prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
#!/usr/bin/env python from __future__ import print_function import rospy import yaml import numpy as np #np.dot import os.path from math import cos, sin from sensor_msgs.msg import JointState from integ_gkd_models.srv import Dynamic_inverse,Dynamic_inverseResponse path=os.path.dirname(__file__) with open(os.path.join(path,'RobotParam.yml')) as f : yaml_dict = yaml.safe_load(f) l1 = yaml_dict.get("l1") l2 = yaml_dict.get("l2") m1 = yaml_dict.get("m1") m2 = yaml_dict.get("m2") Iz1 = yaml_dict.get("Iz1") Iz2 = yaml_dict.get("Iz2") g = yaml_dict.get("g") c1 = yaml_dict.get("c1") c2 = yaml_dict.get("c2") def handle_Dynamic_inverse(req): theta = req.input.position theta_d = req.input.velocity efforts = req.input.effort Z1 = m1*c1**2 + m2*(l1**2+c2**2+2*l1*c2*cos(theta[1])) + Iz1 + Iz2 Z2 = m2*(c2**2+l1*c2*cos(theta[1])) + Iz2 Z3 = m2*c2**2 + Iz2 Z4 = m2*c2*g*cos(theta[0]+theta[1])+(m1*c1+m2*l1)*g*cos(theta[0]) Z5 = m2*c2*g*cos(theta[0]+theta[1]) h = -m2*l1*c2*sin(theta[1]) D=[[ Z1 , Z2 ],[ Z2 , Z3 ]] C=[[h * theta_d[1], h * (theta_d[0]+theta_d[1]) ],[ -h * theta_d[0], 0]] G=[ Z4 , Z5 ] output=JointState() Gamma =
np.linalg.inv(D)
numpy.linalg.inv
import torch import numpy as np import math import pylib.HumanAug def get_preds(scores): ''' get predictions from score maps in torch Tensor return type: torch.LongTensor ''' assert scores.dim() == 4, 'Score maps should be 4-dim' maxval, idx = torch.max(scores.view(scores.size(0), scores.size(1), -1), 2) maxval = maxval.view(scores.size(0), scores.size(1), 1) idx = idx.view(scores.size(0), scores.size(1), 1) + 1 preds = idx.repeat(1, 1, 2).float() preds[:, :, 0] = (preds[:, :, 0] - 1) % scores.size(3) + 1 preds[:, :, 1] = torch.floor((preds[:, :, 1] - 1) / scores.size(2)) + 1 pred_mask = maxval.gt(0).repeat(1, 1, 2).float() preds *= pred_mask return preds def calc_dists(preds, target, normalize, use_zero=False): preds = preds.float() target = target.float() dists = torch.zeros(preds.size(1), preds.size(0)) if use_zero: boundary = 0 else: boundary = 1 for n in range(preds.size(0)): for c in range(preds.size(1)): if target[n, c, 0] > boundary and target[n, c, 1] > boundary: dists[c, n] = torch.dist(preds[n, c, :], target[n, c, :]) / normalize[n] else: dists[c, n] = -1 return dists def dist_acc(dists, thr=0.5): ''' Return percentage below threshold while ignoring values with a -1 ''' if dists.ne(-1).sum() > 0: # denominator = dists.ne(-1).sum() # numerator = 0 # for i in range(0, dists.size(0)): # if dists[i] < thr and dists[i] != -1: # numerator += 1 return dists.le(thr).eq(dists.ne(-1)).sum() * 1.0 / dists.ne(-1).sum() # return numerator / denominator else: return -1 def accuracy(output, target, idxs, thr=0.5): ''' Calculate accuracy according to PCK, but uses ground truth heatmap rather than x,y locations First value to be returned is average accuracy across 'idxs', followed by individual accuracies ''' preds = get_preds(output) gts = get_preds(target) norm = torch.ones(preds.size(0)) * output.size(3) / 10 dists = calc_dists(preds, gts, norm) acc = torch.zeros(len(idxs) + 1) avg_acc = 0 cnt = 0 for i in range(len(idxs)): acc[i + 1] = dist_acc(dists[idxs[i]]) if acc[i + 1] >= 0: avg_acc = avg_acc + acc[i + 1] cnt += 1 if cnt != 0: acc[0] = avg_acc / cnt return acc def accuracy_origin_res(output, center, scale, res, grnd_pts, normalizers, rot): ''' Calculate accuracy according to PCK, but uses ground truth heatmap rather than x,y locations First value to be returned is average accuracy across 'idxs', followed by individual accuracies ''' idxs = torch.LongTensor([0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15]) pred_pts = final_preds(output, center, scale, res, rot) dists = calc_dists(pred_pts, grnd_pts, normalizers, use_zero=True) acc = torch.zeros(len(idxs) + 1) avg_acc = 0 cnt = 0 for i in range(len(idxs)): acc[i + 1] = dist_acc(dists[idxs[i]]) if acc[i + 1] >= 0: avg_acc = avg_acc + acc[i + 1] cnt += 1 if cnt != 0: acc[0] = avg_acc / cnt return acc def per_person_pckh(output, grnd_heatmap, center, scale, res, grnd_pts, normalizers, rot, thr=0.5): idxs = torch.LongTensor([0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15]) pred_pts = final_preds(output, center, scale, res, rot) sample_num = pred_pts.size(0) dists = calc_dists(pred_pts, grnd_pts, normalizers, use_zero=True) grnd_pts_aug = get_preds(grnd_heatmap) grnd_pts_indicators = torch.zeros(pred_pts.size(1), pred_pts.size(0)) for n in range(0, pred_pts.size(0)): for c in range(0, pred_pts.size(1)): if grnd_pts_aug[n, c, 0] > 1 and grnd_pts_aug[n, c, 1] > 1: grnd_pts_indicators[c, n] = 1 count_vec = torch.zeros(sample_num) accuracy_vec = torch.zeros(sample_num) for i in range(0, sample_num): # print dists[:, i], dists[:, i].size(), dists[:, i].index_select(0, idxs) # exit() per_person_dists = dists[:, i].index_select(0, idxs) per_person_indicator = grnd_pts_indicators[:, i].index_select(0, idxs) sum_1 = torch.ne(per_person_dists, -1).sum() sum_2 = torch.ne(per_person_indicator, 0).sum() if sum_1 > 0 and sum_2 > 0: all_indicator = per_person_dists.ne(-1) & per_person_indicator.ne(0) all_count = all_indicator.sum() valid_indicator = per_person_dists.le(thr) & all_indicator valid_count = valid_indicator.sum() if valid_count > all_count: print('valid_count is larger than all_count') print('valid_count: ', valid_count) print('all_count: ', all_count) exit() # assert per_person_indicator.ne(0).sum() <= per_person_dists.ne(-1).sum() if per_person_dists.ne(-1).sum() != all_count: print('some pts are transformed out of scope') print('count before mask: ', per_person_dists.ne(-1).sum()) print('count after mask: ', all_count) if per_person_indicator.ne(0).sum() > per_person_dists.ne(-1).sum(): print('per_person_indicator: ', per_person_indicator) print('per_person_indicator.ne(0): ', per_person_indicator.ne(0)) print('per_person_dists.ne(-1): ', per_person_dists.ne(-1)) print('grnd_pts_aug_0: ', pts_aug[i]) print('grnd_pts_aug_1: ', grnd_pts_aug[i]) print('grnd_pts: ', grnd_pts[i]) # print 'per_person_dists: ', per_person_dists # print 'per_person_indicator: ', per_person_indicator # print 'per_person_dists.le(thr): ', per_person_dists.le(thr) # print 'per_person_dists.le(thr).eq(per_person_dists.ne(-1)): ', \ # per_person_dists.le(thr).eq(per_person_dists.ne(-1)) # # print 'per_person_dists.ne(-1): ', per_person_dists.ne(-1) # print 'per_person_indicator.ne(0): ', per_person_indicator.ne(0) # print 'per_person_dists.ne(-1).eq(per_person_indicator.ne(0)):', \ # per_person_dists.ne(-1).eq(per_person_indicator.ne(0)) # print torch.ne(per_person_indicator, 0) # print 'sum_2: ', sum_2 exit() # print(valid_count) # print(type(valid_count)) # exit() accuracy_vec[i] = float(valid_count) / float(all_count) count_vec[i] = valid_count # print(per_joint_dists.le(threshold).eq(per_joint_dists.ne(-1)).sum()) # print('joint {0} accuracy is {1}' .format(idxs[i]+1, per_joint_acc)) else: accuracy_vec[i] = 0 count_vec[i] = 0 # we need to compare the normalized accuracy instead of the raw count, # since the denominator may for the different transformations. return accuracy_vec def final_preds(output, center, scale, res, rot): coords = get_preds(output) # float type # pose-processing for n in range(coords.size(0)): for p in range(coords.size(1)): hm = output[n][p] px = int(math.floor(coords[n][p][0])) py = int(math.floor(coords[n][p][1])) if px > 1 and px < res[0] and py > 1 and py < res[1]: diff = torch.Tensor([hm[py - 1][px] - hm[py - 1][px - 2], hm[py][px - 1] - hm[py - 2][px - 1]]) coords[n][p] += diff.sign() * .25 coords += 0.5 preds = coords.clone() # Transform back # print coords.size(), len(center), len(scale) for i in range(coords.size(0)): # print type(coords[i]), type(center[i]), type(scale[i]) preds[i] = transform_preds(coords[i], center[i], scale[i], res, rot[i]) if preds.dim() < 3: preds = preds.view(1, preds.size()) return preds def transform_preds(coords, center, scale, res, rot): # size = coords.size() # coords = coords.view(-1, coords.size(-1)) # print(coords.size()) coords = coords.numpy() # print type(coords), type(center), type(scale) # exit() center = center.numpy() scale = scale.numpy() rot = rot.numpy() coords = TransformPts(coords, center, scale, rot, res[0], size=200, invert=1) # exit() coords = torch.from_numpy(coords) # for p in range(coords.size(0)): # # coords[p, 0:2] = torch.from_numpy(transform(coords[p, 0:2], center, scale, res, 1, 0)) return coords def GetTransform(center, scale, rot, res, size): # Generate transformation matrix h = size * scale # size_src = size_dst * scale t = np.zeros((3, 3)) # print res, float(res), type(res), float(res) / h t[0, 0] = float(res) / h t[1, 1] = float(res) / h t[0, 2] = res * (-float(center[0]) / h + .5) t[1, 2] = res * (-float(center[1]) / h + .5) t[2, 2] = 1 if not rot == 0: rot = -rot # To match direction of rotation from cropping rot_mat = np.zeros((3, 3)) rot_rad = rot * np.pi / 180 sn, cs = np.sin(rot_rad), np.cos(rot_rad) rot_mat[0, :2] = [cs, -sn] rot_mat[1, :2] = [sn, cs] rot_mat[2, 2] = 1 # Need to rotate around center t_mat = np.eye(3) t_mat[0, 2] = -res / 2 t_mat[1, 2] = -res / 2 t_inv = t_mat.copy() t_inv[:2, 2] *= -1 t = np.dot(t_inv, np.dot(rot_mat, np.dot(t_mat, t))) return t def TransformPts(pts, center, scale, rot, res, size, invert=0): NLMK, DIM = pts.shape t = GetTransform(center, scale, rot, res, size) if invert: t =
np.linalg.inv(t)
numpy.linalg.inv
import numpy as np def autocorr(sequence): """ Calculate auto-correlation for a given sequence by way of convolution (FFT). High auto-correlation after N time shifts implies periodicity in the sequence where N is the period. Parameters: sequence (numpy array): the sequence to auto-correlate returns: r (float): a value that express the degree of auto-correlation lag (int): the period after which the signal resembles itself the most """ n = sequence.size sequence = (sequence - np.mean(sequence)) # normalize the sequence result = np.correlate(sequence, sequence, mode='same') acorr = result[n//2 + 1:] / (sequence.var() * np.arange(n-1, n//2, -1)) lag = acorr.argmax() + 1 r = acorr[lag-1] ''' if np.abs(r) > 0.5: print('Appears to be autocorrelated with r = {}, lag = {}'. format(r, lag)) else: print('Appears to be not autocorrelated') ''' return r, lag def discrete_differential(sequence): differential_sequence = np.empty(len(sequence)) for i in range(len(sequence)-1): differential_sequence[i] = sequence[i+1] - sequence[i] differential_sequence[-1] = 0 return differential_sequence def find_extrema(differential_sequence): extrema_indeces = [] for i in range(len(differential_sequence)-1): if differential_sequence[i] * differential_sequence[i+1] < 0 or differential_sequence[i] == 0: extrema_indeces.append(i) return extrema_indeces def is_oscillating(sequence): extrema = find_extrema(discrete_differential(sequence)) corr_coeffficient, period = autocorr(sequence) oscillator = True if len(extrema) <= 1: oscillator = False else: for i in range(len(extrema)-2): if extrema[i+1] == extrema[i]+1: # there should not be extrema at neighbouring indeces oscillator = False break if corr_coeffficient < 0.5: periodic = False else: periodic = True return corr_coeffficient, period, oscillator and periodic def freq_analysis(time_series, sampling_freq): assert isinstance(time_series, np.ndarray) N = time_series.size fourier_coeffs =
np.fft.fft(time_series)
numpy.fft.fft
import unittest import numpy as np from topology_radial_level_set import RadialLevelSetTopology class TestRadialLevelSetTopology(unittest.TestCase): def test_all(self): c_param = 1e-15 rlst = RadialLevelSetTopology(2, 2, 3, 4, 5e-6, 5e-6, c_param) self.assertTrue(rlst._a == 5) # Test initialization of element coordinates. xc = np.array([5, 15, 25, 5, 15, 25, 5, 15, 25, 5, 15, 25]) yc = np.array([5, 5, 5, 15, 15, 15, 25, 25, 25, 35, 35, 35]) self.assertTrue(np.all(xc == rlst._xelems)) self.assertTrue(np.all(yc == rlst._yelems)) # Test initialization of knot coordinates. xd = np.array([10, 20, 10, 20]) yd = np.array([40/3, 40/3, 80/3, 80/3]) self.assertTrue(np.all(xd == rlst._xcoords)) self.assertTrue(np.all(yd == rlst._ycoords)) # Test initialization of hmat. amat = np.zeros((4, 4)) for i, j in np.ndindex(4, 4): r2 = (xd[i] - xd[j]) ** 2 + (yd[i] - yd[j]) ** 2 amat[i, j] = np.sqrt(r2 + c_param ** 2) pmat = np.array([[1, 10, 40/3], [1, 20, 40/3], [1, 10, 80/3], [1, 20, 80/3]]) zmat = np.zeros((3, 3)) hmat = np.vstack((np.hstack((amat, pmat)), np.hstack((pmat.T, zmat)))) self.assertTrue(np.all(hmat == rlst._hmat)) # Test initialization of gmat. amat = np.zeros((12, 4)) pmat = np.zeros((12, 3)) for i, j in np.ndindex(12, 4): r2 = (xc[i] - xd[j]) ** 2 + (yc[i] - yd[j]) ** 2 amat[i, j] = np.sqrt(r2 + c_param ** 2) for i in range(12): pmat[i, 0] = 1 pmat[i, 1] = xc[i] pmat[i, 2] = yc[i] gmat = np.hstack((amat, pmat)) self.assertTrue(np.all(gmat == rlst._gmat)) # Lets test rashape puts coordinates of elements back in correct # position. xcc = np.atleast_2d(xc).T.reshape(rlst._dim_elems, order='F') ycc = yc.reshape(rlst._dim_elems, order='F') xccc = np.array([[5, 5, 5, 5], [15, 15, 15, 15], [25, 25, 25, 25]]) yccc = np.array([[5, 15, 25, 35], [5, 15, 25, 35], [5, 15, 25, 35]]) self.assertTrue(np.all(xcc == xccc)) self.assertTrue(np.all(ycc == yccc)) # Lets test a topology that is biased towards x=0. # Remember the tip of the AFM cantilever is added afte the fact. f = np.array([0.1, 0.25, -0.2, -0.3]) t1 = np.array([[1, 1, 0, 0], [1, 1, 0, 1], [1, 1, 0, 0]]) rlst.update_topology(f) self.assertTrue(np.all(t1 == rlst.topology)) # Lets test a topology that is biased towards y=0. # Remember the tip of the AFM cantilever is added afte the fact. f = np.array([0.1, -0.25, 0.2, -0.3]) t2 = np.array([[1, 1, 1, 1], [0, 0, 0, 1], [0, 0, 0, 0]]) rlst.update_topology(f) self.assertTrue(
np.all(t2 == rlst.topology)
numpy.all
import os import astropy.constants as const import astropy.units as u import numpy as np from astropy.coordinates import GCRS, ITRS, SkyOffsetFrame, SkyCoord, EarthLocation, Angle, get_sun from astropy.time import Time from sora.config import input_tests __all__ = ['plot_occ_map'] def xy2latlon(x, y, loncen, latcen, time): """Calculates the longitude and latitude given projected positions x and y. Parameters ---------- x : `int`, `float` Projected position in x, in the GCRS, in meters. y : `int`, `float` Projected position in y, in the GCRS, in meters. loncen : `int`, `float` Center longitude of projection, in degrees. latcen : `int`, `float` Center latitude of projection, in degrees. time : `astropy.time.Time` Time of referred projection. Returns ------- lon, lat : `list` Longitude and Latitude whose projection at loncen, lat results in x, y. (deg). """ r = const.R_earth.to(u.m).value site_cen = EarthLocation(loncen*u.deg, latcen*u.deg) itrs_cen = site_cen.get_itrs(obstime=time) gcrs_cen = itrs_cen.transform_to(GCRS(obstime=time)) z = np.array(y, ndmin=1) y = np.array(x, ndmin=1) x2 = r*r-y*y-z*z a = np.where(x2 >= 0.0) x = np.sqrt(x2[a]) y = y[a] z = z[a] lon = np.repeat(1e+31, len(x2)) lat = np.repeat(1e+31, len(x2)) center_frame = SkyOffsetFrame(origin=gcrs_cen) if len(x) > 0: n = 0 if not time.isscalar and len(time) == len(x2): time = time[a] while True: n += 1 new_pos = SkyCoord(x*u.m, y*u.m, z*u.m, representation_type='cartesian', frame=center_frame[a]) n_coord = new_pos.transform_to(GCRS(obstime=time)) n_itrs = n_coord.transform_to(ITRS(obstime=time)) n_site = n_itrs.earth_location n_site = EarthLocation(n_site.lon, n_site.lat, 0) itrs_site = n_site.get_itrs(obstime=time) gcrs_site = itrs_site.transform_to(GCRS(obstime=time)) target1 = gcrs_site.transform_to(center_frame[a]) if n == 4: lon[a] = n_site.lon.deg lat[a] = n_site.lat.deg break x = target1.cartesian.x.to(u.m).value return lon, lat def latlon2xy(lon, lat, loncen, latcen): """Calculates the projection of longitude and latitude in the loncen, latcen direction. Parameters ---------- lon : `int`, `float` Longitude to calculate projection. lat : `int`, `float` Latitude to calculate projection. loncen : `int`, `float` Center longitude of projection, in degrees. latcen : `int`, `float` Center latitude of projection, in degrees. Returns ------- x, y : `list` Projection of lon, lat at loncen, latcen, in the ITRS (meters). """ site_cen = EarthLocation(loncen*u.deg, latcen*u.deg) itrs_cen = site_cen.get_itrs() lon = np.array(lon, ndmin=1) lat = np.array(lat, ndmin=1) site = EarthLocation(lon*u.deg, lat*u.deg, height=0*u.m) itrs_site = site.get_itrs() target = itrs_site.transform_to(SkyOffsetFrame(origin=itrs_cen)) y = target.cartesian.y.to(u.m).value z = target.cartesian.z.to(u.m).value k = np.where(target.cartesian.x.to(u.m).value < 0.0) y[k] = 1e+31 z[k] = 1e+31 return y, z def plot_occ_map(name, radius, coord, time, ca, pa, vel, dist, mag=0, longi=0, **kwargs): """Plots the map of the occultation. Parameters ---------- name : `str` Name of the object. radius : `int`, `float` Radius of the object, in km. coord : `str`, `astropy.coordinates.SkyCoord` Coordinates of the star (``"hh mm ss.sss dd mm ss.sss"`` or ``"hh.hhhhhhhh dd.dddddddd"``). time : `str`, `astropy.time.Time` Instant of Closest Approach (iso or isot format). ca : `int`, `float` Closest Approach Distance, in arcsec. pa : `int`, `float` Position Angle at C/A, in degrees. vel : `int`, `float` Velocity of the event, in km/s. dist : `int`, `float` Object distance at C/A, in AU. mag : `int`, `float`, default=0 Mag* = Normalized magnitude to vel=20km/s. longi : `int`, `float`, default=0 East longitude of sub-planet point, deg, positive towards East. nameimg : `str` Change the name of the imaged saved. path : `str` Path to a directory where to save map. resolution : `int`, default=2 Cartopy feature resolution.\n - ``1`` means a resolution of "10m";\n - ``2`` a resolution of "50m";\n - ``3`` a resolution of "100m". states : `bool` If True, plots the states borders of the countries. The states of some countries will only be shown depending on the resolution. zoom : `int`, `float` Zooms in or out of the map. centermap_geo : `list`, default=None Center the map given coordinates in longitude and latitude. It must be a list with two numbers. centermap_delta : `list`, default=None Displace the center of the map given displacement in X and Y, in km. It must be a list with two numbers. centerproj : `list` Rotates the Earth to show occultation with the center projected at a given longitude and latitude. It must be a list with two numbers. labels : `bool`, default=True Plots text above and below the map with the occultation parameters. meridians : `int`, default=30 Plots lines representing the meridians for given interval, in degrees. parallels : `int`, default=30 Plots lines representing the parallels for given interval, in degrees. sites : `dict` Plots site positions in map. It must be a python dictionary where the key is the `name` of the site, and the value is a list with `longitude`, `latitude`, `delta_x`, `delta_y` and `color`. `delta_x` and `delta_y` are displacement, in km, from the point position of the site in the map and the `name`. `color` is the color of the point. site_name : `bool` If True, it prints the name of the sites given, else it plots only the points. site_box_alpha : `int`, `float`, default=0 Sets the transparency of a box surrounding each station name. 0 equals to transparent, and 1 equals to opaque. countries : `dict` Plots the names of countries. It must be a python dictionary where the key is the name of the country and the value is a list with longitude and latitude of the lower left part of the text. offset : `list` Applies an offset to the ephemeris, calculating new CA and instant of CA. It is a pair of `delta_RA*cosDEC` and `delta_DEC`. mapstyle : `int`, default=1 Define the color style of the map. ``'1'`` is the default black and white scale. ``'2'`` is a colored map. error : `int`, `float` Ephemeris error in mas. It plots a dashed line representing radius + error. ercolor : `str` Changes the color of the lines of the error bar. ring : `int`, `float` Plots a dashed line representing the location of a ring. It is given in km, from the center. rncolor : `str` Changes the color of ring lines. atm : `int`, `float` Plots a dashed line representing the location of an atmosphere. It is given in km, from the center. atcolor : `str` Changes the color of atm lines. chord_delta : `list` List with distances from center to plot chords. chord_geo : `2d-list` List with pairs of coordinates to plot chords. chcolor : `str`, default='grey' Color of the line of the chords. heights : `list` It plots a circular dashed line showing the locations where the observer would observe the occultation at a given height above the horizons. This must be a list. hcolor : `str` Changes the color of the height lines. mapsize : `list`, default= [46.0, 38.0] The size of figure, in cm. It must be a list with two values. cpoints : `int`, `float`, default=60 Interval for the small points marking the center of shadow, in seconds. ptcolor : `str` Change the color of the center points. alpha : `float`, default=0.2 The transparency of the night shade, where 0.0 is full transparency and 1.0 is full black. fmt : `str`, default:'png' The format to save the image. It is parsed directly by `matplotlib.pyplot`. dpi : `int`, default=100 Resolution in "dots per inch". It defines the quality of the image. lncolor : `str` Changes the color of the line that represents the limits of the shadow over Earth. outcolor :`str` Changes the color of the lines that represents the limits of the shadow outside Earth. scale : `int`, `float` Arbitrary scale for the size of the name of the site. cscale : `int`, `float` Arbitrary scale for the name of the country. sscale : `int`, `float` Arbitrary scale for the size of point of the site. pscale : `int`, `float` Arbitrary scale for the size of the points that represent the center of the shadow. arrow : `bool` If True, it plots the arrow with the occultation direction. Important --------- Required parameters to plot an occultation map: 'name', 'radius', 'coord', 'time', 'ca', 'pa', 'vel', and 'dist'. Note ---- The parameters 'mag' and 'longi' are optional and only printed in label. All other remaining parameters can be used to further customize the Map configuration. When producing the map, only one of 'centermap_geo' or 'centermap_delta' options can be used at a time. """ import matplotlib.pyplot as plt import cartopy.crs as ccrs import cartopy.feature as cfeature allowed_kwargs = ['alpha', 'arrow', 'atcolor', 'atm', 'centermap_delta', 'centermap_geo', 'centerproj', 'chcolor', 'chord_delta', 'chord_geo', 'countries', 'cpoints', 'cscale', 'dpi', 'ercolor', 'error', 'fmt', 'hcolor', 'heights', 'labels', 'lncolor', 'mapsize', 'mapstyle', 'meridians', 'nameimg', 'nscale', 'offset', 'outcolor', 'parallels', 'path', 'pscale', 'ptcolor', 'resolution', 'ring', 'rncolor', 'site_name', 'sites', 'sscale', 'states', 'zoom', 'site_box_alpha'] input_tests.check_kwargs(kwargs, allowed_kwargs=allowed_kwargs) if not type(name) == str: raise TypeError('name keyword must be a string') radius = radius*u.km occs = {} try: occs['stars'] = SkyCoord(coord, frame='icrs', unit=(u.hourangle, u.degree)) except: raise KeyError('"star" keyword is not in the format: "hh mm ss.sss dd mm ss.sss" or "hh.hhhhhhhh dd.dddddddd"') try: occs['datas'] = Time(time) except: raise KeyError('"time" keyword is not a iso or isot time format') occs['ca'] = ca*u.arcsec occs['posa'] = pa*u.deg occs['vel'] = vel*(u.km/u.s) occs['dist'] = dist*u.AU occs['magG'] = mag occs['longi'] = longi mapstyle = kwargs.get('mapstyle', 1) if mapstyle not in [1, 2]: raise ValueError('mapstyle must be 1 or 2]') resolution = kwargs.get('resolution', 2) if resolution not in [1, 2, 3]: raise TypeError('resolution keyword must be one of these: [1, 2, 3] where 1=10m, 2=50m and 3=100m') res = ['10m', '50m', '110m'] resolution = res[resolution-1] nameimg = kwargs.get('nameimg', '{}_{}'.format(name, occs['datas'].isot.replace(':', '_'))) fmt = kwargs.get('fmt', 'png') dpi = kwargs.get('dpi', 100) step = kwargs.get('step', 1) mapsize = kwargs.get('mapsize', [46.0, 38.0])*u.cm erro = kwargs.get('error', None) ring = kwargs.get('ring', None) atm = kwargs.get('atm', None) cpoints = kwargs.get('cpoints', 60) states = kwargs.get('states', True) labels = kwargs.get('labels', True) meridians = kwargs.get('meridians', 30) parallels = kwargs.get('parallels', 30) nscale = kwargs.get('nscale', 1) cscale = kwargs.get('cscale', 1) sscale = kwargs.get('sscale', 1) pscale = kwargs.get('pscale', 1) heights = np.array(kwargs.get('heights'), None) alpha = kwargs.get('alpha', 0.2) site_box_alpha = kwargs.get('site_box_alpha', 0.0) centermap_geo = kwargs.get('centermap_geo', None) centermap_delta = kwargs.get('centermap_delta', None) if 'centermap_geo' in kwargs and 'centermap_delta' in kwargs: raise ValueError('User must give "centermap_geo" OR "centermap_delta"') zoom = kwargs.get('zoom', 1) if zoom <= 0: raise ValueError('zoom can not be equal or smaller than 0.') off_ra, off_de = kwargs.get('offset', [0.0, 0.0])*u.mas arrow = kwargs.get('arrow', True) site_name = kwargs.get('site_name', True) path = kwargs.get('path', '.') if not os.path.exists(path): raise IOError('Path does not exists') chord_delta = np.array(kwargs.get('chord_delta', []), ndmin=1)*u.km chord_geo = kwargs.get('chord_geo', []) if len(chord_geo) > 0: try: b =
np.array(chord_geo, ndmin=2)
numpy.array
#!/usr/bin/env python # # Copyright 2019 DFKI GmbH. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the # following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN # NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE # USE OR OTHER DEALINGS IN THE SOFTWARE. import numpy as np import math from matplotlib import pyplot as plt import json from transformations import quaternion_multiply, quaternion_inverse, quaternion_matrix, quaternion_from_matrix, euler_from_quaternion from scipy.interpolate import UnivariateSpline #from anim_utils.animation_data.constants import DEFAULT_ROTATION_ORDER DEFAULT_ROTATION_ORDER = ['Xrotation','Yrotation','Zrotation'] def normalize(v): return v/np.linalg.norm(v) def quaternion_from_axis_angle(axis, angle): q = [1,0,0,0] if np.linalg.norm(axis) > 0: q[1] = axis[0] * math.sin(angle / 2) q[2] = axis[1] * math.sin(angle / 2) q[3] = axis[2] * math.sin(angle / 2) q[0] = math.cos(angle / 2) q = normalize(q) return q def exp_map_to_quaternion(e): angle = np.linalg.norm(e) if angle > 0: axis = e / angle q = quaternion_from_axis_angle(axis, angle) else: q = [1, 0, 0, 0] return q def convert_exp_frame_to_quat_frame(skeleton, e): src_offset = 0 dest_offset = 0 n_joints = len(skeleton.animated_joints) q = np.zeros(n_joints*4) for node in skeleton.animated_joints: e_i = e[src_offset:src_offset+3] q[dest_offset:dest_offset+4] = exp_map_to_quaternion(e_i) src_offset += 3 dest_offset += 4 return q def add_quat_frames(skeleton, q_frame1, q_frame2, dest_offset=3): src_offset = 0 new_quat_frame = np.zeros(len(q_frame1)) new_quat_frame[:3] = q_frame1[:3] for node in skeleton.animated_joints: new_q = quaternion_multiply(q_frame1[dest_offset:dest_offset + 4], q_frame2[src_offset:src_offset + 4]) new_quat_frame[dest_offset:dest_offset+4] = new_q dest_offset += 4 src_offset += 4 return new_quat_frame def get_3d_rotation_between_vectors(a, b): v = np.cross(a, b) s = np.linalg.norm(v) if s ==0: return np.eye(3) c = np.dot(a,b) v_x = np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]]) v_x_2 = np.dot(v_x,v_x) r = np.eye(3) + v_x + (v_x_2* (1-c/s**2)) return r def normalize_quaternion(q): return quaternion_inverse(q) / np.dot(q, q) def get_average_joint_position(skeleton, frames, joint_name, start_frame, end_frame): end_frame = min(end_frame, frames.shape[0]) temp_positions = [] for idx in range(start_frame, end_frame): frame = frames[idx] pos = skeleton.nodes[joint_name].get_global_position(frame) temp_positions.append(pos) return np.mean(temp_positions, axis=0) def get_average_joint_direction(skeleton, frames, joint_name, child_joint_name, start_frame, end_frame,ground_height=0): temp_dirs = [] for idx in range(start_frame, end_frame): frame = frames[idx] pos1 = skeleton.nodes[joint_name].get_global_position(frame) pos2 = skeleton.nodes[child_joint_name].get_global_position(frame) #pos2[1] = ground_height joint_dir = pos2 - pos1 joint_dir /= np.linalg.norm(joint_dir) temp_dirs.append(joint_dir) return np.mean(temp_dirs, axis=0) def get_average_direction_from_target(skeleton, frames, target_pos, child_joint_name, start_frame, end_frame,ground_height=0): temp_dirs = [] for idx in range(start_frame, end_frame): frame = frames[idx] pos2 = skeleton.nodes[child_joint_name].get_global_position(frame) pos2[1] = ground_height joint_dir = pos2 - target_pos joint_dir /= np.linalg.norm(joint_dir) temp_dirs.append(joint_dir) return np.mean(temp_dirs, axis=0) def to_local_cos(skeleton, node_name, frame, q): # bring into parent coordinate system pm = skeleton.nodes[node_name].get_global_matrix(frame)[:3,:3] #pm[:3, 3] = [0, 0, 0] inv_pm = np.linalg.inv(pm) r = quaternion_matrix(q)[:3,:3] lr = np.dot(inv_pm, r)[:3,:3] q = quaternion_from_matrix(lr) return q def get_dir_on_plane(x, n): axb = np.cross(x,n) d = np.cross(n, normalize(axb)) d = normalize(d) return d def project2(x,n): """ get direction on plane based on cross product and then project onto the direction """ d = get_dir_on_plane(x, n) return project_on_line(x, d) def project_vec3(x, n): """" project vector on normal of plane and then substract from vector to get projection on plane """ w = project_on_line(x, n) v = x-w return v def project(x, n): """ http://www.euclideanspace.com/maths/geometry/elements/plane/lineOnPlane/""" l = np.linalg.norm(x) a = normalize(x) b = normalize(n) axb = np.cross(a,b) bxaxb = np.cross(b, axb) return l * bxaxb def project_on_line(x, v): """https://en.wikipedia.org/wiki/Scalar_projection""" s = np.dot(x, v) / np.dot(v, v) return s * v def project_onto_plane(x, n): """https://stackoverflow.com/questions/17915475/how-may-i-project-vectors-onto-a-plane-defined-by-its-orthogonal-vector-in-pytho""" nl = np.linalg.norm(n) d = np.dot(x, n) / nl p = [d * normalize(n)[i] for i in range(len(n))] return [x[i] - p[i] for i in range(len(x))] def project_vec_on_plane(vec, n): """https://math.stackexchange.com/questions/633181/formula-to-project-a-vector-onto-a-plane""" n = normalize(n) d = np.dot(vec, n) return vec - np.dot(d, n) def distance_from_point_to_line(p1, p2, vec): proj = p2+project_on_line(p1, vec) return np.linalg.norm(proj - p1) def limb_projection(p1, center, n): #s1 = np.dot(p1, n) / np.dot(p1, p1) #proj_p1 = p1 - s1*n #s2 = np.dot(p2, n) / np.dot(p2, p2) #proj_p2 = p2 - s2 * n proj_p1 = project_vec3(p1, n) proj_center = project_vec3(center, n) d = np.linalg.norm(proj_p1-proj_center) return d def plot_line(ax, start, end,label=None, color=None): x = start[0], end[0] y = start[1], end[1] ax.plot(x, y, label=label, color=color) def convert_to_foot_positions(joint_heights): n_frames = len(list(joint_heights.items())[0][1][0]) print(n_frames) foot_positions = [] for f in range(n_frames): foot_positions.append(dict()) for joint, data in list(joint_heights.items()): ps, yv, ya = data for frame_idx, p in enumerate(ps): foot_positions[frame_idx].update({joint: p}) return foot_positions def plot_foot_positions(ax, foot_positions, bodies,step_size=5): for f, data in enumerate(foot_positions): if f%step_size != 0: continue for body in [list(bodies.values())[0]]: start_j = body["start"] end_j = body["end"] start = f, data[start_j][1] end = f+5, data[end_j][1] plot_line(ax, start, end, color="k") def get_vertical_acceleration(skeleton, frames, joint_name): """ https://stackoverflow.com/questions/40226357/second-derivative-in-python-scipy-numpy-pandas """ ps = [] for frame in frames: p = skeleton.nodes[joint_name].get_global_position(frame) ps.append(p) ps = np.array(ps) x = np.linspace(0, len(frames), len(frames)) ys = np.array(ps[:, 1]) y_spl = UnivariateSpline(x, ys, s=0, k=4) velocity = y_spl.derivative(n=1) acceleration = y_spl.derivative(n=2) return ps, velocity(x), acceleration(x) def quaternion_to_axis_angle(q): """http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/ """ a = 2* math.acos(q[0]) x = q[1] / math.sqrt(1-q[0]*q[0]) y = q[2] / math.sqrt(1-q[0]*q[0]) z = q[3] / math.sqrt(1-q[0]*q[0]) return normalize([x,y,z]),a def get_delta_quaternion(q1,q2): return quaternion_multiply(quaternion_inverse(q1), q2) def get_angular_velocity(skeleton, frames, joint): """ http://answers.unity3d.com/questions/49082/rotation-quaternion-to-angular-velocity.html """ idx = skeleton.animated_joints.index(joint) * 4 + 3 angular_velocity = [[0,0,0]] prev_q = frames[0, idx:idx + 4] for frame_idx, frame in enumerate(frames[1:]): q = frames[frame_idx, idx:idx+4] q_delta = get_delta_quaternion(prev_q, q) axis, angle = quaternion_to_axis_angle(q_delta) a = axis * angle angular_velocity.append(a) prev_q = q return np.array(angular_velocity) def get_angular_velocities(skeleton, frames, joints): anglular_velocity = dict() for joint in joints: anglular_velocity[joint] = get_angular_velocity(skeleton, frames, joint) return anglular_velocity def plot_joint_heights(joint_heights, ground_height=0, frame_range=(None,None)): plt.figure(1) ax = plt.subplot(111) n_frames = 0 for joint, data in list(joint_heights.items()): ps, yv, ya = data if frame_range == (None, None): start, end = 0, len(ps) else: start, end = frame_range n_frames = end- start x = np.linspace(start,end, n_frames) plt.plot(x, ps[start:end,1], label=joint) plot_line(ax, (start, ground_height),(end, ground_height), "ground") foot_positions = convert_to_foot_positions(joint_heights) bodies = {"left":{"start":"LeftHeel", "end": "LeftToeBase"}, "right":{"start":"RightHeel", "end": "RightToeBase"}} #plot_foot_positions(ax, foot_positions, bodies) plt.legend() plt.show(True) def plot_angular_velocities(angular_velocities, frame_range=(None,None)): plt.figure(1) ax = plt.subplot(111) n_frames = 0 for joint, data in list(angular_velocities.items()): if frame_range == (None, None): start, end = 0, len(data) else: start, end = frame_range n_frames = end- start x = np.linspace(start,end, n_frames) v = list(map(np.linalg.norm, data[start:end])) plt.plot(x, np.rad2deg(v), label=joint) plt.legend() plt.show(True) def export_constraints(constraints, file_path): unique_dict = dict() for frame_idx in constraints: for c in constraints[frame_idx]: key = tuple(c.position) unique_dict[key] = None points = [] for p in list(unique_dict.keys()): points.append(p) data = dict() data["points"] = points with open(file_path, "w") as out: json.dump(data, out) def plot_constraints(constraints, ground_height=0): colors ={"RightFoot":"r", "LeftFoot":"g"} plt.figure(1) joint_constraints = dict() ax = plt.subplot(111) for frame_idx in constraints: for c in constraints[frame_idx]: if c.joint_name not in list(joint_constraints.keys()): joint_constraints[c.joint_name] = [] joint_constraints[c.joint_name].append(c.position) for joint_name in list(joint_constraints.keys()): temp = np.array(joint_constraints[joint_name]) y = temp[:, 1] n_frames = len(y) x =
np.linspace(0, n_frames, n_frames)
numpy.linspace
# -*- coding: utf-8 -*- """doMusicAndSpeechDetection.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/github/satvik-venkatesh/audio-seg-data-synth/blob/main/models/doMusicAndSpeechDetection.ipynb """ import soundfile as sf import argparse import numpy as np import librosa import tensorflow as tf import math from tensorflow import keras from tensorflow.keras import layers """ This function converts the predictions made by the neural network into a readable format. """ def preds_to_se(p, audio_clip_length = 8.0): start_speech = -100 start_music = -100 stop_speech = -100 stop_music = -100 audio_events = [] n_frames = p.shape[0] if p[0, 0] == 1: start_speech = 0 if p[0, 1] == 1: start_music = 0 for i in range(n_frames - 1): if p[i, 0] == 0 and p[i + 1, 0] == 1: start_speech = i + 1 elif p[i, 0] == 1 and p[i + 1, 0] == 0: stop_speech = i start_time = frames_to_time(start_speech) stop_time = frames_to_time(stop_speech) audio_events.append((start_time, stop_time, "speech")) start_speech = -100 stop_speech = -100 if p[i, 1] == 0 and p[i + 1, 1] == 1: start_music = i + 1 elif p[i, 1] == 1 and p[i + 1, 1] == 0: stop_music = i start_time = frames_to_time(start_music) stop_time = frames_to_time(stop_music) audio_events.append((start_time, stop_time, "music")) start_music = -100 stop_music = -100 if start_speech != -100: start_time = frames_to_time(start_speech) stop_time = audio_clip_length audio_events.append((start_time, stop_time, "speech")) start_speech = -100 stop_speech = -100 if start_music != -100: start_time = frames_to_time(start_music) stop_time = audio_clip_length audio_events.append((start_time, stop_time, "music")) start_music = -100 stop_music = -100 audio_events.sort(key = lambda x: x[0]) return audio_events """ This function was adapted from https://github.com/qlemaire22/speech-music-detection """ def smooth_output(output, min_speech=1.3, min_music=3.4, max_silence_speech=0.4, max_silence_music=0.6): # This function was adapted from https://github.com/qlemaire22/speech-music-detection duration_frame = 220 / 22050 n_frame = output.shape[1] start_music = -1000 start_speech = -1000 for i in range(n_frame): if output[0, i] == 1: if i - start_speech > 1: if (i - start_speech) * duration_frame <= max_silence_speech: output[0, start_speech:i] = 1 start_speech = i if output[1, i] == 1: if i - start_music > 1: if (i - start_music) * duration_frame <= max_silence_music: output[1, start_music:i] = 1 start_music = i start_music = -1000 start_speech = -1000 for i in range(n_frame): if i != n_frame - 1: if output[0, i] == 0: if i - start_speech > 1: if (i - start_speech) * duration_frame <= min_speech: output[0, start_speech:i] = 0 start_speech = i if output[1, i] == 0: if i - start_music > 1: if (i - start_music) * duration_frame <= min_music: output[1, start_music:i] = 0 start_music = i else: if i - start_speech > 1: if (i - start_speech) * duration_frame <= min_speech: output[0, start_speech:i + 1] = 0 if i - start_music > 1: if (i - start_music) * duration_frame <= min_music: output[1, start_music:i + 1] = 0 return output def frames_to_time(f, sr = 22050.0, hop_size = 220): return f * hop_size / sr def get_log_melspectrogram(audio, sr = 22050, hop_length = 220, n_fft = 1024, n_mels = 80, fmin = 64, fmax = 8000): """Return the log-scaled Mel bands of an audio signal.""" bands = librosa.feature.melspectrogram( y=audio, sr=sr, hop_length=hop_length, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax, dtype=np.float32) return librosa.core.power_to_db(bands, amin=1e-7) """ Make predictions for full audio. """ def mk_preds_fa(audio_path, hop_size = 6.0, discard = 1.0, win_length = 8.0, sampling_rate = 22050): in_signal, in_sr = sf.read(audio_path) # Convert to mono if needed. if (in_signal.ndim > 1): in_signal_mono = librosa.to_mono(in_signal.T) in_signal = np.copy(in_signal_mono) # Resample the audio file. in_signal_22k = librosa.resample(in_signal, orig_sr=in_sr, target_sr=sampling_rate) in_signal = np.copy(in_signal_22k) # Pad the input signal if it is shorter than 8 s. if in_signal.shape[0] < int(8.0 * sampling_rate): pad_signal = np.zeros((int(8.0 * sampling_rate))) pad_signal[:in_signal.shape[0]] = in_signal in_signal = np.copy(pad_signal) audio_clip_length_samples = in_signal.shape[0] print('audio_clip_length_samples is {}'.format(audio_clip_length_samples)) hop_size_samples = 220 * 602 - 1 win_length_samples = 220 * 802 - 1 n_preds = int(math.ceil((audio_clip_length_samples - win_length_samples) / hop_size_samples)) + 1 in_signal_pad = np.zeros((n_preds * hop_size_samples + 200 * 220)) in_signal_pad[0:audio_clip_length_samples] = in_signal preds =
np.zeros((n_preds, 802, 2))
numpy.zeros
import unittest import numpy import test_utils class TestBasicAddition(unittest.TestCase): # Test basic addition of all combinations of all types, not checking for any edge cases specifically. ZERO = numpy.float32(0) ONE = numpy.float32(1) MIN_SUBNORM = numpy.float32(1e-45) MAX_SUBNORM = numpy.float32(1.1754942e-38) MIN_NORM = numpy.float32(1.1754944e-38) MAX_NORM = numpy.float32(3.4028235e38) INF = numpy.float32(numpy.inf) NAN = numpy.float32(numpy.nan) # Initialise the tester object used to run the assembled code. @classmethod def setUpClass(cls): cls.tester = test_utils.SubroutineTester("test_addition.s") cls.tester.initialise() # Run a test to compare the expected sum of two floats to the actual sum. def run_test(self, float1: numpy.float32, float2: numpy.float32): expected = float1 + float2 if numpy.isnan(expected): self.assertTrue(numpy.isnan(TestBasicAddition.tester.run_test(float1, float2))) else: self.assertEqual(float1 + float2, TestBasicAddition.tester.run_test(float1, float2)) def test_zero(self): # Test that ±0 + x = x for all types of x. self.run_test(self.ZERO, self.ZERO) self.run_test(self.ZERO, -self.ZERO) self.run_test(-self.ZERO, self.ZERO) self.run_test(-self.ZERO, -self.ZERO) self.run_test(self.ZERO, self.ONE) self.run_test(self.ZERO, -self.ONE) self.run_test(-self.ZERO, self.ONE) self.run_test(-self.ZERO, -self.ONE) self.run_test(self.ZERO, self.MIN_SUBNORM) self.run_test(self.ZERO, -self.MIN_SUBNORM) self.run_test(-self.ZERO, self.MIN_SUBNORM) self.run_test(-self.ZERO, -self.MIN_SUBNORM) self.run_test(self.ZERO, numpy.float32(9.060464e-39)) self.run_test(self.ZERO, -numpy.float32(9.060464e-39)) self.run_test(-self.ZERO, numpy.float32(9.060464e-39)) self.run_test(-self.ZERO, -numpy.float32(9.060464e-39)) self.run_test(self.ZERO, self.MAX_SUBNORM) self.run_test(self.ZERO, -self.MAX_SUBNORM) self.run_test(-self.ZERO, self.MAX_SUBNORM) self.run_test(-self.ZERO, -self.MAX_SUBNORM) self.run_test(self.ZERO, self.MIN_NORM) self.run_test(self.ZERO, -self.MIN_NORM) self.run_test(-self.ZERO, self.MIN_NORM) self.run_test(-self.ZERO, -self.MIN_NORM) self.run_test(self.ZERO, numpy.float32(395.6166)) self.run_test(self.ZERO, -numpy.float32(395.6166)) self.run_test(-self.ZERO, numpy.float32(395.6166)) self.run_test(-self.ZERO, -numpy.float32(395.6166)) self.run_test(self.ZERO, self.MAX_NORM) self.run_test(self.ZERO, -self.MAX_NORM) self.run_test(-self.ZERO, self.MAX_NORM) self.run_test(-self.ZERO, -self.MAX_NORM) self.run_test(self.ZERO, self.INF) self.run_test(self.ZERO, -self.INF) self.run_test(-self.ZERO, self.INF) self.run_test(-self.ZERO, -self.INF) self.run_test(self.ZERO, self.NAN) self.run_test(-self.ZERO, self.NAN) def test_one(self): # Test ±1 + x for all types of x. self.run_test(self.ONE, self.ZERO) self.run_test(self.ONE, -self.ZERO) self.run_test(-self.ONE, self.ZERO) self.run_test(-self.ONE, -self.ZERO) self.run_test(self.ONE, self.ONE) self.run_test(self.ONE, -self.ONE) self.run_test(-self.ONE, self.ONE) self.run_test(-self.ONE, -self.ONE) self.run_test(self.ONE, self.MIN_SUBNORM) self.run_test(self.ONE, -self.MIN_SUBNORM) self.run_test(-self.ONE, self.MIN_SUBNORM) self.run_test(-self.ONE, -self.MIN_SUBNORM) self.run_test(self.ONE, numpy.float32(1.902965e-39)) self.run_test(self.ONE, -numpy.float32(1.902965e-39)) self.run_test(-self.ONE, numpy.float32(1.902965e-39)) self.run_test(-self.ONE, -numpy.float32(1.902965e-39)) self.run_test(self.ONE, self.MAX_SUBNORM) self.run_test(self.ONE, -self.MAX_SUBNORM) self.run_test(-self.ONE, self.MAX_SUBNORM) self.run_test(-self.ONE, -self.MAX_SUBNORM) self.run_test(self.ONE, self.MIN_NORM) self.run_test(self.ONE, -self.MIN_NORM) self.run_test(-self.ONE, self.MIN_NORM) self.run_test(-self.ONE, -self.MIN_NORM) self.run_test(self.ONE, numpy.float32(7918.158)) self.run_test(self.ONE, -numpy.float32(7918.158)) self.run_test(-self.ONE, numpy.float32(7918.158)) self.run_test(-self.ONE, -numpy.float32(7918.158)) self.run_test(self.ONE, self.MAX_NORM) self.run_test(self.ONE, -self.MAX_NORM) self.run_test(-self.ONE, self.MAX_NORM) self.run_test(-self.ONE, -self.MAX_NORM) self.run_test(self.ONE, self.INF) self.run_test(self.ONE, -self.INF) self.run_test(-self.ONE, self.INF) self.run_test(-self.ONE, -self.INF) self.run_test(self.ONE, self.NAN) self.run_test(-self.ONE, self.NAN) def test_min_subnorm(self): # Test ±MIN_SUBNORM + x for all types of x. self.run_test(self.MIN_SUBNORM, self.ZERO) self.run_test(self.MIN_SUBNORM, -self.ZERO) self.run_test(-self.MIN_SUBNORM, self.ZERO) self.run_test(-self.MIN_SUBNORM, -self.ZERO) self.run_test(self.MIN_SUBNORM, self.ONE) self.run_test(self.MIN_SUBNORM, -self.ONE) self.run_test(-self.MIN_SUBNORM, self.ONE) self.run_test(-self.MIN_SUBNORM, -self.ONE) self.run_test(self.MIN_SUBNORM, self.MIN_SUBNORM) self.run_test(self.MIN_SUBNORM, -self.MIN_SUBNORM) self.run_test(-self.MIN_SUBNORM, self.MIN_SUBNORM) self.run_test(-self.MIN_SUBNORM, -self.MIN_SUBNORM) self.run_test(self.MIN_SUBNORM, numpy.float32(6.927885e-39)) self.run_test(self.MIN_SUBNORM, -numpy.float32(6.927885e-39)) self.run_test(-self.MIN_SUBNORM, numpy.float32(6.927885e-39)) self.run_test(-self.MIN_SUBNORM, -numpy.float32(6.927885e-39)) self.run_test(self.MIN_SUBNORM, self.MAX_SUBNORM) self.run_test(self.MIN_SUBNORM, -self.MAX_SUBNORM) self.run_test(-self.MIN_SUBNORM, self.MAX_SUBNORM) self.run_test(-self.MIN_SUBNORM, -self.MAX_SUBNORM) self.run_test(self.MIN_SUBNORM, self.MIN_NORM) self.run_test(self.MIN_SUBNORM, -self.MIN_NORM) self.run_test(-self.MIN_SUBNORM, self.MIN_NORM) self.run_test(-self.MIN_SUBNORM, -self.MIN_NORM) self.run_test(self.MIN_SUBNORM, numpy.float32(466603.3)) self.run_test(self.MIN_SUBNORM, -numpy.float32(466603.3)) self.run_test(-self.MIN_SUBNORM, numpy.float32(466603.3)) self.run_test(-self.MIN_SUBNORM, -numpy.float32(466603.3)) self.run_test(self.MIN_SUBNORM, self.MAX_NORM) self.run_test(self.MIN_SUBNORM, -self.MAX_NORM) self.run_test(-self.MIN_SUBNORM, self.MAX_NORM) self.run_test(-self.MIN_SUBNORM, -self.MAX_NORM) self.run_test(self.MIN_SUBNORM, self.INF) self.run_test(self.MIN_SUBNORM, -self.INF) self.run_test(-self.MIN_SUBNORM, self.INF) self.run_test(-self.MIN_SUBNORM, -self.INF) self.run_test(self.MIN_SUBNORM, self.NAN) self.run_test(-self.MIN_SUBNORM, self.NAN) def test_subnorm(self): # Test ±x + y for subnormal x and all types of y. self.run_test(numpy.float32(7.518523e-39), self.ZERO) self.run_test(numpy.float32(7.518523e-39), -self.ZERO) self.run_test(-numpy.float32(7.518523e-39), self.ZERO) self.run_test(-numpy.float32(7.518523e-39), -self.ZERO) self.run_test(numpy.float32(2.028916e-39), self.ONE) self.run_test(numpy.float32(2.028916e-39), -self.ONE) self.run_test(-numpy.float32(2.028916e-39), self.ONE) self.run_test(-numpy.float32(2.028916e-39), -self.ONE) self.run_test(numpy.float32(4.042427e-39), self.MIN_SUBNORM) self.run_test(numpy.float32(4.042427e-39), -self.MIN_SUBNORM) self.run_test(-numpy.float32(4.042427e-39), self.MIN_SUBNORM) self.run_test(-numpy.float32(4.042427e-39), -self.MIN_SUBNORM) self.run_test(numpy.float32(9.636327e-39), numpy.float32(1.0185049e-38)) self.run_test(numpy.float32(9.636327e-39), -numpy.float32(1.0185049e-38)) self.run_test(-numpy.float32(9.636327e-39), numpy.float32(1.0185049e-38)) self.run_test(-numpy.float32(9.636327e-39), -numpy.float32(1.0185049e-38)) self.run_test(numpy.float32(1.989006e-39), self.MAX_SUBNORM) self.run_test(numpy.float32(1.989006e-39), -self.MAX_SUBNORM) self.run_test(-numpy.float32(1.989006e-39), self.MAX_SUBNORM) self.run_test(-numpy.float32(1.989006e-39), -self.MAX_SUBNORM) self.run_test(numpy.float32(2.952435e-39), self.MIN_NORM) self.run_test(numpy.float32(2.952435e-39), -self.MIN_NORM) self.run_test(-numpy.float32(2.952435e-39), self.MIN_NORM) self.run_test(-numpy.float32(2.952435e-39), -self.MIN_NORM) self.run_test(numpy.float32(1.154907e-38), numpy.float32(4.0687437e-36)) self.run_test(numpy.float32(1.154907e-38), -numpy.float32(4.0687437e-36)) self.run_test(-numpy.float32(1.154907e-38), numpy.float32(4.0687437e-36)) self.run_test(-numpy.float32(1.154907e-38), -numpy.float32(4.0687437e-36)) self.run_test(numpy.float32(9.79494e-39), self.MAX_NORM) self.run_test(numpy.float32(9.79494e-39), -self.MAX_NORM) self.run_test(-numpy.float32(9.79494e-39), self.MAX_NORM) self.run_test(-numpy.float32(9.79494e-39), -self.MAX_NORM) self.run_test(numpy.float32(1.54569e-39), self.INF) self.run_test(numpy.float32(1.54569e-39), -self.INF) self.run_test(-numpy.float32(1.54569e-39), self.INF) self.run_test(-numpy.float32(1.54569e-39), -self.INF) self.run_test(numpy.float32(3.974073e-39), self.NAN) self.run_test(-numpy.float32(3.974073e-39), self.NAN) def test_max_subnorm(self): # Test ±MAX_SUBNORM + x for all types of x. self.run_test(self.MAX_SUBNORM, self.ZERO) self.run_test(self.MAX_SUBNORM, -self.ZERO) self.run_test(-self.MAX_SUBNORM, self.ZERO) self.run_test(-self.MAX_SUBNORM, -self.ZERO) self.run_test(self.MAX_SUBNORM, self.ONE) self.run_test(self.MAX_SUBNORM, -self.ONE) self.run_test(-self.MAX_SUBNORM, self.ONE) self.run_test(-self.MAX_SUBNORM, -self.ONE) self.run_test(self.MAX_SUBNORM, self.MIN_SUBNORM) self.run_test(self.MAX_SUBNORM, -self.MIN_SUBNORM) self.run_test(-self.MAX_SUBNORM, self.MIN_SUBNORM) self.run_test(-self.MAX_SUBNORM, -self.MIN_SUBNORM) self.run_test(self.MAX_SUBNORM, numpy.float32(2.736488e-39)) self.run_test(self.MAX_SUBNORM, -numpy.float32(2.736488e-39)) self.run_test(-self.MAX_SUBNORM, numpy.float32(2.736488e-39)) self.run_test(-self.MAX_SUBNORM, -numpy.float32(2.736488e-39)) self.run_test(self.MAX_SUBNORM, self.MAX_SUBNORM) self.run_test(self.MAX_SUBNORM, -self.MAX_SUBNORM) self.run_test(-self.MAX_SUBNORM, self.MAX_SUBNORM) self.run_test(-self.MAX_SUBNORM, -self.MAX_SUBNORM) self.run_test(self.MAX_SUBNORM, self.MIN_NORM) self.run_test(self.MAX_SUBNORM, -self.MIN_NORM) self.run_test(-self.MAX_SUBNORM, self.MIN_NORM) self.run_test(-self.MAX_SUBNORM, -self.MIN_NORM) self.run_test(self.MAX_SUBNORM, numpy.float32(8.027242e-35)) self.run_test(self.MAX_SUBNORM, -numpy.float32(8.027242e-35)) self.run_test(-self.MAX_SUBNORM, numpy.float32(8.027242e-35)) self.run_test(-self.MAX_SUBNORM, -numpy.float32(8.027242e-35)) self.run_test(self.MAX_SUBNORM, self.MAX_NORM) self.run_test(self.MAX_SUBNORM, -self.MAX_NORM) self.run_test(-self.MAX_SUBNORM, self.MAX_NORM) self.run_test(-self.MAX_SUBNORM, -self.MAX_NORM) self.run_test(self.MAX_SUBNORM, self.INF) self.run_test(self.MAX_SUBNORM, -self.INF) self.run_test(-self.MAX_SUBNORM, self.INF) self.run_test(-self.MAX_SUBNORM, -self.INF) self.run_test(self.MAX_SUBNORM, self.NAN) self.run_test(-self.MAX_SUBNORM, self.NAN) def test_min_norm(self): # Test ±MIN_NORM + x for all types of x. self.run_test(self.MIN_NORM, self.ZERO) self.run_test(self.MIN_NORM, -self.ZERO) self.run_test(-self.MIN_NORM, self.ZERO) self.run_test(-self.MIN_NORM, -self.ZERO) self.run_test(self.MIN_NORM, self.ONE) self.run_test(self.MIN_NORM, -self.ONE) self.run_test(-self.MIN_NORM, self.ONE) self.run_test(-self.MIN_NORM, -self.ONE) self.run_test(self.MIN_NORM, self.MIN_SUBNORM) self.run_test(self.MIN_NORM, -self.MIN_SUBNORM) self.run_test(-self.MIN_NORM, self.MIN_SUBNORM) self.run_test(-self.MIN_NORM, -self.MIN_SUBNORM) self.run_test(self.MIN_NORM, numpy.float32(7.235862e-39)) self.run_test(self.MIN_NORM, -numpy.float32(7.235862e-39)) self.run_test(-self.MIN_NORM, numpy.float32(7.235862e-39)) self.run_test(-self.MIN_NORM, -numpy.float32(7.235862e-39)) self.run_test(self.MIN_NORM, self.MAX_SUBNORM) self.run_test(self.MIN_NORM, -self.MAX_SUBNORM) self.run_test(-self.MIN_NORM, self.MAX_SUBNORM) self.run_test(-self.MIN_NORM, -self.MAX_SUBNORM) self.run_test(self.MIN_NORM, self.MIN_NORM) self.run_test(self.MIN_NORM, -self.MIN_NORM) self.run_test(-self.MIN_NORM, self.MIN_NORM) self.run_test(-self.MIN_NORM, -self.MIN_NORM) self.run_test(self.MIN_NORM, numpy.float32(3.0655702e-37)) self.run_test(self.MIN_NORM, -numpy.float32(3.0655702e-37)) self.run_test(-self.MIN_NORM, numpy.float32(3.0655702e-37)) self.run_test(-self.MIN_NORM, -numpy.float32(3.0655702e-37)) self.run_test(self.MIN_NORM, self.MAX_NORM) self.run_test(self.MIN_NORM, -self.MAX_NORM) self.run_test(-self.MIN_NORM, self.MAX_NORM) self.run_test(-self.MIN_NORM, -self.MAX_NORM) self.run_test(self.MIN_NORM, self.INF) self.run_test(self.MIN_NORM, -self.INF) self.run_test(-self.MIN_NORM, self.INF) self.run_test(-self.MIN_NORM, -self.INF) self.run_test(self.MIN_NORM, self.NAN) self.run_test(-self.MIN_NORM, self.NAN) def test_norm(self): # Test ±x + y for normal x and all types of y. self.run_test(numpy.float32(3.2528998e8), self.ZERO) self.run_test(numpy.float32(3.2528998e8), -self.ZERO) self.run_test(-numpy.float32(3.2528998e8), self.ZERO) self.run_test(-numpy.float32(3.2528998e8), -self.ZERO) self.run_test(numpy.float32(5781.5137), self.ONE) self.run_test(numpy.float32(5781.5137), -self.ONE) self.run_test(-numpy.float32(5781.5137), self.ONE) self.run_test(-numpy.float32(5781.5137), -self.ONE) self.run_test(numpy.float32(4.0233208e-35), self.MIN_SUBNORM) self.run_test(numpy.float32(4.0233208e-35), -self.MIN_SUBNORM) self.run_test(-numpy.float32(4.0233208e-35), self.MIN_SUBNORM) self.run_test(-numpy.float32(4.0233208e-35), -self.MIN_SUBNORM) self.run_test(numpy.float32(3.4244755e-37), numpy.float32(7.951416e-39)) self.run_test(numpy.float32(3.4244755e-37), -numpy.float32(7.951416e-39)) self.run_test(-numpy.float32(3.4244755e-37), numpy.float32(7.951416e-39)) self.run_test(-numpy.float32(3.4244755e-37), -numpy.float32(7.951416e-39)) self.run_test(numpy.float32(1.772688e-35), self.MAX_SUBNORM) self.run_test(numpy.float32(1.772688e-35), -self.MAX_SUBNORM) self.run_test(-numpy.float32(1.772688e-35), self.MAX_SUBNORM) self.run_test(-numpy.float32(1.772688e-35), -self.MAX_SUBNORM) self.run_test(numpy.float32(9.7266296e-36), self.MIN_NORM) self.run_test(numpy.float32(9.7266296e-36), -self.MIN_NORM) self.run_test(-numpy.float32(9.7266296e-36), self.MIN_NORM) self.run_test(-numpy.float32(9.7266296e-36), -self.MIN_NORM) self.run_test(numpy.float32(9.964942e17), numpy.float32(3.0321312e16)) self.run_test(numpy.float32(9.964942e17), -numpy.float32(3.0321312e16)) self.run_test(-numpy.float32(9.964942e17), numpy.float32(3.0321312e16)) self.run_test(-numpy.float32(9.964942e17), -numpy.float32(3.0321312e16)) self.run_test(numpy.float32(3.3541464e35), self.MAX_NORM) self.run_test(numpy.float32(3.3541464e35), -self.MAX_NORM) self.run_test(-numpy.float32(3.3541464e35), self.MAX_NORM) self.run_test(-numpy.float32(3.3541464e35), -self.MAX_NORM) self.run_test(
numpy.float32(1.8177568e25)
numpy.float32
from __future__ import absolute_import from builtins import range from . import datalayer import numpy as np # from numpy.polynomial.polynomial import polyval ## TODO: correctly handle large gaps (wait what?) ## TODO: correctly handle multiple vertical values # Function consisting of a single Bezier curve class CurveFunction(datalayer.Function): # the global variables: # self.pixels [(point0), (point1), (point2), (point3)] - the control points, in pixel space # self.p0, self.p1, self.p2, self.p3 - the control points, in math space # the polynomials for x and y, their derivatives, and their second derivatives: # self.x, self.y # self.dxdt, self.dydt # self.ddx, self.ddy def __init__(self, xaxis, yaxis, path_info, tolerance = dict()): datalayer.Function.__init__(self, xaxis, yaxis, path_info, tolerance) self.set_default_tolerance('imag_threshold', 1e-5) # threshold for determining real / complex number self.set_default_tolerance('t_threshold', 0.002) # threshold for t values # self.set_default_tolerance('straight_line', 100) # threshold for straight lines def create(self): self.x = np.array([-1, 3, -3, 1]) * self.p0[0] + np.array([3, -6, 3, 0]) * self.p1[0] + np.array([-3, 3, 0, 0]) * self.p2[0] + np.array([1, 0, 0, 0]) * self.p3[0] self.y = np.array([-1, 3, -3, 1]) * self.p0[1] + np.array([3, -6, 3, 0]) * self.p1[1] + np.array([-3, 3, 0, 0]) * self.p2[1] + np.array([1, 0, 0, 0]) * self.p3[1] self.dxdt = np.array([1, -2, 1]) * 3 * (self.p1[0] - self.p0[0]) + np.array([-1, 1, 0]) * 6 * (self.p2[0]-self.p1[0]) + np.array([1, 0, 0]) * 3 * (self.p3[0] - self.p2[0]) self.dydt = np.array([1, -2, 1]) * 3 * (self.p1[1] - self.p0[1]) +
np.array([-1, 1, 0])
numpy.array
from imutils.video import VideoStream from imutils.video import FPS import numpy as np import argparse import imutils import time import cv2 import os from openvino.inference_engine import IECore #from BeamSearch import BeamEntry, BeamState, applyLM, addBeam, ctcBeamSearch import enchant import pygame from gtts import gTTS import subprocess import signal import pvporcupine import pyaudio import struct import sys #from porcupine_demo_mic import * #from word_beam_search import WordBeamSearch #from inference import Inference #for OCR model #d = enchant.Dict("en_US") fpsstr = "" framecount = 0 time1 = 0 def rotated_Rectangle(img, rotatedRect, color, thickness=1, lineType=cv2.LINE_8, shift=0): (x, y), (width, height), angle = rotatedRect pt1_1 = (int(x + width / 2), int(y + height / 2)) pt2_1 = (int(x + width / 2), int(y - height / 2)) pt3_1 = (int(x - width / 2), int(y - height / 2)) pt4_1 = (int(x - width / 2), int(y + height / 2)) t = np.array([[np.cos(angle), -np.sin(angle), x-x*np.cos(angle)+y*
np.sin(angle)
numpy.sin
from __future__ import print_function import sys import numpy as np import numba.unittest_support as unittest from numba.compiler import compile_isolated from numba.numpy_support import from_dtype from numba import types, njit, typeof from .support import TestCase, CompilationCache, MemoryLeakMixin def array_dtype(a): return a.dtype def use_dtype(a, b): return a.view(b.dtype) def array_itemsize(a): return a.itemsize def array_shape(a, i): return a.shape[i] def array_strides(a, i): return a.strides[i] def array_ndim(a): return a.ndim def array_size(a): return a.size def array_flags_contiguous(a): return a.flags.contiguous def array_flags_c_contiguous(a): return a.flags.c_contiguous def array_flags_f_contiguous(a): return a.flags.f_contiguous def nested_array_itemsize(a): return a.f.itemsize def nested_array_shape(a): return a.f.shape def nested_array_strides(a): return a.f.strides def nested_array_ndim(a): return a.f.ndim def nested_array_size(a): return a.f.size def size_after_slicing_usecase(buf, i): sliced = buf[i] # Make sure size attribute is not lost return sliced.size def array_ctypes_data(arr): return arr.ctypes.data class TestArrayAttr(MemoryLeakMixin, TestCase): def setUp(self): super(TestArrayAttr, self).setUp() self.ccache = CompilationCache() self.a = np.arange(10, dtype=np.int32).reshape(2, 5) def check_unary(self, pyfunc, arr): cfunc = self.get_cfunc(pyfunc, (typeof(arr),)) expected = pyfunc(arr) self.assertPreciseEqual(cfunc(arr), expected) def check_unary_with_arrays(self, pyfunc): self.check_unary(pyfunc, self.a) self.check_unary(pyfunc, self.a.T) self.check_unary(pyfunc, self.a[::2]) # 0-d array arr = np.array([42]).reshape(()) self.check_unary(pyfunc, arr) # array with an empty dimension arr = np.zeros(0) self.check_unary(pyfunc, arr) self.check_unary(pyfunc, arr.reshape((1, 0, 2))) def get_cfunc(self, pyfunc, argspec): cres = self.ccache.compile(pyfunc, argspec) return cres.entry_point def test_shape(self): pyfunc = array_shape cfunc = self.get_cfunc(pyfunc, (types.int32[:,:], types.int32)) for i in range(self.a.ndim): self.assertEqual(pyfunc(self.a, i), cfunc(self.a, i)) def test_strides(self): pyfunc = array_strides cfunc = self.get_cfunc(pyfunc, (types.int32[:,:], types.int32)) for i in range(self.a.ndim): self.assertEqual(pyfunc(self.a, i), cfunc(self.a, i)) def test_ndim(self): self.check_unary_with_arrays(array_ndim) def test_size(self): self.check_unary_with_arrays(array_size) def test_itemsize(self): self.check_unary_with_arrays(array_itemsize) def test_dtype(self): pyfunc = array_dtype self.check_unary(pyfunc, self.a) dtype = np.dtype([('x', np.int8), ('y', np.int8)]) arr = np.zeros(4, dtype=dtype) self.check_unary(pyfunc, arr) def test_use_dtype(self): # Test using the dtype attribute inside the Numba function itself b = np.empty(1, dtype=np.int16) pyfunc = use_dtype cfunc = self.get_cfunc(pyfunc, (typeof(self.a), typeof(b))) expected = pyfunc(self.a, b) self.assertPreciseEqual(cfunc(self.a, b), expected) def test_flags_contiguous(self): self.check_unary_with_arrays(array_flags_contiguous) def test_flags_c_contiguous(self): self.check_unary_with_arrays(array_flags_c_contiguous) def test_flags_f_contiguous(self): self.check_unary_with_arrays(array_flags_f_contiguous) class TestNestedArrayAttr(MemoryLeakMixin, unittest.TestCase): def setUp(self): super(TestNestedArrayAttr, self).setUp() dtype = np.dtype([('a', np.int32), ('f', np.int32, (2, 5))]) self.a = np.recarray(1, dtype)[0] self.nbrecord = from_dtype(self.a.dtype) def get_cfunc(self, pyfunc): cres = compile_isolated(pyfunc, (self.nbrecord,)) return cres.entry_point def test_shape(self): pyfunc = nested_array_shape cfunc = self.get_cfunc(pyfunc) self.assertEqual(pyfunc(self.a), cfunc(self.a)) def test_strides(self): pyfunc = nested_array_strides cfunc = self.get_cfunc(pyfunc) self.assertEqual(pyfunc(self.a), cfunc(self.a)) def test_ndim(self): pyfunc = nested_array_ndim cfunc = self.get_cfunc(pyfunc) self.assertEqual(pyfunc(self.a), cfunc(self.a)) def test_size(self): pyfunc = nested_array_size cfunc = self.get_cfunc(pyfunc) self.assertEqual(pyfunc(self.a), cfunc(self.a)) def test_itemsize(self): pyfunc = nested_array_itemsize cfunc = self.get_cfunc(pyfunc) self.assertEqual(pyfunc(self.a), cfunc(self.a)) class TestSlicedArrayAttr(MemoryLeakMixin, unittest.TestCase): def test_size_after_slicing(self): pyfunc = size_after_slicing_usecase cfunc = njit(pyfunc) arr = np.arange(2 * 5).reshape(2, 5) for i in range(arr.shape[0]): self.assertEqual(pyfunc(arr, i), cfunc(arr, i)) arr =
np.arange(2 * 5 * 3)
numpy.arange
import numpy as np from multiagent.core import World, Agent, Landmark from multiagent.scenario import BaseScenario class Scenario(BaseScenario): def make_world(self): world = World() # world characteristics world.dim_c = 2 num_agents = 3 world.num_agents = num_agents num_landmarks = num_agents + 1 # adding agents world.agents = [Agent() for i in range(num_agents)] for i, agent in enumerate(world.agents): agent.name = 'agent %d' % i agent.collide = False agent.silent = True agent.size = 0.05 # adding landmarks world.landmarks = [Landmark() for i in range(num_landmarks)] for i, landmark in enumerate(world.landmarks): landmark.name = 'landmark %d' % i landmark.collide = False landmark.movable = False landmark.size = 0.07 # Initial Conditions self.reset_world(world) return world def reset_world(self, world): # Landmarks characteristics for landmark in world.landmarks: landmark.color = np.array([0.15, 0.15, 0.15]) landmark.state.p_pos = np.random.uniform(-1, +1, world.dim_p) landmark.state.p_vel =
np.zeros(world.dim_p)
numpy.zeros
#!/usr/bin/env python # -*- coding: utf-8 -*- # # etips # # Copyright (c) Siemens AG, 2020 # Authors: # <NAME> <<EMAIL>> # License-Identifier: MIT from pathlib import Path from joblib import dump import numpy as np from sklearn.model_selection import KFold from sklearn.dummy import DummyClassifier from utils import fix_random_seed, load_counting_data, load_mnist_data if __name__ == '__main__': fix_random_seed(0) data_fp = Path('../data/') exp_name = 'RD1' # or RD2 cv_index = 0 # 0-4 exp_fp = Path(f'./Exps/{exp_name}/CV{cv_index}/') exp_fp.mkdir(parents=True, exist_ok=True) x, y = load_counting_data(fp=data_fp, fn='Dataset_10k.pickle') # x, y = load_mnist_data() y =
np.argmax(y, axis=1)
numpy.argmax
import pandas as pd import numpy as np def range_groups(df, number_headers, bins=None): max_bins = 20 df_desc = df[number_headers].describe().reset_index() df_nums = df[number_headers] df_nums = df_nums.dropna() if not bins: lowest_min_header = None lowest_min_value = None highest_max_header = None highest_max_value = None for number_header in number_headers: min_val = df_desc.loc[df_desc['index'] == 'min'][number_header].values[0] max_val = df_desc.loc[df_desc['index'] == 'max'][number_header].values[0] if not lowest_min_value or min_val < lowest_min_value: lowest_min_header = number_header lowest_min_value = min_val if not highest_max_value or max_val > highest_max_value: highest_max_header = number_header highest_max_value = max_val high_low =
np.concatenate([df_nums[lowest_min_header].values,df_nums[highest_max_header].values])
numpy.concatenate
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot =
N.array([1,0,0,1,-1,0,0,0,1])
numpy.array
# example explained in Ansmann paper import time startTstartup= time.process_time() import sys import numpy as np from scipy.sparse import csr_matrix from symengine import sin from numpy import zeros import os endTstartup= time.process_time() # Parse command line args systemid = int(sys.argv[1]) tend = float(sys.argv[2]) atol = float(sys.argv[3]) rtol = float(sys.argv[4]) integrator = "dopri5" # Time loading data startTload = time.process_time() import sqlite3 db=os.environ['KURABENCH_DB'] systemid = sys.argv[1] # Load data ## First read the system info, inc. # of edges for allocating arrays conn = sqlite3.connect(db) cursor = conn.execute(f'SELECT name, nodes, edges, coupling_constant \ from systems where id={systemid}') name,nodes,edges,couplingConstant = cursor.fetchone() ## Now read the connectivity sources = np.empty(edges,dtype=int) dests = np.empty(edges,dtype=int) data =
np.ones(edges,dtype=bool)
numpy.ones
