(ymax/100)*100),25)) #ax1.tick_params(axis='y', colors='green') # ax1.grid(which='major', linestyle='--', linewidth='0.3', color='gray') ax2.set_ylabel("Negative Extremes (GgC)", {'color': 'r'},fontsize =14) ax2.set_xlabel("Time", fontsize = 14) ax1.set_ylabel("Positive Extremes (GgC)", {'color': 'g'},fontsize =14) ax2.set_ylim([ymin,ymax]) ax1.set_ylim([ymin,ymax]) ax1.set_xticks(dates_ticks) ax1.set_xticklabels(years_ticks) lines, labels = ax1.get_legend_handles_labels() lines2, labels2 = ax2.get_legend_handles_labels() ax2.legend(lines + lines2, labels + labels2, loc=0,fontsize =8) fig2.savefig(web_path + 'Threshold/ts_threshold_%s_source_%s_per_%s.pdf'%(source_run,variable_run,int(per))) # Saving the plots path_save = cori_scratch + "add_cmip6_data/%s/ssp585/%s/%s/Global_Extremes/non-TCE/Threshold/"%(source_run,member_run, variable_run) if os.path.isdir(path_save) == False: os.makedirs(path_save) fig2.savefig(path_save + 'ts_threshold_%s_source_%s_per_%s.pdf'%(source_run,variable_run,int(per))) plt.close(fig2) del fig2,ax2 # Plotting thresholds when 'th_type' == 'common': # ----------------------------------------------- if th_type == 'common': fig3 = plt.figure(tight_layout = True, figsize = (9,5), dpi = 400) plt.title("TS of Thresholds for CMIP6 models for percentile = %d"%int(per)) pd.plotting.deregister_matplotlib_converters() for s_idx, source_run in enumerate(source_selected): for m_idx, member_run in enumerate(common_members [source_run]): plt.plot( dates_win.flatten(), abs(Results[source_run][member_run]['ts_th_neg'])/10**9, color=clrs[s_idx], ls='-', label = "$q$ %s"%source_run, alpha = .8, linewidth = .7) plt.ylabel("Thresholds (GgC)", {'color': 'k'},fontsize =14) plt.xlabel("Time", fontsize = 14) plt.grid(which='major', linestyle=':', linewidth='0.3', color='gray') plt.legend() break #Plotting only the first ensemble member fig3.savefig(web_path + 'Threshold/ts_thresholdc_all_models_%s_per_%s.pdf'%(variable_run,int(per))) plt.close(fig3) del fig3 # Threshold per model for the 'th_type' == 'common' and per = 5.0 # --------------------------------------------------------------- for s_idx, source_run in enumerate(source_selected): fig4 = plt.figure(tight_layout = True, figsize = (9,5), dpi = 400) plt.title("TS of %d percentile Thresholds of %s for the model %s"%(per, variable_run.upper(), source_run)) pd.plotting.deregister_matplotlib_converters() if variable_run == 'gpp': if source_run == 'CESM2' : ymin = 250 ; ymax = 400 if source_run == 'CanESM5' : ymin = 1500 ; ymax = 4500 if source_run == 'IPSL-CM6A-LR' : ymin = 1200 ; ymax = 2100 if source_run == 'BCC-CSM2-MR' : ymin = 300 ; ymax = 600 if source_run == 'CNRM-ESM2-1' : ymin = 700 ; ymax = 900 if source_run == 'CNRM-CM6-1' : ymin = 600 ; ymax = 1100 if variable_run == 'nbp': if source_run == 'CESM2' : ymin = 130 ; ymax = 230 if variable_run == 'ra': if source_run == 'CESM2' : ymin = 180 ; ymax = 240 if variable_run == 'rh': if source_run == 'CESM2' : ymin = 100 ; ymax = 170 for m_idx, member_run in enumerate(common_members [source_run]): plt.plot( dates_win.flatten(), abs(Results[source_run][member_run]['ts_th_neg'])/10**9, color=clrs[s_idx], ls='-', label = "$q$ %s"%source_run, alpha = 1, linewidth = 1) break #Plotting only the first ensemble member plt.ylim ((ymin,ymax)) plt.ylabel("Thresholds (GgC)", {'color': 'k'},fontsize =14) plt.xlabel("Time", fontsize = 14) plt.grid(which='major', linestyle=':', linewidth='0.4', color='gray') plt.legend() fig4.savefig(web_path + 'Threshold/ts_thresholdc_%s_source_%s_per_%s.pdf'%(source_run,variable_run,int(per))) # Saving the plots path_save = cori_scratch + "add_cmip6_data/%s/ssp585/%s/%s/Global_Extremes/non-TCE/Threshold/"%(source_run,member_run, variable_run) if os.path.isdir(path_save) == False: os.makedirs(path_save) fig4.savefig(path_save + 'ts_thresholdc_%s_source_%s_per_%s.pdf'%(source_run,variable_run,int(per))) plt.close(fig4) del fig4 # PLOTING THE GLOBAL TIMESERIES OF THE EXTREME EVENTS : fig[11-19] # ====================================================================================== for s_idx, source_run in enumerate(source_selected): fig11 = plt.figure(tight_layout = True, figsize = (9,5), dpi = 400) plt.style.use("classic") plt.title ("TS global %s extremes for %s when percentile is %d"%(variable_run.upper(), source_run, per)) pd.plotting.deregister_matplotlib_converters() if variable_run == 'gpp': if source_run == 'CESM2' : ymin = -1.2 ; ymax = 1.2 if source_run == 'CanESM5' : ymin = -1.5 ; ymax = 1.5 if source_run == 'IPSL-CM6A-LR' : ymin = -0.5 ; ymax = 0.5 if source_run == 'BCC-CSM2-MR' : ymin = -1.6 ; ymax = 1.6 if source_run == 'CNRM-ESM2-1' : ymin = -0.8 ; ymax = 0.8 if source_run == 'CNRM-CM6-1' : ymin = -1.7 ; ymax = 1.7 if variable_run == 'nbp': if source_run == 'CESM2' : ymin = -.7 ; ymax = .7 if variable_run == 'ra': if source_run == 'CESM2' : ymin = -.7 ; ymax = .7 if variable_run == 'rh': if source_run == 'CESM2' : ymin = -.4 ; ymax = .4 for m_idx, member_run in enumerate(common_members [source_run]): plt.plot( dates_win.flatten(), Results[source_run][member_run]['ts_global_gC']['neg_ext']['ts'] / 10**15, 'r', label = "Negative Extremes" , linewidth = 0.5, alpha=0.7 ) plt.plot( dates_win.flatten(), Results[source_run][member_run]['ts_global_gC']['pos_ext']['ts'] / 10**15, 'g', label = "Positive Extremes" , linewidth = 0.5, alpha=0.7 ) plt.plot( dates_win.flatten() [:idx_yr_2099], Results[source_run][member_run]['ts_global_gC']['neg_ext']['trend_21'] /10**15, 'k--', label = "Neg Trend 21", linewidth = 0.5, alpha=0.9 ) plt.plot( dates_win.flatten() [:idx_yr_2099], Results[source_run][member_run]['ts_global_gC']['pos_ext']['trend_21'] /10**15, 'k--', label = "Pos Trend 21", linewidth = 0.5, alpha=0.9 ) break #Plotting only the first ensemble member plt.ylim ((ymin,ymax)) #| waiting for the first set of graphs to remove this comment plt.xlabel( 'Time', fontsize = 14) plt.xticks(ticks = dates_ticks, labels = years_ticks, fontsize = 12) plt.ylabel( "Intensity of Extremes (PgC/mon)", fontsize = 14) plt.grid( which='major', linestyle=':', linewidth='0.3', color='gray') plt.text( dates_win.flatten()[900], ymin+0.2,"Slope = %d %s"%(int(Results[source_run][member_run]['ts_global_gC']['neg_ext']['s21']/10**6), 'MgC/month'), size =14, color = 'r' ) plt.text( dates_win.flatten()[900], ymax-0.2,"Slope = %d %s"%(int(Results[source_run][member_run]['ts_global_gC']['pos_ext']['s21']/10**6), 'MgC/month'), size =14, color = 'g' ) fig11.savefig(web_path + 'Intensity/ts_global_carbon_%s_source_%s_per_%s.pdf'%(source_run,variable_run,int(per))) # Saving the plots path_save = cori_scratch + "add_cmip6_data/%s/ssp585/%s/%s/Global_Extremes/non-TCE/Intensity/"%(source_run,member_run, variable_run) if os.path.isdir(path_save) == False: os.makedirs(path_save) fig11.savefig(path_save + 'ts_global_carbon_%s_source_%s_per_%s.pdf'%(source_run,variable_run,int(per))) fig11.savefig(path_save + 'ts_global_carbon_%s_source_%s_per_%s.png'%(source_run,variable_run,int(per))) plt.close(fig11) del fig11 # Rolling mean of annual losses and gains # --------------------------------------- def RM_Nyearly_4m_Mon(ts, rm_years = 5): """ The rolling mean is calculated to the right end value The first 4 years will not be reported in the output of 5 year rolling mean """ ts = np.array(ts) yr = np.array([np.sum(ts[i:i+12]) for i in range(ts.size//12)]) yr_rm = pd.Series(yr).rolling(rm_years).mean() return yr_rm[rm_years-1:] # Ploting 5 Year Rolling Mean figures # ----------------------------------- for s_idx, source_run in enumerate(source_selected): fig12 = plt.figure(tight_layout = True, figsize = (9,5), dpi = 400) plt.title ("5yr RM of TS annual global %s for %s when percentile is %d"%(variable_run.upper(), source_run, per)) pd.plotting.deregister_matplotlib_converters() for m_idx, member_run in enumerate(common_members [source_run]): print (source_run,member_run) plt.plot(np.arange(1854,2100), RM_Nyearly_4m_Mon(Results[source_run][member_run]['ts_global_gC']['neg_ext']['ts'] / 10**15), 'r', label = "Negative Extremes" , linewidth = 0.5, alpha=0.7 ) plt.plot(np.arange(1854,2100), RM_Nyearly_4m_Mon(Results[source_run][member_run]['ts_global_gC']['pos_ext']['ts'] / 10**15), 'g', label = "Positive Extremes" , linewidth = 0.5, alpha=0.7 ) break #Plotting only the first ensemble member plt.xlabel( 'Time', fontsize = 14) plt.ylabel( "Intensity of Extremes (PgC/mon)", fontsize = 14) plt.grid( which='major', linestyle=':', linewidth='0.3', color='gray') fig12.savefig(web_path + 'Intensity/ts_rm5yr_global_carbon_%s_source_%s_per_%s.pdf'%(source_run,variable_run,int(per))) # Saving the plots path_save = cori_scratch + "add_cmip6_data/%s/ssp585/%s/%s/Global_Extremes/non-TCE/Intensity/"%(source_run,member_run, variable_run) if os.path.isdir(path_save) == False: os.makedirs(path_save) fig12.savefig(path_save + 'ts_rm5yr_global_carbon_%s_source_%s_per_%s.pdf'%(source_run,variable_run,int(per))) plt.close(fig12) del fig12 # Frequency of extremes: # ====================== # Ploting 5 Year Rolling Mean figures: # ------------------------------------ for s_idx, source_run in enumerate(source_selected): fig14 = plt.figure(tight_layout = True, figsize = (9,5), dpi = 400) plt.title ("5yr RM of annual TS of global frequency of %s extremes\nfor %s when percentile is %d"%(variable_run.upper(),source_run, per)) pd.plotting.deregister_matplotlib_converters() for m_idx, member_run in enumerate(common_members [source_run]): print (source_run,member_run) plt.plot(np.arange(1854,2100), RM_Nyearly_4m_Mon(Results[source_run][member_run]['ts_global_freq']['neg_ext']['ts'] ), 'r', label = "Negative Extremes" , linewidth = 0.5, alpha=0.7 ) plt.plot(np.arange(1854,2100), RM_Nyearly_4m_Mon(Results[source_run][member_run]['ts_global_freq']['pos_ext']['ts'] ), 'g', label = "Positive Extremes" , linewidth = 0.5, alpha=0.7 ) break #Plotting only the first ensemble member plt.xlabel( 'Time', fontsize = 14) plt.ylabel( "Frequency of Extremes (count/yr)", fontsize = 14) plt.grid( which='major', linestyle=':', linewidth='0.3', color='gray') fig14.savefig(web_path + 'Freq/ts_rm5yr_global_freq_%s_source_%s_per_%s.pdf'%(source_run,variable_run,int(per))) # Saving the plots path_save = cori_scratch + "add_cmip6_data/%s/ssp585/%s/%s/Global_Extremes/non-TCE/Freq/"%(source_run,member_run, variable_run) if os.path.isdir(path_save) == False: os.makedirs(path_save) fig14.savefig(path_save + 'ts_rm5yr_global_freq_%s_source_%s_per_%s.pdf'%(source_run,variable_run,int(per))) plt.close(fig14) del fig14 Captions['fig14'] = " 5 year moving average of the frequency (counts) under positive and negative extremes.\ All ensemble members have same values" # Ploting 5 Year Rolling Mean figures (normalized) - pending: # ------------------------------------------------- # Function to normalize positive and negative freq def Norm_Two_TS(ts1, ts2): ts = np.concatenate((ts1,ts2)) norm_ts = norm(ts) norm_ts1 = norm_ts[:len(ts1)] norm_ts2 = norm_ts[len(ts1):] return norm_ts, norm_ts1, norm_ts2 # TEST p = np.array([ 8, 6, 7, 8, 6, 5, 4, 6]) n = np.array([ 5, 6, 6, 4, 5, 7, 8, 6]) _,norm_p, norm_n = Norm_Two_TS(p,n) norm_np = norm_n/norm_p norm_pn = norm_p/norm_n mask_np = np.ma.masked_greater(norm_np,1) mask_pn = np.ma.masked_greater(norm_pn,1) fig = plt.figure(tight_layout = True, figsize = (9,5), dpi = 400) #plt.plot( mask_np) #plt.plot( -mask_pn) #plt.plot(_) #plt.plot(norm_np) plt.plot(p/n) fig.savefig(web_path + 'ratio_test.pdf') # Dict to capture the ts of ratios pos to neg extremes of models ts_ratio_freq = {} for s_idx, source_run in enumerate(source_selected): fig15 = plt.figure(tight_layout = True, figsize = (9,5), dpi = 400) plt.title ("5yr Ratio of RM of TS annual global frequency (n/p) for %s when percentile is %d"%(source_run, per)) pd.plotting.deregister_matplotlib_converters() for m_idx, member_run in enumerate(common_members [source_run]): print (source_run,member_run) ts_ratio = np.divide ( RM_Nyearly_4m_Mon(Results[source_run][member_run]['ts_global_freq']['neg_ext']['ts'],10) , RM_Nyearly_4m_Mon(Results[source_run][member_run]['ts_global_freq']['pos_ext']['ts'],10) ) ts_ratio_freq[source_run] = ts_ratio plt.plot (
np.arange(1859,2100)
numpy.arange
if __name__ == "__main__": #%% import sys import time from sklearn.model_selection import StratifiedKFold, train_test_split from tqdm import trange sys.path.append('..') import os import torch import pandas as pd import numpy as np from torch.nn import CrossEntropyLoss, BCEWithLogitsLoss from lens.models.relu_nn import XReluNN from lens.models.psi_nn import PsiNetwork from lens.models.tree import XDecisionTreeClassifier from lens.models.brl import XBRLClassifier from lens.models.deep_red import XDeepRedClassifier from lens.utils.base import set_seed, ClassifierNotTrainedError, IncompatibleClassifierError from lens.utils.metrics import Accuracy, F1Score from lens.models.general_nn import XGeneralNN from lens.utils.datasets import StructuredDataset from lens.logic.base import test_explanation from lens.logic.metrics import complexity, fidelity, formula_consistency from data import VDEM from data.load_structured_datasets import load_vDem # n_sample = 100 results_dir = f'results/vDem' if not os.path.isdir(results_dir): os.makedirs(results_dir) #%% md ## Loading VDEM data #%% dataset_root = "../data/" dataset_name = VDEM print(dataset_root) print(results_dir) x, c, y, feature_names, concept_names, class_names = load_vDem(dataset_root) y = y.argmax(dim=1) n_features = x.shape[1] n_concepts = c.shape[1] n_classes = len(class_names) dataset_low = StructuredDataset(x, c, dataset_name=dataset_name, feature_names=feature_names, class_names=concept_names) print("Number of features", n_features) print("Number of concepts", n_concepts) print("Feature names", feature_names) print("Concept names", concept_names) print("Class names", class_names) #%% md ## Define loss, metrics and methods #%% loss_low = BCEWithLogitsLoss() loss_high = CrossEntropyLoss() metric = Accuracy() expl_metric = F1Score() method_list = ['DTree', 'BRL', 'Psi', 'Relu', 'General'] # 'DeepRed'] print("Methods", method_list) #%% md ## Training #%% epochs = 1000 n_processes = 4 timeout = 60 * 60 # 1 h timeout l_r = 1e-3 lr_scheduler = False top_k_explanations = None simplify = True seeds = [*range(5)] print("Seeds", seeds) device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") print("Device", device) for method in method_list: methods = [] splits = [] model_explanations = [] model_accuracies = [] explanation_accuracies = [] elapsed_times = [] explanation_fidelities = [] explanation_complexities = [] skf = StratifiedKFold(n_splits=len(seeds), shuffle=True, random_state=0) for seed, (trainval_index, test_index) in enumerate(skf.split(x.numpy(), y.numpy())): set_seed(seed) x_trainval, c_trainval, y_trainval = x[trainval_index], c[trainval_index], y[trainval_index] x_test, c_test, y_test = x[test_index], c[test_index], y[test_index] x_train, x_val, c_train, c_val, y_train, y_val = train_test_split(x_trainval, c_trainval, y_trainval, test_size=0.3, random_state=0) train_data_low = StructuredDataset(x_train, c_train, dataset_name, feature_names, concept_names) val_data_low = StructuredDataset(x_val, c_val, dataset_name, feature_names, concept_names) test_data_low = StructuredDataset(x_test, c_test, dataset_name, feature_names, concept_names) data_low = StructuredDataset(x, c, dataset_name, feature_names, concept_names) name_low = os.path.join(results_dir, f"{method}_{seed}_low") name_high = os.path.join(results_dir, f"{method}_{seed}_high") # Setting device print(f"Training {name_low} classifier...") start_time = time.time() if method == 'DTree': model_low = XDecisionTreeClassifier(name=name_low, n_classes=n_concepts, n_features=n_features, max_depth=5) try: model_low.load(device) print(f"Model {name_low} already trained") except (ClassifierNotTrainedError, IncompatibleClassifierError): model_low.fit(train_data_low, val_data_low, metric=metric, save=True) c_predicted_train, _ = model_low.predict(train_data_low, device=device) c_predicted_val, _ = model_low.predict(val_data_low, device=device) c_predicted_test, _ = model_low.predict(test_data_low, device=device) accuracy_low = model_low.evaluate(test_data_low, metric=metric) train_data_high = StructuredDataset(c_predicted_train, y_train, dataset_name, feature_names, concept_names) val_data_high = StructuredDataset(c_predicted_val, y_val, dataset_name, feature_names, concept_names) test_data_high = StructuredDataset(c_predicted_test, y_test, dataset_name, feature_names, concept_names) model_high = XDecisionTreeClassifier(name=name_high, n_classes=n_classes, n_features=n_concepts, max_depth=5) try: model_high.load(device) print(f"Model {name_high} already trained") except (ClassifierNotTrainedError, IncompatibleClassifierError): model_high.fit(train_data_high, val_data_high, metric=metric, save=True) outputs, labels = model_high.predict(test_data_high, device=device) accuracy = model_high.evaluate(test_data_high, metric=metric, outputs=outputs, labels=labels) explanations, exp_accuracies, exp_fidelities, exp_complexities = [], [], [], [] for i in trange(n_classes): explanation = model_high.get_global_explanation(i, concept_names) class_output = torch.as_tensor((outputs > 0.5) == i) class_label = torch.as_tensor(labels == i) exp_fidelity = 100 exp_accuracy = expl_metric(class_output, class_label) explanation_complexity = complexity(explanation) explanations.append(explanation), exp_accuracies.append(exp_accuracy) exp_fidelities.append(exp_fidelity), exp_complexities.append(explanation_complexity) elif method == 'BRL': train_sample_rate = 1.0 model_low = XBRLClassifier(name=name_low, n_classes=n_concepts, n_features=n_features, n_processes=n_processes, feature_names=feature_names, class_names=concept_names) try: model_low.load(device) print(f"Model {name_low} already trained") except (ClassifierNotTrainedError, IncompatibleClassifierError): model_low.fit(train_data_low, train_sample_rate=train_sample_rate, verbose=True, eval=False) c_predicted, _ = model_low.predict(data_low, device=device) c_predicted_train, c_predicted_test = c_predicted[trainval_index], c_predicted[test_index] accuracy_low = model_low.evaluate(test_data_low, metric=metric, outputs=c_predicted_test, labels=c_test) train_data_high = StructuredDataset(c_predicted_train, y_trainval, dataset_name, feature_names, concept_names) test_data_high = StructuredDataset(c_predicted_test, y_test, dataset_name, feature_names, concept_names) model_high = XBRLClassifier(name=name_high, n_classes=n_classes, n_features=n_concepts, n_processes=n_processes, feature_names=concept_names, class_names=class_names) try: model_high.load(device) print(f"Model {name_high} already trained") except (ClassifierNotTrainedError, IncompatibleClassifierError): model_high.fit(train_data_high, train_sample_rate=train_sample_rate, verbose=True, eval=False) outputs, labels = model_high.predict(test_data_high, device=device) accuracy = model_high.evaluate(test_data_high, metric=metric, outputs=outputs, labels=labels) explanations, exp_accuracies, exp_fidelities, exp_complexities = [], [], [], [] for i in trange(n_classes): explanation = model_high.get_global_explanation(i, concept_names) exp_accuracy, exp_predictions = test_explanation(explanation, i, c_predicted_test, y_test, metric=expl_metric, concept_names=concept_names) exp_fidelity = 100 explanation_complexity = complexity(explanation, to_dnf=True) explanations.append(explanation), exp_accuracies.append(exp_accuracy) exp_fidelities.append(exp_fidelity), exp_complexities.append(explanation_complexity) elif method == 'DeepRed': train_sample_rate = 0.1 model_low = XDeepRedClassifier(name=name_low, n_classes=n_concepts, n_features=n_features) model_low.prepare_data(dataset_low, dataset_name + "low", seed, trainval_index, test_index, train_sample_rate) try: model_low.load(device) print(f"Model {name_low} already trained") except (ClassifierNotTrainedError, IncompatibleClassifierError): model_low.fit(epochs, train_sample_rate=train_sample_rate, verbose=True, eval=False) c_predicted_train, _ = model_low.predict(train=True, device=device) c_predicted_test, _ = model_low.predict(train=False, device=device) accuracy_low = model_low.evaluate(train=False, outputs=c_predicted_test, labels=c_test, metric=metric) model_low.finish() c_predicted = torch.vstack((c_predicted_train, c_predicted_test)) y = torch.vstack((y_train, y_test)) dataset_high = StructuredDataset(c_predicted, y, dataset_name, feature_names, concept_names) model_high = XDeepRedClassifier(n_classes, n_features, name=name_high) model_high.prepare_data(dataset_high, dataset_name + "high", seed, trainval_index, test_index, train_sample_rate) try: model_high.load(device) print(f"Model {name_high} already trained") except (ClassifierNotTrainedError, IncompatibleClassifierError): model_low.fit(epochs, train_sample_rate=train_sample_rate, verbose=True, eval=False) outputs, labels = model_high.predict(train=False, device=device) accuracy = model_high.evaluate(train=False, metric=metric, outputs=outputs, labels=labels) explanations, exp_accuracies, exp_fidelities, exp_complexities = [], [], [], [] print("Extracting rules...") t = time.time() for i in trange(n_classes): explanation = model_high.get_global_explanation(i, concept_names, simplify=simplify) exp_accuracy, exp_predictions = test_explanation(explanation, i, c_predicted_test, y_test, metric=expl_metric, concept_names=concept_names, inequalities=True) exp_predictions = torch.as_tensor(exp_predictions) class_output = torch.as_tensor(outputs.argmax(dim=1) == i) exp_fidelity = fidelity(exp_predictions, class_output, expl_metric) explanation_complexity = complexity(explanation) explanations.append(explanation), exp_accuracies.append(exp_accuracy) exp_fidelities.append(exp_fidelity), exp_complexities.append(explanation_complexity) print(f"{i + 1}/{n_classes} Rules extracted. Time {time.time() - t}") elif method == 'Psi': # Network structures l1_weight = 1e-4 hidden_neurons = [10, 5] fan_in = 3 lr_psi = 1e-2 print("L1 weight", l1_weight) print("Hidden neurons", hidden_neurons) print("Fan in", fan_in) print("Learning rate", lr_psi) name_low = os.path.join(results_dir, f"{method}_{seed}_{l1_weight}_{hidden_neurons}_{fan_in}_{lr_psi}_low") name_high = os.path.join(results_dir, f"{method}_{seed}_{l1_weight}_{hidden_neurons}_{fan_in}_{lr_psi}_high") model_low = PsiNetwork(n_concepts, n_features, hidden_neurons, loss_low, l1_weight, name=name_low, fan_in=fan_in) try: model_low.load(device) print(f"Model {name_low} already trained") except (ClassifierNotTrainedError, IncompatibleClassifierError): model_low.fit(train_data_low, val_data_low, epochs=epochs, l_r=lr_psi, metric=metric, lr_scheduler=lr_scheduler, device=device, verbose=True) c_predicted_train = model_low.predict(train_data_low, device=device)[0].detach().cpu() c_predicted_val = model_low.predict(val_data_low, device=device)[0].detach().cpu() c_predicted_test = model_low.predict(test_data_low, device=device)[0].detach().cpu() accuracy_low = model_low.evaluate(test_data_low, outputs=c_predicted_test, labels=c_test, metric=metric) train_data_high = StructuredDataset(c_predicted_train, y_train, dataset_name, feature_names, concept_names) val_data_high = StructuredDataset(c_predicted_val, y_val, dataset_name, feature_names, concept_names) test_data_high = StructuredDataset(c_predicted_test, y_test, dataset_name, feature_names, concept_names) model_high = PsiNetwork(n_classes, n_concepts, hidden_neurons, loss_high, l1_weight, name=name_high, fan_in=fan_in) try: model_high.load(device) print(f"Model {name_high} already trained") except (ClassifierNotTrainedError, IncompatibleClassifierError): model_high.fit(train_data_high, val_data_high, epochs=epochs, l_r=lr_psi, metric=metric, lr_scheduler=lr_scheduler, device=device, verbose=True) outputs, labels = model_high.predict(test_data_high, device=device) accuracy = model_high.evaluate(test_data_high, metric=metric, outputs=outputs, labels=labels) explanations, exp_accuracies, exp_fidelities, exp_complexities = [], [], [], [] for i in trange(n_classes): explanation = model_high.get_global_explanation(i, concept_names, simplify=simplify, x_train=c_predicted_train) exp_accuracy, exp_predictions = test_explanation(explanation, i, c_predicted_test, y_test, metric=expl_metric, concept_names=concept_names) exp_predictions = torch.as_tensor(exp_predictions) class_output = torch.as_tensor(outputs.argmax(dim=1) == i) exp_fidelity = fidelity(exp_predictions, class_output, expl_metric) explanation_complexity = complexity(explanation, to_dnf=True) explanations.append(explanation), exp_accuracies.append(exp_accuracy) exp_fidelities.append(exp_fidelity), exp_complexities.append(explanation_complexity) elif method == 'General': # Network structures l1_weight = 1e-3 hidden_neurons = [100, 30, 10] fan_in = 5 top_k_explanations = None name_low = os.path.join(results_dir, f"{method}_{seed}_{l1_weight}_{hidden_neurons}_{fan_in}_low") name_high = os.path.join(results_dir, f"{method}_{seed}_{l1_weight}_{hidden_neurons}_{fan_in}_high") model_low = XGeneralNN(n_concepts, n_features, hidden_neurons, fan_in=n_features, loss=loss_low, name=name_low, l1_weight=l1_weight) try: model_low.load(device) print(f"Model {name_low} already trained") except (ClassifierNotTrainedError, IncompatibleClassifierError): model_low.fit(train_data_low, val_data_low, epochs=epochs, l_r=l_r, metric=metric, lr_scheduler=lr_scheduler, device=device, verbose=True) c_predicted_train = model_low.predict(train_data_low, device=device)[0].detach().cpu() c_predicted_val = model_low.predict(val_data_low, device=device)[0].detach().cpu() c_predicted_test = model_low.predict(test_data_low, device=device)[0].detach().cpu() accuracy_low = model_low.evaluate(test_data_low, outputs=c_predicted_test, labels=c_test, metric=metric) train_data_high = StructuredDataset(c_predicted_train, y_train, dataset_name, feature_names, concept_names) val_data_high = StructuredDataset(c_predicted_val, y_val, dataset_name, feature_names, concept_names) test_data_high = StructuredDataset(c_predicted_test, y_test, dataset_name, feature_names, concept_names) model_high = XGeneralNN(n_classes, n_concepts, hidden_neurons, fan_in=fan_in, loss=loss_high, name=name_high, l1_weight=l1_weight) try: model_high.load(device) print(f"Model {name_high} already trained") except (ClassifierNotTrainedError, IncompatibleClassifierError): model_high.fit(train_data_high, val_data_high, epochs=epochs, l_r=l_r*1e-1, metric=metric, lr_scheduler=lr_scheduler, device=device, verbose=True) outputs, labels = model_high.predict(test_data_high, device=device) accuracy = model_high.evaluate(test_data_high, metric=metric, outputs=outputs, labels=labels) explanations, exp_accuracies, exp_fidelities, exp_complexities = [], [], [], [] for i in trange(n_classes): explanation = model_high.get_global_explanation(c_predicted_train, y_train, i, top_k_explanations=top_k_explanations, concept_names=concept_names, simplify=simplify, metric=expl_metric, x_val=c_predicted_val, y_val=y_val) exp_accuracy, exp_predictions = test_explanation(explanation, i, c_predicted_test, y_test, metric=expl_metric, concept_names=concept_names) exp_predictions = torch.as_tensor(exp_predictions) class_output = torch.as_tensor(outputs.argmax(dim=1) == i) exp_fidelity = fidelity(exp_predictions, class_output, expl_metric) explanation_complexity = complexity(explanation, to_dnf=True) explanations.append(explanation), exp_accuracies.append(exp_accuracy) exp_fidelities.append(exp_fidelity), exp_complexities.append(explanation_complexity) elif method == 'Relu': # Network structures l1_weight = 1e-4 hidden_neurons = [100, 50, 30, 10] dropout_rate = 0.01 print("l1 weight", l1_weight) print("hidden neurons", hidden_neurons) model_low = XReluNN(n_classes=n_concepts, n_features=n_features, name=name_low, dropout_rate=dropout_rate, hidden_neurons=hidden_neurons, loss=loss_low, l1_weight=l1_weight*1e-2) try: model_low.load(device) print(f"Model {name_low} already trained") except (ClassifierNotTrainedError, IncompatibleClassifierError): model_low.fit(train_data_low, val_data_low, epochs=epochs, l_r=l_r, metric=metric, lr_scheduler=lr_scheduler, device=device, verbose=True) c_predicted_train = model_low.predict(train_data_low, device=device)[0].detach().cpu() c_predicted_val = model_low.predict(val_data_low, device=device)[0].detach().cpu() c_predicted_test = model_low.predict(test_data_low, device=device)[0].detach().cpu() accuracy_low = model_low.evaluate(test_data_low, outputs=c_predicted_test, labels=c_test, metric=metric) train_data_high = StructuredDataset(c_predicted_train, y_train, dataset_name, feature_names, concept_names) val_data_high = StructuredDataset(c_predicted_val, y_val, dataset_name, feature_names, concept_names) test_data_high = StructuredDataset(c_predicted_test, y_test, dataset_name, feature_names, concept_names) model_high = XReluNN(n_classes=n_classes, n_features=n_concepts, name=name_high, dropout_rate=dropout_rate, hidden_neurons=hidden_neurons, loss=loss_high, l1_weight=l1_weight) try: model_high.load(device) print(f"Model {name_high} already trained") except (ClassifierNotTrainedError, IncompatibleClassifierError): model_high.fit(train_data_high, val_data_high, epochs=epochs, l_r=l_r * 1e-1, metric=metric, lr_scheduler=lr_scheduler, device=device, verbose=True) outputs, labels = model_high.predict(test_data_high, device=device) accuracy = model_high.evaluate(test_data_high, metric=metric, outputs=outputs, labels=labels) explanations, exp_accuracies, exp_fidelities, exp_complexities = [], [], [], [] for i in trange(n_classes): explanation = model_high.get_global_explanation(c_predicted_train, y_train, i, top_k_explanations=top_k_explanations, concept_names=concept_names, simplify=simplify, metric=expl_metric, x_val=c_predicted_val, y_val=y_val) exp_accuracy, exp_predictions = test_explanation(explanation, i, c_predicted_test, y_test, metric=expl_metric, concept_names=concept_names) exp_predictions = torch.as_tensor(exp_predictions) class_output = torch.as_tensor(outputs.argmax(dim=1) == i) exp_fidelity = fidelity(exp_predictions, class_output, expl_metric) explanation_complexity = complexity(explanation, to_dnf=True) explanations.append(explanation), exp_accuracies.append(exp_accuracy) exp_fidelities.append(exp_fidelity), exp_complexities.append(explanation_complexity) else: raise NotImplementedError(f"{method} not implemented") if model_high.time is None: elapsed_time = time.time() - start_time # In DeepRed and BRL the training is parallelized to speed up operation if method == "DeepRed" or method == "BRL": elapsed_time = elapsed_time * n_processes model_high.time = elapsed_time # To save the elapsed time and the explanations model_high.save(device) else: elapsed_time = model_high.time # To restore the original folder if method == "DeepRed": model_high.finish() methods.append(method) splits.append(seed) model_explanations.append(explanations[0]) model_accuracies.append(accuracy) elapsed_times.append(elapsed_time) explanation_accuracies.append(np.mean(exp_accuracies)) explanation_fidelities.append(np.mean(exp_fidelities)) explanation_complexities.append(
np.mean(exp_complexities)
numpy.mean
import nengo import numpy as np import scipy.linalg from scipy.special import legendre import yaml import os #----------------------------------------------------------------------------------------------------------------------- class NetInfo(): def __init__(self): config = yaml.load(open(os.path.join('SI_Toolkit_ApplicationSpecificFiles', 'config.yml'), 'r'), Loader=yaml.FullLoader) #self.ctrl_inputs = config['training_default']['control_inputs'] # For any reason, this is reading the full vector of [ctrl_in,state_in] self.ctrl_inputs = ['Q'] # I force it, could not find a way to only read 'Q' self.state_inputs = config['training_default']['state_inputs'] self.inputs = config['training_default']['control_inputs'] self.inputs.extend(self.state_inputs) self.outputs = config['training_default']['outputs'] self.net_type = 'SNN' # This part is forced to read from previous non-SNN network (should be changed when integrated properly to SI_Toolkit) self.path_to_normalization_info = './SI_Toolkit_ApplicationSpecificFiles/Experiments/Pretrained-RNN-1/Models/GRU-6IN-32H1-32H2-5OUT-0/NI_2021-06-29_12-02-03.csv' #self.parent_net_name = 'Network trained from scratch' self.parent_net_name = 'GRU-6IN-32H1-32H2-5OUT-0' #self.path_to_net = None self.path_to_net = './SI_Toolkit_ApplicationSpecificFiles/Experiments/Pretrained-RNN-1/Models/GRU-6IN-32H1-32H2-5OUT-0' #----------------------------------------------------------------------------------------------------------------------- def minmax(invalues, bound): '''Scale the input to [-1, 1]''' out = 2 * (invalues + bound) / (2*bound) - 1 return out #----------------------------------------------------------------------------------------------------------------------- def scale_datasets(data, scales): '''Scale inputs in a list of datasets to -1, 1''' # Scale all datasets to [-1, 1] based on the maximum value found above bounds = [] for var, bound in scales.items(): bounds.append(bound) for ii in range(len(bounds)): data[:,ii] = minmax(data[:,ii], bounds[ii]) return data #----------------------------------------------------------------------------------------------------------------------- class Delay: def __init__(self, dimensions, timesteps=50): self.history =
np.zeros((timesteps, dimensions))
numpy.zeros
""" some function are refer in https://github.com/dnddnjs/mujoco-pg """ import time import math import torch import matplotlib.pyplot as plt import numpy as np import csv import datetime def time_change(time_init): """ 定义将秒转换为时分秒格式的函数 """ time_list = [] if time_init / 3600 > 1: time_h = int(time_init / 3600) time_m = int((time_init - time_h * 3600) / 60) time_s = int(time_init - time_h * 3600 - time_m * 60) time_list.append(str(time_h)) time_list.append('h ') time_list.append(str(time_m)) time_list.append('m ') elif time_init / 60 > 1: time_m = int(time_init / 60) time_s = int(time_init - time_m * 60) time_list.append(str(time_m)) time_list.append('m ') else: time_s = int(time_init) time_list.append(str(time_s)) time_list.append('s') time_str = ''.join(time_list) return time_str def print_time_information(start, GLOBAL_EP, MAX_GLOBAL_EP, train_round=0,): """ 记录时间,剩余时间 :param start: :param GLOBAL_EP: :param MAX_GLOBAL_EP: :return: """ process = GLOBAL_EP * 1.00 / MAX_GLOBAL_EP if process > 1: process = 1 end = time.time() use_time = end - start all_time = use_time / (process + 1e-5) res_time = all_time - use_time if res_time < 1: res_time = 1 str_ues_time = time_change(use_time) str_res_time = time_change(res_time) print("Round:%s Percentage of progress:%.2f%% Used time:%s Rest time:%s " % (train_round + 1, process * 100, str_ues_time, str_res_time)) def plt_reward_step( GLOBAL_RUNNING_R=[], GLOBAL_RUNNING_STEP=[], title="mountaincar"): plt.subplot(2, 1, 1) plt.title(title) # 表头 plt.plot(np.arange(len(GLOBAL_RUNNING_R)), GLOBAL_RUNNING_R) # 结束后绘制reward图像 plt.xlabel('episode') plt.ylabel('reward') plt.subplot(2, 1, 2) plt.plot(np.arange(len(GLOBAL_RUNNING_STEP)), GLOBAL_RUNNING_STEP) # 结束后绘制reward图像 plt.xlabel('episode') plt.ylabel('step') plt.show() time = datetime.datetime.now() statistical_data = rank_and_average(GLOBAL_RUNNING_R) with open('TEST_RECORD.csv', 'a', newline='') as myFile: Writer = csv.writer(myFile, dialect='excel') Writer.writerow([title] + [str(time)]) Writer.writerow(GLOBAL_RUNNING_STEP) Writer.writerow(GLOBAL_RUNNING_R) Writer.writerow(statistical_data) print("write over") def plot_error_bar(data): num_of_methods = data.shape[0] average = data[:, 2] average = list(map(float, average)) std_error = data[:, 3] std_error = list(map(float, std_error)) fig, ax = plt.subplots() # 画误差线,x轴一共7项,y轴显示平均值,y轴误差为标准差 ax.errorbar(np.arange(num_of_methods), average, yerr=std_error, fmt="o", color="blue", ecolor='grey', elinewidth=2, capsize=4) ax.set_xticks(np.arange(num_of_methods)) ax.set_xticklabels(['method1', 'method2']) # 设置x轴刻度标签,并使其倾斜45度,不至于重叠 plt.title("Comparison") plt.ylabel("Average Reward") plt.show() def rank_and_average(GLOBAL_RUNNING_R=[]): minInRecord = min(GLOBAL_RUNNING_R) maxInRecord = max(GLOBAL_RUNNING_R) average = np.mean(GLOBAL_RUNNING_R) std_error = np.sqrt(np.var(GLOBAL_RUNNING_R)) / \ np.sqrt(
np.size(GLOBAL_RUNNING_R)
numpy.size
import numpy as np import scipy.optimize as optimization import matplotlib.pyplot as plt try: from submm_python_routines.KIDs import calibrate except: from KIDs import calibrate from numba import jit # to get working on python 2 I had to downgrade llvmlite pip install llvmlite==0.31.0 # module for fitting resonances curves for kinetic inductance detectors. # written by <NAME> 12/21/16 # for example see test_fit.py in this directory # To Do # I think the error analysis on the fit_nonlinear_iq_with_err probably needs some work # add in step by step fitting i.e. first amplitude normalizaiton, then cabel delay, then i0,q0 subtraction, then phase rotation, then the rest of the fit. # need to have fit option that just specifies tau becuase that never really changes for your cryostat #Change log #JDW 2017-08-17 added in a keyword/function to allow for gain varation "amp_var" to be taken out before fitting #JDW 2017-08-30 added in fitting for magnitude fitting of resonators i.e. not in iq space #JDW 2018-03-05 added more clever function for guessing x0 for fits #JDW 2018-08-23 added more clever guessing for resonators with large phi into guess seperate functions J=np.exp(2j*np.pi/3) Jc=1/J @jit(nopython=True) def cardan(a,b,c,d): ''' analytical root finding fast: using numba looks like x10 speed up returns only the largest real root ''' u=np.empty(2,np.complex128) z0=b/3/a a2,b2 = a*a,b*b p=-b2/3/a2 +c/a q=(b/27*(2*b2/a2-9*c/a)+d)/a D=-4*p*p*p-27*q*q r=np.sqrt(-D/27+0j) u=((-q-r)/2)**(1/3.)#0.33333333333333333333333 v=((-q+r)/2)**(1/3.)#0.33333333333333333333333 w=u*v w0=np.abs(w+p/3) w1=np.abs(w*J+p/3) w2=np.abs(w*Jc+p/3) if w0<w1: if w2<w0 : v*=Jc elif w2<w1 : v*=Jc else: v*=J roots = np.asarray((u+v-z0, u*J+v*Jc-z0,u*Jc+v*J-z0)) #print(roots) where_real = np.where(np.abs(np.imag(roots)) < 1e-15) #if len(where_real)>1: print(len(where_real)) #print(D) if D>0: return np.max(np.real(roots)) # three real roots else: return np.real(roots[np.argsort(np.abs(np.imag(roots)))][0]) #one real root get the value that has smallest imaginary component #return np.max(np.real(roots[where_real])) #return np.asarray((u+v-z0, u*J+v*Jc-z0,u*Jc+v*J-z0)) # function to descript the magnitude S21 of a non linear resonator @jit(nopython=True) def nonlinear_mag(x,fr,Qr,amp,phi,a,b0,b1,flin): ''' # x is the frequeciesn your iq sweep covers # fr is the center frequency of the resonator # Qr is the quality factor of the resonator # amp is Qr/Qc # phi is a rotation paramter for an impedance mismatch between the resonaotor and the readout system # a is the non-linearity paramter bifurcation occurs at a = 0.77 # b0 DC level of s21 away from resonator # b1 Frequency dependant gain varation # flin is probably the frequency of the resonator when a = 0 # # This is based of fitting code from MUSIC # The idea is we are producing a model that is described by the equation below # the frist two terms in the large parentasis and all other terms are farmilar to me # but I am not sure where the last term comes from though it does seem to be important for fitting # # / (j phi) (j phi) \ 2 #|S21|^2 = (b0+b1 x_lin)* |1 -amp*e^ +amp*(e^ -1) |^ # | ------------ ---- | # \ (1+ 2jy) 2 / # # where the nonlineaity of y is described by the following eqution taken from Response of superconducting microresonators # with nonlinear kinetic inductance # yg = y+ a/(1+y^2) where yg = Qr*xg and xg = (f-fr)/fr # ''' xlin = (x - flin)/flin xg = (x-fr)/fr yg = Qr*xg y = np.zeros(x.shape[0]) #find the roots of the y equation above for i in range(0,x.shape[0]): # 4y^3+ -4yg*y^2+ y -(yg+a) #roots = np.roots((4.0,-4.0*yg[i],1.0,-(yg[i]+a))) #roots = cardan(4.0,-4.0*yg[i],1.0,-(yg[i]+a)) #print(roots) #roots = np.roots((16.,-16.*yg[i],8.,-8.*yg[i]+4*a*yg[i]/Qr-4*a,1.,-yg[i]+a*yg[i]/Qr-a+a**2/Qr)) #more accurate version that doesn't seem to change the fit at al # only care about real roots #where_real = np.where(np.imag(roots) == 0) #where_real = np.where(np.abs(np.imag(roots)) < 1e-10) #analytic version has some floating point error accumulation y[i] = cardan(4.0,-4.0*yg[i],1.0,-(yg[i]+a))#np.max(np.real(roots[where_real])) z = (b0 +b1*xlin)*np.abs(1.0 - amp*np.exp(1.0j*phi)/ (1.0 +2.0*1.0j*y) + amp/2.*(np.exp(1.0j*phi) -1.0))**2 return z @jit(nopython=True) def linear_mag(x,fr,Qr,amp,phi,b0): ''' # simplier version for quicker fitting when applicable # x is the frequeciesn your iq sweep covers # fr is the center frequency of the resonator # Qr is the quality factor of the resonator # amp is Qr/Qc # phi is a rotation paramter for an impedance mismatch between the resonaotor and the readout system # b0 DC level of s21 away from resonator # # This is based of fitting code from MUSIC # The idea is we are producing a model that is described by the equation below # the frist two terms in the large parentasis and all other terms are farmilar to me # but I am not sure where the last term comes from though it does seem to be important for fitting # # / (j phi) (j phi) \ 2 #|S21|^2 = (b0)* |1 -amp*e^ +amp*(e^ -1) |^ # | ------------ ---- | # \ (1+ 2jxg) 2 / # # no y just xg # with no nonlinear kinetic inductance ''' if not np.isscalar(fr): #vectorize x = np.reshape(x,(x.shape[0],1,1,1,1,1)) xg = (x-fr)/fr z = (b0)*np.abs(1.0 - amp*np.exp(1.0j*phi)/ (1.0 +2.0*1.0j*xg*Qr) + amp/2.*(np.exp(1.0j*phi) -1.0))**2 return z # function to describe the i q loop of a nonlinear resonator @jit(nopython=True) def nonlinear_iq(x,fr,Qr,amp,phi,a,i0,q0,tau,f0): ''' # x is the frequeciesn your iq sweep covers # fr is the center frequency of the resonator # Qr is the quality factor of the resonator # amp is Qr/Qc # phi is a rotation paramter for an impedance mismatch between the resonaotor and the readou system # a is the non-linearity paramter bifurcation occurs at a = 0.77 # i0 # q0 these are constants that describes an overall phase rotation of the iq loop + a DC gain offset # tau cabel delay # f0 is all the center frequency, not sure why we include this as a secondary paramter should be the same as fr # # This is based of fitting code from MUSIC # # The idea is we are producing a model that is described by the equation below # the frist two terms in the large parentasis and all other terms are farmilar to me # but I am not sure where the last term comes from though it does seem to be important for fitting # # (-j 2 pi deltaf tau) / (j phi) (j phi) \ # (i0+j*q0)*e^ *|1 -amp*e^ +amp*(e^ -1) | # | ------------ ---- | # \ (1+ 2jy) 2 / # # where the nonlineaity of y is described by the following eqution taken from Response of superconducting microresonators # with nonlinear kinetic inductance # yg = y+ a/(1+y^2) where yg = Qr*xg and xg = (f-fr)/fr # ''' deltaf = (x - f0) xg = (x-fr)/fr yg = Qr*xg y = np.zeros(x.shape[0]) #find the roots of the y equation above for i in range(0,x.shape[0]): # 4y^3+ -4yg*y^2+ y -(yg+a) #roots = np.roots((4.0,-4.0*yg[i],1.0,-(yg[i]+a))) #roots = np.roots((16.,-16.*yg[i],8.,-8.*yg[i]+4*a*yg[i]/Qr-4*a,1.,-yg[i]+a*yg[i]/Qr-a+a**2/Qr)) #more accurate version that doesn't seem to change the fit at al # only care about real roots #where_real = np.where(np.imag(roots) == 0) #y[i] = np.max(np.real(roots[where_real])) y[i] = cardan(4.0,-4.0*yg[i],1.0,-(yg[i]+a)) z = (i0 +1.j*q0)* np.exp(-1.0j* 2* np.pi *deltaf*tau) * (1.0 - amp*np.exp(1.0j*phi)/ (1.0 +2.0*1.0j*y) + amp/2.*(np.exp(1.0j*phi) -1.0)) return z def nonlinear_iq_for_fitter(x,fr,Qr,amp,phi,a,i0,q0,tau,f0,**keywords): ''' when using a fitter that can't handel complex number one needs to return both the real and imaginary components seperatly ''' if ('tau' in keywords): use_given_tau = True tau = keywords['tau'] print("hello") else: use_given_tau = False deltaf = (x - f0) xg = (x-fr)/fr yg = Qr*xg y = np.zeros(x.shape[0]) for i in range(0,x.shape[0]): #roots = np.roots((4.0,-4.0*yg[i],1.0,-(yg[i]+a))) #where_real = np.where(np.imag(roots) == 0) #y[i] = np.max(np.real(roots[where_real])) y[i] = cardan(4.0,-4.0*yg[i],1.0,-(yg[i]+a)) z = (i0 +1.j*q0)* np.exp(-1.0j* 2* np.pi *deltaf*tau) * (1.0 - amp*np.exp(1.0j*phi)/ (1.0 +2.0*1.0j*y) + amp/2.*(np.exp(1.0j*phi) -1.0)) real_z = np.real(z) imag_z = np.imag(z) return np.hstack((real_z,imag_z)) def brute_force_linear_mag_fit(x,z,ranges,n_grid_points,error = None, plot = False,**keywords): ''' x frequencies Hz z complex or abs of s21 ranges is the ranges for each parameter i.e. np.asarray(([f_low,Qr_low,amp_low,phi_low,b0_low],[f_high,Qr_high,amp_high,phi_high,b0_high])) n_grid_points how finely to sample each parameter space. this can be very slow for n>10 an increase by a factor of 2 will take 2**5 times longer to marginalize over you must minimize over the unwanted axies of sum_dev i.e for fr np.min(np.min(np.min(np.min(fit['sum_dev'],axis = 4),axis = 3),axis = 2),axis = 1) ''' if error is None: error = np.ones(len(x)) fs = np.linspace(ranges[0][0],ranges[1][0],n_grid_points) Qrs = np.linspace(ranges[0][1],ranges[1][1],n_grid_points) amps = np.linspace(ranges[0][2],ranges[1][2],n_grid_points) phis = np.linspace(ranges[0][3],ranges[1][3],n_grid_points) b0s = np.linspace(ranges[0][4],ranges[1][4],n_grid_points) evaluated_ranges = np.vstack((fs,Qrs,amps,phis,b0s)) a,b,c,d,e = np.meshgrid(fs,Qrs,amps,phis,b0s,indexing = "ij") #always index ij evaluated = linear_mag(x,a,b,c,d,e) data_values = np.reshape(np.abs(z)**2,(abs(z).shape[0],1,1,1,1,1)) error = np.reshape(error,(abs(z).shape[0],1,1,1,1,1)) sum_dev = np.sum(((np.sqrt(evaluated)-np.sqrt(data_values))**2/error**2),axis = 0) # comparing in magnitude space rather than magnitude squared min_index = np.where(sum_dev == np.min(sum_dev)) index1 = min_index[0][0] index2 = min_index[1][0] index3 = min_index[2][0] index4 = min_index[3][0] index5 = min_index[4][0] fit_values = np.asarray((fs[index1],Qrs[index2],amps[index3],phis[index4],b0s[index5])) fit_values_names = ('f0','Qr','amp','phi','b0') fit_result = linear_mag(x,fs[index1],Qrs[index2],amps[index3],phis[index4],b0s[index5]) marginalized_1d = np.zeros((5,n_grid_points)) marginalized_1d[0,:] = np.min(np.min(np.min(np.min(sum_dev,axis = 4),axis = 3),axis = 2),axis = 1) marginalized_1d[1,:] = np.min(np.min(np.min(np.min(sum_dev,axis = 4),axis = 3),axis = 2),axis = 0) marginalized_1d[2,:] = np.min(np.min(np.min(np.min(sum_dev,axis = 4),axis = 3),axis = 1),axis = 0) marginalized_1d[3,:] = np.min(np.min(np.min(np.min(sum_dev,axis = 4),axis = 2),axis = 1),axis = 0) marginalized_1d[4,:] = np.min(np.min(np.min(np.min(sum_dev,axis = 3),axis = 2),axis = 1),axis = 0) marginalized_2d = np.zeros((5,5,n_grid_points,n_grid_points)) #0 _ #1 x _ #2 x x _ #3 x x x _ #4 x x x x _ # 0 1 2 3 4 marginalized_2d[0,1,:] = marginalized_2d[1,0,:] = np.min(np.min(np.min(sum_dev,axis = 4),axis = 3),axis = 2) marginalized_2d[2,0,:] = marginalized_2d[0,2,:] = np.min(np.min(np.min(sum_dev,axis = 4),axis = 3),axis = 1) marginalized_2d[2,1,:] = marginalized_2d[1,2,:] = np.min(np.min(np.min(sum_dev,axis = 4),axis = 3),axis = 0) marginalized_2d[3,0,:] = marginalized_2d[0,3,:] = np.min(np.min(np.min(sum_dev,axis = 4),axis = 2),axis = 1) marginalized_2d[3,1,:] = marginalized_2d[1,3,:] = np.min(np.min(np.min(sum_dev,axis = 4),axis = 2),axis = 0) marginalized_2d[3,2,:] = marginalized_2d[2,3,:] = np.min(np.min(np.min(sum_dev,axis = 4),axis = 1),axis = 0) marginalized_2d[4,0,:] = marginalized_2d[0,4,:] = np.min(np.min(np.min(sum_dev,axis = 3),axis = 2),axis = 1) marginalized_2d[4,1,:] = marginalized_2d[1,4,:] = np.min(np.min(np.min(sum_dev,axis = 3),axis = 2),axis = 0) marginalized_2d[4,2,:] = marginalized_2d[2,4,:] = np.min(np.min(np.min(sum_dev,axis = 3),axis = 1),axis = 0) marginalized_2d[4,3,:] = marginalized_2d[3,4,:] = np.min(np.min(np.min(sum_dev,axis = 2),axis = 1),axis = 0) if plot: levels = [2.3,4.61] #delta chi squared two parameters 68 90 % confidence fig_fit = plt.figure(-1) axs = fig_fit.subplots(5, 5) for i in range(0,5): # y starting from top for j in range(0,5): #x starting from left if i > j: #plt.subplot(5,5,i+1+5*j) #axs[i, j].set_aspect('equal', 'box') extent = [evaluated_ranges[j,0],evaluated_ranges[j,n_grid_points-1],evaluated_ranges[i,0],evaluated_ranges[i,n_grid_points-1]] axs[i,j].imshow(marginalized_2d[i,j,:]-np.min(sum_dev),extent =extent,origin = 'lower', cmap = 'jet') axs[i,j].contour(evaluated_ranges[j],evaluated_ranges[i],marginalized_2d[i,j,:]-np.min(sum_dev),levels = levels,colors = 'white') axs[i,j].set_ylim(evaluated_ranges[i,0],evaluated_ranges[i,n_grid_points-1]) axs[i,j].set_xlim(evaluated_ranges[j,0],evaluated_ranges[j,n_grid_points-1]) axs[i,j].set_aspect((evaluated_ranges[j,0]-evaluated_ranges[j,n_grid_points-1])/(evaluated_ranges[i,0]-evaluated_ranges[i,n_grid_points-1])) if j == 0: axs[i, j].set_ylabel(fit_values_names[i]) if i == 4: axs[i, j].set_xlabel("\n"+fit_values_names[j]) if i<4: axs[i,j].get_xaxis().set_ticks([]) if j>0: axs[i,j].get_yaxis().set_ticks([]) elif i < j: fig_fit.delaxes(axs[i,j]) for i in range(0,5): #axes.subplot(5,5,i+1+5*i) axs[i,i].plot(evaluated_ranges[i,:],marginalized_1d[i,:]-np.min(sum_dev)) axs[i,i].plot(evaluated_ranges[i,:],np.ones(len(evaluated_ranges[i,:]))*1.,color = 'k') axs[i,i].plot(evaluated_ranges[i,:],np.ones(len(evaluated_ranges[i,:]))*2.7,color = 'k') axs[i,i].yaxis.set_label_position("right") axs[i,i].yaxis.tick_right() axs[i,i].xaxis.set_label_position("top") axs[i,i].xaxis.tick_top() axs[i,i].set_xlabel(fit_values_names[i]) #axs[0,0].set_ylabel(fit_values_names[0]) #axs[4,4].set_xlabel(fit_values_names[4]) axs[4,4].xaxis.set_label_position("bottom") axs[4,4].xaxis.tick_bottom() #make a dictionary to return fit_dict = {'fit_values': fit_values,'fit_values_names':fit_values_names, 'sum_dev': sum_dev, 'fit_result': fit_result,'marginalized_2d':marginalized_2d,'marginalized_1d':marginalized_1d,'evaluated_ranges':evaluated_ranges}#, 'x0':x0, 'z':z} return fit_dict # function for fitting an iq sweep with the above equation def fit_nonlinear_iq(x,z,**keywords): ''' # keywards are # bounds ---- which is a 2d tuple of low the high values to bound the problem by # x0 --- intial guess for the fit this can be very important becuase because least square space over all the parameter is comple # amp_norm --- do a normalization for variable amplitude. usefull when tranfer function of the cryostat is not flat # tau forces tau to specific value # tau_guess fixes the guess for tau without have to specifiy all of x0 ''' if ('tau' in keywords): use_given_tau = True tau = keywords['tau'] else: use_given_tau = False if ('bounds' in keywords): bounds = keywords['bounds'] else: #define default bounds print("default bounds used") bounds = ([np.min(x),50,.01,-np.pi,0,-np.inf,-np.inf,0,np.min(x)],[np.max(x),200000,1,np.pi,5,np.inf,np.inf,1*10**-6,np.max(x)]) if ('x0' in keywords): x0 = keywords['x0'] else: #define default intial guess print("default initial guess used") #fr_guess = x[np.argmin(np.abs(z))] #x0 = [fr_guess,10000.,0.5,0,0,np.mean(np.real(z)),np.mean(np.imag(z)),3*10**-7,fr_guess] x0 = guess_x0_iq_nonlinear(x,z,verbose = True) print(x0) if ('fr_guess' in keywords): x0[0] = keywords['fr_guess'] if ('tau_guess' in keywords): x0[7] = keywords['tau_guess'] #Amplitude normalization? do_amp_norm = 0 if ('amp_norm' in keywords): amp_norm = keywords['amp_norm'] if amp_norm == True: do_amp_norm = 1 elif amp_norm == False: do_amp_norm = 0 else: print("please specify amp_norm as True or False") if do_amp_norm == 1: z = amplitude_normalization(x,z) z_stacked = np.hstack((np.real(z),np.imag(z))) if use_given_tau == True: del bounds[0][7] del bounds[1][7] del x0[7] fit = optimization.curve_fit(lambda x_lamb,a,b,c,d,e,f,g,h: nonlinear_iq_for_fitter(x_lamb,a,b,c,d,e,f,g,tau,h), x, z_stacked,x0,bounds = bounds) fit_result = nonlinear_iq(x,fit[0][0],fit[0][1],fit[0][2],fit[0][3],fit[0][4],fit[0][5],fit[0][6],tau,fit[0][7]) x0_result = nonlinear_iq(x,x0[0],x0[1],x0[2],x0[3],x0[4],x0[5],x0[6],tau,x0[7]) else: fit = optimization.curve_fit(nonlinear_iq_for_fitter, x, z_stacked,x0,bounds = bounds) fit_result = nonlinear_iq(x,fit[0][0],fit[0][1],fit[0][2],fit[0][3],fit[0][4],fit[0][5],fit[0][6],fit[0][7],fit[0][8]) x0_result = nonlinear_iq(x,x0[0],x0[1],x0[2],x0[3],x0[4],x0[5],x0[6],x0[7],x0[8]) #make a dictionary to return fit_dict = {'fit': fit, 'fit_result': fit_result, 'x0_result': x0_result, 'x0':x0, 'z':z} return fit_dict def fit_nonlinear_iq_sep(fine_x,fine_z,gain_x,gain_z,**keywords): ''' # same as above funciton but takes fine and gain scans seperatly # keywards are # bounds ---- which is a 2d tuple of low the high values to bound the problem by # x0 --- intial guess for the fit this can be very important becuase because least square space over all the parameter is comple # amp_norm --- do a normalization for variable amplitude. usefull when tranfer function of the cryostat is not flat ''' if ('bounds' in keywords): bounds = keywords['bounds'] else: #define default bounds print("default bounds used") bounds = ([np.min(fine_x),500.,.01,-np.pi,0,-np.inf,-np.inf,1*10**-9,np.min(fine_x)],[np.max(fine_x),1000000,1,np.pi,5,np.inf,np.inf,1*10**-6,np.max(fine_x)]) if ('x0' in keywords): x0 = keywords['x0'] else: #define default intial guess print("default initial guess used") #fr_guess = x[np.argmin(np.abs(z))] #x0 = [fr_guess,10000.,0.5,0,0,np.mean(np.real(z)),np.mean(np.imag(z)),3*10**-7,fr_guess] x0 = guess_x0_iq_nonlinear_sep(fine_x,fine_z,gain_x,gain_z) #print(x0) #Amplitude normalization? do_amp_norm = 0 if ('amp_norm' in keywords): amp_norm = keywords['amp_norm'] if amp_norm == True: do_amp_norm = 1 elif amp_norm == False: do_amp_norm = 0 else: print("please specify amp_norm as True or False") if (('fine_z_err' in keywords) & ('gain_z_err' in keywords)): use_err = True fine_z_err = keywords['fine_z_err'] gain_z_err = keywords['gain_z_err'] else: use_err = False x = np.hstack((fine_x,gain_x)) z = np.hstack((fine_z,gain_z)) if use_err: z_err = np.hstack((fine_z_err,gain_z_err)) if do_amp_norm == 1: z = amplitude_normalization(x,z) z_stacked = np.hstack((np.real(z),np.imag(z))) if use_err: z_err_stacked = np.hstack((np.real(z_err),np.imag(z_err))) fit = optimization.curve_fit(nonlinear_iq_for_fitter, x, z_stacked,x0,sigma = z_err_stacked,bounds = bounds) else: fit = optimization.curve_fit(nonlinear_iq_for_fitter, x, z_stacked,x0,bounds = bounds) fit_result = nonlinear_iq(x,fit[0][0],fit[0][1],fit[0][2],fit[0][3],fit[0][4],fit[0][5],fit[0][6],fit[0][7],fit[0][8]) x0_result = nonlinear_iq(x,x0[0],x0[1],x0[2],x0[3],x0[4],x0[5],x0[6],x0[7],x0[8]) if use_err: #only do it for fine data #red_chi_sqr = np.sum(z_stacked-np.hstack((np.real(fit_result),np.imag(fit_result))))**2/z_err_stacked**2)/(len(z_stacked)-8.) #only do it for fine data red_chi_sqr = np.sum((np.hstack((np.real(fine_z),np.imag(fine_z)))-np.hstack((np.real(fit_result[0:len(fine_z)]),np.imag(fit_result[0:len(fine_z)]))))**2/np.hstack((np.real(fine_z_err),np.imag(fine_z_err)))**2)/(len(fine_z)*2.-8.) #make a dictionary to return if use_err: fit_dict = {'fit': fit, 'fit_result': fit_result, 'x0_result': x0_result, 'x0':x0, 'z':z,'fit_freqs':x,'red_chi_sqr':red_chi_sqr} else: fit_dict = {'fit': fit, 'fit_result': fit_result, 'x0_result': x0_result, 'x0':x0, 'z':z,'fit_freqs':x} return fit_dict # same function but double fits so that it can get error and a proper covariance matrix out def fit_nonlinear_iq_with_err(x,z,**keywords): ''' # keywards are # bounds ---- which is a 2d tuple of low the high values to bound the problem by # x0 --- intial guess for the fit this can be very important becuase because least square space over all the parameter is comple # amp_norm --- do a normalization for variable amplitude. usefull when tranfer function of the cryostat is not flat ''' if ('bounds' in keywords): bounds = keywords['bounds'] else: #define default bounds print("default bounds used") bounds = ([np.min(x),2000,.01,-np.pi,0,-5,-5,1*10**-9,np.min(x)],[np.max(x),200000,1,np.pi,5,5,5,1*10**-6,np.max(x)]) if ('x0' in keywords): x0 = keywords['x0'] else: #define default intial guess print("default initial guess used") fr_guess = x[np.argmin(np.abs(z))] x0 = guess_x0_iq_nonlinear(x,z) #Amplitude normalization? do_amp_norm = 0 if ('amp_norm' in keywords): amp_norm = keywords['amp_norm'] if amp_norm == True: do_amp_norm = 1 elif amp_norm == False: do_amp_norm = 0 else: print("please specify amp_norm as True or False") if do_amp_norm == 1: z = amplitude_normalization(x,z) z_stacked = np.hstack((np.real(z),np.imag(z))) fit = optimization.curve_fit(nonlinear_iq_for_fitter, x, z_stacked,x0,bounds = bounds) fit_result = nonlinear_iq(x,fit[0][0],fit[0][1],fit[0][2],fit[0][3],fit[0][4],fit[0][5],fit[0][6],fit[0][7],fit[0][8]) fit_result_stacked = nonlinear_iq_for_fitter(x,fit[0][0],fit[0][1],fit[0][2],fit[0][3],fit[0][4],fit[0][5],fit[0][6],fit[0][7],fit[0][8]) x0_result = nonlinear_iq(x,x0[0],x0[1],x0[2],x0[3],x0[4],x0[5],x0[6],x0[7],x0[8]) # get error var = np.sum((z_stacked-fit_result_stacked)**2)/(z_stacked.shape[0] - 1) err = np.ones(z_stacked.shape[0])*np.sqrt(var) # refit fit = optimization.curve_fit(nonlinear_iq_for_fitter, x, z_stacked,x0,err,bounds = bounds) fit_result = nonlinear_iq(x,fit[0][0],fit[0][1],fit[0][2],fit[0][3],fit[0][4],fit[0][5],fit[0][6],fit[0][7],fit[0][8]) x0_result = nonlinear_iq(x,x0[0],x0[1],x0[2],x0[3],x0[4],x0[5],x0[6],x0[7],x0[8]) #make a dictionary to return fit_dict = {'fit': fit, 'fit_result': fit_result, 'x0_result': x0_result, 'x0':x0, 'z':z} return fit_dict # function for fitting an iq sweep with the above equation def fit_nonlinear_mag(x,z,**keywords): ''' # keywards are # bounds ---- which is a 2d tuple of low the high values to bound the problem by # x0 --- intial guess for the fit this can be very important becuase because least square space over all the parameter is comple # amp_norm --- do a normalization for variable amplitude. usefull when tranfer function of the cryostat is not flat ''' if ('bounds' in keywords): bounds = keywords['bounds'] else: #define default bounds print("default bounds used") bounds = ([np.min(x),100,.01,-np.pi,0,-np.inf,-np.inf,np.min(x)],[np.max(x),200000,1,np.pi,5,np.inf,np.inf,np.max(x)]) if ('x0' in keywords): x0 = keywords['x0'] else: #define default intial guess print("default initial guess used") fr_guess = x[np.argmin(np.abs(z))] #x0 = [fr_guess,10000.,0.5,0,0,np.abs(z[0])**2,np.abs(z[0])**2,fr_guess] x0 = guess_x0_mag_nonlinear(x,z,verbose = True) fit = optimization.curve_fit(nonlinear_mag, x, np.abs(z)**2 ,x0,bounds = bounds) fit_result = nonlinear_mag(x,fit[0][0],fit[0][1],fit[0][2],fit[0][3],fit[0][4],fit[0][5],fit[0][6],fit[0][7]) x0_result = nonlinear_mag(x,x0[0],x0[1],x0[2],x0[3],x0[4],x0[5],x0[6],x0[7]) #make a dictionary to return fit_dict = {'fit': fit, 'fit_result': fit_result, 'x0_result': x0_result, 'x0':x0, 'z':z} return fit_dict def fit_nonlinear_mag_sep(fine_x,fine_z,gain_x,gain_z,**keywords): ''' # same as above but fine and gain scans are provided seperatly # keywards are # bounds ---- which is a 2d tuple of low the high values to bound the problem by # x0 --- intial guess for the fit this can be very important becuase because least square space over all the parameter is comple # amp_norm --- do a normalization for variable amplitude. usefull when tranfer function of the cryostat is not flat ''' if ('bounds' in keywords): bounds = keywords['bounds'] else: #define default bounds print("default bounds used") bounds = ([np.min(fine_x),100,.01,-np.pi,0,-np.inf,-np.inf,np.min(fine_x)],[np.max(fine_x),1000000,100,np.pi,5,np.inf,np.inf,np.max(fine_x)]) if ('x0' in keywords): x0 = keywords['x0'] else: #define default intial guess print("default initial guess used") x0 = guess_x0_mag_nonlinear_sep(fine_x,fine_z,gain_x,gain_z) if (('fine_z_err' in keywords) & ('gain_z_err' in keywords)): use_err = True fine_z_err = keywords['fine_z_err'] gain_z_err = keywords['gain_z_err'] else: use_err = False #stack the scans for curvefit x = np.hstack((fine_x,gain_x)) z = np.hstack((fine_z,gain_z)) if use_err: z_err = np.hstack((fine_z_err,gain_z_err)) z_err = np.sqrt(4*np.real(z_err)**2*np.real(z)**2+4*np.imag(z_err)**2*np.imag(z)**2) #propogation of errors left out cross term fit = optimization.curve_fit(nonlinear_mag, x, np.abs(z)**2 ,x0,sigma = z_err,bounds = bounds) else: fit = optimization.curve_fit(nonlinear_mag, x, np.abs(z)**2 ,x0,bounds = bounds) fit_result = nonlinear_mag(x,fit[0][0],fit[0][1],fit[0][2],fit[0][3],fit[0][4],fit[0][5],fit[0][6],fit[0][7]) x0_result = nonlinear_mag(x,x0[0],x0[1],x0[2],x0[3],x0[4],x0[5],x0[6],x0[7]) #compute reduced chi squared print(len(z)) if use_err: #red_chi_sqr = np.sum((np.abs(z)**2-fit_result)**2/z_err**2)/(len(z)-7.) # only use fine scan for reduced chi squared. red_chi_sqr = np.sum((np.abs(fine_z)**2-fit_result[0:len(fine_z)])**2/z_err[0:len(fine_z)]**2)/(len(fine_z)-7.) #make a dictionary to return if use_err: fit_dict = {'fit': fit, 'fit_result': fit_result, 'x0_result': x0_result, 'x0':x0, 'z':z,'fit_freqs':x,'red_chi_sqr':red_chi_sqr} else: fit_dict = {'fit': fit, 'fit_result': fit_result, 'x0_result': x0_result, 'x0':x0, 'z':z,'fit_freqs':x} return fit_dict def amplitude_normalization(x,z): ''' # normalize the amplitude varation requires a gain scan #flag frequencies to use in amplitude normaliztion ''' index_use = np.where(np.abs(x-np.median(x))>100000) #100kHz away from resonator poly = np.polyfit(x[index_use],np.abs(z[index_use]),2) poly_func = np.poly1d(poly) normalized_data = z/poly_func(x)*np.median(np.abs(z[index_use])) return normalized_data def amplitude_normalization_sep(gain_x,gain_z,fine_x,fine_z,stream_x,stream_z): ''' # normalize the amplitude varation requires a gain scan # uses gain scan to normalize does not use fine scan #flag frequencies to use in amplitude normaliztion ''' index_use = np.where(np.abs(gain_x-np.median(gain_x))>100000) #100kHz away from resonator poly = np.polyfit(gain_x[index_use],np.abs(gain_z[index_use]),2) poly_func = np.poly1d(poly) poly_data = poly_func(gain_x) normalized_gain = gain_z/poly_data*np.median(np.abs(gain_z[index_use])) normalized_fine = fine_z/poly_func(fine_x)*np.median(np.abs(gain_z[index_use])) normalized_stream = stream_z/poly_func(stream_x)*np.median(np.abs(gain_z[index_use])) amp_norm_dict = {'normalized_gain':normalized_gain, 'normalized_fine':normalized_fine, 'normalized_stream':normalized_stream, 'poly_data':poly_data} return amp_norm_dict def guess_x0_iq_nonlinear(x,z,verbose = False): ''' # this is lest robust than guess_x0_iq_nonlinear_sep # below. it is recommended to use that instead #make sure data is sorted from low to high frequency ''' sort_index = np.argsort(x) x = x[sort_index] z = z[sort_index] #extract just fine data df = np.abs(x-np.roll(x,1)) fine_df = np.min(df[np.where(df != 0)]) fine_z_index = np.where(df<fine_df*1.1) fine_z = z[fine_z_index] fine_x = x[fine_z_index] #extract the gain scan gain_z_index = np.where(df>fine_df*1.1) gain_z = z[gain_z_index] gain_x = x[gain_z_index] gain_phase = np.arctan2(np.real(gain_z),np.imag(gain_z)) #guess f0 fr_guess_index = np.argmin(np.abs(z)) #fr_guess = x[fr_guess_index] fr_guess_index_fine = np.argmin(np.abs(fine_z)) # below breaks if there is not a right and left side in the fine scan if fr_guess_index_fine == 0: fr_guess_index_fine = len(fine_x)//2 elif fr_guess_index_fine == (len(fine_x)-1): fr_guess_index_fine = len(fine_x)//2 fr_guess = fine_x[fr_guess_index_fine] #guess Q mag_max = np.max(np.abs(fine_z)**2) mag_min = np.min(np.abs(fine_z)**2) mag_3dB = (mag_max+mag_min)/2. half_distance = np.abs(fine_z)**2-mag_3dB right = half_distance[fr_guess_index_fine:-1] left = half_distance[0:fr_guess_index_fine] right_index = np.argmin(np.abs(right))+fr_guess_index_fine left_index = np.argmin(np.abs(left)) Q_guess_Hz = fine_x[right_index]-fine_x[left_index] Q_guess = fr_guess/Q_guess_Hz #guess amp d = np.max(20*np.log10(np.abs(z)))-np.min(20*np.log10(np.abs(z))) amp_guess = 0.0037848547850284574+0.11096782437821565*d-0.0055208783469291173*d**2+0.00013900471000261687*d**3+-1.3994861426891861e-06*d**4#polynomial fit to amp verus depth #guess impedance rotation phi phi_guess = 0 #guess non-linearity parameter #might be able to guess this by ratioing the distance between min and max distance between iq points in fine sweep a_guess = 0 #i0 and iq guess if np.max(np.abs(fine_z))==np.max(np.abs(z)): #if the resonator has an impedance mismatch rotation that makes the fine greater that the cabel delay i0_guess = np.real(fine_z[np.argmax(np.abs(fine_z))]) q0_guess = np.imag(fine_z[np.argmax(np.abs(fine_z))]) else: i0_guess = (np.real(fine_z[0])+np.real(fine_z[-1]))/2. q0_guess = (np.imag(fine_z[0])+np.imag(fine_z[-1]))/2. #cabel delay guess tau #y = mx +b #m = (y2 - y1)/(x2-x1) #b = y-mx if len(gain_z)>1: #is there a gain scan? m = (gain_phase - np.roll(gain_phase,1))/(gain_x-np.roll(gain_x,1)) b = gain_phase -m*gain_x m_best = np.median(m[~np.isnan(m)]) tau_guess = m_best/(2*np.pi) else: tau_guess = 3*10**-9 if verbose == True: print("fr guess = %.2f MHz" %(fr_guess/10**6)) print("Q guess = %.2f kHz, %.1f" % ((Q_guess_Hz/10**3),Q_guess)) print("amp guess = %.2f" %amp_guess) print("i0 guess = %.2f" %i0_guess) print("q0 guess = %.2f" %q0_guess) print("tau guess = %.2f x 10^-7" %(tau_guess/10**-7)) x0 = [fr_guess,Q_guess,amp_guess,phi_guess,a_guess,i0_guess,q0_guess,tau_guess,fr_guess] return x0 def guess_x0_mag_nonlinear(x,z,verbose = False): ''' # this is lest robust than guess_x0_mag_nonlinear_sep #below it is recommended to use that instead #make sure data is sorted from low to high frequency ''' sort_index = np.argsort(x) x = x[sort_index] z = z[sort_index] #extract just fine data #this will probably break if there is no fine scan df = np.abs(x-np.roll(x,1)) fine_df = np.min(df[np.where(df != 0)]) fine_z_index = np.where(df<fine_df*1.1) fine_z = z[fine_z_index] fine_x = x[fine_z_index] #extract the gain scan gain_z_index = np.where(df>fine_df*1.1) gain_z = z[gain_z_index] gain_x = x[gain_z_index] gain_phase = np.arctan2(np.real(gain_z),np.imag(gain_z)) #guess f0 fr_guess_index = np.argmin(np.abs(z)) #fr_guess = x[fr_guess_index] fr_guess_index_fine = np.argmin(np.abs(fine_z)) if fr_guess_index_fine == 0: fr_guess_index_fine = len(fine_x)//2 elif fr_guess_index_fine == (len(fine_x)-1): fr_guess_index_fine = len(fine_x)//2 fr_guess = fine_x[fr_guess_index_fine] #guess Q mag_max = np.max(np.abs(fine_z)**2) mag_min = np.min(np.abs(fine_z)**2) mag_3dB = (mag_max+mag_min)/2. half_distance = np.abs(fine_z)**2-mag_3dB right = half_distance[fr_guess_index_fine:-1] left = half_distance[0:fr_guess_index_fine] right_index = np.argmin(np.abs(right))+fr_guess_index_fine left_index = np.argmin(np.abs(left)) Q_guess_Hz = fine_x[right_index]-fine_x[left_index] Q_guess = fr_guess/Q_guess_Hz #guess amp d = np.max(20*np.log10(np.abs(z)))-np.min(20*np.log10(np.abs(z))) amp_guess = 0.0037848547850284574+0.11096782437821565*d-0.0055208783469291173*d**2+0.00013900471000261687*d**3+-1.3994861426891861e-06*d**4#polynomial fit to amp verus depth #guess impedance rotation phi phi_guess = 0 #guess non-linearity parameter #might be able to guess this by ratioing the distance between min and max distance between iq points in fine sweep a_guess = 0 #b0 and b1 guess if len(gain_z)>1: xlin = (gain_x - fr_guess)/fr_guess b1_guess = (np.abs(gain_z)[-1]**2-np.abs(gain_z)[0]**2)/(xlin[-1]-xlin[0]) else: xlin = (fine_x - fr_guess)/fr_guess b1_guess = (np.abs(fine_z)[-1]**2-np.abs(fine_z)[0]**2)/(xlin[-1]-xlin[0]) b0_guess = np.median(np.abs(gain_z)**2) if verbose == True: print("fr guess = %.2f MHz" %(fr_guess/10**6)) print("Q guess = %.2f kHz, %.1f" % ((Q_guess_Hz/10**3),Q_guess)) print("amp guess = %.2f" %amp_guess) print("phi guess = %.2f" %phi_guess) print("b0 guess = %.2f" %b0_guess) print("b1 guess = %.2f" %b1_guess) x0 = [fr_guess,Q_guess,amp_guess,phi_guess,a_guess,b0_guess,b1_guess,fr_guess] return x0 def guess_x0_iq_nonlinear_sep(fine_x,fine_z,gain_x,gain_z,verbose = False): ''' # this is the same as guess_x0_iq_nonlinear except that it takes # takes the fine scan and the gain scan as seperate variables # this runs into less issues when trying to sort out what part of # data is fine and what part is gain for the guessing #make sure data is sorted from low to high frequency ''' #gain phase gain_phase = np.arctan2(np.real(gain_z),np.imag(gain_z)) #guess f0 fr_guess_index = np.argmin(np.abs(fine_z)) # below breaks if there is not a right and left side in the fine scan if fr_guess_index == 0: fr_guess_index = len(fine_x)//2 elif fr_guess_index == (len(fine_x)-1): fr_guess_index = len(fine_x)//2 fr_guess = fine_x[fr_guess_index] #guess Q mag_max = np.max(np.abs(fine_z)**2) mag_min = np.min(np.abs(fine_z)**2) mag_3dB = (mag_max+mag_min)/2. half_distance = np.abs(fine_z)**2-mag_3dB right = half_distance[fr_guess_index:-1] left = half_distance[0:fr_guess_index] right_index = np.argmin(np.abs(right))+fr_guess_index left_index = np.argmin(np.abs(left)) Q_guess_Hz = fine_x[right_index]-fine_x[left_index] Q_guess = fr_guess/Q_guess_Hz #guess amp d = np.max(20*np.log10(np.abs(gain_z)))-np.min(20*np.log10(np.abs(fine_z))) amp_guess = 0.0037848547850284574+0.11096782437821565*d-0.0055208783469291173*d**2+0.00013900471000261687*d**3+-1.3994861426891861e-06*d**4#polynomial fit to amp verus depth #guess impedance rotation phi #phi_guess = 0 #guess impedance rotation phi #fit a circle to the iq loop xc, yc, R, residu = calibrate.leastsq_circle(np.real(fine_z),np.imag(fine_z)) #compute angle between (off_res,off_res),(0,0) and (off_ress,off_res),(xc,yc) of the the fitted circle off_res_i,off_res_q = (
np.real(fine_z[0])
numpy.real
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest import math import numpy as np from singa import net from singa import layer from singa import tensor from singa import loss layer.engine = 'singacpp' # net.verbose = True class TestFeedForwardNet(unittest.TestCase): def test_single_input_output(self): ffn = net.FeedForwardNet(loss.SoftmaxCrossEntropy()) ffn.add(layer.Activation('relu1', input_sample_shape=(2,))) ffn.add(layer.Activation('relu2')) x = np.array([[-1, 1], [1, 1], [-1, -2]], dtype=np.float32) x = tensor.from_numpy(x) y = tensor.Tensor((3,)) y.set_value(0) out, _ = ffn.evaluate(x, y) self.assertAlmostEqual(out * 3, - math.log(1.0/(1+math.exp(1))) - math.log(0.5) - math.log(0.5), 5) def test_mult_inputs(self): ffn = net.FeedForwardNet(loss.SoftmaxCrossEntropy()) s1 = ffn.add(layer.Activation('relu1', input_sample_shape=(2,)), []) s2 = ffn.add(layer.Activation('relu2', input_sample_shape=(2,)), []) ffn.add(layer.Merge('merge', input_sample_shape=(2,)), [s1, s2]) x1 = tensor.Tensor((2, 2)) x1.set_value(1.1) x2 = tensor.Tensor((2, 2)) x2.set_value(0.9) out = ffn.forward(False, {'relu1': x1, 'relu2': x2}) out = tensor.to_numpy(out) self.assertAlmostEqual(
np.average(out)
numpy.average
import numpy as np import pyart import scipy.ndimage.filters def J_function(winds, parameters): """ Calculates the total cost function. This typically does not need to be called directly as get_dd_wind_field is a wrapper around this function and :py:func:`pydda.cost_functions.grad_J`. In order to add more terms to the cost function, modify this function and :py:func:`pydda.cost_functions.grad_J`. Parameters ---------- winds: 1-D float array The wind field, flattened to 1-D for f_min. The total size of the array will be a 1D array of 3*nx*ny*nz elements. parameters: DDParameters The parameters for the cost function evaluation as specified by the :py:func:`pydda.retrieval.DDParameters` class. Returns ------- J: float The value of the cost function """ winds = np.reshape(winds, (3, parameters.grid_shape[0], parameters.grid_shape[1], parameters.grid_shape[2])) Jvel = calculate_radial_vel_cost_function( parameters.vrs, parameters.azs, parameters.els, winds[0], winds[1], winds[2], parameters.wts, rmsVr=parameters.rmsVr, weights=parameters.weights, coeff=parameters.Co) if(parameters.Cm > 0): Jmass = calculate_mass_continuity( winds[0], winds[1], winds[2], parameters.z, parameters.dx, parameters.dy, parameters.dz, coeff=parameters.Cm) else: Jmass = 0 if(parameters.Cx > 0 or parameters.Cy > 0 or parameters.Cz > 0): Jsmooth = calculate_smoothness_cost( winds[0], winds[1], winds[2], Cx=parameters.Cx, Cy=parameters.Cy, Cz=parameters.Cz) else: Jsmooth = 0 if(parameters.Cb > 0): Jbackground = calculate_background_cost( winds[0], winds[1], winds[2], parameters.bg_weights, parameters.u_back, parameters.v_back, parameters.Cb) else: Jbackground = 0 if(parameters.Cv > 0): Jvorticity = calculate_vertical_vorticity_cost( winds[0], winds[1], winds[2], parameters.dx, parameters.dy, parameters.dz, parameters.Ut, parameters.Vt, coeff=parameters.Cv) else: Jvorticity = 0 if(parameters.Cmod > 0): Jmod = calculate_model_cost( winds[0], winds[1], winds[2], parameters.model_weights, parameters.u_model, parameters.v_model, parameters.w_model, coeff=parameters.Cmod) else: Jmod = 0 if parameters.Cpoint > 0: Jpoint = calculate_point_cost( winds[0], winds[1], parameters.x, parameters.y, parameters.z, parameters.point_list, Cp=parameters.Cpoint, roi=parameters.roi) else: Jpoint = 0 if(parameters.print_out is True): print(('| Jvel | Jmass | Jsmooth | Jbg | Jvort | Jmodel | Jpoint |' + ' Max w ')) print(('|' + "{:9.4f}".format(Jvel) + '|' + "{:9.4f}".format(Jmass) + '|' + "{:9.4f}".format(Jsmooth) + '|' + "{:9.4f}".format(Jbackground) + '|' + "{:9.4f}".format(Jvorticity) + '|' + "{:9.4f}".format(Jmod) + '|' + "{:9.4f}".format(Jpoint)) + '|' + "{:9.4f}".format(np.ma.max(np.ma.abs(winds[2])))) return Jvel + Jmass + Jsmooth + Jbackground + Jvorticity + Jmod + Jpoint def grad_J(winds, parameters): """ Calculates the gradient of the cost function. This typically does not need to be called directly as get_dd_wind_field is a wrapper around this function and :py:func:`pydda.cost_functions.J_function`. In order to add more terms to the cost function, modify this function and :py:func:`pydda.cost_functions.grad_J`. Parameters ---------- winds: 1-D float array The wind field, flattened to 1-D for f_min parameters: DDParameters The parameters for the cost function evaluation as specified by the :py:func:`pydda.retrieve.DDParameters` class. Returns ------- grad: 1D float array Gradient vector of cost function """ winds = np.reshape(winds, (3, parameters.grid_shape[0], parameters.grid_shape[1], parameters.grid_shape[2])) grad = calculate_grad_radial_vel( parameters.vrs, parameters.els, parameters.azs, winds[0], winds[1], winds[2], parameters.wts, parameters.weights, parameters.rmsVr, coeff=parameters.Co, upper_bc=parameters.upper_bc) if(parameters.Cm > 0): grad += calculate_mass_continuity_gradient( winds[0], winds[1], winds[2], parameters.z, parameters.dx, parameters.dy, parameters.dz, coeff=parameters.Cm, upper_bc=parameters.upper_bc) if(parameters.Cx > 0 or parameters.Cy > 0 or parameters.Cz > 0): grad += calculate_smoothness_gradient( winds[0], winds[1], winds[2], Cx=parameters.Cx, Cy=parameters.Cy, Cz=parameters.Cz, upper_bc=parameters.upper_bc) if(parameters.Cb > 0): grad += calculate_background_gradient( winds[0], winds[1], winds[2], parameters.bg_weights, parameters.u_back, parameters.v_back, parameters.Cb, upper_bc=parameters.upper_bc) if(parameters.Cv > 0): grad += calculate_vertical_vorticity_gradient( winds[0], winds[1], winds[2], parameters.dx, parameters.dy, parameters.dz, parameters.Ut, parameters.Vt, coeff=parameters.Cv) if(parameters.Cmod > 0): grad += calculate_model_gradient( winds[0], winds[1], winds[2], parameters.model_weights, parameters.u_model, parameters.v_model, parameters.w_model, coeff=parameters.Cmod) if parameters.Cpoint > 0: grad += calculate_point_gradient( winds[0], winds[1], parameters.x, parameters.y, parameters.z, parameters.point_list, Cp=parameters.Cpoint, roi=parameters.roi) if(parameters.print_out is True): print('Norm of gradient: ' + str(np.linalg.norm(grad, np.inf))) return grad def calculate_radial_vel_cost_function(vrs, azs, els, u, v, w, wts, rmsVr, weights, coeff=1.0): """ Calculates the cost function due to difference of the wind field from radar radial velocities. For more information on this cost function, see Potvin et al. (2012) and Shapiro et al. (2009). All arrays in the given lists must have the same dimensions and represent the same spatial coordinates. Parameters ---------- vrs: List of float arrays List of radial velocities from each radar els: List of float arrays List of elevations from each radar azs: List of float arrays List of azimuths from each radar u: Float array Float array with u component of wind field v: Float array Float array with v component of wind field w: Float array Float array with w component of wind field wts: List of float arrays Float array containing fall speed from radar. rmsVr: float The sum of squares of velocity/num_points. Use for normalization of data weighting coefficient weights: n_radars x_bins x y_bins float array Data weights for each pair of radars coeff: float Constant for cost function Returns ------- J_o: float Observational cost function References ----------- <NAME>., <NAME>, and <NAME>, 2012: Impact of a Vertical Vorticity Constraint in Variational Dual-Doppler Wind Analysis: Tests with Real and Simulated Supercell Data. J. Atmos. Oceanic Technol., 29, 32–49, https://doi.org/10.1175/JTECH-D-11-00019.1 <NAME>., <NAME>, and <NAME>, 2009: Use of a Vertical Vorticity Equation in Variational Dual-Doppler Wind Analysis. J. Atmos. Oceanic Technol., 26, 2089–2106, https://doi.org/10.1175/2009JTECHA1256.1 """ J_o = 0 lambda_o = coeff / (rmsVr * rmsVr) for i in range(len(vrs)): v_ar = (np.cos(els[i])*np.sin(azs[i])*u + np.cos(els[i])*np.cos(azs[i])*v + np.sin(els[i])*(w - np.abs(wts[i]))) the_weight = weights[i] the_weight[els[i].mask] = 0 the_weight[azs[i].mask] = 0 the_weight[vrs[i].mask] = 0 the_weight[wts[i].mask] = 0 J_o += lambda_o*np.sum(np.square(vrs[i] - v_ar)*the_weight) return J_o def calculate_grad_radial_vel(vrs, els, azs, u, v, w, wts, weights, rmsVr, coeff=1.0, upper_bc=True): """ Calculates the gradient of the cost function due to difference of wind field from radar radial velocities. All arrays in the given lists must have the same dimensions and represent the same spatial coordinates. Parameters ---------- vrs: List of float arrays List of radial velocities from each radar els: List of float arrays List of elevations from each radar azs: List of azimuths List of azimuths from each radar u: Float array Float array with u component of wind field v: Float array Float array with v component of wind field w: Float array Float array with w component of wind field coeff: float Constant for cost function vel_name: str Background velocity field name weights: n_radars x_bins x y_bins float array Data weights for each pair of radars Returns ------- y: 1-D float array Gradient vector of observational cost function. More information ---------------- The gradient is calculated by taking the functional derivative of the cost function. For more information on functional derivatives, see the Euler-Lagrange Equation: https://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange_equation """ # Use zero for all masked values since we don't want to add them into # the cost function p_x1 = np.zeros(vrs[0].shape) p_y1 = np.zeros(vrs[0].shape) p_z1 = np.zeros(vrs[0].shape) lambda_o = coeff / (rmsVr * rmsVr) for i in range(len(vrs)): v_ar = (np.cos(els[i])*np.sin(azs[i])*u + np.cos(els[i])*np.cos(azs[i])*v + np.sin(els[i])*(w - np.abs(wts[i]))) x_grad = (2*(v_ar - vrs[i]) * np.cos(els[i]) * np.sin(azs[i]) * weights[i]) * lambda_o y_grad = (2*(v_ar - vrs[i]) * np.cos(els[i]) * np.cos(azs[i]) * weights[i]) * lambda_o z_grad = (2*(v_ar - vrs[i]) * np.sin(els[i]) * weights[i]) * lambda_o x_grad[els[i].mask] = 0 y_grad[els[i].mask] = 0 z_grad[els[i].mask] = 0 x_grad[azs[i].mask] = 0 y_grad[azs[i].mask] = 0 z_grad[azs[i].mask] = 0 x_grad[els[i].mask] = 0 x_grad[azs[i].mask] = 0 x_grad[vrs[i].mask] = 0 x_grad[wts[i].mask] = 0 y_grad[els[i].mask] = 0 y_grad[azs[i].mask] = 0 y_grad[vrs[i].mask] = 0 y_grad[wts[i].mask] = 0 z_grad[els[i].mask] = 0 z_grad[azs[i].mask] = 0 z_grad[vrs[i].mask] = 0 z_grad[wts[i].mask] = 0 p_x1 += x_grad p_y1 += y_grad p_z1 += z_grad # Impermeability condition p_z1[0, :, :] = 0 if(upper_bc is True): p_z1[-1, :, :] = 0 y = np.stack((p_x1, p_y1, p_z1), axis=0) return y.flatten() def calculate_smoothness_cost(u, v, w, Cx=1e-5, Cy=1e-5, Cz=1e-5): """ Calculates the smoothness cost function by taking the Laplacian of the wind field. All arrays in the given lists must have the same dimensions and represent the same spatial coordinates. Parameters ---------- u: Float array Float array with u component of wind field v: Float array Float array with v component of wind field w: Float array Float array with w component of wind field Cx: float Constant controlling smoothness in x-direction Cy: float Constant controlling smoothness in y-direction Cz: float Constant controlling smoothness in z-direction Returns ------- Js: float value of smoothness cost function """ du = np.zeros(w.shape) dv = np.zeros(w.shape) dw = np.zeros(w.shape) scipy.ndimage.filters.laplace(u, du, mode='wrap') scipy.ndimage.filters.laplace(v, dv, mode='wrap') scipy.ndimage.filters.laplace(w, dw, mode='wrap') return np.sum(Cx*du**2 + Cy*dv**2 + Cz*dw**2) def calculate_smoothness_gradient(u, v, w, Cx=1e-5, Cy=1e-5, Cz=1e-5, upper_bc=True): """ Calculates the gradient of the smoothness cost function by taking the Laplacian of the Laplacian of the wind field. All arrays in the given lists must have the same dimensions and represent the same spatial coordinates. Parameters ---------- u: Float array Float array with u component of wind field v: Float array Float array with v component of wind field w: Float array Float array with w component of wind field Cx: float Constant controlling smoothness in x-direction Cy: float Constant controlling smoothness in y-direction Cz: float Constant controlling smoothness in z-direction Returns ------- y: float array value of gradient of smoothness cost function """ du = np.zeros(w.shape) dv = np.zeros(w.shape) dw = np.zeros(w.shape) grad_u = np.zeros(w.shape) grad_v = np.zeros(w.shape) grad_w = np.zeros(w.shape) scipy.ndimage.filters.laplace(u, du, mode='wrap') scipy.ndimage.filters.laplace(v, dv, mode='wrap') scipy.ndimage.filters.laplace(w, dw, mode='wrap') scipy.ndimage.filters.laplace(du, grad_u, mode='wrap') scipy.ndimage.filters.laplace(dv, grad_v, mode='wrap') scipy.ndimage.filters.laplace(dw, grad_w, mode='wrap') # Impermeability condition grad_w[0, :, :] = 0 if(upper_bc is True): grad_w[-1, :, :] = 0 y = np.stack([grad_u*Cx*2, grad_v*Cy*2, grad_w*Cz*2], axis=0) return y.flatten() def calculate_point_cost(u, v, x, y, z, point_list, Cp=1e-3, roi=500.0): """ Calculates the cost function related to point observations. A mean square error cost function term is applied to points that are within the sphere of influence whose radius is determined by *roi*. Parameters ---------- u: Float array Float array with u component of wind field v: Float array Float array with v component of wind field x: Float array X coordinates of grid centers y: Float array Y coordinates of grid centers z: Float array Z coordinated of grid centers point_list: list of dicts List of point constraints. Each member is a dict with keys of "u", "v", to correspond to each component of the wind field and "x", "y", "z" to correspond to the location of the point observation. In addition, "site_id" gives the METAR code (or name) to the station. Cp: float The weighting coefficient of the point cost function. roi: float Radius of influence of observations Returns ------- J: float The cost function related to the difference between wind field and points. """ J = 0.0 for the_point in point_list: # Instead of worrying about whole domain, just find points in radius of influence # Since we know that the weight will be zero outside the sphere of influence anyways the_box = np.where(np.logical_and.reduce( (np.abs(x - the_point["x"]) < roi, np.abs(y - the_point["y"]) < roi, np.abs(z - the_point["z"]) < roi))) J += np.sum(((u[the_box] - the_point["u"])**2 + (v[the_box] - the_point["v"])**2)) return J * Cp def calculate_point_gradient(u, v, x, y, z, point_list, Cp=1e-3, roi=500.0): """ Calculates the gradient of the cost function related to point observations. A mean square error cost function term is applied to points that are within the sphere of influence whose radius is determined by *roi*. Parameters ---------- u: Float array Float array with u component of wind field v: Float array Float array with v component of wind field x: Float array X coordinates of grid centers y: Float array Y coordinates of grid centers z: Float array Z coordinated of grid centers point_list: list of dicts List of point constraints. Each member is a dict with keys of "u", "v", to correspond to each component of the wind field and "x", "y", "z" to correspond to the location of the point observation. In addition, "site_id" gives the METAR code (or name) to the station. Cp: float The weighting coefficient of the point cost function. roi: float Radius of influence of observations Returns ------- gradJ: float array The gradient of the cost function related to the difference between wind field and points. """ gradJ_u = np.zeros_like(u) gradJ_v = np.zeros_like(v) gradJ_w = np.zeros_like(u) for the_point in point_list: the_box = np.where(np.logical_and.reduce( (np.abs(x - the_point["x"]) < roi, np.abs(y - the_point["y"]) < roi, np.abs(z - the_point["z"]) < roi))) gradJ_u[the_box] += 2 * (u[the_box] - the_point["u"]) gradJ_v[the_box] += 2 * (v[the_box] - the_point["v"]) gradJ = np.stack([gradJ_u, gradJ_v, gradJ_w], axis=0).flatten() return gradJ * Cp def calculate_mass_continuity(u, v, w, z, dx, dy, dz, coeff=1500.0, anel=1): """ Calculates the mass continuity cost function by taking the divergence of the wind field. All arrays in the given lists must have the same dimensions and represent the same spatial coordinates. Parameters ---------- u: Float array Float array with u component of wind field v: Float array Float array with v component of wind field w: Float array Float array with w component of wind field dx: float Grid spacing in x direction. dy: float Grid spacing in y direction. dz: float Grid spacing in z direction. z: Float array (1D) 1D Float array with heights of grid coeff: float Constant controlling contribution of mass continuity to cost function anel: int = 1 use anelastic approximation, 0=don't Returns ------- J: float value of mass continuity cost function """ dudx = np.gradient(u, dx, axis=2) dvdy = np.gradient(v, dy, axis=1) dwdz = np.gradient(w, dz, axis=0) if(anel == 1): rho = np.exp(-z/10000.0) drho_dz = np.gradient(rho, dz, axis=0) anel_term = w/rho*drho_dz else: anel_term = np.zeros(w.shape) return coeff*np.sum(np.square(dudx + dvdy + dwdz + anel_term))/2.0 def calculate_mass_continuity_gradient(u, v, w, z, dx, dy, dz, coeff=1500.0, anel=1, upper_bc=True): """ Calculates the gradient of mass continuity cost function. This is done by taking the negative gradient of the divergence of the wind field. All grids must have the same grid specification. Parameters ---------- u: Float array Float array with u component of wind field v: Float array Float array with v component of wind field w: Float array Float array with w component of wind field z: Float array (1D) 1D Float array with heights of grid dx: float Grid spacing in x direction. dy: float Grid spacing in y direction. dz: float Grid spacing in z direction. coeff: float Constant controlling contribution of mass continuity to cost function anel: int = 1 use anelastic approximation, 0=don't Returns ------- y: float array value of gradient of mass continuity cost function """ dudx = np.gradient(u, dx, axis=2) dvdy = np.gradient(v, dy, axis=1) dwdz = np.gradient(w, dz, axis=0) if(anel == 1): rho = np.exp(-z/10000.0) drho_dz = np.gradient(rho, dz, axis=0) anel_term = w/rho*drho_dz else: anel_term = 0 div2 = dudx + dvdy + dwdz + anel_term grad_u = -np.gradient(div2, dx, axis=2)*coeff grad_v = -np.gradient(div2, dy, axis=1)*coeff grad_w = -np.gradient(div2, dz, axis=0)*coeff # Impermeability condition grad_w[0, :, :] = 0 if(upper_bc is True): grad_w[-1, :, :] = 0 y = np.stack([grad_u, grad_v, grad_w], axis=0) return y.flatten() def calculate_fall_speed(grid, refl_field=None, frz=4500.0): """ Estimates fall speed based on reflectivity. Uses methodology of <NAME> and <NAME> Parameters ---------- Grid: Py-ART Grid Py-ART Grid containing reflectivity to calculate fall speed from refl_field: str String containing name of reflectivity field. None will automatically determine the name. frz: float Height of freezing level in m Returns ------- 3D float array: Float array of terminal velocities """ # Parse names of velocity field if refl_field is None: refl_field = pyart.config.get_field_name('reflectivity') refl = grid.fields[refl_field]['data'] grid_z = grid.point_z['data'] term_vel = np.zeros(refl.shape) A = np.zeros(refl.shape) B = np.zeros(refl.shape) rho = np.exp(-grid_z/10000.0) A[np.logical_and(grid_z < frz, refl < 55)] = -2.6 B[np.logical_and(grid_z < frz, refl < 55)] = 0.0107 A[np.logical_and(grid_z < frz, np.logical_and(refl >= 55, refl < 60))] = -2.5 B[np.logical_and(grid_z < frz, np.logical_and(refl >= 55, refl < 60))] = 0.013 A[np.logical_and(grid_z < frz, refl > 60)] = -3.95 B[np.logical_and(grid_z < frz, refl > 60)] = 0.0148 A[np.logical_and(grid_z >= frz, refl < 33)] = -0.817 B[np.logical_and(grid_z >= frz, refl < 33)] = 0.0063 A[np.logical_and(grid_z >= frz, np.logical_and(refl >= 33, refl < 49))] = -2.5 B[np.logical_and(grid_z >= frz, np.logical_and(refl >= 33, refl < 49))] = 0.013 A[np.logical_and(grid_z >= frz, refl > 49)] = -3.95 B[np.logical_and(grid_z >= frz, refl > 49)] = 0.0148 fallspeed = A*np.power(10, refl*B)*np.power(1.2/rho, 0.4) del A, B, rho return fallspeed def calculate_background_cost(u, v, w, weights, u_back, v_back, Cb=0.01): """ Calculates the background cost function. The background cost function is simply the sum of the squared differences between the wind field and the background wind field multiplied by the weighting coefficient. Parameters ---------- u: Float array Float array with u component of wind field v: Float array Float array with v component of wind field w: Float array Float array with w component of wind field weights: Float array Weights for each point to consider into cost function u_back: 1D float array Zonal winds vs height from sounding w_back: 1D float array Meridional winds vs height from sounding Cb: float Weight of background constraint to total cost function Returns ------- cost: float value of background cost function """ the_shape = u.shape cost = 0 for i in range(the_shape[0]): cost += (Cb*np.sum(np.square(u[i]-u_back[i])*(weights[i]) + np.square(v[i]-v_back[i])*(weights[i]))) return cost def calculate_background_gradient(u, v, w, weights, u_back, v_back, Cb=0.01): """ Calculates the gradient of the background cost function. For each u, v this is given as 2*coefficent*(analysis wind - background wind). Parameters ---------- u: Float array Float array with u component of wind field v: Float array Float array with v component of wind field w: Float array Float array with w component of wind field weights: Float array Weights for each point to consider into cost function u_back: 1D float array Zonal winds vs height from sounding w_back: 1D float array Meridional winds vs height from sounding Cb: float Weight of background constraint to total cost function Returns ------- y: float array value of gradient of background cost function """ the_shape = u.shape u_grad =
np.zeros(the_shape)
numpy.zeros
"""Test schmidt_decomposition.""" import numpy as np from toqito.state_ops import schmidt_decomposition from toqito.states import max_entangled def test_schmidt_decomp_max_ent(): """Schmidt decomposition of the 3-D maximally entangled state.""" singular_vals, u_mat, vt_mat = schmidt_decomposition(max_entangled(3)) expected_u_mat = np.identity(3) expected_vt_mat = np.identity(3) expected_singular_vals = 1 / np.sqrt(3) * np.array([[1], [1], [1]]) bool_mat = np.isclose(expected_u_mat, u_mat) np.testing.assert_equal(np.all(bool_mat), True) bool_mat = np.isclose(expected_vt_mat, vt_mat) np.testing.assert_equal(np.all(bool_mat), True) bool_mat = np.isclose(expected_singular_vals, singular_vals) np.testing.assert_equal(np.all(bool_mat), True) def test_schmidt_decomp_dim_list(): """Schmidt decomposition with list specifying dimension.""" singular_vals, u_mat, vt_mat = schmidt_decomposition(max_entangled(3), dim=[3, 3]) expected_u_mat = np.identity(3) expected_vt_mat = np.identity(3) expected_singular_vals = 1 / np.sqrt(3) * np.array([[1], [1], [1]]) bool_mat = np.isclose(expected_u_mat, u_mat) np.testing.assert_equal(np.all(bool_mat), True) bool_mat = np.isclose(expected_vt_mat, vt_mat) np.testing.assert_equal(np.all(bool_mat), True) bool_mat = np.isclose(expected_singular_vals, singular_vals) np.testing.assert_equal(np.all(bool_mat), True) if __name__ == "__main__":
np.testing.run_module_suite()
numpy.testing.run_module_suite