from app import db from carculator import * import json import itertools import csv from app.models import Task import numpy as np class Calculation: def __init__(self): bs = BackgroundSystemModel() self.electricity_mix = bs.electricity_mix self.biogasoline = bs.biogasoline self.biodiesel = bs.biodiesel self.biomethane = bs.biomethane self.region_map = bs.region_map self.cip = CarInputParameters() self.cip.static() self.d_categories = { self.cip.metadata[a]["name"]: self.cip.metadata[a]["category"] for a in self.cip.metadata } self.dcts, self.arr = fill_xarray_from_input_parameters(self.cip) self.d_pt_en = { "Petrol": "ICEV-p", "Diesel": "ICEV-d", "CNG": "ICEV-g", "Electric": "BEV", "Fuel cell": "FCEV", "Hybrid-petrol": "HEV-p", "Hybrid-diesel": "HEV-d", "(Plugin) Hybrid-petrol": "PHEV-p", "(Plugin) Hybrid-diesel": "PHEV-d", } self.d_pt_it = { "Benzina": "ICEV-p", "Diesel": "ICEV-d", "Gas compresso": "ICEV-g", "Elettrica": "BEV", "Cella a combustibile": "FCEV", "Ibrido benzina": "HEV-p", "Ibrido diesel": "HEV-d", "Ibrido-benzina (Plugin)": "PHEV-p", "Ibrido-diesel (Plugin)": "PHEV-d", } self.d_pt_de = { "Benzin": "ICEV-p", "Diesel": "ICEV-d", "Komprimiertes Gas": "ICEV-g", "Elektrisch": "BEV", "Brennstoffzelle": "FCEV", "Hybrid-Benzin": "HEV-p", "Hybrid-Diesel": "HEV-d", "(Plugin) Hybrid-Benzin": "PHEV-p", "(Plugin) Hybrid-Diesel": "PHEV-d", } self.d_pt_fr = { "Essence": "ICEV-p", "Diesel": "ICEV-d", "Gaz comprimé": "ICEV-g", "Electrique": "BEV", "Pile à combustible": "FCEV", "Hybride-essence": "HEV-p", "Hybride-diesel": "HEV-d", "Hybride-essence rechargeable": "PHEV-p", "Hybride-diesel rechargeable": "PHEV-d", } self.d_pt_all = { "Petrol": "ICEV-p", "Diesel": "ICEV-d", "CNG": "ICEV-g", "Electric": "BEV", "Fuel cell": "FCEV", "Hybrid-petrol": "HEV-p", "Hybrid-diesel": "HEV-d", "(Plugin) Hybrid-petrol": "PHEV-p", "(Plugin) Hybrid-diesel": "PHEV-d", "Benzina": "ICEV-p", "Gas compresso": "ICEV-g", "Elettrica": "BEV", "Cella a combustibile": "FCEV", "Ibrido benzina": "HEV-p", "Ibrido diesel": "HEV-d", "Ibrido-benzina (Plugin)": "PHEV-p", "Ibrido-diesel (Plugin)": "PHEV-d", "Benzin": "ICEV-p", "Komprimiertes Gas": "ICEV-g", "Elektrisch": "BEV", "Brennstoffzelle": "FCEV", "Hybrid-Benzin": "HEV-p", "Hybrid-Diesel": "HEV-d", "(Plugin) Hybrid-Benzin": "PHEV-p", "(Plugin) Hybrid-Diesel": "PHEV-d", "Essence": "ICEV-p", "Gaz comprimé": "ICEV-g", "Electrique": "BEV", "Pile à combustible": "FCEV", "Hybride-essence": "HEV-p", "Hybride-diesel": "HEV-d", "Hybride-essence rechargeable": "PHEV-p", "Hybride-diesel rechargeable": "PHEV-d", } self.d_size_en = { "Minicompact": "Mini", "Subcompact": "Small", "Compact": "Lower medium", "Mid-size": "Medium", "Large": "Large", "SUV": "SUV", "Van": "Van", } self.d_size_fr = { "Mini-citadine": "Mini", "Citadine": "Small", "Berline compacte": "Lower medium", "Berline familiale": "Medium", "Grande routière": "Large", "SUV": "SUV", "Van": "Van", } self.d_size_it = { "Mini citycar": "Mini", "Citycar": "Small", "Berlina compatta": "Lower medium", "Berlina medio-grande": "Medium", "Berlina tre volumi": "Large", "SUV": "SUV", "Van": "Van", } self.d_size_de = { "Kleinstwagen": "Mini", "Kleinwagen": "Small", "Kompaktklasse": "Lower medium", "Mittelklasse": "Medium", "Oberklasse": "Large", "Geländewagen": "SUV", "Van": "Van", } self.d_size_all = { "Minicompact": "Mini", "Subcompact": "Small", "Compact": "Lower medium", "Mid-size": "Medium", "Large": "Large", "SUV": "SUV", "Van": "Van", "Mini-citadine": "Mini", "Citadine": "Small", "Berline compacte": "Lower medium", "Berline familiale": "Medium", "Grande routière": "Large", "Mini citycar": "Mini", "Citycar": "Small", "Berlina compatta": "Lower medium", "Berlina medio-grande": "Medium", "Berlina tre volumi": "Large", "Kleinstwagen": "Mini", "Kleinwagen": "Small", "Kompaktklasse": "Lower medium", "Mittelklasse": "Medium", "Oberklasse": "Large", "Geländewagen": "SUV", } self.d_rev_pt_en = {v: k for k, v, in self.d_pt_en.items()} self.d_rev_pt_fr = {v: k for k, v, in self.d_pt_fr.items()} self.d_rev_pt_it = {v: k for k, v, in self.d_pt_it.items()} self.d_rev_pt_de = {v: k for k, v, in self.d_pt_de.items()} self.d_rev_size_en = {v: k for k, v, in self.d_size_en.items()} self.d_rev_size_fr = {v: k for k, v, in self.d_size_fr.items()} self.d_rev_size_it = {v: k for k, v, in self.d_size_it.items()} self.d_rev_size_de = {v: k for k, v, in self.d_size_de.items()} self.excel = "" def load_map_file(self, lang): with open("data/car_to_class_map.csv", "r", encoding="ISO-8859-1") as f: data = [list(line) for line in csv.reader(f, delimiter=";")] if lang == "en": for d in data: d[4] = self.d_rev_pt_en[d[4]] d[5] = self.d_rev_size_en[d[5]] if lang == "fr": for d in data: d[4] = self.d_rev_pt_fr[d[4]] d[5] = self.d_rev_size_fr[d[5]] if lang == "de": for d in data: d[4] = self.d_rev_pt_de[d[4]] d[5] = self.d_rev_size_de[d[5]] if lang == "it": for d in data: d[4] = self.d_rev_pt_it[d[4]] d[5] = self.d_rev_size_it[d[5]] return data def load_params_file(self): with open("data/parameters definition.txt", "r") as f: data = [line for line in csv.reader(f, delimiter="\t")] return data def interpolate_array(self, years): return self.arr.interp(year=years, kwargs={"fill_value": "extrapolate"}) def get_dc(self, dc): return get_standard_driving_cycle(dc) def create_config_array(self, dict_params, array, mix, energy_storage): arr = [] year = [int(y) for y in dict_params[("Functional unit",)]["year"]] driving_cycle = dict_params[("Driving cycle",)] country = dict_params[("Background",)]["country"] passengers = dict_params[("Foreground",)][ ("Glider", "all", "all", "average passengers", "none") ][(year[0], "loc")] cargo_mass = dict_params[("Foreground",)][ ("Glider", "all", "all", "cargo mass", "none") ][(year[0], "loc")] lifetime = dict_params[("Foreground",)][ ("Driving", "all", "all", "lifetime kilometers", "none") ][(year[0], "loc")] km_per_year = dict_params[("Foreground",)][ ("Driving", "all", "all", "kilometers per year", "none") ][(year[0], "loc")] for pt in array.coords["powertrain"].values: for s in array.coords["size"].values: for y, year in enumerate(array.coords["year"].values.astype(int)): electricity_mix = mix[y].tolist() params = [ pt, s, int(year), lifetime, km_per_year, passengers, cargo_mass, driving_cycle, country, electricity_mix, ] other_params = ( array.sel( powertrain=pt, size=s, year=year, value=0, parameter=[ "TtW energy", "driving mass", "combustion power", "electric power", "range", "engine efficiency", "drivetrain efficiency", "TtW efficiency", "battery discharge efficiency", "energy battery mass", "battery cell energy density", "electric energy stored", "battery lifetime kilometers", ], ) .values.astype(float) .tolist() ) params.extend(other_params) if pt in ("BEV"): battery_chem = dict_params[("Background",)]["energy storage"][ "electric" ]["type"] battery_origin = dict_params[("Background",)]["energy storage"][ "electric" ]["origin"] ( primary_fuel_type, primary_fuel_share, secondary_fuel_type, secondary_fuel_share, ) = ["", "", "", ""] else: battery_chem, battery_origin = ["", ""] if pt in ("ICEV-p", "PHEV-p", "HEV-p"): if "fuel blend" in dict_params[("Background",)]: if "petrol" in dict_params[("Background",)]["fuel blend"]: primary_fuel_type = dict_params[("Background",)][ "fuel blend" ]["petrol"]["primary fuel"]["type"] primary_fuel_share = dict_params[("Background",)][ "fuel blend" ]["petrol"]["primary fuel"]["share"][y] secondary_fuel_type = dict_params[("Background",)][ "fuel blend" ]["petrol"]["secondary fuel"]["type"] secondary_fuel_share = dict_params[("Background",)][ "fuel blend" ]["petrol"]["secondary fuel"]["share"][y] else: if country in self.biogasoline.country.values: share_biogasoline = np.squeeze(np.clip( self.biogasoline.sel( country=country ) .interp(year=year, kwargs={"fill_value": "extrapolate"}) .values , 0, 1)).tolist() else: share_biogasoline = 0 ( primary_fuel_type, primary_fuel_share, secondary_fuel_type, secondary_fuel_share, ) = [ "petrol", 1 - share_biogasoline, "bioethanol - wheat straw", share_biogasoline, ] else: if country in self.biogasoline.country.values: share_biogasoline = np.squeeze(np.clip( self.biogasoline.sel( country=country ) .interp(year=year, kwargs={"fill_value": "extrapolate"}) .values , 0, 1)).tolist() else: share_biogasoline = 0 ( primary_fuel_type, primary_fuel_share, secondary_fuel_type, secondary_fuel_share, ) = [ "petrol", 1 - share_biogasoline, "bioethanol - wheat straw", share_biogasoline, ] if pt in ("ICEV-d", "PHEV-d", "HEV-d"): if "fuel blend" in dict_params[("Background",)]: if "diesel" in dict_params[("Background",)]["fuel blend"]: primary_fuel_type = dict_params[("Background",)][ "fuel blend" ]["diesel"]["primary fuel"]["type"] primary_fuel_share = dict_params[("Background",)][ "fuel blend" ]["diesel"]["primary fuel"]["share"][y] secondary_fuel_type = dict_params[("Background",)][ "fuel blend" ]["diesel"]["secondary fuel"]["type"] secondary_fuel_share = dict_params[("Background",)][ "fuel blend" ]["diesel"]["secondary fuel"]["share"][y] else: if country in self.biodiesel.country.values: share_biodiesel = np.squeeze(np.clip( self.biodiesel.sel( country=country ) .interp(year=year, kwargs={"fill_value": "extrapolate"}) .values , 0, 1)).tolist() else: share_biodiesel = 0 ( primary_fuel_type, primary_fuel_share, secondary_fuel_type, secondary_fuel_share, ) = [ "diesel", 1 - share_biodiesel, "biodiesel - cooking oil", share_biodiesel, ] else: if country in self.biodiesel.country.values: share_biodiesel = np.squeeze(np.clip( self.biodiesel.sel( country=country ) .interp(year=year, kwargs={"fill_value": "extrapolate"}) .values , 0, 1)).tolist() else: share_biodiesel = 0 ( primary_fuel_type, primary_fuel_share, secondary_fuel_type, secondary_fuel_share, ) = [ "diesel", 1 - share_biodiesel, "biodiesel - cooking oil", share_biodiesel, ] if pt in ("ICEV-g"): if "fuel blend" in dict_params[("Background",)]: if "cng" in dict_params[("Background",)]["fuel blend"]: primary_fuel_type = dict_params[("Background",)][ "fuel blend" ]["cng"]["primary fuel"]["type"] primary_fuel_share = dict_params[("Background",)][ "fuel blend" ]["cng"]["primary fuel"]["share"][y] secondary_fuel_type = dict_params[("Background",)][ "fuel blend" ]["cng"]["secondary fuel"]["type"] secondary_fuel_share = dict_params[("Background",)][ "fuel blend" ]["cng"]["secondary fuel"]["share"][y] else: if country in self.biomethane.country.values: share_biomethane = np.squeeze(np.clip( self.biomethane.sel( country=country ) .interp(year=year, kwargs={"fill_value": "extrapolate"}) .values , 0, 1)).tolist() else: share_biomethane = 0 ( primary_fuel_type, primary_fuel_share, secondary_fuel_type, secondary_fuel_share, ) = [ "cng", 1 - share_biomethane, "biogas - sewage sludge", share_biomethane, ] else: if country in self.biomethane.country.values: share_biomethane = np.squeeze(np.clip( self.biomethane.sel( country=country ) .interp(year=year, kwargs={"fill_value": "extrapolate"}) .values , 0, 1)).tolist() else: share_biomethane = 0 ( primary_fuel_type, primary_fuel_share, secondary_fuel_type, secondary_fuel_share, ) = [ "cng", 1 - share_biomethane, "biogas - sewage sludge", share_biomethane, ] if pt in ("FCEV"): if "fuel blend" in dict_params[("Background",)]: if "hydrogen" in dict_params[("Background",)]["fuel blend"]: primary_fuel_type = dict_params[("Background",)][ "fuel blend" ]["hydrogen"]["primary fuel"]["type"] primary_fuel_share = dict_params[("Background",)][ "fuel blend" ]["hydrogen"]["primary fuel"]["share"][y] secondary_fuel_type = dict_params[("Background",)][ "fuel blend" ]["hydrogen"]["secondary fuel"]["type"] secondary_fuel_share = dict_params[("Background",)][ "fuel blend" ]["hydrogen"]["secondary fuel"]["share"][y] else: ( primary_fuel_type, primary_fuel_share, secondary_fuel_type, secondary_fuel_share, ) = ["electrolysis", 1, "", ""] else: ( primary_fuel_type, primary_fuel_share, secondary_fuel_type, secondary_fuel_share, ) = ["electrolysis", 1, "", ""] params.extend( [ battery_chem, battery_origin, primary_fuel_type, primary_fuel_share, secondary_fuel_type, secondary_fuel_share, ] ) arr.append(params) return arr def process_results(self, d, lang, job_id): """ Calculate LCIA and store results in an array of arrays """ # Update task progress to db task = Task.query.filter_by(id=job_id).first() task.progress = 50 db.session.commit() scope = { "powertrain": d[("Functional unit",)]["powertrain"], "size": d[("Functional unit",)]["size"], } self.dcts, self.arr = fill_xarray_from_input_parameters(self.cip, scope=scope) arr = self.interpolate_array(d[("Functional unit",)]["year"]) modify_xarray_from_custom_parameters(d[("Foreground",)], arr) # remove hybridization for vehicles before 2030 pwt = list({"ICEV-p", "ICEV-d", "ICEV-g"}.intersection(set(scope["powertrain"]))) years_before_2030 = [y for y in arr["year"].values if y < 2030] if pwt and years_before_2030: arr.loc[dict( powertrain=pwt, year=years_before_2030, parameter="combustion power share" )] = 1 cm = CarModel(arr, cycle=d[("Driving cycle",)]) # adjust the electricity density of the battery cells for p in d[('Foreground',)]: if p[3] == "battery cell energy density": for y in d[("Foreground",)][p]: cm.array.loc[ dict( parameter="battery cell energy density", year=y[0] ) ]= d[("Foreground",)][p][y] if "electric utility factor" in d[("Background",)]: uf = list(d[("Background",)]["electric utility factor"].values()) cm.set_all(electric_utility_factor=uf) else: cm.set_all() pt = cm.array.powertrain.values s = d[("Functional unit",)]["size"] y = d[("Functional unit",)]["year"] a = [pt] + [s] + [y] l = list(itertools.product(*a)) l = [i[0] + " - " + i[1] + " - " + str(i[2]) for i in l] cumsum = ( cm.energy.sel( powertrain=pt, size=s, year=y, value=0, parameter=["motive energy", "auxiliary energy", "recuperated energy"], ) .cumsum(dim="second") .sum(dim="parameter") .transpose("powertrain", "size", "year", "second") .values.reshape(len(l), -1).astype("float64") ) # Format the data so that it can be consumed directly # by nvd3.js TtW_energy = [] for i, vehicle in enumerate(l): TtW_energy.append( { "key": vehicle, "values": list( map(lambda e: {"x": e[0], "y": e[1]}, enumerate(cumsum[i])) ), } ) # Functional unit fu_unit = d[("Functional unit",)]["fu"]["unit"] fu_qty = float(d[("Functional unit",)]["fu"]["quantity"]) if fu_unit == "vkm": load_factor = 1 else: load_factor = cm["average passengers"].mean().values # Update task progress to db task = Task.query.filter_by(id=job_id).first() task.progress = 60 db.session.commit() scope = {"powertrain": pt, "size": s, "year": y} total_cost = cm.calculate_cost_impacts(scope=scope).transpose( "size", "powertrain", "year", "value", "cost_type" ).astype("float64") cost_benchmark = total_cost.sel(cost_type="total", value=0).values.reshape( len(l) ) cost_types = [c for c in total_cost.cost_type.values if c != "total"] arr_benchmark = list( map( lambda x: [ "cost", x[0].split(" - ")[0], x[0].split(" - ")[1], x[0].split(" - ")[2], 1 / x[1], ], zip(l, cost_benchmark), ) ) l_scatter = [x.replace(" - ", ", ") for x in l] dict_scatter = { x[0]: [x[1]] for x in zip(l_scatter, cost_benchmark / load_factor * fu_qty) } detailed_cost = ( total_cost.sel(value=0, cost_type=cost_types).values.reshape( len(l), len(cost_types) ) / load_factor * fu_qty ) a = [pt] + [s] + [y] l_cost = list(itertools.product(*a)) list_res_costs = list( map( lambda x: [ [ "ownership cost", x[0][1], x[0][0], x[0][2], cost_types[y], z, np.sum(x[1]), ] for y, z in enumerate(x[1]) ], zip(l_cost, detailed_cost), ) ) list_res_costs = list(itertools.chain.from_iterable(list_res_costs)) self.ic = InventoryCalculation( cm.array, scope=d[("Functional unit",)]["fu"], background_configuration=d[("Background",)], ) # Update task progress to db task = Task.query.filter_by(id=job_id).first() task.progress = 70 db.session.commit() results = ( self.ic.calculate_impacts() .sel(value=0) .transpose("impact_category", "size", "powertrain", "year", "impact") ).astype("float64") lifetime = int(cm.array.sel(parameter="lifetime kilometers").mean().values) # Update task progress to db task = Task.query.filter_by(id=job_id).first() task.progress = 80 db.session.commit() impact = results.coords["impact"].values.tolist() impact_category = results.coords["impact_category"].values arr_benchmark.extend( list( map( lambda x: [ "climate change", x[0].split(" - ")[0], x[0].split(" - ")[1], x[0].split(" - ")[2], 1 / x[1], ], zip( l, results.sel(impact_category="climate change") .sum(dim="impact") .values.reshape(len(l)), ), ) ) ) arr_benchmark.extend( list( map( lambda x: [ "fossil depletion", x[0].split(" - ")[0], x[0].split(" - ")[1], x[0].split(" - ")[2], 1 / x[1] * 0.755, # 0.755 kg/L gasoline ], zip( l, results.sel(impact_category="fossil depletion") .sum(dim="impact") .values.reshape(len(l)), ), ) ) ) for x in zip( l_scatter, results.sel(impact_category="climate change") .sum(dim="impact") .values.reshape(len(l)) / load_factor * fu_qty, ): existing_list = dict_scatter[x[0]] existing_list.append(x[1]) dict_scatter[x[0]] = existing_list a_wo_impact = [impact_category] + [s] + [pt] + [y] l_impacts_wo_impact = list(itertools.product(*a_wo_impact)) list_res = list( map( lambda x: [ [x[0][0], x[0][1], x[0][2], x[0][3], impact[y], z, np.sum(x[1])] for y, z in enumerate(x[1]) ], zip( l_impacts_wo_impact, ( results.values.reshape( len( l_impacts_wo_impact ), len(impact) ) / load_factor * fu_qty ), ), ) ) list_res = list(itertools.chain.from_iterable(list_res)) list_res_acc = list( map( lambda x: [ x[0][0], x[0][1], x[0][2], x[0][3],
np.sum(x[1][4:-1])
numpy.sum
import SimpleITK as sitk import numpy import OpenEXR import json import os import warnings from .utils import __TIFF_HEADERS_ID, __get_pixeltype_from_channel, __get_exrpixel_from_channel,\ __change_array_type from .pixeltype import PixelType def convert_directory(path, output_pixel_type=None, verbose=True): """ Converts directory of EXR files to TIFF. :param path: path of the directory. :param output_pixel_type: If equal to None, the output file image will have the same pixel type or format of that in the input file image. If changing the pixel type is desired, then output_pixel_type can take the values defined by the fields in the class exrconverter.pixeltype.PixelType. Example: output_pixel_type=PixelType.FLOAT32. Since the underlying implementation uses numpy arrays, output_pixel_type can also take numpy dtypes values, For example, output_pixel_type=numpy.float32. :param verbose: Boolean variable for deciding whether to print warning messages. :example: convert_directory(path='path/to/exr', output_pixel_type=numpy.float32, verbose=True) """ for filename in os.listdir(path): if filename[-3:] != 'exr': continue if verbose: print ("Converting: " + filename) output_filename = path + '/' + filename[:-4] + ".tif" convert(path + '/' + filename, output_filename, output_pixel_type, verbose) def convert(input_exr, output_tiff, output_pixel_type=None, verbose=True): """ Converts an input EXR file into a TIFF file. Multiple layers in the input EXR file are created as multiple layers in the output Tiff file. The pixels in the output image file can also be set to a different type as that of the pixels in the input image file. :param input_exr: path (string) of the input EXR file. :param output_tiff: path (string) to the output TIFF file. :param output_pixel_type: If equal to None, the output file image will have the same pixel type or format of that in the input file image. If changing the pixel type is desired, then output_pixel_type can take the values defined by the fields in the class exrconverter.pixeltype.PixelType. Example: output_pixel_type=PixelType.FLOAT32. Since the underlying implementation uses numpy arrays, output_pixel_type can also take numpy dtypes values, For example, output_pixel_type=numpy.float32. :param verbose: Boolean variable for deciding whether to print warning messages. :example: convert(input_exr="/path/to/input_exr.exr", output_tiff="/path/to/output_tiff.tiff", output_pixel_type=numpy.float32, verbose=True) """ exr_file = OpenEXR.InputFile(input_exr) exr_header = exr_file.header() tiff_headers = json.loads(exr_header[__TIFF_HEADERS_ID]) dw = exr_header['dataWindow'] image_size = (dw.max.x - dw.min.x + 1, dw.max.y - dw.min.y + 1) tiff_image = [] for channel_index in sorted(exr_header['channels'].keys(), key=lambda x: float(x)): channel_type = exr_header['channels'][channel_index] byte_image = exr_file.channel(str(channel_index), __get_exrpixel_from_channel(channel_type)) pixel_type = __get_pixeltype_from_channel(channel_type) if output_pixel_type is None: output_pixel_type = pixel_type image_data =
numpy.frombuffer(byte_image, dtype=pixel_type)
numpy.frombuffer
import numpy as np import matplotlib.pyplot as plt import scipy.stats as sp import math import random as rm import NumerosGenerados as ng n = 100000 inicio = 0 ancho = 20 K = 3 numerosGamma = sp.gamma.rvs(size=n, a = K) print("Media: ", round(
np.mean(numerosGamma)
numpy.mean
from pathlib import Path from numpy import arange, array, ceil, empty, floor, isnan, linspace, \ log10, meshgrid, nan, tile, transpose, where from numpy.ma import masked_where from matplotlib.pyplot import clf, close, cm, colorbar, figure, savefig, show from mpl_toolkits.basemap import Basemap from os.path import dirname, isdir, join, realpath from os import mkdir import pyapex, seaborn from scipy.interpolate import interp2d#, RectBivariateSpline # from pyigrf.pyigrf import GetIGRF from pyiri2016 import IRI2016 from pyiri2016 import IRI2016Profile from pyiri2016.iriweb import irisubgl, firisubl from timeutil import TimeUtilities # cwd = Path(__file__).parent DataFolder = cwd / 'data' class IRI2016_2DProf(IRI2016Profile): #def __init__(self): # pass #def _GetTitle(self): # IRI2016Profile()._GetTitle(__self__) def HeightVsTime(self, FIRI=False, hrlim=[0., 24.], hrstp=1.): self.option = 1 nhrstp = int((hrlim[1] + hrstp - hrlim[0]) / hrstp) + 1 hrbins = list(map(lambda x: hrlim[0] + float(x) * hrstp, range(nhrstp))) Ne = empty((nhrstp, self.numstp)) if FIRI: NeFIRI = empty((nhrstp, self.numstp)) Te = empty((nhrstp, self.numstp)) Ti = empty((nhrstp, self.numstp)) for i in range(nhrstp): self.hour = hrbins[i] self.HeiProfile() Ne[i, :] = self.a[0, range(self.numstp)] if FIRI: NeFIRI[i, :] = self.a[12, range(self.numstp)] Te[i, :] = self.a[3, range(self.numstp)] Ti[i, :] = self.a[2, range(self.numstp)] # self._GetTitle() altbins = arange(self.vbeg, self.vend + self.vstp, self.vstp) self.data2D = {'alt' : altbins, 'hour' : hrbins, \ 'Ne' : Ne, 'Te' : Te, 'Ti' : Ti, \ 'title1' : self.title1, 'title2' : self.title2} if FIRI: self.FIRI2D = {'alt' : altbins, 'hour' : hrbins, \ 'Ne' : NeFIRI, \ 'title1' : self.title1, 'title2' : self.title2} # # End of 'HeightVsTime' ##### def LatVsLon(self, lonlim=[-180., 180.], lonstp=20.): self.option = 2 nlonstp = int((lonlim[1] + lonstp - lonlim[0]) / lonstp) + 1 lonbins = list(map(lambda x: lonlim[0] + float(x) * lonstp, range(nlonstp))) NmF2 = empty((nlonstp, self.numstp)) hmF2 = empty((nlonstp, self.numstp)) B0 = empty((nlonstp, self.numstp)) dip = empty((nlonstp, self.numstp)) for i in range(nlonstp): self.lon = lonbins[i] self.HeiProfile() NmF2[i, :] = self.b[0, range(self.numstp)] hmF2[i, :] = self.b[1, range(self.numstp)] B0[i, :] = self.b[9, range(self.numstp)] dip[i, :] = self.b[24, range(self.numstp)] latbins = arange(self.vbeg, self.vend + self.vstp, self.vstp) self.data2D = {'lat' : latbins, 'lon' : lonbins, \ 'NmF2' : NmF2, 'hmF2' : hmF2, 'B0' : B0, 'dip' : dip, \ 'title' : self.title3} # # End of 'LatVsLon' ##### def LatVsFL(self, date=[2003, 11, 21], FIRI=False, IGRF=False, time=[23, 15, 0], \ gc=[-77.76, -11.95], \ hlim=[80., 200.], hstp=1., mlatlim=[-10., 10.], mlatstp=.1): # # INPUTS # # Date year, month, day = date # Time hour, minute, second = time # Geog. Coord. dlon, dlat = gc # hlim -> Height range at equator, in km # hstp -> height resolution at equator, in km # mlatlim -> Geom. latitude range, in degrees # mlatstp -> Geom. latitude resolution, in degrees # ### doy = TimeUtilities().CalcDOY(year, month, day) date2 = year + doy / (365 + 1 if TimeUtilities().IsLeapYear else 0) # f = figure(figsize=(16,6)) # pn = f.add_subplot(111) self.coordl, self.qdcoordl = [], [] for h in arange(hlim[0], hlim[1] + hstp, hstp): gc, qc = pyapex.ApexFL().getFL(date=date2, dlon=dlon, dlat=dlat, \ hateq=h, mlatRange=mlatlim, mlatSTP=mlatstp) # x, y, z = gc['lat'], gc['alt'], gc['lon'] # ind = where(y < hlim[0]) # if len(ind) > 0: x[ind], y[ind], z[ind] = nan, nan, nan # pn.plot(x, y) self.coordl.append([gc['lon'], gc['alt'], gc['lat']]) self.qdcoordl.append([qc['lon'], gc['alt'], qc['lat']]) # pn.invert_xaxis() # show() jf = IRI2016().Switches() jmag = 0 mmdd = int(month * 100) + day hour2 = hour + minute / 60 + second / 3600 self.coordl = array(self.coordl) self.qdcoordl = array(self.qdcoordl) # nfl -> No. of field-line (or height) # nc -> No. of coord. (0 -> lon, 1 -> alt, 2 -> lat) # np -> No. of points per field-line nfl, nc, np = self.coordl.shape self.ne, self.te = tile(nan, (np, nfl)), tile(nan, (np, nfl)) self.ti, self.tn = tile(nan, (np, nfl)), tile(nan, (np, nfl)) self.nHe, self.nO = tile(nan, (np, nfl)), tile(nan, (np, nfl)) self.nN2, self.nO2 = tile(nan, (np, nfl)), tile(nan, (np, nfl)) self.nAr, self.nH = tile(nan, (np, nfl)), tile(nan, (np, nfl)) self.nN, self.babs = tile(nan, (np, nfl)), tile(nan, (np, nfl)) if FIRI: self.neFIRI = tile(nan, (np, nfl)) for fl in range(nfl): curr_coordl = transpose(self.coordl[fl, :, :]) ind = where(curr_coordl[:, 1] >= (hlim[0] - 10.)) if len(ind[0]) > 0: outf, oarr = irisubgl(jf, jmag, year, mmdd, hour2, \ curr_coordl[ind[0], :], DataFolder) self.ne[ind[0], fl] = outf[0, :] self.tn[ind[0], fl] = outf[1, :] self.ti[ind[0], fl] = outf[2, :] self.te[ind[0], fl] = outf[3, :] if FIRI: self.neFIRI[ind[0], fl], ierr = firisubl(year, doy, hour2, \ curr_coordl[ind[0], :], DataFolder) self.nHe[ind[0], fl] = outf[20, :] self.nO[ind[0], fl] = outf[21, :] self.nN2[ind[0], fl] = outf[22, :] self.nO2[ind[0], fl] = outf[23, :] self.nAr[ind[0], fl] = outf[24, :] self.nH[ind[0], fl] = outf[26, :] self.nN[ind[0], fl] = outf[27, :] self.babs[ind[0], fl] = list(self.getIGRF(curr_coordl[ind[0], :], date2)) \ if IGRF else outf[19, :] self.hlim = hlim self.date, self.time = date, time self.f107cm = oarr[40, 0] self.ap, self.Ap = oarr[50, 0], oarr[51, 0] # # End of 'LatVsFL' ##### def _Get_Title(self): dateStr = 'DATE: {:4d}/{:02d}/{:02d}'.format(self.date[0], self.date[1], self.date[2]) timeStr = 'TIME: {:02d}:{:02d} UT'.format(self.time[0], self.time[1]) f107Str = 'F107: {:6.2f}'.format(self.f107cm) apStr = 'ap: {:3d}'.format(int(self.ap)) ApStr = 'Ap: {:3d}'.format(int(self.Ap)) gmlon = self.qdcoordl[0, 0, 0] gmlonStr = '{:7.2f} {:s}'.format(abs(gmlon), 'E' if gmlon > 0. else 'W') self._title1 = '{:s} - {:s} - MAG. LON.:{:s}'.format(dateStr, timeStr, gmlonStr) self._title2 = '{:s} - {:s}'.format(f107Str, ApStr) # # End of '_GetTitle' ###### def getIGRF(self, coordl, year): for lon, alt, lat in coordl: bn, be, bd, xl, icode = GetIGRF(lat, lon, alt, year) # Horizontal component bh = (bn**2 + be**2)**.5 yield bh def PlotLatVsFL(self): self._Get_Title() nrow, ncol = 2, 2 spID = nrow * 100 + ncol * 10 counter = 0 X, Y = transpose(self.coordl[:, 2, :]), transpose(self.coordl[:, 1, :]) f = figure(figsize=(16, 6)) for ir in range(nrow): for ic in range(ncol): pn = f.add_subplot(spID + (counter + 1)) if counter == 0: Z = log10(self.ne) vmin, vmax, nc = 8, 12, 32+1 zlabel = 'Log$_{10}$N$_e$(m$^{-3}$)' elif counter == 1: Z = log10(self.nHe) vmin, vmax, nc = 5, 9, 32+1 zlabel = 'Log$_{10}$H$_e$(m$^{-3}$)' elif counter == 2: Z = self.te vmin, vmax, nc = 100, 1200, 36+1 zlabel = 'T$_e$($^\circ$)' elif counter == 3: Z = self.tn vmin, vmax, nc = 100, 1200, 36+1 zlabel = 'T$_n$($^\circ$)' Z_masked = masked_where(isnan(Z), Z) C = linspace(vmin, vmax, nc, endpoint=True) ipc = pn.contourf(X, Y, Z_masked, C, cmap=cm.jet, extent='both', origin='lower') if counter == 0: pn.set_title(self._title1) if counter == 1: pn.set_title(self._title2) if counter > 1: pn.set_xlabel('Geog. Lat. ($^\circ$)') pn.set_ylabel('Altitude (km)') pn.set_ylim(self.hlim) pn.invert_xaxis() pn.grid() cp = colorbar(ipc) cp.set_label(zlabel) counter += 1 show() # # End of 'PlotLatVsFL' ##### def PlotLatVsFLFIRI(self, save=False, verbose=False): self._Get_Title() nrow, ncol = 1, 1 spID = nrow * 100 + ncol * 10 counter = 0 X, Y = transpose(self.coordl[:, 2, :]),
transpose(self.coordl[:, 1, :])
numpy.transpose
import functools import typing as tp import gin import haiku as hk import jax import jax.numpy as jnp import numpy as np from haiku._src import utils # pylint: disable=no-name-in-module from huf.module_ops import Linear from huf.module_ops import dropout as _dropout from huf.types import Activation from jax.experimental.sparse.ops import JAXSparse from spax.linalg.linear_operators import HStacked def dropout(x, rate: float, is_training: bool): if isinstance(x, HStacked): return HStacked(*(dropout(arg, rate, is_training) for arg in x.args)) return _dropout(x, rate, is_training) configurable = functools.partial(gin.configurable, module="grax.hk_utils") class Renormalize(hk.Module): def __init__( self, create_scale: bool = True, create_offset: bool = True, name: tp.Optional[str] = None, ): super().__init__(name=name) self.create_scale = create_scale self.create_offset = create_offset def __call__(self, x): assert x.ndim == 2 size = x.shape[-1] if self.create_scale: scale = hk.get_parameter( "scale", shape=(size,), dtype=x.dtype, init=jnp.ones ) x = x * scale if self.create_offset: offset = hk.get_parameter( "offset", shape=(size,), dtype=x.dtype, init=jnp.zeros ) x = x + offset return x class GatheredBatchNorm(hk.Module): """Normalizes inputs to maintain a mean of ~0 and stddev of ~1. See: https://arxiv.org/abs/1502.03167. There are many different variations for how users want to manage scale and offset if they require them at all. These are: - No scale/offset in which case ``create_*`` should be set to ``False`` and ``scale``/``offset`` aren't passed when the module is called. - Trainable scale/offset in which case ``create_*`` should be set to ``True`` and again ``scale``/``offset`` aren't passed when the module is called. In this case this module creates and owns the ``scale``/``offset`` variables. - Externally generated ``scale``/``offset``, such as for conditional normalization, in which case ``create_*`` should be set to ``False`` and then the values fed in at call time. NOTE: ``jax.vmap(hk.transform(BatchNorm))`` will update summary statistics and normalize values on a per-batch basis; we currently do *not* support normalizing across a batch axis introduced by vmap. """ def __init__( self, create_scale: bool, create_offset: bool, decay_rate: float, eps: float = 1e-5, scale_init: tp.Optional[hk.initializers.Initializer] = None, offset_init: tp.Optional[hk.initializers.Initializer] = None, axis: tp.Optional[tp.Sequence[int]] = None, cross_replica_axis: tp.Optional[str] = None, cross_replica_axis_index_groups: tp.Optional[ tp.Sequence[tp.Sequence[int]] ] = None, data_format: str = "channels_last", name: tp.Optional[str] = None, ): """Constructs a BatchNorm module. Args: create_scale: Whether to include a trainable scaling factor. create_offset: Whether to include a trainable offset. decay_rate: Decay rate for EMA. eps: Small epsilon to avoid division by zero variance. Defaults ``1e-5``, as in the paper and Sonnet. scale_init: Optional initializer for gain (aka scale). Can only be set if ``create_scale=True``. By default, ``1``. offset_init: Optional initializer for bias (aka offset). Can only be set if ``create_offset=True``. By default, ``0``. axis: Which axes to reduce over. The default (``None``) signifies that all but the channel axis should be normalized. Otherwise this is a list of axis indices which will have normalization statistics calculated. cross_replica_axis: If not ``None``, it should be a string representing the axis name over which this module is being run within a ``jax.pmap``. Supplying this argument means that batch statistics are calculated across all replicas on that axis. cross_replica_axis_index_groups: Specifies how devices are grouped. data_format: The data format of the input. Can be either ``channels_first``, ``channels_last``, ``N...C`` or ``NC...``. By default it is ``channels_last``. name: The module name. """ super().__init__(name=name) if not create_scale and scale_init is not None: raise ValueError("Cannot set `scale_init` if `create_scale=False`") if not create_offset and offset_init is not None: raise ValueError("Cannot set `offset_init` if `create_offset=False`") if cross_replica_axis is None and cross_replica_axis_index_groups is not None: raise ValueError( "`cross_replica_axis` name must be specified" "if `cross_replica_axis_index_groups` are used." ) self.create_scale = create_scale self.create_offset = create_offset self.eps = eps self.scale_init = scale_init or jnp.ones self.offset_init = offset_init or jnp.zeros self.axis = axis self.cross_replica_axis = cross_replica_axis self.cross_replica_axis_index_groups = cross_replica_axis_index_groups self.channel_index = utils.get_channel_index(data_format) self.mean_ema = hk.ExponentialMovingAverage(decay_rate, name="mean_ema") self.var_ema = hk.ExponentialMovingAverage(decay_rate, name="var_ema") def __call__( self, inputs: jnp.ndarray, ids: jnp.ndarray, is_training: bool, test_local_stats: bool = False, scale: tp.Optional[jnp.ndarray] = None, offset: tp.Optional[jnp.ndarray] = None, ) -> jnp.ndarray: """Computes the normalized version of the input. Args: inputs: An array, where the data format is ``[..., C]``. is_training: Whether this is during training. test_local_stats: Whether local stats are used when is_training=False. scale: An array up to n-D. The shape of this tensor must be broadcastable to the shape of ``inputs``. This is the scale applied to the normalized inputs. This cannot be passed in if the module was constructed with ``create_scale=True``. offset: An array up to n-D. The shape of this tensor must be broadcastable to the shape of ``inputs``. This is the offset applied to the normalized inputs. This cannot be passed in if the module was constructed with ``create_offset=True``. Returns: The array, normalized across all but the last dimension. """ if self.create_scale and scale is not None: raise ValueError("Cannot pass `scale` at call time if `create_scale=True`.") if self.create_offset and offset is not None: raise ValueError( "Cannot pass `offset` at call time if `create_offset=True`." ) channel_index = self.channel_index if channel_index < 0: channel_index += inputs.ndim if self.axis is not None: axis = self.axis else: axis = [i for i in range(inputs.ndim) if i != channel_index] if is_training or test_local_stats: mean = jnp.mean(inputs[ids], axis, keepdims=True) mean_of_squares = jnp.mean(inputs[ids] ** 2, axis, keepdims=True) if self.cross_replica_axis: mean = jax.lax.pmean( mean, axis_name=self.cross_replica_axis, axis_index_groups=self.cross_replica_axis_index_groups, ) mean_of_squares = jax.lax.pmean( mean_of_squares, axis_name=self.cross_replica_axis, axis_index_groups=self.cross_replica_axis_index_groups, ) var = mean_of_squares - mean ** 2 else: mean = self.mean_ema.average var = self.var_ema.average if is_training: self.mean_ema(mean) self.var_ema(var) w_shape = [1 if i in axis else inputs.shape[i] for i in range(inputs.ndim)] w_dtype = inputs.dtype if self.create_scale: scale = hk.get_parameter("scale", w_shape, w_dtype, self.scale_init) elif scale is None: scale = np.ones([], dtype=w_dtype) if self.create_offset: offset = hk.get_parameter("offset", w_shape, w_dtype, self.offset_init) elif offset is None: offset =
np.zeros([], dtype=w_dtype)
numpy.zeros
import numpy as np import matplotlib.pyplot as plt if __name__ == "__main__": # sim resolution n = 100 # kit parameters h = np.linspace(0.03, 0.63, num=20)#0.63 w = 0.41 r = w/2 R = 0.92 # initial brightness of perfect diffuse light source in the middle of the top plate I0 = 1.0 total = [] # loop over kit heights for j in range(20): # preallocate the final field field = np.zeros([2*n, 2*n]) for i in range(4): # set up grid arrays if i == 0: x = np.linspace(-15*r - 0.5*r, 15*r - 0.5*r, 15*n) y = np.linspace(-15*r - 0.5*r, 15*r - 0.5*r, 15*n) elif i == 1: x = np.linspace(-15*r + 0.5*r, 15*r + 0.5*r, 15*n) y = np.linspace(-15*r - 0.5*r, 15*r - 0.5*r, 15*n) elif i == 2: x = np.linspace(-15*r - 0.5*r, 15*r - 0.5*r, 15*n) y = np.linspace(-15*r + 0.5*r, 15*r + 0.5*r, 15*n) elif i == 3: x = np.linspace(-15*r + 0.5*r, 15*r + 0.5*r, 15*n) y = np.linspace(-15*r + 0.5*r, 15*r + 0.5*r, 15*n) xv, yv = np.meshgrid(x, y, sparse=False, indexing='xy') # calculate distance in the ground plane dist_gp = np.square(xv) + np.square(yv) # calculate distance to light source dist = dist_gp + h[j]*h[j] # calculate light multiplication factor due to angle (Lambertian diffuse reflection) lamb = np.cos(np.arctan(dist_gp/(h[j]*h[j]))) # invert to obtain intensities, multiply with lambertian factor twice, once for the emission (which is already a diffuse reflection off a surface, and once more to correct for the second diffuse reflection on the white bottom plane) first_order = np.multiply(np.divide(I0*np.ones_like(dist), dist), np.square(lamb)) # calculate second order second_order = np.zeros([n,n]) second_order += R*np.flip(first_order[6*n:7*n, 7*n:8*n], 0) second_order += R*np.flip(first_order[8*n:9*n, 7*n:8*n], 0) second_order += R*np.flip(first_order[7*n:8*n, 6*n:7*n], 1) second_order += R*np.flip(first_order[7*n:8*n, 8*n:9*n], 1) # calculate third order third_order = np.zeros([n,n]) third_order += R*R*first_order[5*n:6*n, 7*n:8*n] third_order += R*R*first_order[9*n:10*n, 7*n:8*n] third_order += R*R*first_order[7*n:8*n, 5*n:6*n] third_order += R*R*first_order[7*n:8*n, 9*n:10*n] third_order += R*R*np.flip(np.flip(first_order[6*n:7*n, 6*n:7*n], 0), 1) third_order += R*R*np.flip(np.flip(first_order[8*n:9*n, 6*n:7*n], 0), 1) third_order += R*R*np.flip(np.flip(first_order[6*n:7*n, 8*n:9*n], 0), 1) third_order += R*R*np.flip(np.flip(first_order[8*n:9*n, 8*n:9*n], 0), 1) # calculate fourth order fourth_order = np.zeros([n,n]) fourth_order += R*R*R*np.flip(first_order[4*n:5*n, 7*n:8*n], 0) fourth_order += R*R*R*np.flip(first_order[10*n:11*n, 7*n:8*n], 0) fourth_order += R*R*R*np.flip(first_order[7*n:8*n, 4*n:5*n], 1) fourth_order += R*R*R*np.flip(first_order[7*n:8*n, 10*n:11*n], 1) fourth_order += R*R*R*np.flip(first_order[6*n:7*n, 5*n:6*n], 0) fourth_order += R*R*R*np.flip(first_order[6*n:7*n, 9*n:10*n], 0) fourth_order += R*R*R*np.flip(first_order[8*n:9*n, 5*n:6*n], 0) fourth_order += R*R*R*np.flip(first_order[8*n:9*n, 9*n:10*n], 0) fourth_order += R*R*R*np.flip(first_order[5*n:6*n, 6*n:7*n], 1) fourth_order += R*R*R*np.flip(first_order[9*n:10*n, 6*n:7*n], 1) fourth_order += R*R*R*np.flip(first_order[5*n:6*n, 8*n:9*n], 1) fourth_order += R*R*R*np.flip(first_order[9*n:10*n, 8*n:9*n], 1) # calculate fifth order fifth_order = np.zeros([n,n]) fifth_order += R*R*R*R*first_order[3*n:4*n, 7*n:8*n] fifth_order += R*R*R*R*first_order[11*n:12*n, 7*n:8*n] fifth_order += R*R*R*R*first_order[7*n:8*n, 3*n:4*n] fifth_order += R*R*R*R*first_order[7*n:8*n, 11*n:12*n] fifth_order += R*R*R*R*first_order[5*n:6*n, 5*n:6*n] fifth_order += R*R*R*R*first_order[5*n:6*n, 9*n:10*n] fifth_order += R*R*R*R*first_order[9*n:10*n, 5*n:6*n] fifth_order += R*R*R*R*first_order[9*n:10*n, 9*n:10*n] fifth_order += R*R*R*R*np.flip(np.flip(first_order[6*n:7*n, 4*n:5*n], 0), 1) fifth_order += R*R*R*R*np.flip(np.flip(first_order[6*n:7*n, 10*n:11*n], 0), 1) fifth_order += R*R*R*R*np.flip(np.flip(first_order[8*n:9*n, 4*n:5*n], 0), 1) fifth_order += R*R*R*R*np.flip(np.flip(first_order[8*n:9*n, 10*n:11*n], 0), 1) fifth_order += R*R*R*R*np.flip(np.flip(first_order[4*n:5*n, 6*n:7*n], 1), 0) fifth_order += R*R*R*R*np.flip(np.flip(first_order[10*n:11*n, 6*n:7*n], 1), 0) fifth_order += R*R*R*R*np.flip(np.flip(first_order[4*n:5*n, 8*n:9*n], 1), 0) fifth_order += R*R*R*R*np.flip(np.flip(first_order[10*n:11*n, 8*n:9*n], 1), 0) # calculate sixth order sixth_order = np.zeros([n,n]) sixth_order += R*R*R*R*R*np.flip(first_order[2*n:3*n, 7*n:8*n], 0) sixth_order += R*R*R*R*R*np.flip(first_order[12*n:13*n, 7*n:8*n], 0) sixth_order += R*R*R*R*R*np.flip(first_order[7*n:8*n, 2*n:3*n], 1) sixth_order += R*R*R*R*R*np.flip(first_order[7*n:8*n, 12*n:13*n], 1) sixth_order += R*R*R*R*R*np.flip(first_order[4*n:5*n, 5*n:6*n], 0) sixth_order += R*R*R*R*R*np.flip(first_order[4*n:5*n, 9*n:10*n], 0) sixth_order += R*R*R*R*R*np.flip(first_order[10*n:11*n, 5*n:6*n], 0) sixth_order += R*R*R*R*R*np.flip(first_order[10*n:11*n, 9*n:10*n], 0) sixth_order += R*R*R*R*R*np.flip(first_order[5*n:6*n, 4*n:5*n], 1) sixth_order += R*R*R*R*R*np.flip(first_order[5*n:6*n, 10*n:11*n], 1) sixth_order += R*R*R*R*R*np.flip(first_order[9*n:10*n, 4*n:5*n], 1) sixth_order += R*R*R*R*R*np.flip(first_order[9*n:10*n, 10*n:11*n], 1) sixth_order += R*R*R*R*R*np.flip(first_order[6*n:7*n, 3*n:4*n], 0) sixth_order += R*R*R*R*R*np.flip(first_order[6*n:7*n, 11*n:12*n], 0) sixth_order += R*R*R*R*R*np.flip(first_order[8*n:9*n, 3*n:4*n], 0) sixth_order += R*R*R*R*R*np.flip(first_order[8*n:9*n, 11*n:12*n], 0) sixth_order += R*R*R*R*R*np.flip(first_order[3*n:4*n, 6*n:7*n], 1) sixth_order += R*R*R*R*R*np.flip(first_order[11*n:12*n, 6*n:7*n], 1) sixth_order += R*R*R*R*R*np.flip(first_order[3*n:4*n, 8*n:9*n], 1) sixth_order += R*R*R*R*R*np.flip(first_order[11*n:12*n, 8*n:9*n], 1) # calculate seventh order seventh_order = np.zeros([n,n]) seventh_order += R*R*R*R*R*R*first_order[n:2*n, 7*n:8*n] seventh_order += R*R*R*R*R*R*first_order[13*n:14*n, 7*n:8*n] seventh_order += R*R*R*R*R*R*first_order[7*n:8*n, n:2*n] seventh_order += R*R*R*R*R*R*first_order[7*n:8*n, 13*n:14*n] seventh_order += R*R*R*R*R*R*np.flip(np.flip(first_order[4*n:5*n, 4*n:5*n], 0), 1) seventh_order += R*R*R*R*R*R*np.flip(np.flip(first_order[4*n:5*n, 10*n:11*n], 0), 1) seventh_order += R*R*R*R*R*R*np.flip(np.flip(first_order[10*n:11*n, 4*n:5*n], 0), 1) seventh_order += R*R*R*R*R*R*np.flip(np.flip(first_order[10*n:11*n, 10*n:11*n], 0), 1) seventh_order += R*R*R*R*R*R*first_order[5*n:6*n, 3*n:4*n] seventh_order += R*R*R*R*R*R*first_order[5*n:6*n, 11*n:12*n] seventh_order += R*R*R*R*R*R*first_order[9*n:10*n, 3*n:4*n] seventh_order += R*R*R*R*R*R*first_order[9*n:10*n, 11*n:12*n] seventh_order += R*R*R*R*R*R*first_order[3*n:4*n, 5*n:6*n] seventh_order += R*R*R*R*R*R*first_order[11*n:12*n, 5*n:6*n] seventh_order += R*R*R*R*R*R*first_order[3*n:4*n, 9*n:10*n] seventh_order += R*R*R*R*R*R*first_order[11*n:12*n, 9*n:10*n] seventh_order += R*R*R*R*R*R*np.flip(first_order[2*n:3*n, 6*n:7*n], 1) seventh_order += R*R*R*R*R*R*np.flip(first_order[12*n:13*n, 6*n:7*n], 1) seventh_order += R*R*R*R*R*R*np.flip(first_order[6*n:7*n, 2*n:3*n], 0) seventh_order += R*R*R*R*R*R*np.flip(first_order[6*n:7*n, 12*n:13*n], 0) seventh_order += R*R*R*R*R*R*np.flip(first_order[2*n:3*n, 8*n:9*n], 1) seventh_order += R*R*R*R*R*R*np.flip(first_order[12*n:13*n, 8*n:9*n], 1) seventh_order += R*R*R*R*R*R*np.flip(first_order[8*n:9*n, 2*n:3*n], 0) seventh_order += R*R*R*R*R*R*np.flip(first_order[8*n:9*n, 12*n:13*n], 0) # calculate view on center field field[n//2:3*n//2, n//2:3*n//2] += first_order[7*n:8*n, 7*n:8*n] field[n//2:3*n//2, n//2:3*n//2] += second_order field[n//2:3*n//2, n//2:3*n//2] += third_order field[n//2:3*n//2, n//2:3*n//2] += fourth_order field[n//2:3*n//2, n//2:3*n//2] += fifth_order field[n//2:3*n//2, n//2:3*n//2] += sixth_order field[n//2:3*n//2, n//2:3*n//2] += seventh_order # calculate view on reflective surfaces field[0:n//2, n//2:3*n//2] = R*np.flip(field[n//2:n, n//2:3*n//2], 0) field[3*n//2:2*n, n//2:3*n//2] = R*np.flip(field[2*n//2:3*n//2, n//2:3*n//2], 0) field[n//2:3*n//2, 0:n//2] = R*np.flip(field[n//2:3*n//2, n//2:n], 1) field[n//2:3*n//2, 3*n//2:2*n] = R*np.flip(field[n//2:3*n//2, 2*n//2:3*n//2], 1) # calculate view on second order reflective surfaces field[0:n//2, 0:n//2] = R*R*np.flip(np.flip(field[n//2:n, n//2:n], 0), 1) field[3*n//2:2*n, 0:n//2] = R*R*np.flip(np.flip(field[n:3*n//2, n//2:n], 0), 1) field[0:n//2, 3*n//2:2*n] = R*R*np.flip(np.flip(field[n//2:n, n:3*n//2], 0), 1) field[3*n//2:2*n, 3*n//2:2*n] = R*R*np.flip(np.flip(field[n:3*n//2, n:3*n//2], 0), 1) total.append(np.mean(field[n//2:3*n//2, n//2:3*n//2])) nir = [58.610050497549246, 58.269173824755065, 57.242368134793125, 55.736464685403192, 54.181837079854098, 52.758503106614597, 51.471398901133192, 50.282084788890359, 49.157540113528867, 48.078595484256851, 47.036377408708567, 46.027325842456158, 45.049853474124298, 44.102778356681569, 43.184833831613084, 42.294635308935071, 41.430765174639284, 40.591847807144219, 39.776589425281259, 38.983791288757537] plt.figure() plt.subplot(2,3,1) plt.imshow(first_order[7*n:8*n, 7*n:8*n]) #plt.clim(0, 5.7) plt.colorbar() plt.title("First order") plt.subplot(2,3,2) plt.imshow(second_order) #plt.clim(0, 5.7) plt.colorbar() plt.title("Second order") plt.subplot(2,3,3) plt.imshow(third_order) #plt.clim(0, 5.7) plt.colorbar() plt.title("Third order") plt.subplot(2,3,4) plt.imshow(fourth_order) #plt.clim(0, 5.7) plt.colorbar() plt.title("Fourth order") plt.subplot(2,3,5) plt.imshow(fifth_order) #plt.clim(0, 5.7) plt.colorbar() plt.title("Fifth order") plt.subplot(2,3,6) plt.imshow(sixth_order) #plt.clim(0, 5.7) plt.colorbar() plt.title("Sixth order") plt.show(block=False) #plt.figure() #plt.imshow(lamb) #plt.colorbar() #plt.show(block=False) plt.figure() plt.imshow(field) plt.colorbar() plt.title("Combined orders") plt.show(block=False) print(np.divide(np.array(nir),
np.array(total)
numpy.array
""" Module of plotting functions. Each function creates, and optionally saves, a plot of fields from a ROMS history file. INPUT: in_dict: a tuple with information to pass to the plot, such as: - fn: text string with the full path name of the history file to plot - fn_out: text string with full path of output file name - auto_vlims: a boolean governing how color limits are set - testing: a boolean for testing (e.g. shorter, faster particle tracking) OUTPUT: either a screen image or a graphics file """ import numpy as np import xarray as xr import pickle from datetime import datetime, timedelta import pandas as pd from cmocean import cm from lo_tools import Lfun, zfun, zrfun from lo_tools import plotting_functions as pfun import pinfo from importlib import reload reload(pfun) reload(pinfo) Ldir = Lfun.Lstart() if '_mac' in Ldir['lo_env']: # mac version pass else: # remote linux version import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt def P_basic(in_dict): # START ds = xr.open_dataset(in_dict['fn']) # find aspect ratio of the map aa = pfun.get_aa(ds) # AR is the aspect ratio of the map: Vertical/Horizontal AR = (aa[3] - aa[2]) / (np.sin(np.pi*aa[2]/180)*(aa[1] - aa[0])) fs = 14 hgt = 10 pfun.start_plot(fs=fs, figsize=(int(hgt*2.5/AR),int(hgt))) fig = plt.figure() # PLOT CODE vn_list = ['salt', 'temp'] ii = 1 for vn in vn_list: if in_dict['auto_vlims']: pinfo.vlims_dict[vn] = () ax = fig.add_subplot(1, len(vn_list), ii) cs = pfun.add_map_field(ax, ds, vn, pinfo.vlims_dict, cmap=pinfo.cmap_dict[vn], fac=pinfo.fac_dict[vn], vlims_fac=pinfo.range_dict[vn]) fig.colorbar(cs) pfun.add_coast(ax) ax.axis(pfun.get_aa(ds)) pfun.dar(ax) ax.set_title('Surface %s %s' % (pinfo.tstr_dict[vn],pinfo.units_dict[vn]), fontsize=1.2*fs) ax.set_xlabel('Longitude') if ii == 1: ax.set_ylabel('Latitude') pfun.add_info(ax, in_dict['fn']) #pfun.add_windstress_flower(ax, ds) pfun.add_bathy_contours(ax, ds, txt=True) elif ii == 2: ax.set_yticklabels([]) pfun.add_velocity_vectors(ax, ds, in_dict['fn']) ii += 1 #fig.tight_layout() # FINISH ds.close() pfun.end_plot() if len(str(in_dict['fn_out'])) > 0: plt.savefig(in_dict['fn_out']) plt.close() else: plt.show() def P_fancy(in_dict): # START ds = xr.open_dataset(in_dict['fn']) # find aspect ratio of the map aa = pfun.get_aa(ds) # AR is the aspect ratio of the map: Vertical/Horizontal AR = (aa[3] - aa[2]) / (np.sin(np.pi*aa[2]/180)*(aa[1] - aa[0])) fs = 14 hgt = 10 pfun.start_plot(fs=fs, figsize=(int(hgt*2.5/AR),int(hgt))) fig = plt.figure() # PLOT CODE vn_list = ['salt', 'temp'] ii = 1 for vn in vn_list: if in_dict['auto_vlims']: pinfo.vlims_dict[vn] = () if vn == 'salt': cmap = 'jet' vlims_fac = .5 elif vn == 'temp': cmap = 'RdYlBu_r' vlims_fac = 1 ax = fig.add_subplot(1, len(vn_list), ii) cs = pfun.add_map_field(ax, ds, vn, pinfo.vlims_dict, cmap=cmap, fac=pinfo.fac_dict[vn], vlims_fac=vlims_fac) fig.colorbar(cs) pfun.add_coast(ax) ax.axis(pfun.get_aa(ds)) pfun.dar(ax) ax.set_title('Surface %s %s' % (pinfo.tstr_dict[vn],pinfo.units_dict[vn]), fontsize=1.2*fs) ax.set_xlabel('Longitude') if ii == 1: ax.set_ylabel('Latitude') pfun.add_info(ax, in_dict['fn']) #pfun.add_windstress_flower(ax, ds) pfun.add_bathy_contours(ax, ds, txt=True) elif ii == 2: ax.set_yticklabels([]) pfun.add_velocity_vectors(ax, ds, in_dict['fn']) ii += 1 #fig.tight_layout() # FINISH ds.close() pfun.end_plot() if len(str(in_dict['fn_out'])) > 0: plt.savefig(in_dict['fn_out']) plt.close() else: plt.show() def P_dive_vort(in_dict): # START ds = xr.open_dataset(in_dict['fn']) # find aspect ratio of the map aa = pfun.get_aa(ds) # AR is the aspect ratio of the map: Vertical/Horizontal AR = (aa[3] - aa[2]) / (np.sin(np.pi*aa[2]/180)*(aa[1] - aa[0])) fs = 14 hgt = 10 pfun.start_plot(fs=fs, figsize=(int(hgt*2.5/AR),int(hgt))) fig = plt.figure() # create fields u = ds.u[0,-1,:,:].values v = ds.v[0,-1,:,:].values dx = 1/ds.pm.values dy = 1/ds.pn.values # dive is on the trimmed rho grid dive = np.diff(u[1:-1,:], axis=1)/dx[1:-1,1:-1] + np.diff(v[:,1:-1],axis=0)/dy[1:-1,1:-1] # vort is on the psi grid (plot with lon_rho, lat_rho) vort = np.diff(v,axis=1)/dx[1:,1:] - np.diff(u,axis=0)/dy[1:,1:] # set color limits vv = 2*np.nanstd(vort) # PLOT CODE if in_dict['auto_vlims']: pinfo.vlims_dict['vort'] = (-vv, vv) pinfo.vlims_dict['dive'] = (-vv, vv) vmin = pinfo.vlims_dict['vort'][0] vmax = pinfo.vlims_dict['vort'][1] for ii in [1,2]: ax = fig.add_subplot(1, 2, ii) cmap = 'RdYlBu_r' if ii == 1: plon, plat = pfun.get_plon_plat(ds.lon_rho[1:-1,1:-1].values, ds.lat_rho[1:-1,1:-1].values) cs = plt.pcolormesh(plon, plat, dive, cmap=cmap, vmin = vmin, vmax = vmax) ax.set_title('Surface Divergence $[s^{-1}]$', fontsize=1.2*fs) elif ii == 2: cs = plt.pcolormesh(ds.lon_rho.values, ds.lat_rho.values, vort, cmap=cmap, vmin = vmin, vmax = vmax) ax.set_title('Surface Vorticity $[s^{-1}]$', fontsize=1.2*fs) fig.colorbar(cs) pfun.add_coast(ax) ax.axis(aa) pfun.dar(ax) ax.set_xlabel('Longitude') if ii == 1: ax.set_ylabel('Latitude') pfun.add_info(ax, in_dict['fn']) #pfun.add_windstress_flower(ax, ds) pfun.add_bathy_contours(ax, ds, txt=True) elif ii == 2: pass #pfun.add_velocity_vectors(ax, ds, in_dict['fn']) ii += 1 #fig.tight_layout() # FINISH ds.close() pfun.end_plot() if len(str(in_dict['fn_out'])) > 0: plt.savefig(in_dict['fn_out']) plt.close() else: plt.show() def P_dive_vort2(in_dict): # same as dive_vort but focused on a specific region # JdF: aa = [-125, -122.3, 47.8, 48.8] # START ds = xr.open_dataset(in_dict['fn']) # find aspect ratio of the map # aa = pfun.get_aa(ds) # AR is the aspect ratio of the map: Vertical/Horizontal AR = (aa[3] - aa[2]) / (np.sin(np.pi*aa[2]/180)*(aa[1] - aa[0])) fs = 14 hgt = 6 pfun.start_plot(fs=fs, figsize=(10,10)) fig = plt.figure() # create fields u = ds.u[0,-1,:,:].values v = ds.v[0,-1,:,:].values dx = 1/ds.pm.values dy = 1/ds.pn.values # dive is on the trimmed rho grid dive = np.diff(u[1:-1,:], axis=1)/dx[1:-1,1:-1] + np.diff(v[:,1:-1],axis=0)/dy[1:-1,1:-1] # vort is on the psi grid (plot with lon_rho, lat_rho) vort = np.diff(v,axis=1)/dx[1:,1:] - np.diff(u,axis=0)/dy[1:,1:] # set color limits vv = 4*np.nanstd(vort) # PLOT CODE if in_dict['auto_vlims']: pinfo.vlims_dict['vort'] = (-vv, vv) pinfo.vlims_dict['dive'] = (-vv, vv) vmin = pinfo.vlims_dict['vort'][0] vmax = pinfo.vlims_dict['vort'][1] for ii in [1,2]: ax = fig.add_subplot(2, 1, ii) cmap = 'RdYlBu_r' if ii == 1: plon, plat = pfun.get_plon_plat(ds.lon_rho[1:-1,1:-1].values, ds.lat_rho[1:-1,1:-1].values) cs = plt.pcolormesh(plon, plat, dive, cmap=cmap, vmin = vmin, vmax = vmax) ax.set_title('Surface Divergence $[s^{-1}]$', fontsize=1.2*fs) elif ii == 2: cs = plt.pcolormesh(ds.lon_rho.values, ds.lat_rho.values, vort, cmap=cmap, vmin = vmin, vmax = vmax) ax.set_title('Surface Vorticity $[s^{-1}]$', fontsize=1.2*fs) fig.colorbar(cs) pfun.add_coast(ax) ax.axis(aa) pfun.dar(ax) ax.set_ylabel('Latitude') if ii == 1: pfun.add_info(ax, in_dict['fn']) #pfun.add_windstress_flower(ax, ds) #pfun.add_bathy_contours(ax, ds, txt=True) elif ii == 2: ax.set_xlabel('Longitude') #pfun.add_velocity_vectors(ax, ds, in_dict['fn']) ii += 1 #fig.tight_layout() # FINISH ds.close() pfun.end_plot() if len(str(in_dict['fn_out'])) > 0: plt.savefig(in_dict['fn_out']) plt.close() else: plt.show() def P_ri(in_dict): """ Simplified Richardson number """ # START fs = 10 pfun.start_plot(fs=fs, figsize=(20,10)) fig = plt.figure() ds = xr.open_dataset(in_dict['fn']) # PLOT CODE xrho = ds['lon_rho'][0,:].values yrho = ds['lat_rho'][:,0].values # define box aa = [-123.25, -122.1, 47, 48.75] ix0 = zfun.find_nearest_ind(xrho, aa[0]) ix1 = zfun.find_nearest_ind(xrho, aa[1]) iy0 = zfun.find_nearest_ind(yrho, aa[2]) iy1 = zfun.find_nearest_ind(yrho, aa[3]) h = ds.h[iy0:iy1, ix0:ix1].values rho_bot = ds.rho[0, 0, iy0:iy1, ix0:ix1].values rho_top = ds.rho[0, -1, iy0:iy1, ix0:ix1].values drho = rho_bot - rho_top u = ds.ubar[0, iy0:iy1, ix0-1:ix1].values v = ds.vbar[0, iy0-1:iy1, ix0:ix1].values u[np.isnan(u)] = 0 v[np.isnan(v)] = 0 uu = (u[:, 1:] + u[:, :-1])/2 vv = (v[1:, :] + v[:-1, :])/2 spd2 = uu**2 + vv**2 spd2[np.isnan(drho)] = np.nan spd2[spd2 < .001] = .001 # avoid divide by zero errors # approximate Richardson number rho0 = ds.rho0.values g = 9.8 Ri = g * drho * h / (rho0 * spd2) # psi_grid coordinates x, y = np.meshgrid(ds.lon_u.values[0,ix0-1:ix1], ds.lat_v.values[iy0-1:iy1,0]) # PLOTTING plt.close('all') pfun.start_plot(fs=10, figsize=(18,10)) fig = plt.figure() xt = [-123.2, -122.2] yt = [47, 47.5, 48, 48.5] ax = fig.add_subplot(131) cs = ax.pcolormesh(x, y, drho, vmin=0, vmax=5, cmap=cm.dense) fig.colorbar(cs, ax=ax) pfun.dar(ax) pfun.add_coast(ax) ax.axis(aa) ax.set_title(r'$\Delta\rho\ [kg\ m^{-3}]$') ax.set_xticks(xt) ax.set_yticks(yt) ax = fig.add_subplot(132) cs = ax.pcolormesh(x, y, np.sqrt(spd2), vmin=0, vmax=2, cmap=cm.speed) fig.colorbar(cs, ax=ax) pfun.dar(ax) pfun.add_coast(ax) ax.axis(aa) ax.set_title(r'Speed $[m\ s^{-1}]$') ax.set_xticks(xt) ax.set_yticks(yt) ax.set_yticklabels([]) ax = fig.add_subplot(133) cs = ax.pcolormesh(x, y, 4*Ri, vmin=0, vmax = 2, cmap='RdYlBu') fig.colorbar(cs, ax=ax) pfun.dar(ax) pfun.add_coast(ax) ax.axis(aa) ax.set_title(r'$4 x Ri$') ax.set_xticks(xt) ax.set_yticks(yt) ax.set_yticklabels([]) fig.tight_layout() # FINISH ds.close() pfun.end_plot() if len(str(in_dict['fn_out'])) > 0: plt.savefig(in_dict['fn_out']) plt.close() else: plt.show() def P_Chl_DO(in_dict): # START fs = 14 pfun.start_plot(fs=fs, figsize=(14,10)) fig = plt.figure() ds = xr.open_dataset(in_dict['fn']) # PLOT CODE vn_list = ['phytoplankton', 'oxygen'] fs = 14 ii = 1 for vn in vn_list: if vn == 'phytoplankton': slev = -1 stext = 'Surface' elif vn == 'oxygen': slev = 0 stext = 'Bottom' if in_dict['auto_vlims']: pinfo.vlims_dict[vn] = () ax = fig.add_subplot(1, len(vn_list), ii) cs = pfun.add_map_field(ax, ds, vn, pinfo.vlims_dict, slev=slev, cmap=pinfo.cmap_dict[vn], fac=pinfo.fac_dict[vn], vlims_fac=pinfo.range_dict[vn], do_mask_edges=True) fig.colorbar(cs) pfun.add_coast(ax) ax.axis(pfun.get_aa(ds)) pfun.dar(ax) ax.set_title('%s %s %s' % (stext, pinfo.tstr_dict[vn],pinfo.units_dict[vn]), fontsize=1.2*fs) ax.set_xlabel('Longitude') pfun.add_bathy_contours(ax, ds, txt=True) if ii == 1: ax.set_ylabel('Latitude') pfun.add_info(ax, in_dict['fn']) pfun.add_windstress_flower(ax, ds) ii += 1 fig.tight_layout() # FINISH ds.close() pfun.end_plot() if len(str(in_dict['fn_out'])) > 0: plt.savefig(in_dict['fn_out']) plt.close() else: plt.show() def P_DO_WA_shelf(in_dict): # Focus on bottom DO on the WA shelf aa = [-126.1, -123.7, 45.8, 48.8] xtl = [-126, -125, -124] ytl = [46, 47, 48] # START fs = 14 pfun.start_plot(fs=fs, figsize=(7,10)) fig = plt.figure() ds = xr.open_dataset(in_dict['fn']) # PLOT CODE vn = 'oxygen' slev = 0 stext = 'Bottom' if in_dict['auto_vlims']: pinfo.vlims_dict[vn] = () ax = fig.add_subplot(111) cs = pfun.add_map_field(ax, ds, vn, pinfo.vlims_dict, slev=slev, cmap=pinfo.cmap_dict[vn], fac=pinfo.fac_dict[vn], vlims_fac=pinfo.range_dict[vn], do_mask_edges=True) fig.colorbar(cs) pfun.add_coast(ax) ax.axis(aa) pfun.dar(ax) ax.set_title('%s %s %s' % (stext, pinfo.tstr_dict[vn],pinfo.units_dict[vn]), fontsize=1.2*fs) ax.set_xlabel('Longitude') pfun.add_bathy_contours(ax, ds, txt=False) ax.set_ylabel('Latitude') ax.set_xticks(xtl) ax.set_yticks(ytl) pfun.add_info(ax, in_dict['fn'], loc='upper_right') pfun.add_windstress_flower(ax, ds, t_scl=0.5, t_leglen=0.1, center=(.85,.65), fs=12) # ADD MEAN WINDSTRESS VECTOR # t_scl: scale windstress vector (smaller to get longer arrows) # t_leglen: # Pa for wind stress vector legend fig.tight_layout() # FINISH ds.close() pfun.end_plot() if len(str(in_dict['fn_out'])) > 0: plt.savefig(in_dict['fn_out']) plt.close() else: plt.show() def P_ths(in_dict): # Plot property-property plots, like theta vs. s # START fs = 14 pfun.start_plot(fs=fs, figsize=(10,10)) fig = plt.figure() ds = xr.open_dataset(in_dict['fn']) # PLOT CODE # make a potential density field import seawater as sw s0 = 25; s1 = 35 th0 = 0; th1 = 20 SS, TH = np.meshgrid(np.linspace(s0, s1, 50), np.linspace(th0, th1, 50)) SIG = sw.dens0(SS, TH) - 1000 S = zrfun.get_basic_info(in_dict['fn'], only_S=True) h = ds['h'].values z = zrfun.get_z(h, 0*h, S, only_rho=True) s = ds['salt'].values.squeeze() th = ds['temp'].values.squeeze() ax = fig.add_subplot(111) ax.set_xlabel('Salinity') ax.set_ylabel('Theta (deg C)') ax.contour(SS, TH, SIG, 20) nsub = 500 alpha = .1 mask = z > -10 ax.plot(s[mask][::nsub], th[mask][::nsub], '.r', alpha=alpha) mask = (z < -10) & (z > -200) ax.plot(s[mask][::nsub], th[mask][::nsub], '.g', alpha=alpha) mask = z < -200 ax.plot(s[mask][::nsub], th[mask][::nsub], '.b', alpha=alpha) ax.set_xlim(s0, s1) ax.set_ylim(th0, th1) # FINISH ds.close() pfun.end_plot() if len(str(in_dict['fn_out'])) > 0: plt.savefig(in_dict['fn_out']) plt.close() else: plt.show() def P_debug(in_dict): # Focused on debugging vn_list = ['u', 'v', 'zeta'] do_wetdry = False # START fs = 10 pfun.start_plot(fs=fs, figsize=(8*len(vn_list),10)) fig = plt.figure() ds = xr.open_dataset(in_dict['fn']) # PLOT CODE ii = 1 for vn in vn_list: if 'lon_rho' in ds[vn].coords: tag = 'rho' if 'lon_u' in ds[vn].coords: tag = 'u' if 'lon_v' in ds[vn].coords: tag = 'v' x = ds['lon_'+tag].values y = ds['lat_'+tag].values px, py = pfun.get_plon_plat(x,y) if vn in ['u', 'v']: v = ds[vn][0,-1,:,:].values vmin = -2 vmax = 2 cmap='hsv_r' elif vn == 'zeta': v = ds[vn][0,:,:].values h = ds.h.values mr = ds.mask_rho.values v[mr==0] = np.nan h[mr==0] = np.nan v = v + h vn = 'depth' vmin = 2 vmax = 4 cmap='RdYlGn' else: v = ds[vn][0, -1,:,:].values ax = fig.add_subplot(1, len(vn_list), ii) ax.set_xticks([]) ax.set_yticks([]) cs = ax.pcolormesh(px, py, v, cmap=cmap, vmin=vmin, vmax=vmax) pfun.add_coast(ax) ax.axis(pfun.get_aa(ds)) pfun.dar(ax) if ii == 1: pfun.add_info(ax, in_dict['fn'], his_num=True) vmax, vjmax, vimax, vmin, vjmin, vimin = pfun.maxmin(v) ax.plot(x[vjmax,vimax], y[vjmax,vimax],'*y', mec='k', markersize=15) ax.plot(x[vjmin,vimin], y[vjmin,vimin],'oy', mec='k', markersize=10) ax.set_title(('%s ((*)max=%0.1f, (o)min=%0.1f)' % (vn, vmax, vmin))) ii += 1 # FINISH ds.close() pfun.end_plot() if len(str(in_dict['fn_out'])) > 0: plt.savefig(in_dict['fn_out']) plt.close() else: plt.show() def P_layer(in_dict): # START fs = 14 pfun.start_plot(fs=fs, figsize=(14,10)) fig = plt.figure() ds = xr.open_dataset(in_dict['fn']) # PLOT CODE vn_list = ['oxygen', 'temp'] z_level = -250 zfull = pfun.get_zfull(ds, in_dict['fn'], 'rho') ii = 1 for vn in vn_list: if in_dict['auto_vlims']: pinfo.vlims_dict[vn] = () ax = fig.add_subplot(1, len(vn_list), ii) laym = pfun.get_laym(ds, zfull, ds['mask_rho'][:], vn, z_level) v_scaled = pinfo.fac_dict[vn]*laym vlims = pinfo.vlims_dict[vn] if len(vlims) == 0: vlims = pfun.auto_lims(v_scaled) pinfo.vlims_dict[vn] = vlims cs = ax.pcolormesh(ds['lon_psi'][:], ds['lat_psi'][:], v_scaled[1:-1,1:-1], vmin=vlims[0], vmax=vlims[1], cmap=pinfo.cmap_dict[vn]) cb = fig.colorbar(cs) pfun.add_bathy_contours(ax, ds, txt=True) pfun.add_coast(ax) ax.axis(pfun.get_aa(ds)) pfun.dar(ax) ax.set_xlabel('Longitude') ax.set_title('%s %s on Z = %d (m)' % (pinfo.tstr_dict[vn], pinfo.units_dict[vn], z_level)) if ii == 1: pfun.add_info(ax, in_dict['fn']) ax.set_ylabel('Latitude') pfun.add_windstress_flower(ax, ds) if ii == 2: pfun.add_velocity_vectors(ax, ds, in_dict['fn'], zlev=z_level) ii += 1 fig.tight_layout() # FINISH ds.close() pfun.end_plot() if len(str(in_dict['fn_out'])) > 0: plt.savefig(in_dict['fn_out']) plt.close() else: plt.show() def P_sect(in_dict): """ This plots a map and a section (distance, z), and makes sure that the color limits are identical. If the color limits are set automatically then the section is the preferred field for setting the limits. I think this works best with -avl False (the default). """ # START fs = 14 pfun.start_plot(fs=fs, figsize=(20,9)) fig = plt.figure() ds = xr.open_dataset(in_dict['fn']) # PLOT CODE vn = 'phytoplankton' # GET DATA G, S, T = zrfun.get_basic_info(in_dict['fn']) # CREATE THE SECTION # create track by hand if False: lon = G['lon_rho'] lat = G['lat_rho'] zdeep = -3500 x = np.linspace(lon.min(), lon.max(), 500) y = 47 * np.ones(x.shape) # or read in a section (or list of sections) else: tracks_path = Ldir['data'] / 'section_lines' tracks = ['Line_jdf_v0.p', 'Line_ps_main_v0.p'] zdeep = -300 xx = np.array([]) yy = np.array([]) for track in tracks: track_fn = tracks_path / track # get the track to interpolate onto pdict = pickle.load(open(track_fn, 'rb')) xx = np.concatenate((xx,pdict['lon_poly'])) yy = np.concatenate((yy,pdict['lat_poly'])) for ii in range(len(xx)-1): x0 = xx[ii] x1 = xx[ii+1] y0 = yy[ii] y1 = yy[ii+1] nn = 20 if ii == 0: x = np.linspace(x0, x1, nn) y = np.linspace(y0,y1, nn) else: x = np.concatenate((x, np.linspace(x0, x1, nn)[1:])) y = np.concatenate((y, np.linspace(y0, y1, nn)[1:])) v2, v3, dist, idist0 = pfun.get_section(ds, vn, x, y, in_dict) # COLOR # scaled section data sf = pinfo.fac_dict[vn] * v3['sectvarf'] # now we use the scaled section as the preferred field for setting the # color limits of both figures in the case -avl True if in_dict['auto_vlims']: pinfo.vlims_dict[vn] = pfun.auto_lims(sf) # PLOTTING # map with section line ax = fig.add_subplot(1, 3, 1) cs = pfun.add_map_field(ax, ds, vn, pinfo.vlims_dict, cmap=pinfo.cmap_dict[vn], fac=pinfo.fac_dict[vn], do_mask_edges=True) # fig.colorbar(cs, ax=ax) # It is identical to that of the section pfun.add_coast(ax) aaf = [-125.5, -122.1, 46.8, 50.3] # focus domain ax.axis(aaf) pfun.dar(ax) pfun.add_info(ax, in_dict['fn'], loc='upper_right') ax.set_title('Surface %s %s' % (pinfo.tstr_dict[vn],pinfo.units_dict[vn])) ax.set_xlabel('Longitude') ax.set_ylabel('Latitude') # add section track ax.plot(x, y, '-r', linewidth=2) ax.plot(x[idist0], y[idist0], 'or', markersize=5, markerfacecolor='w', markeredgecolor='r', markeredgewidth=2) ax.set_xticks([-125, -124, -123]) ax.set_yticks([47, 48, 49, 50]) # section ax = fig.add_subplot(1, 3, (2, 3)) ax.plot(dist, v2['zbot'], '-k', linewidth=2) ax.plot(dist, v2['zeta'], '-b', linewidth=1) ax.set_xlim(dist.min(), dist.max()) ax.set_ylim(zdeep, 5) # plot section svlims = pinfo.vlims_dict[vn] cs = ax.pcolormesh(v3['distf'], v3['zrf'], sf, vmin=svlims[0], vmax=svlims[1], cmap=pinfo.cmap_dict[vn]) fig.colorbar(cs, ax=ax) ax.set_xlabel('Distance (km)') ax.set_ylabel('Z (m)') ax.set_title('Section %s %s' % (pinfo.tstr_dict[vn],pinfo.units_dict[vn])) fig.tight_layout() # FINISH ds.close() pfun.end_plot() if len(str(in_dict['fn_out'])) > 0: plt.savefig(in_dict['fn_out']) plt.close() else: plt.show() def P_sect_soundspeed(in_dict): """ Soundspeed section plot """ import gsw ds = xr.open_dataset(in_dict['fn']) # create track by hand x = np.linspace(-124.85,-124.2, 100) # shelf only #x = np.linspace(-126,-124.2, 100) # shows SOFAR channel y = 47 *
np.ones(x.shape)
numpy.ones
import unittest import numpy as np from numpy.testing import assert_array_almost_equal, assert_raises class Test_BoundingBoxes(unittest.TestCase): def test_bounding_box_stroke(self): from pen_plots.strokes import bounding_box stroke = np.array([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0], [0.0, 0.0]]) bbox = bounding_box(stroke) expected = [[0.0, 0.0], [1.0, 1.0]] assert_array_almost_equal(bbox, expected) def test_bounding_box_strokes(self): from pen_plots.strokes import bounding_box strokes = [ np.array([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]), np.array([[1.0, 1.0], [0.0, 1.0], [0.0, 0.0]]), ] bbox = bounding_box(strokes) expected = [[0.0, 0.0], [1.0, 1.0]] assert_array_almost_equal(bbox, expected) class Test_Concatenation(unittest.TestCase): def test_concat(self): from pen_plots.strokes import concat strokes = [ np.array([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]), np.array([[1.0, 1.0], [0.0, 1.0], [0.0, 0.0]]), ] concatenated = concat(strokes) expected = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0], [0.0, 0.0]]
assert_array_almost_equal(concatenated, expected)
numpy.testing.assert_array_almost_equal