import os import argparse import numpy as np from PIL import Image import torch import torch.nn as nn from network import SIGNET_static def get_LF_val(u, v, width=1024, height=1024): x = np.linspace(0, width-1, width) y = np.linspace(0, height-1, height) xv, yv = np.meshgrid(y, x) img_grid = torch.from_numpy(np.stack([yv, xv], axis=-1)) uv_grid = torch.ones_like(img_grid) uv_grid[:, :, 0], uv_grid[:, :, 1] = u, v val_inp_t = torch.cat([uv_grid, img_grid], dim = -1).float() val_inp_t[..., :2] /= 17 val_inp_t[..., 2] /= width val_inp_t[..., 3] /= height del img_grid, xv, yv return val_inp_t.view(-1, val_inp_t.shape[-1]) def eval_im(val_inp_t, batches, device): b_size = val_inp_t.shape[0] // batches with torch.no_grad(): out = [] for b in range(batches): out.append(model(val_inp_t[b_size*b:b_size*(b+1)].to(device))) out = torch.cat(out, dim = 0) out = torch.clamp(out, 0, 1) out_np = out.view(1024, 1024, 3).cpu().numpy() * 255 return out_np if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-u", type=int, default=0, help="angular dimension u") parser.add_argument("-v", type=int, default=0, help="angular dimension v") parser.add_argument("-b", type=int, default=4, help="batch size in inference") parser.add_argument("--exp_dir", type=str, help="directory to trained weights") args = parser.parse_args() OUT_DIR = f'./{args.exp_dir}/eval_output' if not os.path.exists(OUT_DIR): os.makedirs(OUT_DIR) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = SIGNET_static(hidden_layers=8, alpha=0.5, skips=[], hidden_features=512, with_norm=True, with_res=True) m_state_dict = torch.load(f'{args.exp_dir}/model.pth') model.load_state_dict(m_state_dict, strict=False) model.eval() model = model.to(device) val_inp_t = get_LF_val(u=args.u, v=args.v).to(device) out_np = eval_im(val_inp_t, args.b, device) Image.fromarray(
np.uint8(out_np)
numpy.uint8
import pickle import pytest import numpy as np import scipy.sparse as sp import joblib from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import assert_almost_equal from sklearn.utils._testing import assert_array_almost_equal from sklearn.utils._testing import assert_raises_regexp from sklearn.utils._testing import assert_warns from sklearn.utils._testing import ignore_warnings from sklearn.utils.fixes import parse_version from sklearn import linear_model, datasets, metrics from sklearn.base import clone, is_classifier from sklearn.preprocessing import LabelEncoder, scale, MinMaxScaler from sklearn.preprocessing import StandardScaler from sklearn.exceptions import ConvergenceWarning from sklearn.model_selection import StratifiedShuffleSplit, ShuffleSplit from sklearn.linear_model import _sgd_fast as sgd_fast from sklearn.model_selection import RandomizedSearchCV def _update_kwargs(kwargs): if "random_state" not in kwargs: kwargs["random_state"] = 42 if "tol" not in kwargs: kwargs["tol"] = None if "max_iter" not in kwargs: kwargs["max_iter"] = 5 class _SparseSGDClassifier(linear_model.SGDClassifier): def fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return super().fit(X, y, *args, **kw) def partial_fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return super().partial_fit(X, y, *args, **kw) def decision_function(self, X): X = sp.csr_matrix(X) return super().decision_function(X) def predict_proba(self, X): X = sp.csr_matrix(X) return super().predict_proba(X) class _SparseSGDRegressor(linear_model.SGDRegressor): def fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return linear_model.SGDRegressor.fit(self, X, y, *args, **kw) def partial_fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return linear_model.SGDRegressor.partial_fit(self, X, y, *args, **kw) def decision_function(self, X, *args, **kw): # XXX untested as of v0.22 X = sp.csr_matrix(X) return linear_model.SGDRegressor.decision_function(self, X, *args, **kw) def SGDClassifier(**kwargs): _update_kwargs(kwargs) return linear_model.SGDClassifier(**kwargs) def SGDRegressor(**kwargs): _update_kwargs(kwargs) return linear_model.SGDRegressor(**kwargs) def SparseSGDClassifier(**kwargs): _update_kwargs(kwargs) return _SparseSGDClassifier(**kwargs) def SparseSGDRegressor(**kwargs): _update_kwargs(kwargs) return _SparseSGDRegressor(**kwargs) # Test Data # test sample 1 X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) Y = [1, 1, 1, 2, 2, 2] T = np.array([[-1, -1], [2, 2], [3, 2]]) true_result = [1, 2, 2] # test sample 2; string class labels X2 = np.array([[-1, 1], [-0.75, 0.5], [-1.5, 1.5], [1, 1], [0.75, 0.5], [1.5, 1.5], [-1, -1], [0, -0.5], [1, -1]]) Y2 = ["one"] * 3 + ["two"] * 3 + ["three"] * 3 T2 = np.array([[-1.5, 0.5], [1, 2], [0, -2]]) true_result2 = ["one", "two", "three"] # test sample 3 X3 = np.array([[1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0]]) Y3 = np.array([1, 1, 1, 1, 2, 2, 2, 2]) # test sample 4 - two more or less redundant feature groups X4 = np.array([[1, 0.9, 0.8, 0, 0, 0], [1, .84, .98, 0, 0, 0], [1, .96, .88, 0, 0, 0], [1, .91, .99, 0, 0, 0], [0, 0, 0, .89, .91, 1], [0, 0, 0, .79, .84, 1], [0, 0, 0, .91, .95, 1], [0, 0, 0, .93, 1, 1]]) Y4 = np.array([1, 1, 1, 1, 2, 2, 2, 2]) iris = datasets.load_iris() # test sample 5 - test sample 1 as binary classification problem X5 = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) Y5 = [1, 1, 1, 2, 2, 2] true_result5 = [0, 1, 1] ############################################################################### # Common Test Case to classification and regression # a simple implementation of ASGD to use for testing # uses squared loss to find the gradient def asgd(klass, X, y, eta, alpha, weight_init=None, intercept_init=0.0): if weight_init is None: weights = np.zeros(X.shape[1]) else: weights = weight_init average_weights = np.zeros(X.shape[1]) intercept = intercept_init average_intercept = 0.0 decay = 1.0 # sparse data has a fixed decay of .01 if klass in (SparseSGDClassifier, SparseSGDRegressor): decay = .01 for i, entry in enumerate(X): p = np.dot(entry, weights) p += intercept gradient = p - y[i] weights *= 1.0 - (eta * alpha) weights += -(eta * gradient * entry) intercept += -(eta * gradient) * decay average_weights *= i average_weights += weights average_weights /= i + 1.0 average_intercept *= i average_intercept += intercept average_intercept /= i + 1.0 return average_weights, average_intercept @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier, SGDRegressor, SparseSGDRegressor]) def test_sgd_bad_alpha(klass): # Check whether expected ValueError on bad alpha with pytest.raises(ValueError): klass(alpha=-.1) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier, SGDRegressor, SparseSGDRegressor]) def test_sgd_bad_penalty(klass): # Check whether expected ValueError on bad penalty with pytest.raises(ValueError): klass(penalty='foobar', l1_ratio=0.85) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier, SGDRegressor, SparseSGDRegressor]) def test_sgd_bad_loss(klass): # Check whether expected ValueError on bad loss with pytest.raises(ValueError): klass(loss="foobar") def _test_warm_start(klass, X, Y, lr): # Test that explicit warm restart... clf = klass(alpha=0.01, eta0=0.01, shuffle=False, learning_rate=lr) clf.fit(X, Y) clf2 = klass(alpha=0.001, eta0=0.01, shuffle=False, learning_rate=lr) clf2.fit(X, Y, coef_init=clf.coef_.copy(), intercept_init=clf.intercept_.copy()) # ... and implicit warm restart are equivalent. clf3 = klass(alpha=0.01, eta0=0.01, shuffle=False, warm_start=True, learning_rate=lr) clf3.fit(X, Y) assert clf3.t_ == clf.t_ assert_array_almost_equal(clf3.coef_, clf.coef_) clf3.set_params(alpha=0.001) clf3.fit(X, Y) assert clf3.t_ == clf2.t_ assert_array_almost_equal(clf3.coef_, clf2.coef_) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier, SGDRegressor, SparseSGDRegressor]) @pytest.mark.parametrize('lr', ["constant", "optimal", "invscaling", "adaptive"]) def test_warm_start(klass, lr): _test_warm_start(klass, X, Y, lr) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier, SGDRegressor, SparseSGDRegressor]) def test_input_format(klass): # Input format tests. clf = klass(alpha=0.01, shuffle=False) clf.fit(X, Y) Y_ = np.array(Y)[:, np.newaxis] Y_ = np.c_[Y_, Y_] with pytest.raises(ValueError): clf.fit(X, Y_) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier, SGDRegressor, SparseSGDRegressor]) def test_clone(klass): # Test whether clone works ok. clf = klass(alpha=0.01, penalty='l1') clf = clone(clf) clf.set_params(penalty='l2') clf.fit(X, Y) clf2 = klass(alpha=0.01, penalty='l2') clf2.fit(X, Y) assert_array_equal(clf.coef_, clf2.coef_) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier, SGDRegressor, SparseSGDRegressor]) def test_plain_has_no_average_attr(klass): clf = klass(average=True, eta0=.01) clf.fit(X, Y) assert hasattr(clf, '_average_coef') assert hasattr(clf, '_average_intercept') assert hasattr(clf, '_standard_intercept') assert hasattr(clf, '_standard_coef') clf = klass() clf.fit(X, Y) assert not hasattr(clf, '_average_coef') assert not hasattr(clf, '_average_intercept') assert not hasattr(clf, '_standard_intercept') assert not hasattr(clf, '_standard_coef') # TODO: remove in 1.0 @pytest.mark.parametrize('klass', [SGDClassifier, SGDRegressor]) def test_sgd_deprecated_attr(klass): est = klass(average=True, eta0=.01) est.fit(X, Y) msg = "Attribute {} was deprecated" for att in ['average_coef_', 'average_intercept_', 'standard_coef_', 'standard_intercept_']: with pytest.warns(FutureWarning, match=msg.format(att)): getattr(est, att) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier, SGDRegressor, SparseSGDRegressor]) def test_late_onset_averaging_not_reached(klass): clf1 = klass(average=600) clf2 = klass() for _ in range(100): if is_classifier(clf1): clf1.partial_fit(X, Y, classes=np.unique(Y)) clf2.partial_fit(X, Y, classes=np.unique(Y)) else: clf1.partial_fit(X, Y) clf2.partial_fit(X, Y) assert_array_almost_equal(clf1.coef_, clf2.coef_, decimal=16) assert_almost_equal(clf1.intercept_, clf2.intercept_, decimal=16) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier, SGDRegressor, SparseSGDRegressor]) def test_late_onset_averaging_reached(klass): eta0 = .001 alpha = .0001 Y_encode = np.array(Y) Y_encode[Y_encode == 1] = -1.0 Y_encode[Y_encode == 2] = 1.0 clf1 = klass(average=7, learning_rate="constant", loss='squared_loss', eta0=eta0, alpha=alpha, max_iter=2, shuffle=False) clf2 = klass(average=0, learning_rate="constant", loss='squared_loss', eta0=eta0, alpha=alpha, max_iter=1, shuffle=False) clf1.fit(X, Y_encode) clf2.fit(X, Y_encode) average_weights, average_intercept = \ asgd(klass, X, Y_encode, eta0, alpha, weight_init=clf2.coef_.ravel(), intercept_init=clf2.intercept_) assert_array_almost_equal(clf1.coef_.ravel(), average_weights.ravel(), decimal=16) assert_almost_equal(clf1.intercept_, average_intercept, decimal=16) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier, SGDRegressor, SparseSGDRegressor]) def test_sgd_bad_alpha_for_optimal_learning_rate(klass): # Check whether expected ValueError on bad alpha, i.e. 0 # since alpha is used to compute the optimal learning rate with pytest.raises(ValueError): klass(alpha=0, learning_rate="optimal") @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier, SGDRegressor, SparseSGDRegressor]) def test_early_stopping(klass): X = iris.data[iris.target > 0] Y = iris.target[iris.target > 0] for early_stopping in [True, False]: max_iter = 1000 clf = klass(early_stopping=early_stopping, tol=1e-3, max_iter=max_iter).fit(X, Y) assert clf.n_iter_ < max_iter @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier, SGDRegressor, SparseSGDRegressor]) def test_adaptive_longer_than_constant(klass): clf1 = klass(learning_rate="adaptive", eta0=0.01, tol=1e-3, max_iter=100) clf1.fit(iris.data, iris.target) clf2 = klass(learning_rate="constant", eta0=0.01, tol=1e-3, max_iter=100) clf2.fit(iris.data, iris.target) assert clf1.n_iter_ > clf2.n_iter_ @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier, SGDRegressor, SparseSGDRegressor]) def test_validation_set_not_used_for_training(klass): X, Y = iris.data, iris.target validation_fraction = 0.4 seed = 42 shuffle = False max_iter = 10 clf1 = klass(early_stopping=True, random_state=np.random.RandomState(seed), validation_fraction=validation_fraction, learning_rate='constant', eta0=0.01, tol=None, max_iter=max_iter, shuffle=shuffle) clf1.fit(X, Y) assert clf1.n_iter_ == max_iter clf2 = klass(early_stopping=False, random_state=np.random.RandomState(seed), learning_rate='constant', eta0=0.01, tol=None, max_iter=max_iter, shuffle=shuffle) if is_classifier(clf2): cv = StratifiedShuffleSplit(test_size=validation_fraction, random_state=seed) else: cv = ShuffleSplit(test_size=validation_fraction, random_state=seed) idx_train, idx_val = next(cv.split(X, Y)) idx_train = np.sort(idx_train) # remove shuffling clf2.fit(X[idx_train], Y[idx_train]) assert clf2.n_iter_ == max_iter assert_array_equal(clf1.coef_, clf2.coef_) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier, SGDRegressor, SparseSGDRegressor]) def test_n_iter_no_change(klass): X, Y = iris.data, iris.target # test that n_iter_ increases monotonically with n_iter_no_change for early_stopping in [True, False]: n_iter_list = [klass(early_stopping=early_stopping, n_iter_no_change=n_iter_no_change, tol=1e-4, max_iter=1000 ).fit(X, Y).n_iter_ for n_iter_no_change in [2, 3, 10]] assert_array_equal(n_iter_list, sorted(n_iter_list)) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier, SGDRegressor, SparseSGDRegressor]) def test_not_enough_sample_for_early_stopping(klass): # test an error is raised if the training or validation set is empty clf = klass(early_stopping=True, validation_fraction=0.99) with pytest.raises(ValueError): clf.fit(X3, Y3) ############################################################################### # Classification Test Case @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_sgd_clf(klass): # Check that SGD gives any results :-) for loss in ("hinge", "squared_hinge", "log", "modified_huber"): clf = klass(penalty='l2', alpha=0.01, fit_intercept=True, loss=loss, max_iter=10, shuffle=True) clf.fit(X, Y) # assert_almost_equal(clf.coef_[0], clf.coef_[1], decimal=7) assert_array_equal(clf.predict(T), true_result) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_sgd_bad_l1_ratio(klass): # Check whether expected ValueError on bad l1_ratio with pytest.raises(ValueError): klass(l1_ratio=1.1) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_sgd_bad_learning_rate_schedule(klass): # Check whether expected ValueError on bad learning_rate with pytest.raises(ValueError): klass(learning_rate="<unknown>") @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_sgd_bad_eta0(klass): # Check whether expected ValueError on bad eta0 with pytest.raises(ValueError): klass(eta0=0, learning_rate="constant") @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_sgd_max_iter_param(klass): # Test parameter validity check with pytest.raises(ValueError): klass(max_iter=-10000) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_sgd_shuffle_param(klass): # Test parameter validity check with pytest.raises(ValueError): klass(shuffle="false") @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_sgd_early_stopping_param(klass): # Test parameter validity check with pytest.raises(ValueError): klass(early_stopping="false") @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_sgd_validation_fraction(klass): # Test parameter validity check with pytest.raises(ValueError): klass(validation_fraction=-.1) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_sgd_n_iter_no_change(klass): # Test parameter validity check with pytest.raises(ValueError): klass(n_iter_no_change=0) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_argument_coef(klass): # Checks coef_init not allowed as model argument (only fit) # Provided coef_ does not match dataset with pytest.raises(TypeError): klass(coef_init=np.zeros((3,))) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_provide_coef(klass): # Checks coef_init shape for the warm starts # Provided coef_ does not match dataset. with pytest.raises(ValueError): klass().fit(X, Y, coef_init=np.zeros((3,))) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_set_intercept(klass): # Checks intercept_ shape for the warm starts # Provided intercept_ does not match dataset. with pytest.raises(ValueError): klass().fit(X, Y, intercept_init=np.zeros((3,))) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_sgd_early_stopping_with_partial_fit(klass): # Test parameter validity check with pytest.raises(ValueError): klass(early_stopping=True).partial_fit(X, Y) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_set_intercept_binary(klass): # Checks intercept_ shape for the warm starts in binary case klass().fit(X5, Y5, intercept_init=0) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_average_binary_computed_correctly(klass): # Checks the SGDClassifier correctly computes the average weights eta = .1 alpha = 2. n_samples = 20 n_features = 10 rng = np.random.RandomState(0) X = rng.normal(size=(n_samples, n_features)) w = rng.normal(size=n_features) clf = klass(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, max_iter=1, average=True, shuffle=False) # simple linear function without noise y = np.dot(X, w) y = np.sign(y) clf.fit(X, y) average_weights, average_intercept = asgd(klass, X, y, eta, alpha) average_weights = average_weights.reshape(1, -1) assert_array_almost_equal(clf.coef_, average_weights, decimal=14) assert_almost_equal(clf.intercept_, average_intercept, decimal=14) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_set_intercept_to_intercept(klass): # Checks intercept_ shape consistency for the warm starts # Inconsistent intercept_ shape. clf = klass().fit(X5, Y5) klass().fit(X5, Y5, intercept_init=clf.intercept_) clf = klass().fit(X, Y) klass().fit(X, Y, intercept_init=clf.intercept_) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_sgd_at_least_two_labels(klass): # Target must have at least two labels clf = klass(alpha=0.01, max_iter=20) with pytest.raises(ValueError): clf.fit(X2, np.ones(9)) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_partial_fit_weight_class_balanced(klass): # partial_fit with class_weight='balanced' not supported""" regex = (r"class_weight 'balanced' is not supported for " r"partial_fit\. In order to use 'balanced' weights, " r"use compute_class_weight\('balanced', classes=classes, y=y\). " r"In place of y you can us a large enough sample " r"of the full training set target to properly " r"estimate the class frequency distributions\. " r"Pass the resulting weights as the class_weight " r"parameter\.") assert_raises_regexp(ValueError, regex, klass(class_weight='balanced').partial_fit, X, Y, classes=np.unique(Y)) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_sgd_multiclass(klass): # Multi-class test case clf = klass(alpha=0.01, max_iter=20).fit(X2, Y2) assert clf.coef_.shape == (3, 2) assert clf.intercept_.shape == (3,) assert clf.decision_function([[0, 0]]).shape == (1, 3) pred = clf.predict(T2) assert_array_equal(pred, true_result2) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_sgd_multiclass_average(klass): eta = .001 alpha = .01 # Multi-class average test case clf = klass(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, max_iter=1, average=True, shuffle=False) np_Y2 = np.array(Y2) clf.fit(X2, np_Y2) classes = np.unique(np_Y2) for i, cl in enumerate(classes): y_i = np.ones(np_Y2.shape[0]) y_i[np_Y2 != cl] = -1 average_coef, average_intercept = asgd(klass, X2, y_i, eta, alpha) assert_array_almost_equal(average_coef, clf.coef_[i], decimal=16) assert_almost_equal(average_intercept, clf.intercept_[i], decimal=16) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_sgd_multiclass_with_init_coef(klass): # Multi-class test case clf = klass(alpha=0.01, max_iter=20) clf.fit(X2, Y2, coef_init=np.zeros((3, 2)), intercept_init=np.zeros(3)) assert clf.coef_.shape == (3, 2) assert clf.intercept_.shape, (3,) pred = clf.predict(T2) assert_array_equal(pred, true_result2) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_sgd_multiclass_njobs(klass): # Multi-class test case with multi-core support clf = klass(alpha=0.01, max_iter=20, n_jobs=2).fit(X2, Y2) assert clf.coef_.shape == (3, 2) assert clf.intercept_.shape == (3,) assert clf.decision_function([[0, 0]]).shape == (1, 3) pred = clf.predict(T2) assert_array_equal(pred, true_result2) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_set_coef_multiclass(klass): # Checks coef_init and intercept_init shape for multi-class # problems # Provided coef_ does not match dataset clf = klass() with pytest.raises(ValueError): clf.fit(X2, Y2, coef_init=np.zeros((2, 2))) # Provided coef_ does match dataset clf = klass().fit(X2, Y2, coef_init=np.zeros((3, 2))) # Provided intercept_ does not match dataset clf = klass() with pytest.raises(ValueError): clf.fit(X2, Y2, intercept_init=np.zeros((1,))) # Provided intercept_ does match dataset. clf = klass().fit(X2, Y2, intercept_init=np.zeros((3,))) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_sgd_predict_proba_method_access(klass): # Checks that SGDClassifier predict_proba and predict_log_proba methods # can either be accessed or raise an appropriate error message # otherwise. See # https://github.com/scikit-learn/scikit-learn/issues/10938 for more # details. for loss in linear_model.SGDClassifier.loss_functions: clf = SGDClassifier(loss=loss) if loss in ('log', 'modified_huber'): assert hasattr(clf, 'predict_proba') assert hasattr(clf, 'predict_log_proba') else: message = ("probability estimates are not " "available for loss={!r}".format(loss)) assert not hasattr(clf, 'predict_proba') assert not hasattr(clf, 'predict_log_proba') with pytest.raises(AttributeError, match=message): clf.predict_proba with pytest.raises(AttributeError, match=message): clf.predict_log_proba @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_sgd_proba(klass): # Check SGD.predict_proba # Hinge loss does not allow for conditional prob estimate. # We cannot use the factory here, because it defines predict_proba # anyway. clf = SGDClassifier(loss="hinge", alpha=0.01, max_iter=10, tol=None).fit(X, Y) assert not hasattr(clf, "predict_proba") assert not hasattr(clf, "predict_log_proba") # log and modified_huber losses can output probability estimates # binary case for loss in ["log", "modified_huber"]: clf = klass(loss=loss, alpha=0.01, max_iter=10) clf.fit(X, Y) p = clf.predict_proba([[3, 2]]) assert p[0, 1] > 0.5 p = clf.predict_proba([[-1, -1]]) assert p[0, 1] < 0.5 p = clf.predict_log_proba([[3, 2]]) assert p[0, 1] > p[0, 0] p = clf.predict_log_proba([[-1, -1]]) assert p[0, 1] < p[0, 0] # log loss multiclass probability estimates clf = klass(loss="log", alpha=0.01, max_iter=10).fit(X2, Y2) d = clf.decision_function([[.1, -.1], [.3, .2]]) p = clf.predict_proba([[.1, -.1], [.3, .2]]) assert_array_equal(np.argmax(p, axis=1), np.argmax(d, axis=1)) assert_almost_equal(p[0].sum(), 1) assert np.all(p[0] >= 0) p = clf.predict_proba([[-1, -1]]) d = clf.decision_function([[-1, -1]]) assert_array_equal(np.argsort(p[0]), np.argsort(d[0])) lp = clf.predict_log_proba([[3, 2]]) p = clf.predict_proba([[3, 2]]) assert_array_almost_equal(np.log(p), lp) lp = clf.predict_log_proba([[-1, -1]]) p = clf.predict_proba([[-1, -1]]) assert_array_almost_equal(np.log(p), lp) # Modified Huber multiclass probability estimates; requires a separate # test because the hard zero/one probabilities may destroy the # ordering present in decision_function output. clf = klass(loss="modified_huber", alpha=0.01, max_iter=10) clf.fit(X2, Y2) d = clf.decision_function([[3, 2]]) p = clf.predict_proba([[3, 2]]) if klass != SparseSGDClassifier: assert np.argmax(d, axis=1) == np.argmax(p, axis=1) else: # XXX the sparse test gets a different X2 (?) assert np.argmin(d, axis=1) == np.argmin(p, axis=1) # the following sample produces decision_function values < -1, # which would cause naive normalization to fail (see comment # in SGDClassifier.predict_proba) x = X.mean(axis=0) d = clf.decision_function([x]) if np.all(d < -1): # XXX not true in sparse test case (why?) p = clf.predict_proba([x]) assert_array_almost_equal(p[0], [1 / 3.] * 3) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_sgd_l1(klass): # Test L1 regularization n = len(X4) rng = np.random.RandomState(13) idx = np.arange(n) rng.shuffle(idx) X = X4[idx, :] Y = Y4[idx] clf = klass(penalty='l1', alpha=.2, fit_intercept=False, max_iter=2000, tol=None, shuffle=False) clf.fit(X, Y) assert_array_equal(clf.coef_[0, 1:-1], np.zeros((4,))) pred = clf.predict(X) assert_array_equal(pred, Y) # test sparsify with dense inputs clf.sparsify() assert sp.issparse(clf.coef_) pred = clf.predict(X) assert_array_equal(pred, Y) # pickle and unpickle with sparse coef_ clf = pickle.loads(pickle.dumps(clf)) assert sp.issparse(clf.coef_) pred = clf.predict(X) assert_array_equal(pred, Y) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_class_weights(klass): # Test class weights. X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = klass(alpha=0.1, max_iter=1000, fit_intercept=False, class_weight=None) clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf = klass(alpha=0.1, max_iter=1000, fit_intercept=False, class_weight={1: 0.001}) clf.fit(X, y) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_equal_class_weight(klass): # Test if equal class weights approx. equals no class weights. X = [[1, 0], [1, 0], [0, 1], [0, 1]] y = [0, 0, 1, 1] clf = klass(alpha=0.1, max_iter=1000, class_weight=None) clf.fit(X, y) X = [[1, 0], [0, 1]] y = [0, 1] clf_weighted = klass(alpha=0.1, max_iter=1000, class_weight={0: 0.5, 1: 0.5}) clf_weighted.fit(X, y) # should be similar up to some epsilon due to learning rate schedule assert_almost_equal(clf.coef_, clf_weighted.coef_, decimal=2) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_wrong_class_weight_label(klass): # ValueError due to not existing class label. clf = klass(alpha=0.1, max_iter=1000, class_weight={0: 0.5}) with pytest.raises(ValueError): clf.fit(X, Y) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_wrong_class_weight_format(klass): # ValueError due to wrong class_weight argument type. clf = klass(alpha=0.1, max_iter=1000, class_weight=[0.5]) with pytest.raises(ValueError): clf.fit(X, Y) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_weights_multiplied(klass): # Tests that class_weight and sample_weight are multiplicative class_weights = {1: .6, 2: .3} rng = np.random.RandomState(0) sample_weights = rng.random_sample(Y4.shape[0]) multiplied_together = np.copy(sample_weights) multiplied_together[Y4 == 1] *= class_weights[1] multiplied_together[Y4 == 2] *= class_weights[2] clf1 = klass(alpha=0.1, max_iter=20, class_weight=class_weights) clf2 = klass(alpha=0.1, max_iter=20) clf1.fit(X4, Y4, sample_weight=sample_weights) clf2.fit(X4, Y4, sample_weight=multiplied_together) assert_almost_equal(clf1.coef_, clf2.coef_) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_balanced_weight(klass): # Test class weights for imbalanced data""" # compute reference metrics on iris dataset that is quite balanced by # default X, y = iris.data, iris.target X = scale(X) idx = np.arange(X.shape[0]) rng = np.random.RandomState(6) rng.shuffle(idx) X = X[idx] y = y[idx] clf = klass(alpha=0.0001, max_iter=1000, class_weight=None, shuffle=False).fit(X, y) f1 = metrics.f1_score(y, clf.predict(X), average='weighted') assert_almost_equal(f1, 0.96, decimal=1) # make the same prediction using balanced class_weight clf_balanced = klass(alpha=0.0001, max_iter=1000, class_weight="balanced", shuffle=False).fit(X, y) f1 = metrics.f1_score(y, clf_balanced.predict(X), average='weighted') assert_almost_equal(f1, 0.96, decimal=1) # Make sure that in the balanced case it does not change anything # to use "balanced" assert_array_almost_equal(clf.coef_, clf_balanced.coef_, 6) # build an very very imbalanced dataset out of iris data X_0 = X[y == 0, :] y_0 = y[y == 0] X_imbalanced = np.vstack([X] + [X_0] * 10) y_imbalanced = np.concatenate([y] + [y_0] * 10) # fit a model on the imbalanced data without class weight info clf = klass(max_iter=1000, class_weight=None, shuffle=False) clf.fit(X_imbalanced, y_imbalanced) y_pred = clf.predict(X) assert metrics.f1_score(y, y_pred, average='weighted') < 0.96 # fit a model with balanced class_weight enabled clf = klass(max_iter=1000, class_weight="balanced", shuffle=False) clf.fit(X_imbalanced, y_imbalanced) y_pred = clf.predict(X) assert metrics.f1_score(y, y_pred, average='weighted') > 0.96 @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_sample_weights(klass): # Test weights on individual samples X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = klass(alpha=0.1, max_iter=1000, fit_intercept=False) clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf.fit(X, y, sample_weight=[0.001] * 3 + [1] * 2) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_wrong_sample_weights(klass): # Test if ValueError is raised if sample_weight has wrong shape clf = klass(alpha=0.1, max_iter=1000, fit_intercept=False) # provided sample_weight too long with pytest.raises(ValueError): clf.fit(X, Y, sample_weight=np.arange(7)) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_partial_fit_exception(klass): clf = klass(alpha=0.01) # classes was not specified with pytest.raises(ValueError): clf.partial_fit(X3, Y3) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_partial_fit_binary(klass): third = X.shape[0] // 3 clf = klass(alpha=0.01) classes = np.unique(Y) clf.partial_fit(X[:third], Y[:third], classes=classes) assert clf.coef_.shape == (1, X.shape[1]) assert clf.intercept_.shape == (1,) assert clf.decision_function([[0, 0]]).shape == (1, ) id1 = id(clf.coef_.data) clf.partial_fit(X[third:], Y[third:]) id2 = id(clf.coef_.data) # check that coef_ haven't been re-allocated assert id1, id2 y_pred = clf.predict(T) assert_array_equal(y_pred, true_result) @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_partial_fit_multiclass(klass): third = X2.shape[0] // 3 clf = klass(alpha=0.01) classes = np.unique(Y2) clf.partial_fit(X2[:third], Y2[:third], classes=classes) assert clf.coef_.shape == (3, X2.shape[1]) assert clf.intercept_.shape == (3,) assert clf.decision_function([[0, 0]]).shape == (1, 3) id1 = id(clf.coef_.data) clf.partial_fit(X2[third:], Y2[third:]) id2 = id(clf.coef_.data) # check that coef_ haven't been re-allocated assert id1, id2 @pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier]) def test_partial_fit_multiclass_average(klass): third = X2.shape[0] // 3 clf = klass(alpha=0.01, average=X2.shape[0]) classes =
np.unique(Y2)
numpy.unique
import os import numpy as np from os.path import join as pjoin from nltk.tokenize import word_tokenize as wt import torch from torch.autograd import Variable from textworld.utils import maybe_mkdir class SlidingAverage(object): def __init__(self, name, steps=100): self.name = name self.steps = steps self.t = 0 self.ns = [] self.avgs = [] def add(self, n): self.ns.append(n) if len(self.ns) > self.steps: self.ns.pop(0) self.t += 1 if self.t % self.steps == 0: self.avgs.append(self.value) @property def value(self): if len(self.ns) == 0: return 0 return sum(self.ns) / len(self.ns) def __str__(self): return "%s=%.4f" % (self.name, self.value) def __gt__(self, value): return self.value > value def __lt__(self, value): return self.value < value def state_dict(self): return {'t': self.t, 'ns': tuple(self.ns), 'avgs': tuple(self.avgs)} def load_state_dict(self, state): self.t = state["t"] self.ns = list(state["ns"]) self.avgs = list(state["avgs"]) def to_np(x): if isinstance(x, np.ndarray): return x return x.data.cpu().numpy() def to_pt(np_matrix, enable_cuda=False, type='long'): if type == 'long': if enable_cuda: return torch.autograd.Variable(torch.from_numpy(np_matrix).type(torch.LongTensor).cuda()) else: return torch.autograd.Variable(torch.from_numpy(np_matrix).type(torch.LongTensor)) elif type == 'float': if enable_cuda: return torch.autograd.Variable(torch.from_numpy(np_matrix).type(torch.FloatTensor).cuda()) else: return torch.autograd.Variable(torch.from_numpy(np_matrix).type(torch.FloatTensor)) def get_experiment_dir(config): env_id = config['general']['env_id'] exps_dir = config['general']['experiments_dir'] exp_tag = config['general']['experiment_tag'] exp_dir = pjoin(exps_dir, env_id + "_" + exp_tag) return maybe_mkdir(exp_dir) def dict2list(id2w_dict): res = [] for item in id2w_dict: res.append(id2w_dict[item]) return res def _words_to_ids(words, word2id): ids = [] for word in words: try: ids.append(word2id[word]) except KeyError: ids.append(1) return ids def preproc(s, str_type='None', lower_case=False): s = s.replace("\n", ' ') if s.strip() == "": return ["nothing"] if str_type == 'description': s = s.split("=-")[1] elif str_type == 'inventory': s = s.split("carrying")[1] if s[0] == ':': s = s[1:] elif str_type == 'feedback': if "Welcome to Textworld" in s: s = s.split("Welcome to Textworld")[1] if "-=" in s: s = s.split("-=")[0] s = s.strip() if len(s) == 0: return ["nothing"] tokens = wt(s) if lower_case: tokens = [t.lower() for t in tokens] return tokens def max_len(list_of_list): return max(map(len, list_of_list)) def pad_sequences(sequences, maxlen=None, dtype='int32', padding='pre', truncating='pre', value=0.): ''' FROM KERAS Pads each sequence to the same length: the length of the longest sequence. If maxlen is provided, any sequence longer than maxlen is truncated to maxlen. Truncation happens off either the beginning (default) or the end of the sequence. Supports post-padding and pre-padding (default). # Arguments sequences: list of lists where each element is a sequence maxlen: int, maximum length dtype: type to cast the resulting sequence. padding: 'pre' or 'post', pad either before or after each sequence. truncating: 'pre' or 'post', remove values from sequences larger than maxlen either in the beginning or in the end of the sequence value: float, value to pad the sequences to the desired value. # Returns x: numpy array with dimensions (number_of_sequences, maxlen) ''' lengths = [len(s) for s in sequences] nb_samples = len(sequences) if maxlen is None: maxlen = np.max(lengths) # take the sample shape from the first non empty sequence # checking for consistency in the main loop below. sample_shape = tuple() for s in sequences: if len(s) > 0: sample_shape =
np.asarray(s)
numpy.asarray
from pathlib import Path import click import numpy as np import torch from taskspec.data import Vocab from taskspec.model import MultiClassModel from taskspec.utils import Config def compute_accuracy(x, y): return torch.mean((x == y).float()) @click.command() @click.argument('model-dir', type=click.Path(exists=True)) @click.option('--ckpt', type=str, default='best.model') def main(model_dir, ckpt): model_dir = Path(model_dir) config = Config(model_dir / 'config.json') with open(config.vocab.words) as fwords, open(config.vocab.labels) as flabels: vocab = Vocab.load(fwords, flabels) model = MultiClassModel(vocab, config.model) model.load_state_dict(torch.load(model_dir / ckpt, map_location='cpu')) vecs =
np.array(model._embed.weight.data)
numpy.array
import torch import torchvision import numpy as np from PIL import Image import seaborn as sns import matplotlib.pyplot as plt from torchvision.transforms import Compose, Resize, ToTensor, transforms, functional as TF MEAN = np.array([0.48145466, 0.4578275, 0.40821073]).reshape(-1, 1, 1) STD = np.array([0.26862954, 0.26130258, 0.27577711]).reshape(-1, 1, 1) def get_image_grid(images): # preprocess images image_size = (224, 224) image_preprocess = Compose([ Resize(image_size, interpolation=Image.BICUBIC), ToTensor() ]) images = [image_preprocess(img) for img in images] # stack into a grid and return image_stack = torch.tensor(np.stack(images)) image_grid = torchvision.utils.make_grid(image_stack, nrow=5) transform = transforms.ToPILImage() image_grid = transform(image_grid) return image_grid def get_similarity_heatmap(scores, images, text, transpose_flag): count_images = len(images) count_text = len(text) scores = np.round(scores, 2) scores = scores.T if transpose_flag else scores # create the figure fig = plt.figure() for i, image in enumerate(images): plt.imshow(
np.asarray(image)
numpy.asarray
import os import copy import math import numpy as np import gurobipy as gp from gurobipy import GRB def save_checkpoint(model, where): try: model_check_point = np.array([abs(var.x) for var in model.getVars()]) np.save(os.path.join("sol", model.ModelName), model_check_point) except: pass class Model: def __init__(self, model_name, input, output, problem_cnt): print("Creating model: {}".format(model_name)) self.m = gp.Model(name=model_name) self.problem = problem_cnt.split(".")[0] self.data = copy.deepcopy(input) self.L_cnt = len(self.data.sets.L) self.N_cnt = len(self.data.sets.N) self.M_cnt = max(self.data.sets.M) self.T_cnt = self.data.parameters.T self.output = copy.deepcopy(output) def __cal_obj_numpy(self, x): return ( np.max(np.max(x + self.data.parameters.D - 1, axis=1)) + np.sum( self.data.parameters.W * np.max(x + self.data.parameters.D - 1, axis=1) ) * self.window ) def __get_sol_result_params(self, path): try: saved_model_params = np.load(path) x_saved = np.empty((self.N_cnt, self.M_cnt)).astype("int") y_saved = np.zeros((self.N_cnt, self.M_cnt, self.T_cnt)).astype("int") tmp_T_cnt = ( int( (len(saved_model_params) - (1 + self.N_cnt)) / self.N_cnt / self.M_cnt ) - 1 ) npy_idx = 1 + self.N_cnt for n in range(self.N_cnt): for m in range(self.M_cnt): x_saved[n][m] = saved_model_params[npy_idx] npy_idx += 1 for n in range(self.N_cnt): for m in range(self.M_cnt): for t in range(tmp_T_cnt): y_saved[n][m][t] = saved_model_params[npy_idx] npy_idx += 1 return x_saved, y_saved except: return None, None def gen_operations_order(self, problem_prefix): x_saved, _ = self.__get_sol_result_params( os.path.join("sol", "{}.sol.npy".format(problem_prefix)) ) results = [] for n in range(self.N_cnt): for m in range(self.M_cnt): if self.data.parameters.S[n][m]: results.append( [ n, m, x_saved[n][m], self.data.parameters.S[n][m], self.data.parameters.D[n][m], [], ] ) return results def pre_solve(self, window, sort_num=1): print("Running presolve...") print("window = {}".format(window)) self.window = window self.data.parameters.D = ( np.ceil(
np.array(self.data.parameters.D)
numpy.array
################################################################################ # SSGP: Sparse Spectrum Gaussian Process # Github: https://github.com/MaxInGaussian/SSGP # Author: <NAME> (<EMAIL>) ################################################################################ import math import random import numpy as np import scipy.linalg as la from .SMORMS3 import SMORMS3 class SSGP(object): """ Sparse Spectrum Gaussian Process """ hashed_name = "" m, n, d = -1, -1, -1 freq_noisy = True y_noise, sigma, lengthscales, S = None, None, None, None X_train, y_train = None, None X_valid, y_valid = None, None X_scaler, y_scaler = None, None # ADDED [!] nmse, mnlp = None, None def __init__(self, m=-1, freq_noisy=True): self.m = m self.freq_noisy = freq_noisy self.hashed_name = random.choice("ABCDEF")+str(hash(self)&0xffff) def transform(self, X=None, y=None): _X, _y = None, None if(X is not None): _X = 3.*(X-self.X_scaler[0])/self.X_scaler[1] if(y is not None): _y = (y-self.y_scaler[0])/self.y_scaler[1] return _X, _y def inverse_transform(self, X=None, y=None): _X, _y = None, None if(X is not None): _X = X/3.*self.X_scaler[1]+self.X_scaler[0] if(y is not None): _y = y*self.y_scaler[1]+self.y_scaler[0] return _X, _y def init_params(self, rand_num=100): if(self.freq_noisy): log_y_noise = np.random.randn(self.m)*1e-1 else: log_y_noise = np.random.randn(1)*1e-1 log_sigma = np.random.randn(1)*1e-1 ranges = np.max(self.X_train, 0)-np.min(self.X_train, 0) log_lengthscales = np.log(ranges/2.) best_nlml = np.Infinity best_rand_params = np.zeros(self.d+1+self.m*(1+self.d)) kern_params = np.concatenate((log_y_noise, log_sigma, log_lengthscales)) for _ in range(rand_num): spectrum_params = np.random.randn(self.m*self.d) rand_params = np.concatenate((kern_params, spectrum_params)) self.set_params(rand_params) nlml = self.get_nlml() if(nlml < best_nlml): best_nlml = nlml best_rand_params = rand_params self.set_params(best_rand_params) def get_params(self): sn = 1 if(self.freq_noisy): sn = self.m params = np.zeros(self.d+1+self.m*self.d+sn) params[:sn] = np.log(self.y_noise)/2. params[sn] = np.log(self.sigma)/2. log_lengthscales = np.log(self.lengthscales) params[sn+1:sn+self.d+1] = log_lengthscales spectrum = self.S*np.tile(self.lengthscales[None, :], (self.m, 1)) params[sn+self.d+1:] = np.reshape(spectrum, (self.m*self.d,)) return params def set_params(self, params): sn = 1 if(self.freq_noisy): sn = self.m self.y_noise = np.exp(2*params[:sn]) self.sigma = np.exp(2*params[sn]) self.lengthscales = np.exp(params[sn+1:sn+self.d+1]) self.S = np.reshape(params[sn+self.d+1:], (self.m, self.d)) self.S /= np.tile(self.lengthscales[None, :], (self.m, 1)) self.Phi = self.X_train.dot(self.S.T) cosX = np.cos(self.Phi) sinX = np.sin(self.Phi) self.Phi = np.concatenate((cosX, sinX), axis=1) A = self.sigma/self.m*self.Phi.T.dot(self.Phi) if(self.freq_noisy): noise_diag = np.diag(np.concatenate((self.y_noise, self.y_noise))) else: noise_diag = np.double(self.y_noise)*np.eye(2*self.m) self.R = la.cho_factor(A+noise_diag)[0] self.PhiRi = la.solve_triangular(self.R, self.Phi.T, trans=1).T self.RtiPhit = self.PhiRi.T self.Rtiphity = self.RtiPhit.dot(self.y_train) self.alpha = la.solve_triangular(self.R, self.Rtiphity) self.alpha *= self.sigma/self.m def get_nlml(self): sn = self.m if(self.freq_noisy): sn = 1 L1 = np.sum(self.y_train**2)-self.sigma/self.m*np.sum(self.Rtiphity**2.) L2 = np.sum(np.log(np.diag(self.R))) L3 = self.n/2*np.log(np.mean(self.y_noise)) L3 -= np.sum(np.log(self.y_noise))*sn L4 = self.n/2*
np.log(2*np.pi)
numpy.log
import numpy as np def max_triangle_1d(width, time_stamps, heights): """ :param float width: :param np.ndarray time_stamps: :param np.ndarray heights: """ distances = np.outer(time_stamps, np.ones(shape=[len(time_stamps)], dtype=np.float32)) distances = np.abs(distances - time_stamps) effective_distances = width - distances effective_distances[effective_distances < 0] = 0.0 gain = heights / width values = (effective_distances * gain).sum(axis=1) highest_idx = np.argmax(values) highest_value = values[highest_idx] return int(highest_idx), highest_value def max_triangle_2d(width, time_stamps, heights, lens): """ :param float width: :param np.ndarray time_stamps: shape=[n, m], dtype=np.float32 :param np.ndarray heights: shape=[n], dtype=np.float32 :param np.ndarray lens: shape=[n], dtype=np.int32 """ n, m = time_stamps.shape flatten_time_stamps = time_stamps.reshape(n * m) distances = np.outer(flatten_time_stamps, np.ones(shape=[n*m], dtype=np.float32)) distances = np.abs(distances - flatten_time_stamps) distances = width - distances distances[distances < 0] = 0.0 # shape=[n1, m1, n2, m2] distances = distances.reshape(n, m, n, m) # shape=[n1, m1, m2, n2] distances = distances.transpose([0, 1, 3, 2]) gain = heights / width distances = distances * gain # shape=[n1, m1, n2, m2] distances = distances.transpose([0, 1, 3, 2]) # shape=[m, n] len_mask = np.outer(np.arange(m, dtype=np.int32), np.ones(shape=[n], dtype=np.int32)) len_mask = len_mask < lens # shape=[n, m] len_mask = len_mask.transpose([1, 0]) distances[:, :, ~len_mask] = 0.0 # shape=[n1, m1, n2] distances_each = np.max(distances, axis=3) # shape=[n1, m1] distances_sum = distances_each.sum(axis=2) distances_sum[~len_mask] = 0.0 # shape=[n1 * m1] distances_sum = distances_sum.reshape(n * m) max_idx = np.argmax(distances_sum) max_value = distances_sum[max_idx] max_idx1 = max_idx // m max_idx2 = max_idx % m # shape=[n2, m2] distances_sub_mat = distances[max_idx1, max_idx2] choices = distances_sub_mat.argmax(axis=1) choice_mask = distances_sub_mat.max(axis=1) <= 0.0 choices[choice_mask] = -1 return [max_idx1, max_idx2], max_value, choices def concat_pad_mat(a, pad=0): """ :param list[np.ndarray] a: :param float pad: :rtype: np.ndarray """ max_len = max([len(item) for item in a]) n = len(a) rst =
np.full(shape=[n, max_len], fill_value=pad, dtype=a[0].dtype)
numpy.full
#!/usr/bin/env python # # This file is part of the Emotions project. The complete source code is # available at https://github.com/luigivieira/emotions. # # Copyright (c) 2016-2017, <NAME> (http://www.luiz.vieira.nom.br) # # MIT License # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import cv2 from collections import OrderedDict import numpy as np #============================================= class FaceData: """ Represents the data of a face detected on an image. """ _jawLine = [i for i in range(17)] """ Indexes of the landmarks at the jaw line. """ _rightEyebrow = [i for i in range(17,22)] """ Indexes of the landmarks at the right eyebrow. """ _leftEyebrow = [i for i in range(22,27)] """ Indexes of the landmarks at the left eyebrow. """ _noseBridge = [i for i in range(27,31)] """ Indexes of the landmarks at the nose bridge. """ _lowerNose = [i for i in range(30,36)] """ Indexes of the landmarks at the lower nose. """ _rightEye = [i for i in range(36,42)] """ Indexes of the landmarks at the right eye. """ _leftEye = [i for i in range(42,48)] """ Indexes of the landmarks at the left eye. """ _outerLip = [i for i in range(48,60)] """ Indexes of the landmarks at the outer lip. """ _innerLip = [i for i in range(60,68)] """ Indexes of the landmarks at the inner lip. """ #--------------------------------------------- def __init__(self, region = (0, 0, 0, 0), landmarks = [0 for i in range(136)]): """ Class constructor. Parameters ---------- region: tuple Left, top, right and bottom coordinates of the region where the face is located in the image used for detection. The default is all 0's. landmarks: list List of x, y coordinates of the 68 facial landmarks in the image used for detection. The default is all 0's. """ self.region = region """ Region where the face is found in the image used for detection. This is a tuple of int values describing the region in terms of the top-left and bottom-right coordinates where the face is located. """ self.landmarks = landmarks """ Coordinates of the landmarks on the image. This is a numpy array of pair of values describing the x and y positions of each of the 68 facial landmarks. """ #--------------------------------------------- def copy(self): """ Deep copies the data of the face. Deep copying means that no mutable attribute (like tuples or lists) in the new copy will be shared with this instance. In that way, the two copies can be changed independently. Returns ------- ret: FaceData New instance of the FaceDate class deep copied from this instance. """ return FaceData(self.region, self.landmarks.copy()) #--------------------------------------------- def isEmpty(self): """ Check if the FaceData object is empty. An empty FaceData object have region and landmarks with all 0's. Returns ------ response: bool Indication on whether this object is empty. """ return all(v == 0 for v in self.region) or \ all(vx == 0 and vy == 0 for vx, vy in self.landmarks) #--------------------------------------------- def crop(self, image): """ Crops the given image according to this instance's region and landmarks. This function creates a subregion of the original image according to the face region coordinates, and also a new instance of FaceDate object with the region and landmarks adjusted to the cropped image. Parameters ---------- image: numpy.array Image that contains the face. Returns ------- croppedImage: numpy.array Subregion in the original image that contains only the face. This image is shared with the original image (i.e. its data is not copied, and changes to either the original image or this subimage will affect both instances). croppedFace: FaceData New instance of FaceData with the face region and landmarks adjusted to the croppedImage. """ left = self.region[0] top = self.region[1] right = self.region[2] bottom = self.region[3] croppedImage = image[top:bottom+1, left:right+1] croppedFace = self.copy() croppedFace.region = (0, 0, right - left, bottom - top) croppedFace.landmarks = [[p[0]-left, p[1]-top] for p in self.landmarks] return croppedImage, croppedFace #--------------------------------------------- def draw(self, image, drawRegion = None, drawFaceModel = None): """ Draws the face data over the given image. This method draws the facial landmarks (in red) to the image. It can also draw the region where the face was detected (in blue) and the face model used by dlib to do the prediction (i.e., the connections between the landmarks, in magenta). This drawing is useful for visual inspection of the data - and it is fun! :) Parameters ------ image: numpy.array Image data where to draw the face data. drawRegion: bool Optional value indicating if the region area should also be drawn. The default is True. drawFaceModel: bool Optional value indicating if the face model should also be drawn. The default is True. Returns ------ drawnImage: numpy.array Image data with the original image received plus the face data drawn. If this instance of Face is empty (i.e. it has no region and no landmarks), the original image is simply returned with nothing drawn on it. """ if self.isEmpty(): raise RuntimeError('Can not draw the contents of an empty ' 'FaceData object') # Check default arguments if drawRegion is None: drawRegion = True if drawFaceModel is None: drawFaceModel = True # Draw the region if requested if drawRegion: cv2.rectangle(image, (self.region[0], self.region[1]), (self.region[2], self.region[3]), (0, 0, 255), 2) # Draw the positions of landmarks color = (0, 255, 255) for i in range(68): cv2.circle(image, tuple(self.landmarks[i]), 1, color, 2) # Draw the face model if requested if drawFaceModel: c = (0, 255, 255) p =