""" Test Surrogates Overview ======================== """ # Author: <NAME> <<EMAIL>> # License: new BSD from PIL import Image import numpy as np import scripts.surrogates_overview as exo import scripts.image_classifier as imgclf import sklearn.datasets import sklearn.linear_model SAMPLES = 10 BATCH = 50 SAMPLE_IRIS = False IRIS_SAMPLES = 50000 def test_bilmey_image(): """Tests surrogate image bLIMEy.""" # Load the image doggo_img = Image.open('surrogates_overview/img/doggo.jpg') doggo_array = np.array(doggo_img) # Load the classifier clf = imgclf.ImageClassifier() explain_classes = [('tennis ball', 852), ('golden retriever', 207), ('Labrador retriever', 208)] # Configure widgets to select occlusion colour, segmentation granularity # and explained class colour_selection = { i: i for i in ['mean', 'black', 'white', 'randomise-patch', 'green'] } granularity_selection = {'low': 13, 'medium': 30, 'high': 50} # Generate explanations blimey_image_collection = {} for gran_name, gran_number in granularity_selection.items(): blimey_image_collection[gran_name] = {} for col_name in colour_selection: blimey_image_collection[gran_name][col_name] = \ exo.build_image_blimey( doggo_array, clf.predict_proba, explain_classes, explanation_size=5, segments_number=gran_number, occlusion_colour=col_name, samples_number=SAMPLES, batch_size=BATCH, random_seed=42) exp = [] for gran_ in blimey_image_collection: for col_ in blimey_image_collection[gran_]: exp.append(blimey_image_collection[gran_][col_]['surrogates']) assert len(exp) == len(EXP_IMG) for e, E in zip(exp, EXP_IMG): assert sorted(list(e.keys())) == sorted(list(E.keys())) for key in e.keys(): assert e[key]['name'] == E[key]['name'] assert len(e[key]['explanation']) == len(E[key]['explanation']) for e_, E_ in zip(e[key]['explanation'], E[key]['explanation']): assert e_[0] == E_[0] assert np.allclose(e_[1], E_[1], atol=.001, equal_nan=True) def test_bilmey_tabular(): """Tests surrogate tabular bLIMEy.""" # Load the iris data set iris = sklearn.datasets.load_iris() iris_X = iris.data # [:, :2] # take the first two features only iris_y = iris.target iris_labels = iris.target_names iris_feature_names = iris.feature_names label2class = {lab: i for i, lab in enumerate(iris_labels)} # Fit the classifier logreg = sklearn.linear_model.LogisticRegression(C=1e5) logreg.fit(iris_X, iris_y) # explained class _dtype = iris_X.dtype explained_instances = { 'setosa': np.array([5, 3.5, 1.5, 0.25]).astype(_dtype), 'versicolor': np.array([5.5, 2.75, 4.5, 1.25]).astype(_dtype), 'virginica': np.array([7, 3, 5.5, 2.25]).astype(_dtype) } petal_length_idx = iris_feature_names.index('petal length (cm)') petal_length_bins = [1, 2, 3, 4, 5, 6, 7] petal_width_idx = iris_feature_names.index('petal width (cm)') petal_width_bins = [0, .5, 1, 1.5, 2, 2.5] discs_ = [] for i, ix in enumerate(petal_length_bins): # X-axis for iix in petal_length_bins[i + 1:]: for j, jy in enumerate(petal_width_bins): # Y-axis for jjy in petal_width_bins[j + 1:]: discs_.append({ petal_length_idx: [ix, iix], petal_width_idx: [jy, jjy] }) for inst_i in explained_instances: for cls_i in iris_labels: for disc_i, disc in enumerate(discs_): inst = explained_instances[inst_i] cls = label2class[cls_i] exp = exo.build_tabular_blimey( inst, cls, iris_X, iris_y, logreg.predict_proba, disc, IRIS_SAMPLES, SAMPLE_IRIS, 42) key = '{}&{}&{}'.format(inst_i, cls, disc_i) exp_ = EXP_TAB[key] assert exp['explanation'].shape[0] == exp_.shape[0] assert np.allclose( exp['explanation'], exp_, atol=.001, equal_nan=True) EXP_IMG = [ {207: {'explanation': [(13, -0.24406872165780585), (11, -0.20456180387430317), (9, -0.1866779131424261), (4, 0.15001224157793785), (3, 0.11589480417160983)], 'name': 'golden retriever'}, 208: {'explanation': [(13, -0.08395966359346249), (0, -0.0644986107387837), (9, 0.05845584633658977), (1, 0.04369763085720947), (11, -0.035958188394941866)], 'name': '<NAME>'}, 852: {'explanation': [(13, 0.3463529698715463), (11, 0.2678050131923326), (4, -0.10639863421417416), (6, 0.08345792378117327), (9, 0.07366945242386444)], 'name': '<NAME>'}}, {207: {'explanation': [(13, -0.0624167912596456), (7, 0.06083359545295548), (3, 0.0495953943686462), (11, -0.04819787147412231), (2, -0.03858823761391199)], 'name': '<NAME>'}, 208: {'explanation': [(13, -0.08408428146916162), (7, 0.07704235920590158), (3, 0.06646468388122273), (11, -0.0638326572126609), (2, -0.052621478002380796)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.35248212611685886), (13, 0.2516925608037859), (2, 0.13682853028454384), (9, 0.12930134856644754), (6, 0.1257747954095489)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.21351937934930917), (10, 0.16933456312772083), (11, -0.13447244552856766), (8, 0.11058919217055371), (2, -0.06269239798368743)], 'name': '<NAME>'}, 208: {'explanation': [(8, 0.05995551486884414), (9, -0.05375302972380482), (11, -0.051997353324246445), (6, 0.04213181405953071), (2, -0.039169895361928275)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.31382219776986503), (11, 0.24126214884275987), (13, 0.21075924370226598), (2, 0.11937652039885377), (8, -0.11911265319329697)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.39254403293049134), (9, 0.19357165018747347), (6, 0.16592079671652987), (0, 0.14042059731407297), (1, 0.09793027079765507)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.19351859273276703), (1, -0.15262967987262344), (3, 0.12205127112235375), (2, 0.11352141032313934), (6, -0.11164209893429898)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.17213007100844877), (0, -0.1583030948868859), (3, -0.13748574615069775), (5, 0.13273283867075436), (11, 0.12309551170070354)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.4073533182995105), (10, 0.20711667988142463), (8, 0.15360813290032324), (6, 0.1405424759832785), (1, 0.1332920685413575)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.14747910525112617), (1, -0.13977061235228924), (2, 0.10526833898161611), (6, -0.10416022118399552), (3, 0.09555992655161764)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.2232260929107954), (7, 0.21638443149433054), (5, 0.21100464215582274), (13, 0.145614853795006), (1, -0.11416523431311262)], 'name': '<NAME>'}}, {207: {'explanation': [(1, 0.14700178977744183), (0, 0.10346667279328238), (2, 0.10346667279328238), (7, 0.10346667279328238), (8, 0.10162900633690726)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.10845134816658476), (8, -0.1026920429226184), (6, -0.10238154733842847), (18, 0.10094164937411244), (16, 0.08646888450232793)], 'name': '<NAME>'}, 852: {'explanation': [(18, -0.20542297091894474), (13, 0.2012751176130666), (8, -0.19194747162742365), (20, 0.14686930696710473), (15, 0.11796990086271067)], 'name': '<NAME>'}}, {207: {'explanation': [(13, 0.12446259821701779), (17, 0.11859084421095789), (15, 0.09690553833007137), (12, -0.08869743701731962), (4, 0.08124900427893789)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.09478194981909983), (20, -0.09173392507039077), (9, 0.08768898801254493), (17, -0.07553994244536394), (4, 0.07422905503397653)], 'name': '<NAME>'}, 852: {'explanation': [(21, 0.1327882942965061), (1, 0.1238236573086363), (18, -0.10911712271717902), (19, 0.09707191051320978), (6, 0.08593672504338913)], 'name': '<NAME>'}}, {207: {'explanation': [(6, 0.14931728779865114), (14, 0.14092073957103526), (1, 0.11071480021464616), (4, 0.10655287976934531), (8, 0.08705404649152573)], 'name': '<NAME>'}, 208: {'explanation': [(8, -0.12242580400886727), (9, 0.12142729544158742), (14, -0.1148252787068248), (16, -0.09562322208795092), (4, 0.09350160975513132)], 'name': '<NAME>'}, 852: {'explanation': [(6, 0.04227675072263027), (9, -0.03107924340879173), (14, 0.028007115650713045), (13, 0.02771190348545554), (19, 0.02640441416071482)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.14313680656283245), (18, 0.12866508562342843), (8, 0.11809779264185447), (0, 0.11286255403442104), (2, 0.11286255403442104)], 'name': '<NAME>'}, 208: {'explanation': [(9, 0.2397917428082761), (14, -0.19435572812170654), (6, -0.1760894833446507), (18, -0.12243333818399058), (15, 0.10986343675377105)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.15378038774613365), (9, -0.14245940635481966), (6, 0.10213601012183973), (20, 0.1009180838986786), (3, 0.09780065767815548)], 'name': '<NAME>'}}, {207: {'explanation': [(15, 0.06525850448807077), (9, 0.06286791243851698), (19, 0.055189970374185854), (8, 0.05499197604401475), (13, 0.04748220842936177)], 'name': '<NAME>'}, 208: {'explanation': [(6, -0.31549091899770765), (5, 0.1862302670824446), (8, -0.17381478451341995), (10, -0.17353516098662508), (14, -0.13591542421754205)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.2163853942943355), (6, 0.17565046338282214), (1, 0.12446193028474549), (9, -0.11365789839746396), (10, 0.09239073691962967)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.1141207265647932), (36, -0.08861425922625768), (30, 0.07219209872026074), (9, -0.07150939547859836), (38, -0.06988288637544438)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.10531073909547647), (13, 0.08279642208039652), (34, -0.0817952443980797), (33, -0.08086848205765082), (12, 0.08086848205765082)], 'name': '<NAME>'}, 852: {'explanation': [(13, -0.1330452414595897), (4, 0.09942366413042845), (12, -0.09881995683190645), (33, 0.09881995683190645), (19, -0.09596925317560831)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08193926967758253), (35, 0.06804043021426347), (15, 0.06396269230810163), (11, 0.062255657227065296), (8, 0.05529200233091672)], 'name': '<NAME>'}, 208: {'explanation': [(19, 0.05711957286614678), (27, -0.050230108135410824), (16, -0.04743034616549999), (5, -0.046717346734255705), (9, -0.04419100026638039)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.08390967998497496), (30, -0.07037680222442452), (22, 0.07029819368543713), (8, -0.06861396187180349), (37, -0.06662511956402824)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.048418845359024805), (9, -0.0423869575883795), (30, 0.04012650790044438), (36, -0.03787242980067195), (10, 0.036557999380695635)], 'name': '<NAME>'}, 208: {'explanation': [(10, 0.12120686823129677), (17, 0.10196564232230493), (7, 0.09495133975425854), (25, -0.0759657891182803), (2, -0.07035244568286837)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.0770578003457272), (28, 0.0769372258280398), (6, -0.06044725989272927), (22, 0.05550155775286349), (31, -0.05399028046597057)], 'name': '<NAME>'}}, {207: {'explanation': [(14, 0.05371383110181226), (0, -0.04442539316084218), (18, 0.042589475382826494), (19, 0.04227647855354252), (17, 0.041685661662754295)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.14419601354489464), (17, 0.11785174500536676), (36, 0.1000501679652906), (10, 0.09679790134851017), (35, 0.08710376081189208)], 'name': '<NAME>'}, 852: {'explanation': [(8, -0.02486237985832769), (3, -0.022559886154747102), (11, -0.021878686669239856), (36, 0.021847953817988534), (19, -0.018317598300716522)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08098729255605368), (35, 0.06639102704982619), (15, 0.06033721190370432), (34, 0.05826267856117829), (28, 0.05549505160798173)], 'name': '<NAME>'}, 208: {'explanation': [(17, 0.13839012042250542), (10, 0.11312187488346881), (7, 0.10729071207480922), (25, -0.09529127965797404), (11, -0.09279834572979286)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.028385651836694076), (22, 0.023364702783498722), (8, -0.023097812578270233), (30, -0.022931236620034406), (37, -0.022040170736525342)], 'name': '<NAME>'}} ] EXP_TAB = { 'setosa&0&0': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&1': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&2': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&3': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&4': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&5': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&6': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&7': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&8': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&9': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&10': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&11': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&12': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&13': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&14': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&15': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&16': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&17': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&18': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&19': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&20': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&21': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&22': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&23': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&24': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&25': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&26': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&27': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&28': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&29': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&30': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&31': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&32': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&33': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&34': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&35': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&36': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&37': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&38': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&39': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&40': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&41': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&42': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&43': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&44': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&45': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&46': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&50': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&51': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&52': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&53': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&54': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&55': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&56': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&60': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&61': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&65': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&66': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&67': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&68': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&69': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&70': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&71': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&75': np.array([0.0, 0.95124502153736]), 'setosa&0&76': np.array([0.0, 0.9708703761803881]), 'setosa&0&77': np.array([0.0, 0.5659706098422994]), 'setosa&0&78': np.array([0.0, 0.3962828716108186]), 'setosa&0&79': np.array([0.0, 0.2538069363248767]), 'setosa&0&80': np.array([0.0, 0.95124502153736]), 'setosa&0&81': np.array([0.0, 0.95124502153736]), 'setosa&0&82': np.array([0.0, 0.95124502153736]), 'setosa&0&83': np.array([0.0, 0.95124502153736]), 'setosa&0&84': np.array([0.0, 0.9708703761803881]), 'setosa&0&85': np.array([0.0, 0.9708703761803881]), 'setosa&0&86': np.array([0.0, 0.9708703761803881]), 'setosa&0&87': np.array([0.0, 0.5659706098422994]), 'setosa&0&88': np.array([0.0, 0.5659706098422994]), 'setosa&0&89': np.array([0.0, 0.3962828716108186]), 'setosa&0&90': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&91': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&92': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&93': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&94': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&95': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&96': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&97': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&98': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&99': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&100': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&101': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&102': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&103': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&104': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&105': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&106': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&107': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&108': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&109': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&110': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&111': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&112': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&113': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&114': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&115': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&116': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&117': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&118': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&119': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&120': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&121': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&122': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&123': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&124': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&125': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&126': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&127': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&128': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&129': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&130': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&131': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&132': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&133': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&134': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&135': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&136': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&137': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&138': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&139': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&140': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&141': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&142': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&143': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&144': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&145': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&146': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&147': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&148': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&149': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&150': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&151': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&152': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&153': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&154': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&155': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&156': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&157': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&158': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&159': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&160': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&161': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&162': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&163': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&164': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&165': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&166': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&167': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&168': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&169': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&170': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&171': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&172': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&173': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&174': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&175': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&176': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&177': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&178': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&179': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&180': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&181': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&182': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&183': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&184': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&185': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&186': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&187': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&188': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&189': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&190': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&191': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&192': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&193': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&194': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&195': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&196': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&197': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&198': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&199': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&200': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&201': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&202': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&203': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&204': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&205': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&206': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&207': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&208': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&209': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&210': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&211': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&212': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&213': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&214': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&215': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&216': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&217': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&218': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&219': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&220': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&221': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&222': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&223': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&224': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&225': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&226': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&227': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&228': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&229': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&230': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&231': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&232': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&233': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&234': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&235': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&236': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&237': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&238': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&239': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&240': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&241': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&242': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&243': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&244': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&245': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&246': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&247': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&248': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&249': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&250': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&251': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&252': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&253': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&254': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&255': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&256': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&257': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&258': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&259': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&260': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&261': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&262': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&263': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&264': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&265': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&266': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&267': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&268': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&269': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&270': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&271': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&275': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&276': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&277': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&278': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&279': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&280': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&281': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&282': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&283': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&284': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&285': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&286': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&287': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&288': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&289': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&290': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&291': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&292': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&293': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&294': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&295': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&296': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&297': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&298': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&299': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&300': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&301': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&302': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&303': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&305': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&306': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&307': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&308': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&309': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&310': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&311': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&312': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&313': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&314': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&1&0': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&1': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&2': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&3': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&4': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&5': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&6': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&7': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&8': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&9': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&10': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&11': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&12': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&13': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&14': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&15': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&16': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&17': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&18': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&19': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&20': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&21': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&22': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&23': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&24': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&25': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&26': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&27': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&28': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&29': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&30': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&31': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&32': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&33': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&34': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&35': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&36': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&37': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&38': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&39': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&40': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&41': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&42': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&43': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&44': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&45': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&46': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&47': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&48': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&49': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&50': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&51': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&52': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&53': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&54': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&55': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&56': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&57': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&58': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&59': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&60': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&61': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&62': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&63': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&65': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&66': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&67': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&68': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&69': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&70': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&71': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&72': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&73': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&74': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&75': np.array([0.0, -0.4756207622944677]), 'setosa&1&76': np.array([0.0, -0.4854334805210761]), 'setosa&1&77': np.array([0.0, 0.16885577975809635]), 'setosa&1&78': np.array([0.0, 0.395805885538554]), 'setosa&1&79': np.array([0.0, 0.2538072707138344]), 'setosa&1&80': np.array([0.0, -0.4756207622944677]), 'setosa&1&81': np.array([0.0, -0.4756207622944677]), 'setosa&1&82': np.array([0.0, -0.4756207622944677]), 'setosa&1&83': np.array([0.0, -0.4756207622944677]), 'setosa&1&84': np.array([0.0, -0.4854334805210761]), 'setosa&1&85': np.array([0.0, -0.4854334805210761]), 'setosa&1&86': np.array([0.0, -0.4854334805210761]), 'setosa&1&87': np.array([0.0, 0.16885577975809635]), 'setosa&1&88': np.array([0.0, 0.16885577975809635]), 'setosa&1&89': np.array([0.0, 0.395805885538554]), 'setosa&1&90': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&91': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&92': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&93': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&94': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&95': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&96': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&97': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&98': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&99': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&100': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&101': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&102': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&103': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&104': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&105': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&106': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&107': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&108': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&109': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&110': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&111': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&112': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&113': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&114': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&115': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&116': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&117': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&118': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&119': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&120': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&121': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&122': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&123': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&124': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&125': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&126': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&127': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&128': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&129': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&130': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&131': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&132': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&133': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&134': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&135': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&136': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&137': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&138': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&139': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&140': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&141': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&142': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&143': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&144': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&145': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&146': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&147': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&148': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&149': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&150': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&151': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&152': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&153': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&154': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&155': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&156': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&157': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&158': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&159': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&160': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&161': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&162': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&163': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&164': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&165': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&166': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&167': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&168': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&169': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&170': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&171': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&172': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&173': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&174': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&175': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&176': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&177': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&178': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&179': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&180': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&181': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&182': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&183': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&184': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&185': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&186': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&187': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&188': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&189': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&190': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&191': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&192': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&193': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&194': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&195': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&196': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&197': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&198': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&199': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&200': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&201': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&202': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&203': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&204': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&205': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&206': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&207': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&208': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&209': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&210': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&211': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&212': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&213': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&214': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&215': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&216': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&217': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&218': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&219': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&220': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&221': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&222': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&223': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&224': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&225': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&226': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&227': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&228': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&229': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&230': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&231': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&232': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&233': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&234': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&235': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&236': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&237': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&238': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&239': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&240': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&241': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&242': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&243': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&244': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&245': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&246': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&247': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&248': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&249': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&250': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&251': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&252': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&253': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&254': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&255': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&256': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&257': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&258': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&259': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&260': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&261': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&262': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&263': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&264': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&265': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&266': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&267': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&268': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&269': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&270': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&271': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&272': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&273': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&274': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&275': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&276': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&277': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&278': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&279': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&280': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&281': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&282': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&283': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&284': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&285': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&286': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&287': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&288': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&289': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&290': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&291': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&292': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&293': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&294': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&295': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&296': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&297': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&298': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&299': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&300': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&301': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&302': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&303': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&305': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&306': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&307': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&308': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&309': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&310': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&311': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&312': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&313': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&314': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&2&0': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&1': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&2': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&3': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&4': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&5': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&6': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&7': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&8': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&9': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&10': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&11': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&12': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&13': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&14': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&15': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&16': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&17': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&18': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&19': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&20': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&21': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&22': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&23': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&24': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&25': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&26': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&27': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&28': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&29': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&30': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&31': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&32': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&33': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&34': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&35': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&36': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&37': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&38': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&39': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&40': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&41': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&42': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&43': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&44': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&45': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&46': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&47': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&48': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&49': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&50': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&51': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&52': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&53': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&54': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&55': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&56': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&57': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&58': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&59': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&60': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&61': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&62': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&63': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&64': np.array([-0.6188410763351541, -0.22803625884668638]), 'setosa&2&65': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&66': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&67': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&68': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&69': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&70': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&71': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&72': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&73': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&74': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&75': np.array([0.0, -0.47562425924289314]), 'setosa&2&76': np.array([0.0, -0.48543689565931186]), 'setosa&2&77': np.array([0.0, -0.7348263896003956]), 'setosa&2&78': np.array([0.0, -0.7920887571493729]), 'setosa&2&79': np.array([0.0, -0.507614207038711]), 'setosa&2&80': np.array([0.0, -0.47562425924289314]), 'setosa&2&81': np.array([0.0, -0.47562425924289314]), 'setosa&2&82': np.array([0.0, -0.47562425924289314]), 'setosa&2&83': np.array([0.0, -0.47562425924289314]), 'setosa&2&84': np.array([0.0, -0.48543689565931186]), 'setosa&2&85': np.array([0.0, -0.48543689565931186]), 'setosa&2&86': np.array([0.0, -0.48543689565931186]), 'setosa&2&87': np.array([0.0, -0.7348263896003956]), 'setosa&2&88': np.array([0.0, -0.7348263896003956]), 'setosa&2&89': np.array([0.0, -0.7920887571493729]), 'setosa&2&90': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&91': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&92': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&93': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&94': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&95': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&96': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&97': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&98': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&99': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&100': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&101': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&102': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&103': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&104': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&105': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&106': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&107': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&108': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&109': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&110': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&111': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&112': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&113': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&114': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&115': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&116': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&117': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&118': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&119': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&120': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&121': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&122': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&123': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&124': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&125': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&126': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&127': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&128': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&129': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&130': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&131': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&132': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&133': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&134': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&135': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&136': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&137': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&138': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&139': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&140': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&141': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&142': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&143': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&144': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&145': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&146': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&147': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&148': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&149': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&150': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&151': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&152': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&153': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&154': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&155': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&156': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&157': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&158': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&159': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&160': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&161': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&162': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&163': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&164': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&165': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&166': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&167': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&168': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&169': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&170': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&171': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&172': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&173': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&174': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&175': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&176': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&177': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&178': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&179': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&180': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&181': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&182': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&183': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&184': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&185': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&186': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&187': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&188': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&189': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&190': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&191': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&192': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&193': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&194': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&195': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&196': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&197': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&198': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&199': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&200': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&201': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&202': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&203': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&204': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&205': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&206': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&207': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&208': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&209': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&210': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&211': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&212': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&213': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&214': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&215': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&216': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&217': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&218': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&219': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&220': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&221': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&222': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&223': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&224': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&225': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&226': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&227': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&228': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&229': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&230': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&231': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&232': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&233': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&234': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&235': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&236': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&237': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&238': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&239': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&240': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&241': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&242': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&243': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&244': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&245': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&246': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&247': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&248': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&249': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&250': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&251': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&252': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&253': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&254': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&255': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&256': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&257': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&258': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&259': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&260': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&261': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&262': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&263': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&264': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&265': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&266': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&267': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&268': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&269': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&270': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&271': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&272': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&273': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&274': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&275': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&276': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&277': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&278': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&279': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&280': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&281': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&282': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&283': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&284': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&285': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&286': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&287': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&288': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&289': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&290': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&291': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&292': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&293': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&294': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&295': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&296': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&297': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&298': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&299': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&300': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&301': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&302': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&303': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&304': np.array([-0.6188410763351541, -0.22803625884668638]), 'setosa&2&305': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&306': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&307': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&308': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&309': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&310': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&311': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&312': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&313': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&314': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&0&0': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&1': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&2': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&3': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&4': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&5': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&6': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&7': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&8': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&9': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&10': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&11': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&12': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&13': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&14': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&15': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&16': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&17': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&18': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&19': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&20': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&21': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&22': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&23': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&24': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&25': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&26': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&27': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&28': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&29': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&30': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&31': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&32': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&33': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&34': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&35': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&36': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&37': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&38': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&39': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&40': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&41': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&42': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&43': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&44': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&45': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&46': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&50': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&51': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&52': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&53': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&54': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&55': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&56': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&60': np.array([0.029402442458921384, -0.9481684282717414]), 'versicolor&0&61': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'versicolor&0&65': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&66': np.array([0.42809266524335826, -0.40375108595117376]), 'versicolor&0&67': np.array([0.45547700380103057, -0.6083463409799501]), 'versicolor&0&68': np.array([0.19002455311770447, -0.8848597943731074]), 'versicolor&0&69': np.array([0.436966114193701, -0.4638042290788281]), 'versicolor&0&70': np.array([0.45424510803217066, -0.6425314361631614]), 'versicolor&0&71': np.array([0.1746467870122951, -0.9073062742839755]), 'versicolor&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&75': np.array([0.0, -0.95124502153736]), 'versicolor&0&76': np.array([0.0, -0.9708703761803881]), 'versicolor&0&77': np.array([0.0, 0.5659706098422994]), 'versicolor&0&78': np.array([0.0, 0.3962828716108186]), 'versicolor&0&79': np.array([0.0, 0.2538069363248767]), 'versicolor&0&80': np.array([0.0, -0.9708703761803881]), 'versicolor&0&81': np.array([0.0, -0.3631376646911367]), 'versicolor&0&82': np.array([0.0, -0.5804857652839247]), 'versicolor&0&83': np.array([0.0, -0.8943993997517804]), 'versicolor&0&84': np.array([0.0, -0.4231275527222919]), 'versicolor&0&85': np.array([0.0, -0.6164235822373675]), 'versicolor&0&86': np.array([0.0, -0.9166476163222441]), 'versicolor&0&87': np.array([0.0, 0.5659706098422994]), 'versicolor&0&88': np.array([0.0, 0.5659706098422994]), 'versicolor&0&89': np.array([0.0, 0.3962828716108186]), 'versicolor&0&90': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&91': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&92': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&93': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&94': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&95': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&96': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&97': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&98': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&99': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&100': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&101': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&102': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&103': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&104': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&105': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&106': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&107': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&108': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&109': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&110': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&111': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&112': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&113': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&114': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&115': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&116': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&117': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&118': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&119': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&120': np.array([-0.05855179950109871, -0.9211684729232403]), 'versicolor&0&121': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&122': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&123': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&124': np.array([-0.5182062652425321, 0.3958533237517639]), 'versicolor&0&125': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&126': np.array([-0.5107107533700952, 0.0075507123577884866]), 'versicolor&0&127': np.array([-0.1464063320531759, -0.4788055402156298]), 'versicolor&0&128': np.array([-0.061109248092233844, -0.8620287767000373]), 'versicolor&0&129': np.array([-0.4706137753079746, -0.057389625790424635]), 'versicolor&0&130': np.array([-0.06804620923037683, -0.5677904519730453]), 'versicolor&0&131': np.array([-0.020216773196675246, -0.9057119888626176]), 'versicolor&0&132': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&133': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&134': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&135': np.array([-0.19684482070614498, -0.7845939961595055]), 'versicolor&0&136': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&137': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&138': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&139': np.array([-0.8063011502229427, 0.4134300066735808]), 'versicolor&0&140': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&141': np.array([-0.7985789197998611, 0.0026209054759345337]), 'versicolor&0&142': np.array([-0.7182275903095532, -0.11963032135457498]), 'versicolor&0&143': np.array([-0.2798927835773098, -0.6581136857450849]), 'versicolor&0&144': np.array([-0.7920119433269182, -0.0142751249964083]), 'versicolor&0&145': np.array([-0.6943081428778407, -0.14852813120265815]), 'versicolor&0&146': np.array([-0.16106555563262584, -0.777621649099753]), 'versicolor&0&147': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&148': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&149': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&150': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&151': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&152': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&153': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&154': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&155': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&156': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&157': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&158': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&159': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&160': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&161': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&162': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&163': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&164': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&165': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&166': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&167': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&168': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&169': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&170': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&171': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&172': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&173': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&174': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&175': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&176': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&177': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&178': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&179': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&180': np.array([-0.05855179950109871, -0.9211684729232403]), 'versicolor&0&181': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&182': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&183': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&184': np.array([-0.5182062652425321, 0.3958533237517639]), 'versicolor&0&185': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&186': np.array([-0.5107107533700952, 0.0075507123577884866]), 'versicolor&0&187': np.array([-0.1464063320531759, -0.4788055402156298]), 'versicolor&0&188': np.array([-0.061109248092233844, -0.8620287767000373]), 'versicolor&0&189': np.array([-0.4706137753079746, -0.057389625790424635]), 'versicolor&0&190': np.array([-0.06804620923037683, -0.5677904519730453]), 'versicolor&0&191': np.array([-0.020216773196675246, -0.9057119888626176]), 'versicolor&0&192':
np.array([-0.5775164514598086, 0.6278692602817483])
numpy.array
# -*- mode: python; coding: utf-8 -*- # Copyright (c) 2018 Radio Astronomy Software Group # Licensed under the 2-clause BSD License """Class for reading and writing uvfits files.""" import os import copy import warnings import numpy as np from astropy import constants as const from astropy.time import Time from astropy.io import fits from .uvdata import UVData from .. import utils as uvutils __all__ = ["UVFITS"] class UVFITS(UVData): """ Defines a uvfits-specific subclass of UVData for reading and writing uvfits. This class should not be interacted with directly, instead use the read_uvfits and write_uvfits methods on the UVData class. Attributes ---------- uvfits_required_extra : list of str Names of optional UVParameters that are required for uvfits. """ uvfits_required_extra = [ "antenna_positions", "gst0", "rdate", "earth_omega", "dut1", "timesys", ] def _get_parameter_data( self, vis_hdu, run_check_acceptability, background_lsts=True, ): """ Read just the random parameters portion of the uvfits file ("metadata"). Separated from full read so that header, metadata and data can be read independently. """ # astropy.io fits reader scales date according to relevant PZER0 (?) # uvfits standard is to have 2 DATE parameters, both floats: # DATE (full day) and _DATE (fractional day) # cotter uvfits files have one DATE that is a double # using data.par('date') is general -- it will add them together if there are 2 self.time_array = vis_hdu.data.par("date") self.Ntimes = len(np.unique(self.time_array)) # check if lst array is saved. It's not a standard metadata item in uvfits, # but if the file was written with pyuvdata it may be present # (depending on pyuvdata version) proc = None if "LST" in vis_hdu.data.parnames: # angles in uvfits files are stored in degrees, so convert to radians self.lst_array = np.deg2rad(vis_hdu.data.par("lst")) if run_check_acceptability: ( latitude, longitude, altitude, ) = self.telescope_location_lat_lon_alt_degrees lst_array = uvutils.get_lst_for_time( self.time_array, latitude, longitude, altitude ) if not np.all( np.isclose( self.lst_array, lst_array, rtol=self._lst_array.tols[0], atol=self._lst_array.tols[1], ) ): warnings.warn( "LST values stored in this file are not " "self-consistent with time_array and telescope " "location. Consider recomputing with " "utils.get_lst_for_time." ) else: proc = self.set_lsts_from_time_array(background=background_lsts) # if antenna arrays are present, use them. otherwise use baseline array if "ANTENNA1" in vis_hdu.data.parnames and "ANTENNA2" in vis_hdu.data.parnames: # Note: uvfits antennas are 1 indexed, # need to subtract one to get to 0-indexed self.ant_1_array = np.int32(vis_hdu.data.par("ANTENNA1")) - 1 self.ant_2_array = np.int32(vis_hdu.data.par("ANTENNA2")) - 1 subarray = np.int32(vis_hdu.data.par("SUBARRAY")) - 1 # error on files with multiple subarrays if len(set(subarray)) > 1: raise ValueError( "This file appears to have multiple subarray " "values; only files with one subarray are " "supported." ) else: # cannot set this to be the baseline array because it uses the # 256 convention, not our 2048 convention bl_input_array = np.int64(vis_hdu.data.par("BASELINE")) # get antenna arrays based on uvfits baseline array self.ant_1_array, self.ant_2_array = self.baseline_to_antnums( bl_input_array ) # check for multi source files. NOW SUPPORTED, W00T! if "SOURCE" in vis_hdu.data.parnames: # Preserve the source info just in case the AIPS SU table is missing, and # we need to revert things back. self._set_multi_phase_center(preserve_phase_center_info=True) source = vis_hdu.data.par("SOURCE") self.phase_center_id_array = source.astype(int) # get self.baseline_array using our convention self.baseline_array = self.antnums_to_baseline( self.ant_1_array, self.ant_2_array ) self.Nbls = len(np.unique(self.baseline_array)) # initialize internal variables based on the antenna lists self.Nants_data = int(np.union1d(self.ant_1_array, self.ant_2_array).size) # read baseline vectors in units of seconds, return in meters # FITS uvw direction convention is opposite ours and Miriad's. # So conjugate the visibilities and flip the uvws: self.uvw_array = (-1) * ( np.array( np.stack( ( vis_hdu.data.par("UU"), vis_hdu.data.par("VV"), vis_hdu.data.par("WW"), ) ) ) * const.c.to("m/s").value ).T if "INTTIM" in vis_hdu.data.parnames: self.integration_time = np.asarray( vis_hdu.data.par("INTTIM"), dtype=np.float64 ) else: if self.Ntimes > 1: # assume that all integration times in the file are the same int_time = self._calc_single_integration_time() self.integration_time = ( np.ones_like(self.time_array, dtype=np.float64) * int_time ) else: warnings.warn( "The integration time is not specified and only one time is " "present so it cannot be calculated from the difference between " "integration times. Setting to None which will cause the check to " "error. Set `run_check` to False to read in the file without " "checking. Then set the integration_time (to an array of length " "Nblts) directly on the object to allow futher processing." ) if proc is not None: proc.join() def _get_data( self, vis_hdu, antenna_nums, antenna_names, ant_str, bls, frequencies, freq_chans, times, time_range, lsts, lst_range, polarizations, blt_inds, read_metadata, keep_all_metadata, run_check, check_extra, run_check_acceptability, strict_uvw_antpos_check, fix_old_proj, fix_use_ant_pos, ): """ Read just the visibility and flag data of the uvfits file. Separated from full read so header and metadata can be read without data. """ # figure out what data to read in blt_inds, freq_inds, pol_inds, history_update_string = self._select_preprocess( antenna_nums, antenna_names, ant_str, bls, frequencies, freq_chans, times, time_range, lsts, lst_range, polarizations, blt_inds, ) if blt_inds is not None: blt_frac = len(blt_inds) / float(self.Nblts) else: blt_frac = 1 if freq_inds is not None: freq_frac = len(freq_inds) * float(self.Nspws) / float(self.Nfreqs) else: freq_frac = 1 if pol_inds is not None: pol_frac = len(pol_inds) / float(self.Npols) else: pol_frac = 1 min_frac = np.min([blt_frac, freq_frac, pol_frac]) if min_frac == 1: # no select, read in all the data if vis_hdu.header["NAXIS"] == 7: raw_data_array = vis_hdu.data.data[:, 0, 0, :, :, :, :] assert self.Nspws == raw_data_array.shape[1] else: # in many uvfits files the spw axis is left out, # here we put it back in so the dimensionality stays the same raw_data_array = vis_hdu.data.data[:, 0, 0, :, :, :] raw_data_array = raw_data_array[:, np.newaxis, :, :] else: # do select operations on everything except data_array, flag_array # and nsample_array self._select_metadata( blt_inds, freq_inds, pol_inds, history_update_string, keep_all_metadata ) # just read in the right portions of the data and flag arrays if blt_frac == min_frac: if vis_hdu.header["NAXIS"] == 7: raw_data_array = vis_hdu.data.data[blt_inds, :, :, :, :, :, :] raw_data_array = raw_data_array[:, 0, 0, :, :, :, :] assert self.Nspws == raw_data_array.shape[1] else: # in many uvfits files the spw axis is left out, # here we put it back in so the dimensionality stays the same raw_data_array = vis_hdu.data.data[blt_inds, :, :, :, :, :] raw_data_array = raw_data_array[:, 0, 0, :, :, :] raw_data_array = raw_data_array[:, np.newaxis, :, :, :] if freq_frac < 1: raw_data_array = raw_data_array[:, :, freq_inds, :, :] if pol_frac < 1: raw_data_array = raw_data_array[:, :, :, pol_inds, :] elif freq_frac == min_frac: if vis_hdu.header["NAXIS"] == 7: raw_data_array = vis_hdu.data.data[:, :, :, :, freq_inds, :, :] raw_data_array = raw_data_array[:, 0, 0, :, :, :, :] assert self.Nspws == raw_data_array.shape[1] else: # in many uvfits files the spw axis is left out, # here we put it back in so the dimensionality stays the same raw_data_array = vis_hdu.data.data[:, :, :, freq_inds, :, :] raw_data_array = raw_data_array[:, 0, 0, :, :, :] raw_data_array = raw_data_array[:, np.newaxis, :, :, :] if blt_frac < 1: raw_data_array = raw_data_array[blt_inds, :, :, :, :] if pol_frac < 1: raw_data_array = raw_data_array[:, :, :, pol_inds, :] else: if vis_hdu.header["NAXIS"] == 7: raw_data_array = vis_hdu.data.data[:, :, :, :, :, pol_inds, :] raw_data_array = raw_data_array[:, 0, 0, :, :, :, :] assert self.Nspws == raw_data_array.shape[1] else: # in many uvfits files the spw axis is left out, # here we put it back in so the dimensionality stays the same raw_data_array = vis_hdu.data.data[:, :, :, :, pol_inds, :] raw_data_array = raw_data_array[:, 0, 0, :, :, :] raw_data_array = raw_data_array[:, np.newaxis, :, :, :] if blt_frac < 1: raw_data_array = raw_data_array[blt_inds, :, :, :, :] if freq_frac < 1: raw_data_array = raw_data_array[:, :, freq_inds, :, :] assert len(raw_data_array.shape) == 5 # Reshape the data array to be the right size if we are working w/ multiple # spectral windows to be 'flex_spw' compliant if self.Nspws > 1: raw_data_array = np.reshape( raw_data_array, (self.Nblts, 1, self.Nfreqs, self.Npols, raw_data_array.shape[4]), ) # FITS uvw direction convention is opposite ours and Miriad's. # So conjugate the visibilities and flip the uvws: self.data_array = ( raw_data_array[:, :, :, :, 0] - 1j * raw_data_array[:, :, :, :, 1] ) self.flag_array = raw_data_array[:, :, :, :, 2] <= 0 self.nsample_array = np.abs(raw_data_array[:, :, :, :, 2]) if fix_old_proj: self.fix_phase(use_ant_pos=fix_use_ant_pos) # check if object has all required UVParameters set if run_check: self.check( check_extra=check_extra, run_check_acceptability=run_check_acceptability, strict_uvw_antpos_check=strict_uvw_antpos_check, allow_flip_conj=True, ) def read_uvfits( self, filename, antenna_nums=None, antenna_names=None, ant_str=None, bls=None, frequencies=None, freq_chans=None, times=None, time_range=None, lsts=None, lst_range=None, polarizations=None, blt_inds=None, keep_all_metadata=True, read_data=True, background_lsts=True, run_check=True, check_extra=True, run_check_acceptability=True, strict_uvw_antpos_check=False, fix_old_proj=False, fix_use_ant_pos=True, ): """ Read in header, metadata and data from a uvfits file. Supports reading only selected portions of the data. Parameters ---------- filename : str The uvfits file to read from. antenna_nums : array_like of int, optional The antennas numbers to include when reading data into the object (antenna positions and names for the removed antennas will be retained unless `keep_all_metadata` is False). This cannot be provided if `antenna_names` is also provided. Ignored if read_data is False. antenna_names : array_like of str, optional The antennas names to include when reading data into the object (antenna positions and names for the removed antennas will be retained unless `keep_all_metadata` is False). This cannot be provided if `antenna_nums` is also provided. Ignored if read_data is False. bls : list of tuple, optional A list of antenna number tuples (e.g. [(0, 1), (3, 2)]) or a list of baseline 3-tuples (e.g. [(0, 1, 'xx'), (2, 3, 'yy')]) specifying baselines to include when reading data into the object. For length-2 tuples, the ordering of the numbers within the tuple does not matter. For length-3 tuples, the polarization string is in the order of the two antennas. If length-3 tuples are provided, `polarizations` must be None. Ignored if read_data is False. ant_str : str, optional A string containing information about what antenna numbers and polarizations to include when reading data into the object. Can be 'auto', 'cross', 'all', or combinations of antenna numbers and polarizations (e.g. '1', '1_2', '1x_2y'). See tutorial for more examples of valid strings and the behavior of different forms for ant_str. If '1x_2y,2y_3y' is passed, both polarizations 'xy' and 'yy' will be kept for both baselines (1, 2) and (2, 3) to return a valid pyuvdata object. An ant_str cannot be passed in addition to any of `antenna_nums`, `antenna_names`, `bls` args or the `polarizations` parameters, if it is a ValueError will be raised. Ignored if read_data is False. frequencies : array_like of float, optional The frequencies to include when reading data into the object, each value passed here should exist in the freq_array. Ignored if read_data is False. freq_chans : array_like of int, optional The frequency channel numbers to include when reading data into the object. Ignored if read_data is False. times : array_like of float, optional The times to include when reading data into the object, each value passed here should exist in the time_array. time_range : array_like of float, optional The time range in Julian Date to keep in the object, must be length 2. Some of the times in the object should fall between the first and last elements. Cannot be used with `times`. lsts : array_like of float, optional The local sidereal times (LSTs) to keep in the object, each value passed here should exist in the lst_array. Cannot be used with `times`, `time_range`, or `lst_range`. lst_range : array_like of float, optional The local sidereal time (LST) range in radians to keep in the object, must be of length 2. Some of the LSTs in the object should fall between the first and last elements. If the second value is smaller than the first, the LSTs are treated as having phase-wrapped around LST = 2*pi = 0, and the LSTs kept on the object will run from the larger value, through 0, and end at the smaller value. polarizations : array_like of int, optional The polarizations numbers to include when reading data into the object, each value passed here should exist in the polarization_array. Ignored if read_data is False. blt_inds : array_like of int, optional The baseline-time indices to include when reading data into the object. This is not commonly used. Ignored if read_data is False. keep_all_metadata : bool Option to keep all the metadata associated with antennas, even those that do not have data associated with them after the select option. read_data : bool Read in the visibility, nsample and flag data. If set to False, only the metadata will be read in. Setting read_data to False results in a metadata only object. background_lsts : bool When set to True, the lst_array is calculated in a background thread. run_check : bool Option to check for the existence and proper shapes of parameters after after reading in the file (the default is True, meaning the check will be run). Ignored if read_data is False. check_extra : bool Option to check optional parameters as well as required ones (the default is True, meaning the optional parameters will be checked). Ignored if read_data is False. run_check_acceptability : bool Option to check acceptable range of the values of parameters after reading in the file (the default is True, meaning the acceptable range check will be done). Ignored if read_data is False. strict_uvw_antpos_check : bool Option to raise an error rather than a warning if the check that uvws match antenna positions does not pass. fix_old_proj : bool Applies a fix to uvw-coordinates and phasing, assuming that the old `phase` method was used prior to writing the data, which had errors of the order of one part in 1e4 - 1e5. See the phasing memo for more details. Default is False. fix_use_ant_pos : bool If setting `fix_old_proj` to True, use the antenna positions to derive the correct uvw-coordinates rather than using the baseline vectors. Default is True. Raises ------ IOError If filename doesn't exist. ValueError If incompatible select keywords are set (e.g. `ant_str` with other antenna selectors, `times` and `time_range`) or select keywords exclude all data or if keywords are set to the wrong type. If the data have multi spw with different channel widths. If the metadata are not internally consistent or missing. """ # update filename attribute basename = os.path.basename(filename) self.filename = [basename] self._filename.form = (1,) with fits.open(filename, memmap=True) as hdu_list: vis_hdu = hdu_list[0] # assumes the visibilities are in the primary hdu vis_hdr = vis_hdu.header.copy() hdunames = uvutils._fits_indexhdus(hdu_list) # find the rest of the tables # First get everything we can out of the header. self._set_phased() # check if we have an spw dimension if vis_hdr["NAXIS"] == 7: self.Nspws = vis_hdr.pop("NAXIS5") self.spw_array = ( uvutils._fits_gethduaxis(vis_hdu, 5).astype(np.int64) - 1 ) # the axis number for phase center depends on if the spw exists self.phase_center_ra_degrees = float(vis_hdr.pop("CRVAL6")) self.phase_center_dec_degrees = float(vis_hdr.pop("CRVAL7")) else: self.Nspws = 1 self.spw_array = np.array([np.int64(0)]) # the axis number for phase center depends on if the spw exists self.phase_center_ra_degrees = float(vis_hdr.pop("CRVAL5")) self.phase_center_dec_degrees = float(vis_hdr.pop("CRVAL6")) # get shapes self.Npols = vis_hdr.pop("NAXIS3") self.Nblts = vis_hdr.pop("GCOUNT") if self.Nspws > 1: # If this is multi-spw, use the 'flexible' spectral window setup self._set_flex_spw() uvfits_nchan = vis_hdr.pop("NAXIS4") self.Nfreqs = uvfits_nchan * self.Nspws self.flex_spw_id_array = np.transpose( np.tile(np.arange(self.Nspws), (uvfits_nchan, 1)) ).flatten() fq_hdu = hdu_list[hdunames["AIPS FQ"]] assert self.Nspws == fq_hdu.header["NO_IF"] # TODO: This is fine for now, although I (karto) think that this # is relative to the ref_freq, which can be specified as part of # the AIPS SU table. # Get rest freq value ref_freq = uvutils._fits_gethduaxis(vis_hdu, 4)[0] self.channel_width = np.transpose( np.tile(abs(fq_hdu.data["CH WIDTH"]), (uvfits_nchan, 1)) ).flatten() self.freq_array = np.reshape( np.transpose( ( ref_freq + fq_hdu.data["IF FREQ"] + np.outer(np.arange(uvfits_nchan), fq_hdu.data["CH WIDTH"]) ) ), (1, -1), ) else: self.Nfreqs = vis_hdr.pop("NAXIS4") self.freq_array = uvutils._fits_gethduaxis(vis_hdu, 4) # TODO: Spw axis to be collapsed in future release self.freq_array.shape = (1,) + self.freq_array.shape self.channel_width = vis_hdr.pop("CDELT4") self.polarization_array = np.int32(uvutils._fits_gethduaxis(vis_hdu, 3)) # other info -- not required but frequently used self.object_name = vis_hdr.pop("OBJECT", None) self.telescope_name = vis_hdr.pop("TELESCOP", None) self.instrument = vis_hdr.pop("INSTRUME", None) latitude_degrees = vis_hdr.pop("LAT", None) longitude_degrees = vis_hdr.pop("LON", None) altitude = vis_hdr.pop("ALT", None) self.x_orientation = vis_hdr.pop("XORIENT", None) blt_order_str = vis_hdr.pop("BLTORDER", None) if blt_order_str is not None: self.blt_order = tuple(blt_order_str.split(", ")) if self.blt_order == ("bda",): self._blt_order.form = (1,) self.history = str(vis_hdr.get("HISTORY", "")) if not uvutils._check_history_version( self.history, self.pyuvdata_version_str ): self.history += self.pyuvdata_version_str self.vis_units = vis_hdr.pop("BUNIT", "uncalib") # Added here as a fix since some previous versions of UVData allowed for # all caps versions of UNCALIB. if self.vis_units == "UNCALIB": self.vis_units = "uncalib" self.phase_center_epoch = vis_hdr.pop("EPOCH", None) # PHSFRAME is not a standard UVFITS keyword, but was used by older # versions of pyuvdata. To ensure backwards compatibility, we look # for it first to determine the coordinate frame for the data self.phase_center_frame = vis_hdr.pop("PHSFRAME", None) # If we don't find the special keyword PHSFRAME, try for the more # FITS-standard RADESYS if self.phase_center_frame is None: self.phase_center_frame = vis_hdr.pop("RADESYS", None) # If we still don't find anything, try the two 'special' variant names # for the coordinate frame that seem to have been documented if self.phase_center_frame is None: self.phase_center_frame = vis_hdr.pop("RADESYSA", None) if self.phase_center_frame is None: self.phase_center_frame = vis_hdr.pop("RADESYSa", None) # If we _still_ can't find anything, take a guess based on the value # listed in the EPOCH. The behavior listed here is based off of the # AIPS task REGRD (http://www.aips.nrao.edu/cgi-bin/ZXHLP2.PL?REGRD) if self.phase_center_frame is None: if self.phase_center_epoch is None: self.phase_center_frame = "icrs" else: frame = "fk4" if (self.phase_center_epoch == 1950.0) else "fk5" self.phase_center_frame = frame self.extra_keywords = uvutils._get_fits_extra_keywords( vis_hdr, keywords_to_skip=["DATE-OBS"] ) # Next read the antenna table ant_hdu = hdu_list[hdunames["AIPS AN"]] # stuff in the header if self.telescope_name is None: self.telescope_name = ant_hdu.header["ARRNAM"] self.gst0 = ant_hdu.header["GSTIA0"] self.rdate = ant_hdu.header["RDATE"] self.earth_omega = ant_hdu.header["DEGPDY"] self.dut1 = ant_hdu.header["UT1UTC"] if "TIMESYS" in ant_hdu.header.keys(): self.timesys = ant_hdu.header["TIMESYS"] else: # CASA misspells this one self.timesys = ant_hdu.header["TIMSYS"] if "FRAME" in ant_hdu.header.keys(): xyz_telescope_frame = ant_hdu.header["FRAME"] else: warnings.warn( "Required Antenna keyword 'FRAME' not set; " "Assuming frame is 'ITRF'." ) xyz_telescope_frame = "ITRF" # get telescope location and antenna positions. # VLA incorrectly sets ARRAYX/ARRAYY/ARRAYZ to 0, and puts array center # in the antenna positions themselves if ( np.isclose(ant_hdu.header["ARRAYX"], 0) and np.isclose(ant_hdu.header["ARRAYY"], 0) and np.isclose(ant_hdu.header["ARRAYZ"], 0) ): x_telescope = np.mean(ant_hdu.data["STABXYZ"][:, 0]) y_telescope = np.mean(ant_hdu.data["STABXYZ"][:, 1]) z_telescope = np.mean(ant_hdu.data["STABXYZ"][:, 2]) self.antenna_positions = ant_hdu.data.field("STABXYZ") - np.array( [x_telescope, y_telescope, z_telescope] ) else: x_telescope = ant_hdu.header["ARRAYX"] y_telescope = ant_hdu.header["ARRAYY"] z_telescope = ant_hdu.header["ARRAYZ"] # AIPS memo #117 says that antenna_positions should be relative to # the array center, but in a rotated ECEF frame so that the x-axis # goes through the local meridian. rot_ecef_positions = ant_hdu.data.field("STABXYZ") latitude, longitude, altitude = uvutils.LatLonAlt_from_XYZ( np.array([x_telescope, y_telescope, z_telescope]), check_acceptability=run_check_acceptability, ) self.antenna_positions = uvutils.ECEF_from_rotECEF( rot_ecef_positions, longitude ) if xyz_telescope_frame == "ITRF": self.telescope_location = np.array( [x_telescope, y_telescope, z_telescope] ) else: if ( latitude_degrees is not None and longitude_degrees is not None and altitude is not None ): self.telescope_location_lat_lon_alt_degrees = ( latitude_degrees, longitude_degrees, altitude, ) # stuff in columns ant_names = ant_hdu.data.field("ANNAME").tolist() self.antenna_names = [] for ant_ind, name in enumerate(ant_names): # Sometimes CASA writes antnames as bytes not strings. # If the ant name is shorter than 8 characters, the trailing # characters may be non-ascii. # This is technically a FITS violation as FITS requires ascii. # So we just ignore any non-ascii bytes in the decode. if isinstance(name, bytes): ant_name_str = str(name.decode("utf-8", "ignore")) else: ant_name_str = name # remove non-printing ascii characters and exclamation points ant_name_str = ( ant_name_str.replace("\x00", "") .replace("\x07", "") .replace("!", "") ) self.antenna_names.append(ant_name_str) # subtract one to get to 0-indexed values rather than 1-indexed values self.antenna_numbers = ant_hdu.data.field("NOSTA") - 1 self.Nants_telescope = len(self.antenna_numbers) if "DIAMETER" in ant_hdu.columns.names: self.antenna_diameters = ant_hdu.data.field("DIAMETER") try: self.set_telescope_params() except ValueError as ve: warnings.warn(str(ve)) # Now read in the random parameter info self._get_parameter_data( vis_hdu, run_check_acceptability, background_lsts=background_lsts, ) # If we find the source attribute in the FITS random paramter list, # the multi_phase_center attribute will be set to True, and we should also # expect that there must be an AIPS SU table. if self.multi_phase_center and "AIPS SU" not in hdunames.keys(): warnings.warn( "UVFITS file is missing AIPS SU table, which is required when " "SOURCE is one of the `random paramters` in the main binary " "table. Bypassing for now, but note that this file _may_ not " "work correctly in UVFITS-based programs (e.g., AIPS, CASA)." ) name = list(self.phase_center_catalog.keys())[0] self.phase_center_ra = self.phase_center_catalog[name]["cat_lon"] self.phase_center_dec = self.phase_center_catalog[name]["cat_lat"] self.phase_center_frame = self.phase_center_catalog[name]["cat_frame"] self.phase_center_epoch = self.phase_center_catalog[name]["cat_epoch"] self.multi_phase_center = False self._phase_center_id_array.required = False self._Nphase.required = False self._phase_center_catalog.required = False self.object_name = name self.Nphase = None self.phase_center_catalog = None self.phase_center_id_array = None elif self.multi_phase_center: su_hdu = hdu_list[hdunames["AIPS SU"]] # We should have as many entries in the AIPS SU header as we have # unique entries in the SOURCES random paramter (checked in the call # to get_parameter_data above) if len(su_hdu.data) != len(np.unique(self.phase_center_id_array)): raise RuntimeError( "The UVFITS file has a malformed AIPS SU table - number of " "sources do not match the number of unique source IDs in the " "primary data header." ) # pragma: no cover # Reset the catalog, since it has some dummy information stored within # it (that was pulled off the primary table) self._remove_phase_center(list(self.phase_center_catalog.keys())[0]) # Set up these arrays so we can assign values to them self.phase_center_app_ra = np.zeros(self.Nblts) self.phase_center_app_dec = np.zeros(self.Nblts) self.phase_center_app_pa = np.zeros(self.Nblts) # Alright, we are off to the races! for idx in range(len(su_hdu.data)): # Grab the indv source entry sou_info = su_hdu.data[idx] sou_id = sou_info["ID. NO."] sou_name = sou_info["SOURCE"] sou_ra = sou_info["RAEPO"] * (np.pi / 180.0) sou_dec = sou_info["DECEPO"] * (np.pi / 180.0) sou_epoch = sou_info["EPOCH"] sou_frame = "fk5" self._add_phase_center( sou_name, cat_id=sou_id, cat_type="sidereal", cat_lon=sou_ra, cat_lat=sou_dec, cat_frame=sou_frame, cat_epoch=sou_epoch, info_source="uvfits file", ) # Calculate the apparent coordinate values self._set_app_coords_helper() if not read_data: # don't read in the data. This means the object is a metadata # only object but that may not matter for many purposes. return # Now read in the data self._get_data( vis_hdu, antenna_nums, antenna_names, ant_str, bls, frequencies, freq_chans, times, time_range, lsts, lst_range, polarizations, blt_inds, False, keep_all_metadata, run_check, check_extra, run_check_acceptability, strict_uvw_antpos_check, fix_old_proj, fix_use_ant_pos, ) def write_uvfits( self, filename, spoof_nonessential=False, write_lst=True, force_phase=False, run_check=True, check_extra=True, run_check_acceptability=True, strict_uvw_antpos_check=False, ): """ Write the data to a uvfits file. Parameters ---------- filename : str The uvfits file to write to. spoof_nonessential : bool Option to spoof the values of optional UVParameters that are not set but are required for uvfits files. write_lst : bool Option to write the LSTs to the metadata (random group parameters). force_phase : bool Option to automatically phase drift scan data to zenith of the first timestamp. run_check : bool Option to check for the existence and proper shapes of parameters before writing the file. check_extra : bool Option to check optional parameters as well as required ones. run_check_acceptability : bool Option to check acceptable range of the values of parameters before writing the file. strict_uvw_antpos_check : bool Option to raise an error rather than a warning if the check that uvws match antenna positions does not pass. Raises ------ ValueError The `phase_type` of the object is "drift" and the `force_phase` keyword is not set. If the frequencies are not evenly spaced or are separated by more than their channel width. The polarization values are not evenly spaced. Any of ['antenna_positions', 'gst0', 'rdate', 'earth_omega', 'dut1', 'timesys'] are not set on the object and `spoof_nonessential` is False. If the `timesys` parameter is not set to "UTC". TypeError If any entry in extra_keywords is not a single string or number. """ if run_check: self.check( check_extra=check_extra, run_check_acceptability=run_check_acceptability, check_freq_spacing=True, strict_uvw_antpos_check=strict_uvw_antpos_check, ) if self.phase_type == "phased": pass elif self.phase_type == "drift": if force_phase: print( "The data are in drift mode and do not have a " "defined phase center. Phasing to zenith of the first " "timestamp." ) phase_time = Time(self.time_array[0], format="jd") self.phase_to_time(phase_time) else: raise ValueError( "The data are in drift mode. " "Set force_phase to true to phase the data " "to zenith of the first timestamp before " "writing a uvfits file." ) if self.flex_spw: # If we have a 'flexible' spectral window, we will need to evaluate the # frequency axis slightly differently. if self.future_array_shapes: freq_array_use = self.freq_array else: freq_array_use = self.freq_array[0, :] nchan_list = [] start_freq_array = [] delta_freq_array = [] for idx in self.spw_array: chan_mask = self.flex_spw_id_array == idx nchan_list += [np.sum(chan_mask)] start_freq_array += [freq_array_use[chan_mask][0]] # Need the array direction here since channel_width is always supposed # to be > 0, but channels can be in decending freq order freq_dir = np.sign(np.median(np.diff(freq_array_use[chan_mask]))) delta_freq_array += [ np.median(self.channel_width[chan_mask]) * freq_dir ] start_freq_array = np.reshape(np.array(start_freq_array), (1, -1)).astype( np.float64 ) delta_freq_array = np.reshape(np.array(delta_freq_array), (1, -1)).astype( np.float64 ) # We've constructed a couple of lists with relevant values, now time to # check them to make sure that the data will write correctly # Make sure that all the windows are of the same size if len(np.unique(nchan_list)) != 1: raise IndexError( "UVFITS format cannot handle spectral windows of different sizes!" ) # Make sure freq values are greater zero. Note that I think _technically # one could write negative frequencies into the dataset, but I am pretty # sure that reduction packages may balk hard. if np.any(start_freq_array <= 0): raise ValueError("Frequency values must be > 0 for UVFITS!") # Make sure the delta values are non-zero if np.any(delta_freq_array == 0): raise ValueError("Something is wrong, frequency values not unique!") # If we passed all the above checks, then it's time to fill some extra # array values. Note that 'ref_freq' is something of a placeholder for # other exciting things... ref_freq = start_freq_array[0, 0] else: if self.future_array_shapes: ref_freq = self.freq_array[0] # we've already run the check_freq_spacing, so channel widths are the # same to our tolerances delta_freq_array = np.array([[np.median(self.channel_width)]]).astype( np.float64 ) else: ref_freq = self.freq_array[0, 0] delta_freq_array =
np.array([[self.channel_width]])
numpy.array
# 3D棒グラフの作成 # 利用するライブラリ import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation #%% ### 値の指定 ## スカラの場合 # 起点を指定 x = 0.0 y = 0.0 z = 0.0 # バーのハーフサイズの値を指定 a = 0.5 # 変化量を指定 dx = a * 2.0 dy = a * 2.0 dz = 1.0 #%% ## 1次元配列の場合 # 値を作成 vals = np.arange(3) # 格子点を作成 X, Y = np.meshgrid(vals, vals) # 起点を設定 x = X.flatten() y = Y.flatten() z = np.zeros_like(x) # バーのハーフサイズの値を指定 a = 0.5 # 変化量を指定 dx = np.repeat(a=a * 2.0, repeats=len(x)) dy = np.repeat(a=a * 2.0, repeats=len(y)) dz = np.arange(len(z)) #%% ### 引数とバーの関係 # 3D棒グラフを作成 fig = plt.figure(figsize=(9, 8)) # 図の設定 ax = fig.add_subplot(projection='3d') # 3D用の設定 ax.bar3d(x=x, y=y, z=z, dx=dx, dy=dy, dz=dz, color='white', alpha=0.25) # 3D棒グラフ ax.scatter(xs=x, ys=y, zs=z, s=100, color='purple', label='(x, y, z)') # 起点 ax.scatter(xs=x+dx, ys=y, zs=z, s=100, color='red', label='(x+dx, y, z)') # x軸方向に変化した点 ax.scatter(xs=x, ys=y+dy, zs=z, s=100, color='pink', label='(x, y+dy, z)') # y軸方向に変化した点 ax.scatter(xs=x, ys=y, zs=z+dz, s=100, color='orange', label='(x, y, z+dz)') # z軸方向に変化した点 ax.scatter(xs=x+dx, ys=y+dy, zs=z+dz, s=100, color='springgreen', label='(x+dx, y+dy, z+dz)') # 全ての軸で変化した点 ax.quiver(x, y, z, dx, 0.0, 0.0, color='purple', linestyle='--', arrow_length_ratio=0.1) # x軸の変化量 ax.quiver(x, y, z, 0.0, dy, 0.0, color='purple', linestyle='--', arrow_length_ratio=0.1) # y軸の変化量 ax.quiver(x, y, z, 0.0, 0.0, dz, color='purple', linestyle='--', arrow_length_ratio=0.1) # z軸の変化量 ax.quiver(x, y, z, dx, dy, dz, color='purple', arrow_length_ratio=0.1) # 全ての軸の変化量 ax.set_xlabel('x') # x軸ラベル ax.set_ylabel('y') # y軸ラベル ax.set_zlabel('z') # z軸ラベル ax.set_title('bar3d', fontsize='20') # タイトル fig.legend() # 凡例 #ax.view_init(elev=90, azim=270) # 表示アングル plt.show() # 描画 # 3D棒グラフを作成 fig = plt.figure(figsize=(9, 8)) # 図の設定 ax = fig.add_subplot(projection='3d') # 3D用の設定 ax.bar3d(x=x, y=y, z=z, dx=dx, dy=dy, dz=dz, color='white', alpha=0.25) # 3D棒グラフ ax.scatter(xs=x, ys=y, zs=z, s=100, color='purple', label='(x, y, z)') # 起点 ax.scatter(xs=x+dx, ys=y, zs=z, s=100, color='red', label='(x+dx, y, z)') # x軸方向に変化した点 ax.scatter(xs=x+dx, ys=y+dy, zs=z, s=100, color='aqua', label='(x+dx, y+dy, z)') # x軸とy軸方向に変化した点 ax.scatter(xs=x+dx, ys=y+dy, zs=z+dz, s=100, color='springgreen', label='(x+dx, y+dy, z+dz)') # 全ての軸で変化した点 ax.quiver(x, y, z, dx, 0.0, 0.0, color='purple', linestyle=':', arrow_length_ratio=0.1) # x軸の変化量 ax.quiver(x+dx, y, z, 0.0, dy, 0.0, color='purple', linestyle=':', arrow_length_ratio=0.1) # y軸の変化量 ax.quiver(x+dx, y+dy, z, 0.0, 0.0, dz, color='purple', linestyle=':', arrow_length_ratio=0.1) # z軸の変化量 ax.quiver(x, y, z, dx, dy, dz, color='purple', arrow_length_ratio=0.1) # 全ての軸の変化量 ax.set_xlabel('x') # x軸ラベル ax.set_ylabel('y') # y軸ラベル ax.set_zlabel('z') # z軸ラベル ax.set_title('bar3d', fontsize='20') # タイトル fig.legend() # 凡例 #ax.view_init(elev=90, azim=270) # 表示アングル plt.show() # 描画 #%% ### 起点の調整 # デフォルトの設定 fig = plt.figure(figsize=(9, 8)) # 図の設定 ax = fig.add_subplot(projection='3d') # 3D用の設定 ax.bar3d(x=x, y=y, z=z, dx=dx, dy=dy, dz=dz, color='white', alpha=0.5) # 3D棒グラフ ax.scatter(xs=x, ys=y, zs=z, s=100, color='purple', label='(x, y, z)') # 起点 ax.quiver(x, y, z, dx, 0.0, 0.0, color='purple', linestyle='--', arrow_length_ratio=0.1) # x軸の変化量 ax.quiver(x, y, z, 0.0, dy, 0.0, color='purple', linestyle='--', arrow_length_ratio=0.1) # y軸の変化量 ax.quiver(x, y, z, 0.0, 0.0, dz, color='purple', linestyle='--', arrow_length_ratio=0.1) # z軸の変化量 ax.set_xlabel('x') # x軸ラベル ax.set_ylabel('y') # y軸ラベル ax.set_zlabel('z') # z軸ラベル ax.set_title('(x, y, z)', fontsize='20') # タイトル fig.legend() # 凡例 #ax.view_init(elev=90, azim=270) # 表示アングル plt.show() # 描画 # 起点をズラす fig = plt.figure(figsize=(9, 8)) # 図の設定 ax = fig.add_subplot(projection='3d') # 3D用の設定 ax.bar3d(x=x-a, y=y-a, z=z, dx=dx, dy=dy, dz=dz, color='white', alpha=0.5) # 3D棒グラフ ax.scatter(xs=x, ys=y, zs=z, color='purple', s=100, label='(x, y, z)') # 元の起点 ax.scatter(xs=x-a, ys=y-a, zs=z, color='green', s=100, label='(x-' + str(a) + ', y-' + str(a) + ', z)') # 調整後の起点 ax.quiver(x-a, y-a, z, dx, 0.0, 0.0, color='green', linestyle='--', arrow_length_ratio=0.1) # x軸の変化量 ax.quiver(x-a, y-a, z, 0.0, dy, 0.0, color='green', linestyle='--', arrow_length_ratio=0.1) # y軸の変化量 ax.quiver(x-a, y-a, z, 0.0, 0.0, dz, color='green', linestyle='--', arrow_length_ratio=0.1) # z軸の変化量 ax.set_xlabel('x') # x軸ラベル ax.set_ylabel('y') # y軸ラベル ax.set_zlabel('z') # z軸ラベル ax.set_title('(x-a, y-a, z)', fontsize='20') # タイトル fig.legend() # 凡例 #ax.view_init(elev=90, azim=270) # 表示アングル plt.show() # 描画 #%% ### shade引数 # 影を付ける:(デフォルト) fig = plt.figure(figsize=(9, 8)) # 図の設定 ax = fig.add_subplot(projection='3d') # 3D用の設定 ax.bar3d(x=x, y=y, z=z, dx=dx, dy=dy, dz=dz, shade=True) # 3D棒グラフ ax.set_xlabel('x') # x軸ラベル ax.set_ylabel('y') # y軸ラベル ax.set_zlabel('z') # z軸ラベル ax.set_title('shade=True', fontsize='20') # タイトル #ax.view_init(elev=90, azim=270) # 表示アングル plt.show() # 描画 # 影を消す fig = plt.figure(figsize=(9, 8)) # 図の設定 ax = fig.add_subplot(projection='3d') # 3D用の設定 ax.bar3d(x=x-a, y=y-a, z=z, dx=dx, dy=dy, dz=dz, shade=False) # 3D棒グラフ ax.set_xlabel('x') # x軸ラベル ax.set_ylabel('y') # y軸ラベル ax.set_zlabel('z') # z軸ラベル ax.set_title('shade=False', fontsize='20') # タイトル #ax.view_init(elev=90, azim=270) # 表示アングル plt.show() # 描画 #%% ### color引数 # カラーマップを指定 cm = plt.get_cmap('jet') # RGBA情報に変換 print(cm(1.0)) # カラーマップを指定 fig = plt.figure(figsize=(9, 8)) # 図の設定 ax = fig.add_subplot(projection='3d') # 3D用の設定 ax.bar3d(x=x-a, y=y-a, z=z, dx=dx, dy=dy, dz=dz, color=cm(dz / np.max(dz)), alpha=0.5) # 3D棒グラフ ax.set_xlabel('x') # x軸ラベル ax.set_ylabel('y') # y軸ラベル ax.set_zlabel('z') # z軸ラベル ax.set_title("cmap='jet'", fontsize='20') # タイトル plt.show() # 描画 #%% ### edgecolor引数 # カラーマップを指定 cm = plt.get_cmap('rainbow') # デフォルトの設定 fig = plt.figure(figsize=(9, 8)) # 図の設定 ax = fig.add_subplot(projection='3d') # 3D用の設定 ax.bar3d(x=x-a, y=y-a, z=z, dx=dx, dy=dy, dz=dz, color=cm(dz / np.max(dz)), edgecolor=cm(dz / np.max(dz)), alpha=0.5) # 3D棒グラフ ax.set_xlabel('x') # x軸ラベル ax.set_ylabel('y') # y軸ラベル ax.set_zlabel('z') # z軸ラベル ax.set_title('edgecolor=cm(...)', fontsize='20') # タイトル plt.show() # 描画 # 面と辺の色を一致させる fig = plt.figure(figsize=(9, 8)) # 図の設定 ax = fig.add_subplot(projection='3d') # 3D用の設定 ax.bar3d(x=x-a, y=y-a, z=z, dx=dx, dy=dy, dz=dz, color=cm(dz / np.max(dz)), edgecolor=cm(np.repeat(dz / np.max(dz), 6)), alpha=0.5) # 3D棒グラフ ax.set_xlabel('x') # x軸ラベル ax.set_ylabel('y') # y軸ラベル ax.set_zlabel('z') # z軸ラベル ax.set_title('edgecolor=cm(np.repeat(..., 6))', fontsize='20') # タイトル plt.show() # 描画 #%% # カラーマップを指定 cm = plt.get_cmap('rainbow') # カラーマップを確認 plt.figure(figsize=(9, 8)) # 図の設定 plt.scatter(np.arange(6), np.arange(6), color=cm(np.arange(6) / 5), s=250) # 散布図 plt.grid() # グリッド線 plt.title("cmap='rainbow'", fontsize=20) # タイトル plt.show() # 描画 # 辺の色付け順を確認 fig = plt.figure(figsize=(9, 8)) # 図の設定 ax = fig.add_subplot(projection='3d') # 3D用の設定 ax = fig.add_subplot(projection='3d') # 3D用の設定 ax.bar3d(x=-0.5, y=-0.5, z=0.0, dx=1.0, dy=1.0, dz=1.0, color='white', edgecolors=cm(
np.arange(6)
numpy.arange
import numpy as np from pyBKT.generate import synthetic_data from pyBKT.generate import random_model, random_model_uni from pyBKT.fit import EM_fit from copy import deepcopy from pyBKT.util import print_dot #parameters num_subparts = 4 num_resources = 2 num_fit_initializations = 25 observation_sequence_lengths = np.full(50, 100, dtype=np.int) #generate synthetic model and data. #model is really easy. truemodel = {} truemodel["As"] =
np.zeros((num_resources, 2, 2), dtype=np.float_)
numpy.zeros
import gym from gym import spaces, logger import math import numpy as np from gym.utils import seeding from copy import deepcopy import warnings import os class TaskT(gym.Env): metadata = {'name':'TaskT', 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': 50} spec = {'id':'TaskT'} def __init__(self, sections=1, seq='RGB', final_reward=False, reward_obs=True, R=4, saving=False, log_dir="./TaskT_log/"): """ Sequential target reaching task. :param sections: how many targets to reach to finish the task :param seq: any combination of 'R', 'G', 'B' to indicated the required sequence of target-reaching. :param final_reward: if True, only final target provides reward, otherwise all targets provide reward. :param reward_obs: whether reward is one element of observation :param R: difficulty (distance between targets) :param saving: whether to save steps/rewards into txt file :param log_dir: directory to save steps/rewards """ self.sections = sections self.saving = saving self.log_dir = log_dir self.final_reward = final_reward self.reward_obs = reward_obs self.sequence = seq self.R = R self.reward = 0.0 self.reward_signal = 0.0 self.dim_position = 2 self.dim_action = 2 self.speed = 0.8 self.radius = 0.5 self.max_steps = 128 self.steps = 0 self.init_position = np.array([7.5, 7.5], dtype=np.float32) self.init_position[0] += np.float32(15 * (np.random.rand() - 0.5)) self.init_position[1] += np.float32(15 * (np.random.rand() - 0.5)) self.old_position = self.init_position self.new_position = self.init_position self.orientation = 2 * np.pi * np.random.rand() self.init_state = 0 self.size = 1 self.action_space = spaces.Box(low=-1., high=1., shape=(2,)) if reward_obs: self.observation_space = spaces.Box(low=-1., high=5., shape=(12,)) else: self.observation_space = spaces.Box(low=-1., high=1., shape=(11,)) self.reward_range = (-np.Inf, np.Inf) self._seed() if self.saving: if os.path.exists(log_dir): warnings.warn('{} exists (possibly so do data).'.format(log_dir)) else: os.makedirs(log_dir) path = self.log_dir + 'TaskT' + '.txt' self.file_pointer = open(path, 'w+') self.red_position = np.float32(R * (
np.random.rand(self.dim_position)
numpy.random.rand
# Copyright 2020 D-Wave Systems Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This is not the main demo script. It is simple a handy script generate more # interesting data to try with the main demo script, `clustering.py`. # # This script is about setting up this more interesting data and then passing # the data to `clustering.cluster_points(..)`, a key function `clustering.py`. import numpy as np from utilities import visualize_scatterplot from clustering import cluster_points # Set up three different clusters of data points covariance = [[3, 0], [0, 3]] n_points = 3 x0, y0 = np.random.multivariate_normal([0, 0], covariance, n_points).T x1, y1 = np.random.multivariate_normal([10, 5], covariance, n_points).T x2, y2 = np.random.multivariate_normal([5, 15], covariance, n_points).T # Combine data points together into a list of tuples # Note: data points now look like [(x0, y0), (x1, y1), ..] xs = np.hstack([x0, x1, x2]) ys = np.hstack([y0, y1, y2]) xys =
np.vstack([xs, ys])
numpy.vstack
import numpy as np np.random.seed(1234) import matplotlib.pyplot as plt from scipy.stats import gamma, beta, betaprime from pyhawkes.models import DiscreteTimeNetworkHawkesModelSpikeAndSlab from pybasicbayes.util.text import progprint_xrange if __name__ == "__main__": """ Create a discrete time Hawkes model and generate from it. :return: """ K = 1 T = 50 dt = 1.0 dt_max = 3.0 # network_hypers = {'C': 1, 'p': 0.5, 'kappa': 3.0, 'alpha': 3.0, 'beta': 1.0/20.0} network_hypers = {'c': np.zeros(K, dtype=np.int), 'p': 0.5, 'kappa': 10.0, 'v': 10*3.0} bkgd_hypers = {"alpha": 1., "beta": 10.} model = DiscreteTimeNetworkHawkesModelSpikeAndSlab(K=K, dt=dt, dt_max=dt_max, weight_hypers={"parallel_resampling": False}, network_hypers=network_hypers) model.generate(T=T) # Gibbs sample and then generate new data N_samples = 10000 samples = [] lps = [] for itr in progprint_xrange(N_samples, perline=50): # Resample the model model.resample_model() samples.append(model.copy_sample()) lps.append(model.log_likelihood()) # Geweke step model.data_list.pop() model.generate(T=T) # Compute sample statistics for second half of samples A_samples = np.array([s.weight_model.A for s in samples]) W_samples = np.array([s.weight_model.W for s in samples]) g_samples = np.array([s.impulse_model.g for s in samples]) lambda0_samples = np.array([s.bias_model.lambda0 for s in samples]) lps =
np.array(lps)
numpy.array
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ Training script for split CUB experiment with zero shot transfer. """ from __future__ import print_function import argparse import os import sys import math import time import datetime import numpy as np import tensorflow as tf from copy import deepcopy from six.moves import cPickle as pickle from utils.data_utils import image_scaling, random_crop_and_pad_image, random_horizontal_flip, construct_split_cub from utils.utils import get_sample_weights, sample_from_dataset, concatenate_datasets, update_episodic_memory_with_less_data, samples_for_each_class, sample_from_dataset_icarl, load_task_specific_data from utils.vis_utils import plot_acc_multiple_runs, plot_histogram, snapshot_experiment_meta_data, snapshot_experiment_eval, snapshot_task_labels from model import Model ############################################################### ################ Some definitions ############################# ### These will be edited by the command line options ########## ############################################################### ## Training Options NUM_RUNS = 5 # Number of experiments to average over TRAIN_ITERS = 2000 # Number of training iterations per task BATCH_SIZE = 16 LEARNING_RATE = 0.1 RANDOM_SEED = 1234 VALID_OPTIMS = ['SGD', 'MOMENTUM', 'ADAM'] OPTIM = 'SGD' OPT_MOMENTUM = 0.9 OPT_POWER = 0.9 VALID_ARCHS = ['CNN', 'VGG', 'RESNET-B'] ARCH = 'RESNET-B' PRETRAIN = True ## Model options MODELS = ['VAN', 'PI', 'EWC', 'MAS', 'RWALK', 'A-GEM'] #List of valid models IMP_METHOD = 'EWC' SYNAP_STGTH = 75000 FISHER_EMA_DECAY = 0.9 # Exponential moving average decay factor for Fisher computation (online Fisher) FISHER_UPDATE_AFTER = 50 # Number of training iterations for which the F_{\theta}^t is computed (see Eq. 10 in RWalk paper) SAMPLES_PER_CLASS = 5 # Number of samples per task IMG_HEIGHT = 224 IMG_WIDTH = 224 IMG_CHANNELS = 3 TOTAL_CLASSES = 200 # Total number of classes in the dataset EPS_MEM_BATCH_SIZE = 128 DEBUG_EPISODIC_MEMORY = False KEEP_EPISODIC_MEMORY_FULL = False K_FOR_CROSS_VAL = 3 ## Logging, saving and testing options LOG_DIR = './split_cub_results' SNAPSHOT_DIR = './cub_snapshots' SAVE_MODEL_PARAMS = False ## Evaluation options ## Task split NUM_TASKS = 20 MULTI_TASK = False ## Dataset specific options ATTR_DIMS = 312 DATA_DIR='CUB_data/CUB_200_2011/images' #CUB_TRAIN_LIST = 'dataset_lists/tmp_list.txt' #CUB_TEST_LIST = 'dataset_lists/tmp_list.txt' CUB_TRAIN_LIST = 'dataset_lists/CUB_train_list.txt' CUB_TEST_LIST = 'dataset_lists/CUB_test_list.txt' CUB_ATTR_LIST = 'dataset_lists/CUB_attr_in_order.pickle' RESNET18_IMAGENET_CHECKPOINT = './resnet-18-pretrained-imagenet/model.ckpt' # Define function to load/ store training weights. We will use ImageNet initialization later on def save(saver, sess, logdir, step): '''Save weights. Args: saver: TensorFlow Saver object. sess: TensorFlow session. logdir: path to the snapshots directory. step: current training step. ''' model_name = 'model.ckpt' checkpoint_path = os.path.join(logdir, model_name) if not os.path.exists(logdir): os.makedirs(logdir) saver.save(sess, checkpoint_path, global_step=step) print('The checkpoint has been created.') def load(saver, sess, ckpt_path): '''Load trained weights. Args: saver: TensorFlow Saver object. sess: TensorFlow session. ckpt_path: path to checkpoint file with parameters. ''' saver.restore(sess, ckpt_path) print("Restored model parameters from {}".format(ckpt_path)) def get_arguments(): """Parse all the arguments provided from the CLI. Returns: A list of parsed arguments. """ parser = argparse.ArgumentParser(description="Script for split CUB hybrid experiment.") parser.add_argument("--cross-validate-mode", action="store_true", help="If option is chosen then snapshoting after each batch is disabled") parser.add_argument("--online-cross-val", action="store_true", help="If option is chosen then enable the online cross validation of the learning rate") parser.add_argument("--train-single-epoch", action="store_true", help="If option is chosen then train for single epoch") parser.add_argument("--set-hybrid", action="store_true", help="If option is chosen then train using hybrid model") parser.add_argument("--eval-single-head", action="store_true", help="If option is chosen then evaluate on a single head setting.") parser.add_argument("--arch", type=str, default=ARCH, help="Network Architecture for the experiment.\ \n \nSupported values: %s"%(VALID_ARCHS)) parser.add_argument("--num-runs", type=int, default=NUM_RUNS, help="Total runs/ experiments over which accuracy is averaged.") parser.add_argument("--train-iters", type=int, default=TRAIN_ITERS, help="Number of training iterations for each task.") parser.add_argument("--batch-size", type=int, default=BATCH_SIZE, help="Mini-batch size for each task.") parser.add_argument("--random-seed", type=int, default=RANDOM_SEED, help="Random Seed.") parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE, help="Starting Learning rate for each task.") parser.add_argument("--optim", type=str, default=OPTIM, help="Optimizer for the experiment. \ \n \nSupported values: %s"%(VALID_OPTIMS)) parser.add_argument("--imp-method", type=str, default=IMP_METHOD, help="Model to be used for LLL. \ \n \nSupported values: %s"%(MODELS)) parser.add_argument("--synap-stgth", type=float, default=SYNAP_STGTH, help="Synaptic strength for the regularization.") parser.add_argument("--fisher-ema-decay", type=float, default=FISHER_EMA_DECAY, help="Exponential moving average decay for Fisher calculation at each step.") parser.add_argument("--fisher-update-after", type=int, default=FISHER_UPDATE_AFTER, help="Number of training iterations after which the Fisher will be updated.") parser.add_argument("--do-sampling", action="store_true", help="Whether to do sampling") parser.add_argument("--mem-size", type=int, default=SAMPLES_PER_CLASS, help="Number of samples per class from previous tasks.") parser.add_argument("--is-herding", action="store_true", help="Herding based sampling") parser.add_argument("--data-dir", type=str, default=DATA_DIR, help="Directory from where the CUB data will be read.\ NOTE: Provide path till <CUB_DIR>/images") parser.add_argument("--init-checkpoint", type=str, default=RESNET18_IMAGENET_CHECKPOINT, help="TF checkpoint file containing initialization for ImageNet.\ NOTE: NPZ file for VGG and TF Checkpoint for ResNet") parser.add_argument("--log-dir", type=str, default=LOG_DIR, help="Directory where the plots and model accuracies will be stored.") return parser.parse_args() def train_task_sequence(model, sess, saver, datasets, class_attr, classes_per_task, cross_validate_mode, train_single_epoch, eval_single_head, do_sampling, is_herding, mem_per_class, train_iters, batch_size, num_runs, init_checkpoint, online_cross_val, random_seed): """ Train and evaluate LLL system such that we only see a example once Args: Returns: dict A dictionary containing mean and stds for the experiment """ # List to store accuracy for each run runs = [] task_labels_dataset = [] break_training = 0 # Loop over number of runs to average over for runid in range(num_runs): print('\t\tRun %d:'%(runid)) # Initialize the random seeds np.random.seed(random_seed+runid) # Get the task labels from the total number of tasks and full label space task_labels = [] total_classes = classes_per_task * model.num_tasks if online_cross_val: label_array = np.arange(total_classes) else: class_label_offset = K_FOR_CROSS_VAL * classes_per_task label_array = np.arange(class_label_offset, total_classes+class_label_offset) np.random.shuffle(label_array) for tt in range(model.num_tasks): tt_offset = tt*classes_per_task task_labels.append(list(label_array[tt_offset:tt_offset+classes_per_task])) print('Task: {}, Labels:{}'.format(tt, task_labels[tt])) # Store the task labels task_labels_dataset.append(task_labels) # Set episodic memory size episodic_mem_size = mem_per_class * total_classes # Initialize all the variables in the model sess.run(tf.global_variables_initializer()) if PRETRAIN: # Load the variables from a checkpoint if model.network_arch == 'RESNET-B': # Define loader (weights which will be loaded from a checkpoint) restore_vars = [v for v in model.trainable_vars if 'fc' not in v.name and 'attr_embed' not in v.name] loader = tf.train.Saver(restore_vars) load(loader, sess, init_checkpoint) elif model.network_arch == 'VGG': # Load the pretrained weights from the npz file weights = np.load(init_checkpoint) keys = sorted(weights.keys()) for i, key in enumerate(keys[:-2]): # Load everything except the last layer sess.run(model.trainable_vars[i].assign(weights[key])) # Run the init ops model.init_updates(sess) # List to store accuracies for a run evals = [] # List to store the classes that we have so far - used at test time test_labels = [] if model.imp_method == 'S-GEM': # List to store the episodic memories of the previous tasks task_based_memory = [] if model.imp_method == 'A-GEM': # Reserve a space for episodic memory episodic_images = np.zeros([episodic_mem_size, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS]) episodic_labels = np.zeros([episodic_mem_size, TOTAL_CLASSES]) episodic_filled_counter = 0 a_gem_logit_mask = np.zeros([model.num_tasks, TOTAL_CLASSES]) # Labels for all the tasks that we have seen in the past prev_task_labels = [] prev_class_attrs = np.zeros_like(class_attr) if do_sampling: # List to store important samples from the previous tasks last_task_x = None last_task_y_ = None # Mask for the softmax logit_mask = np.zeros(TOTAL_CLASSES) # Training loop for all the tasks for task in range(len(task_labels)): print('\t\tTask %d:'%(task)) # If not the first task then restore weights from previous task if(task > 0): model.restore(sess) # If sampling flag is set append the previous datasets if do_sampling: task_tr_images, task_tr_labels = load_task_specific_data(datasets[0]['train'], task_labels[task]) if task > 0: task_train_images, task_train_labels = concatenate_datasets(task_tr_images, task_tr_labels, last_task_x, last_task_y_) else: task_train_images = task_tr_images task_train_labels = task_tr_labels else: # Extract training images and labels for the current task task_train_images, task_train_labels = load_task_specific_data(datasets[0]['train'], task_labels[task]) # If multi_task is set then train using all the datasets of all the tasks if MULTI_TASK: if task == 0: for t_ in range(1, len(task_labels)): task_tr_images, task_tr_labels = load_task_specific_data(datasets[0]['train'], task_labels[t_]) task_train_images = np.concatenate((task_train_images, task_tr_images), axis=0) task_train_labels = np.concatenate((task_train_labels, task_tr_labels), axis=0) else: # Skip training for this task continue print('Received {} images, {} labels at task {}'.format(task_train_images.shape[0], task_train_labels.shape[0], task)) # Test for the tasks that we've seen so far test_labels.extend(task_labels[task]) # Declare variables to store sample importance if sampling flag is set if do_sampling: # Get the sample weighting task_sample_weights = get_sample_weights(task_train_labels, test_labels) else: # Assign equal weights to all the examples task_sample_weights = np.ones([task_train_labels.shape[0]], dtype=np.float32) num_train_examples = task_train_images.shape[0] # Train a task observing sequence of data logit_mask[:] = 0 if train_single_epoch: # Ceiling operation num_iters = (num_train_examples + batch_size - 1) // batch_size if cross_validate_mode: if do_sampling: logit_mask[test_labels] = 1.0 else: logit_mask[task_labels[task]] = 1.0 else: num_iters = train_iters if do_sampling: logit_mask[test_labels] = 1.0 else: logit_mask[task_labels[task]] = 1.0 # Randomly suffle the training examples perm = np.arange(num_train_examples) np.random.shuffle(perm) train_x = task_train_images[perm] train_y = task_train_labels[perm] task_sample_weights = task_sample_weights[perm] # Array to store accuracies when training for task T ftask = [] if MULTI_TASK: logit_mask[:] = 1.0 masked_class_attrs = class_attr else: # Attribute mask masked_class_attrs = np.zeros_like(class_attr) if do_sampling: masked_class_attrs[test_labels] = class_attr[test_labels] else: masked_class_attrs[task_labels[task]] = class_attr[task_labels[task]] # Training loop for task T for iters in range(num_iters): if train_single_epoch and not cross_validate_mode and not MULTI_TASK: #if (iters <= 50 and iters % 5 == 0) or (iters > 50 and iters % 50 == 0): if (iters < 10) or (iters % 5 == 0): # Snapshot the current performance across all tasks after each mini-batch fbatch = test_task_sequence(model, sess, datasets[0]['test'], class_attr, classes_per_task, task_labels, task) ftask.append(fbatch) # Set the output labels over which the model needs to be trained if model.imp_method == 'A-GEM': a_gem_logit_mask[:] = 0 a_gem_logit_mask[task][task_labels[task]] = 1.0 else: logit_mask[:] = 0 if do_sampling: logit_mask[test_labels] = 1.0 else: logit_mask[task_labels[task]] = 1.0 if train_single_epoch: offset = iters * batch_size if (offset+batch_size <= num_train_examples): residual = batch_size else: residual = num_train_examples - offset feed_dict = {model.x: train_x[offset:offset+residual], model.y_: train_y[offset:offset+residual], model.class_attr: masked_class_attrs, model.sample_weights: task_sample_weights[offset:offset+residual], model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 0.5, model.train_phase: True} else: offset = (iters * batch_size) % (num_train_examples - batch_size) feed_dict = {model.x: train_x[offset:offset+batch_size], model.y_: train_y[offset:offset+batch_size], model.class_attr: masked_class_attrs, model.sample_weights: task_sample_weights[offset:offset+batch_size], model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 0.5, model.train_phase: True} if model.imp_method == 'VAN': feed_dict[model.output_mask] = logit_mask _, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict) elif model.imp_method == 'EWC': feed_dict[model.output_mask] = logit_mask # If first iteration of the first task then set the initial value of the running fisher if task == 0 and iters == 0: sess.run([model.set_initial_running_fisher], feed_dict=feed_dict) # Update fisher after every few iterations if (iters + 1) % model.fisher_update_after == 0: sess.run(model.set_running_fisher) sess.run(model.reset_tmp_fisher) _, _, loss = sess.run([model.set_tmp_fisher, model.train, model.reg_loss], feed_dict=feed_dict) elif model.imp_method == 'PI': feed_dict[model.output_mask] = logit_mask _, _, _, loss = sess.run([model.weights_old_ops_grouped, model.train, model.update_small_omega, model.reg_loss], feed_dict=feed_dict) elif model.imp_method == 'MAS': feed_dict[model.output_mask] = logit_mask _, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict) elif model.imp_method == 'S-GEM': if task == 0: logit_mask[:] = 0 logit_mask[task_labels[task]] = 1.0 feed_dict[model.output_mask] = logit_mask # Normal application of gradients _, loss = sess.run([model.train_first_task, model.agem_loss], feed_dict=feed_dict) else: # Randomly sample a task from the previous tasks prev_task = np.random.randint(0, task) # Set the logit mask for the randomly sampled task logit_mask[:] = 0 logit_mask[task_labels[prev_task]] = 1.0 prev_class_attrs = np.zeros_like(class_attr) prev_class_attrs[task_labels[prev_task]] = class_attr[task_labels[prev_task]] # Store the reference gradient sess.run(model.store_ref_grads, feed_dict={model.x: task_based_memory[prev_task]['images'], model.y_: task_based_memory[prev_task]['labels'], model.class_attr: prev_class_attrs, model.keep_prob: 1.0, model.output_mask: logit_mask, model.train_phase: True}) # Compute the gradient for current task and project if need be logit_mask[:] = 0 logit_mask[task_labels[task]] = 1.0 feed_dict[model.output_mask] = logit_mask _, loss = sess.run([model.train_subseq_tasks, model.agem_loss], feed_dict=feed_dict) elif model.imp_method == 'A-GEM': if task == 0: a_gem_logit_mask[:] = 0 a_gem_logit_mask[task][task_labels[task]] = 1.0 logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, a_gem_logit_mask)} feed_dict.update(logit_mask_dict) feed_dict[model.mem_batch_size] = batch_size # Normal application of gradients _, loss = sess.run([model.train_first_task, model.agem_loss], feed_dict=feed_dict) else: ## Compute and store the reference gradients on the previous tasks # Set the mask for all the previous tasks so far a_gem_logit_mask[:] = 0 for tt in range(task): a_gem_logit_mask[tt][task_labels[tt]] = 1.0 if KEEP_EPISODIC_MEMORY_FULL: mem_sample_mask = np.random.choice(episodic_mem_size, EPS_MEM_BATCH_SIZE, replace=False) # Sample without replacement so that we don't sample an example more than once else: if episodic_filled_counter <= EPS_MEM_BATCH_SIZE: mem_sample_mask =
np.arange(episodic_filled_counter)
numpy.arange
import numpy as np import multiprocessing import sys import time import matplotlib.pyplot as plt # ============================================================================= # Distributed Computing Parameters pool_size = multiprocessing.cpu_count() # Genetic Circuit Hyperparameters NODES = 3000 # Evolutionary Algorithm Hyperparameters GENERATIONS = 201 # number of generations to run # Other Hyperparameters # STEP_MUTATION_RATE = 0.9 # BIG_STEP_MUTATION_RATE = 0.8 # RANDOM_MUTATION_RATE = 1 # SIGN_FLIP_MUTATION_RATE = 0.1 # REG_RATE = 0.0003 # regularization rate STEP_SIZE = 2.0 # max mutation intensity of each weight POPULATION = pool_size * 6 # total number of population SURVIVABLE_PARENTS = POPULATION // 3 # number of parents to survive # Novelty Search Hyperparameters # KNN_BC_NUM = 1 # k nearest neighbors number for behavior characteristics # ARCHIVE_STORING_RATE = 0.01 # ODE TIME_STEPS = 300 BATCH_SIZE = 30 # Fully dividable by 3 recommended # Score Constraints ERROR_BOUND = 0.1 # percentage of error allowed (sigmoid bounds are +-1) BANDPASS_BOUND = 0.3 # the absolute bound of each weight (very important) # choose something close to sigmoid saturation is good (eg. 7.5+, 5 is not good, 10 is good) BOUND = 13 # Parameters (Derived from hyperparameters) DNA_SIZE = NODES * NODES UPPER_BANDPASS_BOUND = 1 - BANDPASS_BOUND COST_UPPER_BOUND = ERROR_BOUND * BATCH_SIZE # ============================================================================= # Mean normalization def standardize(population): # as known as z-score normalization # the other method being min-max normalization for i, weights in enumerate(population): mean = np.mean(weights) std = np.std(weights) population[i] = (weights - mean) / std return population # ============================================================================= # ODE & Simulations def sigmoid(x): return 1 / (1 + np.exp(-x)) # FF Classifier # Here, only the classical solution determinator is implemented # def simulate_ode_original(W, N, B, S): # dt = 0.01 # initial_val = 0.1 * np.ones([B, S]) # can we reuse this? # input_val = np.linspace(0, 2, B).reshape(B, 1) * np.random.normal( # loc=1.0, scale=0.0001, size=[N, B, S]) # can we reduce the redundants? # input_val[:, :, 1:S] = 0.0 # output = initial_val + ( # sigmoid(np.matmul(initial_val, W)) - initial_val + input_val[0]) * dt # # print(output) # # HOW: create one time np.linspace(0, 2, B), mutate and reuse in for loop # for i in range(1, N): # output = output + ( # sigmoid(np.matmul(output, W)) - output + input_val[i]) * dt # # print(output) # return output # input_initializer = np.linspace(0, 2, BATCH_SIZE).reshape(BATCH_SIZE, 1,) # input_val[:, 0] = np.linspace(0, 2, BATCH_SIZE).reshape(BATCH_SIZE) # print(np.random.normal(loc=1.0, scale=0.0001)) dt = 0.01 initial_val = 0.1 * np.ones([BATCH_SIZE, NODES]) input_val = np.zeros((BATCH_SIZE, NODES)) linspace_col = np.linspace(0, 2, BATCH_SIZE).reshape(BATCH_SIZE) def simulate_ode(W, N, B, S): # Insert one input and have three outputs input_val[:, 0] = linspace_col * np.random.normal(loc=1.0, scale=0.0001) input_val[:, 1] = linspace_col * np.random.normal(loc=1.0, scale=0.0001) input_val[:, 2] = linspace_col * np.random.normal(loc=1.0, scale=0.0001) output = ( initial_val + (sigmoid(np.matmul(initial_val, W)) - initial_val + input_val) * dt ) for i in range(1, N): input_val[:, 0] = linspace_col * np.random.normal(loc=1.0, scale=0.0001) input_val[:, 1] = linspace_col * np.random.normal(loc=1.0, scale=0.0001) input_val[:, 2] = linspace_col * np.random.normal(loc=1.0, scale=0.0001) output = output + (sigmoid(np.matmul(output, W)) - output + input_val) * dt # print(output) return output def plot_expressions(y, B): b = np.linspace(1, B, B) plt.title(f"{NODES} Nodes") plt.plot(b, y[:, 0], "black", linewidth=2, label="Input Node #1") plt.plot(b, y[:, 1], "saddlebrown", linewidth=2, label="Input Node #2") for i in range(3, y.shape[1] - 1): # plt.plot(b, y[:, i], 'g-', linewidth=2, label='Support Node') plt.plot(b, y[:, i], "gray", linewidth=2) plt.plot(b, y[:, -3], "b", linewidth=2, label="Output Node #3 - Switch") plt.plot(b, y[:, -2], "g", linewidth=2, label="Output Node #2 - Valley") plt.plot(b, y[:, -1], "r", linewidth=2, label="Output Node #1 - Bandpass") plt.xlabel("Input Level") plt.ylabel("Output Level") plt.legend() plt.show() # ============================================================================= # Behavior characteristic distance mean calculator # def population_novelty(population): # pop_novelty = np.zeros(POPULATION) # bc_distance = np.zeros(POPULATION) # for i, weights in enumerate(population): # for j, target in enumerate(population): # bc_distance[j] = np.linalg.norm(weights - target) # # only uses KNN_BC_NUM of bc_distance to calculate bc_dist_mean # bc_distance.sort() # pop_novelty[i] = np.mean(bc_distance[-KNN_BC_NUM:]) # return pop_novelty # ============================================================================= # The forever (unforgettable) archive of most novel children in a generation # Or another method: Prob 1% to store any children to archive # archive = [] # ============================================================================= # Double mergesort sorting by alist def double_mergesort(alist, blist): # print("Splitting ",alist) if len(alist) > 1: mid = len(alist) // 2 lefthalf_a = alist[:mid] lefthalf_b = blist[:mid] righthalf_a = alist[mid:] righthalf_b = blist[mid:] double_mergesort(lefthalf_a, lefthalf_b) double_mergesort(righthalf_a, righthalf_b) i = 0 j = 0 k = 0 while i < len(lefthalf_a) and j < len(righthalf_a): if lefthalf_a[i] < righthalf_a[j]: alist[k] = lefthalf_a[i] blist[k] = lefthalf_b[i] i = i + 1 else: alist[k] = righthalf_a[j] blist[k] = righthalf_b[j] j = j + 1 k = k + 1 while i < len(lefthalf_a): alist[k] = lefthalf_a[i] blist[k] = lefthalf_b[i] i = i + 1 k = k + 1 while j < len(righthalf_a): alist[k] = righthalf_a[j] blist[k] = righthalf_b[j] j = j + 1 k = k + 1 # ============================================================================= # Main functions # Bandpass Determinator # Determines whether the solution given is a bandpass # so that you don't need the flags -> faster def bandpass_determinator(y): # here we check only one node # it would be wise to check other nodes, to check if it is classical solution starting_low_flag = False middle_high_flag = False ending_low_flag = False for pt in y[:, -1]: if not starting_low_flag: if pt < BANDPASS_BOUND: starting_low_flag = True elif not middle_high_flag: if pt > UPPER_BANDPASS_BOUND: middle_high_flag = True elif not ending_low_flag: if pt < BANDPASS_BOUND: # something is wrong here ending_low_flag = True else: if pt > BANDPASS_BOUND: ending_low_flag = False # print(starting_low_flag, middle_high_flag, ending_low_flag) return starting_low_flag and middle_high_flag and ending_low_flag # Bandpass Cost function (for objective based selection method, the lower the better) # Assume pt size is dividable by three bandpass_design = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] bandpass_design = np.array(bandpass_design) def bandpass_cost_calculator(y, B): cost = np.sum(np.abs(y - bandpass_design)) return cost def switch_cost_calculator(y, B): cost = 0 for pt in y[: B // 2]: cost += np.absolute(pt - 0) for put in y[B // 2 :]: cost += np.absolute(1 - pt) return cost def linear_cost_calculator(y, B): B -= 1 cost = 0 for i, pt in enumerate(y): cost += np.absolute(pt - (i / B)) return cost peak_design = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0, 1.0, 0.875, 0.75, 0.625, 0.5, 0.375, 0.25, 0.125, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] peak_design = np.array(peak_design) def peak_cost_calculator(y, B): # Experiment failed: Made a mountain instead, much easier than bandpass... cost = np.sum(np.abs(y - peak_design)) return cost cosine_design = [ 1.0, 0.9766205557100867, 0.907575419670957, 0.7960930657056438, 0.6473862847818277, 0.46840844069979015, 0.26752833852922075, 0.05413890858541761, -0.16178199655276473, -0.37013815533991445, -0.5611870653623823, -0.7259954919231308, -0.8568571761675893, -0.9476531711828025, -0.9941379571543596, -0.9941379571543596, -0.9476531711828025, -0.8568571761675892, -0.7259954919231307, -0.5611870653623825, -0.37013815533991445, -0.16178199655276476, 0.05413890858541758, 0.267528338529221, 0.4684084406997903, 0.6473862847818279, 0.796093065705644, 0.9075754196709569, 0.9766205557100867, 1.0, ] cosine_design = np.array(cosine_design) def cosine_cost_calculator(y, B): cost = np.sum(np.abs(y - cosine_design)) return cost # valley_design = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9458172417006346, 0.7891405093963936, 0.546948158122427, 0.24548548714079924, -0.08257934547233227, -0.40169542465296926, -0.6772815716257409, -0.879473751206489, -0.9863613034027223, -0.9863613034027224, -0.8794737512064891, -0.6772815716257414, -0.40169542465296987, -0.08257934547233274, 0.2454854871407988, 0.5469481581224266, 0.7891405093963934, 0.9458172417006346, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] # valley_design = 1 - bandpass_design # valley_design = 1 - peak_design def valley_cost_calculator(y, B): cost = np.sum(np.abs(y - valley_design)) return cost bandpass_reversed_design = 1 - bandpass_design def bandpass_reversed_cost_calculator(y, B): cost = np.sum(np.abs(y - bandpass_reversed_design)) return cost # def adaptation_cost_calculator(y, B): # cost = 0 # ADAPTED_LEVEL = 0.1 # for pt in y[:B // 3]: # cost += np.absolute(pt - 0) # slice = ((1- ADAPTED_LEVEL) / (B//3)) # for i, pt in enumerate(y[B // 3:2 * B // 3]): # cost += np.absolute(1 - i * slice) * 3 # print(1 - i * slice) # sys.exit() # for pt in y[2 * B // 3:]: # cost += np.absolute(pt - ADAPTED_LEVEL) # return cost adaptation_design = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 1.0, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.0078125, 0.00390625, 0.001953125, 0.0009765625, 0.00048828125, 0.000244140625, 0.0001220703125, 6.103515625e-05, 3.0517578125e-05, 1.52587890625e-05, 7.62939453125e-06, 3.814697265625e-06, 1.9073486328125e-06, ] adaptation_design = np.array(adaptation_design) def adaptation_cost_calculator(y, B): cost = 0 # for i, pt in enumerate(y): # cost += np.absolute(pt - adaptation_design[i]) cost = np.sum(np.abs(y - adaptation_design)) return cost # # def adaptation_cost_calculator(y, B): # cost = 0 # for pt in y[:B // 3]: # cost += np.absolute(pt - 0) # for pt in y[B // 3:2 * B // 3]: # cost += np.absolute(1 - pt) # for pt in y[2 * B // 3:]: # cost += np.absolute(pt - 0.5) # return cost # Fitness based cost_storage = [-1] * POPULATION # def select(population): # for i, potential_parent in enumerate(population): # y = simulate_ode(potential_parent, TIME_STEPS, BATCH_SIZE, NODES) # # Multiple outputs # cost_storage[i] = bandpass_cost_calculator(y[:, -1], BATCH_SIZE) * 1.5 # cost_storage[i] += switch_cost_calculator(y[:, -2], BATCH_SIZE) * 1.25 # # cost_storage[i] = adaptation_cost_calculator(y[:, -1], BATCH_SIZE) # cost_storage[i] += linear_cost_calculator(y[:, -3], BATCH_SIZE) # cost_storage[i] /= 3 # # cost_storage[i] += REG_RATE * sum(sum(abs(potential_parent))) # regularization # double_mergesort(cost_storage, population) # y = simulate_ode(population[0], TIME_STEPS, BATCH_SIZE, NODES) # print("Bandpass Cost:", bandpass_cost_calculator(y[:, -1], BATCH_SIZE)) # print("Switch Cost:", switch_cost_calculator(y[:, -2], BATCH_SIZE)) # print("Linear Cost:", linear_cost_calculator(y[:, -3], BATCH_SIZE)) # # print(cost_storage[0]) # survivors = population[:SURVIVABLE_PARENTS] # survivors = np.append(survivors, survivors, axis=0) # # repopulated_parents = np.append(repopulated_parents, survivors, axis=0) # # random_children = np.random.uniform(-BOUND, BOUND, (SURVIVABLE_PARENTS, NODES, NODES)) # # survivors = np.append(repopulated_parents, random_children, axis=0) # # print(repopulated_parents) # return survivors, population[0], cost_storage[0] # def select(population): # # Harmonic Version - Mitigate Impact of Outliers # for i, potential_parent in enumerate(population): # y = simulate_ode(potential_parent, TIME_STEPS, BATCH_SIZE, NODES) # # Multiple outputs # f_bandpass = BATCH_SIZE - bandpass_cost_calculator(y[:, -1], BATCH_SIZE) # f_switch = BATCH_SIZE - switch_cost_calculator(y[:, -2], BATCH_SIZE) # f_linear = BATCH_SIZE - linear_cost_calculator(y[:, -3], BATCH_SIZE) # cost_storage[i] = BATCH_SIZE - 3 / (((1/f_bandpass) + (1/f_switch) + (1/f_linear))) # # cost_storage[i] += REG_RATE * sum(sum(abs(potential_parent))) # regularization # # cost_storage[i] = f_bandpass + f_switch + f_linear # double_mergesort(cost_storage, population) # y = simulate_ode(population[0], TIME_STEPS, BATCH_SIZE, NODES) # print("Bandpass Cost:", bandpass_cost_calculator(y[:, -1], BATCH_SIZE)) # print("Switch Cost:", switch_cost_calculator(y[:, -2], BATCH_SIZE)) # print("Linear Cost:", linear_cost_calculator(y[:, -3], BATCH_SIZE)) # # print(cost_storage[0]) # survivors = population[:SURVIVABLE_PARENTS] # survivors = np.append(survivors, survivors, axis=0) # # repopulated_parents = np.append(repopulated_parents, survivors, axis=0) # # random_children = np.random.uniform(-BOUND, BOUND, (SURVIVABLE_PARENTS, NODES, NODES)) # # survivors = np.append(repopulated_parents, random_children, axis=0) # # print(repopulated_parents) # return survivors, population[0], cost_storage[0] # def select(population): # # Square Version - Aggravate Impact of Outliers # for i, potential_parent in enumerate(population): # y = simulate_ode(potential_parent, TIME_STEPS, BATCH_SIZE, NODES) # # Multiple outputs # f_bandpass = bandpass_cost_calculator(y[:, -1], BATCH_SIZE) # f_bandpass_reversed = bandpass_reversed_cost_calculator(y[:, -2], BATCH_SIZE) # f_switch = switch_cost_calculator(y[:, -3], BATCH_SIZE) # # f_valley = valley_cost_calculator(y[:, -3], BATCH_SIZE) # # f_linear = linear_cost_calculator(y[:, -3], BATCH_SIZE) # # cost_storage[i] = valley_cost_calculator(y[:, -1], BATCH_SIZE) # # cost_storage[i] = peak_cost_calculator(y[:, -1], BATCH_SIZE) # # cost_storage[i] = bandpass_cost_calculator(y[:, -1], BATCH_SIZE) # cost_storage[i] = f_bandpass**2 + f_switch**2 + f_bandpass_reversed**2 # # cost_storage[i] += REG_RATE * sum(sum(abs(potential_parent))) # regularization # # cost_storage[i] = f_bandpass + f_switch + f_linear # double_mergesort(cost_storage, population) # y = simulate_ode(population[0], TIME_STEPS, BATCH_SIZE, NODES) # print("Bandpass Cost:", bandpass_cost_calculator(y[:, -1], BATCH_SIZE)) # print("Valley Cost:", bandpass_reversed_cost_calculator(y[:, -2], BATCH_SIZE)) # print("Switch Cost:", switch_cost_calculator(y[:, -3], BATCH_SIZE)) # # print("Valley Cost:", valley_cost_calculator(y[:, -3], BATCH_SIZE)) # # print("Linear Cost:", linear_cost_calculator(y[:, -3], BATCH_SIZE)) # # print(cost_storage[0]) # survivors = population[:SURVIVABLE_PARENTS] # survivors = np.append(survivors, survivors, axis=0) # # repopulated_parents = np.append(repopulated_parents, survivors, axis=0) # # random_children = np.random.uniform(-BOUND, BOUND, (SURVIVABLE_PARENTS, NODES, NODES)) # # survivors = np.append(repopulated_parents, random_children, axis=0) # # print(repopulated_parents) # return survivors, population[0], cost_storage[0] def select(population): for i, potential_parent in enumerate(population): f_bandpass = simulate_and_cost_bandpass(potential_parent) f_bandpass_reversed = simulate_and_cost_bandpass_reversed(potential_parent) f_switch = simulate_and_cost_switch(potential_parent) cost_storage[i] = f_bandpass ** 2 + f_bandpass_reversed ** 2 + f_switch ** 2 double_mergesort(cost_storage, population) survivors = population[:SURVIVABLE_PARENTS] survivors = np.append(survivors, survivors, axis=0) return survivors, population[0], cost_storage[0] def plot(y): b = np.linspace(1, BATCH_SIZE, BATCH_SIZE) plt.title(f"{NODES} Nodes") plt.plot(b, y[:, 0], "black", linewidth=2, label="Input Node #1") plt.plot(b, y[:, 1], "saddlebrown", linewidth=2, label="Input Node #2") for i in range(2, y.shape[1] - 1): # plt.plot(b, y[:, i], 'g-', linewidth=2, label='Support Node') plt.plot(b, y[:, i], "gray", linewidth=2) plt.plot(b, y[:, -1], "r", linewidth=2, label="Multifunction Output Node") plt.xlabel("Input Level") plt.ylabel("Output Level") plt.legend() plt.show() def simulate_and_cost_bandpass(individual): # Encode <- 0, 1 input_val = np.zeros((BATCH_SIZE, NODES)) input_val[:, 0] = linspace_col * np.random.normal(loc=1.0, scale=0.0001) output = ( initial_val + (sigmoid(np.matmul(initial_val, individual)) - initial_val + input_val) * dt ) for i in range(1, TIME_STEPS): input_val[:, 0] = linspace_col * np.random.normal(loc=1.0, scale=0.0001) output = ( output + (sigmoid(np.matmul(output, individual)) - output + input_val) * dt ) cost = np.sum(np.abs(output[:, -1] - bandpass_design)) return cost def simulate_and_cost_bandpass_reversed(individual): # Encode <- 1, 0 input_val = np.zeros((BATCH_SIZE, NODES)) input_val[:, 1] = linspace_col * np.random.normal(loc=1.0, scale=0.0001) output = ( initial_val + (sigmoid(np.matmul(initial_val, individual)) - initial_val + input_val) * dt ) for i in range(1, TIME_STEPS): input_val[:, 1] = linspace_col * np.random.normal(loc=1.0, scale=0.0001) output = ( output + (sigmoid(np.matmul(output, individual)) - output + input_val) * dt ) cost = np.sum(np.abs(output[:, -1] - bandpass_reversed_design)) return cost switch_design = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, ] switch_design = np.array(switch_design) def simulate_and_cost_switch(individual): # Encode <- 1, 1 input_val = np.zeros((BATCH_SIZE, NODES)) input_val[:, 0] = linspace_col * np.random.normal(loc=1.0, scale=0.0001) input_val[:, 1] = linspace_col * np.random.normal(loc=1.0, scale=0.0001) output = ( initial_val + (sigmoid(np.matmul(initial_val, individual)) - initial_val + input_val) * dt ) for i in range(1, TIME_STEPS): input_val[:, 0] = linspace_col * np.random.normal(loc=1.0, scale=0.0001) input_val[:, 1] = linspace_col * np.random.normal(loc=1.0, scale=0.0001) output = ( output + (sigmoid(np.matmul(output, individual)) - output + input_val) * dt ) cost = np.sum(np.abs(output[:, -1] - switch_design)) return cost def simulate_plot_cost_bandpass(individual): # Encode <- 0, 1 input_val = np.zeros((BATCH_SIZE, NODES)) input_val[:, 0] = linspace_col * np.random.normal(loc=1.0, scale=0.0001) output = ( initial_val + (sigmoid(np.matmul(initial_val, individual)) - initial_val + input_val) * dt ) for i in range(1, TIME_STEPS): input_val[:, 0] = linspace_col * np.random.normal(loc=1.0, scale=0.0001) output = ( output + (sigmoid(np.matmul(output, individual)) - output + input_val) * dt ) plot(output) def simulate_and_plot_bandpass_reversed(individual): # Encode <- 1, 0 input_val =