np.array(self.landmarks)
numpy.array
import numpy as np import math def get_square(hashdot): l = [ list(x) for x in ( row.replace('#', '1').replace('.', '0') for row in hashdot.strip().split('/') ) ] return np.array(l, int) def breakup(square): height = square.shape[0] if height != 2 and (height % 2) == 0: nrows = 2 ncols = 2 elif height != 3 and (height % 3) == 0: nrows = 3 ncols = 3 else: return square return (square.reshape(height // nrows, nrows, -1, ncols) .swapaxes(1,2) .reshape(-1, nrows, ncols)) def get_rule_variations(rule): if (
np.count_nonzero(rule[0])
numpy.count_nonzero
import numpy as np import healpy as hp from plancklens import utils as ut, utils_spin as uspin class qeleg: def __init__(self, spin_in, spin_out, cl): self.spin_in = spin_in self.spin_ou = spin_out self.cl = cl def __eq__(self, leg): if self.spin_in != leg.spin_in or self.spin_ou != leg.spin_ou or self.get_lmax() != self.get_lmax(): return False return
np.all(self.cl == leg.cl)
numpy.all
# coding=utf-8 import argparse import os import re import _pickle as cpickle import numpy as np from nltk import ngrams, sent_tokenize, word_tokenize from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction from collections import Counter from nltk import bigrams, FreqDist from tqdm import tqdm from math import inf def _response_tokenize(response): """ Function: 将每个response进行tokenize Return: [token1, token2, ......] """ response_tokens = [] # valid_tokens = set(word2vec.keys()) for token in response.strip().split(' '): # if token in valid_tokens: response_tokens.append(token) # response_tokens = ["__"+token for token in response_tokens] return response_tokens def _response_tokenize_reduce_stopwords(response): from nltk.corpus import stopwords response_tokens = [] for token in response.strip().split(' '): if token not in set(stopwords.words('english')): response_tokens.append(token) return response_tokens class NormalMetrics(): def __init__(self, file_path, vocab, word2vec, model_path): """ Function: 初始化以下变量 contexts: [context1, context2, ...] true_responses: [true_response1, true_response2, ...] gen_responses: [gen_response1, gen_response2, ...] """ self.vocab = vocab self.word2vec = word2vec self.model_path = model_path contexts, true_responses, generate_responses = \ self._extract_data(file_path) self._stasticAndcleanData([contexts, true_responses, generate_responses]) def _extract_data(self, path): true_responses = [] generate_responses = [] contexts = [] with open(path, 'r', encoding='utf-8') as f: sentences = f.readlines() for i in range(len(sentences)): if sentences[i] == 'sample:\n': contexts.append(sentences[i + 1].rstrip('\n')) true_responses.append(sentences[i + 2].rstrip('\n')) generate_responses.append(sentences[i + 3].rstrip('\n')) else: pass return contexts, true_responses, generate_responses def _stasticAndcleanData(self, data): [contexts, true_responses, generated_responses] = data data_count = len(contexts) tmp1 = [] tmp2 = [] tmp3 = [] for context, true_response, gen_response in zip(contexts, true_responses, generated_responses): if (len(_response_tokenize(true_response)) != 0 and len(_response_tokenize(gen_response)) > 1 and len(_response_tokenize(context.replace(' EOT ', ' '))) != 0): tmp1.append(true_response) tmp2.append(gen_response) tmp3.append(context) self.true_responses = tmp1 self.gen_responses = tmp2 self.contexts = tmp3 valid_data_count = len(self.contexts) average_len_in_contexts = sum([len(_response_tokenize(sentence)) for sentence in self.contexts]) / valid_data_count average_len_in_true_response = sum([len(_response_tokenize(sentence)) for sentence in self.true_responses]) / valid_data_count average_len_in_generated_response = sum([len(_response_tokenize(sentence)) for sentence in self.gen_responses]) / valid_data_count self.datamsg = [data_count, valid_data_count, average_len_in_contexts, average_len_in_true_response, average_len_in_generated_response] def _consine(self, v1, v2): """ Function:计算两个向量的余弦相似度 Return:余弦相似度 """ return np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2)) def get_dp_gan_metrics(self, mode='gen_response'): """ Function:计算所有true_responses、gen_responses的 token_gram、unigram、bigram、trigram、sent_gram的数量 Return:token_gram、unigram、bigram、trigram、sent_gram的数量 """ if mode == 'true_response': responses = self.true_responses else: responses = self.gen_responses token_gram = [] unigram = [] bigram = [] trigram = [] sent_gram = [] for response in responses: tokens = _response_tokenize(response) token_gram.extend(tokens) unigram.extend([element for element in ngrams(tokens, 1)]) bigram.extend([element for element in ngrams(tokens, 2)]) trigram.extend([element for element in ngrams(tokens, 3)]) sent_gram.append(response) return len(token_gram), len(set(unigram)), len(set(bigram)), \ len(set(trigram)), len(set(sent_gram)) def get_distinct(self, n, mode='gen_responses'): """ Function: 计算所有true_responses、gen_responses的ngrams的type-token ratio Return: ngrams-based type-token ratio """ ngrams_list = [] if mode == 'true_responses': responses = self.true_responses else: responses = self.gen_responses for response in responses: tokens = _response_tokenize(response) ngrams_list.extend([element for element in ngrams(tokens, n)]) if len(ngrams_list) == 0: return 0 else: return len(set(ngrams_list)) / len(ngrams_list) def get_batch_distinct(self, n, batch_size, mode='gen_responses'): """ Function: 计算每个batch的 true_responses、gen_responses的ngrams的type-token ratio Return: ngrams-based type-token ratio """ ngrams_list = [] if mode == 'true_responses': responses = self.true_responses else: responses = self.gen_responses batch_distinct = [] for idx, response in enumerate(responses): if idx and idx%batch_size == 0: if len(ngrams_list) == 0: batch_distinct.append(0) else: batch_distinct.append(len(set(ngrams_list)) / len(ngrams_list)) ngrams_list = [] tokens = _response_tokenize(response) ngrams_list.extend([element for element in ngrams(tokens, n)]) if len(batch_distinct) == 0: return 0 else: return sum(batch_distinct) / len(batch_distinct) def get_response_length(self): """ Reference: 1. paper : <NAME>,et al. A Deep Reinforcement Learning Chatbot """ response_lengths = [] for gen_response in self.gen_responses: response_lengths.append(len(_response_tokenize(gen_response))) if len(response_lengths) == 0: return 0 else: return sum(response_lengths) / len(response_lengths) def get_bleu(self, n_gram): """ Function: 计算所有true_responses、gen_responses的ngrams的bleu parameters: n_gram : calculate BLEU-n, calculate the cumulative 4-gram BLEU score, also called BLEU-4. The weights for the BLEU-4 are 1/4 (25%) or 0.25 for each of the 1-gram, 2-gram, 3-gram and 4-gram scores. Reference: 1. https://machinelearningmastery.com/calculate-bleu-score-for-text-python/ 2. https://cloud.tencent.com/developer/article/1042161 Return: bleu score BLEU-n """ weights = {1: (1.0, 0.0, 0.0, 0.0), 2: (1 / 2, 1 / 2, 0.0, 0.0), 3: (1 / 3, 1 / 3, 1 / 3, 0.0), 4: (1 / 4, 1 / 4, 1 / 4, 1 / 4)} total_score = [] for true_response, gen_response in zip(self.true_responses, self.gen_responses): score = sentence_bleu( [_response_tokenize(true_response)], _response_tokenize(gen_response), weights[n_gram], smoothing_function=SmoothingFunction().method7) total_score.append(score) if len(total_score) == 0: return 0 else: return sum(total_score) / len(total_score) def get_greedy_matching(self): """ Function: 计算所有true_responses、gen_responses的greedy_matching Return:greedy_matching """ model = self.word2vec total_cosine = [] for true_response, gen_response in zip(self.true_responses, self.gen_responses): true_response_token_wv = np.array([model[item] for item in _response_tokenize(true_response)]) gen_response_token_wv = np.array([model[item] for item in _response_tokenize(gen_response)]) true_gen_cosine = np.array([[self._consine(gen_token_vec, true_token_vec) for gen_token_vec in gen_response_token_wv] for true_token_vec in true_response_token_wv]) gen_true_cosine = np.array([[self._consine(true_token_vec, gen_token_vec) for true_token_vec in true_response_token_wv] for gen_token_vec in gen_response_token_wv]) true_gen_cosine = np.max(true_gen_cosine, 1) gen_true_cosine = np.max(gen_true_cosine, 1) cosine = (np.sum(true_gen_cosine) / len(true_gen_cosine) + np.sum(gen_true_cosine) / len( gen_true_cosine)) / 2 total_cosine.append(cosine) if len(total_cosine) == 0: return 0 else: return sum(total_cosine) / len(total_cosine) def get_embedding_average(self): model = self.word2vec total_cosine = [] for true_response, gen_response in zip(self.true_responses, self.gen_responses): true_response_token_wv = np.array([model[item] for item in _response_tokenize(true_response)]) gen_response_token_wv = np.array([model[item] for item in _response_tokenize(gen_response)]) true_response_sentence_wv = np.sum(true_response_token_wv, 0) gen_response_sentence_wv = np.sum(gen_response_token_wv, 0) true_response_sentence_wv = true_response_sentence_wv / np.linalg.norm(true_response_sentence_wv) gen_response_sentence_wv = gen_response_sentence_wv / np.linalg.norm(gen_response_sentence_wv) cosine = self._consine(true_response_sentence_wv, gen_response_sentence_wv) total_cosine.append(cosine) if len(total_cosine) == 0: return 0 else: return sum(total_cosine) / len(total_cosine) def get_vector_extrema(self): model = self.word2vec total_cosine = [] for true_response, gen_response in zip(self.true_responses, self.gen_responses): true_response_token_wv = np.array([model[item] for item in _response_tokenize(true_response)]) gen_response_token_wv = np.array([model[item] for item in _response_tokenize(gen_response)]) true_sent_max_vec = np.max(true_response_token_wv, 0) true_sent_min_vec = np.min(true_response_token_wv, 0) true_sent_vec = [] for max_dim, min_dim in zip(true_sent_max_vec, true_sent_min_vec): if max_dim >
np.abs(min_dim)
numpy.abs
from __future__ import print_function import numpy as np from scipy.io import FortranFile from scipy.interpolate import griddata import os import warnings np.seterr(all='warn') def progenitor_probability(density=None, sfr=None, mass=None, redshift=None): """ Return the progenitor fraction for input values. >>> progenitor_probability(redshift=0.4, mass=10.8) 0.266751184855 """ density = np.nan if density is None else density sfr = np.nan if sfr is None else sfr mass = np.nan if mass is None else mass redshift = np.nan if redshift is None else redshift values = [density, sfr, mass, redshift] if values.count(np.nan) > 3: raise ValueError('Incorrect number of arguments') # Read datacube f = FortranFile(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'fractions.dat')) dims = f.read_record(dtype=np.int32) data = f.read_record(dtype=np.float32) data_size = np.product(dims) n_galaxies = np.reshape(data[0:data_size], dims, order='F') n_spiral_progenitors = np.reshape(data[data_size:2*data_size], dims, order='F') bins = np.stack([np.reshape(f.read_record(dtype=np.float32), dims, order='F') for _ in range(dims.size)], axis=0) # Marginalise over dimensions that are not specified while np.nan in values: i = values.index(np.nan) dims = np.delete(dims, i) values.pop(i) weights = n_galaxies n_galaxies =
np.sum(n_galaxies, axis=i)
numpy.sum
import numpy as np import warnings import scipy.optimize as op pi = np.pi ##### __all__ = ["H", "D", "C", "Cmax"] def H(p, normalize_output=True): """ Calculates Shannon information (in nats) from a probability vector. Parameters ---------- p : array-like vector of probabilities; will be normalized if not done so already normalize_output: bool boolean flag to normalize output to range (0,1); default=True Returns ------- Hout : Shannon information """ # check probabilities normalization if np.isclose(np.sum(p),1.0) != True: warnings.warn('Input probability vector was not normalized...fixing automatically') p = p/
np.sum(p)
numpy.sum
def test_add(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[1, 2, 3]])) input2 = cle.push(np.asarray([[4, 5, 6]])) reference = cle.push(np.asarray([[5, 7, 9]])) output = input1 + input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_add_with_scalar(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[1, 2, 3]])) input2 = 5 reference = cle.push(np.asarray([[6, 7, 8]])) output = input1 + input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_add_with_np(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = np.asarray([[2, 2, 2]]) reference = cle.push(np.asarray([[6, 4, -6]])) output = input1 + input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_iadd(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[1, 2, 3]])) input2 = cle.push(np.asarray([[4, 5, 6]])) reference = cle.push(np.asarray([[5, 7, 9]])) input1 += input2 result = cle.pull(input1) print(result) assert np.array_equal(result, reference) def test_iadd_with_scalar(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[1, 2, 3]])) input2 = 5 reference = cle.push(np.asarray([[6, 7, 8]])) input1 += input2 result = cle.pull(input1) print(result) assert np.array_equal(result, reference) def test_iadd_with_np(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = np.asarray([[2, 2, 2]]) reference = cle.push(np.asarray([[6, 4, -6]])) input1 += input2 result = cle.pull(input1) print(result) assert np.array_equal(result, reference) def test_subtract(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, 3]])) input2 = cle.push(np.asarray([[1, 5, 6]])) reference = cle.push(np.asarray([[3, -3, -3]])) output = input1 - input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_subtract_with_scalar(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, 3]])) input2 = 5 reference = cle.push(np.asarray([[-1, -3, -2]])) output = input1 - input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_subtract_with_np(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, 3]])) input2 = np.asarray([[1, 5, 6]]) reference = cle.push(np.asarray([[3, -3, -3]])) output = input1 - input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_isubtract(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, 3]])) input2 = cle.push(np.asarray([[1, 5, 6]])) reference = cle.push(np.asarray([[3, -3, -3]])) input1 -= input2 result = cle.pull(input1) print(result) assert np.array_equal(result, reference) def test_isubtract_with_scalar(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, 3]])) input2 = 5 reference = cle.push(np.asarray([[-1, -3, -2]])) input1 -= input2 result = cle.pull(input1) print(result) assert np.array_equal(result, reference) def test_isubtract_with_np(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, 3]])) input2 = np.asarray([[1, 5, 6]]) reference = cle.push(np.asarray([[3, -3, -3]])) input1 -= input2 result = cle.pull(input1) print(result) assert np.array_equal(result, reference) def test_divide(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = cle.push(np.asarray([[2, 2, 2]])) reference = cle.push(np.asarray([[2, 1, -4]])) output = input1 / input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_divide_with_scalar(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = 2 reference = cle.push(np.asarray([[2, 1, -4]])) output = input1 / input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_divide_with_np(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = np.asarray([[2, 2, 2]]) reference = cle.push(np.asarray([[2, 1, -4]])) output = input1 / input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_idivide(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = cle.push(np.asarray([[2, 2, 2]])) reference = cle.push(np.asarray([[2, 1, -4]])) input1 /= input2 result = cle.pull(input1) print(result) assert np.array_equal(result, reference) def test_idivide_with_scalar(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = 2 reference = cle.push(np.asarray([[2, 1, -4]])) input1 /= input2 result = cle.pull(input1) print(result) assert np.array_equal(result, reference) def test_idivide_with_np(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = np.asarray([[2, 2, 2]]) reference = cle.push(np.asarray([[2, 1, -4]])) input1 /= input2 result = cle.pull(input1) print(result) assert np.array_equal(result, reference) def test_multiply(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = cle.push(np.asarray([[2, 2, 2]])) reference = cle.push(np.asarray([[8, 4, -16]])) output = input1 * input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_multiply_with_scalar(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = 2 reference = cle.push(np.asarray([[8, 4, -16]])) output = input1 * input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_multiply_with_np(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = np.asarray([[2, 2, 2]]) reference = cle.push(np.asarray([[8, 4, -16]])) output = input1 * input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_imultiply(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = cle.push(np.asarray([[2, 2, 2]])) reference = cle.push(np.asarray([[8, 4, -16]])) input1 *= input2 result = cle.pull(input1) print(result) assert np.array_equal(result, reference) def test_imultiply_with_scalar(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = 2 reference = cle.push(np.asarray([[8, 4, -16]])) input1 *= input2 result = cle.pull(input1) print(result) assert np.array_equal(result, reference) def test_imultiply_with_np(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = np.asarray([[2, 2, 2]]) reference = cle.push(np.asarray([[8, 4, -16]])) input1 *= input2 result = cle.pull(input1) print(result) assert np.array_equal(result, reference) def test_gt(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = cle.push(np.asarray([[2, 2, 2]])) reference = cle.push(np.asarray([[1, 0, 0]])) output = input1 > input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_gt_with_scalar(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = 2 reference = cle.push(np.asarray([[1, 0, 0]])) output = input1 > input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_gt_with_np(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = np.asarray([[2, 2, 2]]) reference = cle.push(np.asarray([[1, 0, 0]])) output = input1 > input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_ge(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = cle.push(np.asarray([[2, 2, 2]])) reference = cle.push(np.asarray([[1, 1, 0]])) output = input1 >= input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_ge_with_scalar(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = 2 reference = cle.push(np.asarray([[1, 1, 0]])) output = input1 >= input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_ge_with_np(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = np.asarray([[2, 2, 2]]) reference = cle.push(np.asarray([[1, 1, 0]])) output = input1 >= input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_lt(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = cle.push(np.asarray([[2, 2, 2]])) reference = cle.push(np.asarray([[0, 0, 1]])) output = input1 < input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_lt_with_scalar(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = 2 reference = cle.push(np.asarray([[0, 0, 1]])) output = input1 < input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_lt_with_np(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = np.asarray([[2, 2, 2]]) reference = cle.push(np.asarray([[0, 0, 1]])) output = input1 < input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_le(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = cle.push(np.asarray([[2, 2, 2]])) reference = cle.push(np.asarray([[0, 1, 1]])) output = input1 <= input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_le_with_scalar(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = 2 reference = cle.push(np.asarray([[0, 1, 1]])) output = input1 <= input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_le_with_np(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = np.asarray([[2, 2, 2]]) reference = cle.push(np.asarray([[0, 1, 1]])) output = input1 <= input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_eq(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = cle.push(np.asarray([[2, 2, 2]])) reference = cle.push(np.asarray([[0, 1, 0]])) output = input1 == input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_eq_with_scalar(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = 2 reference = cle.push(np.asarray([[0, 1, 0]])) output = input1 == input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_eq_with_np(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = np.asarray([[2, 2, 2]]) reference = cle.push(np.asarray([[0, 1, 0]])) output = input1 == input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_ne(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = cle.push(np.asarray([[2, 2, 2]])) reference = cle.push(np.asarray([[1, 0, 1]])) output = input1 != input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_ne_with_scalar(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = 2 reference = cle.push(np.asarray([[1, 0, 1]])) output = input1 != input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_ne_with_np(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) input2 = np.asarray([[2, 2, 2]]) reference = cle.push(np.asarray([[1, 0, 1]])) output = input1 != input2 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_pos(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) reference = cle.push(np.asarray([[4, 2, -8]])) output = +input1 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_neg(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(np.asarray([[4, 2, -8]])) reference = cle.push(np.asarray([[-4, -2, 8]])) output = -input1 result = cle.pull(output) print(result) assert np.array_equal(result, reference) def test_power(): import numpy as np import pyclesperanto_prototype as cle input1 = cle.push(
np.asarray([[4, 2, -8]])
numpy.asarray
# -*- coding: utf-8 -*- import datetime import numpy as np import pytest from ..association import Association, AssociationPair, AssociationSet, \ SingleTimeAssociation, TimeRangeAssociation from ..detection import Detection from ..time import TimeRange def test_association(): with pytest.raises(TypeError): Association() objects = {Detection(np.array([[1], [2]])), Detection(np.array([[3], [4]])), Detection(np.array([[5], [6]]))} assoc = Association(objects) assert assoc.objects == objects def test_associationpair(): with pytest.raises(TypeError): AssociationPair() objects = [Detection(np.array([[1], [2]])), Detection(np.array([[3], [4]])), Detection(
np.array([[5], [6]])
numpy.array
#equations for constraints import numpy as np from calcModuleTP import ATransformMatrixTHETA as A_Theta, link2index from calcModuleTP import ATransformMatrix as A_i def constraintEquation(r1A, r1B, r2B, r2C, r3C): constraintVector = np.zeros((6,1)) # Pin joint A constraintPinA = -r1A for i in range(np.size(constraintPinA)): # Equation 1-2 constraintVector[i] = constraintPinA[i] # Pin joint B constraintPinB = revolutJoint(r1B, r2B) for i in range(np.size(constraintPinB)): # Equation 3-4 constraintVector[i+2] = constraintPinB[i] # Pin joint C constraintPinC = revolutJoint(r2C, r3C) for i in range(np.size(constraintPinC)): # Equation 3-4 constraintVector[i+4] = constraintPinC[i] return constraintVector def jacobianMatrix(qi, u_bar_1A, u_bar_1B, u_bar_2B, u_bar_2C, u_bar_3C): genCoor =
np.size(qi)
numpy.size
from numpy import loadtxt import streamlit as st import numpy as np import pandas as pd import altair as alt n = 25 particle = ['NO2', 'O3', 'NO', 'CO', 'PM1', 'PM2.5', 'PM10'] def actual_vs_predictedpj(): select_model = st.sidebar.radio( "Choose Model ?", ('Xgboost', 'Randomforest', 'KNN', 'Linear Regression', 'Lasso')) select_particle = st.sidebar.radio( "Choose Particle ?", ('NO2', 'O3', 'NO', 'CO', 'PM2.5', 'PM10')) if select_particle == 'NO2': loc = 0 if select_particle == 'O3': loc = 1 if select_particle == 'NO': loc = 2 if select_particle == 'CO': loc = 3 # if select_particle == 'PM1': # loc = 4 if select_particle == 'PM2.5': loc = 4 if select_particle == 'PM10': loc = 5 if select_model == 'Xgboost': get_xgboost(loc) if select_model == 'KNN': get_knn(loc) if select_model == 'Randomforest': get_randomforest(loc) if select_model == 'Linear Regression': get_linear_regression(loc) if select_model == 'Lasso': get_lasso(loc) def get_knn(loc): knn_y_test = loadtxt('ModelsPJ/knn_y_test.csv', delimiter=',') knn_y_test_pred = loadtxt('ModelsPJ/knn_y_test_pred.csv', delimiter=',') l1 = list() l1.append(['Y_Actual']*n) l1.append(np.round(knn_y_test[:n, loc], 9)) l1.append(list(range(1, n+1))) temp1 = np.array(l1).transpose() x1 = list(range(1, n+1)) chart_data1 = pd.DataFrame(temp1, x1, columns=['Data', particle[loc], 'x']) l2 = list() l2.append(['Y_Predicted']*n) l2.append(np.round(knn_y_test_pred[:n, loc], 9)) l2.append(list(range(1, n+1))) temp2 = np.array(l2).transpose() x2 = list(range(n+1, 2*n+1)) chart_data2 = pd.DataFrame(temp2, x2, columns=['Data', particle[loc], 'x']) frames = [chart_data1, chart_data2] results = pd.concat(frames) chart = alt.Chart(results).mark_line().encode( x='x', y=particle[loc], color='Data', strokeDash='Data', ).properties( title='Plot of Actual vs Predicted for KNN model for ' + particle[loc]+' particle' ) st.altair_chart(chart, use_container_width=True) def get_xgboost(loc): xgboost_y_test = loadtxt('ModelsPJ/xgboost_y_test.csv', delimiter=',') xgboost_y_test_pred = loadtxt( 'ModelsPJ/xgboost_y_test_pred.csv', delimiter=',') l1 = list() l1.append(['Y_Actual']*n) l1.append(np.round(xgboost_y_test[:n, loc], 9)) l1.append(list(range(1, n+1))) temp1 = np.array(l1).transpose() x1 = list(range(1, n+1)) chart_data1 = pd.DataFrame(temp1, x1, columns=['Data', particle[loc], 'X']) l2 = list() l2.append(['Y_Predicted']*n) l2.append(
np.round(xgboost_y_test_pred[:n, loc], 9)
numpy.round
""" Helper methods for loading and parsing KITTI data. Author: <NAME>, <NAME> Date: September 2017/2018 https://github.com/kuixu/kitti_object_vis """ import numpy as np cbox = np.array([[0,70],[-40,40],[-2.5,1]]) class Calibration(object): ''' Calibration matrices and utils 3d XYZ in <label>.txt are in rect camera coord. 2d box xy are in image2 coord Points in <lidar>.bin are in Velodyne coord. y_image2 = P^2_rect * x_rect y_image2 = P^2_rect * R0_rect * Tr_velo_to_cam * x_velo x_ref = Tr_velo_to_cam * x_velo x_rect = R0_rect * x_ref P^2_rect = [f^2_u, 0, c^2_u, -f^2_u b^2_x; 0, f^2_v, c^2_v, -f^2_v b^2_y; 0, 0, 1, 0] = K * [1|t] image2 coord: ----> x-axis (u) | | v y-axis (v) velodyne coord: front x, left y, up z rect/ref camera coord: right x, down y, front z Ref (KITTI paper): http://www.cvlibs.net/publications/Geiger2013IJRR.pdf TODO(rqi): do matrix multiplication only once for each projection. ''' def __init__(self, calib_filepath, from_video=False): calibs = self.read_calib_file(calib_filepath) # Projection matrix from rect camera coord to image2 coord self.P = calibs['P2'] self.P = np.reshape(self.P, [3,4]) # Rigid transform from Velodyne coord to reference camera coord self.V2C = calibs['Tr_velo_to_cam'] self.V2C = np.reshape(self.V2C, [3,4]) self.C2V = inverse_rigid_trans(self.V2C) # Rotation from reference camera coord to rect camera coord self.R0 = calibs['R0_rect'] self.R0 =
np.reshape(self.R0,[3,3])
numpy.reshape
from astropy.cosmology import Planck15 from multiprocessing import Lock, Pool import numpy as np import pandas as pd import pyarrow as pa import pyarrow.parquet as pq from scipy.spatial import cKDTree class PairMaker(object): """Class for computing distance weighted correlations of a reference sample with known redshift against a sample with unknown redshifts. Parameters ---------- r_mins : `list` of `float`s List of bin edge minimums in Mpc. r_maxes : `list` of `float`s List of bin edge maximums in Mpc. z_min : `float` Minimum redshift of the reference sample to consider. z_max : `float` Maximum redshift of the reference sample to consider. weight_power : `float` Expected power-law slope of the projected correlation function. Used for signal matched weighting. distance_metric : `astropy.cosmology.LambdaCDM.<distance>` Cosmological distance metric to use for all calculations. Should be either comoving_distance or angular_diameter_distance. Defaults to the Planck15 cosmology and comoving metric. output_pairs : `string` Name of a directory to write raw pair counts and distances to. Spawns a multiprocessing child task to write out data. n_write_proc : `int` If an output file name is specified, this sets the number of subprocesses to spawn to write the data to disk. n_write_clean_up : `int` If an output file name is specified, this sets the number reference objects to process before cleaning up the subprocess queue. Controls the amount of memory on the main processes. """ def __init__(self, r_mins, r_maxes, z_min=0.01, z_max=5.00, weight_power=-0.8, distance_metric=None, output_pairs=None, n_write_proc=2, n_write_clean_up=10000, n_z_bins=64): self.r_mins = r_mins self.r_maxes = r_maxes self.r_min =
np.min(r_mins)
numpy.min
import sys import os sys.path.insert(0, os.path.abspath('..\\diffpy')) import numpy as np import pandas as pd from scipy.optimize import curve_fit from scipy.ndimage.interpolation import rotate from scipy.spatial import ConvexHull import msds as msds def anomalous(x, D, alpha, dt): # The anomalous diffusion model return 4*D*(x*dt)**alpha def anomModels(MSD, dt, skips=1): # Calculates the anomalous diffusion model parameters for a single particle # from its MSD profile over multiple timespans # By default, fits the model to all possible MSD profiles of at least 10 frames def anom(x, D, alpha): return anomalous(x, D, alpha, dt=dt) steps = MSD.shape[0] + 1 N = np.linspace(1, steps-1, steps-1) alphas = np.zeros(steps-1) Ds =
np.zeros(steps-1)
numpy.zeros
import numpy as np from abc import ABC, abstractmethod from pathlib import Path import subprocess import numpy.ma as ma import scipy.constants as const from multiprocessing import Pool from scipy.interpolate import interp1d from dans_pymodules import Vector2D import matplotlib.pyplot as plt # from scipy import meshgrid from scipy.special import iv as bessel1 from scipy.optimize import root # import pickle # import scipy.constants as const # import numpy as np # import platform # import matplotlib.pyplot as plt # import gc import datetime import time import copy import os import sys import shutil from matplotlib.patches import Arc as Arc load_previous = False # Check if we can connect to a display, if not disable all plotting and windowed stuff (like gmsh) # TODO: This does not remotely cover all cases! if "DISPLAY" in os.environ.keys(): x11disp = True else: x11disp = False # --- Try importing BEMPP HAVE_BEMPP = False try: import bempp.api from bempp.api.shapes.shapes import __generate_grid_from_geo_string as generate_from_string HAVE_BEMPP = True except ImportError: print("Couldn't import BEMPP, no meshing or BEM field calculation will be possible.") bempp = None generate_from_string = None # --- Try importing mpi4py, if it fails, we fall back to single processor try: from mpi4py import MPI COMM = MPI.COMM_WORLD RANK = COMM.Get_rank() SIZE = COMM.Get_size() HOST = MPI.Get_processor_name() print("Process {} of {} on host {} started!".format(RANK + 1, SIZE, HOST)) sys.stdout.flush() except ImportError: MPI = None COMM = None RANK = 0 SIZE = 1 import socket HOST = socket.gethostname() print("Could not import mpi4py, falling back to single core (and python multiprocessing in some instances)!") # --- Try importing pythonocc-core HAVE_OCC = False try: from OCC.Extend.DataExchange import read_stl_file from OCC.Display.SimpleGui import init_display from OCC.Core.BRepPrimAPI import BRepPrimAPI_MakeBox, BRepPrimAPI_MakeTorus, BRepPrimAPI_MakeSweep from OCC.Core.BRepTools import breptools_Write from OCC.Core.BRepBndLib import brepbndlib_Add from OCC.Core.Bnd import Bnd_Box from OCC.Core.gp import gp_Pnt, gp_Pnt2d from OCC.Core.BRepClass3d import BRepClass3d_SolidClassifier from OCC.Core.TopAbs import TopAbs_ON, TopAbs_OUT, TopAbs_IN from OCC.Core.GeomAPI import GeomAPI_Interpolate, GeomAPI_PointsToBSpline from OCC.Core.Geom import Geom_BSplineCurve from OCC.Core.Geom2d import Geom2d_BSplineCurve from OCC.Core.TColgp import TColgp_HArray1OfPnt, TColgp_Array1OfPnt from OCC.Core.TColStd import TColStd_Array1OfInteger, TColStd_Array1OfReal from OCC.Core.GeomAbs import GeomAbs_C1, GeomAbs_C2, GeomAbs_G1 from OCC.Core.Geom2dAPI import Geom2dAPI_Interpolate, Geom2dAPI_PointsToBSpline from OCC.Core.TColgp import TColgp_HArray1OfPnt2d, TColgp_Array1OfPnt2d from OCCUtils.Common import * from py_electrodes import ElectrodeObject HAVE_OCC = True except ImportError: ElectrodeObject = None print("Something went wrong during OCC import. No CAD support possible!") USE_MULTIPROC = True # In case we are not using mpi or only using 1 processor, fall back on multiprocessing GMSH_EXE = "/home/daniel/src/gmsh-4.0.6-Linux64/bin/gmsh" # GMSH_EXE = "E:/gmsh4/gmsh.exe" HAVE_TEMP_FOLDER = False np.set_printoptions(threshold=10000) HAVE_GMSH = True # Quick test if gmsh path is correct if not Path(GMSH_EXE).is_file(): print("Gmsh path seems to be wrong! No meshing will be possible!") HAVE_GMSH = False # For now, everything involving the pymodules with be done on master proc (RANK 0) if RANK == 0: from dans_pymodules import * colors = MyColors() else: colors = None decimals = 12 __author__ = "<NAME>, <NAME>" __doc__ = """Calculate RFQ fields from loaded cell parameters""" # Initialize some global constants amu = const.value("atomic mass constant energy equivalent in MeV") echarge = const.value("elementary charge") clight = const.value("speed of light in vacuum") # Define the axis directions and vane rotations: X = 0 Y = 1 Z = 2 XYZ = range(3) AXES = {"X": 0, "Y": 1, "Z": 2} rot_map = {"yp": 0.0, "ym": 180.0, "xp": 270.0, "xm": 90.0} class Polygon2D(object): """ Simple class to handle polygon operations such as point in polygon or orientation of rotation (cw or ccw), area, etc. """ def add_point(self, p=None): """ Append a point to the polygon """ if p is not None: if isinstance(p, tuple) and len(p) == 2: self.poly.append(p) else: print("Error in add_point of Polygon: p is not a 2-tuple!") else: print("Error in add_point of Polygon: No p given!") return 0 def add_polygon(self, poly=None): """ Append a polygon object to the end of this polygon """ if poly is not None: if isinstance(poly, Polygon2D): self.poly.extend(poly.poly) # if isinstance(poly.poly, list) and len(poly.poly) > 0: # # if isinstance(poly.poly[0], tuple) and len(poly.poly[0]) == 2: # self.poly.extend(poly.poly) return 0 def area(self): """ Calculates the area of the polygon. only works if there are no crossings Taken from http://paulbourke.net, algorithm written by <NAME>, 1998 If area is positive -> polygon is given clockwise If area is negative -> polygon is given counter clockwise """ area = 0 poly = self.poly npts = len(poly) j = npts - 1 i = 0 for _ in poly: p1 = poly[i] p2 = poly[j] area += (p1[0] * p2[1]) area -= p1[1] * p2[0] j = i i += 1 area /= 2 return area def centroid(self): """ Calculate the centroid of the polygon Taken from http://paulbourke.net, algorithm written by <NAME>, 1998 """ poly = self.poly npts = len(poly) x = 0 y = 0 j = npts - 1 i = 0 for _ in poly: p1 = poly[i] p2 = poly[j] f = p1[0] * p2[1] - p2[0] * p1[1] x += (p1[0] + p2[0]) * f y += (p1[1] + p2[1]) * f j = i i += 1 f = self.area() * 6 return x / f, y / f def clockwise(self): """ Returns True if the polygon points are ordered clockwise If area is positive -> polygon is given clockwise If area is negative -> polygon is given counter clockwise """ if self.area() > 0: return True else: return False def closed(self): """ Checks whether the polygon is closed (i.e first point == last point) """ if self.poly[0] == self.poly[-1]: return True else: return False def nvertices(self): """ Returns the number of vertices in the polygon """ return len(self.poly) def point_in_poly(self, p=None): """ Check if a point p (tuple of x,y) is inside the polygon This is called the "ray casting method": If a ray cast from p crosses the polygon an even number of times, it's outside, otherwise inside From: http://www.ariel.com.au/a/python-point-int-poly.html Note: Points directly on the edge or identical with a vertex are not considered "inside" the polygon! """ if p is None: return None poly = self.poly x = p[0] y = p[1] n = len(poly) inside = False p1x, p1y = poly[0] for i in range(n + 1): p2x, p2y = poly[i % n] if y > min(p1y, p2y): if y <= max(p1y, p2y): if x <= max(p1x, p2x): if p1y != p2y: xinters = (y - p1y) * (p2x - p1x) / (p2y - p1y) + p1x if p1x == p2x or x <= xinters: inside = not inside p1x, p1y = p2x, p2y return inside def remove_last(self): """ Remove the last tuple in the ploygon """ self.poly.pop(-1) return 0 def reverse(self): """ Reverses the ordering of the polygon (from cw to ccw or vice versa) """ temp_poly = [] nv = self.nvertices() for i in range(self.nvertices() - 1, -1, -1): temp_poly.append(self.poly[i]) self.poly = temp_poly return temp_poly def rotate(self, index): """ rotates the polygon, so that the point with index 'index' before now has index 0 """ if index > self.nvertices() - 1: return 1 for i in range(index): self.poly.append(self.poly.pop(0)) return 0 def __init__(self, poly=None): """ construct a polygon object If poly is not specified, an empty polygon is created if poly is specified, it has to be a list of 2-tuples! """ self.poly = [] if poly is not None: if isinstance(poly, list) and len(poly) > 0: if isinstance(poly[0], tuple) and len(poly[0]) == 2: self.poly = poly def __getitem__(self, index): return self.poly[index] def __setitem__(self, index, value): if isinstance(value, tuple) and len(value) == 2: self.poly[index] = value class PyRFQCell(object): def __init__(self, cell_type, prev_cell=None, next_cell=None, debug=False, **kwargs): """ :param cell_type: STA: Start cell without length (necessary at beginning of RMS if there are no previous cells) RMS: Radial Matching Section. NCS: Normal Cell. A regular RFQ cell TCS: Transition Cell. DCS: Drift Cell. No modulation. TRC: Trapezoidal cell (experimental, for re-bunching only!). :param prev_cell: :param next_cell: :param debug: Keyword Arguments (mostly from Parmteq Output File): V: Intervane voltage in V Wsyn: Energy of the synchronous particle in MeV Sig0T: Transverse zero-current phase advance in degrees per period Sig0L: Longitudinal zero-current phase advance in degrees per period A10: Acceleration term [first theta-independent term in expansion] Phi: Synchronous phase in degrees a: Minimum radial aperture in m m: Modulation (dimensionless) B: Focusing parameter (dimensionless) B = q V lambda^2/(m c^2 r0^2) L: Cell length in cm A0: Quadrupole term [first z-independent term in expansion] RFdef: RF defocusing term Oct: Octupole term A1: Duodecapole term [second z-independent term in expansion] """ assert cell_type in ["start", "rms", "regular", "transition", "transition_auto", "drift", "trapezoidal"], \ "cell_type not recognized!" self._type = cell_type self._params = {"voltage": None, "Wsyn": None, "Sig0T": None, "Sig0L": None, "A10": None, "Phi": None, "a": None, "m": None, "B": None, "L": None, "A0": None, "RFdef": None, "Oct": None, "A1": None, "flip_z": False, "shift_cell_no": False, "fillet_radius": None } self._prev_cell = prev_cell self._next_cell = next_cell self._debug = debug for key, item in self._params.items(): if key in kwargs.keys(): self._params[key] = kwargs[key] if self.initialize() != 0: print("Cell failed self-check! Aborting.") exit(1) self._profile_itp = None # Interpolation of the cell profile def __str__(self): return "Type: '{}', Aperture: {:.6f}, Modulation: {:.4f}, " \ "Length: {:.6f}, flip: {}, shift: {}".format(self._type, self._params["a"], self._params["m"], self._params["L"], self._params["flip_z"], self._params["shift_cell_no"]) @property def length(self): return self._params["L"] @property def aperture(self): return self._params["a"] @property def avg_radius(self): return 0.5 * (self._params["a"] + self._params["m"] * self._params["a"]) @property def cell_type(self): return self._type @property def modulation(self): return self._params["m"] @property def prev_cell(self): return self._prev_cell @property def next_cell(self): return self._next_cell def calculate_transition_cell_length(self): le = self._params["L"] m = self._params["m"] a = self._params["a"] r0 = self.avg_radius k = np.pi / np.sqrt(3.0) / le def eta(kk): return bessel1(0.0, kk * r0) / (3.0 * bessel1(0.0, 3.0 * kk * r0)) def func(kk): return (bessel1(0.0, kk * m * a) + eta(kk) * bessel1(0.0, 3.0 * kk * m * a)) / \ (bessel1(0.0, kk * a) + eta(kk) * bessel1(0.0, 3.0 * kk * a)) \ + ((m * a / r0) ** 2.0 - 1.0) / ((a / r0) ** 2.0 - 1.0) k = root(func, k).x[0] tcs_length = np.pi / 2.0 / k print("Transition cell has length {} which is {} * cell length, ".format(tcs_length, tcs_length / le), end="") assert tcs_length <= le, "Numerical determination of transition cell length " \ "yielded value larger than cell length parameter!" if tcs_length > le: print("the remainder will be filled with a drift.") return tcs_length def initialize(self): # TODO: Refactor this maybe? seems overly complicated... # Here we check the different cell types for consistency and minimum necessary parameters if self._type in ["transition", "transition_auto"]: assert self.prev_cell is not None, "A transition cell needs a preceeeding cell." assert self.prev_cell.cell_type == "regular", "Currently a transition cell must follow a regular cell." # Aperture: assert self._params["a"] is not None, "No aperture given for {} cell".format(self._type) if self._params["a"] == 'auto': assert self._type in ["drift", "trapezoidal", "transition", "transition_auto"], \ "Unsupported cell type '{}' for auto-aperture".format(self._type) assert self.prev_cell is not None, "Need a preceeding cell for auto aperture!" if self.prev_cell.cell_type in ["transition", "transition_auto"]: self._params["a"] = self.prev_cell.avg_radius else: self._params["a"] = self.prev_cell.aperture self._params["a"] = np.round(self._params["a"], decimals) # Modulation: if self._type in ["start", "rms", "drift"]: self._params["m"] = 1.0 assert self._params["m"] is not None, "No modulation given for {} cell".format(self._type) if self._params["m"] == 'auto': assert self._type in ["transition", "transition_auto"], \ "Only transition cell can have 'auto' modulation at the moment!" self._params["m"] = self.prev_cell.modulation self._params["m"] = np.round(self._params["m"], decimals) # Length: if self._type == "start": self._params["L"] = 0.0 assert self._params["L"] is not None, "No length given for {} cell".format(self._type) if self._params["L"] == "auto": assert self._type == "transition_auto", "Only transition_auto cells allow auto-length!" self._params["L"] = self.prev_cell.length # use preceeding cell length L for calculation of L' self._params["L"] = self.calculate_transition_cell_length() self._params["L"] = np.round(self._params["L"], decimals) if self._type == "trapezoidal": assert self._params["fillet_radius"] is not None, "For 'TRC' cell a fillet radius must be given!" return 0 def set_prev_cell(self, prev_cell): assert isinstance(prev_cell, PyRFQCell), "You are trying to set a PyRFQCell with a non-cell object!" self._prev_cell = prev_cell def set_next_cell(self, next_cell): assert isinstance(next_cell, PyRFQCell), "You are trying to set a PyRFQCell with a non-cell object!" self._next_cell = next_cell def calculate_profile_rms(self, vane_type, cell_no): # Assemble RMS section by finding adjacent RMS cells and get their apertures cc = self pc = cc.prev_cell rms_cells = [cc] shift = 0.0 while pc is not None and pc.cell_type == "rms": rms_cells = [pc] + rms_cells shift += pc.length cc = pc pc = cc.prev_cell cc = self nc = cc._next_cell while nc is not None and nc.cell_type == "rms": rms_cells = rms_cells + [nc] cc = nc nc = cc.next_cell # Check for starting cell assert rms_cells[0].prev_cell is not None, "Cannot assemble RMS section without a preceding cell! " \ "At the beginning ofthe RFQ consider using a start (STA) cell." a = [0.5 * rms_cells[0].prev_cell.aperture * (1.0 + rms_cells[0].prev_cell.modulation)] z = [0.0] for _cell in rms_cells: a.append(_cell.aperture) z.append(z[-1] + _cell.length) self._profile_itp = interp1d(np.array(z) - shift, np.array(a), kind='cubic') return 0 def calculate_profile_transition(self, vane_type, cell_no): le = self._params["L"] m = self._params["m"] a = self._params["a"] k = np.pi / np.sqrt(3.0) / le # Initial guess r0 = 0.5 * (a + m * a) if self.cell_type == "transition_auto": tcl = le else: tcl = self.calculate_transition_cell_length() z = np.linspace(0.0, le, 200) idx = np.where(z <= tcl) vane =
np.ones(z.shape)
numpy.ones
""" test_distance.py Tests distance module. Copyright 2018 Spectre Team Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest from unittest.mock import patch import numpy as np import spdivik.distance as dist class IntradistanceCall(NotImplementedError): pass class InterdistanceCall(NotImplementedError): pass class DummyDistanceMetric(dist.DistanceMetric): def _intradistance(self, *_): raise IntradistanceCall(self._intradistance.__name__) def _interdistance(self, *_): raise InterdistanceCall(self._interdistance.__name__) # noinspection PyCallingNonCallable class DistanceMetricTest(unittest.TestCase): def setUp(self): self.metric = DummyDistanceMetric() self.first = np.array([[1], [2], [3]]) self.second = np.array([[4], [5]]) def test_throws_when_input_is_not_an_array(self): with self.assertRaises(ValueError): self.metric([[1]], np.array([[1]])) with self.assertRaises(ValueError): self.metric(np.array([[1]]), [[1]]) def test_throws_when_input_is_not_2D(self): with self.assertRaises(ValueError): self.metric(np.array([1]), np.array([[1]])) with self.assertRaises(ValueError): self.metric(np.array([[1]]),
np.array([1])
numpy.array
import numpy as np import matplotlib as mpl mpl.use("agg", warn=False) # noqa import matplotlib.pyplot as plt import seaborn as sns import sklearn.metrics.pairwise import scipy.cluster.hierarchy as sch import scipy.sparse as spsp import scedar.eda as eda import pytest class TestSampleDistanceMatrix(object): """docstring for TestSampleDistanceMatrix""" x_3x2 = [[0, 0], [1, 1], [2, 2]] x_2x4_arr = np.array([[0, 1, 2, 3], [1, 2, 0, 6]]) def test_valid_init(self): sdm = eda.SampleDistanceMatrix(self.x_3x2, metric='euclidean') dist_mat = np.array([[0, np.sqrt(2), np.sqrt(8)], [np.sqrt(2), 0, np.sqrt(2)], [np.sqrt(8), np.sqrt(2), 0]]) np.testing.assert_allclose(sdm.d, dist_mat) sdm2 = eda.SampleDistanceMatrix( self.x_2x4_arr, metric='euclidean', nprocs=5) sdm2_d1 = np.sqrt( np.power(self.x_2x4_arr[0] - self.x_2x4_arr[1], 2).sum()) np.testing.assert_allclose(sdm2.d, np.array([[0, sdm2_d1], [sdm2_d1, 0]])) sdm3 = eda.SampleDistanceMatrix( self.x_2x4_arr, metric='correlation', nprocs=5) sdm3_corr_d = (1 - np.dot( self.x_2x4_arr[0] - self.x_2x4_arr[0].mean(), self.x_2x4_arr[1] - self.x_2x4_arr[1].mean()) / (np.linalg.norm(self.x_2x4_arr[0] - self.x_2x4_arr[0].mean(), 2) * np.linalg.norm(self.x_2x4_arr[1] - self.x_2x4_arr[1].mean(), 2))) np.testing.assert_allclose(sdm3.d, np.array([[0, 0.3618551], [0.3618551, 0]])) np.testing.assert_allclose(sdm3.d, np.array([[0, sdm3_corr_d], [sdm3_corr_d, 0]])) sdm4 = eda.SampleDistanceMatrix(self.x_3x2, dist_mat) sdm5 = eda.SampleDistanceMatrix( self.x_3x2, dist_mat, metric='euclidean') sdm5 = eda.SampleDistanceMatrix([[1, 2]], metric='euclidean') assert sdm5.tsne(n_iter=250).shape == (1, 2) def test_empty_init(self): with pytest.raises(ValueError) as excinfo: eda.SampleDistanceMatrix(np.empty(0), metric='euclidean') sdm = eda.SampleDistanceMatrix(np.empty((0, 0)), metric='euclidean') assert len(sdm.sids) == 0 assert len(sdm.fids) == 0 assert sdm._x.shape == (0, 0) assert sdm._d.shape == (0, 0) assert sdm._col_sorted_d.shape == (0, 0) assert sdm._col_argsorted_d.shape == (0, 0) assert sdm.tsne(n_iter=250).shape == (0, 0) def test_init_wrong_metric(self): # when d is None, metric cannot be precomputed with pytest.raises(Exception) as excinfo: eda.SampleDistanceMatrix(self.x_3x2, metric='precomputed') # lazy load d eda.SampleDistanceMatrix(self.x_3x2, metric='unknown') with pytest.raises(Exception) as excinfo: eda.SampleDistanceMatrix(self.x_3x2, metric='unknown').d eda.SampleDistanceMatrix(self.x_3x2, metric=1) with pytest.raises(Exception) as excinfo: eda.SampleDistanceMatrix(self.x_3x2, metric=1).d eda.SampleDistanceMatrix(self.x_3x2, metric=1.) with pytest.raises(Exception) as excinfo: eda.SampleDistanceMatrix(self.x_3x2, metric=1.).d eda.SampleDistanceMatrix(self.x_3x2, metric=('euclidean', )) with pytest.raises(Exception) as excinfo: eda.SampleDistanceMatrix(self.x_3x2, metric=('euclidean', )).d eda.SampleDistanceMatrix(self.x_3x2, metric=['euclidean']) with pytest.raises(Exception) as excinfo: eda.SampleDistanceMatrix(self.x_3x2, metric=['euclidean']).d def test_init_wrong_d_type(self): d_3x3 = np.array([[0, np.sqrt(2), np.sqrt(8)], ['1a1', 0, np.sqrt(2)], [np.sqrt(8), np.sqrt(2), 0]]) with pytest.raises(Exception) as excinfo: eda.SampleDistanceMatrix(self.x_3x2, d_3x3) def test_init_wrong_d_size(self): d_2x2 = np.array([[0, np.sqrt(2)], [np.sqrt(2), 0]]) d_2x2 = np.array([[0, np.sqrt(2)], [np.sqrt(2), 0]]) d_1x6 = np.arange(6) d_3x2 = np.array([[0, np.sqrt(2)], [np.sqrt(2), 0], [1, 2]]) with pytest.raises(Exception) as excinfo: eda.SampleDistanceMatrix(self.x_3x2, d_2x2) with pytest.raises(Exception) as excinfo: eda.SampleDistanceMatrix(self.x_3x2, d_3x2) with pytest.raises(Exception) as excinfo: eda.SampleDistanceMatrix(self.x_3x2, d_3x2) with pytest.raises(Exception) as excinfo: eda.SampleDistanceMatrix(self.x_3x2, d_1x6) def test_to_classified(self): sdm = eda.SampleDistanceMatrix(np.arange(100).reshape(50, -1), metric='euclidean') # initialize cached results sdm.tsne_plot() sdm.pca_plot() sdm.s_knn_graph(2) sdm.s_ith_nn_d(1) sdm.s_ith_nn_ind(1) labs = [0]*10 + [1]*20 + [0]*10 + [2]*10 slcs = sdm.to_classified(labs) assert slcs.labs == labs assert slcs._lazy_load_d is sdm._lazy_load_d assert slcs._lazy_load_d is not None assert slcs._metric == sdm._metric assert slcs._nprocs == sdm._nprocs assert slcs.sids == sdm.sids assert slcs.fids == sdm.fids # tsne assert slcs._tsne_lut is not None assert slcs._tsne_lut == sdm._tsne_lut assert slcs._lazy_load_last_tsne is not None assert slcs._lazy_load_last_tsne is sdm._lazy_load_last_tsne # knn assert slcs._lazy_load_col_sorted_d is not None assert slcs._lazy_load_col_sorted_d is sdm._lazy_load_col_sorted_d assert slcs._lazy_load_col_argsorted_d is not None assert (slcs._lazy_load_col_argsorted_d is sdm._lazy_load_col_argsorted_d) assert slcs._knn_ng_lut is not None assert slcs._knn_ng_lut == sdm._knn_ng_lut # pca assert slcs._pca_n_components is not None assert slcs._lazy_load_skd_pca is not None assert slcs._lazy_load_pca_x is not None assert slcs._pca_n_components == sdm._pca_n_components assert slcs._lazy_load_skd_pca is sdm._lazy_load_skd_pca assert slcs._lazy_load_pca_x is sdm._lazy_load_pca_x def test_sort_x_by_d(self): x1 = np.array([[0, 5, 30, 10], [1, 5, 30, 10], [0, 5, 33, 10], [2, 5, 30, 7], [2, 5, 30, 9]]) x2 = x1.copy() opt_inds = eda.HClustTree.sort_x_by_d( x=x2.T, metric='euclidean', optimal_ordering=True) assert opt_inds == [2, 3, 1, 0] np.testing.assert_equal(x1, x2) x3 = np.array([[0, 0, 30, 10], [1, 2, 30, 10], [0, 3, 33, 10], [2, 4, 30, 7], [2, 5, 30, 9]]) x4 = x3.copy() opt_inds = eda.HClustTree.sort_x_by_d( x=x4.T, metric='euclidean', optimal_ordering=True) assert opt_inds == [2, 3, 1, 0] np.testing.assert_equal(x3, x4) def test_sort_features(self): x = np.array([[0, 2, 30, 10], [1, 2, 30, 10], [0, 3, 33, 10], [2, 5, 30, 7], [2, 5, 30, 9]]) sdm = eda.SampleDistanceMatrix( x, metric='euclidean') sdm2 = eda.SampleDistanceMatrix( x, metric='euclidean') sdm2.sort_features(fdist_metric='euclidean', optimal_ordering=True) assert sdm2.fids == [2, 3, 1, 0] def test_get_tsne_kv(self): tmet = 'euclidean' sdm = eda.SampleDistanceMatrix(self.x_3x2, metric=tmet) assert sdm.get_tsne_kv(1) is None assert sdm.get_tsne_kv(1) is None assert sdm.get_tsne_kv(0) is None assert sdm.get_tsne_kv(2) is None def test_get_tsne_kv_wrong_args(self): tmet = 'euclidean' sdm = eda.SampleDistanceMatrix(self.x_3x2, metric=tmet) with pytest.raises(ValueError) as excinfo: sdm.get_tsne_kv([1, 2, 3]) with pytest.raises(ValueError) as excinfo: sdm.get_tsne_kv({1: 2}) def test_put_tsne_wrong_args(self): tmet = 'euclidean' sdm = eda.SampleDistanceMatrix(self.x_3x2, metric=tmet) with pytest.raises(ValueError) as excinfo: sdm.put_tsne(1, [1, 2, 3]) with pytest.raises(ValueError) as excinfo: sdm.put_tsne({1: 2}, [1, 2, 3]) def test_tsne(self): tmet = 'euclidean' tsne_kwargs = {'metric': tmet, 'n_iter': 250, 'random_state': 123} ref_tsne = eda.tsne(self.x_3x2, **tsne_kwargs) sdm = eda.SampleDistanceMatrix(self.x_3x2, metric=tmet) assert sdm.tsne_lut == {} tsne1 = sdm.tsne(n_iter=250, random_state=123) np.testing.assert_allclose(ref_tsne, tsne1) np.testing.assert_allclose(ref_tsne, sdm._last_tsne) assert tsne1.shape == (3, 2) assert len(sdm.tsne_lut) == 1 tsne2 = sdm.tsne(store_res=False, **tsne_kwargs) np.testing.assert_allclose(ref_tsne, tsne2) assert len(sdm.tsne_lut) == 1 with pytest.raises(Exception) as excinfo: wrong_metric_kwargs = tsne_kwargs.copy() wrong_metric_kwargs['metric'] = 'correlation' sdm.tsne(**wrong_metric_kwargs) assert len(sdm.tsne_lut) == 1 tsne3 = sdm.tsne(store_res=True, **tsne_kwargs) np.testing.assert_allclose(ref_tsne, tsne3) # (param, ind) as key, so same params get an extra entry. assert len(sdm.tsne_lut) == 2 np.testing.assert_allclose(tsne1, sdm.get_tsne_kv(1)[1]) np.testing.assert_allclose(tsne3, sdm.get_tsne_kv(2)[1]) assert tsne1 is not sdm.get_tsne_kv(1)[1] assert tsne3 is not sdm.get_tsne_kv(2)[1] tsne4 = sdm.tsne(store_res=True, n_iter=250, random_state=123) np.testing.assert_allclose(ref_tsne, tsne4) np.testing.assert_allclose(sdm.get_tsne_kv(3)[1], tsne4) assert len(sdm.tsne_lut) == 3 tsne5 = sdm.tsne(store_res=True, n_iter=251, random_state=123) tsne6 = sdm.tsne(store_res=True, n_iter=251, random_state=123) np.testing.assert_allclose(tsne6, tsne5) np.testing.assert_allclose(tsne5, sdm.get_tsne_kv(4)[1]) np.testing.assert_allclose(tsne6, sdm.get_tsne_kv(5)[1]) assert len(sdm.tsne_lut) == 5 def test_par_tsne(self): tmet = 'euclidean' param_list = [{'metric': tmet, 'n_iter': 250, 'random_state': 123}, {'metric': tmet, 'n_iter': 250, 'random_state': 125}, {'metric': tmet, 'n_iter': 250, 'random_state': 123}] ref_tsne = eda.tsne(self.x_3x2, **param_list[0]) sdm = eda.SampleDistanceMatrix(self.x_3x2, metric=tmet) # If not store, should not update lut sdm.par_tsne(param_list, store_res=False) assert sdm._lazy_load_last_tsne is None assert sdm.tsne_lut == {} # store results tsne1, tsne2, tsne3 = sdm.par_tsne(param_list) np.testing.assert_allclose(ref_tsne, tsne1) np.testing.assert_allclose(ref_tsne, tsne3) np.testing.assert_allclose(ref_tsne, sdm._last_tsne) assert tsne1.shape == (3, 2) assert len(sdm.tsne_lut) == 3 np.testing.assert_allclose(tsne1, sdm.get_tsne_kv(1)[1]) np.testing.assert_allclose(tsne2, sdm.get_tsne_kv(2)[1]) np.testing.assert_allclose(tsne3, sdm.get_tsne_kv(3)[1]) np.testing.assert_allclose(tsne3, sdm.get_tsne_kv(1)[1]) def test_par_tsne_mp(self): tmet = 'euclidean' param_list = [{'metric': tmet, 'n_iter': 250, 'random_state': 123}, {'metric': tmet, 'n_iter': 250, 'random_state': 125}, {'metric': tmet, 'n_iter': 250, 'random_state': 123}] ref_tsne = eda.tsne(self.x_3x2, **param_list[0]) sdm = eda.SampleDistanceMatrix(self.x_3x2, metric=tmet) # If not store, should not update lut sdm.par_tsne(param_list, store_res=False, nprocs=3) assert sdm._lazy_load_last_tsne is None assert sdm.tsne_lut == {} # store results tsne1, tsne2, tsne3 = sdm.par_tsne(param_list, nprocs=3) np.testing.assert_allclose(ref_tsne, tsne1) np.testing.assert_allclose(ref_tsne, tsne3) np.testing.assert_allclose(ref_tsne, sdm._last_tsne) assert tsne1.shape == (3, 2) assert len(sdm.tsne_lut) == 3 np.testing.assert_allclose(tsne1, sdm.get_tsne_kv(1)[1]) np.testing.assert_allclose(tsne2, sdm.get_tsne_kv(2)[1]) np.testing.assert_allclose(tsne3, sdm.get_tsne_kv(3)[1]) np.testing.assert_allclose(tsne3, sdm.get_tsne_kv(1)[1]) def test_tsne_default_init(self): tmet = 'euclidean' tsne_kwargs = {'metric': tmet, 'n_iter': 250, 'random_state': 123} ref_tsne = eda.tsne(self.x_3x2, **tsne_kwargs) sdm = eda.SampleDistanceMatrix(self.x_3x2, metric=tmet) init_tsne = sdm._last_tsne assert init_tsne.shape == (3, 2) assert len(sdm.tsne_lut) == 1 tsne2 = sdm.tsne(store_res=True, **tsne_kwargs) np.testing.assert_allclose(ref_tsne, tsne2) assert len(sdm.tsne_lut) == 2 def test_ind_x(self): sids = list("abcdef") fids = list(range(10, 20)) sdm = eda.SampleDistanceMatrix( np.random.ranf(60).reshape(6, -1), sids=sids, fids=fids) # select sf ss_sdm = sdm.ind_x([0, 5], list(range(9))) assert ss_sdm._x.shape == (2, 9) assert ss_sdm.sids == ['a', 'f'] assert ss_sdm.fids == list(range(10, 19)) np.testing.assert_equal( ss_sdm.d, sdm._d[np.ix_((0, 5), (0, 5))]) # select with Default ss_sdm = sdm.ind_x() assert ss_sdm._x.shape == (6, 10) assert ss_sdm.sids == list("abcdef") assert ss_sdm.fids == list(range(10, 20)) np.testing.assert_equal(ss_sdm.d, sdm._d) # select with None ss_sdm = sdm.ind_x(None, None) assert ss_sdm._x.shape == (6, 10) assert ss_sdm.sids == list("abcdef") assert ss_sdm.fids == list(range(10, 20)) np.testing.assert_equal(ss_sdm.d, sdm._d) # select non-existent inds with pytest.raises(IndexError) as excinfo: sdm.ind_x([6]) with pytest.raises(IndexError) as excinfo: sdm.ind_x(None, ['a']) def test_ind_x_empty(self): sids = list("abcdef") fids = list(range(10, 20)) sdm = eda.SampleDistanceMatrix( np.random.ranf(60).reshape(6, -1), sids=sids, fids=fids) empty_s = sdm.ind_x([]) assert empty_s._x.shape == (0, 10) assert empty_s._d.shape == (0, 0) assert empty_s._sids.shape == (0,) assert empty_s._fids.shape == (10,) empty_f = sdm.ind_x(None, []) assert empty_f._x.shape == (6, 0) assert empty_f._d.shape == (6, 6) assert empty_f._sids.shape == (6,) assert empty_f._fids.shape == (0,) empty_sf = sdm.ind_x([], []) assert empty_sf._x.shape == (0, 0) assert empty_sf._d.shape == (0, 0) assert empty_sf._sids.shape == (0,) assert empty_sf._fids.shape == (0,) def test_id_x(self): sids = list("abcdef") fids = list(range(10, 20)) sdm = eda.SampleDistanceMatrix( np.random.ranf(60).reshape(6, -1), sids=sids, fids=fids) # select sf ss_sdm = sdm.id_x(['a', 'f'], list(range(10, 15))) assert ss_sdm._x.shape == (2, 5) assert ss_sdm.sids == ['a', 'f'] assert ss_sdm.fids == list(range(10, 15)) np.testing.assert_equal( ss_sdm.d, sdm._d[np.ix_((0, 5), (0, 5))]) # select with Default ss_sdm = sdm.id_x() assert ss_sdm._x.shape == (6, 10) assert ss_sdm.sids == list("abcdef") assert ss_sdm.fids == list(range(10, 20)) np.testing.assert_equal(ss_sdm.d, sdm._d) # select with None ss_sdm = sdm.id_x(None, None) assert ss_sdm._x.shape == (6, 10) assert ss_sdm.sids == list("abcdef") assert ss_sdm.fids == list(range(10, 20)) np.testing.assert_equal(ss_sdm.d, sdm._d) # select non-existent inds # id lookup raises ValueError with pytest.raises(ValueError) as excinfo: sdm.id_x([6]) with pytest.raises(ValueError) as excinfo: sdm.id_x(None, ['a']) def test_id_x_empty(self): sids = list("abcdef") fids = list(range(10, 20)) sdm = eda.SampleDistanceMatrix( np.random.ranf(60).reshape(6, -1), sids=sids, fids=fids) empty_s = sdm.id_x([]) assert empty_s._x.shape == (0, 10) assert empty_s._d.shape == (0, 0) assert empty_s._sids.shape == (0,) assert empty_s._fids.shape == (10,) empty_f = sdm.id_x(None, []) assert empty_f._x.shape == (6, 0) assert empty_f._d.shape == (6, 6) assert empty_f._sids.shape == (6,) assert empty_f._fids.shape == (0,) empty_sf = sdm.id_x([], []) assert empty_sf._x.shape == (0, 0) assert empty_sf._d.shape == (0, 0) assert empty_sf._sids.shape == (0,) assert empty_sf._fids.shape == (0,) def test_getter(self): tmet = 'euclidean' sdm = eda.SampleDistanceMatrix(self.x_3x2, metric=tmet) dist_mat = np.array([[0, np.sqrt(2), np.sqrt(8)], [np.sqrt(2), 0, np.sqrt(2)], [np.sqrt(8), np.sqrt(2), 0]]) np.testing.assert_allclose(sdm.d, dist_mat) assert sdm.d is not sdm._d assert sdm.metric == tmet assert sdm.tsne_lut == {} assert sdm.tsne_lut is not sdm._tsne_lut assert sdm.tsne_lut == sdm._tsne_lut sdm.tsne(n_iter=250) assert sdm.tsne_lut is not sdm._tsne_lut for k in sdm.tsne_lut: np.testing.assert_equal(sdm.tsne_lut[k], sdm._tsne_lut[k]) def test_num_correct_dist_mat(self): tdmat = np.array([[0, 1, 2], [0.5, 0, 1.5], [1, 1.6, 0.5]]) # upper triangle is assgned with lower triangle values ref_cdmat = np.array([[0, 0.5, 1], [0.5, 0, 1.6], [1, 1.6, 0]]) with pytest.warns(UserWarning): cdmat = eda.SampleDistanceMatrix.num_correct_dist_mat(tdmat) np.testing.assert_equal(cdmat, ref_cdmat) ref_cdmat2 = np.array([[0, 0.5, 1], [0.5, 0, 1], [1, 1, 0]]) # with upper bound cdmat2 = eda.SampleDistanceMatrix.num_correct_dist_mat(tdmat, 1) np.testing.assert_equal(cdmat2, ref_cdmat2) # wrong shape tdmat3 = np.array([[0, 0.5], [0.5, 0], [1, 1]]) # with upper bound with pytest.raises(Exception) as excinfo: eda.SampleDistanceMatrix.num_correct_dist_mat(tdmat3, 1) with pytest.raises(Exception) as excinfo: eda.SampleDistanceMatrix.num_correct_dist_mat(tdmat3) def test_s_ith_nn_d(self): nn_sdm = eda.SampleDistanceMatrix([[0], [1], [5], [6], [10], [20]], metric='euclidean') np.testing.assert_allclose([0, 0, 0, 0, 0, 0], nn_sdm.s_ith_nn_d(0)) np.testing.assert_allclose([1, 1, 1, 1, 4, 10], nn_sdm.s_ith_nn_d(1)) np.testing.assert_allclose([5, 4, 4, 4, 5, 14], nn_sdm.s_ith_nn_d(2)) def test_s_ith_nn_ind(self): nn_sdm = eda.SampleDistanceMatrix([[0, 0, 0], [1, 1, 1], [5, 5, 5], [6, 6, 6], [10, 10, 10], [20, 20, 20]], metric='euclidean') np.testing.assert_allclose([0, 1, 2, 3, 4, 5], nn_sdm.s_ith_nn_ind(0)) np.testing.assert_allclose([1, 0, 3, 2, 3, 4], nn_sdm.s_ith_nn_ind(1)) np.testing.assert_allclose([2, 2, 1, 4, 2, 3], nn_sdm.s_ith_nn_ind(2)) # Because summary dist plot calls hist_dens_plot immediately after # obtaining the summary statistics vector, the correctness of summary # statistics vector and hist_dens_plot implies the correctness of the # plots. @pytest.mark.filterwarnings("ignore:The 'normed' kwarg is depreca") def test_s_ith_nn_d_dist(self): nn_sdm = eda.SampleDistanceMatrix([[0, 0, 0], [1, 1, 1], [5, 5, 5], [6, 6, 6], [10, 10, 10], [20, 20, 20]], metric='euclidean') nn_sdm.s_ith_nn_d_dist(1) def test_knn_ind_lut(self): nn_sdm = eda.SampleDistanceMatrix([[0, 0, 0], [1, 1, 1], [5, 5, 5], [6, 6, 6], [10, 10, 10], [20, 20, 20]], metric='euclidean') assert nn_sdm.s_knn_ind_lut(0) == dict(zip(range(6), [[]]*6)) assert (nn_sdm.s_knn_ind_lut(1) == dict(zip(range(6), [[1], [0], [3], [2], [3], [4]]))) assert (nn_sdm.s_knn_ind_lut(2) == dict(zip(range(6), [[1, 2], [0, 2], [3, 1], [2, 4], [3, 2], [4, 3]]))) assert (nn_sdm.s_knn_ind_lut(3) == dict(zip(range(6), [[1, 2, 3], [0, 2, 3], [3, 1, 0], [2, 4, 1], [3, 2, 1], [4, 3, 2]]))) nn_sdm.s_knn_ind_lut(5) def test_knn_ind_lut_wrong_args(self): nn_sdm = eda.SampleDistanceMatrix([[0, 0, 0], [1, 1, 1], [5, 5, 5], [6, 6, 6], [10, 10, 10], [20, 20, 20]], metric='euclidean') with pytest.raises(ValueError) as excinfo: nn_sdm.s_knn_ind_lut(-1) with pytest.raises(ValueError) as excinfo: nn_sdm.s_knn_ind_lut(-0.5) with pytest.raises(ValueError) as excinfo: nn_sdm.s_knn_ind_lut(6) with pytest.raises(ValueError) as excinfo: nn_sdm.s_knn_ind_lut(6.5) with pytest.raises(ValueError) as excinfo: nn_sdm.s_knn_ind_lut(7) with pytest.raises(ValueError) as excinfo: nn_sdm.s_knn_ind_lut(7) @pytest.mark.mpl_image_compare def test_sdm_tsne_feature_gradient_plot(self): sids = list(range(8)) fids = [str(i) for i in range(10)] np.random.seed(123) x = np.random.ranf(80).reshape(8, -1) x_sorted = x[np.argsort(x[:, 5])] sdm = eda.SampleDistanceMatrix( x_sorted, sids=sids, fids=fids) fig = sdm.tsne_feature_gradient_plot( '5', figsize=(10, 10), s=50) np.testing.assert_equal(sdm._x, x_sorted) np.testing.assert_equal(sdm._sids, sids) np.testing.assert_equal(sdm._fids, fids) return fig @pytest.mark.mpl_image_compare def test_sdm_tsne_feature_gradient_plus10_plot(self): sids = list(range(8)) fids = [str(i) for i in range(10)] np.random.seed(123) x = np.random.ranf(80).reshape(8, -1) x_sorted = x[np.argsort(x[:, 5])] sdm = eda.SampleDistanceMatrix( x_sorted, sids=sids, fids=fids) fig = sdm.tsne_feature_gradient_plot( '5', transform=lambda x: x + 10, figsize=(10, 10), s=50) np.testing.assert_equal(sdm._x, x_sorted) np.testing.assert_equal(sdm._sids, sids) np.testing.assert_equal(sdm._fids, fids) return fig @pytest.mark.mpl_image_compare def test_sdm_tsne_feature_gradient_plot_sslabs(self): sids = list(range(8)) fids = [str(i) for i in range(10)] np.random.seed(123) x = np.random.ranf(80).reshape(8, -1) x_sorted = x[np.argsort(x[:, 5])] sdm = eda.SampleDistanceMatrix( x_sorted, sids=sids, fids=fids) sdm.tsne_feature_gradient_plot( '5', labels=list('abcdefgh'), selected_labels='a', transform=lambda x: np.log(x+1), figsize=(10, 10), s=50) fig = sdm.tsne_feature_gradient_plot( '5', labels=list('abcdefgh'), selected_labels='a', figsize=(10, 10), s=50) np.testing.assert_equal(sdm._x, x_sorted) np.testing.assert_equal(sdm._sids, sids) np.testing.assert_equal(sdm._fids, fids) return fig @pytest.mark.mpl_image_compare def test_sdm_tsne_feature_gradient_plot_sslabs_empty(self): sids = list(range(8)) fids = [str(i) for i in range(10)] np.random.seed(123) x = np.random.ranf(80).reshape(8, -1) x_sorted = x[np.argsort(x[:, 5])] sdm = eda.SampleDistanceMatrix( x_sorted, sids=sids, fids=fids) fig = sdm.tsne_feature_gradient_plot( '5', labels=list('abcdefgh'), selected_labels=[], figsize=(10, 10), s=50) np.testing.assert_equal(sdm._x, x_sorted) np.testing.assert_equal(sdm._sids, sids) np.testing.assert_equal(sdm._fids, fids) return fig def test_sdm_tsne_feature_gradient_plot_sslabs_wrong_args(self): sids = list(range(8)) fids = [str(i) for i in range(10)] np.random.seed(123) x = np.random.ranf(80).reshape(8, -1) x_sorted = x[np.argsort(x[:, 5])] sdm = eda.SampleDistanceMatrix( x_sorted, sids=sids, fids=fids) # Mismatch labels with pytest.raises(ValueError) as excinfo: sdm.tsne_feature_gradient_plot( '5', labels=list('abcdefgh'), selected_labels=[11], figsize=(10, 10), s=50) with pytest.raises(ValueError) as excinfo: sdm.tsne_feature_gradient_plot( '5', labels=list('abcdefgh'), selected_labels=['i'], figsize=(10, 10), s=50) # labels not provided with pytest.raises(ValueError) as excinfo: sdm.tsne_feature_gradient_plot( '5', selected_labels=[11], figsize=(10, 10), s=50) def test_sdm_tsne_feature_gradient_plot_wrong_args(self): sids = list(range(8)) fids = [str(i) for i in range(10)] np.random.seed(123) x = np.random.ranf(80).reshape(8, -1) x_sorted = x[np.argsort(x[:, 5])] sdm = eda.SampleDistanceMatrix(x, sids=sids, fids=fids) with pytest.raises(ValueError): sdm.tsne_feature_gradient_plot('5', transform=2) # wrong labels size with pytest.raises(ValueError): sdm.tsne_feature_gradient_plot('5', figsize=(10, 10), s=50, labels=[]) with pytest.raises(ValueError): sdm.tsne_feature_gradient_plot('5', figsize=(10, 10), s=50, labels=[1]) with pytest.raises(ValueError): sdm.tsne_feature_gradient_plot('5', figsize=(10, 10), s=50, labels=[2]) # wrong gradient length with pytest.raises(ValueError): sdm.tsne_feature_gradient_plot([0, 1]) with pytest.raises(ValueError): sdm.tsne_feature_gradient_plot(11) with pytest.raises(ValueError): sdm.tsne_feature_gradient_plot(11) with pytest.raises(ValueError): sdm.tsne_feature_gradient_plot(-1) with pytest.raises(ValueError): sdm.tsne_feature_gradient_plot(5) with pytest.raises(ValueError): sdm.tsne_feature_gradient_plot('123') @pytest.mark.mpl_image_compare def test_sdm_tsne_plot(self): sids = list(range(8)) fids = [str(i) for i in range(10)] np.random.seed(123) x = np.random.ranf(80).reshape(8, -1) x_sorted = x[np.argsort(x[:, 5])] g = x_sorted[:, 5] sdm = eda.SampleDistanceMatrix(x_sorted, sids=sids, fids=fids) return sdm.tsne_plot(g, figsize=(10, 10), s=50) @pytest.mark.mpl_image_compare def test_sdm_pca_feature_gradient_plot(self): sids = list(range(8)) fids = [str(i) for i in range(10)] np.random.seed(123) x = np.random.ranf(80).reshape(8, -1) x_sorted = x[np.argsort(x[:, 5])] sdm = eda.SampleDistanceMatrix( x_sorted, sids=sids, fids=fids) fig = sdm.pca_feature_gradient_plot( '5', figsize=(10, 10), s=50) np.testing.assert_equal(sdm._x, x_sorted) np.testing.assert_equal(sdm._sids, sids) np.testing.assert_equal(sdm._fids, fids) return fig @pytest.mark.mpl_image_compare def test_sdm_pca_feature_gradient_plus10_plot(self): sids = list(range(8)) fids = [str(i) for i in range(10)] np.random.seed(123) x = np.random.ranf(80).reshape(8, -1) x_sorted = x[np.argsort(x[:, 5])] sdm = eda.SampleDistanceMatrix( x_sorted, sids=sids, fids=fids) fig = sdm.pca_feature_gradient_plot( '5', transform=lambda x: x + 10, figsize=(10, 10), s=50) np.testing.assert_equal(sdm._x, x_sorted) np.testing.assert_equal(sdm._sids, sids) np.testing.assert_equal(sdm._fids, fids) return fig @pytest.mark.mpl_image_compare def test_sdm_pca_feature_gradient_plot_sslabs(self): sids = list(range(8)) fids = [str(i) for i in range(10)] np.random.seed(123) x = np.random.ranf(80).reshape(8, -1) x_sorted = x[np.argsort(x[:, 5])] sdm = eda.SampleDistanceMatrix( x_sorted, sids=sids, fids=fids) sdm.pca_feature_gradient_plot( '5', labels=list('abcdefgh'), selected_labels='a', transform=lambda x: np.log(x+1), figsize=(10, 10), s=50) fig = sdm.pca_feature_gradient_plot( '5', labels=list('abcdefgh'), selected_labels='a', figsize=(10, 10), s=50) np.testing.assert_equal(sdm._x, x_sorted) np.testing.assert_equal(sdm._sids, sids) np.testing.assert_equal(sdm._fids, fids) return fig @pytest.mark.mpl_image_compare def test_sdm_pca_feature_gradient_plot_sslabs_empty(self): sids = list(range(8)) fids = [str(i) for i in range(10)] np.random.seed(123) x = np.random.ranf(80).reshape(8, -1) x_sorted = x[np.argsort(x[:, 5])] sdm = eda.SampleDistanceMatrix( x_sorted, sids=sids, fids=fids) fig = sdm.pca_feature_gradient_plot( '5', labels=list('abcdefgh'), selected_labels=[], figsize=(10, 10), s=50) np.testing.assert_equal(sdm._x, x_sorted) np.testing.assert_equal(sdm._sids, sids) np.testing.assert_equal(sdm._fids, fids) return fig def test_sdm_pca_feature_gradient_plot_sslabs_wrong_args(self): sids = list(range(8)) fids = [str(i) for i in range(10)] np.random.seed(123) x = np.random.ranf(80).reshape(8, -1) x_sorted = x[np.argsort(x[:, 5])] sdm = eda.SampleDistanceMatrix( x_sorted, sids=sids, fids=fids) # Mismatch labels with pytest.raises(ValueError) as excinfo: sdm.pca_feature_gradient_plot( '5', labels=list('abcdefgh'), selected_labels=[11], figsize=(10, 10), s=50) with pytest.raises(ValueError) as excinfo: sdm.pca_feature_gradient_plot( '5', labels=list('abcdefgh'), selected_labels=['i'], figsize=(10, 10), s=50) # labels not provided with pytest.raises(ValueError) as excinfo: sdm.pca_feature_gradient_plot( '5', selected_labels=[11], figsize=(10, 10), s=50) def test_sdm_pca_feature_gradient_plot_wrong_args(self): sids = list(range(8)) fids = [str(i) for i in range(10)] np.random.seed(123) x = np.random.ranf(80).reshape(8, -1) x_sorted = x[np.argsort(x[:, 5])] sdm = eda.SampleDistanceMatrix(x, sids=sids, fids=fids) with pytest.raises(ValueError): sdm.pca_feature_gradient_plot('5', transform=2) # wrong labels size with pytest.raises(ValueError): sdm.pca_feature_gradient_plot('5', figsize=(10, 10), s=50, labels=[]) with pytest.raises(ValueError): sdm.pca_feature_gradient_plot('5', figsize=(10, 10), s=50, labels=[1]) with pytest.raises(ValueError): sdm.pca_feature_gradient_plot('5', figsize=(10, 10), s=50, labels=[2]) # wrong gradient length with pytest.raises(ValueError): sdm.pca_feature_gradient_plot([0, 1]) with pytest.raises(ValueError): sdm.pca_feature_gradient_plot(11) with pytest.raises(ValueError): sdm.pca_feature_gradient_plot(11) with pytest.raises(ValueError): sdm.pca_feature_gradient_plot(-1) with pytest.raises(ValueError): sdm.pca_feature_gradient_plot(5) with pytest.raises(ValueError): sdm.pca_feature_gradient_plot('123') @pytest.mark.mpl_image_compare def test_sdm_pca_plot(self): sids = list(range(8)) fids = [str(i) for i in range(10)] np.random.seed(123) x =
np.random.ranf(80)
numpy.random.ranf
# have to import PySide2 first so the matplotlib backend figures out we want PySide2 from HSTB.kluster.gui.backends._qt import QtCore, QtGui, QtWidgets, Signal # apparently there is some problem with PySide2 + Pyinstaller, for future reference # https://stackoverflow.com/questions/56182256/figurecanvas-not-interpreted-as-qtwidget-after-using-pyinstaller/62055972#62055972 from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg, NavigationToolbar2QT from matplotlib.figure import Figure from matplotlib.widgets import RectangleSelector from matplotlib.backend_bases import MouseEvent import cartopy.crs as ccrs import cartopy.feature as cfeature import sys import numpy as np # see block plots for surface maybe # https://scitools.org.uk/cartopy/docs/v0.13/matplotlib/advanced_plotting.html class MapView(FigureCanvasQTAgg): """ Map view using cartopy/matplotlib to view multibeam tracklines and surfaces with a map context. """ box_select = Signal(float, float, float, float) def __init__(self, parent=None, width: int = 5, height: int = 4, dpi: int = 100, map_proj=ccrs.PlateCarree(), settings=None): self.fig = Figure(figsize=(width, height), dpi=dpi) self.map_proj = map_proj self.axes = self.fig.add_subplot(projection=map_proj) # self.axes.coastlines(resolution='10m') self.fig.add_axes(self.axes) #self.fig.subplots_adjust(left=0, right=1, bottom=0, top=1) self.axes.gridlines(draw_labels=True, crs=self.map_proj) self.axes.add_feature(cfeature.LAND) self.axes.add_feature(cfeature.COASTLINE) self.line_objects = {} # dict of {line name: [lats, lons, lineplot]} self.surface_objects = {} # nested dict {surfname: {layername: [lats, lons, surfplot]}} self.active_layers = {} # dict of {surfname: [layername1, layername2]} self.data_extents = {'min_lat': 999, 'max_lat': -999, 'min_lon': 999, 'max_lon': -999} self.selected_line_objects = [] super(MapView, self).__init__(self.fig) self.navi_toolbar = NavigationToolbar2QT(self.fig.canvas, self) self.rs = RectangleSelector(self.axes, self._line_select_callback, drawtype='box', useblit=False, button=[1], minspanx=5, minspany=5, spancoords='pixels', interactive=True) self.set_extent(90, -90, 100, -100) def set_background(self, layername: str, transparency: float, surf_transparency: float): """ A function for rendering different background layers in QGIS. Disabled for cartopy """ pass def set_extent(self, max_lat: float, min_lat: float, max_lon: float, min_lon: float, buffer: bool = True): """ Set the extent of the 2d window Parameters ---------- max_lat set the maximum latitude of the displayed map min_lat set the minimum latitude of the displayed map max_lon set the maximum longitude of the displayed map min_lon set the minimum longitude of the displayed map buffer if True, will extend the extents by half the current width/height """ self.data_extents['min_lat'] = np.min([min_lat, self.data_extents['min_lat']]) self.data_extents['max_lat'] = np.max([max_lat, self.data_extents['max_lat']]) self.data_extents['min_lon'] = np.min([min_lon, self.data_extents['min_lon']]) self.data_extents['max_lon'] = np.max([max_lon, self.data_extents['max_lon']]) if self.data_extents['min_lat'] != 999 and self.data_extents['max_lat'] != -999 and self.data_extents[ 'min_lon'] != 999 and self.data_extents['max_lon'] != -999: if buffer: lat_buffer = np.max([(max_lat - min_lat) * 0.5, 0.5]) lon_buffer = np.max([(max_lon - min_lon) * 0.5, 0.5]) else: lat_buffer = 0 lon_buffer = 0 self.axes.set_extent([np.clip(min_lon - lon_buffer, -179.999999999, 179.999999999), np.clip(max_lon + lon_buffer, -179.999999999, 179.999999999), np.clip(min_lat - lat_buffer, -90, 90), np.clip(max_lat + lat_buffer, -90, 90)], crs=ccrs.Geodetic()) def add_line(self, line_name: str, lats: np.ndarray, lons: np.ndarray, refresh: bool = False): """ Draw a new multibeam trackline on the cartopy display, unless it is already there Parameters ---------- line_name name of the multibeam line lats numpy array of latitude values to plot lons numpy array of longitude values to plot refresh set to True if you want to show the line after adding here, kluster will redraw the screen after adding lines itself """ if line_name in self.line_objects: return # this is about 3x slower, use transform_points instead # lne = self.axes.plot(lons, lats, color='blue', linewidth=2, transform=ccrs.Geodetic()) ret = self.axes.projection.transform_points(ccrs.Geodetic(), lons, lats) x = ret[..., 0] y = ret[..., 1] lne = self.axes.plot(x, y, color='blue', linewidth=2) self.line_objects[line_name] = [lats, lons, lne[0]] if refresh: self.refresh_screen() def remove_line(self, line_name, refresh=False): """ Remove a multibeam line from the cartopy display Parameters ---------- line_name name of the multibeam line refresh optional screen refresh, True most of the time, unless you want to remove multiple lines and then refresh at the end """ if line_name in self.line_objects: lne = self.line_objects[line_name][2] lne.remove() self.line_objects.pop(line_name) if refresh: self.refresh_screen() def add_surface(self, surfname: str, lyrname: str, surfx: np.ndarray, surfy: np.ndarray, surfz: np.ndarray, surf_crs: int): """ Add a new surface/layer with the provided data Parameters ---------- surfname path to the surface that is used as a name lyrname band layer name for the provided data surfx 1 dim numpy array for the grid x values surfy 1 dim numpy array for the grid y values surfz 2 dim numpy array for the grid values (depth, uncertainty, etc.) surf_crs integer epsg code """ try: addlyr = True if lyrname in self.active_layers[surfname]: addlyr = False except KeyError: addlyr = True if addlyr: self._add_surface_layer(surfname, lyrname, surfx, surfy, surfz, surf_crs) self.refresh_screen() def hide_surface(self, surfname: str, lyrname: str): """ Hide the surface layer that corresponds to the given names. Parameters ---------- surfname path to the surface that is used as a name lyrname band layer name for the provided data """ try: hidelyr = True if lyrname not in self.active_layers[surfname]: hidelyr = False except KeyError: hidelyr = False if hidelyr: self._hide_surface_layer(surfname, lyrname) return True else: return False def show_surface(self, surfname: str, lyrname: str): """ Cartopy backend currently just deletes/adds surface data, doesn't really hide or show. Return False here to signal we did not hide """ return False def remove_surface(self, surfname: str): """ Remove the surface from memory by removing the name from the surface_objects dict Parameters ---------- surfname path to the surface that is used as a name """ if surfname in self.surface_objects: for lyr in self.surface_objects[surfname]: self.hide_surface(surfname, lyr) surf = self.surface_objects[surfname][lyr][2] surf.remove() self.surface_objects.pop(surfname) self.refresh_screen() def _add_surface_layer(self, surfname: str, lyrname: str, surfx: np.ndarray, surfy: np.ndarray, surfz: np.ndarray, surf_crs: int): """ Add a new surface/layer with the provided data Parameters ---------- surfname path to the surface that is used as a name lyrname band layer name for the provided data surfx 1 dim numpy array for the grid x values surfy 1 dim numpy array for the grid y values surfz 2 dim numpy array for the grid values (depth, uncertainty, etc.) surf_crs integer epsg code """ try: makelyr = True if lyrname in self.surface_objects[surfname]: makelyr = False except KeyError: makelyr = True if makelyr: desired_crs = self.map_proj lon2d, lat2d = np.meshgrid(surfx, surfy) xyz = desired_crs.transform_points(ccrs.epsg(int(surf_crs)), lon2d, lat2d) lons = xyz[..., 0] lats = xyz[..., 1] if lyrname != 'depth': vmin, vmax = np.nanmin(surfz), np.nanmax(surfz) else: # need an outlier resistant min max depth range value twostd = np.nanstd(surfz) med = np.nanmedian(surfz) vmin, vmax = med - twostd, med + twostd # print(vmin, vmax) surfplt = self.axes.pcolormesh(lons, lats, surfz.T, vmin=vmin, vmax=vmax, zorder=10) setextents = False if not self.line_objects and not self.surface_objects: # if this is the first thing you are loading, jump to it's extents setextents = True self._add_to_active_layers(surfname, lyrname) self._add_to_surface_objects(surfname, lyrname, [lats, lons, surfplt]) if setextents: self.set_extents_from_surfaces() else: surfplt = self.surface_objects[surfname][lyrname][2] newsurfplt = self.axes.add_artist(surfplt) # update the object with the newly added artist self.surface_objects[surfname][lyrname][2] = newsurfplt self._add_to_active_layers(surfname, lyrname) def _hide_surface_layer(self, surfname: str, lyrname: str): """ Hide the surface layer that corresponds to the given names. Parameters ---------- surfname path to the surface that is used as a name lyrname band layer name for the provided data """ surfplt = self.surface_objects[surfname][lyrname][2] surfplt.remove() self._remove_from_active_layers(surfname, lyrname) self.refresh_screen() def _add_to_active_layers(self, surfname: str, lyrname: str): """ Add the surface layer to the active layers dict Parameters ---------- surfname path to the surface that is used as a name lyrname band layer name for the provided data """ if surfname in self.active_layers: self.active_layers[surfname].append(lyrname) else: self.active_layers[surfname] = [lyrname] def _add_to_surface_objects(self, surfname: str, lyrname: str, data: list): """ Add the surface layer data to the surface objects dict Parameters ---------- surfname path to the surface that is used as a name lyrname band layer name for the provided data data list of [2dim y values for the grid, 2dim x values for the grid, matplotlib.collections.QuadMesh] """ if surfname in self.surface_objects: self.surface_objects[surfname][lyrname] = data else: self.surface_objects[surfname] = {lyrname: data} def _remove_from_active_layers(self, surfname: str, lyrname: str): """ Remove the surface layer from the active layers dict Parameters ---------- surfname path to the surface that is used as a name lyrname band layer name for the provided data """ if surfname in self.active_layers: if lyrname in self.active_layers[surfname]: self.active_layers[surfname].remove(lyrname) def _remove_from_surface_objects(self, surfname, lyrname): """ Remove the surface layer from the surface objects dict Parameters ---------- surfname path to the surface that is used as a name lyrname band layer name for the provided data """ if surfname in self.surface_objects: if lyrname in self.surface_objects[surfname]: self.surface_objects[surfname].pop(lyrname) def change_line_colors(self, line_names: list, color: str): """ Change the provided line names to the provided color Parameters ---------- line_names list of line names to use as keys in the line objects dict color string color identifier, ex: 'r' or 'red' """ for line in line_names: lne = self.line_objects[line][2] lne.set_color(color) self.selected_line_objects.append(lne) self.refresh_screen() def reset_line_colors(self): """ Reset all lines back to the default color """ for lne in self.selected_line_objects: lne.set_color('b') self.selected_line_objects = [] self.refresh_screen() def _line_select_callback(self, eclick: MouseEvent, erelease: MouseEvent): """ Handle the return of the Matplotlib RectangleSelector, provides an event with the location of the click and an event with the location of the release Parameters ---------- eclick MouseEvent with the position of the initial click erelease MouseEvent with the position of the final release of the mouse button """ x1, y1 = eclick.xdata, eclick.ydata x2, y2 = erelease.xdata, erelease.ydata self.rs.set_visible(False) # set the visible property back to True so that the next move event shows the box self.rs.visible = True # signal with min lat, max lat, min lon, max lon self.box_select.emit(y1, y2, x1, x2) # print("(%3.2f, %3.2f) --> (%3.2f, %3.2f)" % (x1, y1, x2, y2)) def set_extents_from_lines(self): """ Set the maximum extent based on the line_object coordinates """ lats = [] lons = [] for ln in self.line_objects: lats.append(self.line_objects[ln][0]) lons.append(self.line_objects[ln][1]) if not lats or not lons: self.set_extent(90, -90, 100, -100) else: lats = np.concatenate(lats) lons =
np.concatenate(lons)
numpy.concatenate
import numpy as np import tflearn import tensorflow as tf import random import json import pickle import nltk from nltk import word_tokenize,sent_tokenize from nltk.stem.lancaster import LancasterStemmer stemmer = LancasterStemmer() from pathlib import Path file_dir = Path(__file__).resolve().parent.parent file_dir = str(file_dir) + '\\Discord_Model\\' def set_model(name): if name=='No Model': with open(file_dir+"intents.json") as file: data = json.load(file) try: with open(file_dir+"data.pickle","rb") as f: words, labels, training, output = pickle.load(f) except: aa = 0 with open(file_dir+"intents.json") as file: data = json.load(file) try: with open(file_dir+"data.pickle","rb") as f: words, labels, training, output = pickle.load(f) except: aa = 0 net = tflearn.input_data(shape=[None, len(training[0])]) net = tflearn.fully_connected(net, 8) net = tflearn.fully_connected(net, 8) net = tflearn.fully_connected(net, len(output[0]), activation="softmax") net = tflearn.regression(net) model = tflearn.DNN(net) try: model.load(file_dir+"model.tflearn") except: print('Model not found') def bag_of_words(s, words): bag = [0 for _ in range(len(words))] s_words = nltk.word_tokenize(s) s_words = [stemmer.stem(word.lower()) for word in s_words] for se in s_words: for i, w in enumerate(words): if w == se: bag[i] = 1 return
np.array(bag)
numpy.array
from __future__ import division import os import sys import time import numpy as np from math import pi import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib import style from scipy import interpolate from sklearn.preprocessing import MinMaxScaler import multiprocessing as mp from multiprocessing import Pool import string import warnings warnings.filterwarnings("ignore") mpl.use('Agg') BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) ################## Fourier ####################### def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i:i + n] def random_fourier(seed): np.random.seed(seed) Coeffs = np.random.rand(2,fmax) y = np.multiply(Template,Coeffs) y = np.sum(y,axis=(1,2)) l,h=np.sort(np.random.rand(2)) y = MinMaxScaler(feature_range=(l,h)).fit_transform(y.reshape(-1, 1)).reshape(-1) # y = MinMaxScaler(feature_range=(l,h)).fit_transform(y) return y ################## Lines ####################### def line_family(seed): np.random.seed(seed) y1 = np.random.random() y2 =
np.random.random()
numpy.random.random
import numpy as np def decompLU(A): L = np.eye(
np.shape(A)
numpy.shape