np.zeros((BATCH_SIZE, NODES))
numpy.zeros
# COVID dataset input readers # # <EMAIL>, 2020 import sys import numpy as np from datetime import datetime,timedelta from termcolor import colored import os import pandas as pd #from datetime import datetime #a = datetime.strptime(dt[0], '%Y-%m-%d') def todiff(series): """ Turn cumulative series into differential """ series = np.diff(series, prepend=0) # Fix possible NaN series[~np.isfinite(series)] = 0 # Fix possible errors in data (cumulative were not monotonic) ind = series < 0 if np.sum(series[ind]) != 0: print(colored(f'{__name__}.todiff: fixing non-monotonic input (negative dx set to 0)', 'red')) print(series) series[ind] = 0 return series def data_processor(meta): """ Dataset processor wrapper """ evalstr = f"{meta['function']}(meta)" print(evalstr) try: d = eval(evalstr) return d except: print(__name__ + f".data_processor: {colored('Failed to process','yellow')} {meta['isocode']}") print(f'Error: {sys.exc_info()[0]} {sys.exc_info()[1]}') def get_isocodes(): isodata = pd.read_csv('./data/iso.csv', comment='#') code = np.array(isodata['code']) return code def get_european_isocodes(): isodata = pd.read_csv('./data/iso.csv', comment='#') code = np.array(isodata['code']) continent = np.array(isodata['continent']) return code[continent == 4] # Europe only def data_reader_swiss(meta): """ Swiss data format reader """ # -------------------------------------------------------------------- # DEATHS df = pd.read_csv('./data/' + meta['filename_deaths'], comment='#') df = df.sort_index(ascending=meta['ascending'], axis=0) d = {} d['dt'] = np.array(df["Date"]) # Turn cumulative into daily d['deaths'] = todiff(df[meta['region']]) # -------------------------------------------------------------------- # Cases df = pd.read_csv('./data/' + meta['filename_cases'], comment='#') df = df.sort_index(ascending=meta['ascending'], axis=0) # Turn cumulative into daily d['cases'] = todiff(df[meta['region']]) # -------------------------------------------------------------------- # Tests df = pd.read_csv('./data/' + meta['filename_tested'], comment='#') df = df.sort_index(ascending=meta['ascending'], axis=0) # Turn cumulative into daily d['tests'] = todiff(df[meta['region']]) # -------------------------------------------------------------------- d['population'] = meta['population'] d['isocode'] = meta['isocode'] # -------------------------------------------------------------------- if (len(d['deaths']) != len(d['cases'])): raise Exception(__name__ + '.data_reader_swiss: len(deaths) != len(cases)') if (len(d['cases']) != len(d['tests'])): raise Exception(__name__ + '.data_reader_swiss: len(cases) != len(tests)') return d def data_reader_sweden(meta): d = {} d['isocode'] = meta['isocode'] d['population'] = meta['population'] df = pd.read_csv('./data/' + meta['filename_cases'], comment='#') df = df.loc[df["Region"] == meta['region']] # -------------------------------------------------------------------- # Iterating the columns, find date columns dt=list() for col in df.columns: if "2020-" in col: dt.append(col) d['dt'] = dt # -------------------------------------------------------------------- # Cases d['cases'] = np.array(df[dt])[0] # -------------------------------------------------------------------- # Deaths df = pd.read_csv('./data/' + meta['filename_deaths'], comment='#') df = df.loc[df["Region"] == meta['region']] d['deaths'] = np.array(df[dt])[0] # -------------------------------------------------------------------- # Tests # ** NOT AVAILABLE ** d['tests'] = np.zeros(len(dt))*np.nan return d def data_reader_usa(meta): d = {} d['population'] = meta['population'] d['isocode'] = meta['isocode'] # -------------------------------------------------------------------- # Deaths df = pd.read_csv('./data/' + meta['filename'], comment='#') df = df.loc[df["county"] == meta['region']] d['dt'] = np.array(df['date']) d['deaths'] = todiff(df['deaths']) # -------------------------------------------------------------------- # Cases d['cases'] = todiff(df['cases']) # -------------------------------------------------------------------- # Tests d['tests'] = np.zeros(len(d['dt']))*np.nan return d def data_reader_heinsberg(meta): d = {} d['population'] = meta['population'] d['isocode'] = meta['isocode'] # Cases data #df = pd.read_csv('./data/' + meta['filename_cases'], comment='#') #data = df.loc[df["county"] == meta['region']] # -------------------------------------------------------------------- # Deaths df = pd.read_csv('./data/' + meta['filename_deaths'], comment='#') d['dt'] = np.array(df['date']) d['deaths'] = np.array(df['deaths']) # -------------------------------------------------------------------- # Cases d['cases'] = np.zeros(len(d['dt']))*np.nan # -------------------------------------------------------------------- # Tests d['tests'] = np.zeros(len(d['dt']))*np.nan return d def data_reader_florida(meta): d = {} d['population'] = meta['population'] d['isocode'] = meta['isocode'] # Cases data #df = pd.read_csv('./data/' + meta['filename_cases'], comment='#') #data = df.loc[df["county"] == meta['region']] # -------------------------------------------------------------------- # Deaths df = pd.read_csv('./data/' + meta['filename_deaths'], comment='#') d['dt'] = np.array(df['date']) d['deaths'] = np.array(df['deaths']) # -------------------------------------------------------------------- # Cases d['cases'] = np.zeros(len(d['dt']))*np.nan #np.array(data["frequency"]) # -------------------------------------------------------------------- # Tests d['tests'] = np.zeros(len(d['dt']))*np.nan return d def data_reader_LA(meta): """ LA County data format reader """ df = pd.read_csv('./data/' + meta['filename'], comment='#') df = df.sort_index(ascending=meta['ascending'], axis=0) d = {} d['dt'] = np.array(df["date_dt"]) d['cases'] = np.array(df["new_case"]) d['deaths'] = np.array(df["new_deaths"]) d['tests'] = np.array(df['new_persons_tested']) d['population'] = meta['population'] d['isocode'] = meta['isocode'] return d def data_reader_OWID(meta): """ World-in-data format reader """ df = pd.read_csv('./data/' + meta['filename'], comment='#') df = df.sort_index(ascending=meta['ascending'], axis=0) # Take the isocode data = df.loc[df["iso_code"] == meta['isocode']] d = {} d['dt'] = np.array(data["date"]) d['cases'] = np.array(data["new_cases"]) d['deaths'] = np.array(data["new_deaths"]) d['tests'] =
np.array(data["new_tests_smoothed"])
numpy.array
####################################################### #Reference: https://github.com/experiencor/keras-yolo3# ####################################################### import numpy as np import os import cv2 from scipy.special import expit class BoundBox: def __init__(self, xmin, ymin, xmax, ymax, c = None, classes = None): self.xmin = xmin self.ymin = ymin self.xmax = xmax self.ymax = ymax self.c = c self.classes = classes self.label = -1 self.score = -1 def get_label(self): if self.label == -1: self.label = np.argmax(self.classes) return self.label def get_score(self): if self.score == -1: self.score = self.classes[self.get_label()] return self.score def get_box(self): return (self.xmin, self.ymin, self.xmax, self.ymax) def _sigmoid(x): return expit(x) def _softmax(x, axis=-1): x = x - np.amax(x, axis, keepdims=True) e_x = np.exp(x) return e_x / e_x.sum(axis, keepdims=True) def preprocess_input(img, w, h): ih, iw, _ = img.shape scale = min(w/iw, h/ih) nw = int(iw*scale) nh = int(ih*scale) image_data = cv2.resize(img, (nw,nh)) new_image = np.full((h,w,3), (128,128,128), dtype='uint8') new_image[(h-nh)//2 : (h+nh)//2, (w-nw)//2:(w+nw)//2] = image_data image_data = new_image.astype('float')/255.0 image_data = image_data[np.newaxis, ...] return image_data def decode_netout(netout, anchors, obj_thresh, net_h, net_w): grid_h, grid_w = netout.shape[:2] nb_box = 3 netout = netout.reshape((grid_h, grid_w, nb_box, -1)) nb_class = netout.shape[-1] - 5 boxes = [] netout[..., :2] = _sigmoid(netout[..., :2]) netout[..., 4] = _sigmoid(netout[..., 4]) netout[..., 5:] = netout[..., 4][..., np.newaxis] * _softmax(netout[..., 5:]) netout[..., 5:] *= netout[..., 5:] > obj_thresh for i in range(grid_h*grid_w): row = i // grid_w col = i % grid_w for b in range(nb_box): # 4th element is objectness score objectness = netout[row, col, b, 4] if(objectness <= obj_thresh): continue # first 4 elements are x, y, w, and h x, y, w, h = netout[row,col,b,:4] x = (col + x) / grid_w # center position, unit: image width y = (row + y) / grid_h # center position, unit: image height w = anchors[2 * b + 0] * np.exp(w) / net_w # unit: image width h = anchors[2 * b + 1] * np.exp(h) / net_h # unit: image height # last elements are class probabilities classes = netout[row,col,b,5:] box = BoundBox(x-w/2, y-h/2, x+w/2, y+h/2, objectness, classes) boxes.append(box) return boxes def do_nms(boxes, nms_thresh): if len(boxes) > 0: nb_class = len(boxes[0].classes) else: return [] for c in range(nb_class): sorted_indices =
np.argsort([-box.classes[c] for box in boxes])
numpy.argsort
'''Module for additional computations required by the model''' from numpy import ( arange, array, atleast_2d, concatenate, copy, cumprod, diag, isnan, ix_, ones, shape, sum, where, zeros) from numpy import int64 as my_int import pdb from scipy.sparse import csc_matrix as sparse from model.imports import NoImportModel from model.subsystems import subsystem_key def state_recursor( states, no_compartments, age_class, b_size, n_blocks, con_reps, c, x, depth, k): if depth < no_compartments-1: for x_i in arange(c + 1 - x.sum()): x[0, depth] = x_i x[0, depth+1:] = zeros( (1, no_compartments-depth-1), dtype=my_int) states, k = state_recursor( states, no_compartments, age_class, b_size, n_blocks, con_reps, c, x, depth+1, k) else: x[0, -1] = c - sum(x[0, :depth]) for block in arange(n_blocks): repeat_range = arange( block * b_size + k * con_reps, block * b_size + (k + 1) * con_reps) states[repeat_range, no_compartments*age_class:no_compartments*(age_class+1)] = \ ones( (con_reps, 1), dtype=my_int) \ * array( x, ndmin=2, dtype=my_int) k += 1 return states, k return states, k def build_states_recursively( total_size, no_compartments, classes_present, block_size, num_blocks, consecutive_repeats, composition): states = zeros( (total_size, no_compartments*len(classes_present)), dtype=my_int) for age_class in range(len(classes_present)): k = 0 states, k = state_recursor( states, no_compartments, age_class, block_size[age_class], num_blocks[age_class], consecutive_repeats[age_class], composition[classes_present[age_class]], zeros([1, no_compartments], dtype=my_int), 0, k) return states, k def build_state_matrix(household_spec): # Number of times you repeat states for each configuration consecutive_repeats = concatenate(( ones(1, dtype=my_int), cumprod(household_spec.system_sizes[:-1]))) block_size = consecutive_repeats * household_spec.system_sizes num_blocks = household_spec.total_size // block_size states, k = build_states_recursively( household_spec.total_size, household_spec.no_compartments, household_spec.class_indexes, block_size, num_blocks, consecutive_repeats, household_spec.composition) # Now construct a sparse vector which tells you which row a state appears # from in the state array # This loop tells us how many values each column of the state array can # take state_sizes = concatenate([ (household_spec.composition[i] + 1) * ones(household_spec.no_compartments, dtype=my_int) for i in household_spec.class_indexes]).ravel() # This vector stores the number of combinations you can get of all # subsequent elements in the state array, i.e. reverse_prod(i) tells you # how many arrangements you can get in states(:,i+1:end) reverse_prod = array([0, *cumprod(state_sizes[:0:-1])])[::-1] # We can then define index_vector look up the location of a state by # weighting its elements using reverse_prod - this gives a unique mapping # from the set of states to the integers. Because lots of combinations # don't actually appear in the states array, we use a sparse array which # will be much bigger than we actually require rows = [ states[k, :].dot(reverse_prod) + states[k, -1] for k in range(household_spec.total_size)] if min(rows) < 0: print( 'Negative row indices found, proportional total', sum(array(rows) < 0), '/', len(rows), '=', sum(array(rows) < 0) / len(rows)) index_vector = sparse(( arange(household_spec.total_size), (rows, [0]*household_spec.total_size))) return states, reverse_prod, index_vector, rows def within_household_spread( composition, model_input): '''Assuming frequency-dependent homogeneous within-household mixing composition[i] is the number of individuals in age-class i inside the household''' sus = model_input.sus det = model_input.det tau = model_input.tau K_home = model_input.k_home alpha = model_input.alpha gamma = model_input.gamma # Set of individuals actually present here classes_present = where(composition.ravel() > 0)[0] K_home = K_home[ix_(classes_present, classes_present)] sus = sus[classes_present] det = det[classes_present] tau = tau[classes_present] r_home = atleast_2d(diag(sus).dot(K_home)) states, total_size, reverse_prod, index_vector, rows = build_state_matrix(composition, classes_present, 5) d_pos = 2 + 5 * arange(len(classes_present)) u_pos = 3 + 5 * arange(len(classes_present)) Q_int = sparse((total_size, total_size)) inf_event_row = array([], dtype=my_int) inf_event_col = array([], dtype=my_int) inf_event_class = array([], dtype=my_int) # Add events for each age class for i in range(len(classes_present)): s_present = where(states[:, 5*i] > 0)[0] e_present = where(states[:, 5*i+1] > 0)[0] d_present = where(states[:, 5*i+2] > 0)[0] u_present = where(states[:, 5*i+3] > 0)[0] # First do infection events inf_to = zeros(len(s_present), dtype=my_int) inf_rate = zeros(len(s_present)) for k in range(len(s_present)): old_state = copy(states[s_present[k], :]) inf_rate[k] = old_state[5*i] * ( r_home[i, :].dot( (old_state[d_pos] / composition[classes_present]) + (old_state[u_pos] / composition[classes_present]) * tau)) new_state = old_state.copy() new_state[5*i] -= 1 new_state[5*i + 1] += 1 inf_to[k] = index_vector[ new_state.dot(reverse_prod) + new_state[-1], 0] Q_int += sparse( (inf_rate, (s_present, inf_to)), shape=(total_size, total_size)) inf_event_row = concatenate((inf_event_row, s_present)) inf_event_col = concatenate((inf_event_col, inf_to)) inf_event_class = concatenate( (inf_event_class, classes_present[i]*ones((len(s_present))))) # input('Press enter to continue') # # disp('Infection events done') # # Now do exposure to detected or undetected det_to = zeros(len(e_present), dtype=my_int) det_rate = zeros(len(e_present)) undet_to = zeros(len(e_present), dtype=my_int) undet_rate = zeros(len(e_present)) for k in range(len(e_present)): # First do detected old_state = copy(states[e_present[k], :]) det_rate[k] = det[i] * alpha * old_state[5*i+1] new_state = copy(old_state) new_state[5*i + 1] -= 1 new_state[5*i + 2] += 1 det_to[k] = index_vector[ new_state.dot(reverse_prod) + new_state[-1], 0] # First do undetectednt(k),:) undet_rate[k] = (1.0 - det[i]) * alpha * old_state[5*i+1] new_state = copy(old_state) new_state[5*i + 1] -= 1 new_state[5*i + 3] += 1 undet_to[k] = index_vector[ new_state.dot(reverse_prod) + new_state[-1], 0] Q_int += sparse( (det_rate, (e_present, det_to)), shape=(total_size, total_size)) Q_int += sparse( (undet_rate, (e_present, undet_to)), shape=(total_size, total_size)) # # disp('Incubaion events done') # Now do recovery of detected cases rec_to = zeros(len(d_present), dtype=my_int) rec_rate = zeros(len(d_present)) for k in range(len(d_present)): old_state = copy(states[d_present[k], :]) rec_rate[k] = gamma * old_state[5*i+2] new_state = copy(old_state) new_state[5*i+2] -= 1 new_state[5*i+4] += 1 rec_to[k] = index_vector[ new_state.dot(reverse_prod) + new_state[-1], 0] Q_int += sparse( (rec_rate, (d_present, rec_to)), shape=(total_size, total_size)) # disp('Recovery events from detecteds done') # Now do recovery of undetected cases rec_to = zeros(len(u_present), dtype=my_int) rec_rate = zeros(len(u_present)) for k in range(len(u_present)): old_state = copy(states[u_present[k], :]) rec_rate[k] = gamma*old_state[5*i+3] new_state = copy(old_state) new_state[5*i+3] -= 1 new_state[5*i+4] += 1 rec_to[k] = index_vector[ new_state.dot(reverse_prod) +new_state[-1], 0] Q_int = Q_int + sparse( (rec_rate, (u_present, rec_to)), shape=(total_size, total_size)) # disp('Recovery events from undetecteds done') S = Q_int.sum(axis=1).getA().squeeze() Q_int += sparse(( -S, (arange(total_size), arange(total_size)))) return \ Q_int, states, \ array(inf_event_row, dtype=my_int, ndmin=1), \ array(inf_event_col, dtype=my_int, ndmin=1), \ array(inf_event_class, dtype=my_int, ndmin=1) def within_household_SEDURQ( composition, model_input): '''Assuming frequency-dependent homogeneous within-household mixing composition[i] is the number of individuals in age-class i inside the household''' sus = model_input.sigma det = model_input.det tau = model_input.tau K_home = model_input.k_home alpha = model_input.alpha gamma = model_input.gamma D_iso_rate = model_input.D_iso_rate U_iso_rate = model_input.U_iso_rate discharge_rate = model_input.discharge_rate adult_bd = model_input.adult_bd class_is_isolating = model_input.class_is_isolating # Set of individuals actually present here classes_present = where(composition.ravel() > 0)[0] # Check number of adults and whether children_present no_adults = sum(composition[adult_bd:]) children_present = sum(composition[:adult_bd])>0 K_home = K_home[ix_(classes_present, classes_present)] sus = sus[classes_present] det = det[classes_present] tau = tau[classes_present] r_home = atleast_2d(diag(sus).dot(K_home)) states, total_size, reverse_prod, index_vector, rows = build_state_matrix(composition, classes_present, 6) d_pos = 2 + 6 * arange(len(classes_present)) u_pos = 3 + 6 * arange(len(classes_present)) iso_pos = 5 + 6 * arange(len(classes_present)) iso_adjusted_comp = composition[classes_present] - states[:,iso_pos] # This is number of people of each age class present in the household given some may isolate iso_adjusted_comp[iso_adjusted_comp==0] = 1 # Replace zeros with ones - we only ever use this as a denominator whose numerator will be zero anyway if it should be zero if (iso_adjusted_comp<1).any(): pdb.set_trace() adults_isolating = states[:,6*adult_bd+5::6].sum(axis=1) # Number of adults isolating by state Q_int = sparse((total_size, total_size)) inf_event_row = array([], dtype=my_int) inf_event_col = array([], dtype=my_int) inf_event_class = array([], dtype=my_int) # Add events for each age class for i in range(len(classes_present)): s_present = where(states[:, 6*i] > 0)[0] e_present = where(states[:, 6*i+1] > 0)[0] d_present = where(states[:, 6*i+2] > 0)[0] u_present = where(states[:, 6*i+3] > 0)[0] # First do infection events inf_to = zeros(len(s_present), dtype=my_int) inf_rate = zeros(len(s_present)) for k in range(len(s_present)): old_state = copy(states[s_present[k], :]) inf_rate[k] = old_state[6*i] * ( r_home[i, :].dot( (old_state[d_pos] / iso_adjusted_comp[k]) + (old_state[u_pos] / iso_adjusted_comp[k]) * tau)) new_state = old_state.copy() new_state[6*i] -= 1 new_state[6*i + 1] += 1 inf_to[k] = index_vector[ new_state.dot(reverse_prod) + new_state[-1], 0] Q_int += sparse( (inf_rate, (s_present, inf_to)), shape=(total_size, total_size)) inf_event_row = concatenate((inf_event_row, s_present)) inf_event_col = concatenate((inf_event_col, inf_to)) inf_event_class = concatenate( (inf_event_class, classes_present[i]*ones((len(s_present))))) # input('Press enter to continue') # # disp('Infection events done') # # Now do exposure to detected or undetected det_to = zeros(len(e_present), dtype=my_int) det_rate = zeros(len(e_present)) undet_to = zeros(len(e_present), dtype=my_int) undet_rate = zeros(len(e_present)) for k in range(len(e_present)): # First do detected old_state = copy(states[e_present[k], :]) det_rate[k] = det[i] * alpha * old_state[6*i+1] new_state = copy(old_state) new_state[6*i + 1] -= 1 new_state[6*i + 2] += 1 det_to[k] = index_vector[ new_state.dot(reverse_prod) + new_state[-1], 0] # First do undetectednt(k),:) undet_rate[k] = (1.0 - det[i]) * alpha * old_state[6*i+1] new_state = copy(old_state) new_state[6*i + 1] -= 1 new_state[6*i + 3] += 1 undet_to[k] = index_vector[ new_state.dot(reverse_prod) + new_state[-1], 0] Q_int += sparse( (det_rate, (e_present, det_to)), shape=(total_size, total_size)) Q_int += sparse( (undet_rate, (e_present, undet_to)), shape=(total_size, total_size)) # # disp('Incubaion events done') # Now do recovery of detected cases rec_to = zeros(len(d_present), dtype=my_int) rec_rate = zeros(len(d_present)) for k in range(len(d_present)): old_state = copy(states[d_present[k], :]) rec_rate[k] = gamma * old_state[6*i+2] new_state = copy(old_state) new_state[6*i+2] -= 1 new_state[6*i+4] += 1 rec_to[k] = index_vector[ new_state.dot(reverse_prod) + new_state[-1], 0] Q_int += sparse( (rec_rate, (d_present, rec_to)), shape=(total_size, total_size)) # disp('Recovery events from detecteds done') # Now do recovery of undetected cases rec_to = zeros(len(u_present), dtype=my_int) rec_rate = zeros(len(u_present)) for k in range(len(u_present)): old_state = copy(states[u_present[k], :]) rec_rate[k] = gamma*old_state[6*i+3] new_state = copy(old_state) new_state[6*i+3] -= 1 new_state[6*i+4] += 1 rec_to[k] = index_vector[ new_state.dot(reverse_prod) +new_state[-1], 0] Q_int = Q_int + sparse( (rec_rate, (u_present, rec_to)), shape=(total_size, total_size)) # disp('Recovery events from undetecteds done') #Now do isolation if (class_is_isolating[i,classes_present]).any(): if (i<adult_bd) or not children_present: # If i is a child class or there are no children around, anyone can isolate d_can_isolate = d_present u_can_isolate = u_present else: # If children are present adults_isolating must stay below no_adults-1 so the children still have a guardian d_can_isolate = where((states[:, 6*i+2] > 0)*(adults_isolating<no_adults-1))[0] u_can_isolate = where((states[:, 6*i+3] > 0)*(adults_isolating<no_adults-1))[0] iso_present = where(states[:, 6*i+5] > 0)[0] # Isolation of detected cases iso_to = zeros(len(d_can_isolate), dtype=my_int) iso_rate = zeros(len(d_can_isolate)) for k in range(len(d_can_isolate)): old_state = copy(states[d_can_isolate[k], :]) iso_rate[k] = D_iso_rate * old_state[6*i+2] new_state = copy(old_state) new_state[6*i+2] -= 1 new_state[6*i+5] += 1 iso_to[k] = index_vector[ new_state.dot(reverse_prod) + new_state[-1], 0] Q_int += sparse( (iso_rate, (d_can_isolate, iso_to)), shape=(total_size, total_size)) # Isolation of undetected cases iso_to = zeros(len(u_can_isolate), dtype=my_int) iso_rate = zeros(len(u_can_isolate)) for k in range(len(u_can_isolate)): old_state = copy(states[u_can_isolate[k], :]) iso_rate[k] = U_iso_rate * old_state[6*i+3] new_state = copy(old_state) new_state[6*i+3] -= 1 new_state[6*i+5] += 1 iso_to[k] = index_vector[ new_state.dot(reverse_prod) + new_state[-1], 0] Q_int += sparse( (iso_rate, (u_can_isolate, iso_to)), shape=(total_size, total_size)) # Return home of isolated cases return_to = zeros(len(iso_present), dtype=my_int) return_rate = zeros(len(iso_present)) for k in range(len(iso_present)): old_state = copy(states[iso_present[k], :]) return_rate[k] = discharge_rate * old_state[6*i+5] new_state = copy(old_state) new_state[6*i+5] -= 1 new_state[6*i+4] += 1 return_to[k] = index_vector[ new_state.dot(reverse_prod) + new_state[-1], 0] Q_int += sparse( (return_rate, (iso_present, return_to)), shape = (total_size,total_size)) S = Q_int.sum(axis=1).getA().squeeze() Q_int += sparse(( -S, (arange(total_size), arange(total_size)))) return \ Q_int, states, \ array(inf_event_row, dtype=my_int, ndmin=1), \ array(inf_event_col, dtype=my_int, ndmin=1), \ array(inf_event_class, dtype=my_int, ndmin=1) def within_household_SEPIRQ( composition, model_input): '''Assuming frequency-dependent homogeneous within-household mixing composition[i] is the number of individuals in age-class i inside the household''' sus = model_input.sus tau = model_input.tau K_home = model_input.k_home alpha_1 = model_input.alpha_1 alpha_2 = model_input.alpha_2 gamma = model_input.gamma E_iso_rate = model_input.E_iso_rate P_iso_rate = model_input.P_iso_rate I_iso_rate = model_input.I_iso_rate discharge_rate = model_input.discharge_rate adult_bd = model_input.adult_bd class_is_isolating = model_input.class_is_isolating iso_method = model_input.iso_method # Set to 0 if isolating externaly, 1 if isolating internally tau_Q = (tau/alpha_2 + 1/gamma)/(1/alpha_1+1/alpha_2+1/gamma) # Scaling for infection from quarantined cases # Set of individuals actually present here classes_present = where(composition.ravel() > 0)[0] # Check number of adults and whether children_present no_adults = sum(composition[adult_bd:]) children_present = sum(composition[:adult_bd])>0 K_home = K_home[ix_(classes_present, classes_present)] sus = sus[classes_present] tau = tau[classes_present] tau_Q = tau_Q[classes_present] r_home = atleast_2d(diag(sus).dot(K_home)) states, total_size, reverse_prod, index_vector, rows = build_state_matrix(composition, classes_present, 6) p_pos = 2 + 6 * arange(len(classes_present)) i_pos = 3 + 6 * arange(len(classes_present)) iso_pos = 5 + 6 * arange(len(classes_present)) iso_adjusted_comp = composition[classes_present] - (1-iso_method)*states[:,iso_pos] # This is number of people of each age class present in the household given some may isolate iso_adjusted_comp[iso_adjusted_comp==0] = 1 # Replace zeros with ones - we only ever use this as a denominator whose numerator will be zero anyway if it should be zero if (iso_adjusted_comp<1).any(): pdb.set_trace() adults_isolating = states[:,6*adult_bd+5::6].sum(axis=1) # Number of adults isolating by state Q_int = sparse((total_size, total_size)) inf_event_row = array([], dtype=my_int) inf_event_col = array([], dtype=my_int) inf_event_class = array([], dtype=my_int) # Add events for each age class for i in range(len(classes_present)): s_present = where(states[:, 6*i] > 0)[0] e_present = where(states[:, 6*i+1] > 0)[0] p_present = where(states[:, 6*i+2] > 0)[0] i_present = where(states[:, 6*i+3] > 0)[0] # First do infection events inf_to = zeros(len(s_present), dtype=my_int) inf_rate = zeros(len(s_present)) for k in range(len(s_present)): old_state = copy(states[s_present[k], :]) inf_rate[k] = old_state[6*i] * ( r_home[i, :].dot( (old_state[i_pos] / iso_adjusted_comp[k]) + (old_state[p_pos] / iso_adjusted_comp[k]) * tau # tau is prodromal reduction + iso_method*(old_state[iso_pos] / iso_adjusted_comp[k]) * tau_Q)) # if we are doing internal isolation we scale down by tau_Q new_state = old_state.copy() new_state[6*i] -= 1 new_state[6*i + 1] += 1 inf_to[k] = index_vector[ new_state.dot(reverse_prod) + new_state[-1], 0] Q_int += sparse( (inf_rate, (s_present, inf_to)), shape=(total_size, total_size)) inf_event_row = concatenate((inf_event_row, s_present)) inf_event_col = concatenate((inf_event_col, inf_to)) inf_event_class = concatenate( (inf_event_class, classes_present[i]*ones((len(s_present))))) # input('Press enter to continue') # # disp('Infection events done') # # Now do exposure to prodromal inc_to = zeros(len(e_present), dtype=my_int) inc_rate = zeros(len(e_present)) for k in range(len(e_present)): # First do detected old_state = copy(states[e_present[k], :]) inc_rate[k] = alpha_1 * old_state[6*i+1] new_state = copy(old_state) new_state[6*i + 1] -= 1 new_state[6*i + 2] += 1 inc_to[k] = index_vector[ new_state.dot(reverse_prod) + new_state[-1], 0] Q_int += sparse( (inc_rate, (e_present, inc_to)), shape=(total_size, total_size)) # # disp('Incubaion events done') # # Now do prodromal to infectious dev_to = zeros(len(p_present), dtype=my_int) dev_rate = zeros(len(p_present)) for k in range(len(p_present)): # First do detected old_state = copy(states[p_present[k], :]) dev_rate[k] = alpha_2 * old_state[6*i+2] new_state = copy(old_state) new_state[6*i + 2] -= 1 new_state[6*i + 3] += 1 dev_to[k] = index_vector[ new_state.dot(reverse_prod) + new_state[-1], 0] Q_int += sparse( (dev_rate, (p_present, dev_to)), shape=(total_size, total_size)) # Now do recovery of detected cases rec_to = zeros(len(i_present), dtype=my_int) rec_rate = zeros(len(i_present)) for k in range(len(i_present)): old_state = copy(states[i_present[k], :]) rec_rate[k] = gamma * old_state[6*i+3] new_state = copy(old_state) new_state[6*i+3] -= 1 new_state[6*i+4] += 1 rec_to[k] = index_vector[ new_state.dot(reverse_prod) + new_state[-1], 0] Q_int += sparse( (rec_rate, (i_present, rec_to)), shape=(total_size, total_size)) # disp('Recovery events from detecteds done') #Now do isolation if (class_is_isolating[classes_present[i],classes_present]).any(): # This checks whether class i is meant to isolated and whether any of the vulnerable classes are present # if not classes_present[i]==1: # pdb.set_trace() if iso_method==1 or (i<adult_bd) or not children_present: # If isolating internally, i is a child class, or there are no children around, anyone can isolate e_can_isolate = where((states[:, 6*i+1] > 0)*(states[:, 6*i+5] == 0))[0] p_can_isolate = where((states[:, 6*i+2] > 0)*(states[:, 6*i+5] == 0))[0] i_can_isolate = where((states[:, 6*i+3] > 0)*(states[:, 6*i+5] == 0))[0] else: # If children are present adults_isolating must stay below no_adults-1 so the children still have a guardian e_can_isolate = where((states[:, 6*i+1] > 0)*(adults_isolating<no_adults-1))[0] p_can_isolate = where((states[:, 6*i+2] > 0)*(adults_isolating<no_adults-1))[0] i_can_isolate = where((states[:, 6*i+3] > 0)*(adults_isolating<no_adults-1))[0] iso_present = where(states[:, 6*i+5] > 0)[0] # Isolation of incubating cases iso_to = zeros(len(e_can_isolate), dtype=my_int) iso_rate = zeros(len(e_can_isolate)) for k in range(len(e_can_isolate)): old_state = copy(states[e_can_isolate[k], :]) iso_rate[k] = E_iso_rate * old_state[6*i+1] new_state = copy(old_state) new_state[6*i+1] -= 1 new_state[6*i+5] += 1 iso_to[k] = index_vector[ new_state.dot(reverse_prod) + new_state[-1], 0] Q_int += sparse( (iso_rate, (e_can_isolate, iso_to)), shape=(total_size, total_size)) # Isolation of prodromal cases iso_to = zeros(len(p_can_isolate), dtype=my_int) iso_rate = zeros(len(p_can_isolate)) for k in range(len(p_can_isolate)): old_state = copy(states[p_can_isolate[k], :]) iso_rate[k] = P_iso_rate * old_state[6*i+2] new_state = copy(old_state) new_state[6*i+2] -= 1 new_state[6*i+5] += 1 iso_to[k] = index_vector[ new_state.dot(reverse_prod) + new_state[-1], 0] Q_int += sparse( (iso_rate, (p_can_isolate, iso_to)), shape=(total_size, total_size)) # Isolation of fully infectious cases iso_to = zeros(len(i_can_isolate), dtype=my_int) iso_rate = zeros(len(i_can_isolate)) for k in range(len(i_can_isolate)): old_state = copy(states[i_can_isolate[k], :]) iso_rate[k] = I_iso_rate * old_state[6*i+3] new_state = copy(old_state) new_state[6*i+3] -= 1 new_state[6*i+5] += 1 iso_to[k] = index_vector[ new_state.dot(reverse_prod) + new_state[-1], 0] Q_int += sparse( (iso_rate, (i_can_isolate, iso_to)), shape=(total_size, total_size)) # Return home of isolated cases return_to = zeros(len(iso_present), dtype=my_int) return_rate = zeros(len(iso_present)) for k in range(len(iso_present)): old_state =
copy(states[iso_present[k], :])
numpy.copy
#!/usr/bin/env python import argparse import os import numpy as np from tqdm import tqdm import sys sys.path.append("../models") from dataset import CowcDataset_Counting def compute_histogram(dataset): hist = np.zeros(shape=[10**3, ], dtype=int) for image, label in tqdm(dataset): hist[label] += 1 car_count_max = np.where(hist > 0)[0][-1] return hist[:car_count_max + 1] if __name__ == '__main__': parser = argparse.ArgumentParser(description='Compute images mean array') parser.add_argument('--data-list', help='Path to training image-label list file', default='../../data/cowc_processed/train_val/crop/train.txt') parser.add_argument('--root', help='Root directory path of image files', default='../../data/cowc_processed/train_val/crop/train') parser.add_argument('--output', help='path to output distriba array', default='../../data/cowc_processed/train_val/crop/histogram.npy') parser.add_argument('--crop-size', type=int, help='Crop size in px', default=96) args = parser.parse_args() dataset = CowcDataset_Counting(args.data_list, args.root, args.crop_size) hist = compute_histogram(dataset) print("Computed histogram:") print("car_num, count") for car_num, count in enumerate(hist): print("{}, {}".format(car_num, count))
np.save(args.output, hist)
numpy.save
# Identification of donor abundance in bulk sample import numpy as np __docformat__ = "restructuredtext en" __all__ = ['VireoBulk'] class VireoBulk(): """ Estimate of donor abundance in a multipexed bulk sample Varibale to infer ----------------- psi: numpy.array (n_donor, ) The fractional abundance of each donor in the mixture theta: numpy.array (n_GT, ) The alternative allele rate in each genotype category Parameters ---------- n_GT: int, number of genotype categories n_donor: int, number of donors in the mixture """ def __init__(self, n_donor, n_GT=3, psi_init=None, theta_init=[0.01, 0.5, 0.99]): self.n_GT = n_GT self.n_donor = n_donor self.psi = np.random.dirichlet([1] * n_donor) self.theta = np.random.rand(n_GT) if psi_init is not None: if n_donor != len(psi_init): print("Warning: n_donor != len(psi_init)") else: self.psi = np.random.dirichlet([1] * n_donor) if theta_init is not None: if n_GT != len(theta_init): print("Warning: n_GT != len(theta_init)") else: self.theta = theta_init def fit(self, AD, DP, GT_prob, max_iter=200, min_iter=5, epsilon_conv=1e-3, learn_theta=True, delay_fit_theta=0, model="EM", verbose=False): """Fit the unknown variable psi and theta with EM algorithm Parameters ---------- AD: numpy.array, (n_variant, ), int The count vector for alternative allele in all variants DP: numpy.array (n_variant, ), int The count vector for depths in all variants (i.e., two alleles) GT_prob: numpy.array, (n_variants, n_donor, n_GT) The probability tensor for each genotype in each donor learn_theta: bool Whether learn theta, otherwise use theta_init delay_fit_theta: int The number of steps to delay in updating theta max_iter : int Maximum number of iterations min_iter : Minimum number of iterations epsilon_conv : float Threshold for detecting convergence model: string The algorithm used to fit the model. Only "EM" is supported for Expectation-Maximumization algorithm verbose : bool Whether print out log info """ BD = DP - AD logLik =
np.zeros(max_iter)
numpy.zeros
from logging import getLogger import types import numpy as np import scipy as sp import scipy.stats from statsmodels.sandbox.stats.multicomp import multipletests from scipy.special import comb logger = getLogger(__name__) # data transformation def rankdata(data): logger.debug('ranking the data') rdata = np.zeros(np.shape(data)) for crow in range(np.shape(data)[0]): rdata[crow, :] = sp.stats.rankdata(data[crow, :]) return rdata def log2data(data): logger.debug('log2 transforming the data') data[data < 2] = 2 data = np.log2(data) return data def binarydata(data): logger.debug('binary transforming the data') data[data != 0] = 1 return data def normdata(data): logger.debug('normalizing the data') data = data / np.sum(data, axis=0) return data # different methods to calculate test statistic def meandiff(data, labels): mean0 = np.mean(data[:, labels == 0], axis=1) mean1 = np.mean(data[:, labels == 1], axis=1) tstat = mean1 - mean0 return tstat def stdmeandiff(data, labels): mean0 = np.mean(data[:, labels == 0], axis=1) mean1 = np.mean(data[:, labels == 1], axis=1) sd0 = np.std(data[:, labels == 0], axis=1, ddof=1) sd1 = np.std(data[:, labels == 1], axis=1, ddof=1) sdsum = sd0 + sd1 # if feature has identical values in all samples in each group, std is 0 # fix it to 1 so won't divide by 0 (mean/std is undefined) sdsum[sdsum == 0] = 1 tstat = (mean1 - mean0) / sdsum return tstat def mannwhitney(data, labels): group0 = data[:, labels == 0] group1 = data[:, labels == 1] tstat = np.array([scipy.stats.mannwhitneyu(group0[i, :], group1[i, :], alternative='two-sided') .statistic for i in range(np.shape(data)[0])]) return tstat # kruwallis give a column vector while others give row vector def kruwallis(data, labels): n = len(np.unique(labels)) allt = np.zeros(np.shape(data)[0]) for cbact in range(np.shape(data)[0]): group = [] for j in range(n): group.append(data[cbact, labels == j]) tstat = scipy.stats.kruskal(*group).statistic allt[cbact] = tstat return allt def pearson(data, labels): tstat = np.array([scipy.stats.pearsonr(data[i, :], labels)[0] for i in range(np.shape(data)[0])]) return tstat def spearman(data, labels): tstat = np.array([scipy.stats.spearmanr(data[i, :], labels).correlation for i in range(np.shape(data)[0])]) return tstat # new fdr method def dsfdr(data, labels, transform_type='rankdata', method='meandiff', alpha=0.1, numperm=1000, fdr_method='dsfdr', random_seed=None): ''' calculate the Discrete FDR for the data Parameters ---------- data : N x S numpy array each column is a sample (S total), each row a feature (N total) labels : a 1d numpy array (length S) the labels of each sample (same order as data) with the group (0/1 if binary, 0-G-1 if G groups, or numeric values for correlation) transform_type : str or None transformation to apply to the data before caluculating the test statistic 'rankdata' : rank transfrom each feature 'log2data' : calculate log2 for each feature using minimal cutoff of 2 'normdata' : normalize the data to constant sum per samples 'binarydata' : convert to binary absence/presence None : no transformation to perform method : str or function the method to use for calculating test statistics: 'meandiff' : mean(A)-mean(B) (binary) 'mannwhitney' : mann-whitney u-test (binary) 'kruwallis' : kruskal-wallis test (multiple groups) 'stdmeandiff' : (mean(A)-mean(B))/(std(A)+std(B)) (binary) 'spearman' : spearman correlation (numeric) 'pearson' : pearson correlation (numeric) 'nonzerospearman' : spearman correlation only non-zero entries (numeric) 'nonzeropearson' : pearson correlation only non-zero entries (numeric) function : use this function to calculate the test statistic (input is data,labels, output is array of float) alpha : float the desired FDR control level numperm : int number of permutations to perform fdr_method : str the FDR procedure to determine significant bacteria 'dsfdr' : discrete FDR method 'bhfdr' : Benjamini-Hochberg FDR method 'byfdr' : Benjamini-Yekutielli FDR method 'filterBH' : Benjamini-Hochberg FDR method with filtering random_seed : int, np.radnom.Generator instance or None, optional, default=None set the random number generator seed for the random permutations If int, random_seed is the seed used by the random number generator; If Generator instance, random_seed is set to the random number generator; If None, then fresh, unpredictable entropy will be pulled from the OS Returns ------- reject : np array of bool (length N) True for features where the null hypothesis is rejected tstat : np array of float (length N) the test statistic value for each feature (for effect size) pvals : np array of float (length N) the p-value (uncorrected) for each feature qvals: np array of float (length N) the q-value (corrected p-value) for each feature. ''' logger.debug('dsfdr using fdr method: %s' % fdr_method) # create the numpy.random.Generator rng = np.random.default_rng(random_seed) data = data.copy() if fdr_method == 'filterBH': index = [] n0 = np.sum(labels == 0) n1 = np.sum(labels == 1) for i in range(np.shape(data)[0]): nonzeros = np.count_nonzero(data[i, :]) if nonzeros < min(n0, n1): pval_min = (comb(n0, nonzeros, exact=True) + comb(n1, nonzeros, exact=True)) / comb(n0 + n1, nonzeros) if pval_min <= alpha: index.append(i) else: index.append(i) data = data[index, :] # transform the data if transform_type == 'rankdata': data = rankdata(data) elif transform_type == 'log2data': data = log2data(data) elif transform_type == 'binarydata': data = binarydata(data) elif transform_type == 'normdata': data = normdata(data) elif transform_type is None: pass else: raise ValueError('transform type %s not supported' % transform_type) numbact = np.shape(data)[0] labels = labels.copy() numbact = np.shape(data)[0] labels = labels.copy() logger.debug('start permutation') if method == 'meandiff': # fast matrix multiplication based calculation method = meandiff tstat = method(data, labels) t = np.abs(tstat) numsamples = np.shape(data)[1] p = np.zeros([numsamples, numperm]) k1 = 1 / np.sum(labels == 0) k2 = 1 / np.sum(labels == 1) for cperm in range(numperm): rng.shuffle(labels) p[labels == 0, cperm] = k1 p2 = np.ones(p.shape) * k2 p2[p > 0] = 0 mean1 = np.dot(data, p) mean2 = np.dot(data, p2) u = np.abs(mean1 - mean2) elif method == 'mannwhitney' or method == \ 'kruwallis' or method == 'stdmeandiff': if method == 'mannwhitney': method = mannwhitney if method == 'kruwallis': method = kruwallis if method == 'stdmeandiff': method = stdmeandiff tstat = method(data, labels) t = np.abs(tstat) u = np.zeros([numbact, numperm]) for cperm in range(numperm): rlabels = rng.permutation(labels) rt = method(data, rlabels) u[:, cperm] = rt elif method == 'spearman' or method == 'pearson': # fast matrix multiplication based correlation if method == 'spearman': data = rankdata(data) labels = sp.stats.rankdata(labels) meanval = np.mean(data, axis=1).reshape([data.shape[0], 1]) data = data - np.repeat(meanval, data.shape[1], axis=1) labels = labels - np.mean(labels) tstat = np.dot(data, labels) t = np.abs(tstat) # calculate the normalized test statistic stdval = np.std(data, axis=1).reshape([data.shape[0], 1]) # to fix problem with 0 std divide by zero (since we permute it's ok) # note we don't remove from mutiple hypothesis - could be done better stdval[stdval == 0] = 1 tdata = data / np.repeat(stdval, data.shape[1], axis=1) meanval = np.mean(tdata, axis=1).reshape([tdata.shape[0], 1]) tdata = tdata - np.repeat(meanval, tdata.shape[1], axis=1) meanval = np.mean(data, axis=1).reshape([data.shape[0], 1]) tdata = tdata - np.repeat(meanval, tdata.shape[1], axis=1) tlabels = labels / np.std(labels) # fix for n since we multiply without normalizing for n tlabels = tlabels / len(tlabels) tlabels = tlabels - np.mean(tlabels) tstat = np.dot(tdata, tlabels) permlabels = np.zeros([len(labels), numperm]) for cperm in range(numperm): rlabels = rng.permutation(labels) permlabels[:, cperm] = rlabels u = np.abs(np.dot(data, permlabels)) elif method == 'nonzerospearman' or method == 'nonzeropearson': t = np.zeros([numbact]) tstat = np.zeros([numbact]) u = np.zeros([numbact, numperm]) for i in range(numbact): index = np.nonzero(data[i, :]) label_nonzero = labels[index] sample_nonzero = data[i, :][index] if len(sample_nonzero) == 0: continue if method == 'nonzerospearman': sample_nonzero = sp.stats.rankdata(sample_nonzero) label_nonzero = sp.stats.rankdata(label_nonzero) sample_nonzero = sample_nonzero - np.mean(sample_nonzero) label_nonzero = label_nonzero - np.mean(label_nonzero) tstat[i] = np.dot(sample_nonzero, label_nonzero) t[i] = np.abs(tstat[i]) if np.std(sample_nonzero) == 0: continue tstat[i] = tstat[i] / (np.std(sample_nonzero) * np.std(label_nonzero) * len(sample_nonzero)) permlabels = np.zeros([len(label_nonzero), numperm]) for cperm in range(numperm): rlabels = rng.permutation(label_nonzero) permlabels[:, cperm] = rlabels u[i, :] = np.abs(np.dot(sample_nonzero, permlabels)) elif isinstance(method, types.FunctionType): # call the user-defined function of statistical test t = method(data, labels) tstat = t.copy() # Get the abs() of the statistic since we are doing a double-sided test for dsFDR t = np.abs(tstat) u = np.zeros([numbact, numperm]) for cperm in range(numperm): rlabels = rng.permutation(labels) rt = method(data, rlabels) u[:, cperm] = rt u = np.abs(u) else: raise ValueError('unsupported method %s' % method) # fix floating point errors (important for permutation values!) # https://github.com/numpy/numpy/issues/8116 for crow in range(numbact): closepos = np.isclose(t[crow], u[crow, :]) u[crow, closepos] = t[crow] # calculate permutation p-vals pvals = np.zeros([numbact]) # p-value for original test statistic t qvals = np.ones([numbact]) # q-value (corrected p-value) for each feature. pvals_u = np.zeros([numbact, numperm]) # pseudo p-values for permutated test statistic u for crow in range(numbact): allstat = np.hstack([t[crow], u[crow, :]]) stat_rank = sp.stats.rankdata(allstat, method='min') allstat = 1 - ((stat_rank - 1) / len(allstat)) # assign ranks to t from biggest as 1 pvals[crow] = allstat[0] pvals_u[crow, :] = allstat[1:] # calculate FDR if fdr_method == 'dsfdr': # sort unique p-values for original test statistics biggest to smallest pvals_unique = np.unique(pvals) sortp = pvals_unique[np.argsort(-pvals_unique)] # find a data-dependent threshold for the p-value foundit = False allfdr = [] allt = [] for cp in sortp: realnum = np.sum(pvals <= cp) fdr = (realnum + np.count_nonzero( pvals_u <= cp)) / (realnum * (numperm + 1)) allfdr.append(fdr) allt.append(cp) if fdr <= alpha: if not foundit: realcp = cp foundit = True if not foundit: # no good threshold was found reject = np.repeat([False], numbact) return reject, tstat, pvals, qvals # fill the reject null hypothesis reject = np.zeros(numbact, dtype=int) reject = (pvals <= realcp) # fill the q-values for idx, cfdr in enumerate(allfdr): # fix for qval > 1 (since we count on all features in random permutation) cfdr =
np.min([cfdr, 1])
numpy.min
import numpy as np import tensorflow as tf import gym import time from spinup.algos.ude_td3 import core from spinup.algos.ude_td3.core import get_vars from spinup.algos.ude_td3.investigate_uncertainty import DropoutUncertaintyModule,ObsSampleUncertaintyModule from spinup.utils.logx import EpochLogger, Logger class ReplayBuffer: """ A simple FIFO experience replay buffer for TD3 agents. """ def __init__(self, obs_dim, act_dim, size, logger_fname='experiences_log.txt', **logger_kwargs): # ExperienceLogger: save experiences for supervised learning logger_kwargs['output_fname'] = logger_fname self.experience_logger = Logger(**logger_kwargs) self.obs1_buf = np.zeros([size, obs_dim], dtype=np.float32) self.obs2_buf = np.zeros([size, obs_dim], dtype=np.float32) self.acts_buf = np.zeros([size, act_dim], dtype=np.float32) self.rews_buf = np.zeros(size, dtype=np.float32) self.done_buf = np.zeros(size, dtype=np.float32) self.ptr, self.size, self.max_size = 0, 0, size def store(self, obs, act, rew, next_obs, done, uncertainty, q1_pred, q2_pred, q1_post, q2_post, rnd_e_act, rnd_e_cri, step_index, steps_per_epoch, start_time): # Save experiences in disk self.log_experiences(obs, act, rew, next_obs, done, uncertainty, q1_pred, q2_pred, q1_post, q2_post, rnd_e_act, rnd_e_cri, step_index, steps_per_epoch, start_time) # Save experiences in memory self.obs1_buf[self.ptr] = obs self.obs2_buf[self.ptr] = next_obs self.acts_buf[self.ptr] = act self.rews_buf[self.ptr] = rew self.done_buf[self.ptr] = done self.ptr = (self.ptr+1) % self.max_size self.size = min(self.size+1, self.max_size) def sample_batch(self, batch_size=32): idxs = np.random.randint(0, self.size, size=batch_size) return dict(obs1=self.obs1_buf[idxs], obs2=self.obs2_buf[idxs], acts=self.acts_buf[idxs], rews=self.rews_buf[idxs], done=self.done_buf[idxs]) def log_experiences(self, obs, act, rew, next_obs, done, uncertainty, q1_pred, q2_pred, q1_post, q2_post, rnd_e_act, rnd_e_cri, step_index, steps_per_epoch, start_time): self.experience_logger.log_tabular('Epoch', step_index // steps_per_epoch) self.experience_logger.log_tabular('Step', step_index) # Log observation for i, o_i in enumerate(obs): self.experience_logger.log_tabular('o_{}'.format(i), o_i) # Log action for i, a_i in enumerate(act): self.experience_logger.log_tabular('a_{}'.format(i), a_i) # Log reward self.experience_logger.log_tabular('r', rew) # Log next observation for i, o2_i in enumerate(next_obs): self.experience_logger.log_tabular('o2_{}'.format(i), o2_i) # Log uncertainty: flatten in row-major order for i, unc_i in enumerate(np.array(uncertainty).flatten(order='C')): self.experience_logger.log_tabular('unc_{}'.format(i), unc_i) # Log q1_post, q2_post self.experience_logger.log_tabular('q1_pred', q1_pred) self.experience_logger.log_tabular('q2_pred', q2_pred) # Log q1_post, q2_post for i in range(len(q1_post)): self.experience_logger.log_tabular('q1_post_{}'.format(i), q1_post[i]) self.experience_logger.log_tabular('q2_post_{}'.format(i), q2_post[i]) # Log RND actor prediction error self.experience_logger.log_tabular('rnd_e_act', rnd_e_act) # Log RND critic prediction error self.experience_logger.log_tabular('rnd_e_cri', rnd_e_cri) # Log done self.experience_logger.log_tabular('d', done) self.experience_logger.log_tabular('Time', time.time() - start_time) self.experience_logger.dump_tabular(print_data=False) """ UDE-TD3 (Uncertainty Driven Exploration Twin Delayed DDPG) """ def ude_td3(env_fn, render_env=False, actor_critic=core.mlp_actor_critic, ac_kwargs=dict(), seed=0, steps_per_epoch=5000, epochs=100, replay_size=int(1e6), gamma=0.99, polyak=0.995, pi_lr=1e-3, q_lr=1e-3, reward_scale=5, without_start_steps=True, batch_size=100, start_steps=10000, without_delay_train=False, act_noise=0.1, target_noise=0.2, noise_clip=0.5, policy_delay=2, max_ep_len=1000, logger_kwargs=dict(), save_freq=1, n_post_action=10, uncertainty_method='dropout', sample_obs_std=1, uncertainty_driven_exploration=False, uncertainty_policy_delay=5000, dropout_rate=0.1, concentration_factor=0.1, minimum_exploration_level=0, ): """ Args: env_fn : A function which creates a copy of the environment. The environment must satisfy the OpenAI Gym API. actor_critic: A function which takes in placeholder symbols for state, ``x_ph``, and action, ``a_ph``, and returns the main outputs from the agent's Tensorflow computation graph: =========== ================ ====================================== Symbol Shape Description =========== ================ ====================================== ``pi`` (batch, act_dim) | Deterministically computes actions | from policy given states. ``q1`` (batch,) | Gives one estimate of Q* for | states in ``x_ph`` and actions in | ``a_ph``. ``q2`` (batch,) | Gives another estimate of Q* for | states in ``x_ph`` and actions in | ``a_ph``. ``q1_pi`` (batch,) | Gives the composition of ``q1`` and | ``pi`` for states in ``x_ph``: | q1(x, pi(x)). =========== ================ ====================================== ac_kwargs (dict): Any kwargs appropriate for the actor_critic function you provided to TD3. seed (int): Seed for random number generators. steps_per_epoch (int): Number of steps of interaction (state-action pairs) for the agent and the environment in each epoch. epochs (int): Number of epochs to run and train agent. replay_size (int): Maximum length of replay buffer. gamma (float): Discount factor. (Always between 0 and 1.) polyak (float): Interpolation factor in polyak averaging for target networks. Target networks are updated towards main networks according to: .. math:: \\theta_{\\text{targ}} \\leftarrow \\rho \\theta_{\\text{targ}} + (1-\\rho) \\theta where :math:`\\rho` is polyak. (Always between 0 and 1, usually close to 1.) pi_lr (float): Learning rate for policy. q_lr (float): Learning rate for Q-networks. batch_size (int): Minibatch size for SGD. start_steps (int): Number of steps for uniform-random action selection, before running real policy. Helps exploration. act_noise (float): Stddev for Gaussian exploration noise added to policy at training time. (At test time, no noise is added.) target_noise (float): Stddev for smoothing noise added to target policy. noise_clip (float): Limit for absolute value of target policy smoothing noise. policy_delay (int): Policy will only be updated once every policy_delay times for each update of the Q-networks. max_ep_len (int): Maximum length of trajectory / episode / rollout. logger_kwargs (dict): Keyword args for EpochLogger. save_freq (int): How often (in terms of gap between epochs) to save the current policy and value function. """ # TODO: Test no start steps if without_start_steps: start_steps = batch_size logger = EpochLogger(**logger_kwargs) logger.save_config(locals()) tf.set_random_seed(seed) np.random.seed(seed) env, test_env = env_fn(), env_fn() obs_dim = env.observation_space.shape[0] act_dim = env.action_space.shape[0] # Action limit for clamping: critically, assumes all dimensions share the same bound! act_limit = env.action_space.high[0] # Share information about action space with policy architecture ac_kwargs['action_space'] = env.action_space # Inputs to computation graph x_ph, a_ph, x2_ph, r_ph, d_ph = core.placeholders(obs_dim, act_dim, obs_dim, None, None) print('Creating networks ...') # Main outputs from computation graph with tf.variable_scope('main'): pi, _, pi_dropout_mask_generator, pi_dropout_mask_phs, \ q1, _, q1_dropout_mask_generator, q1_dropout_mask_phs, q1_pi, _, \ q2, _, q2_dropout_mask_generator, q2_dropout_mask_phs = actor_critic(x_ph, a_ph, **ac_kwargs, dropout_rate=0) # Random Network Distillation with tf.variable_scope('random_net_distill'): # RND Target and Predictor Network rnd_lr = 1e-3 rnd_targ_act, rnd_pred_act, rnd_targ_cri, rnd_pred_cri = core.random_net_distill(x_ph, a_ph, **ac_kwargs) # TODO: add environment model learning transition dynamics with tf.variable_scope('uncertainty'): pi_unc, _, pi_dropout_mask_generator_unc, pi_dropout_mask_phs_unc, \ q1_unc, _, q1_dropout_mask_generator_unc, q1_dropout_mask_phs_unc, q1_pi_unc, _, \ q2_unc, _, q2_dropout_mask_generator_unc, q2_dropout_mask_phs_unc = actor_critic(x_ph, a_ph, **ac_kwargs, dropout_rate=dropout_rate) # TODO: Calculate Uncertainty of Q-value function # Initialize uncertainty module obs_set_size = 10 track_obs_set_unc_frequency = 100 # every 100 steps if uncertainty_method == 'dropout': pi_unc_module = DropoutUncertaintyModule(act_dim, obs_dim, n_post_action, obs_set_size, track_obs_set_unc_frequency, x_ph, a_ph, pi_unc, q1_unc, q2_unc, pi_dropout_mask_phs_unc, pi_dropout_mask_generator_unc, q1_dropout_mask_phs_unc, q1_dropout_mask_generator_unc, q2_dropout_mask_phs_unc, q2_dropout_mask_generator_unc, rnd_targ_act, rnd_pred_act, rnd_targ_cri, rnd_pred_cri, logger_kwargs, tf_var_scope_main='main', tf_var_scope_target='target', tf_var_scope_unc='uncertainty') elif uncertainty_method == 'gaussian_obs_sample': pi_unc_module = ObsSampleUncertaintyModule(act_dim, obs_dim, n_post_action, obs_set_size, track_obs_set_unc_frequency, pi_unc, x_ph, pi_dropout_mask_phs_unc, pi_dropout_mask_generator_unc, logger_kwargs, sample_obs_std) else: raise ValueError('Please choose a proper uncertainty_method!') # Target policy network with tf.variable_scope('target'): pi_targ, _, pi_dropout_mask_generator_targ, pi_dropout_mask_phs_targ, \ _, _, _, _, _, _, \ _, _, _, _ = actor_critic(x2_ph, a_ph, **ac_kwargs, dropout_rate=dropout_rate) # Target Q networks with tf.variable_scope('target', reuse=True): # TODO: add with_out_policy_smoothing # Target policy smoothing, by adding clipped noise to target actions epsilon = tf.random_normal(tf.shape(pi_targ), stddev=target_noise) epsilon = tf.clip_by_value(epsilon, -noise_clip, noise_clip) a2 = pi_targ + epsilon a2 = tf.clip_by_value(a2, -act_limit, act_limit) # Target Q-values, using action from target policy _, _, _, _, \ q1_targ, _, q1_dropout_mask_generator_targ, q1_dropout_mask_phs_targ, _, _, \ q2_targ, _, q2_dropout_mask_generator_targ, q2_dropout_mask_phs_targ = actor_critic(x2_ph, a2, **ac_kwargs, dropout_rate=dropout_rate) # Experience buffer replay_buffer = ReplayBuffer(obs_dim=obs_dim, act_dim=act_dim, size=replay_size, logger_fname='experiences_log.txt', **logger_kwargs) # Count variables var_counts = tuple(core.count_vars(scope) for scope in ['main/pi', 'main/q1', 'main/q2', 'main']) print('\nNumber of parameters: \t pi: %d, \t q1: %d, \t q2: %d, \t total: %d\n'%var_counts) # TODO: use conservative estimation of Q # Bellman backup for Q functions, using Clipped Double-Q targets def post_sample_q1_and_q2(feed_dictionary, batch_size): dropout_masks_set_q1 = {i: q1_dropout_mask_generator_targ.generate_dropout_mask() for i in range(n_post_action)} dropout_masks_set_q2 = {i: q2_dropout_mask_generator_targ.generate_dropout_mask() for i in range(n_post_action)} q1_targ_post = np.zeros((batch_size, n_post_action)) q2_targ_post = np.zeros((batch_size, n_post_action)) for post_i in range(n_post_action): # Post sampled q for mask_i in range(len(q1_dropout_mask_phs_targ)): feed_dictionary[q1_dropout_mask_phs_targ[mask_i]] = dropout_masks_set_q1[post_i][mask_i] feed_dictionary[q2_dropout_mask_phs_targ[mask_i]] = dropout_masks_set_q2[post_i][mask_i] q1_targ_post[:, post_i] = sess.run(q1_targ, feed_dict=feed_dictionary) q2_targ_post[:, post_i] = sess.run(q2_targ, feed_dict=feed_dictionary) min_q_targ = np.minimum(q1_targ_post.mean(axis=1), q2_targ_post.mean(axis=1)) return min_q_targ # min_q_targ = tf.placeholder(dtype=tf.float32) # backup = tf.stop_gradient(r_ph + gamma*(1-d_ph)*min_q_targ) min_q_targ = tf.minimum(q1_targ, q2_targ) backup = tf.stop_gradient(r_ph + gamma*(1-d_ph)*min_q_targ) # TD3 losses pi_loss = -tf.reduce_mean(q1_pi) q1_loss = tf.reduce_mean((q1-backup)**2) q2_loss = tf.reduce_mean((q2-backup)**2) q_loss = q1_loss + q2_loss # Separate train ops for pi, q pi_optimizer = tf.train.AdamOptimizer(learning_rate=pi_lr) q_optimizer = tf.train.AdamOptimizer(learning_rate=q_lr) train_pi_op = pi_optimizer.minimize(pi_loss, var_list=get_vars('main/pi')) train_q_op = q_optimizer.minimize(q_loss, var_list=get_vars('main/q')) # RND losses and train ops rnd_loss_act = tf.reduce_mean((rnd_pred_act - rnd_targ_act)**2) rnd_optimizer_act = tf.train.AdamOptimizer(learning_rate=rnd_lr) train_rnd_op_act = rnd_optimizer_act.minimize(rnd_loss_act, var_list=get_vars('random_net_distill/rnd_pred_act')) rnd_loss_cri = tf.reduce_mean((rnd_pred_cri - rnd_targ_cri)**2) rnd_optimizer_cri = tf.train.AdamOptimizer(learning_rate=rnd_lr) train_rnd_op_cri = rnd_optimizer_cri.minimize(rnd_loss_cri, var_list=get_vars('random_net_distill/rnd_pred_cri')) # Polyak averaging for target variables target_update = tf.group([tf.assign(v_targ, polyak*v_targ + (1-polyak)*v_main) for v_main, v_targ in zip(get_vars('main'), get_vars('target'))]) # Initializing targets to match main variables target_init = tf.group([tf.assign(v_targ, v_main) for v_main, v_targ in zip(get_vars('main'), get_vars('target'))]) sess = tf.Session() sess.run(tf.global_variables_initializer()) sess.run(target_init) # Setup model saving logger.setup_tf_saver(sess, inputs={'x': x_ph, 'a': a_ph}, outputs={'pi': pi, 'q1': q1, 'q2': q2}) def get_action_train(o, noise_scale, pi_unc_module, step_index): # RND actor rnd_t_act, rnd_p_act, rnd_e_act = pi_unc_module.calculate_actor_RND_pred_error(o, sess) # Generate action feed_dictionary = {x_ph: o.reshape(1, -1)} if uncertainty_driven_exploration: # 1. Generate action Prediction, and q1 and q2 prediction for mask_i in range(len(pi_dropout_mask_phs)): feed_dictionary[pi_dropout_mask_phs[mask_i]] = np.ones(pi_dropout_mask_phs[mask_i].shape.as_list()) a_prediction = sess.run(pi, feed_dict=feed_dictionary)[0] for mask_i in range(len(q1_dropout_mask_phs)): feed_dictionary[q1_dropout_mask_phs[mask_i]] = np.ones(q1_dropout_mask_phs[mask_i].shape.as_list()) feed_dictionary[q2_dropout_mask_phs[mask_i]] = np.ones(q2_dropout_mask_phs[mask_i].shape.as_list()) feed_dictionary[a_ph] = a_prediction.reshape(1,-1) q1_pred = sess.run(q1, feed_dict=feed_dictionary)[0] q2_pred = sess.run(q2, feed_dict=feed_dictionary)[0] # 2. Generate post samples in Non-parallel way # (Tried to use ray implementing parallel post sampling but no speed up in one machine.) # TODO: generate a batch of dropout mask and multiply with weights to get a set # of post sampled action in one see.run() to speed up sampling. a_post = pi_unc_module.get_post_samples(o, sess, step_index) q1_post, q2_post = pi_unc_module.get_post_samples_q(o, a_prediction, sess, step_index) # 3. Generate uncertainty-driven exploratory action a =
np.zeros((act_dim,))
numpy.zeros
from __future__ import print_function, division import os import sys import pytest import warnings import numpy from galpy.util import galpyWarning from test_actionAngle import reset_warning_registry _TRAVIS= bool(os.getenv('TRAVIS')) PY2= sys.version < '3' # Print all galpyWarnings always for tests of warnings warnings.simplefilter("always",galpyWarning) #Basic sanity checking: circular orbit should have constant R, zero vR, vT=vc def test_actionAngleTorus_basic(): from galpy.actionAngle import actionAngleTorus from galpy.potential import MWPotential, rl, vcirc, \ FlattenedPowerPotential, PlummerPotential tol= -4. jr= 10.**-10. jz= 10.**-10. aAT= actionAngleTorus(pot=MWPotential) # at R=1, Lz=1 jphi= 1. angler= numpy.linspace(0.,2.*numpy.pi,101) anglephi= numpy.linspace(0.,2.*numpy.pi,101)+1. anglez= numpy.linspace(0.,2.*numpy.pi,101)+2. RvR= aAT(jr,jphi,jz,angler,anglephi,anglez).T assert numpy.all(numpy.fabs(RvR[0]-rl(MWPotential,jphi)) < 10.**tol), \ 'circular orbit does not have constant radius for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[1]) < 10.**tol), \ 'circular orbit does not have zero radial velocity for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[2]-vcirc(MWPotential,rl(MWPotential,jphi))) < 10.**tol), \ 'circular orbit does not have constant vT=vc for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[3]) < 10.**tol), \ 'circular orbit does not have zero vertical height for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[4]) < 10.**tol), \ 'circular orbit does not have zero vertical velocity for actionAngleTorus' # at Lz=1.5, using Plummer tol= -3.25 pp= PlummerPotential(normalize=1.) aAT= actionAngleTorus(pot=pp) jphi= 1.5 RvR= aAT(jr,jphi,jz,angler,anglephi,anglez).T assert numpy.all(numpy.fabs(RvR[0]-rl(pp,jphi)) < 10.**tol), \ 'circular orbit does not have constant radius for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[1]) < 10.**tol), \ 'circular orbit does not have zero radial velocity for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[2]-vcirc(pp,rl(pp,jphi))) < 10.**tol), \ 'circular orbit does not have constant vT=vc for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[3]) < 10.**tol), \ 'circular orbit does not have zero vertical height for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[4]) < 10.**tol), \ 'circular orbit does not have zero vertical velocity for actionAngleTorus' # at Lz=0.5, using FlattenedPowerPotential tol= -4. fp= FlattenedPowerPotential(normalize=1.) aAT= actionAngleTorus(pot=fp) jphi= 0.5 RvR= aAT(jr,jphi,jz,angler,anglephi,anglez).T assert numpy.all(numpy.fabs(RvR[0]-rl(fp,jphi)) < 10.**tol), \ 'circular orbit does not have constant radius for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[1]) < 10.**tol), \ 'circular orbit does not have zero radial velocity for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[2]-vcirc(fp,rl(fp,jphi))) < 10.**tol), \ 'circular orbit does not have constant vT=vc for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[3]) < 10.**tol), \ 'circular orbit does not have zero vertical height for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[4]) < 10.**tol), \ 'circular orbit does not have zero vertical velocity for actionAngleTorus' return None #Basic sanity checking: close-to-circular orbit should have freq. = epicycle freq. def test_actionAngleTorus_basic_freqs(): from galpy.actionAngle import actionAngleTorus from galpy.potential import epifreq, omegac, verticalfreq, rl, \ JaffePotential, PowerSphericalPotential, HernquistPotential tol= -3. jr= 10.**-6. jz= 10.**-6. jp= JaffePotential(normalize=1.) aAT= actionAngleTorus(pot=jp) # at Lz=1 jphi= 1. om= aAT.Freqs(jr,jphi,jz) assert numpy.fabs((om[0]-epifreq(jp,rl(jp,jphi)))/om[0]) < 10.**tol, \ 'Close-to-circular orbit does not have Or=kappa for actionAngleTorus' assert numpy.fabs((om[1]-omegac(jp,rl(jp,jphi)))/om[1]) < 10.**tol, \ 'Close-to-circular orbit does not have Ophi=omega for actionAngleTorus' assert numpy.fabs((om[2]-verticalfreq(jp,rl(jp,jphi)))/om[2]) < 10.**tol, \ 'Close-to-circular orbit does not have Oz=nu for actionAngleTorus' # at Lz=1.5, w/ different potential pp= PowerSphericalPotential(normalize=1.) aAT= actionAngleTorus(pot=pp) jphi= 1.5 om= aAT.Freqs(jr,jphi,jz) assert numpy.fabs((om[0]-epifreq(pp,rl(pp,jphi)))/om[0]) < 10.**tol, \ 'Close-to-circular orbit does not have Or=kappa for actionAngleTorus' assert numpy.fabs((om[1]-omegac(pp,rl(pp,jphi)))/om[1]) < 10.**tol, \ 'Close-to-circular orbit does not have Ophi=omega for actionAngleTorus' assert numpy.fabs((om[2]-verticalfreq(pp,rl(pp,jphi)))/om[2]) < 10.**tol, \ 'Close-to-circular orbit does not have Oz=nu for actionAngleTorus' # at Lz=0.5, w/ different potential tol= -2.5 # appears more difficult hp= HernquistPotential(normalize=1.) aAT= actionAngleTorus(pot=hp) jphi= 0.5 om= aAT.Freqs(jr,jphi,jz) assert numpy.fabs((om[0]-epifreq(hp,rl(hp,jphi)))/om[0]) < 10.**tol, \ 'Close-to-circular orbit does not have Or=kappa for actionAngleTorus' assert numpy.fabs((om[1]-omegac(hp,rl(hp,jphi)))/om[1]) < 10.**tol, \ 'Close-to-circular orbit does not have Ophi=omega for actionAngleTorus' assert numpy.fabs((om[2]-verticalfreq(hp,rl(hp,jphi)))/om[2]) < 10.**tol, \ 'Close-to-circular orbit does not have Oz=nu for actionAngleTorus' return None #Test that orbit from actionAngleTorus is the same as an integrated orbit def test_actionAngleTorus_orbit(): from galpy.actionAngle import actionAngleTorus from galpy.potential import MWPotential2014 from galpy.orbit import Orbit # Set up instance aAT= actionAngleTorus(pot=MWPotential2014,tol=10.**-5.) jr,jphi,jz= 0.05,1.1,0.025 # First calculate frequencies and the initial RvR RvRom= aAT.xvFreqs(jr,jphi,jz, numpy.array([0.]), numpy.array([1.]), numpy.array([2.])) om= RvRom[1:] # Angles along an orbit ts= numpy.linspace(0.,100.,1001) angler= ts*om[0] anglephi= 1.+ts*om[1] anglez= 2.+ts*om[2] # Calculate the orbit using actionAngleTorus RvR= aAT(jr,jphi,jz,angler,anglephi,anglez).T # Calculate the orbit using orbit integration orb= Orbit([RvRom[0][0,0],RvRom[0][0,1],RvRom[0][0,2], RvRom[0][0,3],RvRom[0][0,4],RvRom[0][0,5]]) orb.integrate(ts,MWPotential2014) # Compare tol= -3. assert numpy.all(numpy.fabs(orb.R(ts)-RvR[0]) < 10.**tol), \ 'Integrated orbit does not agree with torus orbit in R' assert numpy.all(numpy.fabs(orb.vR(ts)-RvR[1]) < 10.**tol), \ 'Integrated orbit does not agree with torus orbit in vR' assert numpy.all(numpy.fabs(orb.vT(ts)-RvR[2]) < 10.**tol), \ 'Integrated orbit does not agree with torus orbit in vT' assert numpy.all(numpy.fabs(orb.z(ts)-RvR[3]) < 10.**tol), \ 'Integrated orbit does not agree with torus orbit in z' assert numpy.all(numpy.fabs(orb.vz(ts)-RvR[4]) < 10.**tol), \ 'Integrated orbit does not agree with torus orbit in vz' assert numpy.all(numpy.fabs((orb.phi(ts)-RvR[5]+numpy.pi) % (2.*numpy.pi) -numpy.pi) < 10.**tol), \ 'Integrated orbit does not agree with torus orbit in phi' return None # Test that actionAngleTorus w/ interp pot gives same freqs as regular pot # Doesn't work well: TM aborts because our interpolated forces aren't # consistent enough with the potential for TM's taste, but we test that it at # at least works somewhat def test_actionAngleTorus_interppot_freqs(): from galpy.actionAngle import actionAngleTorus from galpy.potential import LogarithmicHaloPotential, interpRZPotential lp= LogarithmicHaloPotential(normalize=1.) ip= interpRZPotential(RZPot=lp, interpPot=True, interpDens=True,interpRforce=True,interpzforce=True, enable_c=True) aAT= actionAngleTorus(pot=lp) aATi= actionAngleTorus(pot=ip) jr,jphi,jz= 0.05,1.1,0.02 om= aAT.Freqs(jr,jphi,jz) omi= aATi.Freqs(jr,jphi,jz) assert numpy.fabs((om[0]-omi[0])/om[0]) < 0.2, 'Radial frequency computed using the torus machine does not agree between potential and interpolated potential' assert numpy.fabs((om[1]-omi[1])/om[1]) < 0.2, 'Azimuthal frequency computed using the torus machine does not agree between potential and interpolated potential' assert numpy.fabs((om[2]-omi[2])/om[2]) < 0.8, 'Vertical frequency computed using the torus machine does not agree between potential and interpolated potential' return None #Test the actionAngleTorus against an isochrone potential: actions def test_actionAngleTorus_Isochrone_actions(): from galpy.potential import IsochronePotential from galpy.actionAngle import actionAngleTorus, \ actionAngleIsochrone ip= IsochronePotential(normalize=1.,b=1.2) aAI= actionAngleIsochrone(ip=ip) tol= -6. aAT= actionAngleTorus(pot=ip,tol=tol) jr,jphi,jz= 0.075,1.1,0.05 angler= numpy.array([0.]) anglephi= numpy.array([numpy.pi]) anglez= numpy.array([numpy.pi/2.]) # Calculate position from aAT RvR= aAT(jr,jphi,jz,angler,anglephi,anglez).T # Calculate actions from aAI ji= aAI(*RvR) djr= numpy.fabs((ji[0]-jr)/jr) dlz= numpy.fabs((ji[1]-jphi)/jphi) djz= numpy.fabs((ji[2]-jz)/jz) assert djr < 10.**tol, 'actionAngleTorus and actionAngleIsochrone applied to isochrone potential disagree for Jr at %f%%' % (djr*100.) assert dlz < 10.**tol, 'actionAngleTorus and actionAngleIsochrone applied to isochrone potential disagree for Jr at %f%%' % (dlz*100.) assert djz < 10.**tol, 'actionAngleTorus and actionAngleIsochrone applied to isochrone potential disagree for Jr at %f%%' % (djz*100.) return None #Test the actionAngleTorus against an isochrone potential: frequencies and angles def test_actionAngleTorus_Isochrone_freqsAngles(): from galpy.potential import IsochronePotential from galpy.actionAngle import actionAngleTorus, \ actionAngleIsochrone ip= IsochronePotential(normalize=1.,b=1.2) aAI= actionAngleIsochrone(ip=ip) tol= -6. aAT= actionAngleTorus(pot=ip,tol=tol) jr,jphi,jz= 0.075,1.1,0.05 angler= numpy.array([0.1])+