# Routines for general quantum chemistry (no particular software package) # Python3 and pandas # <NAME> # import re, sys #import string, copy import copy import numpy as np import pandas as pd import quaternion from scipy.spatial.distance import cdist from scipy import interpolate from scipy import optimize import matplotlib.pyplot as plt # # CODATA 2018 constants from physics.nist.gov, retrieved 7/13/2020 AVOGADRO = 6.02214076e23 # mol^-1 (exact, defined value) BOLTZMANN = 1.380649e-23 # J/K (exact, defined value) RGAS = AVOGADRO * BOLTZMANN # J/mol/K (exact) PLANCK = 6.62607015e-34 # J s (exact, defined value) CLIGHT = 299792458. # m/s (exact, defined value) CM2KJ = PLANCK * AVOGADRO * CLIGHT / 10 # convert from cm^-1 to kJ/mol CM2K = 100 * CLIGHT * PLANCK / BOLTZMANN # convert from cm^-1 to Kelvin AMU = 1.66053906660e-27 # kg/u HARTREE = 4.3597447222071e-18 # J; uncertainty is 85 in last two digits AU2CM = 2.1947463136320e05 # Hartree in cm^-1; unc. is 43 in last two digits AU2KJMOL = HARTREE * AVOGADRO / 1000. # Hartree in kJ/mol AU2EV = 27.211386245988 # Hartree in eV; unc. is 53 in last two digits CALORIE = 4.184 # multipy cal * CALORIE to get J ATM_KPA = 101.325 # convert pressure in atm to kPa EMASS = 9.1093837015e-31 # electron mass in kg; unc. is 28 in last two digits BOHR = 0.529177210903 # Bohr radius in Angstrom; unc. is 80 in last two digits AMU2AU = AMU / EMASS # amu expressed in a.u. (viz., electron masses) EV2CM = AU2CM / AU2EV # eV expressed in cm^-1 EPS0 = 8.8541878128e-12 # vacuum permittivity in F/m PI = np.pi # GOLD = (1 + np.sqrt(5))/2 # golden ratio def isotopic_mass(atlabel): # Given a label like '1-H' or 'pt195', return the atomic mass # Data from from https://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl rxn = re.compile('\d+') rxsym = re.compile('[a-zA-Z]+') n = int(rxn.search(atlabel).group(0)) sym = rxsym.search(atlabel).group(0) Z = elz(sym) # table of masses; major index = Z, minor = n mtable = {1: {1: 1.00782503223, 2: 2.01410177812, 3: 3.0160492779}, 2: {3: 3.0160293201, 4: 4.00260325413}, 3: {6: 6.0151228874, 7: 7.0160034366}, 4: {9: 9.012183065}, 5: {10: 10.01293695, 11: 11.00930536}, 6: {12: 12., 13: 13.00335483507, 14: 14.0032419884}, 7: {14: 14.00307400443, 15: 15.00010889888}, 8: {16: 15.99491461957, 17: 16.99913175650, 18: 17.99915961286}, 9: {19: 18.99840316273}, 16: {32: 31.9720711744, 33: 32.9714589098, 34: 33.967867004, 36: 35.96708071}, 17: {35: 34.968852682, 37: 36.965902602}, 35: {79: 78.9183376, 81: 80.9162897}, 53: {127: 126.9044719}, 78: {190: 189.9599297, 192: 191.9610387, 194: 193.9626809, 195: 194.9647917, 196: 195.96495209, 198: 197.9678949}, } try: m = mtable[Z][n] except KeyError: # invalid or just not typed here yet m = np.nan return m ## def dominant_isotope(el): # given element symbol or atomic number, # return the mass of the most abundant isotope # source: https://www.chem.ualberta.ca/~massspec/atomic_mass_abund.pdf, # which cites mass data from Audi & Wapstra, Nucl. Phys. A (1993 & 1995) # and abundance data from 1997 IUPAC report [Rosman & Taylor, # Pure Appl. Chem. (1999)] try: Z = int(el) except: Z = elz(el) mtable = [0, 1.007825, 4.002603, 7.016004, 9.012182, 11.009305, 12., # C 14.003074, 15.994915, 18.998403, 19.992440, 22.989770, # Na 23.985042, 26.981538, 27.976927, 30.973762, 31.972071, # S 34.968853, 39.962383, 38.963707, 39.962591, 44.955910, # Sc 47.947947, 50.943964, 51.940512, 54.938050, 55.934942, # Fe 58.933200, 57.935348, 62.929601, 63.929147, 68.925581, # Ga 73.921178, 74.921596, 79.916522, 78.918338, 83.911507, # Kr 84.911789, 87.905614, 88.905848, 89.904704, 92.906378, # Nb 97.905408, 97.907216, 101.904350, 102.905504, 105.903483, # Pd 106.905093, 113.903358, 114.903878, 119.902197, # Sn 120.903818, 129.906223, 126.904468, 131.904154, # Xe 132.905447, 137.905241, 138.906348, 139.905434, # Ce 140.907648, 141.907719, 144.912744, 151.919728, # Sm 152.921226, 157.924101, 158.925343, 163.929171, # Dy 164.930319, 165.930290, 168.934211, 173.938858, # Yb 174.940768, 179.946549, 180.947996, 183.950933, # W 186.955751, 191.961479, 192.962924, 194.964774, # Pt 196.966552, 201.970626, 204.974412, 207.976636, # Pb 208.980383, 208.982416, 209.987131, 222.017570, # Rn 223.019731, 226.025403, 227.027747, 232.038050, # Th 231.035879, 238.050783, 237.048167, 244.064198] # Pu return mtable[Z] ## def RRHO_symmtop(freqs, Emax, binwidth, ABC_GHz, Bunit='GHz'): # RRHO with symmetric-top approximation. # Use Stein-Rabinovitch counting method (less roundoff error than # with Beyer-Swinehart) # ** Does not account for any symmetry ** n = int(Emax/binwidth) # number of bins nos = np.zeros(n) # number of states in each bin nos[0] = 1 # the zero-point level for freq in freqs: Eladder = np.arange(freq, Emax+binwidth, freq) iladder = np.rint(Eladder / binwidth).astype(int) miyo = nos.copy() # temporary copy of 'nos' # add each value in ladder to existing count in 'nos' for irung in iladder: for ibin in range(irung, n): miyo[ibin] += nos[ibin - irung] nos = miyo.copy() # Do similar thing for the rotational levels. E_rot, g_rot = rotational_levels_symmtop(ABC_GHz, Emax, Bunit=Bunit) ilist = np.rint(E_rot / binwidth).astype(int).reshape(-1) miyo = nos.copy() for idx in range(1, len(ilist)): # Loop over this index, instead of the 'iladder' values, # to find the matching rotational degeneracies. # Start from 1 instead of 0 to skip the (non-degenerate) J=0 irung = ilist[idx] degen = g_rot[idx] # vectorized version binrange = np.arange(irung, n).astype(int) miyo[binrange] = miyo[binrange] + nos[binrange - irung] * degen nos = miyo.copy() # find centers of energy bins centers = binwidth * (0.5 + np.arange(n)) return nos, centers ## def rotational_levels_symmtop(ABC, Emax, Bunit='cm-1'): # Rigid-rotor levels for a symmetric top # Return two arrays: energies (in cm^-1) and degeneracies # 'ABC' are the three rotational constants, either in GHz or cm^-1 # 'Emax' is the upper bound on energy, in cm^-1 ABC = np.array(ABC) ABC[::-1].sort() # sort in descending order if Bunit.lower() == 'ghz': # convert ABC to cm^-1 ABC *= 1.0e7 / CLIGHT if (ABC[0]-ABC[1] > ABC[1]-ABC[2]): # call it prolate B = np.sqrt(ABC[1]*ABC[2]) # geometric mean; "perpendicular" A = ABC[0] Jmax = int(-0.5 + 0.5 * np.sqrt(1 + 4*Emax/B)) else: # call it oblate B = np.sqrt(ABC[1]*ABC[0]) # geometric mean; "perpendicular" A = ABC[2] Jmax = int( (-B + np.sqrt(B*B+4*A*Emax)) / (2*A) ) J = np.arange(Jmax+1) # all allowed values of J, including Jmax # K = 0 cases E = B * J * (J + 1) degen = 2*J + 1 # K != 0 cases C = A-B for J in range(1,Jmax+1): # now J is a scalar K = np.arange(1, J+1) Kstack = B*J*(J+1) + C * K * K g = 2 * (2*J+1) * np.ones_like(K) E = np.concatenate((E, Kstack)) degen = np.concatenate((degen, g)) # sort by increasing energy idx = np.argsort(E) E = E[idx] degen = degen[idx] # filter out energies that exceed Emax idx = np.argwhere(E <= Emax) return E[idx], degen[idx] ## def rotational_levels_spherical(B, Emax, Bunit='cm-1'): # Rigid-rotor levels for a spherical top # Return two arrays: energies (in cm^-1) and degeneracies # 'B' is the rotational constant, either in GHz or cm^-1 # 'Emax' is the upper bound on energy, in cm^-1 if Bunit.lower() == 'ghz': # convert B to cm^-1 B *= 1.0e7 / CLIGHT Jmax = int(-0.5 + 0.5 * np.sqrt(1 + 4*Emax/B)) J = np.arange(Jmax+1) # all allowed values of J, including Jmax E = B * J * (J+1) degen = 2*J + 1 degen *= degen # this line is the only difference from the linear case return E, degen ## def rotational_levels_linear(B, Emax, Bunit='cm-1'): # Rigid-rotor levels for a linear molecule # Return two arrays: energies (in cm^-1) and degeneracies # 'B' is the rotational constant, either in GHz or cm^-1 # 'Emax' is the upper bound on energy, in cm^-1 if Bunit.lower() == 'ghz': # convert B to cm^-1 B *= 1.0e7 / CLIGHT Jmax = int(-0.5 + 0.5 * np.sqrt(1 + 4*Emax/B)) J = np.arange(Jmax+1) # all allowed values of J, including Jmax E = B * J * (J+1) degen = 2*J + 1 return E, degen ## def Beyer_Swinehart(freqs, Emax, binwidth): # Return a harmonic vibrational density of states (numpy array) # whose index is the energy bin number. # Also return an array of the bin center energies. # Not vectorized n = int(Emax/binwidth) # number of bins nos = np.zeros(n) # number of states in each bin nos[0] = 1 # the zero-point level for freq in freqs: # outer loop in BS paper ifreq = np.rint(freq/binwidth).astype(int) for ibin in range(ifreq, n): # inner loop nos[ibin] += nos[ibin - ifreq] # find centers of energy bins centers = binwidth * (0.5 + np.arange(n)) return nos, centers ## def thermo_RRHO(T, freqs, symno, ABC_GHz, mass, pressure=1.0e5, deriv=0): # Return S, Cp, and [H(T)-H(0)] at the specified temperature lnQ = lnQvrt(T, freqs, symno, ABC_GHz, mass) d = lnQvrt(T, freqs, symno, ABC_GHz, mass, deriv=1) # derivative of lnQ deriv = T * d + lnQ # derivative of TlnQ S = RGAS * (deriv - np.log(AVOGADRO) + 1) d2 = lnQvrt(T, freqs, symno, ABC_GHz, mass, deriv=2) # 2nd derivative of lnQ deriv2 = 2 * d + T * d2 # 2nd derivative of TlnQ Cp = RGAS + RGAS * T * deriv2 ddH = RGAS * T * (1 + T * d) / 1000 return (S, Cp, ddH) ## def lnQvrt(T, freqs, symno, ABC_GHz, mass, pressure=1.0e5, deriv=0): # Return the total (vib + rot + transl) ln(Q) partition function # or a derivative. RRHO approximation lnQv = lnQvib(T, freqs, deriv=deriv) lnQr = lnQrot(T, symno, ABC_GHz, deriv=deriv) lnQt = lnQtrans(T, mass, pressure=pressure, deriv=deriv) lnQ = lnQv + lnQr + lnQt return lnQ ## def lnQtrans(T, mass, pressure=1.0e5, deriv=0): # Given a temperature (in K), a molecular mass (in amu), # and optionally a pressure (in Pa), return ln(Q), where # Q is the ideal-gas translational partition function. # If deriv > 0, return a (1st or 2nd) derivative of TlnQ # instead of lnQ. if deriv == 1: # return (d/dT)lnQ = (3/2T) return (1.5 / T) if deriv == 2: # return (d2/dT2)lnQ = -(3/2T**2) return (-1.5 / (T*T)) kT = BOLTZMANN * T # in J m = mass * AMU # in kg V = RGAS * T / pressure # in m**3 lnQ = 1.5 * np.log(2 * PI * m * kT) lnQ -= 3 * np.log(PLANCK) lnQ += np.log(V) return lnQ ## def lnQrot(T, symno, ABC_GHz, deriv=0): # Given a temperature (in K), symmetry number, and list of # rotational constants (in GHz), return ln(Q), where Q is # the rigid-rotor partition function. n = len(ABC_GHz) if n == 0: # atom; no rotations possible return 0. if deriv == 1: # first derivative of lnQ depends only on temperature if n < 3: # linear case return (1/T) else: # non-linear return (1.5/T) if deriv == 2: # second derivative of lnQ if n < 3: # linear case return (-1 / (T*T)) else: # non-linear return (-1.5 / (T*T)) ln_kTh = np.log(T) + np.log(BOLTZMANN) - np.log(PLANCK) # ln(kT/h) expressed in ln(Hz) if n < 3: # linear molecule B = ABC_GHz[0] * 1.0e9 # convert to Hz lnQ = ln_kTh - np.log(symno * B) else: # polyatomic molecule with 3 constants lnQ = 1.5 * ln_kTh + 0.5 * np.log(PI) - np.log(symno) for c in ABC_GHz: B = c * 1.0e9 # convert to Hz lnQ -= 0.5 * np.log(B) return lnQ ## def lnQvib(T, freqs, deriv=0): # Given a temperature (in K) and array of vibrational # frequencies (in cm^-1), return ln(Q) where Q is # the harmonic-oscillator partition function. kTh = T * BOLTZMANN / PLANCK # kT/h expressed in Hz lnQ = 0. nu = freqs * 100 # convert to m^-1 (as array) nu = nu * CLIGHT # convert to Hz fred = nu / kTh # reduced frequencies x = np.exp(-fred) # exponentiated, reduced frequencies xm1 = 1 - x if deriv == 1: # derivative of lnQ term = nu * x / xm1 d = term.sum() return (d / (kTh*T)) if deriv == 2: # 2nd derivative of lnQ t1 = nu * (1/xm1 - 1) sum1 = -2 * t1.sum() / (kTh * T * T) t2 = nu * nu * x / (xm1 * xm1) sum2 = t2.sum() / (kTh * kTh * T * T) return (sum1 + sum2) # return lnQ itself lnq = np.log(xm1) lnQ = -1 * lnq.sum() return lnQ ## def typeCoord(crds): # 'Geometry' (a Geometry object) # 'cartesian' (a list of elements and list/array of cartesians) # 'ZMatrix' (a ZMatrix object) if isinstance(crds, Geometry): intype = 'Geometry' elif isinstance(crds, ZMatrix): intype = 'ZMatrix' elif isinstance(crds, list) and (len(crds) == 2) and ( (len(crds[0]) == len(crds[1])) or (len(crds[0]) * 3 == len(crds[1])) ): # 'cartesian' is plausible intype = 'cartesian' else: print_err('autodetect') return intype ## def parse_ZMatrix(zlist, unitR='angstrom', unitA='degree'): # Given a list of all the lines of a z-matrix, # return a ZMatrix object el = [] refat = [] var = [] val = {} intop = True maxlen = 0 # keep track of max number of words in line, # because its decrease will signal the beginning of the # second section of the z-matrix (if any) regexSplit = re.compile('[\s,=]+') for line in zlist: words = regexSplit.split(line) # split on whitespace, comma, or equals nwords = len(words) if nwords < 1: continue # ignore blank line maxlen = max(maxlen, nwords) if nwords < maxlen: intop = False if intop: # list of atoms and variable names (or floats) # add element symbol el.append(words[0]) # add variable (str|float)'s var.append([]) for i in range(2, nwords, 2): try: var[-1].append(float(words[i])) except: # symbolic z-matrix variable (str type) var[-1].append(words[i]) # add list of atoms to which variables refer refat.append([]) for i in range(1, nwords, 2): refat[-1].append(int(words[i]) - 1) # subtract one from user-viewed index else: # values of any z-matrix variables val[words[0]] = float(words[1]) ZM = ZMatrix(el, refat, var, val, unitR=unitR, unitA=unitA) return ZM ## class ZMatrix(object): # symbolic or numerical z-matrix # initialize empty and then add to it # indices are zero-based but user will be one-based def __init__(self, el=[], refat=[], var=[], val={}, vtype={}, unitR='angstrom', unitA='radian'): # this structure corresponds with the usual way of writing # a z-matrix, with one atom defined per line self.el = el # element symbols; should be in correct order self.refat = refat # list of [list of ref. atoms that define position of this atom] self.var = var # list of [list of z-matrix vars/constants that define this atom pos.] self.val = val # dict of float values of any symbolic z-matrix variables self.vtype = vtype # dict of names of variable types ('distance', 'angle', 'dihedral') self.unitR = unitR # for distances self.unitA = unitA # for angles and dihedrals ('radian' or 'degree') self.coordtype = 'ZMatrix' self.charge = None # optional self.spinmult = None # optional if len(val) != len(vtype): # generate the vtype's automatically self.vtypeBuild() def vtypeBuild(self): # categorize the variables # this is important because they have different units category = ['distance', 'angle', 'dihedral'] for iat in range(self.natom()): # loop over atoms for ivar in range(len(self.var[iat])): # loop over names of z-matrix variables for this atom # it's left-to-right, so vars are in the order in 'category' v = self.var[iat][ivar] # name of a variable if ivar > 2: self.vtype[v] = 'unknown' else: self.vtype[v] = category[ivar] return def varMask(self, varlist): # given a list of z-matrix variable names, return a numpy array of Boolean # showing which indices [from ZMatrix.fromVector()] correspond blist = [] for var in sorted(self.val): blist.append(var in varlist) return np.array(blist) def canonical_angles(self): # shift all dihedral angles into the range (-pi, pi] for varname in self.val: if self.vtype[varname] == 'dihedral': self.val[varname] = angle_canon(self.val[varname], unit=self.unitA) return def cap_angles(self): # force all bond angles to be in the range (0, pi) for varname in self.val: if self.vtype[varname] == 'angle': if self.unitA == 'degree': if self.val[varname] >= 180.: self.val[varname] = 179.9 if self.val[varname] < 0.: self.val[varname] = 0.1 else: # radian if self.val[varname] >= PI: self.val[varname] = PI - 0.0002 if self.val[varname] < 0.: self.val[varname] = 0.0002 return def adjust_dTau(self, dX): # given a vector of coordinate differences, move # dihedral angle differences into the range (-pi, pi] i = 0 for k in sorted(self.val): if self.vtype[k] == 'dihedral': dX[i] = angle_canon(dX[i], unit=self.unitA) i += 1 return dX def toRadian(self): # make sure all angles/dihedrals are in radian if self.unitA == 'degree': for v in self.val: if self.vtype[v] in ['angle', 'dihedral']: self.val[v] = np.deg2rad(self.val[v]) self.unitA = 'radian' return def toDegree(self): # make sure all angles/dihedrals are in degree if self.unitA == 'radian': for v in self.val: if self.vtype[v] in ['angle', 'dihedral']: self.val[v] = np.rad2deg(self.val[v]) self.unitA = 'degree' return def toAngstrom(self): # make sure all distances are in angstrom if self.unitR == 'bohr': for v in self.val: if self.vtype[v] == 'distance': self.val[v] *= BOHR self.unitR = 'angstrom' return def toBohr(self): # make sure all distances are in bohr if self.unitR == 'angstrom': for v in self.val: if self.vtype[v] == 'distance': self.val[v] /= BOHR self.unitR = 'bohr' return def unitX(self): # return (tuple) of units return (self.unitR, self.unitA) def toUnits(self, unitS): # given (unitR, unitA), in either order, convert to those units if 'angstrom' in unitS: self.toAngstrom() if 'bohr' in unitS: self.toBohr() if 'degree' in unitS: self.toDegree() if 'radian' in unitS: self.toRadian() return def varlist(self): # return a list of the variable names in standard (sorted) order vlist = [k for k in sorted(self.val)] return vlist def toVector(self): # return a numpy array containing the values of the coordinates # they are sorted according to their names vec = [self.val[k] for k in sorted(self.val)] return
np.array(vec)
numpy.array
""" Unit tests for neural.py""" # Author: <NAME> # License: BSD 3 clause import unittest import numpy as np # The following functions/classes are not automatically imported at # initialization, so must be imported explicitly from neural.py and # activation.py. from mlrose.neural import (flatten_weights, unflatten_weights, gradient_descent, NetworkWeights, ContinuousOpt, NeuralNetwork, LogisticRegression, LinearRegression) from mlrose.activation import identity, sigmoid, softmax class TestNeural(unittest.TestCase): """Tests for neural.py functions.""" @staticmethod def test_flatten_weights(): """Test flatten_weights function""" x =
np.arange(12)
numpy.arange
import numpy as np import pytest from numpy.testing import assert_allclose, assert_equal, assert_raises from statsmodels.tsa.stattools import acovf from statsmodels.tsa.innovations.arma_innovations import arma_innovations from statsmodels.tsa.arima.datasets.brockwell_davis_2002 import dowj, lake from statsmodels.tsa.arima.estimators.yule_walker import yule_walker @pytest.mark.low_precision('Test against Example 5.1.1 in Brockwell and Davis' ' (2016)') def test_brockwell_davis_example_511(): # Make the series stationary endog = dowj.diff().iloc[1:] # Should have 77 observations assert_equal(len(endog), 77) # Autocovariances desired = [0.17992, 0.07590, 0.04885] assert_allclose(acovf(endog, fft=True, nlag=2), desired, atol=1e-5) # Yule-Walker yw, _ = yule_walker(endog, ar_order=1, demean=True) assert_allclose(yw.ar_params, [0.4219], atol=1e-4) assert_allclose(yw.sigma2, 0.1479, atol=1e-4) @pytest.mark.low_precision('Test against Example 5.1.4 in Brockwell and Davis' ' (2016)') def test_brockwell_davis_example_514(): # Note: this example is primarily tested in # test_burg::test_brockwell_davis_example_514. # Get the lake data, demean endog = lake.copy() # Yule-Walker res, _ = yule_walker(endog, ar_order=2, demean=True)
assert_allclose(res.ar_params, [1.0538, -0.2668], atol=1e-4)
numpy.testing.assert_allclose
import torch from torch.utils.data import TensorDataset, Dataset from torch.utils.data import DataLoader import numpy as np class Dataset_V5(Dataset): def __init__(self,X_signal,X_ci,Y,Y_mask,final_len_x,diff_window_ppg,device): self.X_signal = X_signal self.X_ci = X_ci self.Y = Y self.Y_mask = Y_mask self.final_len_x = final_len_x self.diff_window_ppg = diff_window_ppg self.device = device def __getitem__(self, index): x = self.X_signal[index] x_ci = self.X_ci[index] y = self.Y[index] y_mask = self.Y_mask[index] # Desplazamos la señal idx_roll = np.random.randint(0, self.diff_window_ppg) x = x[:,idx_roll:idx_roll+self.final_len_x] x_s = x[0:1,:] # Por ultimo normalizamos [0, 1] a la señal a_max = np.amax(x_s, axis=1) a_min = np.amin(x_s, axis=1) x_s = (x_s - a_min[None,:]) / (a_max[None,:] - a_min[None,:]) x_d1 = x[1:2,:] a_max = np.amax(x_d1, axis=1) a_min = np.amin(x_d1, axis=1) x_d1 = (x_d1 - a_min[None,:]) / (a_max[None,:] - a_min[None,:]) x = np.concatenate((x_s,x_d1)) x = torch.from_numpy(x).float().to(self.device) x_ci = torch.from_numpy(x_ci).float().to(self.device) y = torch.from_numpy(y).float().to(self.device) y_mask = torch.from_numpy(y_mask).float().to(self.device) return (x,x_ci,y,y_mask) def __len__(self): return len(self.X_signal) class Dataset_V6(Dataset): def __init__(self,X_signal,Y,Y_mask,final_len_x,diff_window_ppg,device): self.X_signal = X_signal self.Y = Y self.Y_mask = Y_mask self.final_len_x = final_len_x self.diff_window_ppg = diff_window_ppg self.device = device def __getitem__(self, index): x = self.X_signal[index] y = self.Y[index] y_mask = self.Y_mask[index] # Desplazamos la señal idx_roll = np.random.randint(0, self.diff_window_ppg) x = x[:,idx_roll:idx_roll+self.final_len_x] x_s = x[0:1,:] # Por ultimo normalizamos [0, 1] a la señal a_max =
np.amax(x_s, axis=1)
numpy.amax
import unittest import numpy import test_utils class TestBasicAddition(unittest.TestCase): # Test basic addition of all combinations of all types, not checking for any edge cases specifically. ZERO = numpy.float32(0) ONE = numpy.float32(1) MIN_SUBNORM = numpy.float32(1e-45) MAX_SUBNORM = numpy.float32(1.1754942e-38) MIN_NORM = numpy.float32(1.1754944e-38) MAX_NORM = numpy.float32(3.4028235e38) INF = numpy.float32(numpy.inf) NAN = numpy.float32(numpy.nan) # Initialise the tester object used to run the assembled code. @classmethod def setUpClass(cls): cls.tester = test_utils.SubroutineTester("test_addition.s") cls.tester.initialise() # Run a test to compare the expected sum of two floats to the actual sum. def run_test(self, float1: numpy.float32, float2: numpy.float32): expected = float1 + float2 if numpy.isnan(expected): self.assertTrue(numpy.isnan(TestBasicAddition.tester.run_test(float1, float2))) else: self.assertEqual(float1 + float2, TestBasicAddition.tester.run_test(float1, float2)) def test_zero(self): # Test that ±0 + x = x for all types of x. self.run_test(self.ZERO, self.ZERO) self.run_test(self.ZERO, -self.ZERO) self.run_test(-self.ZERO, self.ZERO) self.run_test(-self.ZERO, -self.ZERO) self.run_test(self.ZERO, self.ONE) self.run_test(self.ZERO, -self.ONE) self.run_test(-self.ZERO, self.ONE) self.run_test(-self.ZERO, -self.ONE) self.run_test(self.ZERO, self.MIN_SUBNORM) self.run_test(self.ZERO, -self.MIN_SUBNORM) self.run_test(-self.ZERO, self.MIN_SUBNORM) self.run_test(-self.ZERO, -self.MIN_SUBNORM) self.run_test(self.ZERO, numpy.float32(9.060464e-39)) self.run_test(self.ZERO, -numpy.float32(9.060464e-39)) self.run_test(-self.ZERO, numpy.float32(9.060464e-39)) self.run_test(-self.ZERO, -numpy.float32(9.060464e-39)) self.run_test(self.ZERO, self.MAX_SUBNORM) self.run_test(self.ZERO, -self.MAX_SUBNORM) self.run_test(-self.ZERO, self.MAX_SUBNORM) self.run_test(-self.ZERO, -self.MAX_SUBNORM) self.run_test(self.ZERO, self.MIN_NORM) self.run_test(self.ZERO, -self.MIN_NORM) self.run_test(-self.ZERO, self.MIN_NORM) self.run_test(-self.ZERO, -self.MIN_NORM) self.run_test(self.ZERO, numpy.float32(395.6166)) self.run_test(self.ZERO, -numpy.float32(395.6166)) self.run_test(-self.ZERO, numpy.float32(395.6166)) self.run_test(-self.ZERO, -numpy.float32(395.6166)) self.run_test(self.ZERO, self.MAX_NORM) self.run_test(self.ZERO, -self.MAX_NORM) self.run_test(-self.ZERO, self.MAX_NORM) self.run_test(-self.ZERO, -self.MAX_NORM) self.run_test(self.ZERO, self.INF) self.run_test(self.ZERO, -self.INF) self.run_test(-self.ZERO, self.INF) self.run_test(-self.ZERO, -self.INF) self.run_test(self.ZERO, self.NAN) self.run_test(-self.ZERO, self.NAN) def test_one(self): # Test ±1 + x for all types of x. self.run_test(self.ONE, self.ZERO) self.run_test(self.ONE, -self.ZERO) self.run_test(-self.ONE, self.ZERO) self.run_test(-self.ONE, -self.ZERO) self.run_test(self.ONE, self.ONE) self.run_test(self.ONE, -self.ONE) self.run_test(-self.ONE, self.ONE) self.run_test(-self.ONE, -self.ONE) self.run_test(self.ONE, self.MIN_SUBNORM) self.run_test(self.ONE, -self.MIN_SUBNORM) self.run_test(-self.ONE, self.MIN_SUBNORM) self.run_test(-self.ONE, -self.MIN_SUBNORM) self.run_test(self.ONE, numpy.float32(1.902965e-39)) self.run_test(self.ONE, -numpy.float32(1.902965e-39)) self.run_test(-self.ONE, numpy.float32(1.902965e-39)) self.run_test(-self.ONE, -numpy.float32(1.902965e-39)) self.run_test(self.ONE, self.MAX_SUBNORM) self.run_test(self.ONE, -self.MAX_SUBNORM) self.run_test(-self.ONE, self.MAX_SUBNORM) self.run_test(-self.ONE, -self.MAX_SUBNORM) self.run_test(self.ONE, self.MIN_NORM) self.run_test(self.ONE, -self.MIN_NORM) self.run_test(-self.ONE, self.MIN_NORM) self.run_test(-self.ONE, -self.MIN_NORM) self.run_test(self.ONE, numpy.float32(7918.158)) self.run_test(self.ONE, -numpy.float32(7918.158)) self.run_test(-self.ONE, numpy.float32(7918.158)) self.run_test(-self.ONE, -numpy.float32(7918.158)) self.run_test(self.ONE, self.MAX_NORM) self.run_test(self.ONE, -self.MAX_NORM) self.run_test(-self.ONE, self.MAX_NORM) self.run_test(-self.ONE, -self.MAX_NORM) self.run_test(self.ONE, self.INF) self.run_test(self.ONE, -self.INF) self.run_test(-self.ONE, self.INF) self.run_test(-self.ONE, -self.INF) self.run_test(self.ONE, self.NAN) self.run_test(-self.ONE, self.NAN) def test_min_subnorm(self): # Test ±MIN_SUBNORM + x for all types of x. self.run_test(self.MIN_SUBNORM, self.ZERO) self.run_test(self.MIN_SUBNORM, -self.ZERO) self.run_test(-self.MIN_SUBNORM, self.ZERO) self.run_test(-self.MIN_SUBNORM, -self.ZERO) self.run_test(self.MIN_SUBNORM, self.ONE) self.run_test(self.MIN_SUBNORM, -self.ONE) self.run_test(-self.MIN_SUBNORM, self.ONE) self.run_test(-self.MIN_SUBNORM, -self.ONE) self.run_test(self.MIN_SUBNORM, self.MIN_SUBNORM) self.run_test(self.MIN_SUBNORM, -self.MIN_SUBNORM) self.run_test(-self.MIN_SUBNORM, self.MIN_SUBNORM) self.run_test(-self.MIN_SUBNORM, -self.MIN_SUBNORM) self.run_test(self.MIN_SUBNORM, numpy.float32(6.927885e-39)) self.run_test(self.MIN_SUBNORM, -numpy.float32(6.927885e-39)) self.run_test(-self.MIN_SUBNORM, numpy.float32(6.927885e-39)) self.run_test(-self.MIN_SUBNORM, -numpy.float32(6.927885e-39)) self.run_test(self.MIN_SUBNORM, self.MAX_SUBNORM) self.run_test(self.MIN_SUBNORM, -self.MAX_SUBNORM) self.run_test(-self.MIN_SUBNORM, self.MAX_SUBNORM) self.run_test(-self.MIN_SUBNORM, -self.MAX_SUBNORM) self.run_test(self.MIN_SUBNORM, self.MIN_NORM) self.run_test(self.MIN_SUBNORM, -self.MIN_NORM) self.run_test(-self.MIN_SUBNORM, self.MIN_NORM) self.run_test(-self.MIN_SUBNORM, -self.MIN_NORM) self.run_test(self.MIN_SUBNORM, numpy.float32(466603.3)) self.run_test(self.MIN_SUBNORM, -numpy.float32(466603.3)) self.run_test(-self.MIN_SUBNORM, numpy.float32(466603.3)) self.run_test(-self.MIN_SUBNORM, -numpy.float32(466603.3)) self.run_test(self.MIN_SUBNORM, self.MAX_NORM) self.run_test(self.MIN_SUBNORM, -self.MAX_NORM) self.run_test(-self.MIN_SUBNORM, self.MAX_NORM) self.run_test(-self.MIN_SUBNORM, -self.MAX_NORM) self.run_test(self.MIN_SUBNORM, self.INF) self.run_test(self.MIN_SUBNORM, -self.INF) self.run_test(-self.MIN_SUBNORM, self.INF) self.run_test(-self.MIN_SUBNORM, -self.INF) self.run_test(self.MIN_SUBNORM, self.NAN) self.run_test(-self.MIN_SUBNORM, self.NAN) def test_subnorm(self): # Test ±x + y for subnormal x and all types of y. self.run_test(numpy.float32(7.518523e-39), self.ZERO) self.run_test(numpy.float32(7.518523e-39), -self.ZERO) self.run_test(-numpy.float32(7.518523e-39), self.ZERO) self.run_test(-numpy.float32(7.518523e-39), -self.ZERO) self.run_test(numpy.float32(2.028916e-39), self.ONE) self.run_test(numpy.float32(2.028916e-39), -self.ONE) self.run_test(-numpy.float32(2.028916e-39), self.ONE) self.run_test(-numpy.float32(2.028916e-39), -self.ONE) self.run_test(numpy.float32(4.042427e-39), self.MIN_SUBNORM) self.run_test(numpy.float32(4.042427e-39), -self.MIN_SUBNORM) self.run_test(-numpy.float32(4.042427e-39), self.MIN_SUBNORM) self.run_test(-numpy.float32(4.042427e-39), -self.MIN_SUBNORM) self.run_test(numpy.float32(9.636327e-39), numpy.float32(1.0185049e-38)) self.run_test(numpy.float32(9.636327e-39), -numpy.float32(1.0185049e-38)) self.run_test(-numpy.float32(9.636327e-39), numpy.float32(1.0185049e-38)) self.run_test(-numpy.float32(9.636327e-39), -numpy.float32(1.0185049e-38)) self.run_test(numpy.float32(1.989006e-39), self.MAX_SUBNORM) self.run_test(numpy.float32(1.989006e-39), -self.MAX_SUBNORM) self.run_test(-numpy.float32(1.989006e-39), self.MAX_SUBNORM) self.run_test(-numpy.float32(1.989006e-39), -self.MAX_SUBNORM) self.run_test(numpy.float32(2.952435e-39), self.MIN_NORM) self.run_test(numpy.float32(2.952435e-39), -self.MIN_NORM) self.run_test(-numpy.float32(2.952435e-39), self.MIN_NORM) self.run_test(-numpy.float32(2.952435e-39), -self.MIN_NORM) self.run_test(numpy.float32(1.154907e-38), numpy.float32(4.0687437e-36)) self.run_test(numpy.float32(1.154907e-38), -numpy.float32(4.0687437e-36)) self.run_test(-numpy.float32(1.154907e-38), numpy.float32(4.0687437e-36)) self.run_test(-numpy.float32(1.154907e-38), -numpy.float32(4.0687437e-36)) self.run_test(numpy.float32(9.79494e-39), self.MAX_NORM) self.run_test(numpy.float32(9.79494e-39), -self.MAX_NORM) self.run_test(-numpy.float32(9.79494e-39), self.MAX_NORM) self.run_test(-numpy.float32(9.79494e-39), -self.MAX_NORM) self.run_test(numpy.float32(1.54569e-39), self.INF) self.run_test(numpy.float32(1.54569e-39), -self.INF) self.run_test(-numpy.float32(1.54569e-39), self.INF) self.run_test(-numpy.float32(1.54569e-39), -self.INF) self.run_test(numpy.float32(3.974073e-39), self.NAN) self.run_test(-numpy.float32(3.974073e-39), self.NAN) def test_max_subnorm(self): # Test ±MAX_SUBNORM + x for all types of x. self.run_test(self.MAX_SUBNORM, self.ZERO) self.run_test(self.MAX_SUBNORM, -self.ZERO) self.run_test(-self.MAX_SUBNORM, self.ZERO) self.run_test(-self.MAX_SUBNORM, -self.ZERO) self.run_test(self.MAX_SUBNORM, self.ONE) self.run_test(self.MAX_SUBNORM, -self.ONE) self.run_test(-self.MAX_SUBNORM, self.ONE) self.run_test(-self.MAX_SUBNORM, -self.ONE) self.run_test(self.MAX_SUBNORM, self.MIN_SUBNORM) self.run_test(self.MAX_SUBNORM, -self.MIN_SUBNORM) self.run_test(-self.MAX_SUBNORM, self.MIN_SUBNORM) self.run_test(-self.MAX_SUBNORM, -self.MIN_SUBNORM) self.run_test(self.MAX_SUBNORM, numpy.float32(2.736488e-39)) self.run_test(self.MAX_SUBNORM, -numpy.float32(2.736488e-39)) self.run_test(-self.MAX_SUBNORM, numpy.float32(2.736488e-39)) self.run_test(-self.MAX_SUBNORM, -numpy.float32(2.736488e-39)) self.run_test(self.MAX_SUBNORM, self.MAX_SUBNORM) self.run_test(self.MAX_SUBNORM, -self.MAX_SUBNORM) self.run_test(-self.MAX_SUBNORM, self.MAX_SUBNORM) self.run_test(-self.MAX_SUBNORM, -self.MAX_SUBNORM) self.run_test(self.MAX_SUBNORM, self.MIN_NORM) self.run_test(self.MAX_SUBNORM, -self.MIN_NORM) self.run_test(-self.MAX_SUBNORM, self.MIN_NORM) self.run_test(-self.MAX_SUBNORM, -self.MIN_NORM) self.run_test(self.MAX_SUBNORM, numpy.float32(8.027242e-35)) self.run_test(self.MAX_SUBNORM, -numpy.float32(8.027242e-35)) self.run_test(-self.MAX_SUBNORM, numpy.float32(8.027242e-35)) self.run_test(-self.MAX_SUBNORM, -numpy.float32(8.027242e-35)) self.run_test(self.MAX_SUBNORM, self.MAX_NORM) self.run_test(self.MAX_SUBNORM, -self.MAX_NORM) self.run_test(-self.MAX_SUBNORM, self.MAX_NORM) self.run_test(-self.MAX_SUBNORM, -self.MAX_NORM) self.run_test(self.MAX_SUBNORM, self.INF) self.run_test(self.MAX_SUBNORM, -self.INF) self.run_test(-self.MAX_SUBNORM, self.INF) self.run_test(-self.MAX_SUBNORM, -self.INF) self.run_test(self.MAX_SUBNORM, self.NAN) self.run_test(-self.MAX_SUBNORM, self.NAN) def test_min_norm(self): # Test ±MIN_NORM + x for all types of x. self.run_test(self.MIN_NORM, self.ZERO) self.run_test(self.MIN_NORM, -self.ZERO) self.run_test(-self.MIN_NORM, self.ZERO) self.run_test(-self.MIN_NORM, -self.ZERO) self.run_test(self.MIN_NORM, self.ONE) self.run_test(self.MIN_NORM, -self.ONE) self.run_test(-self.MIN_NORM, self.ONE) self.run_test(-self.MIN_NORM, -self.ONE) self.run_test(self.MIN_NORM, self.MIN_SUBNORM) self.run_test(self.MIN_NORM, -self.MIN_SUBNORM) self.run_test(-self.MIN_NORM, self.MIN_SUBNORM) self.run_test(-self.MIN_NORM, -self.MIN_SUBNORM) self.run_test(self.MIN_NORM, numpy.float32(7.235862e-39)) self.run_test(self.MIN_NORM, -numpy.float32(7.235862e-39)) self.run_test(-self.MIN_NORM, numpy.float32(7.235862e-39)) self.run_test(-self.MIN_NORM, -numpy.float32(7.235862e-39)) self.run_test(self.MIN_NORM, self.MAX_SUBNORM) self.run_test(self.MIN_NORM, -self.MAX_SUBNORM) self.run_test(-self.MIN_NORM, self.MAX_SUBNORM) self.run_test(-self.MIN_NORM, -self.MAX_SUBNORM) self.run_test(self.MIN_NORM, self.MIN_NORM) self.run_test(self.MIN_NORM, -self.MIN_NORM) self.run_test(-self.MIN_NORM, self.MIN_NORM) self.run_test(-self.MIN_NORM, -self.MIN_NORM) self.run_test(self.MIN_NORM, numpy.float32(3.0655702e-37)) self.run_test(self.MIN_NORM, -numpy.float32(3.0655702e-37)) self.run_test(-self.MIN_NORM, numpy.float32(3.0655702e-37)) self.run_test(-self.MIN_NORM, -numpy.float32(3.0655702e-37)) self.run_test(self.MIN_NORM, self.MAX_NORM) self.run_test(self.MIN_NORM, -self.MAX_NORM) self.run_test(-self.MIN_NORM, self.MAX_NORM) self.run_test(-self.MIN_NORM, -self.MAX_NORM) self.run_test(self.MIN_NORM, self.INF) self.run_test(self.MIN_NORM, -self.INF) self.run_test(-self.MIN_NORM, self.INF) self.run_test(-self.MIN_NORM, -self.INF) self.run_test(self.MIN_NORM, self.NAN) self.run_test(-self.MIN_NORM, self.NAN) def test_norm(self): # Test ±x + y for normal x and all types of y. self.run_test(numpy.float32(3.2528998e8), self.ZERO) self.run_test(numpy.float32(3.2528998e8), -self.ZERO) self.run_test(-numpy.float32(3.2528998e8), self.ZERO) self.run_test(-numpy.float32(3.2528998e8), -self.ZERO) self.run_test(numpy.float32(5781.5137), self.ONE) self.run_test(numpy.float32(5781.5137), -self.ONE) self.run_test(-numpy.float32(5781.5137), self.ONE) self.run_test(-numpy.float32(5781.5137), -self.ONE) self.run_test(numpy.float32(4.0233208e-35), self.MIN_SUBNORM) self.run_test(numpy.float32(4.0233208e-35), -self.MIN_SUBNORM) self.run_test(-numpy.float32(4.0233208e-35), self.MIN_SUBNORM) self.run_test(-numpy.float32(4.0233208e-35), -self.MIN_SUBNORM) self.run_test(numpy.float32(3.4244755e-37), numpy.float32(7.951416e-39)) self.run_test(numpy.float32(3.4244755e-37), -numpy.float32(7.951416e-39)) self.run_test(-numpy.float32(3.4244755e-37), numpy.float32(7.951416e-39)) self.run_test(-numpy.float32(3.4244755e-37), -numpy.float32(7.951416e-39)) self.run_test(numpy.float32(1.772688e-35), self.MAX_SUBNORM) self.run_test(numpy.float32(1.772688e-35), -self.MAX_SUBNORM) self.run_test(-numpy.float32(1.772688e-35), self.MAX_SUBNORM) self.run_test(-numpy.float32(1.772688e-35), -self.MAX_SUBNORM) self.run_test(numpy.float32(9.7266296e-36), self.MIN_NORM) self.run_test(numpy.float32(9.7266296e-36), -self.MIN_NORM) self.run_test(-numpy.float32(9.7266296e-36), self.MIN_NORM) self.run_test(-numpy.float32(9.7266296e-36), -self.MIN_NORM) self.run_test(numpy.float32(9.964942e17), numpy.float32(3.0321312e16)) self.run_test(numpy.float32(9.964942e17), -numpy.float32(3.0321312e16)) self.run_test(-numpy.float32(9.964942e17), numpy.float32(3.0321312e16)) self.run_test(-numpy.float32(9.964942e17), -numpy.float32(3.0321312e16)) self.run_test(numpy.float32(3.3541464e35), self.MAX_NORM) self.run_test(numpy.float32(3.3541464e35), -self.MAX_NORM) self.run_test(-numpy.float32(3.3541464e35), self.MAX_NORM) self.run_test(-numpy.float32(3.3541464e35), -self.MAX_NORM) self.run_test(numpy.float32(1.8177568e25), self.INF) self.run_test(numpy.float32(1.8177568e25), -self.INF) self.run_test(-
numpy.float32(1.8177568e25)
numpy.float32
from .helpers import quat_inv_trans, quat_trans, check_filepath, import_value, quat_mult, quat_conj, quat_to_euler, euler_to_quat from .airplane import Airplane from .standard_atmosphere import StandardAtmosphere from .exceptions import SolverNotConvergedError import json import time import copy import warnings import numpy as np import math as m import scipy.interpolate as sinterp import scipy.optimize as sopt import matplotlib.pyplot as plt from stl import mesh from mpl_toolkits.mplot3d import Axes3D from airfoil_db import DatabaseBoundsError class Scene: """A class defining a scene containing one or more aircraft. Parameters ---------- scene_input : string or dict, optional Dictionary or path to the JSON object specifying the scene parameters (see 'Creating Input Files for MachUp'). If not specified, all default values are chosen. Raises ------ IOError If input filepath or filename is invalid """ def __init__(self, scene_input={}): # Initialize basic storage objects self._airplanes = {} self._N = 0 self._num_aircraft = 0 # Track whether the scene in its current state has been solved # Should be set to False any time any state variable is changed without immediately thereafter calling solve_forces() self._solved = False # Import information from the input self._load_params(scene_input) # Set the error handling state self.set_err_state() def _load_params(self, scene_input): # Loads JSON object and stores input parameters and aircraft # File if isinstance(scene_input, str): check_filepath(scene_input,".json") with open(scene_input) as input_json_handle: self._input_dict = json.load(input_json_handle) # Dictionary elif isinstance(scene_input, dict): self._input_dict = copy.deepcopy(scene_input) # Input format not recognized else: raise IOError("Input to Scene class initializer must be a file path or Python dictionary, not type {0}.".format(type(scene_input))) # Store solver parameters solver_params = self._input_dict.get("solver", {}) self._solver_type = solver_params.get("type", "nonlinear") self._solver_convergence = solver_params.get("convergence", 1e-10) self._solver_relaxation = solver_params.get("relaxation", 1.0) self._max_solver_iterations = solver_params.get("max_iterations", 100) self._use_swept_sections = solver_params.get("use_swept_sections", True) self._use_total_velocity = solver_params.get("use_total_velocity", True) self._use_in_plane = solver_params.get("use_in_plane", True) self._match_machup_pro = solver_params.get("match_machup_pro", False) self._impingement_threshold = solver_params.get("impingement_threshold", 1e-10) # Store unit system self._unit_sys = self._input_dict.get("units", "English") # Setup atmospheric property getter functions scene_dict = self._input_dict.get("scene", {}) atmos_dict = scene_dict.get("atmosphere", {}) self._std_atmos = StandardAtmosphere(unit_sys=self._unit_sys) self._get_density = self._initialize_density_getter(**atmos_dict) self._get_wind = self._initialize_wind_getter(**atmos_dict) self._get_viscosity = self._initialize_viscosity_getter(**atmos_dict) self._get_sos = self._initialize_sos_getter(**atmos_dict) # Initialize aircraft geometries aircraft_dict = scene_dict.get("aircraft", {}) for key in aircraft_dict: # Get inputs airplane_file = self._input_dict["scene"]["aircraft"][key]["file"] state = self._input_dict["scene"]["aircraft"][key].get("state",{}) control_state = self._input_dict["scene"]["aircraft"][key].get("control_state",{}) # Instantiate self.add_aircraft(key, airplane_file, state=state, control_state=control_state) def _initialize_density_getter(self, **kwargs): # Load value from dictionary default_density = self._std_atmos.rho(0.0) rho = import_value("rho", kwargs, self._unit_sys, default_density) # Constant value if isinstance(rho, float): self._constant_rho = rho def density_getter(position): return self._constant_rho # Atmospheric table name elif isinstance(rho, str): # Profile if not rho in ["standard"]: raise IOError("{0} is not an allowable profile name.".format(rho)) def density_getter(position): pos = position.T return self._std_atmos.rho(-pos[2]) # Array elif isinstance(rho, np.ndarray): self._density_data = rho # Create getters if self._density_data.shape[1] == 2: # Density profile def density_getter(position): pos = position.T return np.interp(-pos[2], self._density_data[:,0], self._density_data[:,1]) elif self._density_data.shape[1] == 4: # Density field self._density_field_interpolator = sinterp.LinearNDInterpolator(self._density_data[:,:3],self._density_data[:,3]) def density_getter(position): return self._density_field_interpolator(position) # Improper specification else: raise IOError("Density improperly specified as {0}.".format(rho)) return density_getter def _initialize_wind_getter(self, **kwargs): # Load value from dict default_wind = [0.0, 0.0, 0.0] V_wind = import_value("V_wind", kwargs, self._unit_sys, default_wind) # Store wind if isinstance(V_wind, np.ndarray): if V_wind.shape == (3,): # Constant wind vector self._constant_wind = V_wind def wind_getter(position): return self._constant_wind*np.ones(position.shape) else: # Array self._wind_data = V_wind # Create getters if self._wind_data.shape[1] == 6: # Wind field self._wind_field_x_interpolator = sinterp.LinearNDInterpolator(self._wind_data[:,:3], self._wind_data[:,3], fill_value=0.0) self._wind_field_y_interpolator = sinterp.LinearNDInterpolator(self._wind_data[:,:3], self._wind_data[:,4], fill_value=0.0) self._wind_field_z_interpolator = sinterp.LinearNDInterpolator(self._wind_data[:,:3], self._wind_data[:,5], fill_value=0.0) def wind_getter(position): single = len(position.shape)==1 Vx = self._wind_field_x_interpolator(position) Vy = self._wind_field_y_interpolator(position) Vz = self._wind_field_z_interpolator(position) if single: return np.array([Vx.item(), Vy.item(), Vz.item()]) else: return np.array([Vx, Vy, Vz]).T elif self._wind_data.shape[1] == 4: # wind profile def wind_getter(position): single = len(position.shape)==1 pos_T = position.T Vx = np.interp(-pos_T[2], self._wind_data[:,0], self._wind_data[:,1]) Vy = np.interp(-pos_T[2], self._wind_data[:,0], self._wind_data[:,2]) Vz = np.interp(-pos_T[2], self._wind_data[:,0], self._wind_data[:,3]) if single: return np.array([Vx.item(), Vy.item(), Vz.item()]) else: return np.array([Vx, Vy, Vz]).T else: raise IOError("Wind array has the wrong number of columns.") else: raise IOError("Wind velocity improperly specified as {0}".format(V_wind)) return wind_getter def _initialize_viscosity_getter(self, **kwargs): # Load value from dictionary default_visc = self._std_atmos.nu(0.0) nu = import_value("viscosity", kwargs, self._unit_sys, default_visc) # Constant value if isinstance(nu, float): self._constant_nu = nu def viscosity_getter(position): return self._constant_nu*np.ones((position.shape[:-1])) # Atmospheric profile name elif isinstance(nu, str): # Check we have that profile if not nu in ["standard"]: raise IOError("{0} is not an allowable profile name.".format(nu)) def viscosity_getter(position): pos = np.transpose(position) return self._std_atmos.nu(-pos[2]) return viscosity_getter def _initialize_sos_getter(self, **kwargs): # Load value from dictionary default_sos = self._std_atmos.a(0.0) a = import_value("speed_of_sound", kwargs, self._unit_sys, default_sos) # Constant value if isinstance(a, float): self._constant_a = a def sos_getter(position): return self._constant_a*np.ones((position.shape[:-1])) # Atmospheric profile name elif isinstance(a, str): # Check we have that profile if not a in ["standard"]: raise IOError("{0} is not an allowable profile name.".format(a)) def sos_getter(position): pos = np.transpose(position) return self._std_atmos.a(-pos[2]) return sos_getter def add_aircraft(self, airplane_name, airplane_input, state={}, control_state={}): """Inserts an aircraft into the scene. Note if an aircraft was specified in the input object, it has already been added to the scene. Parameters ---------- airplane_name : str Name of the airplane to be added. airplane_input : str or dict JSON object (path) or dictionary describing the airplane. state : dict Dictionary describing the state of the airplane. control_state : dict Dictionary describing the state of the controls. """ # Determine the local wind vector for setting the state of the aircraft aircraft_position = np.array(state.get("position", [0.0, 0.0, 0.0])) v_wind = self._get_wind(aircraft_position) # Create and store the aircraft object self._airplanes[airplane_name] = Airplane(airplane_name, airplane_input, self._unit_sys, self, init_state=state, init_control_state=control_state, v_wind=v_wind) # Update member variables self._N += self._airplanes[airplane_name].N self._num_aircraft += 1 # Update geometry self._initialize_storage_arrays() self._store_aircraft_properties() self._perform_geometry_and_atmos_calcs() def remove_aircraft(self, airplane_name): """Removes an aircraft from the scene. Parameters ---------- airplane_name : str Name of the airplane to be removed. """ # Remove aircraft from dictionary try: deleted_aircraft = self._airplanes.pop(airplane_name) except KeyError: raise RuntimeError("The scene has no aircraft named {0}.".format(airplane_name)) # Update quantities self._N -= deleted_aircraft.get_num_cps() self._num_aircraft -= 1 # Reinitialize arrays if self._num_aircraft != 0: self._initialize_storage_arrays() self._store_aircraft_properties() self._perform_geometry_and_atmos_calcs() def _initialize_storage_arrays(self): # Initialize arrays # Section geometry self._c_bar = np.zeros(self._N) # Average chord self._dS = np.zeros(self._N) # Differential planform area self._PC = np.zeros((self._N,3)) # Control point location self._r_CG = np.zeros((self._N,3)) # Radii from airplane CG to control points self._dl = np.zeros((self._N,3)) # Differential LAC elements self._section_sweep = np.zeros(self._N) # Node locations self._P0 = np.zeros((self._N,self._N,3)) # Inbound vortex node location; takes into account effective LAC where appropriate self._P0_joint = np.zeros((self._N,self._N,3)) # Inbound vortex joint node location self._P1 = np.zeros((self._N,self._N,3)) # Outbound vortex node location self._P1_joint = np.zeros((self._N,self._N,3)) # Outbound vortex joint node location # Spatial node vectors and magnitudes self._r_0 = np.zeros((self._N,self._N,3)) self._r_1 = np.zeros((self._N,self._N,3)) self._r_0_joint = np.zeros((self._N,self._N,3)) self._r_1_joint = np.zeros((self._N,self._N,3)) self._r_0_mag = np.zeros((self._N,self._N)) self._r_0_joint_mag = np.zeros((self._N,self._N)) self._r_1_mag = np.zeros((self._N,self._N)) self._r_1_joint_mag = np.zeros((self._N,self._N)) # Spatial node vector magnitude products self._r_0_r_0_joint_mag = np.zeros((self._N,self._N)) self._r_0_r_1_mag = np.zeros((self._N,self._N)) self._r_1_r_1_joint_mag = np.zeros((self._N,self._N)) # Section unit vectors self._u_a = np.zeros((self._N,3)) self._u_n = np.zeros((self._N,3)) self._u_s = np.zeros((self._N,3)) # Control point atmospheric properties self._rho = np.zeros(self._N) # Density self._nu = np.zeros(self._N) # Viscosity self._a = np.ones(self._N) # Speed of sound # Airfoil parameters self._Re = np.zeros(self._N) # Reynolds number self._M = np.zeros(self._N) # Mach number self._aL0 = np.zeros(self._N) # Zero-lift angle of attack self._CLa = np.zeros(self._N) # Lift slope self._CL = np.zeros(self._N) # Lift coefficient self._CD = np.zeros(self._N) # Drag coefficient self._Cm = np.zeros(self._N) # Moment coefficient # Velocities self._v_wind = np.zeros((self._N,3)) self._v_inf = np.zeros((self._N,3)) # Control point freestream vector if self._match_machup_pro: self._v_inf_w_o_rotation = np.zeros((self._N,3)) # Control point freestream vector minus influence of aircraft rotation self._P0_joint_v_inf = np.zeros((self._N,3)) self._P1_joint_v_inf = np.zeros((self._N,3)) # Misc self._diag_ind = np.diag_indices(self._N) self._gamma = np.zeros(self._N) self._solved = False def _store_aircraft_properties(self): # Get properties of the aircraft that don't change with state index = 0 self._airplane_objects = [] self._airplane_slices = [] # Loop through airplanes for _, airplane_object in self._airplanes.items(): # Store airplane objects to make sure they are always accessed in the same order self._airplane_objects.append(airplane_object) # Section of the arrays belonging to this airplane airplane_N = airplane_object.N airplane_slice = slice(index, index+airplane_N) self._airplane_slices.append(airplane_slice) # Get properties self._c_bar[airplane_slice] = airplane_object.c_bar self._dS[airplane_slice] = airplane_object.dS self._section_sweep[airplane_slice] = airplane_object.section_sweep index += airplane_N # Swept section corrections based on thin airfoil theory if self._use_swept_sections: C_lambda = np.cos(self._section_sweep) self._c_bar *= C_lambda self._C_sweep_inv = 1.0/C_lambda self._solved = False def _perform_geometry_and_atmos_calcs(self): # Performs calculations necessary for solving NLL which are only dependent on geometry. # This speeds up repeated calls to _solve(). This method should be called any time the # geometry is updated, an aircraft is added to the scene, or the position or orientation # of an aircraft changes. Note that all calculations occur in the Earth-fixed frame. # Loop through airplanes for airplane_object, airplane_slice in zip(self._airplane_objects, self._airplane_slices): # Get airplane q = airplane_object.q p = airplane_object.p_bar # Get geometries PC = quat_inv_trans(q, airplane_object.PC) self._r_CG[airplane_slice,:] = quat_inv_trans(q, airplane_object.PC_CG) self._PC[airplane_slice,:] = p+PC self._dl[airplane_slice,:] = quat_inv_trans(q, airplane_object.dl) # Get section vectors if self._use_swept_sections: self._u_a[airplane_slice,:] = quat_inv_trans(q, airplane_object.u_a) self._u_n[airplane_slice,:] = quat_inv_trans(q, airplane_object.u_n) self._u_s[airplane_slice,:] = quat_inv_trans(q, airplane_object.u_s) else: self._u_a[airplane_slice,:] = quat_inv_trans(q, airplane_object.u_a_unswept) self._u_n[airplane_slice,:] = quat_inv_trans(q, airplane_object.u_n_unswept) self._u_s[airplane_slice,:] = quat_inv_trans(q, airplane_object.u_s_unswept) # Node locations # Note the first index indicates which control point this is the effective LAC for self._P0[airplane_slice,airplane_slice,:] = p+quat_inv_trans(q, airplane_object.P0_eff) self._P1[airplane_slice,airplane_slice,:] = p+quat_inv_trans(q, airplane_object.P1_eff) self._P0_joint[airplane_slice,airplane_slice,:] = p+quat_inv_trans(q, airplane_object.P0_joint_eff) self._P1_joint[airplane_slice,airplane_slice,:] = p+quat_inv_trans(q, airplane_object.P1_joint_eff) # Get node locations for other aircraft from this aircraft # This does not need to take the effective LAC into account if self._num_aircraft > 1: this_ind = range(airplane_slice.start, airplane_slice.stop) other_ind = [i for i in range(self._N) if i not in this_ind] # control point indices for other airplanes self._P0[other_ind,airplane_slice,:] = p+quat_inv_trans(q, airplane_object.P0) self._P1[other_ind,airplane_slice,:] = p+quat_inv_trans(q, airplane_object.P1) self._P0_joint[other_ind,airplane_slice,:] = p+quat_inv_trans(q, airplane_object.P0_joint) self._P1_joint[other_ind,airplane_slice,:] = p+quat_inv_trans(q, airplane_object.P1_joint) # Spatial node vectors self._r_0[airplane_slice,airplane_slice,:] = quat_inv_trans(q, airplane_object.r_0) self._r_1[airplane_slice,airplane_slice,:] = quat_inv_trans(q, airplane_object.r_1) self._r_0_joint[airplane_slice,airplane_slice,:] = quat_inv_trans(q, airplane_object.r_0_joint) self._r_1_joint[airplane_slice,airplane_slice,:] = quat_inv_trans(q, airplane_object.r_1_joint) # Spatial node vector magnitudes self._r_0_mag[airplane_slice,airplane_slice] = airplane_object.r_0_mag self._r_0_joint_mag[airplane_slice,airplane_slice] = airplane_object.r_0_joint_mag self._r_1_mag[airplane_slice,airplane_slice] = airplane_object.r_1_mag self._r_1_joint_mag[airplane_slice,airplane_slice] = airplane_object.r_1_joint_mag # Spatial node vector magnitude products self._r_0_r_0_joint_mag[airplane_slice,airplane_slice] = airplane_object.r_0_r_0_joint_mag self._r_0_r_1_mag[airplane_slice,airplane_slice] = airplane_object.r_0_r_1_mag self._r_1_r_1_joint_mag[airplane_slice,airplane_slice] = airplane_object.r_1_r_1_joint_mag # Fill in spatial node vectors between airplanes if self._num_aircraft > 1: for airplane_slice in self._airplane_slices: this_ind = range(airplane_slice.start, airplane_slice.stop) other_ind = [i for i in range(self._N) if i not in this_ind] # control point indices for other airplanes # Spatial node vectors self._r_0[airplane_slice,other_ind,:] = self._PC[airplane_slice,np.newaxis,:]-self._P0[airplane_slice,other_ind,:] self._r_1[airplane_slice,other_ind,:] = self._PC[airplane_slice,np.newaxis,:]-self._P1[airplane_slice,other_ind,:] self._r_0_joint[airplane_slice,other_ind,:] = self._PC[airplane_slice,np.newaxis,:]-self._P0_joint[airplane_slice,other_ind,:] self._r_1_joint[airplane_slice,other_ind,:] = self._PC[airplane_slice,np.newaxis,:]-self._P1_joint[airplane_slice,other_ind,:] # Calculate spatial node vector magnitudes self._r_0_mag[airplane_slice,other_ind] = np.sqrt(np.einsum('ijk,ijk->ij', self._r_0[airplane_slice,other_ind,:], self._r_0[airplane_slice,other_ind,:])) self._r_0_joint_mag[airplane_slice,other_ind] = np.sqrt(np.einsum('ijk,ijk->ij', self._r_0_joint[airplane_slice,other_ind,:], self._r_0_joint[airplane_slice,other_ind,:])) self._r_1_mag[airplane_slice,other_ind] = np.sqrt(np.einsum('ijk,ijk->ij', self._r_1[airplane_slice,other_ind,:], self._r_1[airplane_slice,other_ind,:])) self._r_1_joint_mag[airplane_slice,other_ind] = np.sqrt(np.einsum('ijk,ijk->ij', self._r_1_joint[airplane_slice,other_ind,:], self._r_1_joint[airplane_slice,other_ind,:])) # Calculate magnitude products self._r_0_r_0_joint_mag[airplane_slice,other_ind] = self._r_0_mag[airplane_slice,other_ind]*self._r_0_joint_mag[airplane_slice,other_ind] self._r_0_r_1_mag[airplane_slice,other_ind] = self._r_0_mag[airplane_slice,other_ind]*self._r_1_mag[airplane_slice,other_ind] self._r_1_r_1_joint_mag[airplane_slice,other_ind] = self._r_1_mag[airplane_slice,other_ind]*self._r_1_joint_mag[airplane_slice,other_ind] # In-plane projection matrices if self._use_in_plane: self._P_in_plane = np.repeat(np.identity(3)[np.newaxis,:,:], self._N, axis=0)-np.matmul(self._u_s[:,:,np.newaxis], self._u_s[:,np.newaxis,:]) # Influence of bound and jointed vortex segments with np.errstate(divide='ignore', invalid='ignore'): # Bound numer = ((self._r_0_mag+self._r_1_mag)[:,:,np.newaxis]*np.cross(self._r_0, self._r_1)) denom = self._r_0_r_1_mag*(self._r_0_r_1_mag+np.einsum('ijk,ijk->ij', self._r_0, self._r_1)) V_ji_bound = np.true_divide(numer, denom[:,:,np.newaxis]) V_ji_bound[np.diag_indices(self._N)] = 0.0 # Ensure this actually comes out to be zero # Jointed 0 numer = (self._r_0_joint_mag+self._r_0_mag)[:,:,np.newaxis]*np.cross(self._r_0_joint, self._r_0) denom = self._r_0_r_0_joint_mag*(self._r_0_r_0_joint_mag+np.einsum('ijk,ijk->ij', self._r_0_joint, self._r_0)) V_ji_joint_0 =