numpy.linspace(0.,numpy.pi,101)
numpy.linspace
"""Parse CaffeModel. Helped by caffe2theano, MarcBS's Caffe2Keras module. Author: <NAME> Email : <EMAIL> """ from __future__ import print_function from collections import OrderedDict import numpy as np from scipy.io import loadmat from transcaffe import caffe_pb2, utils from google.protobuf.text_format import Merge from keras.models import Model from transcaffe import layers as L v1_map = {0: 'NONE', 1: 'ACCURACY', 2: 'BNLL', 3: 'CONCAT', 4: 'CONVOLUTION', 5: 'DATA', 6: 'DROPOUT', 7: 'EUCLIDEANLOSS', 8: 'FLATTEN', 9: 'HDF5DATA', 10: 'HDF5OUTPUT', 11: 'IM2COL', 12: 'IMAGEDATA', 13: 'INFOGAINLOSS', 14: 'INNERPRODUCT', 15: 'LRN', 16: 'MULTINOMIALLOGISTICLOSS', 17: 'POOLING', 18: 'RELU', 19: 'SIGMOID', 20: 'SOFTMAX', 21: 'SOFTMAXWITHLOSS', 22: 'SPLIT', 23: 'TANH', 24: 'WINDOWDATA', 25: 'ELTWISE', 26: 'POWER', 27: 'SIGMOIDCROSSENTROPYLOSS', 28: 'HINGELOSS', 29: 'MEMORYDATA', 30: 'ARGMAX', 31: 'THRESHOLD', 32: 'DUMMY_DATA', 33: 'SLICE', 34: 'MVN', 35: 'ABSVAL', 36: 'SILENCE', 37: 'CONTRASTIVELOSS', 38: 'EXP', 39: 'DECONVOLUTION'} def load(model_def, model_bin, target_lib="keras"): """Load a Caffe model and convert to target library. Parameters ---------- model_def : string absolute path of a given .protobuf text model_bin : string absolute path of a given .caffemodel binary target_lib : string target library, currently only Keras is supported. In planning: Lasagne, TensorFlow Returns ------- model : keras.models.model a loaded model. """ print ("[MESSAGE] Target model is loading...") net_param = parse_protobuf(model_def) layers, version = get_layers(net_param) input_dim = get_input_size(net_param) model = get_model(layers, 1, tuple(input_dim[1:]), net_param.name) print ("[MESSAGE] Printing converted model...") model.summary() print ("[MESSAGE] The model is built.") print ("[MESSAGE] Parsing network parameters...") param_layers, _ = parse_caffemodel(model_bin) net_weights = get_network_weights(param_layers, version) print ("[MESSAGE] Loading parameters into network...") build_model(model, net_weights) print ("[MESSAGE] The model is loaded successfully.") return model def parse_caffemodel(filename): """Parse a given caffemodel. Parameters ---------- filename : string absolute path of a given .caffemodel Returns ------- layers : list The list representation of the network version : string pretrined network version """ utils.file_checker(filename) net_param = caffe_pb2.NetParameter() f = open(filename, mode="rb") contents = f.read() f.close() net_param.ParseFromString(contents) return get_layers(net_param) def parse_mean_file(filename, mode="proto"): """Parse a mean file by given path. TODO: complete more options based on different Caffe Models Parameters ---------- filename : string absolute path of the mean file mode : string "proto" for .binaryproto file "mat" for MAT binary file Returns ------- mean_mat : numpy.ndarray an array that contains the mean values """ utils.file_checker(filename) if mode == "proto": tp = caffe_pb2.TransformationParameter() f = open(filename, mode="rb") mean_contents = f.read() f.close() tp.ParseFromString(mean_contents) mean_mat = np.array(tp.mean_value).reshape((3, tp.crop_size, tp.crop_size)) mean_mat = np.transpose(mean_mat, (1, 2, 0)) elif mode == "mat": # based on VGG's Mat file. mean_contents = loadmat(filename) mean_mat = mean_contents["image_mean"] print(mean_mat.shape) return mean_mat def parse_protobuf(filename): """Parse a given protobuf file. Parameters ---------- filename : string absolute path of .prototxt file Returns ------- net_param : caffe_pb2.NetParameter The parsed .prototxt structure. """ utils.file_checker(filename) f = open(filename, mode="rb") net_param = caffe_pb2.NetParameter() net_def = f.read() # append quotes around type information if needed. # it seems not working because has newer definititon? # net_def = f.read().split("\n") # for i, line in enumerate(net_def): # l = line.strip().replace(" ", "").split('#')[0] # if len(l) > 6 and l[:5] == 'type:' and l[5] != "\'" and l[5] != '\"': # type_ = l[5:] # net_def[i] = ' type: "' + type_ + '"' # # net_def = '\n'.join(net_def) # Check before Merge? For V1? Merge(net_def, net_param) f.close() return net_param def get_layers(net_param): """Get layers information. Parameters ---------- net_param : caffe_pb2.NetParameter A pretrined network description. Returns ------- layers : list description of the layers. version : string version information of the pretrained model. """ if len(net_param.layers) > 0: return net_param.layers[:], "V1" elif len(net_param.layer) > 0: return net_param.layer[:], "V2" else: raise Exception("Couldn't find layers!") def get_layer_type(layer): """Get a given layer type. Parameters ---------- layer : caffe_pb2.V1LayerParameter a given layer in the network Returns ------- type : int or string type of the layer. """ if type(layer.type) == int: return str(v1_map[layer.type]).lower() else: return str(layer.type).lower() def get_input_size(net_param): """Get input parameters, or guess one at least. Parameters ---------- net_param : caffe_pb2.NetParameter structure that contains all the network parameters Returns ------- in_size : tuple tuple that defines the input size """ if len(net_param.input_dim) != 0: return net_param.input_dim elif len(net_param.input_shape) != 0: return net_param.input_shape else: print("[MESSAGE] Couldn't find Input shape in the Network Parameters." "The returned shape is inferenced from the network name") # try: # scale = layer.transform_param.scale # scale = 1 if scale <= 0 else scale # except AttributeError: # pass return [] def check_phase(layer, phase): """Check if the layer matches with the target phase. Parameters ---------- layer : caffe_pb2.V1LayerParameter A given layer. phase : int 0 : train 1 : test """ try: return True if layer.include[0].phase == phase else False except IndexError: return True def get_network(layers, phase): """Get structure of the network. Parameters ---------- layers : list list of layers parsed from network parameters phase : int 0 : train 1 : test """ num_layers = len(layers) network = OrderedDict() for i in xrange(num_layers): layer = layers[i] if check_phase(layer, phase): layer_id = "trans_layer_"+str(i) if layer_id not in network: network[layer_id] = [] prev_blobs = map(str, layer.bottom) next_blobs = map(str, layer.top) for blob in prev_blobs+next_blobs: if blob not in network: network[blob] = [] for blob in prev_blobs: network[blob].append(layer_id) network[layer_id].extend(next_blobs) network = remove_loops(network) network = remove_blobs(network) return network def remove_loops(network): """Remove potential loops from the network. Parameters ---------- network : OrderedDict given network dictionary new_network : OrderedDict a loops free altered network. """ for e in network: if e.startswith("trans_layer_"): continue idx = 0 while idx < len(network[e]): next_e = network[e][idx] if e in network[next_e]: new_e = e+"_"+str(idx) network[e].remove(next_e) network[new_e] = network[e] network[e] = [next_e] network[next_e] = [new_e] for n in network[new_e]: if network[n] == [e]: network[n] = [new_e] e = new_e idx = 0 else: idx += 1 return network def remove_blobs(network): """Remove blobs from network. Parameters ---------- network : OrderedDict given network dictionary Returns ------- new_network : OrderedDict blobs removed network dictionary """ new_network = OrderedDict() def get_idx(x): return int(x[12:]) for e in network: if e.startswith("trans_layer_"): idx = get_idx(e) if idx not in new_network: new_network[idx] = [] for next_e in network[e]: next_es = map(get_idx, network[next_e]) new_network[idx].extend(next_es) return new_network def reverse_net(network): """Reverse a network. Parameters ---------- network : OrderedDict A parsed network Returns ------- rev : OrderedDict reversed network """ rev = OrderedDict() for node in network.keys(): rev[node] = [] for node in network.keys(): for n in network[node]: rev[n].append(node) return rev def get_input_layers(network): """Get input layers (layers with zero in-order). Parameters ---------- network : OrderedDict A parsed network Returns ------- in_layers : list a list of input layers """ return get_output_layers(reverse_net(network)) def get_output_layers(network): """Get output layers (layers with zero out-order). Parameters ---------- network : OrderedDict A parsed network Returns ------- out_layers : list a list of out layers """ out_layers = [] for idx in network: if network[idx] == []: out_layers.append(idx) return out_layers def get_model(layers, phase, input_dim, model_name, lib_type="keras"): """Get a model by given network parameters. Parameters ---------- layers : list network structure by given parsed network. phase : int 0 : train 1 : test input_dim : list the input dimension model_name : string the name of the given model. lib_type : string currently only Keras is supported. """ network = get_network(layers, phase) if len(network) == 0: raise Exception("No valid network is parsed!") in_layers = get_input_layers(network) out_layers = get_output_layers(network) rev_network = reverse_net(network) def data_layer(x): get_layer_type(x) in ['data', 'imagedata', 'memorydata', 'hdf5data', 'windowdata'] # remove the link from input to output. for in_idx in in_layers: for out_idx in out_layers: if out_idx in network[in_idx] and data_layer(layers[in_idx]): network[in_idx].remove[out_idx] net = [None]*(max(network)+1) for layer_id in network: layer = layers[layer_id] layer_name = layer.name layer_type = get_layer_type(layer) if layer_id in in_layers: net[layer_id] = L.input_layer(input_dim, layer_name) else: layer_in = [None]*(len(rev_network[layer_id])) for l in xrange(len(rev_network[layer_id])): layer_in[l] = net[rev_network[layer_id][l]] if layer_type in ["relu", "sigmoid", "softmax", "softmaxwithloss", "split", "tanh"]: net[layer_id] = L.activation(act_type=layer_type, name=layer_name)(layer_in) elif layer_type == "batchnorm": epsilon = layer.batchnorm_param.eps axis = layer.scale_param.axis net[layer_id] = L.batch_norm(epsilon=epsilon, axis=axis, name=layer_name)(layer_in) elif layer_type == "lrn": alpha = layer.lrn_param.alpha k = layer.lrn_param.k beta = layer.lrn_param.beta n = layer.lrn_param.local_size net[layer_id] = L.lrn(alpha, k, beta, n, layer_name)(layer_in) elif layer_type == "scale": axis = layer.scale_param.axis net[layer_id] = L.scale(axis, layer_name)(layer_in) elif layer_type == "dropout": prob = layer.dropout_param.dropout_ratio net[layer_id] = L.dropout(prob, name=layer_name)(layer_in) elif layer_type == "flatten": net[layer_id] = L.flatten(name=layer_name)(layer_in) elif layer_type == "concat": axis = layer.concat_param.axis net[layer_id] = L.merge(layer_in, mode='concat', concat_axis=1, name=layer_name) elif layer_type == "eltwise": axis = layer.scale_param.axis op = layer.eltwise_param.operation if op == 0: mode = "mul" elif op == 1: mode = "sum" elif op == 2: mode == "max" else: raise NotImplementedError("Operation is not implemented!") net[layer_id] = L.merge(layer_in, mode=mode, concat_axis=axis, name=layer_name) elif layer_type == "innerproduct": output_dim = layer.inner_product_param.num_output if len(layer_in[0]._keras_shape[1:]) > 1: layer_in = L.flatten(name=layer_name+"_flatten")(layer_in) net[layer_id] = L.dense(output_dim, name=layer_name)(layer_in) elif layer_type == "convolution": has_bias = layer.convolution_param.bias_term nb_filter = layer.convolution_param.num_output nb_col = (layer.convolution_param.kernel_size or [layer.convolution_param.kernel_h])[0] nb_row = (layer.convolution_param.kernel_size or [layer.convolution_param.kernel_w])[0] stride_h = (layer.convolution_param.stride or [layer.convolution_param.stride_h])[0] or 1 stride_w = (layer.convolution_param.stride or [layer.convolution_param.stride_w])[0] or 1 pad_h = (layer.convolution_param.pad or [layer.convolution_param.pad_h])[0] pad_w = (layer.convolution_param.pad or [layer.convolution_param.pad_w])[0] if pad_h + pad_w > 0: layer_in = L.zeropadding(padding=(pad_h, pad_w), name=layer_name)(layer_in) net[layer_id] = L.convolution(nb_filter, nb_row, nb_col, bias=has_bias, subsample=(stride_h, stride_w), name=layer_name)(layer_in) elif layer_type == "pooling": kernel_h = layer.pooling_param.kernel_size or \ layer.pooling_param.kernel_h kernel_w = layer.pooling_param.kernel_size or \ layer.pooling_param.kernel_w stride_h = layer.pooling_param.stride or \ layer.pooling_param.stride_h or 1 stride_w = layer.pooling_param.stride or \ layer.pooling_param.stride_w or 1 pad_h = layer.pooling_param.pad or layer.pooling_param.pad_h pad_w = layer.pooling_param.pad or layer.pooling_param.pad_w if pad_h + pad_w > 0: layer_in = L.zeropadding(padding=(pad_h, pad_w), name=layer_name)(layer_in) net[layer_id] = L.pooling(pool_size=(kernel_h, kernel_w), strides=(stride_h, stride_w), pool_type=layer.pooling_param.pool, name=layer_name)(layer_in) in_l = [None]*(len(in_layers)) out_l = [None]*(len(out_layers)) for i in xrange(len(in_layers)): in_l[i] = net[in_layers[i]] for i in xrange(len(out_layers)): out_l[i] = net[out_layers[i]] return Model(input=in_l, output=out_l, name=model_name) def get_network_weights(layers, version): """Parse network weights. Parameters ---------- layers : list List of parameter layers from caffemodel version : "string" "V1" or "V2" Return ------ net_weights : OrderedDict network's weights """ net_weights = OrderedDict() for layer in layers: layer_type = get_layer_type(layer) if layer_type == "innerproduct": blobs = layer.blobs if (version == "V1"): num_filters = blobs[0].num num_channels = blobs[0].channels num_col = blobs[0].height num_row = blobs[0].width elif (version == "V2"): if (len(blobs[0].shape.dim) == 4): num_filters = int(blobs[0].shape.dim[0]) num_channels = int(blobs[0].shape.dim[1]) num_col = int(blobs[0].shape.dim[2]) num_row = int(blobs[0].shape.dim[3]) else: num_filters = 1 num_channels = 1 num_col = int(blobs[0].shape.dim[0]) num_row = int(blobs[0].shape.dim[1]) else: raise Exception("Can't recognize the version %s" % (version)) W = np.array(blobs[0].data).reshape(num_filters, num_channels, num_col, num_row)[0, 0, :, :] W = W.T b = np.array(blobs[1].data) layer_weights = [W.astype(dtype=np.float32), b.astype(dtype=np.float32)] net_weights[layer.name] = layer_weights elif layer_type == "convolution": blobs = layer.blobs if (version == "V1"): num_filters = blobs[0].num num_channels = blobs[0].channels num_col = blobs[0].height num_row = blobs[0].width elif (version == "V2"): num_filters = int(blobs[0].shape.dim[0]) num_channels = int(blobs[0].shape.dim[1]) num_col = int(blobs[0].shape.dim[2]) num_row = int(blobs[0].shape.dim[3]) else: raise Exception("Can't recognize the version %s" % (version)) num_group = layer.convolution_param.group num_channels *= num_group W = np.zeros((num_filters, num_channels, num_col, num_row)) if layer.convolution_param.bias_term: b = np.array(blobs[1].data) else: b = None group_ds = len(blobs[0].data) // num_group ncs_group = num_channels // num_group nfs_group = num_filters // num_group for i in range(num_group): group_weights = W[i*nfs_group: (i+1)*nfs_group, i*ncs_group: (i+1)*ncs_group, :, :] group_weights[:] = np.array( blobs[0].data[i*group_ds: (i+1)*group_ds]).reshape(group_weights.shape) for i in range(W.shape[0]): for j in range(W.shape[1]): W[i, j] = np.rot90(W[i, j], 2) if b is not None: layer_weights = [W.astype(dtype=np.float32), b.astype(dtype=np.float32)] else: layer_weights = [W.astype(dtype=np.float32)] net_weights[layer.name] = layer_weights elif layer_type == "batchnorm": blobs = layer.blobs if (version == "V2"): num_kernels = int(blobs[0].shape.dim[0]) else: raise NotImplementedError("Batchnorm is not " "implemented in %s" % (version)) W_mean = np.array(blobs[0].data) W_std = np.array(blobs[1].data) net_weights[layer.name] = [
np.ones(num_kernels)
numpy.ones
""" Generates percepts """ import numpy as np import random import h5py import os import json from datetime import datetime import argparse import pulse2percept as p2p def rand_stim(implant, n_electrodes=1): maxamp = 10 maxfreq = 200 # randomly pick UP TO n_electrodes sample_elecs = random.randint(1, n_electrodes) elecs = random.sample([i for i in range(len(implant.electrodes))], sample_elecs) stim = np.zeros((len(implant.electrodes), 3), dtype='float32') for elec in elecs: amp = random.random() * (maxamp - 1) + 1 freq = random.random() * (maxfreq - 1) + 1 pdur = random.expovariate(1) while pdur > 1000 / freq / 2 or pdur < 0.01 or pdur > 100: pdur = random.expovariate(1) stim[elec] = np.array([freq, amp, pdur]) return stim def rand_percepts(model, implant, n_elecs=1, n_samples=10000): model.build() x =
np.array([implant[e].x for e in implant.electrodes], dtype='float32')
numpy.array
import math from functools import lru_cache import numpy as np import matplotlib.pyplot as plt import cv2 from scipy.optimize import leastsq from astropy.stats import sigma_clipped_stats from photutils import DAOStarFinder from astropy.visualization import SqrtStretch from astropy.visualization.mpl_normalize import ImageNormalize from photutils import CircularAperture from scipy import stats from visnav.algo import tools from visnav.algo.image import ImageProc from visnav.algo.model import Camera from visnav.calibration.base import Measure, Frame, merge, RAW_IMG_MAX_VALUE from visnav.calibration.spectrum import get_star_spectrum, sensed_electron_flux_star_spectrum from visnav.render.stars import Stars from visnav.render.sun import Sun DEBUG_EXTRACTION = 0 DEBUG_CHANNELS = 0 DEBUG_MATCHING = 0 # show 1=tycho, 2=t_eff, 3=mag_v MANUAL_ATTITUDE = 0 SHOW_MEASURES = 0 STAR_SPECTRA_PATH = r'C:\projects\s100imgs\spectra' class StarMeasure(Measure): def __init__(self, frame, cam_i, obj_id, du_count, t_eff, fe_h, log_g, mag_v, ixy, weight=1): super(StarMeasure, self).__init__(frame, cam_i, obj_id, du_count, weight=weight) self.t_eff = t_eff self.fe_h = fe_h self.log_g = log_g self.mag_v = mag_v self.ixy = ixy simbad = Stars.get_property_by_id(self.obj_id[0], 'simbad') self.bayer = simbad.strip(' *').lower().replace(' ', '_').replace('alf_', 'alp_') self.c_unsat_du = None self.c_px_du_sat = None def expected_du(self, pre_sat_gain=1, post_sat_gain=1, qeff_coefs=None, psf_coef=(1, 1, 1)): cam = self.frame.cam[self.cam_i] cgain = cam.gain * cam.aperture_area * cam.emp_coef fgain = self.frame.gain * self.frame.exposure queff_coefs = tuple(cam.qeff_coefs if qeff_coefs is None else qeff_coefs[self.cam_i]) if 0: p_elec, _ = Camera.electron_flux_in_sensed_spectrum(queff_coefs, self.t_eff, self.fe_h, self.log_g, self.mag_v, cam.lambda_min, cam.lambda_max) if 1: gomos_mag_v = self.mag_v # if self.bayer == 'alp_ori' else None electrons = sensed_electron_flux_star_spectrum(STAR_SPECTRA_PATH, self.bayer, self.mag_v, self.t_eff, self.log_g, self.fe_h, cam.lambda_min, cam.lambda_max, queff_coefs, gomos_mag_v) if 0: #self.bayer == 'alp_ori': spectrum_fn0 = Stars.synthetic_radiation_fn(self.t_eff, self.fe_h, self.log_g, mag_v=self.mag_v) spectrum_fn0b = Stars.synthetic_radiation_fn(self.t_eff, self.fe_h, self.log_g, mag_v=self.mag_v, model='ck04models', lam_min=cam.lambda_min - 10e-9, lam_max=cam.lambda_max + 10e-9) spectrum_fn1 = get_star_spectrum(STAR_SPECTRA_PATH, self.bayer, self.mag_v, self.t_eff, self.log_g, self.fe_h, cam.lambda_min, cam.lambda_max, gomos_mag_v) lams = np.linspace(cam.lambda_min, cam.lambda_max, 3000) plt.plot(lams, spectrum_fn0(lams)) plt.plot(lams, spectrum_fn0b(lams)) plt.plot(lams, spectrum_fn1(lams)) plt.title(self.bayer) plt.show() du = pre_sat_gain * RAW_IMG_MAX_VALUE * fgain * cgain * electrons self.c_unsat_du = du if StarFrame.STAR_SATURATION_MODELING == StarFrame.STAR_SATURATION_MODEL_MOTION: psf_coef = tuple(psf_coef) if StarFrame.STAR_SATURATION_MULTI_KERNEL else \ ((psf_coef[self.cam_i],) if len(psf_coef) == 3 else tuple(psf_coef)) du, self.c_px_du_sat = self._motion_kernel_psf_saturation(du, psf_coef, True) elif StarFrame.STAR_SATURATION_MODELING == StarFrame.STAR_SATURATION_MODEL_ANALYTICAL: du = self._analytical_psf_saturation(du, psf_coef[self.cam_i]) else: assert StarFrame.STAR_SATURATION_MODELING == StarFrame.STAR_SATURATION_MODEL_IDEAL # do nothing du *= post_sat_gain self.c_expected_du = du return du def _analytical_psf_saturation(self, du, psf_sd): psf_coef = psf_sd**2 * 2 * np.pi center_px_val = du / psf_coef if center_px_val < self.frame.max_signal: sat_du = psf_coef * self.frame.max_signal * (1 + np.log(center_px_val / self.frame.max_signal)) else: sat_du = du return sat_du def _motion_kernel_psf_saturation(self, du, psf_sd, get_px_du_sat=False): read_sd = None if len(psf_sd) in (2, 4): psf_sd, read_sd = psf_sd[:-1], psf_sd[-1] line_xy = self.frame.motion_in_px(self.ixy) mb_psf = self._get_motion_kernel(psf_sd, line_xy) px_du_sat = np.clip(mb_psf * du, 0, self.frame.max_signal) if read_sd: noise = trunc_gaussian_shift(px_du_sat, read_sd * self.frame.max_signal, self.frame.max_signal) if 1: px_du_sat = np.clip(px_du_sat - noise, 0, self.frame.max_signal) du_sat = np.sum(px_du_sat) else: noise = np.random.normal(0, read_sd * saturation_val, px_du_sat.shape) noise = cv2.filter2D(noise, cv2.CV_64F, ImageProc.gkern2d(5, 1.0)) px_du_sat = np.clip(px_du_sat + noise, 0, saturation_val) else: du_sat = np.sum(px_du_sat) return (du_sat,) + ((px_du_sat,) if get_px_du_sat else tuple()) @staticmethod @lru_cache(maxsize=20) def _get_motion_kernel(psf_sd, line_xy): if len(psf_sd) == 3: sd1, w, sd2 = psf_sd else: sd1, w, sd2 = psf_sd[0], 0, 0 psf_hw = math.ceil(max(sd1 * 3, sd2 * 2)) psf_fw = 1 + 2 * psf_hw psf = ImageProc.gkern2d(psf_fw, sd1) + (0 if w == 0 else w * ImageProc.gkern2d(psf_fw, sd2)) line_xy = np.array(line_xy) line = np.zeros(np.ceil(np.abs(np.flip(line_xy))).astype(np.int) + psf_fw) cnt = np.flip(line.shape)/2 start = tuple(np.round(cnt - line_xy/2).astype(np.int)) end = tuple(np.round(cnt + line_xy/2).astype(np.int)) cv2.line(line, start, end, color=1.0, thickness=1, lineType=cv2.LINE_AA) mb_psf = cv2.filter2D(line, cv2.CV_64F, psf) mb_psf /= np.sum(mb_psf) # normalize to one return mb_psf def trunc_gaussian_shift(mean, sd, upper_limit): # from https://en.wikipedia.org/wiki/Truncated_normal_distribution beta = (upper_limit - mean) / sd shift = sd * stats.norm.pdf(beta) / stats.norm.cdf(beta) return shift class StarFrame(Frame): ( STAR_SATURATION_MODEL_IDEAL, STAR_SATURATION_MODEL_ANALYTICAL, STAR_SATURATION_MODEL_MOTION, ) = range(3) STAR_SATURATION_MODELING = STAR_SATURATION_MODEL_MOTION STAR_SATURATION_MULTI_KERNEL = False def __init__(self, *args, q=None, override_star_data=None, **kwargs): super(StarFrame, self).__init__(*args, **kwargs) def detect(imgc): _, imgc = cv2.threshold(imgc, 560, 255, type=cv2.THRESH_BINARY) imgc = cv2.dilate(imgc, np.ones((3, 3))) imgc = cv2.erode(imgc, np.ones((3, 3)), iterations=2) imgc = cv2.dilate(imgc, np.ones((3, 3))) return imgc b_mask = detect(self.image[:, :, 0]) g_mask = detect(self.image[:, :, 1]) r_mask = detect(self.image[:, :, 2]) b_mean = np.mean(self.image[:, :, 0][b_mask > 0]) g_mean = np.mean(self.image[:, :, 1][g_mask > 0]) r_mean = np.mean(self.image[:, :, 2][r_mask > 0]) bg_mean = np.median(self.image) bn, gn, rn = np.sum(b_mask > 0), np.sum(g_mask > 0), np.sum(r_mask > 0) sat_mean = (bn * b_mean + gn * g_mean + rn * r_mean) / (bn + gn + rn) self.max_signal = sat_mean - bg_mean self.override_star_data = override_star_data or {} self.stars = [] self.q = q self.mb_cnt_ixy = None self.mb_angle = None @classmethod def process_metadata(cls, frame, meta): if meta.get('dec', False): frame.set_orientation(dec_ra_pa=(meta.get('dec'), meta.get('ra'), meta.get('pa', 0))) if meta.get('mb_cnt_ixy', False) is not False: frame.mb_cnt_ixy = meta.get('mb_cnt_ixy') frame.mb_angle = math.radians(meta.get('mb_angle')) def motion_in_px(self, ixy): r = np.linalg.norm(np.array(ixy) - self.mb_cnt_ixy) x, y = np.array(ixy) - self.mb_cnt_ixy line_dir = np.arctan2(-y, x) - np.pi/2 # (2 * np.pi * r) * (self.mb_angle / 2 / np.pi) -- full circle perimeter * ratio of the whole circle line_len = r * self.mb_angle x, y = line_len * np.cos(line_dir), -line_len * np.sin(line_dir) return x, y def set_orientation(self, q=None, angleaxis=None, dec_ra_pa=None): if q is not None: self.q = q elif angleaxis is not None: self.q = tools.angleaxis_to_q(angleaxis) else: assert dec_ra_pa is not None, 'no orientation given' dec, ra, pa = map(math.radians, dec_ra_pa) self.q = tools.ypr_to_q(dec, ra, pa) def detect_stars(self, thumbnail=True): stars_detected = self._extract_stars() if self.q is None: self.determine_orientation(stars_detected) self.measures, self.star_measures = self.finetune_orientation(stars_detected, thumbnail=thumbnail) return self.measures, self.star_measures def determine_orientation(self, stars): assert False, 'not implemented' # use deep learning? or custom features and a bag of words type thing? def finetune_orientation(self, stars, iterations=100, thumbnail=True): """ match stars based on proximity, fine tune orientation, create measure objects """ MIN_MATCHES = 3 # use ICP-like algorithm matches = [] for i in range(iterations): matches, cols = self._match_stars(stars, max_dist=max(0.02, 0.05-i*0.01), mag_cutoff=3.0 if thumbnail else 3.0) if np.sum([j is not None for j in matches]) < MIN_MATCHES: break if self._update_ori(matches, cols, stars): break # if update small enough, stop iterating matches, cols = self._match_stars(stars, max_dist=0.02, mag_cutoff=3.0 if thumbnail else 3.0, plot=SHOW_MEASURES) def ifna(v, d): return d if v is None or np.isnan(v) else v measures = [] star_meas = {} mag_adj = np.median([stars[i]['mag'] - m[cols['mag_v']] for i, m in enumerate(matches) if m is not None]) for i, m in enumerate(matches): if m is not None: cid = '&'.join([Stars.get_catalog_id(id) for id in m[cols['id']]]) for band, j in enumerate(('b', 'g', 'r') if len(self.cam) == 3 else ('v',)): t_eff = float(ifna(m[cols['t_eff']], -1)) fe_h = float(ifna(m[cols['fe_h']], Sun.METALLICITY)) log_g = float(ifna(m[cols['log_g']], Sun.LOG_SURFACE_G)) t_est = 0 if t_eff < 0: t_est = 1 mag_v, mag_b = m[cols['mag_v']], m[cols['mag_b']] if mag_b is None or np.isnan(mag_b): print('Both t_eff AND mag_b missing! ID=%s' % (m[cols['id']],)) mag_b = mag_v t_eff = Stars.effective_temp(mag_b - mag_v, fe_h, log_g) print('star %s, missing t_eff, estimated as %.1f' % (cid, t_eff)) measures.append(StarMeasure(self, band, m[cols['id']], stars[i]['du_' + j], t_eff, fe_h, log_g, m[cols['mag_v']], (stars[i]['x'], stars[i]['y']))) merge(star_meas, {m[cols['id']]: [{'meas': (stars[i]['du_b'], stars[i]['du_g'], stars[i]['du_r']), 'm_mag_v': stars[i]['mag'] - mag_adj, 't_eff': ('(%.0f)' if t_est else '%.0f') % t_eff, 'fe_h': m[cols['fe_h']], 'log_g': m[cols['log_g']], 'mag_v': m[cols['mag_v']]}]}) return measures, star_meas def _extract_stars(self): """ extract stars from image, count "digital units" after bg substraction, calc centroid x, y """ # scaled to 0-1 and in grayscale data = np.mean(self.image.astype(np.float64)/(2**self.bits-1), axis=2) mean, median, std = sigma_clipped_stats(data, sigma=3.0) thumbnail = self.image.shape[1] == 128 bsize = 4 if thumbnail else 20 assert self.image.shape[1] in (128, 2048), 'unsupported image size' if thumbnail: daofind = DAOStarFinder(fwhm=3.5, threshold=5.*std, sharplo=.3, sharphi=1.3, roundlo=-.8, roundhi=1.3) else: daofind = DAOStarFinder(fwhm=28, threshold=12.*std, sharplo=-3.0, sharphi=3.0, roundlo=-3.0, roundhi=3.0) sources = daofind(data - median) positions = np.transpose((sources['xcentroid'], sources['ycentroid'])) if self.debug and (DEBUG_EXTRACTION or DEBUG_CHANNELS): norm = ImageNormalize(stretch=SqrtStretch()) if DEBUG_CHANNELS: if 0: f, (b, g, r) = plt.subplots(1, 3) b.imshow(self.image[:, :, 0].astype(np.float64) / (2 ** self.bits - 1), cmap='Greys', norm=norm) g.imshow(self.image[:, :, 1].astype(np.float64) / (2 ** self.bits - 1), cmap='Greys', norm=norm) r.imshow(self.image[:, :, 2].astype(np.float64) / (2 ** self.bits - 1), cmap='Greys', norm=norm) b.set_title('blue') g.set_title('green') r.set_title('red') else: f, (w, b_r, g_r) = plt.subplots(1, 3, sharex=True, sharey=True) w.imshow(data, cmap='Greys_r', norm=norm) br = (self.image[:, :, 0].astype(np.float64) - self.image[:, :, 2].astype(np.float64)) / (2 ** self.bits - 1) gr = (self.image[:, :, 1].astype(np.float64) - self.image[:, :, 2].astype(np.float64)) / (2 ** self.bits - 1) b_r.imshow(br - np.min(br), cmap='Greys_r', norm=norm) g_r.imshow(gr - np.min(gr), cmap='Greys_r', norm=norm) w.set_title('white') b_r.set_title('blue - red') g_r.set_title('green - red') plt.tight_layout() plt.show() else: plt.imshow(data, cmap='Greys', norm=norm) apertures = CircularAperture(positions, r=bsize) apertures.plot(color='blue', lw=1.5, alpha=0.5) plt.show() stars = [] img_median = np.median(self.image.reshape((-1, 3)), axis=0) for i, (x, y) in enumerate(positions): if thumbnail: size = 4 elif sources[i]['flux'] > 16: size = 30 elif sources[i]['flux'] > 6: size = 25 elif sources[i]['flux'] > 2: size = 20 else: size = 17 (b, b0), (g, g0), (r, r0) = self._count_du(x, y, size=2*size+1, bg=img_median) if b is not None and (b-b0 > 0 or g-g0 > 0 or r-r0 > 0): # TODO: add black level remove level to .lbl files? # - unknown black level was removed in sensor, from param tables: 168, but that doesnt work for all images # - for now, add something here but then adjust at match_stars based on brightest & dimmest #bg = 168/8 # 168 #b0, g0, r0 = b0 + bg, g0 + bg, r0 + bg mag = -2.5 * math.log10((b+b0) * (g+g0) * (r+r0) / b0 / g0 / r0) / 3 stars.append({"du_b": b, "du_g": g, "du_r": r, "x": x, "y": y, "mag": mag, "size": size}) else: print('discarded [%d, %d]' % (x, y)) return stars def _count_du(self, x, y, size=5, bg=None): wmrg = size//4 mmrg = 1 if bg is None else 0 mask = ImageProc.bsphkern(size + 2*mmrg) if bg is None: mask[0, :] = 0 mask[-1, :] = 0 mask[:, 0] = 0 mask[:, -1] = 0 mask = mask.astype(np.bool) mr = size//2 + mmrg mn = size + 2*mmrg h, w, _ = self.image.shape x, y = int(round(x)), int(round(y)) if h-y+wmrg <= mr or w-x+wmrg <= mr or x+wmrg < mr or y+wmrg < mr: return zip([None] * 3, [None] * 3) win = self.image[max(0, y-mr):min(h, y+mr+1), max(0, x-mr):min(w, x+mr+1), :].reshape((-1, 3)) mx0, mx1 = -min(0, x-mr), mn - (max(w, x+mr+1) - w) my0, my1 = -min(0, y-mr), mn - (max(h, y+mr+1) - h) mask = mask[my0:my1, mx0:mx1].flatten() bg = np.mean(win[np.logical_not(mask), :], axis=0) if bg is None else bg if False: tot = np.sum(win[mask, :], axis=0) tot_bg = bg * np.sum(mask) tot = np.max(np.array((tot, tot_bg)), axis=0) # tried to take into account thumbnail mean resizing after gamma correction, # also assuming no saturation of original pixels because of motion blur # => better results if tune Camera->emp_coef instead resizing_gain = (1/self.resize_scale)**2 g = self.applied_gamma # ([sum over i in n: (bg+s_i)**g] / n) ** (1/g) # => cannot compensate for gamma correction as signal components not summable anymore, # only possible if assume that only a single pixel has signal (or some known distribution of signal?) # signal in a single, non-saturating pixel (conflicting assumptions): adj_tot = (((tot-tot_bg+bg)**g*resizing_gain) - (resizing_gain-1)*bg**g)**(1/g) - bg signal = adj_tot else: #signal = tot - tot_bg signal = np.clip(np.sum(win[mask, :] - bg, axis=0), 0, np.inf) return zip(signal, bg) def _match_stars(self, stars, max_dist=0.05, max_mag_diff=2.0, mag_cutoff=3.0, plot=False): """ match stars based on proximity """ merge_lim = 4 all_stars, cols = Stars.flux_density(self.q, self.cam[0], array=True, undistorted=True, mag_cutoff=mag_cutoff+merge_lim, order_by='mag_v') if self.debug: db_img = np.sqrt(Stars.flux_density(self.q, self.cam[0], mag_cutoff=10.0)) # override some star data, change None => nan for i, st in enumerate(all_stars): for j in range(len(st)): st[j] = np.nan if st[j] is None else st[j] if st[cols['id']] in self.override_star_data: for f in ('mag_v', 'mag_b', 't_eff', 'log_g', 'fe_h'): od = self.override_star_data[st[cols['id']]] if f in od: all_stars[i][cols[f]] = od[f] # merge close stars all_stars = np.array(all_stars) points = np.array([(s[cols['ix']], s[cols['iy']]) for s in all_stars]) D = tools.distance_mx(points, points) radius = 10 if self.cam[0].width > 300 else 2 db_stars = [] added = set() for i, s in enumerate(all_stars): if i in added: continue I = tuple(set(np.where( np.logical_and(D[i, :] < radius, all_stars[:, cols['mag_v']]-merge_lim < s[cols['mag_v']]) )[0]) - added) cluster = [None]*(max(cols.values())+1) cluster[cols['id']] = tuple(all_stars[I, cols['id']].astype(np.int)) amag_v = 10**(-all_stars[I, cols['mag_v']]/2.5) amag_b = 10**(-all_stars[I, cols['mag_b']]/2.5) cluster[cols['mag_v']] = -2.5*np.log10(np.sum(amag_v)) cluster[cols['mag_b']] = -2.5*np.log10(np.sum(amag_b)) for c in ('ix', 'iy', 'dec', 'ra', 't_eff', 'fe_h', 'log_g'): E = np.where(all_stars[I, cols[c]] != None)[0] cluster[cols[c]] =
np.sum(amag_v[E] * all_stars[I, cols[c]][E])
numpy.sum
import numpy as np import scipy.signal as sig from scipy.integrate import cumtrapz from .rotate import inst2earth, _rotate_vel2body import warnings class CalcMotion(object): """ A 'calculator' for computing the velocity of points that are rigidly connected to an ADV-body with an IMU. Parameters ---------- advo : `adv_raw<dolfyn.adv.base.adv_raw>` The IMU-adv object that will be used to compute motion. accel_filtfreq : float the frequency at which to high-pass filter the acceleration signal to remove low-frequency drift. vel_filtfreq : float (optional) a second frequency to high-pass filter the integrated acceleration. (default: 1/3 of accel_filtfreq) Examples -------- >>> from dolfyn.adv import api as avm >>> from dolfyn.adv import motion as avmot >>> dat = avm.read_nortek('my_data_file.vec') >>> mcalc = avmot.CalcMotion(dat) # Calculate the motion of a point that is (.3, .1, .06) meters # from the adv-body origin: >>> mot = mcalc([.3, .1, .06]) """ def __init__(self, advo, accel_filtfreq=1. / 30, vel_filtfreq=None, to_earth=True): self.advo = advo self.accel_filtfreq = accel_filtfreq if vel_filtfreq is None: vel_filtfreq = accel_filtfreq / 3 self.accelvel_filtfreq = vel_filtfreq self.to_earth = to_earth self._set_Accel() self._set_AccelStable() self.AngRt = advo.AngRt # No copy because not modified. def _set_Accel(self, ): advo = self.advo if advo.props['coord_sys'] == 'inst': self.Accel = np.einsum('ijk,ik->jk', advo.orientmat, advo.Accel) elif self.advo.props['coord_sys'] == 'earth': self.Accel = advo.Accel.copy() else: raise Exception(("Invalid coordinate system '%s'. The coordinate " "system must either be 'earth' or 'inst' to " "perform motion correction.") % (self.advo.props['coord_sys'], )) def _set_AccelStable(self, ): """ """ self.AccelStable = acc = self.Accel.copy() if self.accel_filtfreq == 0: acc[:] = acc.mean(-1)[..., None] else: flt = sig.butter(1, self.accel_filtfreq / (self.advo.fs / 2)) for idx in range(3): acc[idx] = sig.filtfilt(flt[0], flt[1], acc[idx]) def __call__(self, vec): """ Calculate the motion of the point specified by vec (in meters, in the adv-body coordinate system). Parameters ---------- vec : |np.ndarray| (len(3) or 3 x M) The vector in meters (or set of vectors) from the body-origin (center of head end-cap) to the point of interest (in the body coord-sys). Returns ------- umot : |np.ndarray| (3 x M x N_time) The motion (velocity) array (3, n_time). """ return self.calc_uacc() + self.calc_urot(np.array(vec), ) def calc_uacc(self, ): """ Calculates the translational velocity from the acceleration signal. Returns ------- uacc : |np.ndarray| (3 x n_time) The acceleration-induced velocity array (3, n_time). """ samp_freq = self.advo.fs hp = self.Accel - self.AccelStable dat = np.concatenate((np.zeros(list(hp.shape[:-1]) + [1]), cumtrapz(hp, dx=1. / samp_freq)), axis=-1) if self.accelvel_filtfreq > 0: filt_freq = self.accelvel_filtfreq # 8th order butterworth filter. filt = sig.butter(2, float(filt_freq) / (samp_freq / 2)) for idx in range(hp.shape[0]): dat[idx] = dat[idx] - sig.filtfilt(filt[0], filt[1], dat[idx]) return dat def calc_urot(self, vec, to_earth=None): """ Calculate the induced velocity due to rotations of the instrument about the IMU center. Parameters ---------- vec : |np.ndarray| (len(3) or 3 x M) The vector in meters (or vectors) from the body-origin (center of head end-cap) to the point of interest (in the body coord-sys). Returns ------- urot : |np.ndarray| (3 x M x N_time) The rotation-induced velocity array (3, n_time). """ if to_earth is None: to_earth = self.to_earth dimflag = False if vec.ndim == 1: vec = vec.copy().reshape((3, 1)) dimflag = True # Correct for the body->imu distance. # The nortek_body2imu vector is subtracted because of # vector addition: # body2head = body2imu + imu2head # Thus: # imu2head = body2head - body2imu vec = vec - self.advo.body2imu_vec[:, None] # This motion of the point *vec* due to rotations should be the # cross-product of omega (rotation vector) and the vector. # u=dz*omegaY-dy*omegaZ,v=dx*omegaZ-dz*omegaX,w=dy*omegaX-dx*omegaY # where vec=[dx,dy,dz], and AngRt=[omegaX,omegaY,omegaZ] urot = np.array([(vec[2][:, None] * self.AngRt[1] - vec[1][:, None] * self.AngRt[2]), (vec[0][:, None] * self.AngRt[2] - vec[2][:, None] * self.AngRt[0]), (vec[1][:, None] * self.AngRt[0] - vec[0][:, None] * self.AngRt[1]), ]) if to_earth: urot = np.einsum('jik,jlk->ilk', self.advo['orientmat'], urot) if dimflag: return urot[:, 0, :] return urot def _calc_probe_pos(advo, separate_probes=False): """ !!!Currently this only works for Nortek Vectors! In the future, we could use the transformation matrix (and a probe-length lookup-table?) """ # According to the ADV_DataSheet, the probe-length radius is # 8.6cm @ 120deg from probe-stem axis. If I subtract 1cm # (!!!checkthis) to get acoustic receiver center, this is # 7.6cm. In the coordinate sys of the center of the probe # then, the positions of the centers of the receivers is: if advo.make_model == 'Nortek VECTOR' and separate_probes: r = 0.076 # The angle between the x-y plane and the probes phi = -30. * np.pi / 180. theta = np.array([0., 120., 240.]) * np.pi / \ 180. # The angles of the probes from the x-axis. return (np.dot(advo.props['body2head_rotmat'].T, np.array([r * np.cos(theta), r * np.sin(theta), r * np.tan(phi) * np.ones(3)])) + advo.props['body2head_vec'][:, None] ) else: return advo.props['body2head_vec'] def correct_motion(advo, accel_filtfreq=1. / 30, vel_filtfreq=None, to_earth=True, separate_probes=False, ): """ This function performs motion correction on an IMU-ADV data object. The IMU and ADV data should be tightly synchronized and contained in a single data object. Parameters ---------- advo : dolfyn.adv.adv class accel_filtfreq : float the frequency at which to high-pass filter the acceleration signal to remove low-frequency drift. vel_filtfreq : float (optional) a second frequency to high-pass filter the integrated acceleration. (default: 1/3 of accel_filtfreq) to_earth : bool (optional, default: True) All variables in the advo.props['rotate_vars'] list will be rotated into either the earth frame (to_earth=True) or the instrument frame (to_earth=False). separate_probes : bool (optional, default: False) a flag to perform motion-correction at the probe tips, and perform motion correction in beam-coordinates, then transform back into XYZ/earth coordinates. This correction seems to be lower than the noise levels of the ADV, so the defualt is to not use it (False). Returns ------- This function returns None, it operates on the input data object, ``advo``. The following attributes are added to `advo`: ``uraw`` is the uncorrected velocity ``urot`` is the rotational component of the head motion (from AngRt) ``uacc`` is the translational component of the head motion (from Accel) ``AccelStable`` is the low-pass filtered Accel signal The primary velocity vector attribute, ``_u``, is motion corrected such that: _u = uraw + urot + uacc The signs are correct in this equation. The measured velocity induced by head-motion is *in the opposite direction* of the head motion. i.e. when the head moves one way in stationary flow, it measures a velocity in the opposite direction. Therefore, to remove the motion from the raw signal we *add* the head motion. Notes ----- Acceleration signals from inertial sensors are notorious for having a small bias that can drift slowly in time. When integrating these signals to estimate velocity the bias is amplified and leads to large errors in the estimated velocity. There are two methods for removing these errors, 1) high-pass filter the acceleration signal prior and/or after integrating. This implicitly assumes that the low-frequency translational velocity is zero. 2) provide a slowly-varying reference position (often from a GPS) to an IMU that can use the signal (usually using Kalman filters) to debias the acceleration signal. Because method (1) removes `real` low-frequency acceleration, method (2) is more accurate. However, providing reference position estimates to undersea instruments is practically challenging and expensive. Therefore, lacking the ability to use method (2), this function utilizes method (1). For deployments in which the ADV is mounted on a mooring, or other semi-fixed structure, the assumption of zero low-frequency translational velocity is a reasonable one. However, for deployments on ships, gliders, or other moving objects it is not. The measured velocity, after motion-correction, will still hold some of this contamination and will be a sum of the ADV motion and the measured velocity on long time scales. If low-frequency motion is known separate from the ADV (e.g. from a bottom-tracking ADP, or from a ship's GPS), it may be possible to remove that signal from the ADV signal in post-processing. The accuracy of this approach has not, to my knowledge, been tested yet. Examples -------- >>> from dolfyn.adv import api as avm >>> dat = avm.read_nortek('my_data_file.vec') >>> avm.motion.correct_motion(dat) ``dat`` will now have motion-corrected. """ if hasattr(advo, 'urot'): raise Exception('The data object already appears to have been motion corrected.') if advo.props['coord_sys'] != 'inst': raise Exception('The data object must be in the instrument frame to be motion corrected.') if vel_filtfreq is None: vel_filtfreq = accel_filtfreq / 3 # Be sure the velocity data has been rotated to the body frame. _rotate_vel2body(advo) # Create the motion 'calculator': calcobj = CalcMotion(advo, accel_filtfreq=accel_filtfreq, vel_filtfreq=vel_filtfreq, to_earth=to_earth) ########## # Calculate the translational velocity (from the Accel): advo.groups['orient'].add('uacc') advo.uacc = calcobj.calc_uacc() # Copy AccelStable to the adv-object. advo.groups['orient'].add('AccelStable') advo.AccelStable = calcobj.AccelStable ########## # Calculate rotational velocity (from AngRt): pos = _calc_probe_pos(advo, separate_probes) # Calculate the velocity of the head (or probes). urot = calcobj.calc_urot(pos, to_earth=False) if separate_probes: # The head->beam transformation matrix transMat = advo.config.head.get('TransMatrix', None) # The body->head transformation matrix rmat = advo.props['body2head_rotmat'] # 1) Rotate body-coordinate velocities to head-coord. urot = np.dot(rmat, urot) # 2) Rotate body-coord to beam-coord (einsum), # 3) Take along beam-component (diagonal), # 4) Rotate back to head-coord (einsum), urot = np.einsum('ij,kj->ik', transMat, np.diagonal(np.einsum('ij,jkl->ikl',
np.linalg.inv(transMat)
numpy.linalg.inv
# Author: <NAME> # Contributors: <NAME>, <NAME> import numpy as np import torch from nose.tools import raises from cgnet.feature.utils import (GaussianRBF, PolynomialCutoffRBF, ShiftedSoftplus, _AbstractRBFLayer) from cgnet.feature.statistics import GeometryStatistics from cgnet.feature.feature import GeometryFeature, Geometry # Define sizes for a pseudo-dataset frames = np.random.randint(10, 30) beads = np.random.randint(5, 10) g = Geometry(method='torch') @raises(NotImplementedError) def test_radial_basis_function_len(): # Make sure that a NotImplementedError is raised if an RBF layer # does not have a __len__() method # Here, we use the _AbstractRBFLayer base class as our RBF abstract_RBF = _AbstractRBFLayer() # Next, we check to see if the NotImplementedError is raised # This is done using the decorator above, because we cannot # use nose.tools.assert_raises directly on special methods len(abstract_RBF) def test_radial_basis_function(): # Make sure radial basis functions are consistent with manual calculation # Distances need to have shape (n_batch, n_beads, n_neighbors) distances = torch.randn((frames, beads, beads - 1), dtype=torch.float64) # Define random parameters for the RBF variance = np.random.random() + 1 n_gaussians = np.random.randint(5, 10) high_cutoff = np.random.uniform(5.0, 10.0) low_cutoff = np.random.uniform(0.0, 4.0) # Calculate Gaussian expansion using the implemented layer rbf = GaussianRBF(high_cutoff=high_cutoff, low_cutoff=low_cutoff, n_gaussians=n_gaussians, variance=variance) gauss_layer = rbf.forward(distances) # Manually calculate expansion with numpy # according to the following formula: # e_k (r_j - r_i) = exp(- \gamma (\left \| r_j - r_i \right \| - \mu_k)^2) # with centers mu_k calculated on a uniform grid between # zero and the distance cutoff and gamma as a scaling parameter. centers = np.linspace(low_cutoff, high_cutoff, n_gaussians).astype(np.float64) gamma = -0.5 / variance distances = np.expand_dims(distances, axis=3) magnitude_squared = (distances - centers)**2 gauss_manual = np.exp(gamma * magnitude_squared) # Shapes and values need to be the same np.testing.assert_equal(centers.shape, rbf.centers.shape) np.testing.assert_allclose(gauss_layer.numpy(), gauss_manual, rtol=1e-5) def test_radial_basis_function_distance_masking(): # Makes sure that if a distance mask is used, the corresponding # expanded distances returned by GaussianRBF are zero # Distances need to have shape (n_batch, n_beads, n_neighbors) distances = torch.randn((frames, beads, beads - 1), dtype=torch.float64) # Define random parameters for the RBF variance = np.random.random() + 1 high_cutoff = np.random.uniform(5.0, 10.0) low_cutoff = np.random.uniform(0.0, 4.0) n_gaussians = np.random.randint(5, 10) neighbor_cutoff = np.abs(np.random.rand()) neighbors, neighbor_mask = g.get_neighbors(distances, cutoff=neighbor_cutoff) # Calculate Gaussian expansion using the implemented layer rbf = GaussianRBF(high_cutoff=high_cutoff, low_cutoff=low_cutoff, n_gaussians=n_gaussians, variance=variance) gauss_layer = rbf.forward(distances, distance_mask=neighbor_mask) # Lastly, we check to see that the application of the mask is correct # against a manual calculation and masking centers = np.linspace(low_cutoff, high_cutoff, n_gaussians) gamma = -0.5 / variance distances = np.expand_dims(distances, axis=3) magnitude_squared = (distances - centers)**2 gauss_manual = torch.tensor(np.exp(gamma * magnitude_squared)) gauss_manual = gauss_manual * neighbor_mask[:, :, :, None].double() np.testing.assert_array_almost_equal(gauss_layer.numpy(), gauss_manual.numpy()) def test_radial_basis_function_normalize(): # Tests to make sure that the output of GaussianRBF is properly # normalized if 'normalize_output' is specified as True # Distances need to have shape (n_batch, n_beads, n_neighbors) distances = torch.randn((frames, beads, beads - 1), dtype=torch.float64) # Define random parameters for the RBF variance = np.random.random() + 1 n_gaussians = np.random.randint(5, 10) high_cutoff = np.random.uniform(5.0, 10.0) low_cutoff = np.random.uniform(0.0, 4.0) # Calculate Gaussian expansion using the implemented layer rbf = GaussianRBF(high_cutoff=high_cutoff, low_cutoff=low_cutoff, n_gaussians=n_gaussians, variance=variance, normalize_output=True) gauss_layer = rbf.forward(distances) # Manually calculate expansion with numpy # according to the following formula: # e_k (r_j - r_i) = exp(- \gamma (\left \| r_j - r_i \right \| - \mu_k)^2) # with centers mu_k calculated on a uniform grid between # zero and the distance cutoff and gamma as a scaling parameter. centers = np.linspace(low_cutoff, high_cutoff, n_gaussians).astype(np.float64) gamma = -0.5 / variance distances = np.expand_dims(distances, axis=3) magnitude_squared = (distances - centers)**2 gauss_manual = np.exp(gamma * magnitude_squared) # manual output normalization gauss_manual = gauss_manual / np.sum(gauss_manual, axis=3)[:, :, :, None] # Shapes and values need to be the same np.testing.assert_equal(centers.shape, rbf.centers.shape) np.testing.assert_allclose(gauss_layer.numpy(), gauss_manual, rtol=1e-5) def test_polynomial_cutoff_rbf(): # Make sure the polynomial_cutoff radial basis functions are consistent with # manual calculations # Distances need to have shape (n_batch, n_beads, n_neighbors) distances = np.random.randn(frames, beads, beads - 1).astype(np.float64) # Define random parameters for the polynomial_cutoff RBF n_gaussians = np.random.randint(5, 10) high_cutoff = np.random.uniform(5.0, 10.0) low_cutoff = np.random.uniform(0.0, 4.0) alpha = np.random.uniform(0.1, 1.0) # Calculate Gaussian expansion using the implemented layer polynomial_cutoff_rbf = PolynomialCutoffRBF(high_cutoff=high_cutoff, low_cutoff=low_cutoff, n_gaussians=n_gaussians, alpha=alpha, tolerance=1e-8) polynomial_cutoff_rbf_layer = polynomial_cutoff_rbf.forward( torch.tensor(distances)) # Manually calculate expansion with numpy # First, we compute the centers and the scaling factors centers = np.linspace(np.exp(-high_cutoff), np.exp(-low_cutoff), n_gaussians).astype(np.float64) beta = np.power(((2/n_gaussians) * (1-np.exp(-high_cutoff))), -2) # Next, we compute the gaussian portion exp_distances = np.exp(-alpha * np.expand_dims(distances, axis=3)) magnitude_squared = np.power(exp_distances - centers, 2) gauss_manual = np.exp(-beta * magnitude_squared) # Next, we compute the polynomial modulation zeros = np.zeros_like(distances) modulation = np.where(distances < high_cutoff, 1 - 6.0 * np.power((distances/high_cutoff), 5) + 15.0 * np.power((distances/high_cutoff), 4) - 10.0 * np.power((distances/high_cutoff), 3), zeros) modulation = np.expand_dims(modulation, axis=3) polynomial_cutoff_rbf_manual = modulation * gauss_manual # Map tiny values to zero polynomial_cutoff_rbf_manual = np.where( np.abs(polynomial_cutoff_rbf_manual) > polynomial_cutoff_rbf.tolerance, polynomial_cutoff_rbf_manual, np.zeros_like(polynomial_cutoff_rbf_manual) ) # centers and output values need to be the same np.testing.assert_allclose(centers, polynomial_cutoff_rbf.centers, rtol=1e-5) np.testing.assert_allclose(polynomial_cutoff_rbf_layer.numpy(), polynomial_cutoff_rbf_manual, rtol=1e-5) def test_polynomial_cutoff_rbf_distance_masking(): # Makes sure that if a distance mask is used, the corresponding # expanded distances returned by PolynomialCutoffRBF are zero # Distances need to have shape (n_batch, n_beads, n_neighbors) distances = torch.randn((frames, beads, beads - 1), dtype=torch.float64) # Define random parameters for the RBF n_gaussians = np.random.randint(5, 10) high_cutoff = np.random.uniform(5.0, 10.0) low_cutoff = np.random.uniform(0.0, 4.0) alpha = np.random.uniform(0.1, 1.0) neighbor_cutoff = np.abs(np.random.rand()) neighbors, neighbor_mask = g.get_neighbors(distances, cutoff=neighbor_cutoff) # Calculate Gaussian expansion using the implemented layer polynomial_cutoff_rbf = PolynomialCutoffRBF(high_cutoff=high_cutoff, low_cutoff=low_cutoff, n_gaussians=n_gaussians, alpha=alpha, tolerance=1e-8) polynomial_cutoff_rbf_layer = polynomial_cutoff_rbf.forward( torch.tensor(distances), distance_mask=neighbor_mask) # Manually calculate expansion with numpy # First, we compute the centers and the scaling factors centers = np.linspace(np.exp(-high_cutoff), np.exp(-low_cutoff), n_gaussians).astype(np.float64) beta = np.power(((2/n_gaussians) * (1-np.exp(-high_cutoff))), -2) # Next, we compute the gaussian portion exp_distances = np.exp(-alpha * np.expand_dims(distances, axis=3)) magnitude_squared = np.power(exp_distances - centers, 2) gauss_manual = np.exp(-beta * magnitude_squared) # Next, we compute the polynomial modulation zeros = np.zeros_like(distances) modulation = np.where(distances < high_cutoff, 1 - 6.0 * np.power((distances/high_cutoff), 5) + 15.0 * np.power((distances/high_cutoff), 4) - 10.0 * np.power((distances/high_cutoff), 3), zeros) modulation = np.expand_dims(modulation, axis=3) polynomial_cutoff_rbf_manual = modulation * gauss_manual # Map tiny values to zero polynomial_cutoff_rbf_manual = np.where( np.abs(polynomial_cutoff_rbf_manual) > polynomial_cutoff_rbf.tolerance, polynomial_cutoff_rbf_manual, np.zeros_like(polynomial_cutoff_rbf_manual) ) polynomial_cutoff_rbf_manual = torch.tensor( polynomial_cutoff_rbf_manual) * neighbor_mask[:, :, :, None].double() np.testing.assert_array_almost_equal(polynomial_cutoff_rbf_layer.numpy(), polynomial_cutoff_rbf_manual.numpy()) def test_polynomial_cutoff_rbf_normalize(): # Tests to make sure that the output of PolynomialCutoffRBF is properly # normalized if 'normalize_output' is specified as True # Distances need to have shape (n_batch, n_beads, n_neighbors) distances = np.random.randn(frames, beads, beads - 1).astype(np.float64) # Define random parameters for the polynomial_cutoff RBF n_gaussians = np.random.randint(5, 10) high_cutoff = np.random.uniform(5.0, 10.0) low_cutoff = np.random.uniform(0.0, 4.0) alpha = np.random.uniform(0.1, 1.0) # Calculate Gaussian expansion using the implemented layer polynomial_cutoff_rbf = PolynomialCutoffRBF(high_cutoff=high_cutoff, low_cutoff=low_cutoff, n_gaussians=n_gaussians, alpha=alpha, normalize_output=True, tolerance=1e-8) polynomial_cutoff_rbf_layer = polynomial_cutoff_rbf.forward( torch.tensor(distances)) # Manually calculate expansion with numpy # First, we compute the centers and the scaling factors centers = np.linspace(np.exp(-high_cutoff),
np.exp(-low_cutoff)
numpy.exp
""" Contains functions for the Dueling-Thompson sampling acquisition function by Gonzalez et al (2017). """ import numpy as np import tensorflow as tf import gpflow from .. import fourier_features def uniform_grid(input_dims, num_discrete_per_dim, low, high): """ Returns an array with all possible permutations of discrete values in input_dims number of dimensions. :param input_dims: int :param num_discrete_per_dim: int :param low: int :param high: int :return: tensor of shape (num_discrete_per_dim ** input_dims, input_dims) """ num_points = num_discrete_per_dim ** input_dims out = np.zeros([num_points, input_dims]) discrete_points = np.linspace(low, high, num_discrete_per_dim) for i in range(num_points): for dim in range(input_dims): val = num_discrete_per_dim ** (dim) out[i, dim] = discrete_points[int((i // val) % num_discrete_per_dim)] return out def combinations(points): """ Given d-dimensional points, return all pair combinations of those points :param points: tensor of shape (n, d) :return: tensor of shape (n ** 2, d * 2) """ n = points.shape[0] d = points.shape[1] out =
np.zeros((n*n, d*2))
numpy.zeros
"""Tests for the OpenCL kernels.""" from .conftest import context_available from ..cl import get_context import numpy as np import pyopencl as cl from pyopencl import mem_flags as mf import pathlib import pytest @pytest.fixture(scope="module") def context(): """Create a context using the default platform, prefer GPU.""" return get_context() @context_available @pytest.fixture(scope="module") def queue(context): """Create a CL command queue.""" return cl.CommandQueue(context) @context_available @pytest.fixture(scope="module") def program(context): """Create a program object for the Euler integrator.""" kernel_source = open( pathlib.Path(__file__).parent.absolute() / "../cl/euler.cl").read() return cl.Program(context, kernel_source).build() class TestUpdateDisplacement: """Test the displacement update.""" @context_available def test_update_displacement(self, context, queue, program): """Test basic displacement update.""" u = np.zeros(3) nnodes = 1 force = np.array([1.0, 2.0, 3.0], dtype=np.float64) bc_types = np.array([0, 0, 0], dtype=np.intc) bc_values = np.array([0, 0, 0], dtype=np.float64) displacement_bc_scale = 0 dt = 1 # Set buffers # Read only bc_types_d = cl.Buffer( context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=bc_types) bc_values_d = cl.Buffer( context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=bc_values) force_d = cl.Buffer( context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=force) # Read write u_d = cl.Buffer( context, mf.READ_WRITE | mf.COPY_HOST_PTR, hostbuf=u) # Build kernels update_displacement_kernel = program.update_displacement update_displacement_kernel( queue, (3 * nnodes,), None, force_d, u_d, bc_types_d, bc_values_d, np.float64(displacement_bc_scale), np.float64(dt)) cl.enqueue_copy(queue, u, u_d) assert np.all(u == force) @context_available def test_update_displacement2(self, context, queue, program): """Test displacement update.""" u = np.zeros(3) nnodes = 1 force = np.array([1.0, 2.0, 3.0], dtype=np.float64) bc_types = np.array([0, 0, 0], dtype=np.intc) bc_values = np.array([0, 0, 0], dtype=np.float64) displacement_bc_scale = 0 dt = 2.0 # Set buffers # Read only bc_types_d = cl.Buffer( context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=bc_types) bc_values_d = cl.Buffer( context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=bc_values) force_d = cl.Buffer( context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=force) # Read write u_d = cl.Buffer( context, mf.READ_WRITE | mf.COPY_HOST_PTR, hostbuf=u) # Build kernels update_displacement_kernel = program.update_displacement update_displacement_kernel( queue, (3 * nnodes,), None, force_d, u_d, bc_types_d, bc_values_d, np.float64(displacement_bc_scale), np.float64(dt)) cl.enqueue_copy(queue, u, u_d) assert np.all(u == 2.0*force) @context_available def test_update_displacement3(self, context, queue, program): """Test displacement update with displacement boundary conditions.""" u = np.zeros(3) nnodes = 1 force = np.array([1.0, 2.0, 3.0], dtype=np.float64) bc_types = np.array([1, 1, 0], dtype=np.intc) bc_values = np.array([0.0, 0.0, 0.0], dtype=np.float64) displacement_bc_scale = 1.0 dt = 2.0 # Set buffers # Read only bc_types_d = cl.Buffer( context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=bc_types) bc_values_d = cl.Buffer( context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=bc_values) force_d = cl.Buffer( context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=force) # Read write u_d = cl.Buffer( context, mf.READ_WRITE | mf.COPY_HOST_PTR, hostbuf=u) # Build kernels update_displacement_kernel = program.update_displacement update_displacement_kernel( queue, (3 * nnodes,), None, force_d, u_d, bc_types_d, bc_values_d, np.float64(displacement_bc_scale), np.float64(dt)) cl.enqueue_copy(queue, u, u_d) u_expected = np.array([0.0, 0.0, 6.0]) assert
np.all(u == u_expected)
numpy.all