np.true_divide(numer, denom[:,:,np.newaxis])
numpy.true_divide
#!/usr/bin/env python3 import numpy as np class AZQuiz: actions = 28 N = 7 C = 4 def __init__(self, randomized): self._board =
np.zeros([self.N, self.N], dtype=np.uint8)
numpy.zeros
import os import numpy as np from sklearn.cluster import KMeans from scipy.stats import norm from matplotlib import pyplot as plt import pickle as pkl class NDB: def __init__(self, training_data=None, number_of_bins=100, significance_level=0.05, z_threshold=None, whitening=False, max_dims=None, cache_folder=None): """ NDB Evaluation Class :param training_data: Optional - the training samples - array of m x d floats (m samples of dimension d) :param number_of_bins: Number of bins (clusters) default=100 :param significance_level: The statistical significance level for the two-sample test :param z_threshold: Allow defining a threshold in terms of difference/SE for defining a bin as statistically different :param whitening: Perform data whitening - subtract mean and divide by per-dimension std :param max_dims: Max dimensions to use in K-means. By default derived automatically from d :param bins_file: Optional - file to write / read-from the clusters (to avoid re-calculation) """ self.number_of_bins = number_of_bins self.significance_level = significance_level self.z_threshold = z_threshold self.whitening = whitening self.ndb_eps = 1e-6 self.training_mean = 0.0 self.training_std = 1.0 self.max_dims = max_dims self.cache_folder = cache_folder self.bin_centers = None self.bin_proportions = None self.ref_sample_size = None self.used_d_indices = None self.results_file = None self.test_name = 'ndb_{}_bins_{}'.format(self.number_of_bins, 'whiten' if self.whitening else 'orig') self.cached_results = {} if self.cache_folder: self.results_file = os.path.join(cache_folder, self.test_name+'_results.pkl') if os.path.isfile(self.results_file): # print('Loading previous results from', self.results_file, ':') self.cached_results = pkl.load(open(self.results_file, 'rb')) # print(self.cached_results.keys()) if training_data is not None or cache_folder is not None: bins_file = None if cache_folder: os.makedirs(cache_folder, exist_ok=True) bins_file = os.path.join(cache_folder, self.test_name+'.pkl') self.construct_bins(training_data, bins_file) def construct_bins(self, training_samples, bins_file): """ Performs K-means clustering of the training samples :param training_samples: An array of m x d floats (m samples of dimension d) """ if self.__read_from_bins_file(bins_file): return n, d = training_samples.shape k = self.number_of_bins if self.whitening: self.training_mean = np.mean(training_samples, axis=0) self.training_std = np.std(training_samples, axis=0) + self.ndb_eps if self.max_dims is None and d > 1000: # To ran faster, perform binning on sampled data dimension (i.e. don't use all channels of all pixels) self.max_dims = d//6 whitened_samples = (training_samples-self.training_mean)/self.training_std d_used = d if self.max_dims is None else min(d, self.max_dims) self.used_d_indices = np.random.choice(d, d_used, replace=False) print('Performing K-Means clustering of {} samples in dimension {} / {} to {} clusters ...'.format(n, d_used, d, k)) print('Can take a couple of minutes...') if n//k > 1000: print('Training data size should be ~500 times the number of bins (for reasonable speed and accuracy)') clusters = KMeans(n_clusters=k, max_iter=100, n_jobs=-1).fit(whitened_samples[:, self.used_d_indices]) bin_centers = np.zeros([k, d]) for i in range(k): bin_centers[i, :] = np.mean(whitened_samples[clusters.labels_ == i, :], axis=0) # Organize bins by size label_vals, label_counts = np.unique(clusters.labels_, return_counts=True) bin_order = np.argsort(-label_counts) self.bin_proportions = label_counts[bin_order] / np.sum(label_counts) self.bin_centers = bin_centers[bin_order, :] self.ref_sample_size = n self.__write_to_bins_file(bins_file) print('Done.') def evaluate(self, query_samples, model_label=None): """ Assign each sample to the nearest bin center (in L2). Pre-whiten if required. and calculate the NDB (Number of statistically Different Bins) and JS divergence scores. :param query_samples: An array of m x d floats (m samples of dimension d) :param model_label: optional label string for the evaluated model, allows plotting results of multiple models :return: results dictionary containing NDB and JS scores and array of labels (assigned bin for each query sample) """ n = query_samples.shape[0] query_bin_proportions, query_bin_assignments = self.__calculate_bin_proportions(query_samples) # print(query_bin_proportions) different_bins = NDB.two_proportions_z_test(self.bin_proportions, self.ref_sample_size, query_bin_proportions, n, significance_level=self.significance_level, z_threshold=self.z_threshold) ndb = np.count_nonzero(different_bins) js = NDB.jensen_shannon_divergence(self.bin_proportions, query_bin_proportions) results = {'NDB': ndb, 'JS': js, 'Proportions': query_bin_proportions, 'N': n, 'Bin-Assignment': query_bin_assignments, 'Different-Bins': different_bins} if model_label: print('Results for {} samples from {}: '.format(n, model_label), end='') self.cached_results[model_label] = results if self.results_file: # print('Storing result to', self.results_file) pkl.dump(self.cached_results, open(self.results_file, 'wb')) print('NDB =', ndb, 'NDB/K =', ndb/self.number_of_bins, ', JS =', js) return results def print_results(self): print('NSB results (K={}{}):'.format(self.number_of_bins, ', data whitening' if self.whitening else '')) for model in sorted(list(self.cached_results.keys())): res = self.cached_results[model] print('%s: NDB = %d, NDB/K = %.3f, JS = %.4f' % (model, res['NDB'], res['NDB']/self.number_of_bins, res['JS'])) def plot_results(self, models_to_plot=None): """ Plot the binning proportions of different methods :param models_to_plot: optional list of model labels to plot """ K = self.number_of_bins w = 1.0 / (len(self.cached_results)+1) assert K == self.bin_proportions.size assert self.cached_results # Used for plotting only def calc_se(p1, n1, p2, n2): p = (p1 * n1 + p2 * n2) / (n1 + n2) return np.sqrt(p * (1 - p) * (1/n1 + 1/n2)) if not models_to_plot: models_to_plot = sorted(list(self.cached_results.keys())) # Visualize the standard errors using the train proportions and size and query sample size train_se = calc_se(self.bin_proportions, self.ref_sample_size, self.bin_proportions, self.cached_results[models_to_plot[0]]['N']) plt.bar(np.arange(0, K)+0.5, height=train_se*2.0, bottom=self.bin_proportions-train_se, width=1.0, label='Train$\pm$SE', color='gray') ymax = 0.0 for i, model in enumerate(models_to_plot): results = self.cached_results[model] label = '%s (%i : %.4f)' % (model, results['NDB'], results['JS']) ymax = max(ymax, np.max(results['Proportions'])) if K <= 70: plt.bar(np.arange(0, K)+(i+1.0)*w, results['Proportions'], width=w, label=label) else: plt.plot(np.arange(0, K)+0.5, results['Proportions'], '--*', label=label) plt.legend(loc='best') plt.ylim((0.0, min(ymax, np.max(self.bin_proportions)*4.0))) plt.grid(True) plt.title('Binning Proportions Evaluation Results for {} bins (NDB : JS)'.format(K)) plt.show() def __calculate_bin_proportions(self, samples): if self.bin_centers is None: print('First run construct_bins on samples from the reference training data') assert samples.shape[1] == self.bin_centers.shape[1] n, d = samples.shape k = self.bin_centers.shape[0] D = np.zeros([n, k], dtype=samples.dtype) print('Calculating bin assignments for {} samples...'.format(n)) whitened_samples = (samples-self.training_mean)/self.training_std for i in range(k): print('.', end='', flush=True) D[:, i] = np.linalg.norm(whitened_samples[:, self.used_d_indices] - self.bin_centers[i, self.used_d_indices], ord=2, axis=1) print() labels = np.argmin(D, axis=1) probs = np.zeros([k]) label_vals, label_counts = np.unique(labels, return_counts=True) probs[label_vals] = label_counts / n return probs, labels def __read_from_bins_file(self, bins_file): if bins_file and os.path.isfile(bins_file): print('Loading binning results from', bins_file) bins_data = pkl.load(open(bins_file,'rb')) self.bin_proportions = bins_data['proportions'] self.bin_centers = bins_data['centers'] self.ref_sample_size = bins_data['n'] self.training_mean = bins_data['mean'] self.training_std = bins_data['std'] self.used_d_indices = bins_data['d_indices'] return True return False def __write_to_bins_file(self, bins_file): if bins_file: print('Caching binning results to', bins_file) bins_data = {'proportions': self.bin_proportions, 'centers': self.bin_centers, 'n': self.ref_sample_size, 'mean': self.training_mean, 'std': self.training_std, 'd_indices': self.used_d_indices} pkl.dump(bins_data, open(bins_file, 'wb')) @staticmethod def two_proportions_z_test(p1, n1, p2, n2, significance_level, z_threshold=None): # Per http://stattrek.com/hypothesis-test/difference-in-proportions.aspx # See also http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/binotest.htm p = (p1 * n1 + p2 * n2) / (n1 + n2) se = np.sqrt(p * (1 - p) * (1/n1 + 1/n2)) z = (p1 - p2) / se # Allow defining a threshold in terms as Z (difference relative to the SE) rather than in p-values. if z_threshold is not None: return abs(z) > z_threshold p_values = 2.0 * norm.cdf(-1.0 * np.abs(z)) # Two-tailed test return p_values < significance_level @staticmethod def jensen_shannon_divergence(p, q): """ Calculates the symmetric Jensen–Shannon divergence between the two PDFs """ m = (p + q) * 0.5 return 0.5 * (NDB.kl_divergence(p, m) + NDB.kl_divergence(q, m)) @staticmethod def kl_divergence(p, q): """ The Kullback–Leibler divergence. Defined only if q != 0 whenever p != 0. """ assert np.all(np.isfinite(p)) assert np.all(
np.isfinite(q)
numpy.isfinite
from Node3D.base.node import GeometryNode from Node3D.opengl import Mesh from Node3D.vendor.NodeGraphQt.constants import * import numpy as np from Node3D.base.mesh.base_primitives import generate_tube, generate_sphere, \ generate_cylinder, generate_cone, generate_torus import open3d as o3d class Tube(GeometryNode): __identifier__ = 'Primitives' NODE_NAME = 'Tube' def __init__(self): super(Tube, self).__init__() params = [{'name': 'Bottom center', 'type': 'vector3', 'value': [0, 0, 0]}, {'name': 'Top center', 'type': 'vector3', 'value': [0, 1, 0]}, {'name': 'Outer radius', 'type': 'vector2', 'value': [0.5, 0.5]}, {'name': 'Inner radius', 'type': 'vector2', 'value': [0.3, 0.3]}, {'name': 'Segments', 'type': 'int', 'value': 10, 'limits': (3, 30)}, {'name': 'Quad', 'type': 'bool', 'value': True}] self.set_parameters(params) self.cook() def run(self): outer = self.get_property("Outer radius") inner = self.get_property("Inner radius") s = self.get_property("Segments") if s < 3: self.geo = None return vertices, faces = generate_tube(self.get_property("Bottom center"), self.get_property("Top center"), outer[0], outer[1], inner[0], inner[1], s, self.get_property("Quad")) self.geo = Mesh() self.geo.addVertices(vertices) self.geo.addFaces(faces) class Box(GeometryNode): __identifier__ = 'Primitives' NODE_NAME = 'Box' def __init__(self): super(Box, self).__init__() self.create_property("Size", value=[1, 1, 1], widget_type=NODE_PROP_VECTOR3) self.cook() def run(self): size = self.get_property("Size") x = size[0] * 0.5 y = size[1] * 0.5 z = size[2] * 0.5 self.geo = Mesh() v1 = self.geo.addVertex([x, -y, -z]) v2 = self.geo.addVertex([x, -y, z]) v3 = self.geo.addVertex([x, y, z]) v4 = self.geo.addVertex([x, y, -z]) v5 = self.geo.addVertex([-x, -y, -z]) v6 = self.geo.addVertex([-x, -y, z]) v7 = self.geo.addVertex([-x, y, z]) v8 = self.geo.addVertex([-x, y, -z]) self.geo.addFace([v1, v2, v3, v4]) self.geo.addFace([v2, v6, v7, v3]) self.geo.addFace([v6, v5, v8, v7]) self.geo.addFace([v5, v1, v4, v8]) self.geo.addFace([v4, v3, v7, v8]) self.geo.addFace([v5, v6, v2, v1]) self.geo.mesh.update_normals() class Grid(GeometryNode): __identifier__ = 'Primitives' NODE_NAME = 'Grid' def __init__(self): super(Grid, self).__init__() params = [{'name': 'Size', 'type': 'vector2', 'value': [10, 10]}, {'name': 'Resolution', 'type': 'vector2i', 'value': [10, 10]}] self.set_parameters(params) self.cook() def run(self): size = self.get_property("Size") resolution = self.get_property("Resolution") x = size[0] * 0.5 z = size[1] * 0.5 fx = resolution[0] fz = resolution[1] if fx < 2 or fz < 2: self.geo = None return x_range = np.linspace(-x, x, fx) z_range = np.linspace(-z, z, fz) vertices = np.dstack(np.meshgrid(x_range, z_range, np.array([0.0]))).reshape(-1, 3) a = np.add.outer(np.array(range(fx - 1)), fx * np.array(range(fz - 1))) faces = np.dstack([a, a + 1, a + fx + 1, a + fx]).reshape(-1, 4) nms = np.zeros((vertices.shape[0], 3), dtype=float) nms[..., 1] = 1 self.geo = Mesh() self.geo.addVertices(vertices[:, [0, 2, 1]]) self.geo.addFaces(faces) self.geo.setVertexAttribData('normal', nms, attribType='vector3', defaultValue=[0, 0, 0]) class Arrow(GeometryNode): __identifier__ = 'Primitives' NODE_NAME = 'Arrow' def __init__(self): super(Arrow, self).__init__() params = [{'name': 'Radius', 'type': 'vector2', 'value': [1, 1.5]}, {'name': 'Height', 'type': 'vector2', 'value': [2, 4]}, {'name': 'Cylinder split', 'type': 'int', 'value': 1, 'limits': (1, 10)}, {'name': 'Cone split', 'type': 'int', 'value': 1, 'limits': (1, 10)}, {'name': 'Resolution', 'type': 'int', 'value': 20, 'limits': (3, 30)}] self.set_parameters(params) self.cook() def run(self): radius = self.get_property("Radius") height = self.get_property("Height") tri = o3d.geometry.TriangleMesh.create_arrow(radius[0], radius[1], height[0], height[1], self.get_property("Resolution"), self.get_property("Cylinder split"), self.get_property("Cone split")) self.geo = Mesh() self.geo.addVertices(np.array(tri.vertices)[:, [0, 2, 1]]) self.geo.addFaces(np.array(tri.triangles)) class Cone(GeometryNode): __identifier__ = 'Primitives' NODE_NAME = 'Cone' def __init__(self): super(Cone, self).__init__() params = [{'name': 'Radius', 'type': 'float', 'value': 1.0}, {'name': 'Height', 'type': 'float', 'value': 2.0}, {'name': 'Split', 'type': 'int', 'value': 1, 'limits': (1, 10)}, {'name': 'Resolution', 'type': 'int', 'value': 20, 'limits': (3, 30)}, {'name': 'Cap', 'type': 'bool', 'value': True}] self.set_parameters(params) self.cook() def run(self): s = self.get_property("Resolution") if s < 3: self.geo = None return tri, quad, vt = generate_cone(self.get_property("Radius"), self.get_property("Height"), s, self.get_property("Split")) self.geo = Mesh() self.geo.addVertices(vt) self.geo.addFaces(quad) self.geo.addFaces(tri) if not self.get_property("Cap"): self.geo.removeVertex(0, True) class CoordinateFrame(GeometryNode): __identifier__ = 'Primitives' NODE_NAME = 'Coordinate Frame' def __init__(self): super(CoordinateFrame, self).__init__() params = [{'name': 'Size', 'type': 'float', 'value': 1.0}, {'name': 'Origin', 'type': 'vector3', 'value': [0, 0, 0]}] self.set_parameters(params) self.cook() def run(self): size = self.get_property("Size") if size == 0: size = 0.0001 tri = o3d.geometry.TriangleMesh.create_coordinate_frame(size, self.get_property("Origin")) self.geo = Mesh() self.geo.addVertices(np.array(tri.vertices)[:, [0, 2, 1]]) self.geo.addFaces(np.array(tri.triangles)) class Cylinder(GeometryNode): __identifier__ = 'Primitives' NODE_NAME = 'Cylinder' def __init__(self): super(Cylinder, self).__init__() params = [{'name': 'Radius', 'type': 'float', 'value': 1.0}, {'name': 'Height', 'type': 'float', 'value': 2.0}, {'name': 'Split', 'type': 'int', 'value': 4, 'limits': (1, 10)}, {'name': 'Resolution', 'type': 'int', 'value': 20, 'limits': (3, 30)}, {'name': 'Cap', 'type': 'bool', 'value': True}] self.set_parameters(params) self.cook() def run(self): s = self.get_property("Resolution") if s < 3: self.geo = None return tri, quad, vt = generate_cylinder(self.get_property("Radius"), self.get_property("Height"), s, self.get_property("Split")) self.geo = Mesh() self.geo.addVertices(vt) self.geo.addFaces(quad) if self.get_property("Cap"): self.geo.addFaces(tri) else: self.geo.removeVertices([0, 1]) class Icosahedron(GeometryNode): __identifier__ = 'Primitives' NODE_NAME = 'Icosahedron' def __init__(self): super(Icosahedron, self).__init__() params = [{'name': 'Radius', 'type': 'float', 'value': 1.0}] self.set_parameters(params) self.cook() def run(self): rad = self.get_property("Radius") if rad == 0: rad = 0.0001 tri = o3d.geometry.TriangleMesh.create_icosahedron(rad) self.geo = Mesh() self.geo.addVertices(np.array(tri.vertices)[:, [0, 2, 1]]) self.geo.addFaces(np.array(tri.triangles)) class Moebius(GeometryNode): __identifier__ = 'Primitives' NODE_NAME = 'Moebius' def __init__(self): super(Moebius, self).__init__() params = [{'name': 'Length Split', 'type': 'int', 'value': 70, 'limits': (1, 100)}, {'name': 'Width Split', 'type': 'int', 'value': 15, 'limits': (1, 100)}, {'name': 'Twists', 'type': 'int', 'value': 1, 'limits': (0, 10)}, {'name': 'Raidus', 'type': 'float', 'value': 1, 'limits': (0, 10)}, {'name': 'Flatness', 'type': 'float', 'value': 1, 'limits': (0, 30)}, {'name': 'Width', 'type': 'float', 'value': 1, 'limits': (0, 10)}, {'name': 'Scale', 'type': 'float', 'value': 1, 'limits': (0, 30)}] self.set_parameters(params) self.cook() def run(self): tri = o3d.geometry.TriangleMesh.create_moebius(self.get_property('Length Split'), self.get_property('Width Split'), self.get_property("Twists"), self.get_property("Raidus"), self.get_property("Flatness"), self.get_property("Width"), self.get_property("Scale")) self.geo = Mesh() self.geo.addVertices(
np.array(tri.vertices)
numpy.array
# -*- coding: utf-8 -*- import math import os import torch import random import wandb import pandas as pd import numpy as np from timeit import default_timer as timer from sklearn.utils import shuffle def build_nfs_scenarios(n_s: int, x: np.array, y_scaler, flow, conditioner_args, max:int=1, gpu:bool=True, tag:str= 'pv', non_null_indexes:list=[]): """ Build scenarios for a NFs multi-output. Scenarios are generated into an array (n_periods, n_s) where n_periods = 24 * n_days :return: scenarios (n_periods, n_s) """ # to assign the data to GPU with .to(device) on the data if gpu: device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") else: device = "cpu" flow.to(device) if tag == 'pv': n_periods_before = non_null_indexes[0] n_periods_after = 24 - non_null_indexes[-1] - 1 print(n_periods_after, n_periods_before) n_days = len(x) nb_output, cond_in = conditioner_args['in_size'], conditioner_args['cond_in'] time_tot = 0. scenarios = [] for i in range(n_days): start = timer() # sample nb_scenarios per day predictions = flow.invert(z=torch.randn(n_s, nb_output).to(device), context=torch.tensor(np.tile(x[i, :], n_s).reshape(n_s, cond_in)).to(device).float()).cpu().detach().numpy() predictions = y_scaler.inverse_transform(predictions) # corrections -> genereration is always > 0 and < max capacity predictions[predictions < 0] = 0 predictions[predictions > max] = max if tag == 'pv': # fill time period where PV is not 0 are given by non_null_indexes # for instance it could be [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] # then it is needed to add 0 for periods [0, 1, 2, 3] and [20, 21, 22, 23] scenarios_tmp = np.concatenate((np.zeros((predictions.shape[0], n_periods_before)), predictions, np.zeros((predictions.shape[0], n_periods_after))), axis=1) # shape = (n_s, 24) else: scenarios_tmp = predictions scenarios.append(scenarios_tmp.transpose()) # list of arrays of shape (24, n_s) end = timer() time_tot += end - start print("day {:.0f} Approximate time left : {:2f} min".format(i, time_tot / (i + 1) * (n_days - (i + 1))/60), end="\r",flush=True) # if i % 20 == 0: # print("day {:.0f} Approximate time left : {:2f} min".format(i, time_tot / (i + 1) * (nb_days - (i + 1)) / 60)) print('Scenario generation time_tot %.1f min' % (time_tot / 60)) return
np.concatenate(scenarios,axis=0)
numpy.concatenate
import numpy as np import h5py from deepposekit.models import load_model from videoreader import VideoReader import leap_utils as lu import xarray_behave as xb from leap_utils import preprocessing from pathlib import Path import xarray as xr import pandas as pd import logging import zarr import os def deepposekit(tracksfilename: str, savename:str, modelname: str): datename = os.path.split(os.path.split(tracksfilename)[0])[1] root = os.getcwd() logging.info(f'using model from {modelname}') model = load_model(modelname) logging.info(f'assembling data for {datename}') dataset = xb.assemble(datename, root, dat_path='dat', res_path='res') logging.info(dataset) logging.info(f'will save to {savename}') vr = VideoReader(dataset.attrs['video_filename']) logging.info(vr) frame_numbers, frame_indices = np.unique(dataset.nearest_frame, return_index=True) frame_indices = frame_indices CENTER = 1 box_centers = dataset.body_positions[frame_indices, :, CENTER, :].values nb_frames = len(frame_numbers) logging.info(f'loading boxes from {nb_frames} frames.') skeleton = pd.read_csv(os.path.dirname(modelname) + '/skeleton_initialized.csv') body_parts_skeleton = skeleton['name'].tolist() logging.info('body parts from skeleton: {}.'.format(body_parts_skeleton)) body_parts = ['head', 'neck', 'front_left_leg', 'middle_left_leg', 'back_left_leg', 'front_right_leg', 'middle_right_leg', 'back_right_leg', 'thorax', 'left_wing', 'right_wing', 'tail'] logging.info('overriding with: {}.'.format(body_parts)) nb_flies = len(dataset.flies) nb_parts = len(body_parts) frame_start = min(frame_numbers) frame_stop = max(frame_numbers) batch_size = 100 box_size = (64, 64) if 'scaled' in modelname else (96, 96) batch_idx = list(range(0, nb_frames, batch_size)) nb_batches = len(batch_idx) - 1 poses =
np.full((frame_stop, nb_flies, nb_parts, 2), np.nan)
numpy.full
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' A hyperboloid class, based on prolate spheroid coordinates. The hyperboloid is here defined by the distance where it is closest to the plane (minimum z) and its radius at the tip, as well as its x and y positions. The methods of the class compensates for its x and y positions when e.g. converting between coordinate systems. ''' # General imports import numpy as np import logging # Import from project files from .geometrical import cart2ps from .geometrical import ps2cart from .coordinate_functions import find_nearest logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) ooo = np.array([0, 0, 0]).reshape(3, -1) iio = np.array([1, 1, 0]).reshape(3, -1) iii = np.array([1, 1, 1]).reshape(3, -1) eps = np.finfo(float).eps # 2.22e-16 for double # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # DEFINE HYPERBOLOID # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # class GeometricalHyperboloid(): '''Geometrical hyperboloid. Parameters ---------- pos : array position, (3, 1) rp : float tip radius Properties ---------- d : float distance to plane a : float distance nu0 : float ps coordinate r : float distance from z-axis ''' def __init__(self, pos, rp=None): if rp is None: rp = eps # sharp hyperboloid # Note the setters of `rp` and `pos` invokes `_update` self._rp = rp # hack-set this one to prevent `_update` self.pos = pos # set this one properly to `_update` def _update(self): # updates properties after pos or rp is changed # Coordinates self.x = self.pos[0] self.y = self.pos[1] self.z = self.pos[2] if self.z < 0: logger.warning(5, f'Hyperbole below zero {self.pos[2, 0]}') # Geometric self.d = np.asscalar(self.z) # the minimum z-value of the hyperbole self.a = self.d + self.rp / 2 # the distance to the focus self.nu0 = np.arccos(self.d / self.a) # asymptotic angle self.cos_nu0 = self.d / self.a self.r = np.asscalar(np.sqrt(self.x**2 + self.y**2)) @property def pos(self): ''' The position of the tip of the hyperbole. ''' return self._pos @pos.setter def pos(self, pos): pos = np.array(pos).reshape(3, 1) # force error if wrong self._pos = pos self._update() # the reason for having a getter and setter @property def rp(self): ''' The hyperbole tip radius. ''' return self._rp @rp.setter def rp(self, rp): self._rp = np.asscalar(np.array(rp)) # ensure scalar self._update() # the reason for having a getter and setter def __repr__(self): return f'GeometricalHyperboloid(pos={self.pos}, rp={self.rp})' def copy(self): ''' Return a copy of self. ''' return eval(repr(self)) # note: to_dict is mainly used for saving data # it is easier to manage later than repr def to_dict(self): ''' Return a dict with the instance parameters. ''' return {'rp': self.rp, 'pos': self.pos} @classmethod def from_dict(cls, d): ''' Return a class instance from a dictionary. ''' return cls(**d) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Methods using positions # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def ps2cart(self, pos_ps, to_calc=['x', 'y', 'z']): ''' Return Cartesian position corresponding to `pos_ps`. The origin of the hyperbole is added to the output. Parameters ---------- pos_ps : array(3, -1) prolate spheroid positions to_calc : lst(char) list of coordinates to calculate. ['x', 'y', 'z'] is default Returns ------- pos_cart : array(3, -1) Cartesian positions ''' pos_ps = np.array(pos_ps).reshape(3, -1) pos_cart = np.zeros_like(pos_ps) if ('x' in to_calc) or ('y' in to_calc): sinh_sin = np.sinh(pos_ps[0]) * np.sin(pos_ps[1]) if 'x' in to_calc: pos_cart[0] = self.a * sinh_sin * np.cos(pos_ps[2]) pos_cart[0] += self.x if 'y' in to_calc: pos_cart[1] = self.a * sinh_sin * np.sin(pos_ps[2]) pos_cart[1] += self.y if 'z' in to_calc: pos_cart[2] = self.a * np.cosh(pos_ps[0]) * np.cos(pos_ps[1]) # todo: assure that this is required. pos_cart[np.isnan(pos_cart)] = 0 return pos_cart def cart2ps(self, pos_in, to_calc=['mu', 'nu', 'phi']): ''' Return prolate spheroid position corresponding to `pos_in` relative to the position of the hyperbole. Parameters ---------- pos_in : array(3, -1) Cartesian positions to_calc : lst(char) list of coordinates to calculate. ['mu', 'nu', 'phi'] is default Returns ------- pos_cart : array(3, -1) prolate spheroid positions ''' pos_cart = pos_in - self.pos * iio # change origin return cart2ps(pos_cart, ps_a=self.a, to_calc=to_calc) def is_inside(self, pos, nu0=None): ''' Return True where the position inside the hyperbole. Parameters ---------- pos : array(3, -1) Cartesian positions nu0 : float or array defaults to nu0 Returns ------- array[bool] True for positions within where (pos.nu0 < nu0). ''' assert pos.shape[0] == 3, 'pos.shape[0] =! 3' if nu0 is None: nu0 = self.nu0 # pre-calculation # marginally faster, and much more readable # than inserting the expressions directly x2 = (pos[0, :] - self.x)**2 y2 = (pos[1, :] - self.y)**2 zp = (pos[2, :] + self.a)**2 zm = (pos[2, :] - self.a)**2 cos_nu_2a = np.sqrt(x2 + y2 + zp) - np.sqrt(x2 + y2 + zm) cos_nu0_2a = 2 * self.a * np.cos(nu0) # Note: for nu < nu_0, cos nu > cos nu_0. return cos_nu_2a > cos_nu0_2a def find_nearest(self, pos_j=None, no=None): ''' Find the pos_j which is closest to the tip of the hyperbole.''' return find_nearest(self.pos, pos_j=pos_j, no=no) def dist_to(self, pos): ''' Find the distance from the tip of the hyperbole to each position. ''' return np.linalg.norm(self.pos - pos, axis=0) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Methods giving positions # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def trace_nu(self, nu0=None, xdir='xz', mu_lim=0.5, num=50): ''' Calculate the z values for a constant nu0 line in xz or yz direction. Parameters ---------- nu0 : float self.nu0 is default xdir : str plane to plot mu_lim : float mu limit num : int number of points Returns ------- array[float] x or y values array[float] z values ''' assert xdir in ['xz', 'yz'], 'wrong xdir' if nu0 is None: nu0 = self.nu0 # Create linspace and calculate values mu = np.linspace(-mu_lim, mu_lim, num=num) x = self.a * np.sinh(mu) * np.sin(nu0) z = self.a * np.cosh(mu) * np.cos(nu0) # Adjust for origin if xdir == 'xz': x += self.x elif xdir == 'yz': x += self.y # fixme: if __debug__ and False: if xdir == 'xz': poses = np.vstack((x, 0 * x, z)) elif xdir == 'yz': poses = np.vstack((0 * x, x, z)) pos_ps = self.cart2ps(poses) # Tolerance due to mu=0 returning mu=1e-8 assert np.allclose(np.absolute(mu), pos_ps[0, :], atol=1e-7) # Assert all neighbors are equal assert np.allclose(pos_ps[1, :], np.roll(pos_ps[1, :], 1)) return x, z def trace_nu_2D(self, nu=None, xdir='xz', offset=None, xlim=None, num=100): ''' Calculate the z values for a constant nu line in xz or yz direction. Parameters ---------- nu : float self.nu0 is default xdir : str plane to plot offset: float None: through self, 0: through origin x_lim : float x limit num : int number of points Returns ------- array[float] x or y values array[float] z values ''' assert xdir in ['xz', 'yz'], 'wrong xdir' if nu is None: nu = self.nu0 if xlim is None: xlim = self.rp * 20 if offset is None: offset = 0 else: if xdir == 'xz': offset -= self.y elif xdir == 'yz': offset -= self.x # Create linspace and calculate x = np.linspace(-xlim, xlim, num=num) r2 = x**2 + offset**2 a2_snu2_inv = 1 / (self.a**2 * np.sin(nu)**2) z = self.a * np.cos(nu) * np.sqrt(1 + r2 * a2_snu2_inv) # Adjust for origin if xdir == 'xz': x += self.x elif xdir == 'yz': x += self.y debug = False if debug and __debug__: if xdir == 'xz': poses =
np.vstack((x, 0 * x + offset, z))
numpy.vstack
import pickle as pkl import numpy as np import scipy.sparse as sp import torch import networkx as nx from sklearn.metrics import roc_auc_score, average_precision_score, accuracy_score, f1_score, log_loss import matplotlib.pyplot as plt ## Miscellaneous useful functions ## def load_graph_to_numpy(path_to_edgelist): pass def load_graph(path_to_edgelist, subgraph=None, weighted=False, seed=0): """ :param subgraph: None or int - number of nodes to sample """ # nx_graph = nx.from_edgelist([l.split() for l in open(path_to_edgelist)]) if weighted: nx_graph = nx.read_weighted_edgelist(path_to_edgelist) else: nx_graph = nx.read_edgelist(path_to_edgelist) print('The graph has {} nodes and {} edges'.format(nx_graph.number_of_nodes(), nx_graph.number_of_edges())) if subgraph is None: return nx_graph if seed: np.random.seed(seed) print('Sampling {}-node subgraph from original graph'.format(subgraph)) return nx_graph.subgraph(np.random.choice(nx_graph.nodes(), size=subgraph, replace=False)) def get_dual(graph, sparse=True): # graph is a networkx Graph L = nx.line_graph(graph) nodelist = sorted(L.nodes()) # may wrap sp.csr around numpy if sparse: return nx.to_scipy_sparse_matrix(L, nodelist), nodelist return nx.to_numpy_matrix(L, nodelist), nodelist # def get_dual(adj): # # adj is a networkx Graph # adj = nx.from_numpy_array(adj) # L = nx.line_graph(adj) # nodelist = sorted(L.nodes()) # return nx.to_numpy_matrix(L, nodelist), {i: n for i, n in enumerate(nodelist)} def get_features(adj, sparse=True): if sparse: return sp.eye(adj.shape[0]) return np.identity(adj.shape[0]) ############### VGAE-specific ################ ######################################################################################## # ------------------------------------ # Some functions borrowed from: # https://github.com/tkipf/pygcn and # https://github.com/tkipf/gae # ------------------------------------ class dotdict(dict): """dot.notation access to dictionary attributes""" __getattr__ = dict.__getitem__ __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ def eval_gae_lp(edges_pos, edges_neg, emb, adj_orig, threshold=0.5, verbose=False): """ Evaluate VGAE learned embeddings on Link Prediction task. """ def sigmoid(x): return 1 / (1 + np.exp(-x)) # Predict on test set of edges emb = emb.data.numpy() adj_rec = np.dot(emb, emb.T) preds = [] pos = [] for e in edges_pos: preds.append(sigmoid(adj_rec[e[0], e[1]])) pos.append(adj_orig[e[0], e[1]]) preds_neg = [] neg = [] for e in edges_neg: preds_neg.append(sigmoid(adj_rec[e[0], e[1]])) neg.append(adj_orig[e[0], e[1]]) preds_all = np.hstack([preds, preds_neg]) labels_all = np.hstack([np.ones(len(preds)), np.zeros(len(preds))]) if verbose: print("EVAL GAE") p = np.random.choice(range(len(preds_all)), replace=False, size=min([len(preds_all), 100])) print(preds_all[p]) print(labels_all[p]) accuracy = accuracy_score((preds_all > threshold).astype(float), labels_all) roc_score = roc_auc_score(labels_all, preds_all) ap_score = average_precision_score(labels_all, preds_all) f1score = f1_score(labels_all, (preds_all > threshold).astype(float)) logloss = log_loss(labels_all, preds_all) return accuracy, roc_score, ap_score, f1score, logloss def make_sparse(sparse_mx): """Convert a scipy sparse matrix to a torch sparse tensor.""" sparse_mx = sparse_mx.tocoo().astype(np.float32) indices = torch.from_numpy(np.vstack((sparse_mx.row, sparse_mx.col))).long() values = torch.from_numpy(sparse_mx.data) shape = torch.Size(sparse_mx.shape) return torch.sparse.FloatTensor(indices, values, shape) def parse_index_file(filename): index = [] for line in open(filename): index.append(int(line.strip())) return index def load_data(dataset): # load the data: x, tx, allx, graph names = ['x', 'tx', 'allx', 'graph'] objects = [] for i in range(len(names)): objects.append( pkl.load(open("data/ind.{}.{}".format(dataset, names[i]), 'rb'), encoding='latin1')) x, tx, allx, graph = tuple(objects) test_idx_reorder = parse_index_file( "data/ind.{}.test.index".format(dataset)) test_idx_range = np.sort(test_idx_reorder) if dataset == 'citeseer': # Fix citeseer dataset (there are some isolated nodes in the graph) # Find isolated nodes, add them as zero-vecs into the right position test_idx_range_full = range( min(test_idx_reorder), max(test_idx_reorder) + 1) tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1])) tx_extended[test_idx_range - min(test_idx_range), :] = tx tx = tx_extended features = sp.vstack((allx, tx)).tolil() features[test_idx_reorder, :] = features[test_idx_range, :] adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph)) return adj, features # Subsample sparse variables def get_subsampler(variable): data = variable.view(1, -1).data.numpy() edges = np.where(data == 1)[1] nonedges = np.where(data == 0)[1] def sampler(): idx = np.random.choice( nonedges.shape[0], edges.shape[0], replace=False) return torch.LongTensor(np.append(edges, nonedges[idx])) return sampler def plot_results(results, test_freq, path='results.png'): # Init plt.close('all') fig = plt.figure(figsize=(8, 8)) x_axis_train = range(len(results['train_elbo'])) x_axis_test = range(0, len(x_axis_train), test_freq) # Elbo ax = fig.add_subplot(2, 2, 1) ax.plot(x_axis_train, results['train_elbo']) ax.set_ylabel('Loss (ELBO)') ax.set_title('Loss (ELBO)') ax.legend(['Train'], loc='upper right') # Accuracy ax = fig.add_subplot(2, 2, 2) ax.plot(x_axis_train, results['accuracy_train']) ax.plot(x_axis_test, results['accuracy_test']) ax.set_ylabel('Accuracy') ax.set_title('Accuracy') ax.legend(['Train', 'Test'], loc='lower right') # ROC ax = fig.add_subplot(2, 2, 3) ax.plot(x_axis_train, results['roc_train']) ax.plot(x_axis_test, results['roc_test']) ax.set_xlabel('Epoch') ax.set_ylabel('ROC AUC') ax.set_title('ROC AUC') ax.legend(['Train', 'Test'], loc='lower right') # Precision ax = fig.add_subplot(2, 2, 4) ax.plot(x_axis_train, results['ap_train']) ax.plot(x_axis_test, results['ap_test']) ax.set_xlabel('Epoch') ax.set_ylabel('Precision') ax.set_title('Precision') ax.legend(['Train', 'Test'], loc='lower right') # Save fig.tight_layout() plt.show() # fig.savefig(path) def load_multiclass(path="../data/cora/", dataset="cora"): """Load citation network dataset (cora only for now)""" print('Loading {} dataset...'.format(dataset)) if 'cora' in path: idx_features_labels = np.genfromtxt("{}{}.content".format(path, dataset), dtype=np.dtype(str)) features = sp.csr_matrix(idx_features_labels[:, 1:-1], dtype=np.float32) labels = encode_onehot(idx_features_labels[:, -1]) # build graph idx = np.array(idx_features_labels[:, 0], dtype=np.int32) idx_map = {j: i for i, j in enumerate(idx)} # node_name -> number edges_unordered = np.genfromtxt("{}{}.cites".format(path, dataset), dtype=np.int32) edges = np.array(list(map(idx_map.get, edges_unordered.flatten())), dtype=np.int32).reshape(edges_unordered.shape) adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])), shape=(labels.shape[0], labels.shape[0]), dtype=np.float32) # idx_train = range(140) # idx_val = range(200, 500) # idx_test = range(500, 1500) rng = list(range(1500)) np.random.shuffle(rng) idx_train = rng[:1000] idx_val = rng[1000:1200] idx_test = rng[1200:1500] # idx_train = np.random.choice(range(1500), replace=False, size=1000) # idx_val = np.random.choice(range(1500), replace=False, size=300) # idx_test = np.random.choice(range(1500), replace=False, size=200) labels = torch.LongTensor(
np.where(labels)
numpy.where
"""Generate a diffusion map embedding """ import numpy as np def compute_diffusion_map(L, alpha=0.5, n_components=None, diffusion_time=0, skip_checks=False, overwrite=False): """Compute the diffusion maps of a symmetric similarity matrix L : matrix N x N L is symmetric and L(x, y) >= 0 alpha: float [0, 1] Setting alpha=1 and the diffusion operator approximates the Laplace-Beltrami operator. We then recover the Riemannian geometry of the data set regardless of the distribution of the points. To describe the long-term behavior of the point distribution of a system of stochastic differential equations, we can use alpha=0.5 and the resulting Markov chain approximates the Fokker-Planck diffusion. With alpha=0, it reduces to the classical graph Laplacian normalization. n_components: int The number of diffusion map components to return. Due to the spectrum decay of the eigenvalues, only a few terms are necessary to achieve a given relative accuracy in the sum M^t. diffusion_time: float >= 0 use the diffusion_time (t) step transition matrix M^t t not only serves as a time parameter, but also has the dual role of scale parameter. One of the main ideas of diffusion framework is that running the chain forward in time (taking larger and larger powers of M) reveals the geometric structure of X at larger and larger scales (the diffusion process). t = 0 empirically provides a reasonable balance from a clustering perspective. Specifically, the notion of a cluster in the data set is quantified as a region in which the probability of escaping this region is low (within a certain time t). skip_checks: bool Avoid expensive pre-checks on input data. The caller has to make sure that input data is valid or results will be undefined. overwrite: bool Optimize memory usage by re-using input matrix L as scratch space. References ---------- [1] https://en.wikipedia.org/wiki/Diffusion_map [2] <NAME>.; <NAME>. (2006). "Diffusion maps". Applied and Computational Harmonic Analysis 21: 5-30. doi:10.1016/j.acha.2006.04.006 """ import numpy as np import scipy.sparse as sps use_sparse = False if sps.issparse(L): use_sparse = True if not skip_checks: from sklearn.manifold.spectral_embedding_ import _graph_is_connected if not _graph_is_connected(L): raise ValueError('Graph is disconnected') ndim = L.shape[0] if overwrite: L_alpha = L else: L_alpha = L.copy() if alpha > 0: # Step 2 d = np.array(L_alpha.sum(axis=1)).flatten() d_alpha = np.power(d, -alpha) if use_sparse: L_alpha.data *= d_alpha[L_alpha.indices] L_alpha = sps.csr_matrix(L_alpha.transpose().toarray()) L_alpha.data *= d_alpha[L_alpha.indices] L_alpha = sps.csr_matrix(L_alpha.transpose().toarray()) else: L_alpha = d_alpha[:, np.newaxis] * L_alpha L_alpha = L_alpha * d_alpha[np.newaxis, :] # Step 3 d_alpha = np.power(np.array(L_alpha.sum(axis=1)).flatten(), -1) if use_sparse: L_alpha.data *= d_alpha[L_alpha.indices] else: L_alpha = d_alpha[:, np.newaxis] * L_alpha M = L_alpha from scipy.sparse.linalg import eigsh, eigs # Step 4 func = eigs if n_components is not None: lambdas, vectors = func(M, k=n_components + 1) else: lambdas, vectors = func(M, k=max(2, int(
np.sqrt(ndim)
numpy.sqrt
# coding: utf-8 # # Mask R-CNN - Train on Shapes Dataset # # # This notebook shows how to train Mask R-CNN on your own dataset. To keep things simple we use a synthetic dataset of shapes (squares, triangles, and circles) which enables fast training. You'd still need a GPU, though, because the network backbone is a Resnet101, which would be too slow to train on a CPU. On a GPU, you can start to get okay-ish results in a few minutes, and good results in less than an hour. # # The code of the *Shapes* dataset is included below. It generates images on the fly, so it doesn't require downloading any data. And it can generate images of any size, so we pick a small image size to train faster. # In[1]: import os import pickle import traceback import tensorflow as tf os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "1" from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() # config.gpu_options.per_process_gpu_memory_fraction = 0.3 set_session(tf.Session(config=config)) import sys import random import skimage.io import math import re import time import numpy as np import cv2 import matplotlib import matplotlib.pyplot as plt from config import Config import utils import model as modellib import visualize from model import log from USDataset import USDataset # get_ipython().run_line_magic('matplotlib', 'inline') # Root directory of the project ROOT_DIR = os.getcwd() # Directory to save logs and trained model MODEL_DIR = os.path.join(ROOT_DIR, "logs") dirs = os.listdir(MODEL_DIR) dirs = [os.path.join(MODEL_DIR, filename) for filename in dirs] ctimes = [os.path.getctime(filename) for filename in dirs] MODEL_DIR = dirs[ctimes.index(max(ctimes))] # Path to COCO trained weights COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5") # ## Configurations # In[2]: class ShapesConfig(Config): """Configuration for training on the toy shapes dataset. Derives from the base Config class and overrides values specific to the toy shapes dataset. """ # Give the configuration a recognizable name NAME = "ultar_sound" # Train on 1 GPU and 8 images per GPU. We can put multiple images on each # GPU because the images are small. Batch size is 8 (GPUs * images/GPU). GPU_COUNT = 1 IMAGES_PER_GPU = 1 # Number of classes (including background) NUM_CLASSES = 1 + 1 # background + 3 shapes # Use smaller anchors because our image and objects are small RPN_ANCHOR_SCALES = (8, 16, 32, 64, 128) # anchor side in pixels RPN_ANCHOR_SCALES = (32, 64, 128) # anchor side in pixels # # Reduce training ROIs per image because the images are small and have # # few objects. Aim to allow ROI sampling to pick 33% positive ROIs. TRAIN_ROIS_PER_IMAGE = 320 # # # Use a small epoch since the data is simple STEPS_PER_EPOCH = 100 # # # use small validation steps since the epoch is small # VALIDATION_STEPS = 5 config = ShapesConfig() # config.display() # ## Notebook Preferences # In[3]: def get_ax(rows=1, cols=1, size=8): """Return a Matplotlib Axes array to be used in all visualizations in the notebook. Provide a central point to control graph sizes. Change the default size attribute to control the size of rendered images """ _, ax = plt.subplots(rows, cols, figsize=(size * cols, size * rows)) return ax # In[5]: # Training dataset dataset_train = USDataset('train.txt') dataset_train.prepare() # Validation dataset dataset_val = USDataset('data/label.txt') dataset_val.prepare() # In[6]: # Load and display random samples # image_ids = np.random.choice(dataset_train.image_ids, 4) # for image_id in image_ids: # image = dataset_train.load_image(image_id) # mask, class_ids = dataset_train.load_mask(image_id) # visualize.display_top_masks(image, mask, class_ids, dataset_train.class_names) # ## Ceate Model # In[ ]: # ## Detection # In[11]: class InferenceConfig(ShapesConfig): GPU_COUNT = 1 IMAGES_PER_GPU = 1 inference_config = InferenceConfig() print(MODEL_DIR) # Recreate the model in inference mode model = modellib.MaskRCNN(mode="inference", config=inference_config, model_dir=MODEL_DIR) # Get path to saved weights # Either set a specific path or find last trained weights # model_path = os.path.join(MODEL_DIR, "mask_rcnn_ultar_sound_000%s.h5" % sys.argv[-1]) model_path = os.path.join(MODEL_DIR, "mask_rcnn_ultar_sound_000%s.h5" % 8) # model_path = os.path.join("mask_rcnn_shapes.h5") # model_path = model.find_last()[1] # Load trained weights (fill in path to trained weights here) assert model_path != "", "Provide path to trained weights" print("Loading weights from ", model_path) model.load_weights(model_path, by_name=True) # In[12]: # Test on a random image # image_id = random.choice(dataset_val.image_ids) # original_image, image_meta, gt_class_id, gt_bbox, gt_mask = modellib.load_image_gt(dataset_val, inference_config, # image_id, use_mini_mask=False) # # log("original_image", original_image) # log("image_meta", image_meta) # log("gt_class_id", gt_bbox) # log("gt_bbox", gt_bbox) # log("gt_mask", gt_mask) # # visualize.display_instances(original_image, gt_bbox, gt_mask, gt_class_id, # dataset_train.class_names, figsize=(8, 8)) # In[13]: # results = model.detect([original_image], verbose=1) # # r = results[0] # visualize.display_instances(original_image, r['rois'], r['masks'], r['class_ids'], # dataset_val.class_names, r['scores'], ax=get_ax()) # ## Evaluation # In[14]: # Compute VOC-Style mAP @ IoU=0.5 # Running on 10 images. Increase for better accuracy. # image_ids = np.random.choice(dataset_val.image_ids, 330) image_ids = dataset_val.image_ids APs = [] for image_id in image_ids: try: # Load image and ground truth data image, image_meta, gt_class_id, gt_bbox, gt_mask = modellib.load_image_gt(dataset_val, inference_config, image_id, use_mini_mask=False) # print(image.shape) molded_images = np.expand_dims(modellib.mold_image(image, inference_config), 0) # Run object detection results = model.detect([image], verbose=0) r = results[0] rois = r['rois'] area = (rois[:, 2] - rois[:, 0]) * (rois[:, 3] - rois[:, 1]) ids = np.transpose(np.asarray(np.where(area > 1000)), (0, 1))[0] rois =
np.asarray(r['rois'])