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2019 <NAME> (Nagoya University) # based on PyTorch implementation for WaveNet vocoder by <NAME> (Nagoya University) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) from __future__ import division import argparse from distutils.util import strtobool import logging import math import os import sys import numpy as np import torch import torch.multiprocessing as mp from utils import find_files, read_hdf5, read_txt, write_hdf5 from gru_vae import GRU_RNN, sampling_vae_batch from dtw_c import dtw_c as dtw np.set_printoptions(threshold=np.inf) def main(): parser = argparse.ArgumentParser() # decode setting parser.add_argument("--feats", required=True, type=str, help="list or directory of source eval feat files") parser.add_argument("--feats_trg", required=True, type=str, help="list or directory of source eval feat files") parser.add_argument("--stats_src", required=True, type=str, help="hdf5 file including source statistics") parser.add_argument("--stats_trg", required=True, type=str, help="hdf5 file including target statistics") parser.add_argument("--stats_jnt", type=str, help="hdf5 file including target statistics") parser.add_argument("--model", required=True, type=str, help="model file") parser.add_argument("--config", required=True, type=str, help="configure file") parser.add_argument("--n_gpus", default=1, type=int, help="number of gpus") parser.add_argument("--n_smpl_dec", default=300, type=int, help="number of gpus") parser.add_argument("--outdir", required=True, type=str, help="directory to save generated samples") parser.add_argument("--write_gv", default=False, type=strtobool, help="flag to write gv stats") # other setting parser.add_argument("--seed", default=1, type=int, help="seed number") parser.add_argument("--GPU_device", default=0, type=int, help="selection of GPU device") parser.add_argument("--verbose", default=1, type=int, help="log level") args = parser.parse_args() os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = str(args.GPU_device) # check directory existence if not os.path.exists(args.outdir): os.makedirs(args.outdir) # set log level if args.verbose > 0: logging.basicConfig(level=logging.INFO, format='%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s', datefmt='%m/%d/%Y %I:%M:%S', filename=args.outdir + "/decode.log") logging.getLogger().addHandler(logging.StreamHandler()) elif args.verbose > 1: logging.basicConfig(level=logging.DEBUG, format='%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s', datefmt='%m/%d/%Y %I:%M:%S', filename=args.outdir + "/decode.log") logging.getLogger().addHandler(logging.StreamHandler()) else: logging.basicConfig(level=logging.WARN, format='%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s', datefmt='%m/%d/%Y %I:%M:%S', filename=args.outdir + "/decode.log") logging.getLogger().addHandler(logging.StreamHandler()) logging.warn("logging is disabled.") # fix seed os.environ['PYTHONHASHSEED'] = str(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) # load config config = torch.load(args.config) # get source feat list if os.path.isdir(args.feats): feat_list = sorted(find_files(args.feats, "*.h5")) elif os.path.isfile(args.feats): feat_list = read_txt(args.feats) else: logging.error("--feats should be directory or list.") sys.exit(1) # get target feat list if os.path.isdir(args.feats_trg): feat_trg_list = sorted(find_files(args.feats_trg, "*.h5")) elif os.path.isfile(args.feats_trg): feat_trg_list = read_txt(args.feats_trg) else: logging.error("--feats_trg should be directory or list.") sys.exit(1) # prepare the file list for parallel decoding feat_lists = np.array_split(feat_list, args.n_gpus) feat_lists = [f_list.tolist() for f_list in feat_lists] feat_trg_lists = np.array_split(feat_trg_list, args.n_gpus) feat_trg_lists = [f_list.tolist() for f_list in feat_trg_lists] spk_src = os.path.basename(os.path.dirname(feat_lists[0][0])) spk_trg = os.path.basename(os.path.dirname(feat_trg_lists[0][0])) gv_mean_src = read_hdf5(args.stats_src, "/gv_range_mean")[1:] gv_mean_trg = read_hdf5(args.stats_trg, "/gv_range_mean")[1:] # define gpu decode function def gpu_decode(feat_list, feat_trg_list, gpu, cvlist=None, mcdlist=None, mcdstdlist=None, mcdpowlist=None, mcdpowstdlist=None, cvlist_src=None, mcdlist_src=None, mcdstdlist_src=None, mcdpowlist_src=None, mcdpowstdlist_src=None, cvlist_trg=None, mcdlist_trg=None, mcdstdlist_trg=None, mcdpowlist_trg=None, mcdpowstdlist_trg=None, lat_dist_rmse_enc_list=None, lat_dist_cosim_enc_list=None, lat_dist_rmse_pri_list=None, lat_dist_cosim_pri_list=None): with torch.cuda.device(gpu): mean_jnt = torch.FloatTensor(read_hdf5(args.stats_jnt, "/mean_feat_org_lf0_jnt")[config.stdim:]).cuda() std_jnt = torch.FloatTensor(read_hdf5(args.stats_jnt, "/scale_feat_org_lf0_jnt")[config.stdim:]).cuda() # define model and load parameters logging.info("model") logging.info(config) with torch.no_grad(): model_encoder = GRU_RNN( in_dim=config.in_dim, out_dim=config.lat_dim*2, hidden_layers=config.hidden_layers, hidden_units=config.hidden_units, kernel_size=config.kernel_size, dilation_size=config.dilation_size, scale_out_flag=False) model_decoder = GRU_RNN( in_dim=config.lat_dim+2, out_dim=config.out_dim, hidden_layers=config.hidden_layers, hidden_units=config.hidden_units, kernel_size=config.kernel_size, dilation_size=config.dilation_size, scale_in_flag=False) model_encoder.load_state_dict(torch.load(args.model)["model_encoder"]) model_decoder.load_state_dict(torch.load(args.model)["model_decoder"]) model_encoder.cuda() model_decoder.cuda() model_encoder.eval() model_decoder.eval() for param in model_encoder.parameters(): param.requires_grad = False for param in model_decoder.parameters(): param.requires_grad = False logging.info(model_encoder) logging.info(model_decoder) init_pp = np.zeros((1,1,config.lat_dim*2)) y_in_pp = torch.FloatTensor(init_pp).cuda() y_in_src = y_in_trg = torch.unsqueeze(torch.unsqueeze((0-mean_jnt)/std_jnt,0),0) for feat_file, feat_trg_file in zip(feat_list, feat_trg_list): # convert mcep logging.info("cvmcep " + feat_file + " " + feat_trg_file) feat = read_hdf5(feat_file, "/feat_org_lf0") feat_trg = read_hdf5(feat_trg_file, "/feat_org_lf0") logging.info(feat.shape) logging.info(feat_trg.shape) with torch.no_grad(): lat_src, _, _ = model_encoder(torch.FloatTensor(feat).cuda(), y_in_pp, clamp_vae=True, lat_dim=config.lat_dim) lat_feat = sampling_vae_batch(lat_src.unsqueeze(0).repeat(args.n_smpl_dec,1,1), lat_dim=config.lat_dim) lat_feat = torch.mean(lat_feat, 0) lat_trg, _, _ = model_encoder(torch.FloatTensor(feat_trg).cuda(), y_in_pp, clamp_vae=True, lat_dim=config.lat_dim) lat_feat_trg = sampling_vae_batch(lat_trg.unsqueeze(0).repeat(args.n_smpl_dec,1,1), lat_dim=config.lat_dim) lat_feat_trg = torch.mean(lat_feat_trg, 0) src_code = np.zeros((lat_feat.shape[0],2)) trg_code = np.zeros((lat_feat.shape[0],2)) trg_trg_code = np.zeros((lat_feat_trg.shape[0],2)) src_code[:,0] = 1 trg_code[:,1] = 1 trg_trg_code[:,1] = 1 src_code = torch.FloatTensor(src_code).cuda() trg_code = torch.FloatTensor(trg_code).cuda() trg_trg_code = torch.FloatTensor(trg_trg_code).cuda() cvmcep, _, _ = model_decoder(torch.cat((trg_code, lat_feat),1), y_in_trg) cvmcep = np.array(cvmcep.cpu().data.numpy(), dtype=np.float64) cvmcep_src, _, _ = model_decoder(torch.cat((src_code, lat_feat),1), y_in_src) cvmcep_src = np.array(cvmcep_src.cpu().data.numpy(), dtype=np.float64) cvmcep_trg, _, _ = model_decoder(torch.cat((trg_trg_code, lat_feat_trg),1), y_in_trg) cvmcep_trg = np.array(cvmcep_trg.cpu().data.numpy(), dtype=np.float64) logging.info(cvmcep.shape) logging.info(cvmcep_trg.shape) cvlist.append(np.var(cvmcep[:,1:], axis=0)) cvlist_src.append(np.var(cvmcep_src[:,1:], axis=0)) cvlist_trg.append(np.var(cvmcep_trg[:,1:], axis=0)) logging.info(len(cvlist)) spcidx_src = read_hdf5(feat_file, "/spcidx_range")[0] mcep_trg = read_hdf5(feat_trg_file, "/mcepspc_range") _, _, _, mcdpow_arr = dtw.dtw_org_to_trg(np.array(cvmcep[np.array(spcidx_src),:], dtype=np.float64), np.array(mcep_trg[:,:], dtype=np.float64)) _, _, _, mcd_arr = dtw.dtw_org_to_trg(np.array(cvmcep[np.array(spcidx_src),1:], dtype=np.float64), np.array(mcep_trg[:,1:], dtype=np.float64)) mcdpow_mean = np.mean(mcdpow_arr) mcdpow_std = np.std(mcdpow_arr) mcd_mean = np.mean(mcd_arr) mcd_std = np.std(mcd_arr) logging.info("mcdpow: %.6f dB +- %.6f" % (mcdpow_mean, mcdpow_std)) logging.info("mcd: %.6f dB +- %.6f" % (mcd_mean, mcd_std)) mcdpowlist.append(mcdpow_mean) mcdpowstdlist.append(mcdpow_std) mcdlist.append(mcd_mean) mcdstdlist.append(mcd_std) mcep_src = read_hdf5(feat_file, "/mcepspc_range") _, mcdpow_arr = dtw.calc_mcd(np.array(mcep_src[:,:], dtype=np.float64), np.array(cvmcep_src[np.array(spcidx_src),:], dtype=np.float64)) _, mcd_arr = dtw.calc_mcd(np.array(mcep_src[:,1:], dtype=np.float64), np.array(cvmcep_src[np.array(spcidx_src),1:], dtype=np.float64)) mcdpow_mean = np.mean(mcdpow_arr) mcdpow_std = np.std(mcdpow_arr) mcd_mean = np.mean(mcd_arr) mcd_std = np.std(mcd_arr) logging.info("mcdpow_src: %.6f dB +- %.6f" % (mcdpow_mean, mcdpow_std)) logging.info("mcd_src: %.6f dB +- %.6f" % (mcd_mean, mcd_std)) mcdpowlist_src.append(mcdpow_mean) mcdpowstdlist_src.append(mcdpow_std) mcdlist_src.append(mcd_mean) mcdstdlist_src.append(mcd_std) spcidx_trg = read_hdf5(feat_trg_file, "/spcidx_range")[0] _, mcdpow_arr = dtw.calc_mcd(np.array(mcep_trg[:,:], dtype=np.float64), np.array(cvmcep_trg[np.array(spcidx_trg),:], dtype=np.float64)) _, mcd_arr = dtw.calc_mcd(np.array(mcep_trg[:,1:], dtype=np.float64), np.array(cvmcep_trg[np.array(spcidx_trg),1:], dtype=np.float64)) mcdpow_mean = np.mean(mcdpow_arr) mcdpow_std = np.std(mcdpow_arr) mcd_mean = np.mean(mcd_arr) mcd_std = np.std(mcd_arr) logging.info("mcdpow_trg: %.6f dB +- %.6f" % (mcdpow_mean, mcdpow_std)) logging.info("mcd_trg: %.6f dB +- %.6f" % (mcd_mean, mcd_std)) mcdpowlist_trg.append(mcdpow_mean) mcdpowstdlist_trg.append(mcdpow_std) mcdlist_trg.append(mcd_mean) mcdstdlist_trg.append(mcd_std) with torch.no_grad(): spcidx_src = torch.LongTensor(spcidx_src).cuda() spcidx_trg = torch.LongTensor(spcidx_trg).cuda() trj_lat_src = np.array(torch.index_select(lat_src,0,spcidx_src).cpu().data.numpy(), dtype=np.float64) trj_lat_trg = np.array(torch.index_select(lat_trg,0,spcidx_trg).cpu().data.numpy(), dtype=np.float64) aligned_lat_srctrg, _, _, _ = dtw.dtw_org_to_trg(trj_lat_src, trj_lat_trg) lat_dist_srctrg = np.mean(np.sqrt(np.mean((aligned_lat_srctrg-trj_lat_trg)**2, axis=0))) _, _, lat_cdist_srctrg, _ = dtw.dtw_org_to_trg(trj_lat_trg, trj_lat_src, mcd=0) aligned_lat_trgsrc, _, _, _ = dtw.dtw_org_to_trg(trj_lat_trg, trj_lat_src) lat_dist_trgsrc = np.mean(np.sqrt(np.mean((aligned_lat_trgsrc-trj_lat_src)**2, axis=0))) _, _, lat_cdist_trgsrc, _ = dtw.dtw_org_to_trg(trj_lat_src, trj_lat_trg, mcd=0) logging.info("%lf %lf %lf %lf" % (lat_dist_srctrg, lat_cdist_srctrg, lat_dist_trgsrc, lat_cdist_trgsrc)) lat_dist_rmse = (lat_dist_srctrg+lat_dist_trgsrc)/2 lat_dist_cosim = (lat_cdist_srctrg+lat_cdist_trgsrc)/2 lat_dist_rmse_enc_list.append(lat_dist_rmse) lat_dist_cosim_enc_list.append(lat_dist_cosim) logging.info("lat_dist_enc: %.6f %.6f" % (lat_dist_rmse, lat_dist_cosim)) trj_lat_src = np.array(torch.index_select(lat_feat,0,spcidx_src).cpu().data.numpy(), dtype=np.float64) trj_lat_trg = np.array(torch.index_select(lat_feat_trg,0,spcidx_trg).cpu().data.numpy(), dtype=np.float64) aligned_lat_srctrg, _, _, _ = dtw.dtw_org_to_trg(trj_lat_src, trj_lat_trg) lat_dist_srctrg = np.mean(np.sqrt(np.mean((aligned_lat_srctrg-trj_lat_trg)**2, axis=0))) _, _, lat_cdist_srctrg, _ = dtw.dtw_org_to_trg(trj_lat_trg, trj_lat_src, mcd=0) aligned_lat_trgsrc, _, _, _ = dtw.dtw_org_to_trg(trj_lat_trg, trj_lat_src) lat_dist_trgsrc = np.mean(np.sqrt(np.mean((aligned_lat_trgsrc-trj_lat_src)**2, axis=0))) _, _, lat_cdist_trgsrc, _ = dtw.dtw_org_to_trg(trj_lat_src, trj_lat_trg, mcd=0) logging.info("%lf %lf %lf %lf" % (lat_dist_srctrg, lat_cdist_srctrg, lat_dist_trgsrc, lat_cdist_trgsrc)) lat_dist_rmse = (lat_dist_srctrg+lat_dist_trgsrc)/2 lat_dist_cosim = (lat_cdist_srctrg+lat_cdist_trgsrc)/2 lat_dist_rmse_pri_list.append(lat_dist_rmse) lat_dist_cosim_pri_list.append(lat_dist_cosim) logging.info("lat_dist_pri: %.6f %.6f" % (lat_dist_rmse, lat_dist_cosim)) # parallel decode training with mp.Manager() as manager: gpu = 0 processes = [] cvlist = manager.list() mcdlist = manager.list() mcdstdlist = manager.list() mcdpowlist = manager.list() mcdpowstdlist = manager.list() cvlist_src = manager.list() mcdlist_src = manager.list() mcdstdlist_src = manager.list() mcdpowlist_src = manager.list() mcdpowstdlist_src = manager.list() cvlist_trg = manager.list() mcdlist_trg = manager.list() mcdstdlist_trg = manager.list() mcdpowlist_trg = manager.list() mcdpowstdlist_trg = manager.list() lat_dist_rmse_enc_list = manager.list() lat_dist_cosim_enc_list = manager.list() lat_dist_rmse_pri_list = manager.list() lat_dist_cosim_pri_list = manager.list() for i, (feat_list, feat_trg_list) in enumerate(zip(feat_lists, feat_trg_lists)): logging.info(i) p = mp.Process(target=gpu_decode, args=(feat_list, feat_trg_list, gpu, cvlist, mcdlist, mcdstdlist, mcdpowlist, mcdpowstdlist, cvlist_src, mcdlist_src, mcdstdlist_src, mcdpowlist_src, mcdpowstdlist_src, cvlist_trg, mcdlist_trg, mcdstdlist_trg, mcdpowlist_trg, mcdpowstdlist_trg, lat_dist_rmse_enc_list, lat_dist_cosim_enc_list, lat_dist_rmse_pri_list, lat_dist_cosim_pri_list,)) p.start() processes.append(p) gpu += 1 if (i + 1) % args.n_gpus == 0: gpu = 0 # wait for all process for p in processes: p.join() # calculate cv_gv statistics cvgv_mean = np.mean(np.array(cvlist), axis=0) cvgv_var = np.var(np.array(cvlist), axis=0) cvgvsrc_mean = np.mean(np.array(cvlist_src), axis=0) cvgvsrc_var = np.var(np.array(cvlist_src), axis=0) cvgvtrg_mean = np.mean(np.array(cvlist_trg), axis=0) cvgvtrg_var = np.var(np.array(cvlist_trg), axis=0) logging.info(args.stats_src) logging.info(args.stats_trg) #logging.info(gv_mean_trg) logging.info("mcdpow: %.6f dB (+- %.6f) +- %.6f (+- %.6f)" % (np.mean(np.array(mcdpowlist)),np.std(np.array(mcdpowlist)),np.mean(np.array(mcdpowstdlist)),np.std(np.array(mcdpowstdlist)))) logging.info("mcd: %.6f dB (+- %.6f) +- %.6f (+- %.6f)" % (np.mean(np.array(mcdlist)),np.std(np.array(mcdlist)),np.mean(np.array(mcdstdlist)),np.std(np.array(mcdstdlist)))) #logging.info(cvgv_mean) logging.info("%lf +- %lf" % (np.mean(np.sqrt(np.square(np.log(cvgv_mean)-np.log(gv_mean_trg)))), np.std(np.sqrt(np.square(np.log(cvgv_mean)-np.log(gv_mean_trg)))))) logging.info("mcdpow_src: %.6f dB (+- %.6f) +- %.6f (+- %.6f)" % (np.mean(np.array(mcdpowlist_src)),np.std(np.array(mcdpowlist_src)),np.mean(np.array(mcdpowstdlist_src)),np.std(np.array(mcdpowstdlist_src)))) logging.info("mcd_src: %.6f dB (+- %.6f) +- %.6f (+- %.6f)" % (np.mean(np.array(mcdlist_src)),np.std(
np.array(mcdlist_src)
numpy.array
# -*- coding: utf-8 -*-- """ Created on Tue Oct 23 09:42:24 2018 @author: William """ import re #import regex import os path_to_cpp = '' #OS walk to find the cpp compilation for root, dirs, files in os.walk(".", topdown=False): for branch in dirs: if 'ssa_cpp' in branch: path_to_cpp = os.path.join(root, branch) if path_to_cpp != '': try: cwd = os.getcwd() os.chdir(path_to_cpp) import ssa_translation os.chdir(cwd) except: os.chdir(cwd) try: from snapgene_reader import snapgene_file_to_dict, snapgene_file_to_seqrecord except: pass import time import json, codecs from scipy import sparse from scipy.stats import pearsonr import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import matplotlib.patches as mpatches import matplotlib.animation as animation from matplotlib.collections import PatchCollection from matplotlib import cm from matplotlib import gridspec from matplotlib.patches import Ellipse #import scipy.stats.trim_mean as tmean from scipy.stats import kde try: from Bio import SeqIO from Bio import Entrez except: print('BioPython is not installed, polling genbank will not be possible') pass import translation_models as models class rSNAPsim(): """ The Single Molecule Simulator (SMS) provides a python class for running single molecule mRNA translation simulations When presented with a valid protein sequence the SMS can find open reading frames and simulate intensity trajectories from translation of the protein with given fluorescent tags. *model description* link to paper here / image *main functions* -open_seq_file(filepath), opens a txt or .gb file and gets the sequence -get_orfs(nt_sequence, min_codons), returns open reading frames of a given sequence and a minimum codon length per protein -get_temporal_proteins(), gets the proteins after get_orfs -analyze_poi(aa_seq,nt_seq), analyzes the proteins of intrest for codon sensitivity and elongation rates -__.poi(), class to contain proteins of intrest after analyzed -run_default(), runs get_orfs, get_temporal proteins, and analyze_poi with the first protien found in the sequence *attributes* **gene_sequence_str** = string of the nucleotide sequence **tag_dict** = dictionary with various types of fluorescent tag epitopes **tag_full** = dictionary of full tag sequences **aa_keys** = amino acid single letter keys **codon_types** = flag dictionary of which amino acids are set to Wild-type, fast, or slow **aa_table** = dictionary of amino acids **aa_table_r** = reverse dictionary (amino acid letters are the keys) **strGeneCopy** = dictionary of wild-type tRNA copy numbers **strGeneCopy_fast** = dictionary of fast tRNA copy numbers **strGeneCopy_slow** = dictionary of slow tRNA copy numbers **slow_codons_value** = list of slowest codon tRNA copy numbers **fast_codons_value** = list of fastest codon tRNA copy numbers **sensitivity_fast_slow** = list of sensitivity for amino acids **poi** = Class container for proteins of intrest **orfs** = dictionary of open reading frames with keys 1,2,3 **seq_str** = sequence string **proteins** = dictionary of proteins detected in the sequence by ORF **tagged_proteins** = dictionary of proteins that were detected and tagged *POI* Protein of intrest has the following attributes: **aa_seq** = amino acid sequence **nt_seq** = nucleotide sequence **gene_length** = length of the gene **tag_length** = length of the tags **total_length** = total length of the full amino acid sequence **name** = name of the gene **tag_types** = what types of tags does the protien have **tag_epitopes** = type of tags and epitope lists per tag **codon_sensitivity** = how sensitive is the protein per amino acid sequence? **CAI** = codon activation index **CAI_codons** = means of the codon activation *ssa* The ssa container class has the following attributes: **no_ribosomes** = number of ribosomes **n_traj** = number of trajectories **k** = all kelongation rates (calculated from codon sequence) **no_rib_per_mrna** = number of ribosomes per mRNA strand on average **rib_density** = ribosome density **rib_means** = ribosome means **rib_vec** = raw ribosome location matrix for each trajectory **intensity_vec** = fluorescence intensities **time_vec_fixed** = the time vector **start_time** = the time the simulation was started **evaluating_inhibitor** = was there an inhibitor present? **evaluating_frap** = was the simulation subjected to a FRAP test **time_inhibit** = the time of the perturbation **autocorr_vec** = autocorrelation vector of intensities **mean_autocorr** = the average autocorrelations, averaged over trajectories **error_autocorr** = the standard deviation of the autocorrelation **dwell_time** = how long do the ribosomes stay on the mRNA strand calculated by the simulation **ke_sim** = the calculated average elongation rate from the simulations """ def __init__(self): self.gene_sequence_str = '' self.tag_dict = {'T_SunTag':'EELLSKNYHLENEVARLKK', 'T_Flag':'DYKDDDDK', 'T_Hemagglutinin':'YPYDVPDYA'} self.tag_colors = {'T_SunTag':'green', 'T_Flag':'blue', 'T_Hemagglutinin':'blue'} self.tag_full = {'T_Flag':('ATGGACTACAAGGACGACGACGACAAAGGTGAC' 'TACAAAGATGATGACGATAAAGGCGACTATA' 'AGGACGATGACGACAAGGGCGGAAACTCACTGA' 'TCAAGGAAAACATGCGGATGAAGGTGGTGAT' 'GGAGGGCTCCGTGAATGGTCACCAGTTCAAGTG' 'CACCGGAGAGGGAGAGGGAAACCCGTACATG' 'GGAACTCAGACCATGCGCATTAAGGTCATCGAA' 'GGAGGTCCGCTGCCGTTCGCTTTCGATATCC' 'TGGCCACTTCGTTCGGAGGAGGGTCGCGCACGTTC' 'ATCAAGTACCCGAAGGGAATCCCGGACTT' 'CTTTAAGCAGTCATTCCCGGAAGGATTCACTTGGG' 'AACGGGTGACCCGGTATGAAGATGGAGGT' 'GTGGTGACTGTCATGCAAGATACTTCGCTGGAGGATGGG' 'TGCCTCGTGTACCACGTCCAAGTCC' 'GCGGAGTGAATTTCCCGTCCAACGGACCAGTGATGCAG' 'AAAAAGACGAAGGGTTGGGAACCTAA' 'TACTGAAATGATGTACCCCGCAGACGGAGGGCTGAGGG' 'GCTACACCCACATGGCGCTGAAGGTC' 'GACGGAGGAGATTACAAGGATGACGACGATAAGCAACAA' 'GATTACAAAGACGATGATGACAAGG' 'GCCAGCAGGGCGACTACAAGGACGACGACGACAAGCAG' 'CAGGACTACAAAGATGACGATGATAA' 'AGGAGGAGGACATCTGTCCTGTTCGTTCGTGACCACCT' 'ACAGATCAAAGAAAACCGTGGGAAAC' 'ATCAAGATGCCGGGCATTCATGCCGTCGACCACCGCCT' 'GGAGCGGCTCGAAGAATCAGACAATG' 'AGATGTTCGTCGTGCAAAGAGAACATGCCGTGGCCAAGTT' 'CGCGGGACTGGGAGGCGGTGGAGG' 'CGATTACAAAGACGATGATGACAAGGGTGACTATAAAGA' 'CGACGATGACAAAGGGGATTACAAG' 'GATGATGATGATAAGGGAGGCGGTGGATCAGGTGGAG' 'GAGGTTCACTGCAG')} self.aa_keys = ['A', 'R', 'N', 'D', 'C', 'Q', 'E', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V', '*'] self.codon_types = dict(zip(self.aa_keys, np.ones((1, 21)).flatten().astype(int).tolist())) self.aa_table = { 'ATA':'I', 'ATC':'I', 'ATT':'I', 'ATG':'M', 'ACA':'T', 'ACC':'T', 'ACG':'T', 'ACT':'T', 'AAC':'N', 'AAT':'N', 'AAA':'K', 'AAG':'K', 'AGC':'S', 'AGT':'S', 'AGA':'R', 'AGG':'R', 'CTA':'L', 'CTC':'L', 'CTG':'L', 'CTT':'L', 'CCA':'P', 'CCC':'P', 'CCG':'P', 'CCT':'P', 'CAC':'H', 'CAT':'H', 'CAA':'Q', 'CAG':'Q', 'CGA':'R', 'CGC':'R', 'CGG':'R', 'CGT':'R', 'GTA':'V', 'GTC':'V', 'GTG':'V', 'GTT':'V', 'GCA':'A', 'GCC':'A', 'GCG':'A', 'GCT':'A', 'GAC':'D', 'GAT':'D', 'GAA':'E', 'GAG':'E', 'GGA':'G', 'GGC':'G', 'GGG':'G', 'GGT':'G', 'TCA':'S', 'TCC':'S', 'TCG':'S', 'TCT':'S', 'TTC':'F', 'TTT':'F', 'TTA':'L', 'TTG':'L', 'TAC':'Y', 'TAT':'Y', 'TAA':'*', 'TAG':'*', 'TGC':'C', 'TGT':'C', 'TGA':'*', 'TGG':'W', 'AUA':'I', 'AUC':'I', 'AUU':'I', 'AUG':'M', 'ACA':'T', 'ACC':'T', 'ACG':'T', 'ACU':'T', 'AAC':'N', 'AAU':'N', 'AAA':'K', 'AAG':'K', 'AGC':'S', 'AGU':'S', 'AGA':'R', 'AGG':'R', 'CUA':'L', 'CUC':'L', 'CUG':'L', 'CUU':'L', 'CCA':'P', 'CCC':'P', 'CCG':'P', 'CCU':'P', 'CAC':'H', 'CAU':'H', 'CAA':'Q', 'CAG':'Q', 'CGA':'R', 'CGC':'R', 'CGG':'R', 'CGU':'R', 'GUA':'V', 'GUC':'V', 'GUG':'V', 'GUU':'V', 'GCA':'A', 'GCC':'A', 'GCG':'A', 'GCU':'A', 'GAC':'D', 'GAU':'D', 'GAA':'E', 'GAG':'E', 'GGA':'G', 'GGC':'G', 'GGG':'G', 'GGU':'G', 'UCA':'S', 'UCC':'S', 'UCG':'S', 'UCU':'S', 'UUC':'F', 'UUU':'F', 'UUA':'L', 'UUG':'L', 'UAC':'Y', 'UAU':'Y', 'UAA':'*', 'UAG':'*', 'UGC':'C', 'UGU':'C', 'UGA':'*', 'UGG':'W',} self.aa_table_r = {'A':['GCA', 'GCC', 'GCG', 'GCT','GCU'], 'R':['CGA', 'CGC', 'CGG', 'CGT','AGG','AGA','CGU'], 'N':['AAC', 'AAT','AAU'], 'D':['GAC', 'GAT','GAU'], 'C':['TGC', 'TGT','UGC','UGU'], 'Q':['CAA', 'CAG'], 'E':['GAA', 'GAG'], 'G':['GGT', 'GGC', 'GGA', 'GGC','GGU'], 'H':['CAC', 'CAT','CAU'], 'I':['ATT', 'ATC', 'ATA','AUU','AUC','AUA'], 'L':['CTA', 'CTC', 'CTG', 'CTT', 'TTA', 'TTG','CUA', 'CUC', 'CUG', 'CUU', 'UUA', 'UUG'], 'K':['AAA', 'AAG'], 'M':['ATG','AUG'], 'F':['TTC', 'TTT','UUC','UUU'], 'P':['CCT', 'CCC', 'CCG', 'CCA','CCU'], 'S':['TCA', 'TCC', 'TCG', 'TCT','AGC','AGT','UCA','UCC','UCG'], 'T':['ACA', 'ACC', 'ACG', 'ACT','ACU'], 'W':['TGG','UGG'], 'Y':['TAT', 'TAC','UAC','UAU'], 'V':['GTA', 'GTC', 'GTT','GTG','GUG','GUU','GUC','GUA'], '*':['TGA', 'TAG', 'TAA','UGA','UAG','UAA'] } self.strGeneCopy = {'TTT': 17.6, 'TCT': 15.2, 'TAT': 12.2, 'TGT': 10.6, 'TTC': 20.3, 'TCC': 17.7, 'TAC': 15.3, 'TGC': 12.6, 'TTA': 7.7, 'TCA': 12.2, 'TAA': 1.0, 'TGA': 1.6, 'TTG': 12.9, 'TCG': 4.4, 'TAG': 0.8, 'TGG': 13.2, 'CTT': 13.2, 'CCT': 17.5, 'CAT': 10.9, 'CGT': 4.5, 'CTC': 19.6, 'CCC': 19.8, 'CAC': 15.1, 'CGC': 10.4, 'CTA': 7.2, 'CCA': 16.9, 'CAA': 12.3, 'CGA': 6.2, 'CTG': 39.6, 'CCG': 6.9, 'CAG': 34.2, 'CGG': 11.4, 'ATT': 16.0, 'ACT': 13.1, 'AAT': 17.0, 'AGT': 12.1, 'ATC': 20.8, 'ACC': 18.9, 'AAC': 19.1, 'AGC': 19.5, 'ATA': 7.5, 'ACA': 15.1, 'AAA': 24.4, 'AGA': 12.2, 'ATG': 22.0, 'ACG': 6.1, 'AAG': 31.9, 'AGG': 12.0, 'GTT': 11.0, 'GCT': 18.4, 'GAT': 21.8, 'GGT': 10.8, 'GTC': 14.5, 'GCC': 27.7, 'GAC': 25.1, 'GGC': 22.2, 'GTA': 7.1, 'GCA': 15.8, 'GAA': 29.0, 'GGA': 16.5, 'GTG': 28.1, 'GCG': 7.4, 'GAG': 39.6, 'GGG': 16.5} # add the U codons for key in list(self.strGeneCopy.keys()): if 'T' in key: val = self.strGeneCopy[key] newkey = key.replace('T','U') self.strGeneCopy[newkey] = val self.strGeneCopy_fast = {'GCT': 27.7, 'GCC': 27.7, 'GCA': 27.7, 'GCG': 27.7, #A 'CGT': 12.2, 'CGC': 12.2, 'CGA': 12.2, 'CGG': 12.2, 'AGA': 12.2, 'AGG': 12.2, # R 'AAT': 19.1, 'AAC': 19.1, #N 'GAT': 25.1, 'GAC': 25.1, # D 'TGT': 12.6, 'TGC': 12.6, # C 'CAA': 34.2, 'CAG': 34.2, # Q 'GAA': 39.6, 'GAG': 39.6, #E 'GGT': 22.2, 'GGC': 22.2, 'GGA': 22.2, 'GGG': 22.2, # G 'CAT': 15.1, 'CAC': 15.1, # H 'ATT': 20.8, 'ATC': 20.8, 'ATA': 20.8, # I 'TTA': 39.6, 'TTG': 39.6, 'CTT': 39.6, 'CTC': 39.6, 'CTA': 39.6, 'CTG': 39.6, # L 'AAA': 31.9, 'AAG': 31.9, # K 'ATG': 22.0, #M 'TTT': 20.3, 'TTC': 20.3, # F 'CCT': 19.8, 'CCC': 19.8, 'CCA': 19.8, 'CCG': 19.8, # P 'TCT': 19.5, 'TCC': 19.5, 'TCA': 19.5, 'TCG': 19.5, 'AGT': 19.5, 'AGC': 19.5, # S 'ACT': 18.9, 'ACC': 18.9, 'ACA': 18.9, 'ACG': 18.9, # T 'TGG': 13.2, #W 'TAT': 15.3, 'TAC': 15.3, # Y 'GTT': 28.1, 'GTC': 28.1, 'GTA':28.1, 'GTG': 28.1, # V 'TAA': 1.6, 'TAG': 1.6, 'TGA':1.6 #STOP } for key in list(self.strGeneCopy_fast.keys()): if 'T' in key: val = self.strGeneCopy_fast[key] newkey = key.replace('T','U') self.strGeneCopy_fast[newkey] = val self.strGeneCopy_slow = {'GCT': 7.4, 'GCC': 7.4, 'GCA': 7.4, 'GCG': 7.4, #A 'CGT': 4.5, 'CGC': 4.5, 'CGA': 4.5, 'CGG': 4.5, 'AGA':4.5, 'AGG':4.5, #R 'AAT': 17.0, 'AAC':17.0, #%N 'GAT': 21.8, 'GAC': 21.8, #D 'TGT': 10.6, 'TGC':10.6, #C 'CAA': 12.3, 'CAG': 12.3, #Q 'GAA': 29.0, 'GAG': 29.0, #E 'GGT': 10.8, 'GGC': 10.8, 'GGA': 10.8, 'GGG': 10.8, #G 'CAT': 10.9, 'CAC':10.9, #H 'ATT': 7.5, 'ATC': 7.5, 'ATA': 7.5, #I 'TTA': 7.2, 'TTG':7.2, 'CTT': 7.2, 'CTC': 7.2, 'CTA': 7.2, 'CTG': 7.2, #L 'AAA': 24.4, 'AAG': 24.4, #K 'ATG': 22.0, #M 'TTT': 17.6, 'TTC': 17.6, #F 'CCT': 6.9, 'CCC': 6.9, 'CCA': 6.9, 'CCG': 6.9, #P 'TCT': 4.4, 'TCC': 4.4, 'TCA': 4.4, 'TCG': 4.4, 'AGT': 4.4, 'AGC': 4.4, #S 'ACT': 6.1, 'ACC': 6.1, 'ACA': 6.1, 'ACG': 6.1,#T 'TGG': 13.2, #W 'TAT': 12.2, 'TAC': 12.2, #Y 'GTT': 7.1, 'GTC':7.1, 'GTA': 7.1, 'GTG': 7.1, # V 'TAA': 0.8, 'TAG': 0.8, 'TGA': 0.8 #STOP CODON} } for key in list(self.strGeneCopy_slow.keys()): if 'T' in key: val = self.strGeneCopy_slow[key] newkey = key.replace('T','U') self.strGeneCopy_slow[newkey] = val self.fast_codons_value = [27.7, 12.2, 19.1, 25.1, 12.6, 34.2, 39.6, 22.2, 15.1, 20.8, 39.6, 31.9, 22, 20.3, 19.8, 19.5, 18.9, 13.2, 15.3, 28.1, 1.6] self.slow_codons_value = [7.4, 4.5, 17, 21.8, 10.6, 12.3, 29, 10.8, 10.9, 7.5, 7.2, 24.4, 22, 17.6, 6.9, 4.4, 6.1, 13.2, 12.2, 7.1, .8] fullcodonkeys = ['GCT', 'CGT', 'AAT', 'GAT', 'TGT', 'CAA', 'GAA', 'GGT', 'CAT', 'ATT', 'TTA', 'AAA', 'ATG', 'TTT', 'CCT', 'TCT', 'ACT', 'TGG', 'TAT', 'GTT', 'TAA', 'GCU', 'CGU', 'AAU', 'GAU', 'UGU', 'CAA', 'GAA', 'GGU', 'CAU', 'AUU', 'UUA', 'AAA', 'AUG', 'UUU', 'CCU', 'TCU', 'ACU', 'UGG', 'UAU', 'GUU', 'UAA', ] codonkeys = ['GCT', 'CGT', 'AAT', 'GAT', 'TGT', 'CAA', 'GAA', 'GGT', 'CAT', 'ATT', 'TTA', 'AAA', 'ATG', 'TTT', 'CCT', 'TCT', 'ACT', 'TGG', 'TAT', 'GTT', 'TAA'] self.sensitivity_fast_slow = [] for i in range(len(codonkeys)): self.sensitivity_fast_slow.append(self.strGeneCopy_fast[codonkeys[i]] / self.strGeneCopy_slow[codonkeys[i]]) def __update_sensitivity(self): """ updates sensitivities for the GUI implementation call """ self.fast_codons_value = [] for key in self.aa_keys: values = [] codons = self.aa_table_r[key] for codon in codons: values.append(self.strGeneCopy[codon]) self.fast_codons_value.append(max(values)) for codon in codons: self.strGeneCopy_fast[codon] = max(values) self.slow_codons_value = [] for key in self.aa_keys: values = [] codons = self.aa_table_r[key] for codon in codons: values.append(self.strGeneCopy_slow[codon]) self.slow_codons_value.append(min(values)) for codon in codons: self.strGeneCopy_slow[codon] = min(values) codonkeys = ['GCT', 'CGT', 'AAT', 'GAT', 'TGT', 'CAA', 'GAA', 'GGT', 'CAT', 'ATT', 'TTA', 'AAA', 'ATG', 'TTT', 'CCT', 'TCT', 'ACT', 'TGG', 'TAT', 'GTT', 'TAA'] self.sensitivity_fast_slow = [] for i in range(len(codonkeys)): self.sensitivity_fast_slow.append(self.strGeneCopy_fast[codonkeys[i]] / self.strGeneCopy_slow[codonkeys[i]]) def load_tags(self): f= open("custom_tags.txt","r") raw = f.readlines() previous_tags = [] for line in raw: if line != '\n': previous_tags.append(line) for line in previous_tags: custom_tag = line.strip('\n').split('---') if custom_tag[0] not in self.tag_dict.keys(): self.tag_dict[custom_tag[0]] = custom_tag[2] self.tag_full[custom_tag[0]] = custom_tag[1] f.close() def add_tag(self,nt_seq,name): ''' add a custom tag sequence ''' f= open("custom_tags.txt","r") raw = f.readlines() previous_tags = [] for line in raw: if line != '\n': previous_tags.append(line) if not set(nt_seq.lower()).issubset( set(['a','t','c','g','u'])): print('invalid NT sequence') f.close() return aa_seq = self.nt2aa(nt_seq) newtag =name+'---'+ nt_seq.lower() + '---'+ aa_seq.upper()+'\n' if newtag not in previous_tags: previous_tags.append(newtag) f.close() f= open("custom_tags.txt","w+") for item in previous_tags: f.write('%s' % item) f.close() def nt2aa(self, nt_seq): ''' Translates nucleotides sequences to amino acid sequences *args* **nt_seq**, nucleotide sequence as a string *returns* **aa_seq**, amino acid sequence as string ''' aa = '' for i in range(0, len(nt_seq), 3): aa += self.aa_table[nt_seq[i:i+3]] return aa def get_orfs(self, nt_seq='', min_codons=80): ''' Returns open reading frames of the nucleotide sequence given orfs = {'1':[proteins], '2':[proteins], '3':[proteins]} *keyword args* **nt_seq**, nucleotide sequence as a string. If left blank uses the self.sequence_str **min_codons**, minimum amount of codons to be considered a protein in the open reading frame ''' if nt_seq == '': nt_seq = self.sequence_str allstarts = np.array([m.start() for m in re.finditer('(?=A[TU]G((?:.{3})+?)[TU](?:AG|AA|GA))', nt_seq)]) #allsegments = re.findall('(?=A[TU]G((?:.{3})+?)[TU](?:AG|AA|GA))',self.sequence_str) allstops = np.array([m.start() for m in re.finditer('(?=[TU](?:AG|AA|GA))', nt_seq)]) start_frames = allstarts%3 stop_frames = allstops%3 min_len = min_codons*3 orf1_starts = allstarts[np.where(start_frames == 0)] orf2_starts = allstarts[np.where(start_frames == 1)] orf3_starts = allstarts[np.where(start_frames == 2)] orf1_stops = allstops[np.where(stop_frames == 0)] orf2_stops = allstops[np.where(stop_frames == 1)] orf3_stops = allstops[np.where(stop_frames == 2)] self.starts = [orf1_starts, orf2_starts, orf3_starts] self.stops = [orf1_stops, orf2_stops, orf3_stops] self.orfs = {'1':[], '2':[], '3':[]} self.orfs = {'1':[], '2':[], '3':[]} laststop = 0 for start in orf1_starts: nextstop = orf1_stops[np.where(orf1_stops > start)[0][0]] if (nextstop - start) > min_len: if nextstop != laststop: self.orfs['1'].append((start, nextstop)) laststop = nextstop laststop = 0 for start in orf2_starts: nextstop = orf2_stops[np.where(orf2_stops > start)[0][0]] if (nextstop - start) > min_len: if nextstop != laststop: self.orfs['2'].append((start, nextstop)) laststop = nextstop laststop = 0 for start in orf3_starts: nextstop = orf3_stops[np.where(orf3_stops > start)[0][0]] if (nextstop - start) > min_len: if nextstop != laststop: self.orfs['3'].append((start, nextstop)) laststop = nextstop def get_k_construct(self, nt_seq, k_init, k_elong_mean, codon_types=None): ''' Returns the k_elongation rates of a given nucleotide sequence under constructed conditions given some sort of key describing which amino acids are slow, fast or natural *args* **nt_seq**, nucleotide sequence to get the propensities of **k_init**, initiation rate of starting translation **k_elong_mean**, average rate of elongation for the protein translation *keyword args* **codon_types**, a dictonary or identifier determining which amino acids are slow, fast or natural self.codon_types is an example dictionary for the user to change / utilize, if codon_types is left blank get_k_construct uses this internal dictonary ex: codon_types = 'slow' or 'rare' all amino acids set to slow codon_types = 'fast' or 'common' all amino acids set to fast codon_types = 'natural' all amino acids set to fast codon_types = {'A':[0], 'T':[2]} A set to slow, T set to fast codon_types = {'rare':['A','R'],'common':['L']} A and R set to slow, L set to fast ''' if codon_types == None: codon_types = self.codon_types else: all_natural = dict(zip(self.aa_keys, np.ones((1, 20)).flatten().astype(int).tolist())) if isinstance(codon_types, str): if codon_types == 'rare' or codon_types == 'slow': all_natural = dict(zip(self.aa_keys, np.zeros((1, 20)).flatten().astype(int).tolist())) if codon_types == 'common' or codon_types == 'fast': all_natural = dict(zip(self.aa_keys, (2*np.ones((1, 20))).flatten().astype(int).tolist())) if isinstance(codon_types, dict): for key in codon_types.keys(): if isinstance(key, str): if key.lower() not in ['rare', 'common', 'natural']: if key.upper() in self.aa_keys: if codon_types[key] in [0, 1, 2]: all_natural[key] = key if codon_types[key] in ['rare', 'common', 'natural']: if codon_types[key] == 'rare': all_natural[key] = 0 if codon_types[key] == 'common': all_natural[key] = 2 if codon_types[key] == 'natural': all_natural[key] = 1 else: newkeys = codon_types[key] for newkey in newkeys: if newkey.upper() in self.aa_keys: if key.lower() == 'rare': all_natural[newkey.upper()] = 0 if key.lower() == 'common': all_natural[newkey.upper()] = 2 if key.lower() == 'natural': all_natural[newkey.upper()] = 1 if isinstance(key, int): newkeys = codon_types[key] for newkey in newkeys: all_natural[newkey] = key codon_types = all_natural aa_seq = self.nt2aa(nt_seq) tRNA_design = np.zeros((1, len(aa_seq))) tRNA_norm = np.zeros((1, len(aa_seq))) seperated_codons = [nt_seq[i:i+3] for i in range(0, len(nt_seq), 3)] #split codons by 3 for i in range(len(seperated_codons)): tRNA_norm[0, i] = self.strGeneCopy[seperated_codons[i]] for i in range(len(self.aa_keys)-1): fs = codon_types[self.aa_keys[i]] indexes = [m.start() for m in re.finditer(self.aa_keys[i], aa_seq)] for index in indexes: if fs == 0: tRNA_design[0, index] = self.slow_codons_value[i] if fs == 2: tRNA_design[0, index] = self.fast_codons_value[i] if fs == 1: tRNA_design[0, index] = tRNA_norm[0, index] tRNA_design[0, -1] = tRNA_norm[0, -1] mean_tRNA_copynumber = np.mean(list(self.strGeneCopy.values())) k_elongation_design = (tRNA_design / mean_tRNA_copynumber) * k_elong_mean all_k_design = [k_init] + k_elongation_design.flatten().tolist() + [k_elong_mean] return all_k_design def get_ui(self, nt_seq): ''' return the ratio of average gene copy number / sequence codon copy number ''' mean_u = np.mean(self.strGeneCopy.values()) ui = [] for i in range(0, len(nt_seq), 3): ui.append(mean_u/ self.strGeneCopy[nt_seq[i:i+3]]) return ui def get_k_3_frame(self,nt_seq,k_elong_mean): kelongs = [] for n in range(3): if n !=0: codons = nt_seq[n:-(3-n)] else: codons = nt_seq genelength = int(len(codons)/3) seperated_codons = [codons[i:i+3] for i in range(0, len(codons), 3)] #split codons by 3 k_elongation = np.zeros((1, genelength)) tRNA_copynumber = np.zeros((1, genelength)) for i in range(len(seperated_codons)): tRNA_copynumber[0, i] = self.strGeneCopy[seperated_codons[i]] mean_tRNA_copynumber = np.mean(list(self.strGeneCopy.values())) k_elongation = (tRNA_copynumber / mean_tRNA_copynumber) * k_elong_mean k_elongation.flatten().tolist()[:-1] kelongs = kelongs + k_elongation.flatten().tolist()[:-1] return kelongs def get_k(self, nt_seq, k_init, k_elong_mean): ''' returns all propensities for a given nucleotide sequence *args* **nt_seq**, nucleotide sequence as a string **k_initiation**, initiation rate of ribosome binding **k_elong_mean**, average rate of elgonation experimentally found ''' codons = nt_seq genelength = int(len(codons)/3) seperated_codons = [codons[i:i+3] for i in range(0, len(codons), 3)] #split codons by 3 k_elongation = np.zeros((1, genelength)) tRNA_copynumber = np.zeros((1, genelength)) for i in range(len(seperated_codons)): tRNA_copynumber[0, i] = self.strGeneCopy[seperated_codons[i]] mean_tRNA_copynumber = np.mean(list(self.strGeneCopy.values())) k_elongation = (tRNA_copynumber / mean_tRNA_copynumber) * k_elong_mean all_k = [k_init] + k_elongation.flatten().tolist()[:-1] + [10] return all_k def get_temporal_proteins(self): ''' gets all the temporal proteins after getting the ORFs __.tagged_proteins = dictionary with keys of tag types and a list of proteins __.pois = list of proteins of intrest __.pois_seq = list of nucleotide sequences of proteins of sequences __.proteins = dictonary with keys of 1 2 or 3 orfs ''' self.proteins = {'1':[], '2':[], '3':[]} self.tagged_proteins = {a:[] for a in self.tag_dict.keys()} self.tagged_protein_seq = {a:[] for a in self.tag_dict.keys()} for i in range(len(self.orfs)): for j in range(len(self.orfs[str(i+1)])): pro = self.nt2aa(self.sequence_str[self.orfs[str(i+1)][j][0]:self.orfs[str(i+1)][j][1]+3]) nt_seq = self.sequence_str[self.orfs[str(i+1)][j][0]:self.orfs[str(i+1)][j][1]+3] self.proteins[str(i+1)].append(pro) for tag in self.tag_dict.keys(): if self.tag_dict[tag] in pro: self.tagged_protein_seq[tag].append(nt_seq) self.tagged_proteins[tag].append(pro) tags = 0 for key in self.tagged_proteins.keys(): tags += len(self.tagged_proteins[key]) self.pois = [] self.pois_seq = [] for tag in self.tag_dict.keys(): for i in range(len(self.tagged_proteins[tag])): if self.tagged_proteins[tag][i] not in self.pois: self.pois.append(self.tagged_proteins[tag][i]) self.pois_seq.append(self.tagged_protein_seq[tag][i]) if len(self.pois) == 0: POIs = [] pois_s = [] pois_nt = [] for i in range(len(self.gb_obj.features)): try: self.gb_obj.features[i].qualifiers['translation'] if tags == 0: POIs.append(self.gb_obj.features[i]) pois_s.append(self.nt2aa(self.tag_full['T_Flag']) + self.gb_obj.features[i].qualifiers['translation'][0]) pois_nt.append(self.tag_full['T_Flag'] + str(self.gb_obj.seq)[int(self.gb_obj.features[i].location.start):int(self.gb_obj.features[i].location.end)]) else: POIs.append(self.gb_obj.features[i]) pois_s.append(self.gb_obj.features[i].qualifiers['translation'][0]) pois_nt.append(str(self.gb_obj.seq)[int(self.gb_obj.features[i].location.start):int(self.gb_obj.features[i].location.end)]) except: pass self.pois = pois_s self.pois_seq = pois_nt def analyze_poi(self, protein, sequence, epitope_loc = 'front'): ''' Analyzes the protein of intrest and stores it in __.POI *args* **protein**, amino acid sequence as a string **sequence**, nucleotide sequence that goes with the protein **epitope_loc**, consider the epitope location as the front, middle or back: DDYDDK: front: 0, middle: 3, back: 6 for epitope location ''' self.POI = poi() self.POI.nt_seq = sequence self.POI.aa_seq = protein self.POI.name = self.sequence_name self.POI.total_length = len(protein) ''' for key in self.tagged_proteins: if protein in self.tagged_proteins[key]: self.POI.tag_types.append(key) ''' self.POI.tag_types = [] for tag in self.tag_dict.keys(): if self.tag_dict[tag] in protein: self.POI.tag_types.append(tag) #''.join(sms.poi[0].split('DYKDDDDK') self.POI.tag_epitopes = {a:[] for a in self.POI.tag_types} gs = protein for i in range(len(self.POI.tag_types)): try: nt_tag = self.tag_full[self.POI.tag_types[i]] aa_tag = self.nt2aa(nt_tag) except: epi = self.tag_dict[self.POI.tag_types[i]] firstep = self.POI.aa_seq.find(epi) lastep = len(self.POI.aa_seq) - self.POI.aa_seq[::-1].find(epi[::-1]) aa_tag = self.POI.aa_seq[firstep:lastep] nt_tag = self.POI.nt_seq[3*firstep:3*lastep] if epitope_loc == 'front': offset = 0 if epitope_loc == 'middle': offset = int(len(self.tag_dict[self.POI.tag_types[i]])/2) if epitope_loc == 'back': offset = len(self.tag_dict[self.POI.tag_types[i]]) self.POI.tag_epitopes[self.POI.tag_types[i]] = [m.start()+1+offset for m in re.finditer(self.tag_dict[self.POI.tag_types[i]], self.POI.aa_seq)] gs = gs.replace(aa_tag, '') self.POI.gene_seq = gs self.POI.gene_length = len(gs) codons = [] for i in range(0, len(sequence), 3): codons.append(sequence[i:i+3]) self.POI.codons = codons self.POI.codon_sensitivity, self.POI.CAI, self.POI.CAI_codons = self.codon_usage(self.POI.nt_seq) def open_seq_file(self, seqfile): ''' Reads a sequence file, either a .txt file or a .gb genbank file *args* **seqfile**, sequence file either in txt, gb, gbk format ''' seq = seqfile self.sequence_name = '' if '.dna' in seq: self.sequence_name = seq[:-4] try: seq_record = snapgene_file_to_seqrecord(seq) except: print('To read .dna files please install snapegenereader: pip install snapgene_reader - https://github.com/IsaacLuo/SnapGeneFileReader' ) self.sequence_str = seq_record.seq.tostring() if '.txt' in seq: with open(seq) as f: raw = f.readlines() raw = ''.join(raw) onlychar = re.split(r'[^A-Za-z]', raw) validt = ['A', 'G', 'T', 'C'] validu = ['A', 'G', 'U', 'C'] namelen = 0 self.sequence_str = '' for i in range(len(onlychar)): section = onlychar[i] if set(section.upper()) == set(validt): self.sequence_str += section.upper() elif set(section.upper()) == set(validu): self.sequence_str += section.upper() else: if len(section)>namelen: self.sequence_name = section namelen = len(section) if '.gb' in seq: gb_record = SeqIO.read(open(seq, "r"), "genbank") self.sequence_str = str(gb_record.seq) self.sequence_name = gb_record.name self.gb_obj = gb_record if self.sequence_name == '': self.sequence_name = seqfile.replace('.txt','') self.sequence_name = seqfile.replace('.gb','') def codon_usage(self, nt_seq): ''' Analyzes codon useage from the nucleotide sequence *args* **nt_seq**, nucleotide sequence as a string *returns* **codon_sensitivity**, a list of codon sensitivity for the nucleotide sequence **cai**, cai value ''' codon_usage = np.zeros((1, 21)) gene_len = len(nt_seq)/3 aa_seq = self.nt2aa(nt_seq) for i in range(len(self.aa_keys)-1): codon_usage[0, i] = len(re.findall(self.aa_keys[i], aa_seq)) codon_usage[0, 20] = len(re.findall('\*', aa_seq)) codon_norm = codon_usage/gene_len codon_sensitivity = np.round(codon_norm*self.sensitivity_fast_slow, 2) cai_codons = [] for i in range(0, len(nt_seq), 3): cai_codons.append(self.strGeneCopy[nt_seq[i:i+3]] / self.strGeneCopy_fast[nt_seq[i:i+3]]) cai = self.geomean(cai_codons) return codon_sensitivity, cai, cai_codons def get_probvec(self): ''' returns the probe vectors (epitope positions by codon position) associated with the tagged sequence stored in POI *returns* **probe_vec**, cumlative probe intensity vector by codon position. Ex: [0,0,0,0,1,1,1,1,2,2,2,3,3,3 etc] **probe_loc**, epitope posistion as a binary vector, 1 for epitope pos, 0 for everything else ''' probePositions = [] keylist = list(self.POI.tag_epitopes.keys()) for n in range(len(keylist)): probePosition = [] key = keylist[n] probePosition = probePosition + self.POI.tag_epitopes[key] if probePosition != []: probePosition = np.unique(probePosition).tolist() probePositions.append(probePosition) genelength = self.POI.total_length pvfull = np.zeros((1, genelength+1)).astype(int).flatten() if len(probePositions) > 1: k = 0 for n in range(len(keylist)): pv = np.zeros((1, genelength+1)).astype(int).flatten() key = keylist[n] probePosition = probePositions[k] k+=1 if len(self.POI.tag_epitopes[key]) != 0: for i in range(len(probePosition)): pv[probePosition[i]:] = i+1 if n > 0: pvfull = np.vstack((pvfull,pv)) else: pvfull = pv else: probePosition = probePositions[0] for n in range(len(keylist)): pv = np.zeros((1, genelength+1)).astype(int).flatten() key = keylist[n] if len(self.POI.tag_epitopes[key]) != 0: for i in range(len(probePosition)): pv[probePosition[i]:] = i+1 if n > 0: pvfull = np.vstack((pvfull,pv)) else: pvfull = pv numtags = 0 for key in keylist: if len(self.POI.tag_epitopes[key]) != 0: numtags += 1 ploc = np.zeros((numtags, self.POI.total_length+1)).astype(int) numind = 0 for n in range(len(keylist)): key = keylist[n] if len(self.POI.tag_epitopes[key]) != 0: ploc[numind][self.POI.tag_epitopes[key]] = 1 numind += 1 return pvfull, ploc def simple_model(self, poi, tag, ki,ke): ''' Simplified model returns the analytical tau, intensity mean, and intensity variance calculated from the simplified model ''' L = poi.total_length #get the total length of the gene Lm = np.mean(poi.tag_epitopes[tag]) #the mean location of the tag epitopes L_tag = int((poi.tag_epitopes[tag][-1] - poi.tag_epitopes[tag][0]) / 2) ke_analytical = L*ke / np.sum(self.get_ui(poi.nt_seq[:-3])) tau_analytical = L_tag/ke_analytical #analytical tau ie autocovariance time mean_analytical = ki*tau_analytical* (1.-Lm/float(L)) # mean intensity var_analytical = ki*tau_analytical* (1.-Lm/float(L))**2 #var intensity return tau_analytical,mean_analytical,var_analytical def get_binned_k_emphasize_probes(self,k,bins,pl): ''' evenly bins elongation rates as best it can. ''' probe_region_start = np.where(pl > 0)[0] probe_region_end = np.where(pl > 0)[-1] binsize = int(np.floor(len(k)/bins)) binned_ks = [] k_binned = np.zeros(bins) k_lens = np.ones(bins)*binsize to_redistribute = len(k)%bins k_lens[-to_redistribute:] = binsize+1 inds = np.hstack(([0.], np.cumsum(k_lens))).astype(int) for i in range(0,bins): binned_ks = binned_ks + [k[inds[i]:inds[i+1]].tolist(),] for i in range(0,bins): k_binned[i] = np.mean(binned_ks[i])/len(binned_ks[i]) return k_binned,k_lens def get_binned_k(self,k,bins): ''' evenly bins elongation rates as best it can. ''' binsize = int(np.floor(len(k)/bins)) binned_ks = [] k_binned = np.zeros(bins) k_lens = np.ones(bins)*binsize to_redistribute = len(k)%bins k_lens[-to_redistribute:] = binsize+1 inds = np.hstack(([0.], np.cumsum(k_lens))).astype(int) for i in range(0,bins): binned_ks = binned_ks + [k[inds[i]:inds[i+1]].tolist(),] for i in range(0,bins): k_binned[i] = 1/np.mean(1/np.array(binned_ks[i])) return k_binned,k_lens def get_binned_probe_vec(self,probe_loc,bins): ''' bin the probe vector as even as possible ''' probe_loc = np.atleast_2d(probe_loc) binsize = int(np.floor(probe_loc.shape[1]/bins)) probeloc_binned = np.zeros((
np.atleast_2d(probe_loc)
numpy.atleast_2d
"""Script to measure latency of RegNet. Usage: python time_regnet.py \ --model_name=<model_name> \ --crop=<crop> \ --precision=<precision> \ --eval_batch_size=<eval_batch_size> \ --warmup_steps=<warmup_steps> \ --eval_steps=<eval_steps> \ --use_tpu=<use_tpu> Model names: RegNet: regnety800mf, regnety4.0gf, regnety8.0gf """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import app from absl import flags from absl import logging import tensorflow.compat.v1 as tf import numpy as np import time import regnet_model tf.disable_eager_execution() FLAGS = flags.FLAGS flags.DEFINE_string( 'model_name', default='regnety800mf', help=('Choose from: regnety800mf, regnety4.0gf, regnety8.0gf')) flags.DEFINE_integer( 'crop', default=224, help=('Crop size for ImageNet input.')) flags.DEFINE_string( 'precision', default='float16', help=('Either float16 or float32.')) flags.DEFINE_integer( 'eval_batch_size', default=64, help=('Batch size for evaluation.')) flags.DEFINE_integer( 'warmup_steps', default=10, help=('How many steps to run for warmup.')) flags.DEFINE_integer( 'eval_steps', default=100, help=('How many steps to run for evaluation.')) flags.DEFINE_boolean( 'use_tpu', default=False, help=('Whether or not to run on TPU (affects BatchNormalization layer).')) def get_model(model_name, input_shape, use_tpu): # Supplies stem width, slope (w_a), initial width (w_0), quantization (w_m), depth (d), squeeze-excitation ratio, num classes stem_w = 32 # keeping stem width the same throughout all models se_r = 0.25 nc = 1000 regnet_params = { 'regnety800mf':{ 'stem_w': stem_w, 'w_a': 38.84, 'w_0': 56, 'w_m': 2.4, 'd': 14, 'se_r': se_r, 'nc': nc, }, 'regnety4.0gf':{ 'stem_w': stem_w, 'w_a': 31.41, 'w_0': 96, 'w_m': 2.24, 'd': 22, 'se_r': se_r, 'nc': nc, }, 'regnety8.0gf':{ 'stem_w': stem_w, 'w_a': 76.82, 'w_0': 192, 'w_m': 2.19, 'd': 17, 'se_r': se_r, 'nc': nc, } } if model_name in regnet_params: kwargs = regnet_params[model_name] return regnet_model.RegNet(**kwargs, input_shape=input_shape, use_tpu=use_tpu) else: raise ValueError('Unrecognized model name {}'.format(model_name)) def main(unused_argv): input_shape = (FLAGS.crop, FLAGS.crop, 3) datatype = np.float16 if FLAGS.precision == 'float16' else np.float32 if FLAGS.precision == 'float16': tf.keras.backend.set_floatx('float16') else: tf.keras.backend.set_floatx('float32') # Create fake tensor. data = np.random.rand(FLAGS.eval_batch_size, input_shape[0], input_shape[1], 3).astype(datatype) data = tf.convert_to_tensor(data, dtype=datatype) model = get_model(FLAGS.model_name, input_shape, FLAGS.use_tpu) outputs = model(data) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # Warmup. timev = [] for _ in range(FLAGS.warmup_steps): sess.run([outputs]) # Time forward pass latency. timev = [] for _ in range(FLAGS.eval_steps): startt = time.time() sess.run([outputs]) endt = time.time() timev.append(endt - startt) logging.info('Model: {} (eval_batch_size={}, crop={}, precision={})\nruns: mean={}, min={}, max={}'.format( FLAGS.model_name, FLAGS.eval_batch_size, FLAGS.crop, FLAGS.precision, np.mean(timev), np.min(timev), np.max(timev))) logging.info('Step time (ms): {}'.format(
np.mean(timev)
numpy.mean
# pylint:disable=missing-module-docstring import gym import numpy as np import torch from torch import Tensor DEFAULT_CONFIG = { "start": [0.0, 1.0], "end": [8.0, 9.0], "action_lower_bound": [-1.0, -1.0], "action_upper_bound": [1.0, 1.0], "deceleration_zones": {"center": [[0.0, 0.0]], "decay": [2.0]}, "noise": {"loc": [0.0, 0.0], "scale_tril": [[0.3, 0.0], [0.0, 0.3]]}, "horizon": 20, "init_dist": True, } class NavigationEnv(gym.Env): """NavigationEnv implements a gym environment for the Navigation domain. The agent must navigate from a start position to and end position. Its actions represent displacements in the 2D plane. Gaussian noise is added to the final position as to incorporate uncertainty in the transition. Additionally, the effect of an action might be decreased by a scalar factor dependent on the proximity of deceleration zones. Please refer to the AAAI paper for further details: <NAME>., <NAME>., <NAME>. and <NAME>., 2019, July. Deep Reactive Policies for Planning in Stochastic Nonlinear Domains. In Proceedings of the AAAI Conference on Artificial Intelligence. """ # pylint:disable=too-many-instance-attributes metadata = {"render.modes": ["human"]} def __init__(self, config=None): self._config = {**DEFAULT_CONFIG, **(config or {})} self._start = np.array(self._config["start"], dtype=np.float32) self._end =
np.array(self._config["end"], dtype=np.float32)
numpy.array
#!/usr/bin/env python3 """ CLI to process multiple molecules with shared optimization. """ import os from deeperwin.available_gpus import get_free_GPU_id os.environ['CUDA_VISIBLE_DEVICES'] = get_free_GPU_id() import argparse import copy import logging import os import time from dataclasses import dataclass from typing import Tuple import jax.numpy as jnp import numpy as np from jax.config import config as jax_config from jax.lib import xla_bridge from deeperwin.configuration import Configuration, SharedOptimizationConfig, OptimizationConfig, LoggingConfig from deeperwin.dispatch import idx_to_job_name, setup_job_dir, prepare_checkpoints from deeperwin.evaluation import evaluate_wavefunction, build_evaluation_step from deeperwin.kfac import build_grad_loss_kfac from deeperwin.loggers import LoggerCollection, build_dpe_root_logger from deeperwin.mcmc import MCMCState, MetropolisHastingsMonteCarlo, resize_nr_of_walkers from deeperwin.model import build_log_psi_squared from deeperwin.optimization import build_grad_loss, build_optimizer from deeperwin.utils import getCodeVersion, prepare_data_for_logging, get_number_of_params, merge_trainable_params, split_trainable_params, \ calculate_metrics logger = logging.getLogger("dpe") @dataclass class WaveFunctionData: physical = None fixed_params = None unique_trainable_params = None mcmc_state = None clipping_params: Tuple[float] = (jnp.array([0.0]).squeeze(), jnp.array([1000.0]).squeeze()) checkpoints = {} loggers = None current_metrics = {} n_opt_epochs: int = 0 last_epoch_optimized: int = 0 def init_wfs(config: Configuration): wfs = [] mcmc = MetropolisHastingsMonteCarlo(config.mcmc) physical_configs = config.physical.set_from_changes() for i, p in enumerate(physical_configs): # self.shared_opt_config.config_changes): logger.info(f"Init wavefunction {i}...") # init WF object wf = WaveFunctionData() wf.physical = p # init parameters new_log_psi_squared, new_trainable_params, wf.fixed_params = build_log_psi_squared(config.model, p) new_shared_params, wf.unique_trainable_params = split_trainable_params(new_trainable_params, config.optimization.shared_optimization.shared_modules) # in case of first WF, set shared_params and log_psi_squared for all WFs if i == 0: shared_params = new_shared_params log_psi_squared = new_log_psi_squared # initialize and warm up MCMC state of WF logger.info(f"Starting warm-up for wf {i}...") wf.mcmc_state = MCMCState.initialize_around_nuclei(config.mcmc.n_walkers_opt, p) wf.mcmc_state.log_psi_sqr = log_psi_squared(*wf.mcmc_state.model_args, new_trainable_params, wf.fixed_params) wf.mcmc_state = mcmc.run_burn_in_opt(log_psi_squared, (new_trainable_params, wf.fixed_params), wf.mcmc_state) # make folder for single WF (stores adjusted config and logger data) job_name = idx_to_job_name(i) job_dir = setup_job_dir(".", job_name) # init loggers loggers = LoggerCollection(config.logging, config.experiment_name + "_" + job_name, save_path=job_name, prefix=job_name) loggers.on_run_begin() loggers.log_tags(config.logging.tags) loggers.log_metrics(dict(E_hf=wf.fixed_params["E_hf"], E_casscf=wf.fixed_params["E_casscf"])) loggers.log_param("n_params", get_number_of_params(new_trainable_params)) loggers.log_param("n_params_shared", get_number_of_params(shared_params)) loggers.log_param("n_params_unique", get_number_of_params(wf.unique_trainable_params)) wf.loggers = loggers # save full config for single wavefunction config_wf = copy.deepcopy(config) config_wf.physical = p config_wf.optimization.shared_optimization = None config_wf.save(os.path.join(job_dir, "full_config.yml")) # prepare checkpoints wf.checkpoints = prepare_checkpoints(job_dir, config.optimization.checkpoints, config_wf) if len( config.optimization.checkpoints) > 0 else {} wfs.append(wf) # build optimizer if config.optimization.optimizer.name == 'kfac': grad_loss_func = build_grad_loss_kfac(log_psi_squared, config.optimization.clipping) else: grad_loss_func = build_grad_loss(log_psi_squared, config.optimization.clipping) trainable_params = merge_trainable_params(shared_params, wfs[0].unique_trainable_params) opt_get_params, optimize_epoch, opt_state, opt_set_params = build_optimizer(log_psi_squared, grad_loss_func, mcmc, trainable_params, wfs[0].fixed_params, config.optimization, config.mcmc.n_walkers_opt, mcmc_state=wfs[0].mcmc_state) return log_psi_squared, mcmc, wfs, shared_params, optimize_epoch, opt_state, opt_get_params, opt_set_params def update_opt_state(opt_state_old, get_params_func, opt_set_params, unique_trainable_params, shared_modules): shared_params, _ = split_trainable_params(get_params_func(opt_state_old), shared_modules) new_params = merge_trainable_params(shared_params, unique_trainable_params) return opt_set_params(opt_state_old, new_params) def get_index(n_epoch, wfs, config: SharedOptimizationConfig): method = config.scheduling_method if method == "round_robin": return n_epoch % len(wfs) elif method == 'stddev': wf_ages = n_epoch - jnp.array([wf.last_epoch_optimized for wf in wfs]) if n_epoch < len(wfs)*10: index = n_epoch % len(wfs) elif jnp.any(wf_ages > config.max_age): index = jnp.argmax(wf_ages) else: stddevs = [wf.current_metrics['E_std'] for wf in wfs] index =
np.argmax(stddevs)
numpy.argmax
import os import numpy as np import cv2 from collections import defaultdict import hashlib import glob import time import configparser import pickle import matplotlib.pyplot as plt from sixd_toolkit.pysixd import transform, pose_error, inout from sixd_toolkit.params import dataset_params from auto_pose.ae.pysixd_stuff import view_sampler from auto_pose.eval import eval_plots, eval_utils from auto_pose.ae import utils as u def compute_plot_emb_invariance(args_latent, codebook): encoder = codebook._encoder dataset = codebook._dataset Rs, lon_lat, pts = eval_plots.generate_view_points(noof=101) syn_crops = [] z_train = np.zeros((len(Rs), encoder.latent_space_size)) for R in Rs: syn_crops.append(dataset.render_rot(R, obj_id=1)/255.) for a, e in u.batch_iteration_indices(len(Rs), 200): print(a) z_train[a:e] = sess.run(encoder.z, feed_dict={ encoder._input: syn_crops[a:e]}) aug = eval(args_latent.get('Emb_invariance', 'aug')) batch = [] orig_img = (syn_crops[100]*255).astype(np.uint8) # H, W, C, C H W for i in range(200): print(i) img = aug.augment_image(orig_img.copy()).astype(np.float32) / 255. #img = img.transpose( (1, 2, 0) ) #C H, W 1, 2, batch.append(img) batch = np.array(batch) z_test = sess.run(encoder.z, feed_dict={encoder._input: batch}) eval_plots.compute_pca_plot_embedding( '', z_train, z_test=z_test, lon_lat=None, save=False, inter_factor=1) from gl_utils import tiles import cv2 mean_var = np.mean(np.var(z_test, axis=0)) cv2.imshow('mean_var: %s' % mean_var, tiles(batch, 10, 20)) cv2.waitKey(0) plt.show() def plot_latent_revolutions(num_obj, codebook): encoder = codebook._encoder dataset = codebook._dataset # generate PCA directions from all objects Rs, lon_lat, _ = eval_plots.generate_view_points(noof=201, num_cyclo=5) all_ztrain = [] for i in range(0, num_obj*2, 4): syn_crops = [] z_train = np.zeros((len(Rs), encoder.latent_space_size)) for R in Rs: syn_crops.append(dataset.render_rot(R, obj_id=i)/255.) for a, e in u.batch_iteration_indices(len(Rs), 200): print(e) z_train[a:e] = sess.run(encoder.z, feed_dict={ encoder._input: syn_crops[a:e]}) all_ztrain.append(z_train) all_ztrain = np.array(all_ztrain).reshape(-1, 128) pca_all = eval_plots.compute_pca_plot_embedding('', all_ztrain, lon_lat=list(lon_lat)*5, save=False) Rs, lon_lat, _ = eval_plots.generate_azim_elev_points(noof=36*8) fig = plt.figure(figsize=(3*num_obj, 3*4)) fig.subplots_adjust(top=0.95, bottom=0.05) # plt.title('Embedding Principal Components') imgs = [] axes = [] for o in range(0, num_obj*4): syn_crops = [] for R in Rs: if o >= 2*num_obj and o < 3*num_obj: R_rot = np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) syn_crops.append(dataset.render_rot( np.dot(R, R_rot), obj_id=o)/255.) else: syn_crops.append(dataset.render_rot(R, obj_id=o)/255.) syn_crops = np.array(syn_crops) imgs.append(syn_crops[np.linspace( 0, len(syn_crops), 8, endpoint=False).astype(np.int32)]) # im = u.tiles(np.array(syn_crops),12,18*4,scale=0.66) z_train = np.zeros((len(Rs), encoder.latent_space_size)) # cv2.imshow('',im) # cv2.waitKey(1) for a, e in u.batch_iteration_indices(len(Rs), 200): print(e) z_train[a:e] = sess.run(encoder.z, feed_dict={ encoder._input: syn_crops[a:e]}) # eval_plots.compute_pca_plot_embedding('',z_train,lon_lat=lon_lat,save=False) ax = fig.add_subplot(4, num_obj, o+1, projection='3d') # if o>=3*num_obj: # pca_all=None eval_plots.compute_pca_plot_azelin( 36*8+1, z_train, pca=pca_all, save=False, inter_factor=1, normalize=False, fig=fig, ax=ax) axes.append(ax) axes[-1].legend() # for j in range(len(Rs)): # Rs_est = codebook.nearest_rotation(sess, syn_crops[j], top_n=1) # est_view = dataset.render_rot(Rs_est.squeeze(),obj_id=0)/255. # cv2.imshow('inserted_view',syn_crops[j]) # cv2.imshow('est_view',est_view) # cv2.waitKey(0) def on_move(event): ax_i = axes.index(event.inaxes) for ax_ in axes: # if ax_ is not axes[ax_i]: ax_.view_init(elev=axes[ax_i].elev, azim=axes[ax_i].azim) ax_.set_xlim3d(axes[ax_i].get_xlim3d()) ax_.set_ylim3d(axes[ax_i].get_ylim3d()) ax_.set_zlim3d(axes[ax_i].get_zlim3d()) fig.canvas.draw_idle() c1 = fig.canvas.mpl_connect('motion_notify_event', on_move) im = u.tiles(np.array(imgs).reshape(-1, 128, 128, 3), num_obj*4, 8, scale=1) cv2.imshow('', im) cv2.waitKey(1) plt.show() def relative_pose_refinement(sess, args_latent, dataset, codebook): budget = args_latent.getint('Refinement', 'budget_per_epoch') epochs = args_latent.getint('Refinement', 'epochs') sampling_interval_deg = args_latent.getint('Refinement', 'sampling_interval_deg') top_n_refine = args_latent.getint('Refinement', 'max_num_modalities') t_z = args_latent.getint('Refinement', 't_z') num_obj = args_latent.getint('Data', 'num_obj') num_views = args_latent.getint('Data', 'num_views') test_class = args_latent.get('Data', 'test_class') K = eval(dataset._kw['k']) K = np.array(K).reshape(3,3) # K[0, 0] = K[0, 0] /2 # K[1, 1] = K[1, 1] /2 render_dims = np.array(eval(dataset._kw['render_dims'])) render_dims[0] = 640 render_dims[1] = 480 K = np.array([[572.4114, 0, 320.], [0, 573.57043, 240], [0, 0, 1]]) # LM dataset._kw['render_dims'] = '(640,480)' dataset._kw['k'] = 'np.array([[572.4114, 0, 320.], [0, 573.57043, 240], [0, 0, 1]])' clip_near = float(dataset._kw['clip_near']) clip_far = float(dataset._kw['clip_far']) pad_factor = float(dataset._kw['pad_factor']) pose_errs = [] pose_errs_refref = [] pose_errs_trans = [] add_errs = [] proj_errs = [] all_model_pts = [np.array(v) for v in dataset.renderer.verts] diameters = [] for model_pts in all_model_pts: # model_pts_01 = model_pts * 0.1 vec = model_pts.max(0) - model_pts.min(0) print(vec) diameters.append(np.linalg.norm(vec)) res_dict = {'test_class': test_class, 'preds': {}} for i in range(0, num_obj): res_dict['preds'][i] = {'R_init': [], 'R_init_pert': [], 'R_1': [], 'R_2': [], 'R_3': [], 't_init': [], 't_init_pert': [], 't_1': [], 't_2': [], 't_3': []} for j in range(num_views): random_R = transform.random_rotation_matrix()[:3, :3] full_target_view, full_target_view_dep= dataset.renderer.render(obj_id=i, W=render_dims[0], H=render_dims[1], K=K.copy(), R=random_R, t=np.array([0,0,t_z]), near=clip_near, far=clip_far, random_light=False) ys, xs = np.nonzero(full_target_view_dep > 0) target_bb = view_sampler.calc_2d_bbox(xs, ys, render_dims) target_view = dataset.extract_square_patch(full_target_view, target_bb, pad_factor) angle_off = 2*np.pi while abs(angle_off) > 45/180.*np.pi: # rand_direction = transform.make_rand_vector(3) # rand_angle = np.random.normal(0, 45/180.*np.pi) # R_off = transform.rotation_matrix(rand_angle, rand_direction)[:3, :3] rand_angle_x = np.random.normal(0,15/180.*np.pi) rand_angle_y = np.random.normal(0,15/180.*np.pi) rand_angle_z = np.random.normal(0,15/180.*np.pi) R_off = transform.euler_matrix(rand_angle_x,rand_angle_y,rand_angle_z) angle_off,_,_ = transform.rotation_from_matrix(R_off) random_R_pert = np.dot(R_off[:3, :3], random_R) random_t_pert = np.array([0,0,t_z]) + np.array([np.random.normal(0,10),np.random.normal(0,10),np.random.normal(0,50)]) print(angle_off * 180 / np.pi) print(random_t_pert) full_perturbed_view, _ = dataset.renderer.render(obj_id=i, W=render_dims[0], H=render_dims[1], K=K.copy(), R=random_R_pert, t=random_t_pert, near=clip_near, far=clip_far, random_light=False ) init_perturbed_view = dataset.extract_square_patch(full_perturbed_view, target_bb, pad_factor) start_time = time.time() R_refined, _ = codebook.refined_nearest_rotation(sess, target_view, 1, R_init=random_R_pert, t_init=random_t_pert, budget=budget+10, epochs=epochs, high = sampling_interval_deg/180.*np.pi, obj_id=i, top_n_refine=top_n_refine, target_bb=target_bb) refine_R_1 = time.time() -start_time full_perturbed_view_2, _ = dataset.renderer.render(obj_id=i, W=render_dims[0], H=render_dims[1], K=K.copy(), R=R_refined[0], t=random_t_pert, near=clip_near, far=clip_far, random_light=False ) perturbed_view_2 = dataset.extract_square_patch(full_perturbed_view_2, target_bb, pad_factor) x_target, y_target, real_scale = multi_scale_template_matching(full_perturbed_view_2, full_target_view, args_latent) t_refined = np.array([random_t_pert[0]-(x_target-K[0, 2])/K[0, 0]*random_t_pert[2]*real_scale, random_t_pert[1]-(y_target-K[1, 2])/K[1, 1]*random_t_pert[2]*real_scale, random_t_pert[2]*real_scale]) refine_t_1 = time.time() - start_time print(x_target, y_target, real_scale) print(t_refined) print('error t: ', t_refined - np.array([0,0,t_z])) R_refined_refined, _ = codebook.refined_nearest_rotation(sess, target_view, 1, R_init=R_refined[0], t_init=t_refined, budget=budget, epochs=epochs, high=sampling_interval_deg/2./180.*np.pi, obj_id=i, top_n_refine=top_n_refine, target_bb=target_bb) refine_R_2 = time.time() - start_time full_perturbed_view_3, _ = dataset.renderer.render(obj_id=i, W=render_dims[0], H=render_dims[1], K=K.copy(), R=R_refined_refined[0], t=t_refined, near=clip_near, far=clip_far, random_light=False ) x_target, y_target, real_scale = multi_scale_template_matching(full_perturbed_view_3, full_target_view, args_latent) t_refined_refined = np.array([t_refined[0]-(x_target-K[0, 2])/K[0, 0]*t_refined[2]*real_scale, t_refined[1]-(y_target-K[1, 2])/K[1, 1]*t_refined[2]*real_scale, t_refined[2]*real_scale]) refine_t_2 = time.time() - start_time R_refined_refined_refined, _ = codebook.refined_nearest_rotation(sess, target_view, 1, R_init=R_refined_refined[0], t_init=t_refined_refined, budget=budget-10, epochs=epochs, high=sampling_interval_deg/3./180.*np.pi, obj_id=i, top_n_refine=top_n_refine, target_bb=target_bb) refine_R_3 = time.time() - start_time full_perturbed_view_4, _ = dataset.renderer.render(obj_id=i, W=render_dims[0], H=render_dims[1], K=K.copy(), R=R_refined_refined_refined[0], t=t_refined_refined, near=clip_near, far=clip_far, random_light=False ) x_target, y_target, real_scale = multi_scale_template_matching(full_perturbed_view_4, full_target_view, args_latent,last=True) t_refined_refined_refined = np.array([t_refined_refined[0]-(x_target-K[0, 2])/K[0, 0]*t_refined_refined[2]*real_scale, t_refined_refined[1]-(y_target-K[1, 2])/K[1, 1]*t_refined_refined[2]*real_scale, t_refined_refined[2]*real_scale]) refine_t_3 = time.time() - start_time res_dict['preds'][i]['R_init'].append(np.array(random_R)) res_dict['preds'][i]['R_init_pert'].append(random_R_pert) res_dict['preds'][i]['R_1'].append(R_refined[0]) res_dict['preds'][i]['R_2'].append(R_refined_refined[0]) res_dict['preds'][i]['R_3'].append(R_refined_refined_refined[0]) res_dict['preds'][i]['t_init'].append(np.array([0, 0, t_z])) res_dict['preds'][i]['t_init_pert'].append(random_t_pert) res_dict['preds'][i]['t_1'].append(t_refined) res_dict['preds'][i]['t_2'].append(t_refined_refined) res_dict['preds'][i]['t_3'].append(t_refined_refined_refined) # pose_errs_trans.append(pose_error.te(t_refined_refined, np.array([0, 0, t_z]))) # pose_errs.append(pose_error.re(random_R, R_refined[0])) # pose_errs_refref.append(pose_error.re(random_R, R_refined_refined_refined[0])) print('add_recall: ', add_recall_diameter(R_refined_refined_refined[0], t_refined_refined_refined, random_R, np.array([ 0, 0, t_z]), {'pts': all_model_pts[i]}, diameters[i])) # proj_err = pose_error.arp_2d(R_refined_refined_refined[0], t_refined_refined, random_R, np.array([0, 0, t_z]), {'pts': all_model_pts[i]}, K) # print 'add: ', add_err # print 'proj: ', proj_err # add_errs.append(add_err) # proj_errs.append(proj_err) # # pose_errs[-1] = np.minimum(pose_errs[-1],np.abs(pose_errs[-1]-180)) print('timings:') print(refine_R_1) print(refine_t_1) print(refine_R_2) print(refine_t_2) print(refine_R_3) print(refine_t_3) print('object: ', i) if args_latent.getboolean('Visualization', 'verbose'): Rs = [R_refined, R_refined, R_refined_refined, R_refined_refined, R_refined_refined_refined] ts = [random_t_pert, t_refined, t_refined, t_refined_refined, t_refined_refined] est_views = [full_perturbed_view.copy()] for R,t in zip(Rs,ts): est_view, _ = dataset.renderer.render(obj_id=i, W=render_dims[0], H=render_dims[1], K=K.copy(), R=R[0], t=t, near=clip_near, far=clip_far, random_light=False ) est_views.append(est_view) for p, v in enumerate(est_views): full_target_view_copy = full_target_view.copy() start_edge = cv2.Canny(cv2.cvtColor(full_perturbed_view, cv2.COLOR_BGR2GRAY), 80, 200, apertureSize=3) end_edge = cv2.Canny(cv2.cvtColor(v, cv2.COLOR_BGR2GRAY), 80, 200, apertureSize=3) red_chan = full_target_view_copy[:, :, 2] green_chan = full_target_view_copy[:,:, 1] red_chan[start_edge > 0] = start_edge[start_edge>0] green_chan[(end_edge > 0) & (start_edge == 0)] = end_edge[(end_edge > 0) & (start_edge == 0)] full_target_view_copy[:,:, 1] = green_chan full_target_view_copy[:, :, 2] = red_chan # cv2.imshow('deep_im_vis', full_target_view_copy/255.) cv2.imwrite('%s_%s_%s_%s.png' % (test_class,i,j,p), full_target_view_copy) # cv2.waitKey(0) if p == 0: full_target_view_copy = full_target_view.copy() full_target_view_copy[:,:, 1] = red_chan # cv2.imshow('deep_im_vis', full_target_view_copy/255.) cv2.imwrite('%s_%s_%s_%s_init.png' % (test_class,i,j,p), full_target_view_copy) # cv2.waitKey(0) # full_perturbed_view_3, _ = dataset.renderer.render(obj_id=i, # W=render_dims[0], # H=render_dims[1], # K=K.copy(), # R=R_refined[0], # t=t_refined_refined, # near=clip_near, # far=clip_far, # random_light=False # ) # perturbed_view_3 = dataset.extract_square_patch(full_perturbed_view_3, target_bb, pad_factor) # est_view_final = dataset.extract_square_patch(full_est_view_final, target_bb, pad_factor) # cv2.imshow('goal_view', target_view) # cv2.imshow('pert_view', init_perturbed_view/255.) # cv2.imshow('est_view_1', perturbed_view_2/255.) # cv2.imshow('est_view_2', perturbed_view_3/255.) # cv2.imshow('est_view_3', est_view_final/255.) return res_dict def add_recall_diameter(R_est, t_est, R_gt, t_gt, model_pts, diameter): add_err = pose_error.add(R_est, t_est, R_gt, t_gt, model_pts) if add_err < diameter * 0.1: return 1. else: return 0. def proj_recall_diameter(R_est, t_est, R_gt, t_gt, model_pts, diameter, K): proj_err = pose_error.arp_2d(R_est, t_est, R_gt, t_gt, model_pts, K) if proj_err <= 5: return 1. else: return 0. def compute_pose_errors(res_dict, args_latent, dataset): num_obj = args_latent.getint('Data', 'num_obj') num_views = args_latent.getint('Data', 'num_views') test_class = args_latent.get('Data', 'test_class') K = eval(dataset._kw['k']) K = np.array(K).reshape(3,3) K = np.array([[572.4114, 0, 320.], [0, 573.57043, 240], [0, 0, 1]]) # LM R_init_errs = [] R_1_errs = [] R_2_errs = [] R_3_errs = [] t_init_errs = [] t_1_errs = [] t_2_errs = [] t_3_errs = [] add_recalls_init = [] add_recalls = [] proj_recalls_init = [] proj_recalls = [] proj_recalls2 = [] all_model_pts = [np.array(v) for v in dataset.renderer.verts] diameters = [] for model_pts in all_model_pts: # model_pts_01 = model_pts * 0.1 vec = model_pts.max(0) - model_pts.min(0) print(vec) diameters.append(np.linalg.norm(vec)) print(diameters) for i in range(0, num_obj): for j in range(num_views): R_target = res_dict['preds'][i]['R_init'][j] t_target = res_dict['preds'][i]['t_init'][j] R_init_errs.append(pose_error.re(R_target, res_dict['preds'][i]['R_init_pert'][j])) R_1_errs.append(pose_error.re(R_target, res_dict['preds'][i]['R_1'][j])) R_2_errs.append(pose_error.re(R_target, res_dict['preds'][i]['R_2'][j])) R_3_errs.append(pose_error.re(R_target, res_dict['preds'][i]['R_3'][j])) t_init_errs.append(pose_error.te(t_target, res_dict['preds'][i]['t_init_pert'][j])) t_1_errs.append(pose_error.te(t_target, res_dict['preds'][i]['t_1'][j])) t_2_errs.append(pose_error.te(t_target, res_dict['preds'][i]['t_2'][j])) t_3_errs.append(pose_error.te(t_target, res_dict['preds'][i]['t_3'][j])) add_recalls_init.append(add_recall_diameter(res_dict['preds'][i]['R_init_pert'][j], res_dict['preds'][i]['t_init_pert'][j], R_target, t_target, {'pts': all_model_pts[i]}, diameters[i])) add_recalls.append(add_recall_diameter(res_dict['preds'][i]['R_3'][j], res_dict['preds'][i]['t_3'][j], R_target, t_target, {'pts': all_model_pts[i]}, diameters[i])) proj_recalls_init.append(proj_recall_diameter(res_dict['preds'][i]['R_init_pert'][j], res_dict['preds'][i]['t_init_pert'][j], R_target, t_target, {'pts': all_model_pts[i]}, diameters[i], K)) proj_recalls.append(proj_recall_diameter(res_dict['preds'][i]['R_3'][j], res_dict['preds'][i]['t_3'][j], R_target, t_target, {'pts': all_model_pts[i]}, diameters[i], K)) proj_recalls2.append(proj_recall_diameter(res_dict['preds'][i]['R_3'][j], res_dict['preds'][i]['t_2'][j], R_target, t_target, {'pts': all_model_pts[i]}, diameters[i], K)) R_init_errs = np.array(R_init_errs) R_1_errs = np.array(R_1_errs) R_2_errs = np.array(R_2_errs) R_3_errs = np.array(R_3_errs) t_init_errs = np.array(t_init_errs) t_1_errs = np.array(t_1_errs) t_2_errs = np.array(t_2_errs) t_3_errs = np.array(t_3_errs) res = {} # res['R_init_errs'] = np.array(R_init_errs) # res['R_1_errs'] = np.array(R_1_errs) # res['R_2_errs'] = np.array(R_2_errs) # res['R_3_errs'] = np.array(R_3_errs) # res['t_init_errs'] = np.array(t_init_errs) # res['t_1_errs'] = np.array(t_1_errs) # res['t_2_errs'] = np.array(t_2_errs) res['mean_add_recall_init'] =
np.mean(add_recalls_init)
numpy.mean
import numpy as _np from chainer.dataset import DatasetMixin as _DatasetMixin, concat_examples from sklearn.externals.joblib import Memory as _Memory from sklearn.datasets import load_svmlight_file as _load_svmlight_file class RankingDataset(_DatasetMixin): """ Chainer version of a ranking dataset """ def __init__(self, feature_vectors, relevance_labels, qids, nr_samples=None, filter=False, normalize=False): """ :param feature_vectors: The numpy 2d array of samples ((query, doc), feature) :type feature_vectors: numpy.ndarray :param relevance_labels: The numpy array relevance labels :type relevance_labels: numpy.ndarray :param qids: The query identifiers :type qids: numpy.ndarray :param nr_samples: The number of samples (if not provided this is inferred from x) :type nr_samples: int :param filter: Whether to filter out queries with no relevant documents :type filter: bool :param normalize: Whether to perform query-level normalization of features :type normalize: bool """ self.feature_vectors = feature_vectors.astype(_np.float32) self.relevance_labels = relevance_labels.astype(_np.int32) self.maximum_relevance = _np.max(self.relevance_labels) self.minimum_relevance = _np.min(self.relevance_labels) self.qids = qids.astype(_np.int32) self.unique_qids = _np.unique(qids) self.nr_dimensions = self.feature_vectors.shape[1] # Perform filtering if necessary if filter is True: new_unique_qids = [] for i in range(len(self.unique_qids)): ys = self.relevance_labels[self.qids == self.unique_qids[i]] if _np.sum(ys) > 0.0: new_unique_qids.append(self.unique_qids[i]) self.unique_qids =
_np.array(new_unique_qids)
numpy.array
# Authors: <NAME> <<EMAIL>>, <NAME> <<EMAIL>> # Copyright (c) 2015, <NAME> and <NAME>. # License: GNU-GPL Style. # How to cite GBpy: # Banadaki, <NAME>. & <NAME>. "An efficient algorithm for computing the primitive bases of a general lattice plane", # Journal of Applied Crystallography 48, 585-588 (2015). doi:10.1107/S1600576715004446 import numpy as np import sys import pickle import os from . import quaternion as quat # ----------------------------------------------------------------------------------------------------------- def check_cond(g, cryst_ptgrp, tol): """ Function Parameters ---------------- g: quaternion object Misorientation cryst_ptgrp: str Crystallogrphic point group in Schoenflies notation tol: float Tolerance for the misorientation to belong in the fundamental zone Returns ------------ True or False: Boolean Depending on whether or not the misorientation is a disorientation """ q0 = quat.getq0(g) q1 = quat.getq1(g) q2 = quat.getq2(g) q3 = quat.getq3(g) if cryst_ptgrp == 'D3' or cryst_ptgrp == 'D3d': cond1 = q3 > -tol cond2 = q3 - q0/
np.sqrt(3)
numpy.sqrt