numpy.asarray
### This script combines position data from multiple cameras. ### It also corrects frame time offset errors in PosLog.csv files ### It also removes bad position data lines ### Use as follows: ### import CombineTrackingData as combPos ### combPos.combdata(Path-To-Recording-Folder) ### By <NAME>, May 2017, UCL from itertools import combinations import numpy as np from scipy.spatial.distance import euclidean from openEPhys_DACQ import NWBio from tqdm import tqdm def combineCamerasData(cameraPos, lastCombPos, cameraIDs, CameraSettings, arena_size): # This outputs position data based on which camera is closest to tracking target. # cameraPos - list of numpy vecors with 4 elements (x1,y1,x2,y2) for each camera # lastCombPos - Last known output from this function. If None, the function will attempt to locate the animal. # cameraIDs - list of of CameraSettings.keys() in corresponding order to cameraPos and lastCombPos # CameraSettings - settings dictionary created by CameraSettings.CameraSettingsApp # arena_size - 2 element numpy array with arena height and width. # Output - numpy vector (x1,y1,x2,y2) with data from closest camera # Animal detection finding method in case lastCombPos=None # simultaneously from at least 2 cameras with smaller separation than half of CameraSettings['camera_transfer_radius'] # If successful, closest mean coordinate is set as output # If unsuccessful, output is None N_RPis = len(cameraPos) cameraPos = np.array(cameraPos, dtype=np.float32) camera_locations = [] for cameraID in cameraIDs: camera_locations.append(CameraSettings['CameraSpecific'][cameraID]['location_xy']) camera_locations = np.array(camera_locations, dtype=np.float32) # Only work with camera data from inside the enviornment # Find bad pos data lines idxBad = np.zeros(cameraPos.shape[0], dtype=bool) # Points beyond arena size x_too_big = cameraPos[:,0] > arena_size[0] + 20 y_too_big = cameraPos[:,1] > arena_size[1] + 20 idxBad = np.logical_or(idxBad, np.logical_or(x_too_big, y_too_big)) x_too_small = cameraPos[:,0] < -20 y_too_small = cameraPos[:,1] < -20 idxBad = np.logical_or(idxBad, np.logical_or(x_too_small, y_too_small)) # Only keep camera data from within the environment N_RPis = np.sum(np.logical_not(idxBad)) # Only continue if at least one RPi data remains if N_RPis > 0: cameraPos = cameraPos[np.logical_not(idxBad),:] camera_locations = camera_locations[np.logical_not(idxBad),:] if np.any(lastCombPos): # Check which cameras provide data close enough to lastCombPos RPi_correct = [] for nRPi in range(N_RPis): lastCombPos_distance = euclidean(cameraPos[nRPi, :2], lastCombPos[:2]) RPi_correct.append(lastCombPos_distance < CameraSettings['General']['camera_transfer_radius']) RPi_correct = np.array(RPi_correct, dtype=bool) # If none were found to be withing search radius, set output to None if not np.any(RPi_correct): combPos = None else: # Use the reading from closest camera to target mean location that detects correct location if np.sum(RPi_correct) > 1: # Only use correct cameras N_RPis = np.sum(RPi_correct) cameraPos = cameraPos[RPi_correct, :] camera_locations = camera_locations[RPi_correct, :] meanPos = np.mean(cameraPos[:, :2], axis=0) # Find mean position distance from all cameras cam_distances = [] for nRPi in range(N_RPis): camera_loc = camera_locations[nRPi, :] cam_distances.append(euclidean(camera_loc, meanPos)) # Find closest distance camera and output its location coordinates closest_camera = np.argmin(np.array(cam_distances)) combPos = cameraPos[closest_camera, :] else: # If target only detected close enough to lastCombPos in a single camera, use it as output combPos = cameraPos[np.where(RPi_correct)[0][0], :] else: # If no lastCombPos provided, check if position can be verified from more than one camera #### NOTE! This solution breaks down if more than two cameras incorrectly identify the same object #### as the brightes spot, instead of the target LED. cameraPairs = [] pairDistances = [] for c in combinations(range(N_RPis), 2): pairDistances.append(euclidean(cameraPos[c[0], :2], cameraPos[c[1], :2])) cameraPairs.append(np.array(c)) cameraPairs = np.array(cameraPairs) cameraPairs_Match = np.array(pairDistances) < (CameraSettings['General']['camera_transfer_radius'] / 2.0) # If position can not be verified from multiple cameras, set output to none if not np.any(cameraPairs_Match): combPos = None else: # Otherwise, set output to mean of two cameras with best matching detected locations pairToUse = np.argmin(pairDistances) camerasToUse = np.array(cameraPairs[pairToUse, :]) combPos = np.mean(cameraPos[camerasToUse, :2], axis=0) # Add NaN values for second LED combPos = np.append(combPos, np.empty(2) * np.nan) else: combPos = None return combPos def remove_tracking_data_outside_boundaries(posdata, arena_size, max_error=20): NotNaN = np.where(np.logical_not(np.isnan(posdata[:,1])))[0] idxBad = np.zeros(NotNaN.size, dtype=bool) x_too_big = posdata[NotNaN,1] > arena_size[0] + max_error y_too_big = posdata[NotNaN,2] > arena_size[1] + max_error idxBad = np.logical_or(idxBad,
np.logical_or(x_too_big, y_too_big)
numpy.logical_or
# -*- coding: utf-8 -*- import os import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf from data import read_marcap, load_datas_scaled from model import build_model_rnn data_dir = './data' if not os.path.exists(data_dir): data_dir = '../data' print(os.listdir(data_dir)) marcap_dir = os.path.join(data_dir, 'marcap') marcap_data = os.path.join(marcap_dir, 'data') os.listdir(marcap_data) train_start = pd.to_datetime('2000-01-01') train_end = pd.to_datetime('2020-06-30') test_start = pd.to_datetime('2020-08-01') test_end = pd.to_datetime('2020-10-31') train_start, test_end # 삼성전기 code '009150' df_sem = read_marcap(train_start, test_end, ['009150'], marcap_data) df_sem.drop(df_sem[df_sem['Marcap'] == 0].index, inplace=True) df_sem.drop(df_sem[df_sem['Amount'] == 0].index, inplace=True) df_sem['LogMarcap'] = np.log(df_sem['Marcap']) df_sem['LogAmount'] = np.log(df_sem['Amount']) df_sem n_seq = 10 x_cols = ['LogMarcap', 'LogAmount', 'Open', 'High', 'Low', 'Close'] y_col = 'LogMarcap' train_inputs, train_labels, test_inputs, test_labels, scaler_dic = load_datas_scaled(df_sem, x_cols, y_col, train_start, train_end, test_start, test_end, n_seq) train_inputs.shape, train_labels.shape, test_inputs.shape, test_labels.shape model = build_model_rnn(n_seq, len(x_cols)) model.summary() model.compile(loss=tf.losses.MeanSquaredError(), optimizer=tf.optimizers.Adam()) # early stopping early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=10) # save weights save_weights = tf.keras.callbacks.ModelCheckpoint(os.path.join('1corp_scaled_logmarcap_logamount_prices.hdf5'), monitor='val_loss', verbose=1, save_best_only=True, mode='min', save_freq='epoch', save_weights_only=True) # save weights csv_log = tf.keras.callbacks.CSVLogger(os.path.join('1corp_scaled_logmarcap_logamount_prices.csv'), separator=',', append=False) # train history = model.fit(train_inputs, train_labels, epochs=100, batch_size=32, validation_data=(test_inputs, test_labels), callbacks=[early_stopping, save_weights, csv_log]) model = build_model_rnn(n_seq, len(x_cols)) model.summary() model.load_weights(save_weights.filepath) # # train eval # n_batch = 32 train_preds = [] for i in range(0, len(train_inputs), n_batch): batch_inputs = train_inputs[i:i + n_batch] y_pred = model.predict(batch_inputs) y_pred = y_pred.squeeze(axis=-1) train_preds.extend(y_pred) train_preds = np.array(train_preds) assert len(train_labels) == len(train_preds) train_labels.shape, train_preds.shape scaler = scaler_dic[y_col] train_labels_scaled = [scaler.inv_scale_value(v) for v in train_labels] train_preds_scaled = [scaler.inv_scale_value(v) for v in train_preds] train_labels_log = np.array(train_labels_scaled) train_preds_log = np.array(train_preds_scaled) plt.figure(figsize=(16, 4)) plt.plot(train_labels_log, 'b-', label='y_true') plt.plot(train_preds_log, 'r--', label='y_pred') plt.legend() plt.show() plt.figure(figsize=(16, 4)) plt.plot(train_labels_log - train_preds_log, 'g-', label='y_diff') plt.legend() plt.show() # https://bkshin.tistory.com/entry/%EB%A8%B8%EC%8B%A0%EB%9F%AC%EB%8B%9D-17-%ED%9A%8C%EA%B7%80-%ED%8F%89%EA%B0%80-%EC%A7%80%ED%91%9C # https://m.blog.naver.com/PostView.nhn?blogId=limitsinx&logNo=221578145366&proxyReferer=https:%2F%2Fwww.google.com%2F rmse = tf.sqrt(tf.keras.losses.MSE(train_labels_log, train_preds_log)) mae = tf.keras.losses.MAE(train_labels_log, train_preds_log) mape = tf.keras.losses.MAPE(train_labels_log, train_preds_log) print(pd.DataFrame([rmse, mae, mape], index=['RMSE', 'MAE', 'MAPE']).head()) # # test eval # test_preds = [] for i in range(0, len(test_inputs), n_batch): batch_inputs = test_inputs[i:i + n_batch] y_pred = model.predict(batch_inputs) y_pred = y_pred.squeeze(axis=-1) test_preds.extend(y_pred) test_preds = np.array(test_preds) assert len(test_labels) == len(test_preds) test_labels.shape, test_preds.shape scaler = scaler_dic[y_col] test_labels_scaled = [scaler.inv_scale_value(v) for v in test_labels] test_preds_scaled = [scaler.inv_scale_value(v) for v in test_preds] test_labels_log = np.array(test_labels_scaled) test_preds_log =
np.array(test_preds_scaled)
numpy.array
import numpy as np from matplotlib import pyplot # %matplotlib inline # Defines how "wide" RBFs are (higher = RBF extends further) BETA = 1 # Proportion of test data of all the data PROPORTION_TEST = 0.3 # Prepare the data # Note: For simplicity, we do not do grid-space over x/y, # even though task could be interpreted so x = np.linspace(0, 2 * np.pi, 30) y = np.linspace(0, 2 * np.pi, 30) z = np.sin(x) * np.cos(y) # Combine x and y into one matrix xy =
np.vstack([x, y])
numpy.vstack
from keras.optimizers import Adam from keras.layers import Dense, Input, Activation import random import keras.backend as K from keras.models import Sequential, Model, load_model import numpy as np import tensorflow as tf from time import time from keras.callbacks import History from collections import deque class PG(): def __init__(self, load_network = False, load_weight = False, load_file = None): self.learning_rate = 0.0001 self.discount_factor = 0.99 self.state_memory = [] self.reward_memory = [] self.action_memory = [] self.num_actions = 4 self.curr_disc_rewards = None self.policy_n, self.predict_n = self.create_network(load_network, load_weight, load_file) def create_network(self, load_network = False, load_weight = False, load_file = None): if load_network is True: model = load_model(load_file) return (None, model) input = Input(shape = (363,)) disc_rewards = Input(shape = [1]) dense1 = Dense(128, activation = 'relu')(input) dense2 = Dense(64, activation = 'relu')(dense1) prob_output = Dense(self.num_actions, activation = 'softmax')(dense2) opt = Adam(self.learning_rate) def custom_loss(y_true, y_pred): clip_out = K.clip(y_pred,1e-8, 1-1e-8) log_lik = y_true * K.log(clip_out) return K.sum(-log_lik * disc_rewards) policy_n = Model(inputs = [input, disc_rewards], outputs = [prob_output]) policy_n.compile(loss = custom_loss, optimizer=opt) predict_n = Model(inputs= [input], outputs = [prob_output]) if load_weight is True: predict_n.load_weights(load_file) return (None, predict_n) return policy_n, predict_n def predict_action(self, state): predicted_probs = self.predict_n.predict(state)[0] pred_action = np.random.choice(range(self.num_actions), p = predicted_probs) return pred_action def remember(self, state, action, reward): self.state_memory.append(state.reshape((363,))) self.action_memory.append(action) self.reward_memory.append(reward) def update_policy(self): state_mem = np.array(self.state_memory) action_mem = np.array(self.action_memory) reward_mem =
np.array(self.reward_memory)
numpy.array
#!/usr/bin/python """ Python implementation of the icc method implemented originally by <NAME> in MATLAB from <NAME>, <NAME>. Agreement and reliability statistics for shapes. PLoS One. 2018; 13(8):e0202087. Published 2018 Aug 23. doi:10.1371/journal.pone.0202087 and extended to include F-Value and lower and upper bounds. """ #MIT License # #Copyright (c) <NAME> 2018-2020 # #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: # #The above copyright notice and this permission notice shall be included in all #copies or substantial portions of the Software. # #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #SOFTWARE. import numpy as np import scipy.io as sio import scipy.stats as sstats def icc(M): """ICC Intraclass correlation coefficient. Calculates ICC is for a two-way, fully crossed random efects model. This type of ICC is appropriate to describe the absolute agreement among shape measurements from a group of k raters, randomly selected from the population of all raters, made on a set of n items. Shrout and Fleiss: ICC(2,1) <NAME> Wong: ICC(A,1) M is the array of measurements The dimensions of M are n x k, where n is the # of subjects / groups k is the # of raters """ if not isinstance(M, np.ndarray): raise TypeError("Input must be a numpy array") n, k = M.shape u1 = np.mean(M, axis = 0) u2 = np.mean(M, axis = 1) u = np.mean(M[:]) SS =
np.sum((M - u) ** 2)
numpy.sum
import numpy as np import pandas as pd import os from sklearn.neighbors import KernelDensity from sklearn.model_selection import GridSearchCV import matplotlib.pyplot as plt import mpl_toolkits.mplot3d from hyperparameters import load_params from tqdm import tqdm import torch import os def plot_kde(params, vae_name, device): os.environ['CUDA_VISIBLE_DEVICES'] = str(device) vae = torch.load('Model_pkl/' + vae_name) dataset = torch.load('Data/vae_dataset.pkl') index = torch.utils.data.sampler.SubsetRandomSampler(np.random.choice(range(len(dataset)), params['KDE_samples'])) sample = [] for i in index: sample.append(torch.cat((dataset[i][0], dataset[i][1]), dim=0).numpy()) sample = torch.tensor(
np.array(sample)
numpy.array
## Program: VMTK ## Language: Python ## Date: February 12, 2018 ## Version: 1.4 ## Copyright (c) <NAME>, <NAME>, All rights reserved. ## See LICENSE file for details. ## This software is distributed WITHOUT ANY WARRANTY; without even ## the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ## PURPOSE. See the above copyright notices for more information. ## Note: this code was contributed by ## <NAME> (Github @rlizzo) ## University at Buffalo import pytest import vmtk.vmtkbranchsections as branchsections from vtk.numpy_interface import dataset_adapter as dsa import numpy as np @pytest.fixture(scope='module') def branch_sections_one_sphere(aorta_centerline_branches ,aorta_surface_branches): sections = branchsections.vmtkBranchSections() sections.Surface = aorta_surface_branches sections.Centerlines = aorta_centerline_branches sections.NumberOfDistanceSpheres = 1 sections.ReverseDirection = 0 sections.RadiusArrayName = 'MaximumInscribedSphereRadius' sections.GroupIdsArrayName = 'GroupIds' sections.CenterlineIdsArrayName = 'CenterlineIds' sections.TractIdsArrayName = 'TractIds' sections.BlankingArrayName = 'Blanking' sections.Execute() return sections.BranchSections @pytest.fixture(scope='module') def branch_sections_two_spheres(aorta_centerline_branches ,aorta_surface_branches): sections = branchsections.vmtkBranchSections() sections.Surface = aorta_surface_branches sections.Centerlines = aorta_centerline_branches sections.NumberOfDistanceSpheres = 2 sections.ReverseDirection = 0 sections.RadiusArrayName = 'MaximumInscribedSphereRadius' sections.GroupIdsArrayName = 'GroupIds' sections.CenterlineIdsArrayName = 'CenterlineIds' sections.TractIdsArrayName = 'TractIds' sections.BlankingArrayName = 'Blanking' sections.Execute() return sections.BranchSections def test_number_of_cells_one_sphere(branch_sections_one_sphere): numberOfCells = branch_sections_one_sphere.GetNumberOfCells() assert numberOfCells == 24 def test_number_of_cells_two_sphere(branch_sections_two_spheres): numberOfCells = branch_sections_two_spheres.GetNumberOfCells() assert numberOfCells == 13 @pytest.mark.parametrize("branch_sections,expectedValue",[ (branch_sections_one_sphere, np.array([0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3])), (branch_sections_two_spheres, np.array([0, 0, 0, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3])) ]) def test_branch_section_group_ids_correct(aorta_centerline_branches ,aorta_surface_branches, branch_sections, expectedValue): wrapped_bifur_section = dsa.WrapDataObject(branch_sections(aorta_centerline_branches ,aorta_surface_branches)) assert np.allclose(wrapped_bifur_section.CellData.GetArray('BranchSectionGroupIds'), expectedValue) == True @pytest.mark.parametrize("branch_sections,expectedValue",[ (branch_sections_one_sphere, np.array([ 195.53117732, 182.23256278, 186.21267186, 187.0400059, 177.20153242, 176.25756012, 85.82336158, 73.02829417, 63.50445732, 62.40968092, 62.22208797, 60.62570948, 60.78477703, 60.01402702, 63.08210028, 99.06819265, 80.5269763, 64.12766266, 64.57327767, 67.13289619, 60.67602206, 59.98268905, 58.48300609, 58.6038296 ])), (branch_sections_two_spheres, np.array([ 195.53117732, 186.21267186, 177.20153242, 85.82336158, 63.50445732, 62.22208797, 60.78477703, 63.08210028, 99.06819265, 64.12766266, 67.13289619, 59.98268905, 58.6038296 ])) ]) def test_branch_section_area_correct(aorta_centerline_branches ,aorta_surface_branches, branch_sections, expectedValue): wrapped_bifur_section = dsa.WrapDataObject(branch_sections(aorta_centerline_branches ,aorta_surface_branches)) assert np.allclose(wrapped_bifur_section.CellData.GetArray('BranchSectionArea'), expectedValue) == True @pytest.mark.parametrize("branch_sections,expectedValue",[ (branch_sections_one_sphere, np.array([ 15.25387687, 14.25260369, 14.66768231, 15.25974257, 14.6356421, 13.64498788, 10.89010723, 9.18671219, 8.86926931, 8.74859368, 8.56866816, 8.61375309, 8.58205574, 8.49087216, 8.73891524, 11.33372646, 9.5789813, 8.91067727, 8.55769926, 8.87761983, 8.63328033, 8.53398992, 8.28912586, 8.73934951])), (branch_sections_two_spheres, np.array([ 15.25387687, 14.66768231, 14.6356421, 10.89010723, 8.86926931, 8.56866816, 8.58205574, 8.73891524, 11.33372646, 8.91067727, 8.87761983, 8.53398992, 8.73934951])) ]) def test_branch_section_min_size_correct(aorta_centerline_branches ,aorta_surface_branches, branch_sections, expectedValue): wrapped_bifur_section = dsa.WrapDataObject(branch_sections(aorta_centerline_branches ,aorta_surface_branches)) assert np.allclose(wrapped_bifur_section.CellData.GetArray('BranchSectionMinSize'), expectedValue) == True @pytest.mark.parametrize("branch_sections,expectedValue",[ (branch_sections_one_sphere, np.array([ 17.08821628, 16.06283909, 16.22629607, 15.95819134, 16.01361226, 16.17715589, 11.69644525, 10.22110037, 9.35342472, 9.36595157, 9.21275981, 9.20696121, 9.04795408, 9.16998689, 9.37937275, 12.45697059, 10.97796263, 9.27120319, 9.39964383, 9.83837421, 9.22775579, 9.13391134, 8.9179931, 8.86614888])), (branch_sections_two_spheres, np.array([ 17.08821628, 16.22629607, 16.01361226, 11.69644525, 9.35342472, 9.21275981, 9.04795408, 9.37937275, 12.45697059, 9.27120319, 9.83837421, 9.13391134, 8.86614888])) ]) def test_branch_section_max_size_correct(aorta_centerline_branches ,aorta_surface_branches, branch_sections, expectedValue): wrapped_bifur_section = dsa.WrapDataObject(branch_sections(aorta_centerline_branches ,aorta_surface_branches)) assert np.allclose(wrapped_bifur_section.CellData.GetArray('BranchSectionMaxSize'), expectedValue) == True @pytest.mark.parametrize("branch_sections,expectedValue",[ (branch_sections_one_sphere, np.array([ 0.89265472, 0.8873029, 0.90394519, 0.95623259, 0.91395007, 0.84347261, 0.93106127, 0.89879875, 0.94823763, 0.93408487, 0.930087, 0.93556961, 0.94850788, 0.92594158, 0.93171638, 0.90983007, 0.87256458, 0.96111336, 0.91042804, 0.90234622, 0.93557746, 0.93431933, 0.92948332, 0.98569848])), (branch_sections_two_spheres, np.array([ 0.89265472, 0.90394519, 0.91395007, 0.93106127, 0.94823763, 0.930087, 0.94850788, 0.93171638, 0.90983007, 0.96111336, 0.90234622, 0.93431933, 0.98569848])) ]) def test_branch_section_shape_correct(aorta_centerline_branches ,aorta_surface_branches, branch_sections, expectedValue): wrapped_bifur_section = dsa.WrapDataObject(branch_sections(aorta_centerline_branches ,aorta_surface_branches)) assert np.allclose(wrapped_bifur_section.CellData.GetArray('BranchSectionShape'), expectedValue) == True @pytest.mark.parametrize("branch_sections,expectedValue",[ (branch_sections_one_sphere, np.array([1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1])), (branch_sections_two_spheres, np.array([1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1])) ]) def test_branch_section_closed_correct(aorta_centerline_branches ,aorta_surface_branches, branch_sections, expectedValue): wrapped_bifur_section = dsa.WrapDataObject(branch_sections(aorta_centerline_branches ,aorta_surface_branches)) assert np.allclose(wrapped_bifur_section.CellData.GetArray('BranchSectionClosed'), expectedValue) == True @pytest.mark.parametrize("branch_sections,expectedValue",[ (branch_sections_one_sphere, np.array([0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8])), (branch_sections_two_spheres, np.array([0, 2, 4, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8])) ]) def test_branch_section_distance_to_spheres_correct(aorta_centerline_branches ,aorta_surface_branches, branch_sections, expectedValue): wrapped_bifur_section = dsa.WrapDataObject(branch_sections(aorta_centerline_branches ,aorta_surface_branches)) assert np.allclose(wrapped_bifur_section.CellData.GetArray('BranchSectionDistanceSpheres'), expectedValue) == True @pytest.mark.parametrize("expectedvalue,paramid",[ (0, 0), (129, 1), (246, 2), (369, 3), (491, 4), (610, 5), (712, 6), (784, 7), (864, 8), (938, 9), (1012, 10), (1084, 11), (1157, 12), (1227, 13), (1294, 14), (1362, 15), (1440, 16), (1530, 17), (1604, 18), (1685, 19), (1760, 20), (1838, 21), (1916, 22), (1986, 23) ]) def test_cell_data_pointId_start_indices_one_sphere(branch_sections_one_sphere, expectedvalue, paramid): bcx = branch_sections_one_sphere.GetCell(paramid) pointIdStart = bcx.GetPointId(0) assert pointIdStart == expectedvalue @pytest.mark.parametrize("expectedvalue,paramid",[ (0, 0), (129, 1), (252, 2), (371, 3), (443, 4), (517, 5), (589, 6), (659, 7), (727, 8), (805, 9), (879, 10), (954, 11), (1032, 12), ]) def test_cell_data_pointId_start_indices_two_sphere(branch_sections_two_spheres, expectedvalue, paramid): bcx = branch_sections_two_spheres.GetCell(paramid) pointIdStart = bcx.GetPointId(0) assert pointIdStart == expectedvalue @pytest.mark.parametrize("expectedvalue,numberofpoints,paramid",[ (128, 129, 0), (245, 117, 1), (368, 123, 2), (490, 122, 3), (609, 119, 4), (711, 102, 5), (783, 72, 6), (863, 80, 7), (937, 74, 8), (1011, 74, 9), (1083, 72, 10), (1156, 73, 11), (1226, 70, 12), (1293, 67, 13), (1361, 68, 14), (1439, 78, 15), (1529, 90, 16), (1603, 74, 17), (1684, 81, 18), (1759, 75, 19), (1837, 78, 20), (1915, 78, 21), (1985, 70, 22), (2064, 79, 23) ]) def test_cell_data_pointId_end_indices_one_sphere(branch_sections_one_sphere, expectedvalue, numberofpoints, paramid): bcx = branch_sections_one_sphere.GetCell(paramid) pointIdEnd = bcx.GetPointId(numberofpoints - 1) assert pointIdEnd == expectedvalue @pytest.mark.parametrize("expectedvalue,numberofpoints,paramid",[ (128, 129, 0), (251, 123, 1), (370, 119, 2), (442, 72, 3), (516, 74, 4), (588, 72, 5), (658, 70, 6), (726, 68, 7), (804, 78, 8), (878, 74, 9), (953, 75, 10), (1031, 78, 11), (1110, 79, 12), ]) def test_cell_data_pointId_end_indices_two_spheres(branch_sections_two_spheres, expectedvalue, numberofpoints, paramid): bcx = branch_sections_two_spheres.GetCell(paramid) pointIdEnd = bcx.GetPointId(numberofpoints - 1) assert pointIdEnd == expectedvalue @pytest.mark.parametrize("pointidstart,numberofpoints,expectedlocationstart,expectedlocationend,paramid",[ (0, 129, np.array([217.96841430664062, 173.62118530273438, 13.255617141723633]), np.array([218.3564910888672, 173.5325927734375, 13.078214645385742]), 0), (129, 117, np.array([220.60513305664062, 168.85765075683594, 14.689851760864258]), np.array([220.7154998779297, 168.8603515625, 14.662433624267578]), 1), (246, 123, np.array([220.60513305664062, 161.35403442382812, 14.91808795928955]), np.array([221.1270294189453, 161.36172485351562, 14.869494438171387]), 2), (369, 122, np.array([217.96841430664062, 153.799560546875, 16.24483871459961]), np.array([218.7977752685547, 153.759033203125, 15.950116157531738]), 3), (491, 119, np.array([220.60513305664062, 147.16163635253906, 16.457529067993164]), np.array([220.84371948242188, 147.17149353027344, 16.445602416992188]), 4), (610, 102, np.array([214.2646026611328, 138.3168182373047, 20.781129837036133]), np.array([215.2498321533203, 139.0978546142578, 28.59796714782715]), 5), (712, 72, np.array([221.03619384765625, 133.0021209716797, 19.41550064086914]), np.array([223.09197998046875, 133.60549926757812, 29.31968116760254]), 6), (784, 80, np.array([225.22320556640625, 128.92987060546875, 19.44786834716797]), np.array([225.2543182373047, 128.94456481933594, 19.4281005859375]), 7), (864, 74, np.array([224.99966430664062, 125.61617279052734, 20.987215042114258]), np.array([225.03799438476562, 125.61742401123047, 20.96105194091797]), 8), (938, 74, np.array([226.9380340576172, 121.55354309082031, 20.983095169067383]), np.array([227.32139587402344, 121.60404968261719, 20.776121139526367]), 9), (1012, 72, np.array([230.27310180664062, 117.59968566894531, 20.985858917236328]), np.array([230.3741455078125, 117.61669921875, 20.980459213256836]), 10), (1084, 73, np.array([229.39419555664062, 112.8595962524414, 22.42799949645996]), np.array([229.47718811035156, 112.87579345703125, 22.390670776367188]), 11), (1157, 70, np.array([230.27310180664062, 108.89535522460938, 23.66469383239746]), np.array([230.82315063476562, 108.984375, 23.356685638427734]), 12), (1227, 67, np.array([232.90982055664062, 105.00150299072266, 23.84995460510254]), np.array([232.92904663085938, 105.00645446777344, 23.845577239990234]), 13), (1294, 68, np.array([232.12461853027344, 101.83521270751953, 25.46320915222168]), np.array([232.1511993408203, 101.83283996582031, 25.44672393798828]), 14), (1362, 78, np.array([221.04122924804688, 132.8127899169922, 19.44769287109375]), np.array([223.05599975585938, 133.10491943359375, 29.166749954223633]), 15), (1440, 90, np.array([221.40382385253906, 128.67816162109375, 22.391569137573242]), np.array([221.80430603027344, 128.6477508544922, 24.464847564697266]), 16), (1530, 74, np.array([216.21060180664062, 125.59019470214844, 21.670682907104492]), np.array([216.93014526367188, 125.52423095703125, 21.99653434753418]), 17), (1604, 81, np.array([214.45278930664062, 121.28471374511719, 22.488676071166992]), np.array([214.6112518310547, 121.27181243896484, 22.50135040283203]), 18), (1685, 75, np.array([212.6949920654297, 117.73933410644531, 23.282371520996094]), np.array([213.42185974121094, 117.62139892578125, 23.06829071044922]), 19), (1760, 78, np.array([213.5738983154297, 113.08839416503906, 23.80427360534668]),
np.array([214.01332092285156, 112.93942260742188, 23.97063446044922])
numpy.array
import sys sys.path.append('../') import cosmopy as cosmo import numpy as np from scipy import sparse from math import sqrt, exp # Unit Test import unittest import numpy.testing as nptest class basic_tests(unittest.TestCase): def test_QP(self): P = sparse.csc_matrix([[4., 1], [1, 2]]) q = np.array([1., 1]) A = sparse.csc_matrix([[1., 1], [1, 0], [0, 1], [-1., -1], [-1, 0], [0, -1]]) b = np.array([1, 0.7, 0.7, -1, 0, 0]) cone = {"l" : 6 } model = cosmo.Model() model.setup(P, q, A, b, cone, eps_abs = 1e-5, eps_rel = 1e-5) self.assertTrue(model.setup_complete) model.optimize() self.assertTrue(model.solved) obj_val, x, y, s = model.get_sol() self.assertEqual(model.get_status(), 'Solved') nptest.assert_array_almost_equal(x, np.array([0.3, 0.7]), decimal = 3) nptest.assert_array_almost_equal(y, np.array([0.0033, 0., 0.2, 2.903, 0., 0.]), decimal = 3) nptest.assert_array_almost_equal(s, np.array([0., 0.4, 0., 0., 0.3, 0.7]), decimal = 3) nptest.assert_almost_equal(obj_val, 1.88) def test_wrong_dims(self): model = cosmo.Model() q = np.array([1.,0.]) A = sparse.eye(3, format = "csc") b = np.zeros(3) cone = {"f" : 3} with self.assertRaises(ValueError): model.setup(q = q, A = A, b = b, cone = cone) q = np.array([1.,0., 0.]) cone = {"f" : 2} with self.assertRaises(ValueError): model.setup(q = q, A = A, b = b, cone = cone) def test_wrong_order(self): model = cosmo.Model() self.assertWarns(Warning, model.optimize) self.assertWarns(Warning, model.get_objective_value) self.assertWarns(Warning, model.get_x) def test_reset(self): P = sparse.csc_matrix([[4., 1], [1, 2]]) q = np.array([1., 1]) A = sparse.csc_matrix([[1., 1], [1, 0], [0, 1], [-1., -1], [-1, 0], [0, -1]]) b = np.array([1, 0.7, 0.7, -1, 0, 0]) cone = {"l" : 6 } model = cosmo.Model() model.setup(P, q, A, b, cone, eps_abs = 1e-5, eps_rel = 1e-5, check_termination = 1) model.optimize() model.reset() self.assertTrue(model.result == None) self.assertTrue(model.solved == False) self.assertTrue(model.setup_complete == False) def test_warm_start(self): P = sparse.csc_matrix([[4., 1], [1, 2]]) q = np.array([1., 1]) A = sparse.csc_matrix([[1., 1], [1, 0], [0, 1], [-1., -1], [-1, 0], [0, -1]]) b = np.array([1, 0.7, 0.7, -1, 0, 0]) cone = {"l" : 6 } model = cosmo.Model() model.setup(P, q, A, b, cone, eps_abs = 1e-5, eps_rel = 1e-5, check_termination = 1) model.optimize() obj_val, xopt, yopt, sopt = model.get_sol() iter_cold = model.get_iter() # now run again but warm start the variables model = cosmo.Model() model.setup(P, q, A, b, cone, eps_abs = 1e-5, eps_rel = 1e-5, check_termination = 1) model.warm_start( x= xopt, y = yopt) model.optimize() iter_warm = model.get_iter() self.assertTrue(iter_warm < iter_cold) def test_SDP(self): n = 6 q = np.array([1., 4, 9, 6, 0, 7]) #upper(C) b = np.hstack((np.array([11., 19.]), np.zeros(6))) A1_t = sparse.csc_matrix([1.0, 0, 3, 2, 14, 5]) A2_t = sparse.csc_matrix([0.0, 4, 6, 16, 0, 4]) Is = -sparse.eye(n, format = "csc") Is[1, 1] = Is[3, 3] = Is[4, 4] = -sqrt(2.) A = sparse.vstack([A1_t, A2_t, Is], format = "csc" ) cone = {"f" : 2, "s" : [6]} model = cosmo.Model() model.setup(q = q, A = A, b = b, cone = cone, eps_abs = 1e-5, eps_rel = 1e-5) model.optimize() obj_val = model.get_objective_value() self.assertEqual(model.get_status(), 'Solved') nptest.assert_almost_equal(obj_val, 13.902, decimal = 3) def test_EXP(self): # # max x # # s.t. y * exp(x / y) <= z # # y == 1, z == exp(5) q = np.array([-1., 0, 0]) A1 = sparse.csc_matrix([[0., 1, 0], [0., 0, 1]]) b1 = np.array([1., exp(5)]) A2 = -sparse.eye(3, format = "csc") b2 = np.zeros(3) A = sparse.vstack([A1, A2], format = "csc" ) b = np.hstack((b1, b2)) cone = {"f" : 2, "ep" : 1} model = cosmo.Model() model.setup(q = q, A = A, b = b, cone = cone, eps_abs = 1e-5, eps_rel = 1e-5) model.optimize() obj_val = model.get_objective_value() status = model.get_status() self.assertEqual(status, 'Solved') nptest.assert_almost_equal(obj_val, -5, decimal = 3) def test_POW(self): # max x1^0.6 y^0.4 + x2^0.1 # s.t. x1, y, x2 >= 0 # x1 + 2y + 3x2 == 3 # which is equivalent to # max z1 + z2 # s.t. (x1, y, z1) in K_pow(0.6) # (x2, 1, z2) in K_pow(0.1) # x1 + 2y + 3x2 == 3 # x = (x1, y, z1, x2, y2, z2) q = np.array([0, 0, -1., 0, 0, -1.]) # x1 + 2y + 3x2 == 3 A1 = sparse.csc_matrix([1., 2, 0, 3., 0, 0]) b1 = np.array([3.]) # y2 == 1 A2 = sparse.csc_matrix([0, 0, 0, 0, 1.0, 0]) b2 = np.array([1.]) # (x1, y, z1) in K_pow(0.6) A3 = sparse.hstack([-sparse.eye(3), np.zeros((3, 3))], format = "csc") b3 = np.zeros(3) # (x2, y2, z2) in K_pow(0.1) A4 = sparse.hstack([np.zeros((3, 3)), -sparse.eye(3)], format = "csc") b4 = np.zeros(3) A = sparse.vstack([A1, A2, A3, A4], format = "csc" ) b =
np.hstack((b1, b2, b3, b4))
numpy.hstack
import matplotlib.pyplot as plt import seaborn as sns from matplotlib.offsetbox import OffsetImage, AnnotationBbox from svgpathtools import svg2paths, wsvg import re import numpy as np import glob def plot_heatmap(data, xlabel, ylabel, minimization=False, savefig_path=None, ): ax = sns.heatmap(data) ax.invert_yaxis() plt.xlabel(xlabel) plt.ylabel(ylabel) # get figure to save to file if savefig_path: ht_figure = ax.get_figure() ht_figure.savefig(savefig_path+"/heatmap_"+xlabel+"_"+ylabel, dpi=400) plt.clf() plt.cla() plt.close() def plot_svg(xml, filename): root = ET.fromstring(xml) svg_path = root.find(NAMESPACE + 'path').get('d') wsvg(svg_path, filename=filename+'.svg') def getImage(path): return OffsetImage(plt.imread(path)) def plot_fives(dir_path, xlabel, ylabel): paths = glob.glob(dir_path + "/"+xlabel+"_"+ylabel+"/*.png") x=[] y=[] for a in paths: pattern = re.compile('([\d\.]+),([\d\.]+)') segments = pattern.findall(a) for se in segments: x.append(int(se[0])) y.append(int(se[1])) plt.cla() fig, ax = plt.subplots(figsize=(10,10)) #ax.scatter(x, y) for x0, y0, path in zip(x, y,paths): ab = AnnotationBbox(getImage(path), (y0, x0), frameon=False) ax.add_artist(ab) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.xticks(
np.arange(-1, 25, 1)
numpy.arange
import os import numpy as np import matplotlib.pyplot as plt from glssm import * ################################################# #A constant, dim y = 1, dim x = 1, randomwalk(estPHI=False) xdict = dict() ydict = dict() nsubj = 20 ns = np.zeros(nsubj, dtype=np.int) mu0 = np.array([0.0]) SIGMA0 = np.array([1.0]).reshape(1,1) R = np.array([2.5]).reshape(1,1) PHI = np.array([1.0]).reshape(1,1) Q = np.array([1.5]).reshape(1,1) for i in range(nsubj): ns[i] = int(np.random.uniform(200,400,1)) A = np.ones([ns[i],1,1]) s1 = dlm(mu0,SIGMA0,A,R,PHI,Q) tempx, tempy = s1.simulate(ns[i]) ydict.update({i: tempy}) xdict.update({i: tempx}) bigxmat = xdict[0] bigns = [ns[0]] bigymat = ydict[0] for i in range(1,nsubj): bigxmat = np.vstack((bigxmat, xdict[i])) bigymat = np.vstack((bigymat, ydict[i])) bigns.append(ns[i]) ntimes = np.array(bigns) #check the first series tempy = ydict[0] tempx = xdict[0] tempy[50:70] = None A = np.ones([ns[0],1,1]) s1 = dlm(mu0,SIGMA0,A,R,PHI,Q) xp,xf,pp,pf,K_last = s1.filtering(tempy) xs,ps,pcov,xp,pp = s1.smoothing(tempy) #plots fig, ax = plt.subplots() plt.plot(tempx, label="x") plt.plot(tempy, label="y") plt.plot(xp, label="xp") plt.plot(xf, label="xf") plt.plot(xf, label="xs") legend = ax.legend(loc='upper left') plt.show() s2 = dlm(mu0,SIGMA0,A,R,PHI,Q) s2.EM(tempy, np.array([ns[0]]),estPHI=True,maxit=100, tol=1e-4,verbose=False) s2.mu0, s2.SIGMA0, s2.R, s2.PHI, s2.Q #filter and forecast x_filter, P_filter = s2.onestep_filter(tempy[ns[0]-1,:],xp[ns[0]-1,:],pp[ns[0]-1,:,:],A[ns[0]-1,:,:]) x_forecast, P_forecast = s2.onestep_forecast(x_filter,P_filter) #EM fitting bigA = np.ones([bigymat.shape[0], 1, 1]) dlm1 = dlm(mu0,SIGMA0,bigA,R,PHI,Q) dlm1.EM(bigymat, ntimes, estPHI=True, maxit=100, tol=1e-4,verbose=True) dlm1.mu0, dlm1.SIGMA0, dlm1.R, dlm1.PHI, dlm1.Q dlm1 = dlm(mu0,SIGMA0,bigA,R,PHI,Q) #dlm1._EM(yy,A,mu0,SIGMA0,PHI0,Q0,R0,ntimes,maxit=40, tol=1e-4, estPHI=True) dlm1.EM(bigymat, ntimes, estPHI=False, maxit=100, tol=1e-4,verbose=True) dlm1.mu0, dlm1.SIGMA0, dlm1.R, dlm1.PHI, dlm1.Q #################################################################################### #real data testing ana1 = pd.read_csv("analysis.csv") ana1.head() ana1.shape #units: ppb both #reporting prediction errors ana1.describe() yy = ana1["sqrty"].values.reshape(8784,1) zz = ana1["sqrtz"].values.reshape(8784,1) plt.plot(yy) plt.plot(zz) sum(pd.isnull(yy)) indices = [k for k,val in enumerate(yy) if pd.isnull(yy[k])] train = 6588 trainid = np.arange(train) #%75 testid = np.arange(train,8784) ############################################## #DLM1: random walk + noise #y_t = mu_t + v_t #mu_t = mu_{t-1} + w_t train = 6588 trainid = np.arange(train) #%75 testid = np.arange(train,8784) fullA = np.repeat(1.0,8784).reshape(8784,1,1) A = np.repeat(1.0,train).reshape(train,1,1) mu0 = np.array([5.0]) SIGMA0 = np.array([2.0]).reshape(1,1) R0 = np.array([2.0]).reshape(1,1) PHI0 = np.array([1.0]).reshape(1,1) Q0 = np.array([1.0]).reshape(1,1) dlm1 = dlm(mu0,SIGMA0,A,R0,PHI0,Q0) ntimes = np.array([train]) dlm1.EM(yy[:train,:], ntimes, estPHI=False, maxit=30) dlm1.mu0, dlm1.SIGMA0, dlm1.R, dlm1.PHI, dlm1.Q #loglik = -5786 xp,xf,pp,pf,K_last = dlm1.filtering(yy[:train,:]) diff = 0 thisxf = xf[train-1,:] thispf = pf[train-1,:,:] for i in range(len(testid)): thisx,thisp = dlm1.onestep_forecast(thisxf,thispf) if not pd.isnull(yy[train]): diff += np.sum(np.abs(yy[train,:] - np.dot(fullA[train,:,:],thisx) )) thisxf,thispf = dlm1.onestep_filter(yy[train,:],thisx,thisp,fullA[train,:,:]) train += 1 diff / len(testid) #error: 0.3980 ##################################### #DLM2: local linear trend #y_t = mu_t + v_t #mu_t = mu_{t-1} + b_{t-1} + w1_t #b_t = b_{t-1} + w2_t train = 6588 trainid = np.arange(train) #%75 testid = np.arange(train,8784) fullA = np.ones([8784,1,2]) fullA[:,:,1] = 0.0 A = np.ones([train,1,2]) A[:,:,0] = 1.0 A[:,:,1] = 0.0 mu0 = np.array([5.0,1.0]) SIGMA0 = np.array([1.0,0.0,0.0,1.0]).reshape(2,2) PHI0 = np.array([1.0,1.0,0.0,1.0]).reshape(2,2) Q0 = np.array([0.3,0,0,0.3]).reshape(2,2) R0 = np.array([2.0]).reshape(1,1) ntimes = np.array([train]) dlm2 = dlm(mu0,SIGMA0,A,R0,PHI0,Q0) dlm2.EM(yy[trainid,:], ntimes, estPHI=False, maxit=30, tol=1e-3) dlm2.R, dlm2.PHI, dlm2.Q #loglik = 1644947 xp,xf,pp,pf,K_last = dlm2.filtering(yy[trainid,:]) diff = 0 thisxf = xf[train-1,:] thispf = pf[train-1,:] for i in range(len(testid)): thisx,thisp = dlm2.onestep_forecast(thisxf,thispf) if not pd.isnull(yy[train]): diff += np.sum(np.abs(yy[train,:] - np.dot(fullA[train,:,:],thisx) )) thisxf,thispf = dlm2.onestep_filter(yy[train,:],thisx,thisp,fullA[train,:,:]) train += 1 diff / len(testid) #error: 0.467 ########################## #can be viewed as a regression with time-varying coefficients. #y_t = a_1t + a_2t x_t + e_t #(a_1t,a_2t) = G_t %*% (a_{1,t-1},a_{2,t-1})+w_t ################################# #DLM3: seasonal trend ( 1 harmonic ) #y_t = [1 1 0] %*% [mu_t, s1_t, s1*_t] + v_t ''' PHI = [1 0 0 ] [0 cosw sinw] [0 -sinw cosw] ''' train = 6588 trainid = np.arange(train) #%75 testid = np.arange(train,8784) fullA = np.ones([8784,1,3]) fullA[:,:,2] = 0.0 A = np.ones([train,1,3]) A[:,:,2] = 0.0 mu0 = np.array([10.0,0.0,0.0]) SIGMA0 = np.array([1.0,0.0,0.0,\ 0.0,1.0,0.0,\ 0.0,0.0,1.0]).reshape(3,3) PHI0 = np.array([1.0,0.0,0.0,\ 0.0,np.cos(2*np.pi/24),np.sin(2*np.pi/24),\ 0.0,-np.sin(2*np.pi/24),np.cos(2*np.pi/24)]).reshape(3,3) Q0 = np.array([1.0,0.0,0.0,\ 0.0,1.0,0.0,\ 0.0,0.0,1.0]).reshape(3,3) R0 = np.array([1.0]).reshape(1,1) ntimes = np.array([train]) dlm3 = dlm(mu0,SIGMA0,A,R0,PHI0,Q0) dlm3.EM(yy[trainid,:],ntimes,maxit=30, tol=1e-4,estPHI=False) dlm3.R,dlm3.PHI,dlm3.Q #loglik: 5603 xp,xf,pp,pf,K_last = dlm3.filtering(yy[trainid,:]) diff = 0 thisxf = xf[train-1,:] thispf = pf[train-1,:] for i in range(len(testid)): thisx,thisp = dlm3.onestep_forecast(thisxf,thispf) if not pd.isnull(yy[train]): diff += np.sum(np.abs(yy[train,:] - np.dot(fullA[train,:,:],thisx) )) thisxf,thispf = dlm3.onestep_filter(yy[train,:],thisx,thisp,fullA[train,:,:]) train += 1 diff / len(testid) #error: 0.4008 ################################# #DLM4: WITH EXOGENOUS INPUT #exogenous input with time-varying coefficient ##y_t = [1 1 0 no2_t] %*% [mu_t, s1_t, s1*_t, beta] + v_t train = 6588 trainid = np.arange(train) #%75 testid = np.arange(train,8784) fullA = np.ones([8784,1,4]) fullA[:,:,2] = 0.0 fullA[:,:,3] = zz A = np.ones([train,1,4]) A[:,:,2] = 0.0 A[:,:,3] = zz[:train,:] mu0 = np.array([10.0,0.0,0.0,0.0]) SIGMA0 = np.array([1.0,0.0,0.0,0.0,\ 0.0,1.0,0.0,0.0,\ 0.0,0.0,1.0,0.0,\ 0.0,0.0,0.0,1.0]).reshape(4,4) PHI0 = np.array([1.0,0.0,0.0,0.0,\ 0.0,np.cos(2*np.pi/24),np.sin(2*np.pi/24),0.0,\ 0.0,-np.sin(2*np.pi/24),np.cos(2*np.pi/24),0.0,\ 0.0,0.0,0.0,1.0]).reshape(4,4) Q0 = np.array([1.0,0.0,0.0,0.0,\ 0.0,1.0,0.0,0.0,\ 0.0,0.0,1.0,0.0,\ 0.0,0.0,0.0,1.0]).reshape(4,4) R0 = np.array([2.0]).reshape(1,1) #BETA0 = np.array([0.1]).reshape(1,1) #BETA IS INCORPORATED AS A TIME-VARYING COEFFICIENT ntimes = np.array([train]) dlm4 = dlm(mu0,SIGMA0,A,R0,PHI0,Q0) dlm4.EM(yy[trainid,:],ntimes,maxit=30) dlm4.R,dlm4.PHI,dlm4.Q #loglik = 9314 xp,xf,pp,pf,K_last = dlm4.filtering(yy[trainid,:]) diff = 0 thisxf = xf[train-1,:] thispf = pf[train-1,:] for i in range(len(testid)): thisx,thisp = dlm4.onestep_forecast(thisxf,thispf) if not pd.isnull(yy[train]): diff += np.sum(np.abs(yy[train,:] - np.dot(fullA[train,:,:],thisx) )) thisxf,thispf = dlm4.onestep_filter(yy[train,:],thisx,thisp,fullA[train,:,:]) train += 1 diff / len(testid) #0.2694 #save the results for plot in R final = dlm(mu0,SIGMA0,fullA,R0,PHI0,Q0) ntimes = np.array([8784]) final.EM(yy, ntimes, estPHI=False,maxit=30) final.R,final.PHI,final.Q #smooth the series xs,ps,pcov,xp,pp = final.smoothing(yy) series_smooth = xs[:,0] + xs[:,1] + zz.ravel() * xs[:,3] series_upper = np.zeros(8784) series_lower = np.zeros(8784) multvec = np.array([1,1,0,0.5]) for i in range(8784): multvec[3] = zz[i] thiscov = np.dot(np.dot(multvec.T, ps[i,:,:]),multvec) series_upper[i] = series_smooth[i] + 1.96 * thiscov series_lower[i] = np.maximum(series_smooth[i] - 1.96 * thiscov,0) plt.plot(yy) plt.plot(series_smooth) plt.plot(series_upper) plt.plot(series_lower) #smooth the trends trendmu = xs[:,0] trendmu_upper = np.zeros(8784) trendmu_lower = np.zeros(8784) for i in range(8784): thisvar = ps[i,0,0] trendmu_upper[i] = trendmu[i] + 1.96 * thisvar trendmu_lower[i] = np.maximum(trendmu[i] - 1.96 * thisvar,0) plt.plot(trendmu) plt.plot(trendmu_upper) plt.plot(trendmu_lower) trendseason = xs[:,1] trendseason_upper = np.zeros(8784) trendseason_lower = np.zeros(8784) for i in range(8784): thisvar = ps[i,1,1] trendseason_upper[i] = trendseason[i] + 1.96 * thisvar trendseason_lower[i] = trendseason[i] - 1.96 * thisvar plt.plot(trendseason) plt.plot(trendseason_upper) plt.plot(trendseason_lower) trendno2 = xs[:,3] trendno2_upper = np.zeros(8784) trendno2_lower = np.zeros(8784) for i in range(8784): thisvar = ps[i,3,3] trendno2_upper[i] = trendno2[i] + 1.96 * thisvar trendno2_lower[i] = trendno2[i] - 1.96 * thisvar plt.plot(trendno2) plt.plot(trendno2_upper) plt.plot(trendno2_lower) dictionary = {'date':ana1['date'], 'time':ana1['time'], 'rawozone':ana1['y'], 'rawno2':ana1['z'], 'series_smooth':series_smooth, 'series_upper':series_upper, 'series_lower':series_lower, 'trendmu':trendmu, 'trendmu_upper':trendmu_upper, 'trendmu_lower':trendmu_lower, 'trendseason':trendseason, 'trendseason_upper':trendseason_upper, 'trendseason_lower':trendseason_lower, 'trendno2':trendno2, 'trendno2_upper':trendno2_upper, 'trendno2_lower':trendno2_lower} data = pd.DataFrame(dictionary) ######################################################################### ################################################################# #bivariate y, univariate x xdict = dict() ydict = dict() nsubj = 20 ns = np.zeros(nsubj, dtype=np.int) mu0 = np.array([0.0]) SIGMA0 = np.array([1.0]).reshape(1,1) R = np.array([2.5,0,0,1.5]).reshape(2,2) PHI = np.array([0.1]).reshape(1,1) Q = np.array([0.8]).reshape(1,1) for i in range(nsubj): ns[i] = int(np.random.uniform(200,400,1)) A = np.ones([ns[i],2,1]) s1 = dlm(mu0,SIGMA0,A,R,PHI,Q) tempx, tempy = s1.simulate(ns[i]) ydict.update({i: tempy}) xdict.update({i: tempx}) bigxmat = xdict[0] bigns = [ns[0]] bigymat = ydict[0] for i in range(1,nsubj): bigxmat = np.vstack((bigxmat, xdict[i])) bigymat = np.vstack((bigymat, ydict[i])) bigns.append(ns[i]) ntimes = np.array(bigns) #check the first series tempy = ydict[0] tempx = xdict[0] tempy[50:55,:] = None A = np.ones([ns[0],2,1]) s1 = dlm(mu0,SIGMA0,A,R,PHI,Q) xp,xf,pp,pf,K_last = s1.filtering(tempy) xs,ps,pcov,xp,pp = s1.smoothing(tempy) #plots fig, ax = plt.subplots() plt.plot(tempx, label="x") plt.plot(tempy, label="y") plt.plot(xp, label="xp") plt.plot(xf, label="xf") plt.plot(xf, label="xs") legend = ax.legend(loc='upper left') plt.show() s2 = dlm(mu0,SIGMA0,A,R,PHI,Q) s2.EM(tempy, np.array([ns[0]]),estPHI=True,maxit=100, tol=1e-4,verbose=False) s2.mu0, s2.SIGMA0, s2.R, s2.PHI, s2.Q #filter and forecast x_filter, P_filter = s2.onestep_filter(tempy[ns[0]-1,:],xp[ns[0]-1,:],pp[ns[0]-1,:,:],A[ns[0]-1,:,:]) x_forecast, P_forecast = s2.onestep_forecast(x_filter,P_filter) #EM fitting bigA = np.ones([bigymat.shape[0], 2, 1]) dlm1 = dlm(mu0,SIGMA0,bigA,R,PHI,Q) dlm1.EM(bigymat, ntimes, estPHI=True, maxit=100, tol=1e-4,verbose=True) dlm1.mu0, dlm1.SIGMA0, dlm1.R, dlm1.PHI, dlm1.Q ################################################################# #bivariate y, bivariate x xdict = dict() ydict = dict() nsubj = 20 ns = np.zeros(nsubj, dtype=np.int) mu0 = np.array([0.0,0.0]) SIGMA0 = np.array([1.0,0,0,1.0]).reshape(2,2) R = np.array([2.5,0,0,1.5]).reshape(2,2) PHI = np.array([0.1,0,0,0.2]).reshape(2,2) Q = np.array([0.8,0,0,0.5]).reshape(2,2) for i in range(nsubj): ns[i] = int(np.random.uniform(200,400,1)) A = np.ones([ns[i],2,2]) for j in range(ns[i]): A[j,:,:] = np.diag([1,1]) s1 = dlm(mu0,SIGMA0,A,R,PHI,Q) tempx, tempy = s1.simulate(ns[i]) ydict.update({i: tempy}) xdict.update({i: tempx}) bigxmat = xdict[0] bigns = [ns[0]] bigymat = ydict[0] for i in range(1,nsubj): bigxmat = np.vstack((bigxmat, xdict[i])) bigymat = np.vstack((bigymat, ydict[i])) bigns.append(ns[i]) ntimes = np.array(bigns) #check the first series tempy = ydict[0] tempx = xdict[0] tempy[50:55,:] = None A = np.ones([ns[0],2,2]) for j in range(ns[0]): A[j,:,:] =
np.diag([1,1])
numpy.diag