# -*- coding: utf-8 -*- import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import librosa.display as dsp import numpy as np import tensorflow as tf def _assert_valid_input_type(s): assert s == 'mulaw-quantize' or s == 'mulaw' or s == 'raw' def is_mulaw_quantize(s): _assert_valid_input_type(s) return s == 'mulaw-quantize' def is_mulaw(s): _assert_valid_input_type(s) return s == 'mulaw' def is_raw(s): _assert_valid_input_type(s) return s == 'raw' def is_scalar_input(s): return is_raw(s) or is_mulaw(s) #From https://github.com/r9y9/nnmnkwii/blob/master/nnmnkwii/preprocessing/generic.py def mulaw(x, mu=256): """Mu-Law companding Method described in paper [1]_. .. math:: f(x) = sign(x) ln (1 + mu |x|) / ln (1 + mu) Args: x (array-like): Input signal. Each value of input signal must be in range of [-1, 1]. mu (number): Compression parameter ``μ``. Returns: array-like: Compressed signal ([-1, 1]) See also: :func:`nnmnkwii.preprocessing.inv_mulaw` :func:`nnmnkwii.preprocessing.mulaw_quantize` :func:`nnmnkwii.preprocessing.inv_mulaw_quantize` .. [1] Brokish, <NAME>., and <NAME>. "A-law and mu-law companding implementations using the tms320c54x." SPRA163 (1997). """ mu = 255 return _sign(x) * _log1p(mu * _abs(x)) / _log1p(mu) def inv_mulaw(y, mu=256): """Inverse of mu-law companding (mu-law expansion) .. math:: f^{-1}(x) = sign(y) (1 / mu) (1 + mu)^{|y|} - 1) Args: y (array-like): Compressed signal. Each value of input signal must be in range of [-1, 1]. mu (number): Compression parameter ``μ``. Returns: array-like: Uncomprresed signal (-1 <= x <= 1) See also: :func:`nnmnkwii.preprocessing.inv_mulaw` :func:`nnmnkwii.preprocessing.mulaw_quantize` :func:`nnmnkwii.preprocessing.inv_mulaw_quantize` """ mu = 255 return _sign(y) * (1.0 / mu) * ((1.0 + mu)**_abs(y) - 1.0) def mulaw_quantize(x, mu=256): """Mu-Law companding + quantize Args: x (array-like): Input signal. Each value of input signal must be in range of [-1, 1]. mu (number): Compression parameter ``μ``. Returns: array-like: Quantized signal (dtype=int) - y ∈ [0, mu] if x ∈ [-1, 1] - y ∈ [0, mu) if x ∈ [-1, 1) .. note:: If you want to get quantized values of range [0, mu) (not [0, mu]), then you need to provide input signal of range [-1, 1). Examples: >>> from scipy.io import wavfile >>> import pysptk >>> import numpy as np >>> from nnmnkwii import preprocessing as P >>> fs, x = wavfile.read(pysptk.util.example_audio_file()) >>> x = (x / 32768.0).astype(np.float32) >>> y = P.mulaw_quantize(x) >>> print(y.min(), y.max(), y.dtype) 15 246 int64 See also: :func:`nnmnkwii.preprocessing.mulaw` :func:`nnmnkwii.preprocessing.inv_mulaw` :func:`nnmnkwii.preprocessing.inv_mulaw_quantize` """ mu = 255 y = mulaw(x, mu) # scale [-1, 1] to [0, mu] return _asint((y + 1) / 2 * mu) def inv_mulaw_quantize(y, mu=256): """Inverse of mu-law companding + quantize Args: y (array-like): Quantized signal (∈ [0, mu]). mu (number): Compression parameter ``μ``. Returns: array-like: Uncompressed signal ([-1, 1]) Examples: >>> from scipy.io import wavfile >>> import pysptk >>> import numpy as np >>> from nnmnkwii import preprocessing as P >>> fs, x = wavfile.read(pysptk.util.example_audio_file()) >>> x = (x / 32768.0).astype(np.float32) >>> x_hat = P.inv_mulaw_quantize(P.mulaw_quantize(x)) >>> x_hat = (x_hat * 32768).astype(np.int16) See also: :func:`nnmnkwii.preprocessing.mulaw` :func:`nnmnkwii.preprocessing.inv_mulaw` :func:`nnmnkwii.preprocessing.mulaw_quantize` """ # [0, m) to [-1, 1] mu = 255 y = 2 * _asfloat(y) / mu - 1 return inv_mulaw(y, mu) def _sign(x): #wrapper to support tensorflow tensors/numpy arrays isnumpy = isinstance(x, np.ndarray) isscalar = np.isscalar(x) return np.sign(x) if (isnumpy or isscalar) else tf.sign(x) def _log1p(x): #wrapper to support tensorflow tensors/numpy arrays isnumpy = isinstance(x, np.ndarray) isscalar = np.isscalar(x) return np.log1p(x) if (isnumpy or isscalar) else tf.log1p(x) def _abs(x): #wrapper to support tensorflow tensors/numpy arrays isnumpy = isinstance(x, np.ndarray) isscalar = np.isscalar(x) return np.abs(x) if (isnumpy or isscalar) else tf.abs(x) def _asint(x): #wrapper to support tensorflow tensors/numpy arrays isnumpy = isinstance(x, np.ndarray) isscalar =
np.isscalar(x)
numpy.isscalar
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import unittest import os import theano import numpy from wordclasses import TheanoBigramOptimizer, NumpyBigramOptimizer from theanolm.vocabulary import Vocabulary from theanolm.vocabulary import compute_word_counts, BigramStatistics class TestBigramOptimizer(unittest.TestCase): def setUp(self): theano.config.compute_test_value = 'warn' script_path = os.path.dirname(os.path.realpath(__file__)) sentences_path = os.path.join(script_path, 'sentences.txt') self.sentences_file = open(sentences_path) self.num_classes = 2 word_counts = compute_word_counts([self.sentences_file]) self.vocabulary = Vocabulary.from_word_counts(word_counts, self.num_classes) self.sentences_file.seek(0) self.statistics = BigramStatistics([self.sentences_file], self.vocabulary) def tearDown(self): self.sentences_file.close() def assert_optimizers_equal(self, numpy_optimizer, theano_optimizer): self.assertTrue(numpy.array_equal(numpy_optimizer._word_counts, theano_optimizer._word_counts.get_value())) self.assertEqual((numpy_optimizer._ww_counts - theano_optimizer._ww_counts.get_value()).nnz, 0) self.assertTrue(numpy.array_equal(numpy_optimizer._class_counts, theano_optimizer._class_counts.get_value())) self.assertTrue(numpy.array_equal(numpy_optimizer._cc_counts, theano_optimizer._cc_counts.get_value())) self.assertTrue(numpy.array_equal(numpy_optimizer._cw_counts, theano_optimizer._cw_counts.get_value())) self.assertTrue(numpy.array_equal(numpy_optimizer._wc_counts, theano_optimizer._wc_counts.get_value())) def test_statistics(self): num_words = 8 theano_optimizer = TheanoBigramOptimizer(self.statistics, self.vocabulary) numpy_optimizer = NumpyBigramOptimizer(self.statistics, self.vocabulary) self.assertEqual(theano_optimizer.vocabulary_size, num_words) self.assertEqual(numpy_optimizer.vocabulary_size, num_words) self.assertEqual(theano_optimizer.num_classes, self.num_classes + 3) self.assertEqual(numpy_optimizer.num_classes, self.num_classes + 3) self.assertEqual(len(theano_optimizer._word_to_class.get_value()), num_words) self.assertEqual(len(numpy_optimizer._word_to_class), num_words) sos_word_id = self.vocabulary.word_to_id['<s>'] a_word_id = self.vocabulary.word_to_id['a'] b_word_id = self.vocabulary.word_to_id['b'] c_word_id = self.vocabulary.word_to_id['c'] d_word_id = self.vocabulary.word_to_id['d'] e_word_id = self.vocabulary.word_to_id['e'] unk_word_id = self.vocabulary.word_to_id['<unk>'] eos_word_id = self.vocabulary.word_to_id['</s>'] self.assert_optimizers_equal(numpy_optimizer, theano_optimizer) self.assertEqual(len(numpy_optimizer._word_counts), num_words) self.assertEqual(numpy_optimizer._word_counts[sos_word_id], 11) self.assertEqual(numpy_optimizer._word_counts[a_word_id], 13) self.assertEqual(numpy_optimizer._word_counts[b_word_id], 8) self.assertEqual(numpy_optimizer._word_counts[c_word_id], 8) self.assertEqual(numpy_optimizer._word_counts[d_word_id], 11) self.assertEqual(numpy_optimizer._word_counts[e_word_id], 15) self.assertEqual(numpy_optimizer._word_counts[unk_word_id], 0) self.assertEqual(numpy_optimizer._word_counts[eos_word_id], 11) self.assertEqual(numpy_optimizer._ww_counts.shape[0], num_words) self.assertEqual(numpy_optimizer._ww_counts.shape[1], num_words) self.assertEqual(len(numpy_optimizer._class_counts), self.num_classes + 3) self.assertEqual(numpy_optimizer._cc_counts.shape[0], self.num_classes + 3) self.assertEqual(numpy_optimizer._cw_counts.shape[0], self.num_classes + 3) self.assertEqual(numpy_optimizer._cw_counts.shape[1], num_words) self.assertEqual(numpy_optimizer._wc_counts.shape[0], num_words) self.assertEqual(numpy_optimizer._wc_counts.shape[1], self.num_classes + 3) def test_move_and_back(self): numpy_optimizer = NumpyBigramOptimizer(self.statistics, self.vocabulary) theano_optimizer = TheanoBigramOptimizer(self.statistics, self.vocabulary) orig_class_counts = numpy.copy(numpy_optimizer._class_counts) orig_cc_counts = numpy.copy(numpy_optimizer._cc_counts) orig_cw_counts = numpy.copy(numpy_optimizer._cw_counts) orig_wc_counts = numpy.copy(numpy_optimizer._wc_counts) word_id = self.vocabulary.word_to_id['d'] orig_class_id = numpy_optimizer.get_word_class(word_id) new_class_id = 3 if orig_class_id != 3 else 4 numpy_optimizer._move(word_id, new_class_id) theano_optimizer._move(word_id, new_class_id) self.assert_optimizers_equal(numpy_optimizer, theano_optimizer) self.assertEqual(numpy.count_nonzero(numpy_optimizer._class_counts != orig_class_counts), 2) self.assertEqual(numpy.sum(numpy_optimizer._class_counts), numpy.sum(orig_class_counts)) self.assertGreater(numpy.count_nonzero(numpy_optimizer._cc_counts != orig_cc_counts), 0) self.assertEqual(numpy.sum(numpy_optimizer._cc_counts), numpy.sum(orig_cc_counts)) self.assertGreater(numpy.count_nonzero(numpy_optimizer._cw_counts != orig_cw_counts), 0) self.assertEqual(numpy.sum(numpy_optimizer._cw_counts), numpy.sum(orig_cw_counts)) self.assertGreater(numpy.count_nonzero(numpy_optimizer._wc_counts != orig_wc_counts), 0) self.assertEqual(numpy.sum(numpy_optimizer._wc_counts), numpy.sum(orig_wc_counts)) numpy_optimizer._move(word_id, orig_class_id) theano_optimizer._move(word_id, orig_class_id) self.assert_optimizers_equal(numpy_optimizer, theano_optimizer) self.assertTrue(numpy.array_equal(numpy_optimizer._class_counts, orig_class_counts)) self.assertTrue(numpy.array_equal(numpy_optimizer._cc_counts, orig_cc_counts)) self.assertTrue(numpy.array_equal(numpy_optimizer._cw_counts, orig_cw_counts)) self.assertTrue(numpy.array_equal(numpy_optimizer._wc_counts, orig_wc_counts)) def test_move_and_recompute(self): optimizer1 = NumpyBigramOptimizer(self.statistics, self.vocabulary) word_id = self.vocabulary.word_to_id['d'] orig_class_id = optimizer1.get_word_class(word_id) new_class_id = 3 if orig_class_id != 3 else 4 optimizer1._word_to_class[word_id] = new_class_id counts = optimizer1._compute_class_statistics(optimizer1._word_counts, optimizer1._ww_counts, optimizer1._word_to_class) class_counts = numpy.zeros(optimizer1.num_classes, 'int32') cc_counts = numpy.zeros((optimizer1.num_classes, optimizer1.num_classes), dtype='int32') cw_counts = numpy.zeros((optimizer1.num_classes, optimizer1.vocabulary_size), dtype='int32') wc_counts = numpy.zeros((optimizer1.vocabulary_size, optimizer1.num_classes), dtype='int32') for wid, cid in enumerate(optimizer1._word_to_class): class_counts[cid] += optimizer1._word_counts[wid] for left_wid, right_wid in zip(*optimizer1._ww_counts.nonzero()): count = optimizer1._ww_counts[left_wid, right_wid] left_cid = optimizer1._word_to_class[left_wid] right_cid = optimizer1._word_to_class[right_wid] cc_counts[left_cid,right_cid] += count cw_counts[left_cid,right_wid] += count wc_counts[left_wid,right_cid] += count self.assertTrue(
numpy.array_equal(class_counts, counts[0])
numpy.array_equal
# -*- coding: utf-8 -*- ## @package inversetoon.core.normal_cone # # Normal cone class. # @author tody # @date 2015/08/11 import numpy as np from inversetoon.np.norm import normalizeVectors, normalizeVector from inversetoon.core.transform import coordinateFrame from inversetoon.util.logger import getLogger logger = getLogger(__name__) ## Provide normal interpolation based on normal cone. class NormalConeInterpolation: ## Constructor # @param N1 normal vector: from. # @param N2 normal vector: to. # @param L light vector. def __init__(self, N1, N2, L=[0.3, 0.5, 0.7], I=None): self._L = L self._I = I self._Lxyz = coordinateFrame(self._L) self._N1 = N1 self._N2 = N2 self.computeCenter() self.computeConeAngles() def computeCenter(self): if self._I is None: self._I = 0.5 * np.dot(self._L, self._N1 + self._N2) self._center = self._I * self._L def computeConeCoordinate(self, N): dN = N - self._center dN_x = np.dot(dN, self._Lxyz[0]) dN_y = np.dot(dN, self._Lxyz[1]) return dN_x, dN_y def computeConeAngle(self, N): dN_x, dN_y = self.computeConeCoordinate(N) return np.arctan2(dN_x, dN_y) def computeConeAngles(self): self._theta1 = self.computeConeAngle(self._N1) self._theta2 = self.computeConeAngle(self._N2) def interpolate(self, parameters): return self.interpolate_simple(parameters) def interpolate_simple(self, parameters): dN1 = self._N1 - self._center dN2 = self._N2 - self._center dNs = np.array([(1.0 - t) * dN1 + t * dN2 for t in parameters]) normals = self._center + dNs normals = normalizeVectors(normals) return normals class NormalCone: ## Constructor def __init__(self, L=[0.3, 0.5, 0.7], I=0.7, Ns=[]): self._L = normalizeVector(np.array(L)) self._I = I self._Ns = Ns self._Lxyz = coordinateFrame(self._L) self.computeCone() self.computeAxisCenter() self.computeConeAngles() self.computeConeAngleChanges() def setNormals(self, Ns): self._Ns = Ns def normals(self): return self._Ns def setConeAngles(self, thetas): self._thetas = thetas def coneAngles(self): return self._thetas def coneCoordinates(self): return self._N_ts def coneAngleChanges(self): return self._dthetas def computeCone(self): h_cone = self._I r_cone = np.sqrt(1.0 - h_cone ** 2) self._h_cone = h_cone self._r_cone = r_cone def computeAxisCenter(self): self._center = self._I * self._L def computeConeAngles(self): thetas = [] N_ts = [] for N in self._Ns: N_t = N - self._center N_tx = np.dot(N_t, self._Lxyz[0]) N_ty = np.dot(N_t, self._Lxyz[1]) thetas.append(np.arctan2(N_tx, N_ty)) N_ts.append((N_tx, N_ty)) self._thetas = thetas theta_min = np.min(thetas) theta_max = np.max(thetas) self._theta_range = [theta_min, theta_max] self._N_ts = np.array(N_ts) def computeConeAngleChanges(self): dthetas = np.zeros(self._N_ts.shape[0]) dthetas[:-1] = np.cross(self._N_ts[1:, :], self._N_ts[:-1, :]) dthetas[-1] = dthetas[-2] self._dthetas =
np.array(dthetas)
numpy.array
from matplotlib import pyplot as plt import numpy as np # numpy's fft implementation is slow, so use FFTW as a drop-in replacement import pyfftw.interfaces.numpy_fft as fft from math import floor # Load an image image = plt.imread("einstein1_7.jpg") # Make image greyscale image = np.average(image, axis=2) # Set up geometry width, height = image.shape centre_x = floor(width) / 2 centre_y = floor(height) / 2 x_axis = np.arange(width) y_axis = np.arange(height) # Create circular filter filter_radius = 100 filter = np.zeros_like(image) for i in range(width): for j in range(height): if (i - centre_x) ** 2 + (j - centre_y) ** 2 > filter_radius ** 2: filter[i, j] = 1 # Invert: lowpass filter filter = 1 - filter # Move to Fourier plane FT = fft.fftshift(fft.fft2(image)) # Apply Fourier filter filtered_FT = FT * filter # Inverse Fourier transform to image plane filtered_image = fft.ifft2(fft.ifftshift(filtered_FT)) # Plot results plt.figure(figsize=[20, 20]) # Original image plt.subplot(2, 2, 1) plt.title("Original image") plt.imshow(image) # Fourier transform; log scale to bring out detail outside centre plt.subplot(2, 2, 2) plt.title("Fourier transform of original image") plt.imshow(np.log(np.abs(FT) ** 2)) # Filtered fourier transform plt.subplot(2, 2, 3) plt.title("Fourier transform restricted to leading modes") plt.imshow(np.log(np.abs(filtered_FT) ** 2)) # Observed image plt.subplot(2, 2, 4) plt.title("Observed image with filter") plt.imshow(np.abs(filtered_image) ** 2) plt.savefig("fourier_restricted.pdf") def salt_pepper(image, r): '''Add random light and dark pixels with frequency `r` to `image`, returning the result.''' r = min(1, r) uniform_random = np.random.random(image.shape) # Pepper noisy_image = np.where(uniform_random < r / 2, np.zeros_like(image), image) # Salt noisy_image = np.where(uniform_random > 1 - r / 2, np.ones_like(image) * 255, noisy_image) return noisy_image # Add noise to image noisy_image = salt_pepper(image, 0.1) # Reuse filter from previous task lowpass_filter = 1 - filter # Move to Fourier plane FT = fft.fftshift(fft.fft2(noisy_image)) # Apply Fourier filter filtered_FT = FT * lowpass_filter # Inverse Fourier transform to image plane filtered_image = fft.ifft2(fft.ifftshift(filtered_FT)) # Plot results plt.figure(figsize=[15, 15]) # Original image plt.subplot(2, 2, 1) plt.title("Image with noise added") # White noise doesn't show up very well with the default colour map plt.imshow(noisy_image, cmap='gray') # Fourier transform; log scale to bring out detail outside centre plt.subplot(2, 2, 2) plt.title("Fourier transport of noisy image") plt.imshow(np.log(
np.abs(FT)
numpy.abs
import codecs import csv import math import multiprocessing import os import xml.etree.cElementTree as et from functools import partial import multiprocessing from pathlib import Path import sys from PyQt5.QtCore import pyqtSlot from tqdm import tqdm import time as clock import matplotlib.pyplot as plt import napari import numpy as np import pandas as pd from matplotlib.backends.backend_qt5agg import \ FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure from qtpy.QtCore import Qt from qtpy.QtWidgets import QComboBox, QPushButton, QSlider from scipy import spatial from scipy.fftpack import fft, fftfreq, fftshift, ifft from skimage import measure from skimage.filters import sobel from skimage.measure import label, regionprops from skimage.segmentation import find_boundaries from tifffile import imread, imwrite from .napari_animation import AnimationWidget import dask as da from dask.array.image import imread as daskread from skimage.util import map_array import seaborn as sns from scipy.stats import norm from scipy.optimize import curve_fit from lmfit import Model from numpy import exp, loadtxt, pi, sqrt from matplotlib import cm '''Define function to run multiple processors and pool the results together''' Boxname = 'TrackBox' AttributeBoxname = 'AttributeIDBox' TrackAttributeBoxname = 'TrackAttributeIDBox' pd.options.display.float_format = '${:,.2f}'.format savedir = None ParentDistances = {} ChildrenDistances = {} timed_mask = {} AllStartParent = {} AllEndParent = {} AllID = [] AllStartChildren = {} AllEndChildren = {} DividingTrackIds = [] NonDividingTrackIds = [] AllTrackIds = [] SaveIds = [] globalcount = "0" parentstartid = [] parentstartdist = [] parentendid = [] parentenddist = [] childrenstartid = [] childrenstartdist = [] childrenendid = [] childrenenddist = [] def prob_sigmoid(x): return 1 - math.exp(-x) def CreateTrackCheckpoint(ImageName, LabelName, MaskName, Name, savedir): Mask = None Label = imread(LabelName) Image = imread(ImageName) if MaskName is not None: Mask = imread(MaskName) assert Image.shape == Label.shape TimeList = [] XList = [] YList = [] ZList = [] LabelList = [] PerimeterList = [] VolumeList = [] IntensityList = [] ExtentXList = [] ExtentYList = [] ExtentZList = [] print('Image has shape:', Image.shape) print('Image Dimensions:', len(Image.shape)) if Mask is not None: if len(Mask.shape) < len(Image.shape): # T Z Y X UpdateMask = np.zeros( [Label.shape[0], Label.shape[1], Label.shape[2], Label.shape[3]] ) for i in range(0, UpdateMask.shape[0]): for j in range(0, UpdateMask.shape[1]): UpdateMask[i, j, :, :] = Mask[i, :, :] Mask = UpdateMask for i in tqdm(range(0, Image.shape[0])): CurrentSegimage = Label[i, :].astype('uint16') Currentimage = Image[i, :] if Mask is not None: CurrentSegimage[Mask[i, :] == 0] = 0 properties = measure.regionprops(CurrentSegimage, Currentimage) for prop in properties: Z = prop.centroid[0] Y = prop.centroid[1] X = prop.centroid[2] regionlabel = prop.label intensity = np.sum(prop.image) sizeZ = abs(prop.bbox[0] - prop.bbox[3]) sizeY = abs(prop.bbox[1] - prop.bbox[4]) sizeX = abs(prop.bbox[2] - prop.bbox[5]) volume = sizeZ * sizeX * sizeY radius = math.pow(3 * volume / (4 * math.pi), 1.0 / 3.0) perimeter = 2 * math.pi * radius TimeList.append(i) XList.append(int(X)) YList.append(int(Y)) ZList.append(int(Z)) LabelList.append(regionlabel) VolumeList.append(volume) PerimeterList.append(perimeter) IntensityList.append(intensity) ExtentZList.append(sizeZ) ExtentXList.append(sizeX) ExtentYList.append(sizeY) df = pd.DataFrame( list( zip( TimeList, XList, YList, ZList, LabelList, PerimeterList, VolumeList, IntensityList, ExtentXList, ExtentYList, ExtentZList, ) ), index=None, columns=[ 'T', 'X', 'Y', 'Z', 'Label', 'Perimeter', 'Volume', 'Intensity', 'ExtentX', 'ExtentY', 'ExtentZ', ], ) df.to_csv(savedir + '/' + 'FijibTMcheckpoint' + Name + '.csv', index=False) def GetBorderMask(Mask): ndim = len(Mask.shape) # YX shaped object if ndim == 2: Mask = label(Mask) Boundary = find_boundaries(Mask) # TYX shaped object if ndim == 3: Boundary = np.zeros([Mask.shape[0], Mask.shape[1], Mask.shape[2]]) for i in range(0, Mask.shape[0]): Mask[i, :] = label(Mask[i, :]) Boundary[i, :] = find_boundaries(Mask[i, :]) # TZYX shaped object if ndim == 4: Boundary = np.zeros( [Mask.shape[0], Mask.shape[1], Mask.shape[2], Mask.shape[3]] ) # Loop over time for i in range(0, Mask.shape[0]): Mask[i, :] = label(Mask[i, :]) for j in range(0, Mask.shape[1]): Boundary[i, j, :, :] = find_boundaries(Mask[i, j, :, :]) return Boundary """ Convert an integer image into boundary points for 2,3 and 4D data """ def boundary_points(mask, xcalibration, ycalibration, zcalibration): ndim = len(mask.shape) # YX shaped object if ndim == 2: mask = label(mask) labels = [] size = [] tree = [] properties = measure.regionprops(mask, mask) for prop in properties: labelimage = prop.image regionlabel = prop.label sizey = abs(prop.bbox[0] - prop.bbox[2]) * xcalibration sizex = abs(prop.bbox[1] - prop.bbox[3]) * ycalibration volume = sizey * sizex radius = math.sqrt(volume / math.pi) boundary = find_boundaries(labelimage) indices = np.where(boundary > 0) indices = np.transpose(np.asarray(indices)) real_indices = indices.copy() for j in range(0, len(real_indices)): real_indices[j][0] = real_indices[j][0] * xcalibration real_indices[j][1] = real_indices[j][1] * ycalibration tree.append(spatial.cKDTree(real_indices)) if regionlabel not in labels: labels.append(regionlabel) size.append(radius) # This object contains list of all the points for all the labels in the Mask image with the label id and volume of each label timed_mask[str(0)] = [tree, indices, labels, size] # TYX shaped object if ndim == 3: Boundary = np.zeros([mask.shape[0], mask.shape[1], mask.shape[2]]) for i in tqdm(range(0, mask.shape[0])): mask[i, :] = label(mask[i, :]) properties = measure.regionprops(mask[i, :], mask[i, :]) labels = [] size = [] tree = [] for prop in properties: labelimage = prop.image regionlabel = prop.label sizey = abs(prop.bbox[0] - prop.bbox[2]) * ycalibration sizex = abs(prop.bbox[1] - prop.bbox[3]) * xcalibration volume = sizey * sizex radius = math.sqrt(volume / math.pi) boundary = find_boundaries(labelimage) indices =
np.where(boundary > 0)
numpy.where
from __future__ import division import numpy as np from scipy.sparse import issparse from .linalg import dot_inplace_right def eigenvalue_decomposition(C, is_inverse=False, eps=1e-10): r""" Eigenvalue decomposition of a given covariance (or scatter) matrix. Parameters ---------- C : ``(N, N)`` `ndarray` or `scipy.sparse` The Covariance/Scatter matrix. If it is a `numpy.array`, then `numpy.linalg.eigh` is used. If it is an instance of `scipy.sparse`, then `scipy.sparse.linalg.eigsh` is used. If it is a precision matrix (inverse covariance), then set `is_inverse=True`. is_inverse : `bool`, optional It ``True``, then it is assumed that `C` is a precision matrix ( inverse covariance). Thus, the eigenvalues will be inverted. If ``False``, then it is assumed that `C` is a covariance matrix. eps : `float`, optional Tolerance value for positive eigenvalue. Those eigenvalues smaller than the specified eps value, together with their corresponding eigenvectors, will be automatically discarded. The final limit is computed as :: limit = np.max(np.abs(eigenvalues)) * eps Returns ------- pos_eigenvectors : ``(N, p)`` `ndarray` The matrix with the eigenvectors corresponding to positive eigenvalues. pos_eigenvalues : ``(p,)`` `ndarray` The array of positive eigenvalues. """ # compute eigenvalue decomposition if issparse(C): from scipy.sparse.linalg import eigsh eigenvalues, eigenvectors = eigsh(C, k=C.shape[0] - 1) else: eigenvalues, eigenvectors = np.linalg.eigh(C) # sort eigenvalues from largest to smallest index = np.argsort(eigenvalues)[::-1] eigenvalues = eigenvalues[index] eigenvectors = eigenvectors[:, index] # set tolerance limit limit = np.max(np.abs(eigenvalues)) * eps # select positive eigenvalues pos_index = eigenvalues > 0.0 pos_eigenvalues = eigenvalues[pos_index] pos_eigenvectors = eigenvectors[:, pos_index] # check they are within the expected tolerance index = pos_eigenvalues > limit pos_eigenvalues = pos_eigenvalues[index] pos_eigenvectors = pos_eigenvectors[:, index] # if C was a precision matrix (inverse covariance), then invert and re-sort # the eigenvalues if is_inverse: pos_eigenvalues = pos_eigenvalues[::-1] ** -1 pos_eigenvectors = pos_eigenvectors[:, ::-1] return pos_eigenvectors, pos_eigenvalues def pca(X, centre=True, inplace=False, eps=1e-10): r""" Apply Principal Component Analysis (PCA) on the data matrix `X`. In the case where the data matrix is very large, it is advisable to set ``inplace = True``. However, note this destructively edits the data matrix by subtracting the mean inplace. Parameters ---------- X : ``(n_samples, n_dims)`` `ndarray` Data matrix. centre : `bool`, optional Whether to centre the data matrix. If `False`, zero will be subtracted. inplace : `bool`, optional Whether to do the mean subtracting inplace or not. This is crucial if the data matrix is greater than half the available memory size. eps : `float`, optional Tolerance value for positive eigenvalue. Those eigenvalues smaller than the specified eps value, together with their corresponding eigenvectors, will be automatically discarded. Returns ------- U (eigenvectors) : ``(``(n_components, n_dims)``)`` `ndarray` Eigenvectors of the data matrix. l (eigenvalues) : ``(n_components,)`` `ndarray` Positive eigenvalues of the data matrix. m (mean vector) : ``(n_dimensions,)`` `ndarray` Mean that was subtracted from the data matrix. """ n, d = X.shape if centre: # centre data # m (mean vector): d m = np.mean(X, axis=0) else: m = np.zeros(d, dtype=X.dtype) # This is required if the data matrix is very large! if inplace: X -= m else: X = X - m if d < n: # compute covariance matrix # C (covariance): d x d C = np.dot(X.conj().T, X) / (n - 1) # C should be perfectly symmetrical, but numerical error can creep # in. Enforce symmetry here to avoid creating complex eigenvectors C = (C + C.conj().T) / 2.0 # perform eigenvalue decomposition # U (eigenvectors): d x n # s (eigenvalues): n U, l = eigenvalue_decomposition(C, is_inverse=False, eps=eps) # transpose U # U: n x d U = U.T else: # d > n # compute small covariance matrix # C (covariance): n x n C = np.dot(X, X.conj().T) / (n - 1) # C should be perfectly symmetrical, but numerical error can creep # in. Enforce symmetry here to avoid creating complex eigenvectors C = (C + C.conj().T) / 2.0 # perform eigenvalue decomposition # V (eigenvectors): n x n # s (eigenvalues): n V, l = eigenvalue_decomposition(C, is_inverse=False, eps=eps) # compute final eigenvectors # U: n x d w = np.sqrt(1.0 / ((n - 1) * l)) dot = dot_inplace_right if inplace else np.dot U = dot(V.conj().T, X) U *= w[:, None] return U, l, m # The default value of eps tolerance is set to 1e-5 (instead of 1e-10 that used # to be). This is done in order for pcacov to work for inverse single precision C # i.e. is_inverse=True and dtype=np.float32. 1e-10 works perfectly when the # covariance matrix has double precision (np.float64). However, if C has single # precision (np.float32) and is inverse, then the first two eigenvectors end up # having noise. def pcacov(C, is_inverse=False, eps=1e-5): r""" Apply Principal Component Analysis (PCA) given a covariance/scatter matrix `C`. In the case where the data matrix is very large, it is advisable to set ``inplace = True``. However, note this destructively edits the data matrix by subtracting the mean inplace. Parameters ---------- C : ``(N, N)`` `ndarray` or `scipy.sparse` The Covariance/Scatter matrix. If it is a precision matrix (inverse covariance), then set `is_inverse=True`. is_inverse : `bool`, optional It ``True``, then it is assumed that `C` is a precision matrix ( inverse covariance). Thus, the eigenvalues will be inverted. If ``False``, then it is assumed that `C` is a covariance matrix. eps : `float`, optional Tolerance value for positive eigenvalue. Those eigenvalues smaller than the specified eps value, together with their corresponding eigenvectors, will be automatically discarded. Returns ------- U (eigenvectors) : ``(n_components, n_dims)`` `ndarray` Eigenvectors of the data matrix. l (eigenvalues) : ``(n_components,)`` `ndarray` Positive eigenvalues of the data matrix. """ if C.shape[0] != C.shape[1]: raise ValueError("C must be square.") # C should be perfectly symmetrical, but numerical error can creep in. # Enforce symmetry here to avoid creating complex eigenvectors C = (C + C.conj().T) / 2.0 # C (covariance): d x d # perform eigenvalue decomposition # U (eigenvectors): d x n # s (eigenvalues): n U, l = eigenvalue_decomposition(C, is_inverse=is_inverse, eps=eps) # transpose U # U: n x d U = U.conj().T return U, l def ipca(B, U_a, l_a, n_a, m_a=None, f=1.0, eps=1e-10): r""" Perform Incremental PCA on the eigenvectors ``U_a``, eigenvalues ``l_a`` and mean vector ``m_a`` (if present) given a new data matrix ``B``. Parameters ---------- B : ``(n_samples, n_dims)`` `ndarray` New data matrix. U_a : ``(n_components, n_dims)`` `ndarray` Eigenvectors to be updated. l_a : (n_components) `ndarray` Eigenvalues to be updated. n_a : `int` Total number of samples used to produce U_a, s_a and m_a. m_a : ``(n_dims,)`` `ndarray`, optional Mean to be updated. If ``None`` or ``(n_dims,)`` `ndarray` filled with 0s the data matrix will not be centred. f : ``[0, 1]`` `float`, optional Forgetting factor that weights the relative contribution of new samples vs old samples. If 1.0, all samples are weighted equally and, hence, the results is the exact same as performing batch PCA on the concatenated list of old and new simples. If <1.0, more emphasis is put on the new samples. See [1] for details. eps : `float`, optional Tolerance value for positive eigenvalue. Those eigenvalues smaller than the specified eps value, together with their corresponding eigenvectors, will be automatically discarded. Returns ------- U (eigenvectors) : ``(n_components, n_dims)`` `ndarray` Updated eigenvectors. s (eigenvalues) : ``(n_components,)`` `ndarray` Updated positive eigenvalues. m (mean vector) : ``(n_dims,)`` `ndarray` Updated mean. References ---------- .. [1] <NAME>, <NAME>, <NAME>, <NAME>. "Incremental Learning for Robust Visual Tracking". IJCV, 2007. """ # multiply current eigenvalues by total number of samples and square # root them to obtain singular values of the original data. s_a = np.sqrt((n_a - 1) * l_a) # obtain number of dimensions and number of samples of new data. n_b, d = B.shape # multiply the number of samples of the original data by the forgetting # factor n_a *= f # total number of samples n = n_a + n_b if m_a is not None and not
np.all(m_a == 0)
numpy.all
# -*- coding: utf-8 -*- """ Created on Jul 21 2017, Modified Nov 15 2019. @authors: <NAME> Compute prosody features based on pitch, loudness, duration, ratios, rhythm, and perturbations (apq/ppq) OUTPUT OF THE FUNCTION "prosody_features": """ import os path_base = os.path.dirname(os.path.abspath(__file__)) import numpy as np import warnings import sigproc as sg import scipy as sp #from scipy.stats import kurtosis, skew from scipy.signal import gaussian from scipy.io.wavfile import write import praat.praat_functions as praatF #import matplotlib.pyplot as plt from sklearn.metrics import mean_squared_error as mse def prosody_features(sig,fs,f0=np.asarray([0]),winTime=0.04,stepTime=0.01): if (np.sum(f0)==0)&(len(f0)==1): f0 = f0_contour_pr(sig,fs,winTime,stepTime)#F0 #VAD out_VAD = eVAD(sig,fs) #Compute f0 features feats_f0 = f0_features(sig,fs,f0,winTime,stepTime) #Compute voiced features feats_voiced,vcont = voiced_features(sig,fs,f0,stepTime) #Compute VAD features (duration+energy content) feats_VAD = VAD_features(sig,fs,out_VAD,winTime,stepTime) #Compute unvoiced features feats_unvoiced = unvoiced_features(sig,fs,vcont,out_VAD['Pause_labels']) X = [feats_f0,feats_voiced,feats_unvoiced,feats_VAD] #Create new dictionary with all features X_pr = {} for k in X: for f in list(k.keys()): X_pr[f] = k[f] return X_pr def prosody_features_dynamic(sig,fs,f0=np.asarray([0]),winTime=0.04,stepTime=0.01): if len(f0)==0: f0 = f0_contour_pr(sig,fs,winTime,stepTime)#F0 #--------------------------------------- f0coef,voiced,_ = voiced_unvoiced(sig,fs,f0,stepTime) # f0coef = np.vstack(f0coef) #Voiced features lvoiced = [] for v in voiced: lvoiced.append(len(v)/fs)#Length of voiced segment lvoiced = np.vstack(lvoiced) #......................................................... X = np.hstack([lvoiced,f0coef]) return X #========================================================================== def Hz2Semitone(F): ST=39.87*np.log(F/50) return ST #========================================================================== def f0_contour_pr(sig,fs,sizeframe=0.04,step=0.01,maxf0=500, post=False): """ This function is used to extract the F0 contour using praat """ sig = sig-np.mean(sig) sig = sig/np.max(np.abs(sig)) temp_aud = (sig*2**15).astype(np.int16) temp_path = path_base+'\\temp_sig.wav'#Creates temporal wav file write(temp_path,int(fs),temp_aud) temp_filename_f0=path_base+'/praat/tempF0.txt' np.savetxt(temp_filename_f0,np.zeros((3,3))) temp_filename_vuv=path_base+'/praat/tempvuv.txt' np.savetxt(temp_filename_vuv,np.zeros((3,3))) minf0 = int(3/sizeframe) praatF.praat_vuv(temp_path, temp_filename_f0, temp_filename_vuv, time_stepF0=step, minf0=minf0, maxf0=maxf0) #Tomas: I modified this function. The size of the frame (in seconds) and sampling frequency are #now input arguments. This was neccesary to compute the number of frames correctly. f0,_ = praatF.decodeF0(temp_filename_f0,len(sig),float(fs),sizeframe,step) if np.sum(f0)==0: print('PITCH WAS NOT DETECTED') os.remove(temp_filename_f0) os.remove(temp_filename_vuv) os.remove(temp_path) #Post-processing of F0 to avoid outliers. Is very simple if post==True: print('F0 post-processing Activated') uf0 = np.mean(f0[f0>0]) sf0 = np.std(f0[f0>0]) f0[f0>(uf0+(2.5*sf0))] = 0 f0[f0<(uf0-(2.5*sf0))] = 0 return f0 #========================================================================== def voiced_unvoiced(sig,fs,f0,stepTime): """ Voiced unvoiced segmentation sig: Speech signal fs: Sampling frequency f0: Pitch contour stepTime: Step size (in seconds) used to computed the f0 contour. """ yp = f0.copy() yp[yp!=0] = 1 ydf = np.diff(yp) lim_end = np.where(ydf==-1)[0]+1 lim_ini = np.where(ydf==1)[0]+1 #Voiced segments v_segm = [] f0_feats = []#Dynamic f0-based features #Unvoiced uv_segm = [] for idx in range(len(lim_ini)): #------------------------------------ #Voiced segments tini = int(lim_ini[idx]*stepTime*fs) tend = int(lim_end[idx]*stepTime*fs) if int(tend-tini)>int(0.04*fs): # print(tini,tend) v_segm.append(sig[tini:tend]) x = np.arange(0,len(f0[lim_ini[idx]:lim_end[idx]])) #F0 based features with warnings.catch_warnings(): warnings.simplefilter('ignore', np.RankWarning) f0c = np.polyfit(x,f0[lim_ini[idx]:lim_end[idx]],5) # f0c = f0c.reshape(1,-1)#Dynamic reprsentation of f0. p = np.poly1d(f0c) f0_mse = mse(f0[lim_ini[idx]:lim_end[idx]],p(x)) # plt.plot(p(x),'k',label='Fitted') # plt.plot(f0[lim_ini[idx]:lim_end[idx]],'r',label='Real') # plt.legend() if len(sig[tini:tend])>int(3*0.04*fs): frames = sg.extract_windows(sig[tini:tend],int(0.04*fs),int(0.01*fs)) jitter = ppq(f0[lim_ini[idx]:lim_end[idx]],3) ak = np.max(frames,axis=1) shimmer = apq(ak,3) else: jitter = 0 shimmer = 0 f0temp = np.hstack([jitter,shimmer,len(sig[tini:tend])/fs,f0_mse,f0c]) f0_feats.append(f0temp) #-------------------------------- #------------------------------------ #Unvoiced segments tini = int(lim_end[idx]*stepTime*fs) if (idx+1)<(len(lim_ini)-1): tend = int(lim_ini[idx+1]*stepTime*fs) if int(tend-tini)<int(0.27*fs): uv_segm.append(sig[tini:tend]) #-------------------------------------------------------------------- f0_feats = np.vstack(f0_feats) return f0_feats,v_segm,uv_segm #========================================================================== def voiced_seg(sig,fs,f0,stepTime): """ Voiced segments sig: Speech signal fs: Sampling frequency f0: Pitch contour stepTime: Step size (in seconds) used to computed the f0 contour. """ yp = f0.copy() yp[yp!=0] = 1 #In case the starting point is F0 and not 0 if yp[0] == 1: np.insert(yp, 0, 1) if yp[-1:] == 1: np.insert(yp, 0, len(yp)-1) #--------------------- ydf = np.diff(yp) lim_end = np.where(ydf==-1)[0]+1 lim_ini = np.where(ydf==1)[0]+1 #Voiced segments v_segm = [] tm = [] vcont = np.zeros(len(sig)) for idx in range(len(lim_ini)): #------------------------------------ #Voiced segments tini = int(lim_ini[idx]*stepTime*fs) tend = int(lim_end[idx]*stepTime*fs) if int(tend-tini)>int(0.04*fs): # print(tini,tend) vcont[tini:tend] = 1 v_segm.append(sig[tini:tend]) tm.append(np.hstack([lim_ini[idx]*stepTime,lim_end[idx]*stepTime])) vseg = {'Voiced_segments':v_segm, 'Voiced_times':tm, 'Voiced_labels':vcont} return vseg #---------------------------------------------------------------------------- def unvoiced_seg(sig,fs,vseg,sil): uvcont = sil+vseg+1 uvcont[uvcont>1] = 0 uvcont[0] = 0 uvcont[-1:] = 0 yp = uvcont.copy() ydf = np.diff(yp) lim_end = np.where(ydf==-1)[0]+1 lim_ini = np.where(ydf==1)[0]+1 #Voiced segments uv_seg = [] uv_dur = [] uv_tm = [] for idx in range(len(lim_ini)): #------------------------------------ try: tini = lim_ini[idx]/fs tend = lim_end[idx]/fs # uv_dur.append(tend-tini) uv_seg.append(sig[lim_ini[idx]:lim_end[idx]]) uv_tm.append([tini,tend]) except: print('Unvoiced segment not included') uv_dur = np.asarray(uv_dur) return uv_seg,uv_tm,uvcont #---------------------------------------------------------------------------- def eVAD(sig,fs,win=0.015,step=0.01): """ Energy-based Voice Activity Detection """ #Normalize signal sig = sig-np.mean(sig) sig /=np.max(np.abs(sig)) lsig = len(sig) #Add silence to the beginning and end in case the user is an idiot or myself #Set min threshold base on the energy of the signal e = [] frames = sg.extract_windows(sig,int(win*fs),int(step*fs)) for seg in frames: e.append(10*np.log10(np.sum(np.absolute(seg)**2)/len(seg))) e = np.asarray(e) idx_min = np.where(e==np.min(e)) thr = np.min(frames[idx_min]) ext_sil = int(fs) esil = int((ext_sil/2)/fs/step) new_sig = np.random.randn(lsig+ext_sil)*thr new_sig[int(ext_sil/2):lsig+int(ext_sil/2)] = sig sig = new_sig e = []#energy in dB frames = sg.extract_windows(sig,int(win*fs),int(step*fs)) frames*=np.hanning(int(win*fs)) for seg in frames: e.append(10*np.log10(np.sum(np.absolute(seg)**2)/len(seg))) e = np.asarray(e) e = e-np.mean(e) #Smooth energy contour to remove small energy variations gauslen = int(fs*0.01) window = gaussian(gauslen, std=int(gauslen*0.05)) #Convolve signal with Gaussian window for smmothing smooth_env = e.copy() smooth_env = sp.convolve(e,window) smooth_env = smooth_env/np.max(smooth_env) ini = int(gauslen/2) fin = len(smooth_env)-ini e = smooth_env[ini:fin] e = e/np.max(np.abs(e)) e = e[esil:int(lsig/fs/step)+esil] thr = np.median(e[e<0]) cont_sil = np.zeros(lsig) cont_vad = np.zeros(lsig) itime = 0 etime = int(win*fs) for i in range(len(e)): if e[i]<=thr: cont_sil[itime:etime] = 1 else: cont_vad[itime:etime] = 1 itime = i*int(step*fs) etime = itime+int(win*fs) sig = sig[int(ext_sil/2):lsig+int(ext_sil/2)]#Remove silence added at the begining if np.sum(cont_sil)!=0: #Pauses dur_sil,seg_sil,time_sil = get_segments(sig,fs,cont_sil) #Voice dur_vad,seg_vad,time_vad = get_segments(sig,fs,cont_vad) else: dur_sil = [0] seg_sil = [0] dur_vad = [0] seg_vad= [0] X_vad = {'Pause_labels':cont_sil, 'Pause_duration':dur_sil, 'Pause_segments':seg_sil, 'Pause_times':time_sil, 'Speech_labels':cont_vad, 'Speech_duration':dur_vad, 'Speech_segments':seg_vad, 'Speech_times':time_vad} return X_vad def get_segments(sig,fs,segments): segments[0] = 0 segments[-1:] = 0 yp = segments.copy() ydf = np.diff(yp) lim_end = np.where(ydf==-1)[0]+1 lim_ini = np.where(ydf==1)[0]+1 #Silence segments seg_dur = []#Segment durations seg_list = []#Segment list seg_time = []#Time stamps for idx in range(len(lim_ini)): #------------------------------------ tini = lim_ini[idx]/fs tend = lim_end[idx]/fs seg_dur.append(np.abs(tend-tini)) seg_list.append(sig[lim_ini[idx]:lim_end[idx]]) seg_time.append([tini,tend]) seg_dur = np.asarray(seg_dur) seg_time = np.vstack(seg_time) return seg_dur,seg_list,seg_time #---------------------------------------------------------------------------- def decodef0_transitions(sig,fs,f0,trans,sztr=0.16,step=0.01): """ F0 is the pitch contourn trans = onset or offset sztr: Size of the transition. Default is 160 ms:80 ms voiced; 80 ms unvoiced step: The step used to compute the f0 contourn of the signal """ if trans.lower()=='onset': trflag=1 elif trans.lower()=='offset': trflag=-1 else: return print('Options in trans: onset or offset') modf0 = f0.copy() modf0[modf0>0] = 1 #f0 will be found were modf0!=0 f0diff = np.diff(modf0) #transitions will be found where f0diff=trflag idx_tr = np.where(f0diff==trflag)[0] idx_tr = idx_tr+1#Compensate 1 for the np.diff operation tm = [] #Time stamps seg_tr = [] #Onset or Offset segment winl = int(sztr*fs/2)#Size of the transition in samples for iseg in idx_tr: t1 = int(iseg*step*fs-winl) t2 = int(iseg*step*fs+winl) seg = sig[t1:t2] if len(seg)>=int(fs*sztr): seg_tr.append(seg) tm.append([t1/fs,t2/fs]) return seg_tr,tm def f0_features(sig,fs,f0=np.asarray([0]),winTime=0.04,stepTime=0.01): if (np.sum(f0)==0)&(len(f0)==1): f0 = f0_contour_pr(sig,fs,winTime,stepTime)#F0 #--------------------------------------- #F0 FEATURES uf0 = np.mean(f0[f0>0]) sf0 = np.std(f0[f0>0]) #F0 in semitones # ust = Hz2Semitone(uf0) # sst = Hz2Semitone(sf0) # feats_f0 = np.hstack([uf0,sf0,ust,sst]) feats_f0 ={'F0_mean':uf0, 'F0_std':sf0} return feats_f0 def voiced_features(sig,fs,f0,stepTime): """ Voiced segment features """ vsegs = voiced_seg(sig,fs,f0,stepTime) #Voiced features lvoiced = [] for v in vsegs['Voiced_segments']: lvoiced.append(len(v)/fs)#Length of voiced segment uvoiced = np.mean(lvoiced)#Average length vrate = (len(vsegs['Voiced_segments'])*fs)/len(sig)#Voiced segments per second numv = len(vsegs['Voiced_segments']) #Rhythm -based rPVI,nPVI = get_pvi(lvoiced) pGPI,dGPI = get_gpi(lvoiced,len(sig)/fs) #pGPI = Voiced rate # feats_voiced = np.hstack([numv,vrate,uvoiced,rPVI,nPVI,pGPI,dGPI]) feats_voiced = {'Voiced_counts':numv, 'Voiced_rate':vrate, 'Voiced_duration':uvoiced, 'Voiced_rPVI':rPVI, 'Voiced_nPVI':nPVI, 'Voiced_dGPI':dGPI} return feats_voiced,vsegs['Voiced_labels'] def unvoiced_features(sig,fs,vcont,sil_cont): """ Unvoiced segment features. Requires voiced and silence/pauses segment detection. """ #Unvoiced features uv_seg,_,_ = unvoiced_seg(sig,fs,vcont,sil_cont) lunvoiced = [] for uv in uv_seg: lunvoiced.append(len(uv)/fs)#Length of unvoiced segment uunvoiced = np.mean(lunvoiced)#Average length # sunvoiced = np.std(lunvoiced)#variation of length uvrate = (len(uv_seg)*fs)/len(sig)#Unvoiced segments per second numuv = len(uv_seg) rPVI,nPVI = get_pvi(lunvoiced) pGPI,dGPI = get_gpi(lunvoiced,len(sig)/fs) # feats_unvoiced = np.hstack([numuv,uvrate,uunvoiced,rPVI,nPVI,pGPI,dGPI]) feats_unvoiced = {'Unvoiced_counts':numuv, 'Unvoiced_rate':uvrate, 'Unvoiced_duration':uunvoiced, 'Unvoiced_rPVI':rPVI, 'Unvoiced_nPVI':nPVI, 'Unvoiced_dGPI':dGPI} return feats_unvoiced def VAD_features(sig,fs,out_VAD,win_time=0.025,step_time=0.01): npause,rpause,dpause = duration_features(sig,fs,out_VAD['Pause_duration'],out_VAD['Pause_segments']) nspeech,rspeech,dspeech = duration_features(sig,fs,out_VAD['Speech_duration'],out_VAD['Speech_segments']) #Compute energy based features only for speech segments mSPL_vad,sSPL = VAD_energy_features(sig,fs,out_VAD['Speech_segments'],win_time,step_time) feats_vad ={'Pause_counts':npause, 'Pause_rate':rpause, 'Pause_duration':dpause, 'Speech_counts':nspeech, 'Speech_rate':rspeech, 'Speech_duration':dspeech, 'SPL_mean':mSPL_vad, 'SPL_std':sSPL} return feats_vad def duration_features(sig,fs,dsegment,segment): #Number of pauses, Duration of pauses, pauses per second dsegm = np.mean(dsegment) rsegm = (len(segment)*fs)/len(sig) nsegm = len(segment) return nsegm,rsegm,dsegm def VAD_energy_features(sig,fs,seg_vad,win_time=0.025,step_time=0.01): """ The SPL should be only computed for the speech segments Parameters ---------- sig : TYPE DESCRIPTION. fs : TYPE DESCRIPTION. seg_vad : TYPE DESCRIPTION. win_time : TYPE, optional DESCRIPTION. The default is 0.025. step_time : TYPE, optional DESCRIPTION. The default is 0.005. Returns ------- mSPL_vad : TYPE DESCRIPTION. sSPL : TYPE DESCRIPTION. """ SPL = sound_pressure_level(sig,fs,win_time,step_time) SPL_vad = [] for ivad in seg_vad: SPL = sound_pressure_level(ivad,fs,win_time,step_time) SPL_vad.append(np.mean(SPL)) mSPL_vad = np.mean(SPL_vad) sSPL = np.std(SPL_vad) return mSPL_vad,sSPL def sound_pressure_level(sig,fs,win_time=0.025,step_time=0.01): """ Sound Pressure Level as in: <NAME>, <NAME>. Tutorial and Guidelines on Measurement of Sound Pressure Level in Voice and Speech. Journal of Speech, Language, and Hearing Research. 2018 Mar 15;61(3):441-461. doi: 10.1044/2017_JSLHR-S-17-0095. PMID: 29450495. SPL = 20*log10(p/p0) 20xlog refers to a root-power quantity e.g., volts, sound pressure, current... Intensity in dBs: ene = 10*log10(sum(x^2)/N) 10xlog refers to a power quantity, i.e. quantities directly proportional to power x: speech signal N: lenght of x p = RMS value of x p0 = 20uPA = 0.00002 Hearing threshold """ #Set a threshold based on the energy of the signal if len(sig)>3*int(win_time*fs): frames = sg.extract_windows(sig,int(win_time*fs),int(step_time*fs)) else: frames = list([sig]) SPL = []#Sound Pressure Level p0 = 2*(10**-5)#Hearing threshold at SLP 0dB for x in frames: #Sound Pressure Level (dBs) p = np.sqrt(np.sum((x)**2)/len(x)) Lp = 20*np.log10(p/p0) SPL.append(Lp) SPL = np.asarray(SPL) return SPL def ppq(f0,pq=2): """ <NAME>., & <NAME>. (2016). Algorithm for jitter and shimmer measurement in pathologic voices. Procedia Computer Science, 100, 271-279. f0: Fundamental frequency contour pq: Number of points to be considered pq = 2 : Jitter pq = 3 : Relative Average Perturbation pq = 5 : PPQ computed every 5 points of f0 """ #Non zero f0 f0 = f0[f0>0] N = len(f0) ppq = [] start = int(np.floor(pq/2)) for i in range(start,N): # ppq.append(np.abs(f0[i]-Mp)) if pq>1: neig = np.mean(f0[i-start:i+(pq-start)]) else: neig = f0[i-1] ppq.append(np.abs(f0[i]-neig)) ppq = np.sum(np.asarray(ppq))/(N-1) ppq = (100*ppq)/np.mean(f0) return ppq ######################################################################### def apq(ak,pq=2): """ <NAME>., & <NAME>. (2016). Algorithm for jitter and shimmer measurement in pathologic voices. Procedia Computer Science, 100, 271-279. ak: Maximum amplitude of the signal pq: Number of points to be considered pq=3 : Shimmer pq=5 : APQ computed every 5 points """ # ak = np.zeros(frames.shape[0]) # for ie in range(len(ak)): # ak[ie] = np.max(frames[ie]) N = len(ak) #Max F0 # Ma = np.max(np.abs(ak)) apq = [] start = int(np.floor(pq/2)) for i in range(start,N): if pq>1: neig = np.mean(ak[i-start:i+(pq-start)]) else: neig = ak[i-1] apq.append(np.absolute(ak[i]-neig)) apq = np.sum(
np.asarray(apq)
numpy.asarray
import os import sys import numpy as np # import BoundaryDetector from lib directory parentddir = os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) sys.path.append(parentddir) from lib.BoundaryDetector import BoundaryDetector # generate expected map expected_sym_map =
np.ones((100,100),dtype=np.bool_)
numpy.ones
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.one_hot_op.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf class OneHotTest(tf.test.TestCase): def _testOneHot(self, truth, use_gpu=False, expected_err_re=None, raises=None, **inputs): with self.test_session(use_gpu=use_gpu): if raises is not None: with self.assertRaises(raises): tf.one_hot(**inputs) else: ans = tf.one_hot(**inputs) if expected_err_re is None: tf_ans = ans.eval() self.assertAllEqual(tf_ans, truth) self.assertEqual(tf_ans.shape, ans.get_shape()) else: with self.assertRaisesOpError(expected_err_re): ans.eval() def _testBothOneHot(self, truth, expected_err_re=None, raises=None, **inputs): self._testOneHot(truth, True, expected_err_re, raises, **inputs) self._testOneHot(truth, False, expected_err_re, raises, **inputs) def _testBasic(self, dtype): indices = np.asarray([0, 2, -1, 1], dtype=np.int64) depth = 3 on_value = np.asarray(1.0, dtype=dtype) off_value =
np.asarray(-1.0, dtype=dtype)
numpy.asarray
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 from copy import deepcopy import numpy as np from numpy.testing import assert_allclose import pytest from jax import random, test_util import numpyro from numpyro import handlers from numpyro.contrib.module import ( ParamShape, _update_params, flax_module, haiku_module, random_flax_module, random_haiku_module ) import numpyro.distributions as dist from numpyro.infer import MCMC, NUTS def haiku_model(x, y): import haiku as hk linear_module = hk.transform(lambda x: hk.Linear(100)(x)) nn = haiku_module("nn", linear_module, input_shape=(100,)) mean = nn(x) numpyro.sample("y", numpyro.distributions.Normal(mean, 0.1), obs=y) def flax_model(x, y): import flax linear_module = flax.nn.Dense.partial(features=100) nn = flax_module("nn", linear_module, input_shape=(100,)) mean = nn(x) numpyro.sample("y", numpyro.distributions.Normal(mean, 0.1), obs=y) def test_flax_module(): X = np.arange(100) Y = 2 * X + 2 with handlers.trace() as flax_tr, handlers.seed(rng_seed=1): flax_model(X, Y) assert flax_tr["nn$params"]['value']['kernel'].shape == (100, 100) assert flax_tr["nn$params"]['value']['bias'].shape == (100,) def test_haiku_module(): X = np.arange(100) Y = 2 * X + 2 with handlers.trace() as haiku_tr, handlers.seed(rng_seed=1): haiku_model(X, Y) assert haiku_tr["nn$params"]['value']['linear']['w'].shape == (100, 100) assert haiku_tr["nn$params"]['value']['linear']['b'].shape == (100,) def test_update_params(): params = {'a': {'b': {'c': {'d': 1}, 'e': np.array(2)}, 'f':
np.ones(4)
numpy.ones
""" This file: animation or figure plot of the relative position and yaw based on real-world data """ import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation from dataCreate import realData from relativeEKF import EKFonRealData import transform # system settings show_animation = True border = {"xmin":-4, "xmax":4, "ymin":-4, "ymax":4, "zmin":0, "zmax":4} numRob = 3 # number of robots dt = 0.01 # time interval [s] relativeState = np.zeros((3, numRob, numRob)) dataFromReal = realData("./dataset/dat02.csv", numRob) uList, zList, GtList, simTime = dataFromReal.readDataTolist() relaEKFonRealData = EKFonRealData(10, 1, 0.25, 0.1, 0.1, numRob) def animate(step): global relativeState xTrue, zNois, uNois = dataFromReal.calcInputDataset(uList[step], zList[step], GtList[step]) relativeState = relaEKFonRealData.EKF(uNois, zNois, relativeState) xEsti = transform.calcAbsPosUseRelaPosWRTRob0(xTrue[:,0], relativeState, xTrue, numRob) pointsTrue.set_data(xTrue[0, :], xTrue[1, :]) pointsEsti.set_data(xEsti[0, :], xEsti[1, :]) pointsTrueHead.set_data(xTrue[0, :]+0.07*
np.cos(xTrue[2, :])
numpy.cos
# @version: 1.0 date: 05/06/2015 by <NAME> # @author: <EMAIL>, <EMAIL>, <EMAIL> # @copyright: EPFL-IC-LCAV 2015 from __future__ import division import numpy as np import scipy.linalg as la from .parameters import constants from . import utilities as u from .soundsource import build_rir_matrix from . import windows from . import stft #========================================================================= # Free (non-class-member) functions related to beamformer design #========================================================================= def H(A, **kwargs): '''Returns the conjugate (Hermitian) transpose of a matrix.''' return np.transpose(A, **kwargs).conj() def sumcols(A): ''' Sums the columns of a matrix (np.array). The output is a 2D np.array of dimensions M x 1. ''' return np.sum(A, axis=1, keepdims=1) def mdot(*args): '''Left-to-right associative matrix multiplication of multiple 2D ndarrays.''' ret = args[0] for a in args[1:]: ret = np.dot(ret, a) return ret def distance(x, y): ''' Computes the distance matrix E. E[i,j] = sqrt(sum((x[:,i]-y[:,j])**2)). x and y are DxN ndarray containing N D-dimensional vectors. ''' # Assume x, y are arrays, *not* matrices x = np.array(x) y = np.array(y) # return np.sqrt((x[0,:,np.newaxis]-y[0,:])**2 + (x[1,:,np.newaxis]-y[1,:])**2) return np.sqrt(np.sum((x[:, :, np.newaxis] - y[:, np.newaxis, :])**2, axis=0)) def unit_vec2D(phi): return np.array([[np.cos(phi), np.sin(phi)]]).T def linear_2D_array(center, M, phi, d): ''' Creates an array of uniformly spaced linear points in 2D Parameters ---------- center: array_like The center of the array M: int The number of points phi: float The counterclockwise rotation of the array (from the x-axis) d: float The distance between neighboring points Returns ------- ndarray (2, M) The array of points ''' u = unit_vec2D(phi) return np.array(center)[:, np.newaxis] + d * \ (np.arange(M)[np.newaxis, :] - (M - 1.) / 2.) * u def circular_2D_array(center, M, phi0, radius): ''' Creates an array of uniformly spaced circular points in 2D Parameters ---------- center: array_like The center of the array M: int The number of points phi0: float The counterclockwise rotation of the first element in the array (from the x-axis) radius: float The radius of the array Returns ------- ndarray (2, M) The array of points ''' phi = np.arange(M) * 2. * np.pi / M return np.array(center)[:, np.newaxis] + radius * \ np.vstack((np.cos(phi + phi0), np.sin(phi + phi0))) def poisson_2D_array(center, M, d): ''' Create array of 2D positions drawn from Poisson process. Parameters ---------- center: array_like The center of the array M: int The number of points in the first dimension M: int The number of points in the second dimension phi: float The counterclockwise rotation of the array (from the x-axis) d: float The distance between neighboring points Returns ------- ndarray (2, M * N) The array of points ''' from numpy.random import standard_exponential, randint R = d*
standard_exponential((2, M))
numpy.random.standard_exponential
import numpy as np class Board: def __init__(self, size = (3, 3), array = None): # if array == None: if array is None: self.board = np.zeros(size, dtype=np.int8) else: self.board = np.array(array, dtype=np.int8) self.x_size = self.board.shape[0] self.y_size = self.board.shape[1] self.player_who_won = None def move(self, x, y, current_player): self.board[x, y] = current_player def are_same_and_non_zero(self, array): return np.unique(array).size == 1 and array[0] != 0 def is_board_full(self): return not np.any(
np.unique(self.board)
numpy.unique
""" Definition of a set of Numpy Helper classes. (c) 2020 d373c7 """ import unittest import numpy as np import d373c7.engines as en import d373c7.features as ft FILES_DIR = './files/' class TestCreation(unittest.TestCase): def test_creation_base(self): x = np.arange(10) y = np.arange(10) c = [x, y] n = en.NumpyList(c) self.assertIsInstance(n, en.NumpyList) self.assertEqual(len(n), len(x), f'Length not correct {len(n)}/{len(x)}') self.assertEqual(len(n.shapes[0]), 1, f'Shape should only have 1 dim {len(n.shapes[0])}') self.assertEqual(n.shapes[0][0], len(x), f'Shape of dim 0 incorrect {n.shapes[0][0]}') self.assertEqual(len(n.shapes[1]), 1, f'Shape should only have 1 dim {len(n.shapes[1])}') self.assertEqual(n.shapes[1][0], len(y), f'Shape of dim 0 incorrect {n.shapes[1][0]}') self.assertEqual(n.number_of_lists, len(c), f'Number of lists incorrect {n.number_of_lists}') self.assertEqual(n.dtype_names[0], x.dtype.name, f'dtype not expected {n.dtype_names[0]}') self.assertEqual(n.dtype_names[1], y.dtype.name, f'dtype not expected {n.dtype_names[1]}') self.assertListEqual(n.lists, c, f'Not the expected return from numpy_list {n.lists}') def test_creation_wrong_size(self): x = np.random.rand(5, 2) y = np.random.rand(2, 2) with self.assertRaises(en.NumpyListException): en.NumpyList([x, y]) def test_lists(self): x = np.random.rand(5, 2) y = np.random.rand(5, 2) c = [x, y] n = en.NumpyList(c) self.assertEqual(len(n.lists), len(c), f'Number of lists does not add up {len(n.lists)}') self.assertEqual((n.lists[0] == x).all(), True, f'Lists not equal') self.assertEqual((n.lists[1] == y).all(), True, f'Lists not equal') def test_slice_good(self): x = np.random.rand(5, 2) y = np.random.rand(5, 2) c = [x, y] n = en.NumpyList(c) x0, y0 = n[0].lists self.assertEqual(np.array(x0 == x[0]).all(), True, f'First entries do not match {x0}, {x[0]}') self.assertEqual(np.array(y0 == y[0]).all(), True, f'First entries do not match {y0}, {y[0]}') x1, y1 = n[1].lists self.assertEqual(np.array(x1 == x[1]).all(), True, f'Second entries do not match {x1}, {x[1]}') self.assertEqual(np.array(y1 == y[1]).all(), True, f'Second entries do not match {y1}, {y[1]}') xf, yf = n[0:5].lists self.assertEqual(np.array(xf == x).all(), True, f'All entries do not match {xf}, {x}') self.assertEqual(np.array(yf == y).all(), True, f'All entries do not match {yf}, {y}') xm, ym = n[1:4].lists self.assertEqual(np.array(xm == x[1:4]).all(), True, f'Mid entries do not match {xf}, {x[1:4]}') self.assertEqual(np.array(ym == y[1:4]).all(), True, f'Mid entries do not match {yf}, {y[1:4]}') xl, yl = n[4].lists self.assertEqual(np.array(xl == x[-1]).all(), True, f'Last entries do not match {xl}, {x[-1]}') self.assertEqual(np.array(yl == y[-1]).all(), True, f'Last entries do not match {yl}, {y[-1]}') xl, yl = n[-1].lists self.assertEqual(
np.array(xl == x[-1])
numpy.array
import logging import random from abc import ABC from typing import List import numpy as np import scipy.stats from network import physical_network from experiment_utils.Order import Order class OrderGenerator(ABC): # Generates a set of locations for the next timestep. def generate_orders(self, current_t: int) -> List[Order]: pass class NaiveOrderGenerator(OrderGenerator): default_delivery_time = 1 def __init__(self, num_dcs, num_customers, orders_per_day): self.num_dcs = num_dcs self.num_customers = num_customers self.orders_per_day = orders_per_day def generate_orders(self): # TODO: needs a list of commodities, also needs the customer = "c_" + str(np.random.choice(np.arange(self.num_customers))) dc = "dc_" + str(np.random.choice(np.arange(self.num_dcs))) demand = random.randint(0, 50) return [ Order(demand, dc, customer, self.default_delivery_time) for it in range(self.orders_per_day) ] class ActualOrderGenerator(OrderGenerator): """ The original is independent means for each product customer. """ network: physical_network orders_per_day: int def __init__(self, network: physical_network, orders_per_day): self.network = network self.orders_per_day = orders_per_day def generate_orders(self, current_t) -> List[Order]: return self._generate_orders(self.orders_per_day, current_t) def _generate_orders( self, orders_per_day: int, current_t ): # TODO test and validate. # Choose customers to generate orders with OUT replacement, orders per day must be <= customers chosen_customers = np.random.choice( np.arange(self.network.num_customers), size=orders_per_day, replace=False ) order_means = self.network.customer_means[chosen_customers] demand = np.floor( np.random.multivariate_normal( order_means, np.eye(orders_per_day) * self.network.demand_var, size=self.network.num_commodities, ) ) # shape (num_commodities,num_orders) if (demand < 0).any(): logging.info("Customer means that caused negatives") logging.info(order_means) # raise Exception("Generated a negative order") demand = np.abs(demand) # Create order objects orders = [] for ci in range(len(chosen_customers)): order_demand_vector = demand[:, ci] _chosen_customer = chosen_customers[ci] customer_node = self.network.customers[_chosen_customer] chosen_initial_point = np.random.choice( np.argwhere(self.network.dcs_per_customer_array[ci, :]).reshape(-1) ) initial_point_physical_node = self.network.dcs[chosen_initial_point] time = ( current_t + self.network.planning_horizon - 1 ) # Orders appear on the edge of PH. orders.append( Order( order_demand_vector, initial_point_physical_node, customer_node, time, name=f"oc_{customer_node.node_id}:{time}", ) ) return orders class BiasedOrderGenerator(OrderGenerator): """ # biased is more skewed and there's correlations in products. """ network: physical_network orders_per_day: int customer_means: np.array pz_numerator: float # this is a test def __init__(self, network: physical_network, orders_per_day, pz_numerator=1.0): self.network = network self.orders_per_day = orders_per_day self.customer_covariances = ( self._generate_customer_covariances() ) # shape:(C,K,K) self.customer_means = self._generate_customer_means() self.pz_numerator = pz_numerator def _generate_customer_covariances(self): """ Returns: A covariance matrix with shape (num_customers,K,K) """ K = self.network.num_commodities num_customers = self.network.num_customers return ( scipy.stats.invwishart(K, np.ones(K)) .rvs(size=num_customers) .reshape(num_customers, K, K) ) def _generate_customer_means(self): # total_demand_mean = self.network.demand_mean * self.network.num_customers * self.network.num_commodities return np.random.poisson( self.network.demand_mean / self.network.num_commodities, size=self.network.num_commodities, ) # return np.floor( # np.random.dirichlet(self.network.num_commodities / np.arange(1, self.network.num_commodities + 1), # size=1) * total_demand_mean).reshape(-1) + self.network.demand_mean # shape (commodities) def generate_orders(self, current_t) -> List[Order]: # todo params chosen_customers = np.random.choice( np.arange(self.network.num_customers), size=self.orders_per_day, replace=False, ) order_means = self.network.customer_means[ chosen_customers ] # getting the means from the network but the covariances from here for legacy reasons. K = self.network.num_commodities #### # Generating covariance matrix with inverse Wishart distribution. What does that parameter do? # Like Chi^2 but high dimensional, for generating covariance matrices. covar = scipy.stats.invwishart(K, np.ones(K)).rvs(size=1) orders = [] for ci in range(len(chosen_customers)): means = self.customer_means covar = self.customer_covariances[ci, :, :] # Sampling X from a multivariate normal with the covariance from Wishart. multivariate_normal_x = np.random.multivariate_normal( np.zeros(means.shape), covar, size=1 ) # Extract the probability density of the sampled values. Is the sqrt(diag(covar)) arbitrary? px = scipy.stats.norm(0, np.sqrt(np.diagonal(covar))).cdf( multivariate_normal_x ) # Take those quantiles and plug them into a geometric. This is going to skew the data and project it into the range that we want starting at 0. # qgeom(x,prob). X is a vector of quantiles of the probability of failures in a Bernoulli (shape K). Second param is probabilities. Why pz(1-pz)?? Something related to MLE? # pz = 1 / means # TODO just to check if means are impacting in any way pz = self.pz_numerator / means order_demand = scipy.stats.geom(p=pz * (1 - pz)).ppf(px).flatten() _chosen_customer = chosen_customers[ci] customer_node = self.network.customers[_chosen_customer] chosen_initial_point = np.random.choice( np.argwhere(self.network.dcs_per_customer_array[ci, :]).reshape(-1) ) initial_point_physical_node = self.network.dcs[chosen_initial_point] time = ( current_t + self.network.planning_horizon - 1 ) # Orders appear on the edge of PH. orders.append( Order( order_demand, initial_point_physical_node, customer_node, time, name=f"oc_{customer_node.node_id}:{time}", ) ) return orders class NormalOrderGenerator(BiasedOrderGenerator): """ A makeshift, normal multivariate attempt to reduce the variance by Javier. """ def __init__(self, network: physical_network, orders_per_day): super(NormalOrderGenerator, self).__init__(network, orders_per_day, 1.0) def generate_orders(self, current_t): # todo params chosen_customers = np.random.choice( np.arange(self.network.num_customers), size=self.orders_per_day, replace=False, ) order_means = self.network.customer_means[ chosen_customers ] # getting the means from the network but the covariances from here for legacy reasons. K = self.network.num_commodities #### # Generating covariance matrix with inverse Wishart distribution. What does that parameter do? # Like Chi^2 but high dimensional, for generating covariance matrices. covar = scipy.stats.invwishart(K, np.ones(K)).rvs(size=1) orders = [] for ci in range(len(chosen_customers)): means = self.customer_means covar = self.customer_covariances[ci, :, :] * self.network.demand_var # Round down the ints and add 1 to avoid zero demands. order_demand = ( np.random.multivariate_normal(means, covar).astype(int) + 1 ).astype(float) order_demand = np.where(order_demand < 1.0, 1.0, order_demand) _chosen_customer = chosen_customers[ci] customer_node = self.network.customers[_chosen_customer] chosen_initial_point = np.random.choice(
np.argwhere(self.network.dcs_per_customer_array[ci, :])
numpy.argwhere
import nengo import numpy as np # this is a dummy environment with a simple sensor and motor class ExampleIO: def __init__(self): self.data = 0.0 def sensor(self): return self.data +
np.random.normal(0, 0.1)
numpy.random.normal
""" <NAME> (<EMAIL>) Class to define the Dataset object. """ from PIL import Image import os import numpy as np import scipy.io import pandas as pd class Dataset: def __init__(self, train_df, test_df, val_df, database_root, number_of_slices, store_memory=True): """Initialize the Dataset object Args: train_df (dataframe): Training dataframe from TrainTestSplit.split test_df (dataframe): Testing dataframe from TrainTestSplit.splt val_df (dataframe): Validation dataframe from TrainTestSplit.split database_root (str): db root from config number_of_slices (int): Number of slices per group store_memory (bool, optional): Memory management argument. Defaults to True. """ # for idx, row in train_df.iterrows(): # print(type(row)) # print(row) # #print("Images volumes, {}".format(row.iloc[i*3])) # # #scipy 1.2.3 self.images_train = [] self.images_train_path = [] self.labels_train = [] self.labels_train_path = [] self.labels_liver_train = [] self.labels_liver_train_path = [] if train_df is not None: train_df = pd.read_csv(train_df, delim_whitespace = True) if isinstance(train_df, str) else train_df for idx, row in train_df.iterrows(): if (len(row) > 3): if store_memory: aux_images_train = [] aux_labels_train = [] aux_labels_liver_train = [] for i in range(number_of_slices): mat_file = os.path.join(database_root, str(row.iloc[i * 3])) aux_images_train.append(np.array(scipy.io.loadmat(mat_file)['section'], dtype=np.float32)) self.images_train.append(np.array(aux_images_train)) for i in range(number_of_slices): mat_file = os.path.join(database_root, str(row.iloc[i * 3 + 1])) aux_labels_train.append(np.array(scipy.io.loadmat(mat_file)['section'], dtype=np.float32)) self.labels_train.append(np.array(aux_labels_train)) for i in range(number_of_slices): mat_file = os.path.join(database_root, str(row.iloc[i * 3 + 2])) aux_labels_liver_train.append(np.array(scipy.io.loadmat(mat_file)['section'], dtype=np.float32)) self.labels_liver_train.append(np.array(aux_labels_liver_train)) if (idx + 1) % 1000 == 0: print('Loaded ' + str(idx) + ' train images') aux_images_train_path = [] aux_labels_train_path = [] aux_labels_liver_train_path = [] for i in range(number_of_slices): aux_images_train_path.append(os.path.join(database_root, str(row.iloc[i * 3]))) self.images_train_path.append(np.array(aux_images_train_path)) for i in range(number_of_slices): aux_labels_train_path.append(os.path.join(database_root, str(row.iloc[i * 3 + 1]))) self.labels_train_path.append(np.array(aux_labels_train_path)) for i in range(number_of_slices): aux_labels_liver_train_path.append(os.path.join(database_root, str(row.iloc[i * 3 + 2]))) self.labels_liver_train_path.append(np.array(aux_labels_liver_train_path)) self.images_train_path = np.array(self.images_train_path) self.labels_train_path = np.array(self.labels_train_path) self.labels_liver_train_path = np.array(self.labels_liver_train_path) # Load testing images (path) and labels self.images_test = [] self.images_test_path = [] if test_df is not None: test_df = pd.read_csv(test_df, delim_whitespace = True) if isinstance(test_df, str) else test_df for idx, row in test_df.iterrows(): if (len(row) > 1): if store_memory: aux_images_test = [] for i in range(number_of_slices): mat_file = os.path.join(database_root, str(row.iloc[i * 3])) # os.path.join(database_root, str(line.split()[i * 3])) aux_images_test.append( np.array(scipy.io.loadmat(mat_file)['section'], dtype=np.float32)) self.images_test.append(np.array(aux_images_test)) if (idx + 1) % 1000 == 0: print('Loaded ' + str(idx) + ' test images') aux_images_test_path = [] for i in range(number_of_slices): mat_file = os.path.join(database_root, str(row.iloc[i * 3])) aux_images_test_path.append(mat_file) self.images_test_path.append(np.array(aux_images_test_path)) self.images_val = [] self.images_val_path = [] self.labels_val = [] self.labels_val_path = [] self.labels_liver_val = [] self.labels_liver_val_path = [] if val_df is not None: val_df = pd.read_csv(val_df, delim_whitespace = True) if isinstance(val_df, str) else val_df for idx, row in val_df.iterrows(): if (len(row) > 3): if store_memory: aux_images_val = [] aux_labels_val = [] aux_labels_liver_val = [] for i in range(number_of_slices): mat_file = os.path.join(database_root, str(row.iloc[i * 3])) aux_images_val.append( np.array(scipy.io.loadmat(mat_file)['section'], dtype=np.float32)) self.images_val.append(np.array(aux_images_val)) for i in range(number_of_slices): mat_file = os.path.join(database_root, str(row.iloc[i * 3 + 1])) aux_images_val.append( np.array(scipy.io.loadmat(mat_file)['section'], dtype=np.float32)) self.labels_val.append(np.array(aux_labels_val)) for i in range(number_of_slices): mat_file = os.path.join(database_root, str(row.iloc[i * 3 + 2])) aux_images_val.append( np.array(scipy.io.loadmat(mat_file)['section'], dtype=np.float32)) self.labels_liver_val.append(np.array(aux_labels_liver_val)) if (idx + 1) % 1000 == 0: print('Loaded ' + str(idx) + ' train images') aux_images_val_path = [] aux_labels_val_path = [] aux_labels_liver_val_path = [] for i in range(number_of_slices): aux_images_val_path.append(os.path.join(database_root, str(row.iloc[i * 3]))) self.images_val_path.append(np.array(aux_images_val_path)) for i in range(number_of_slices): aux_labels_val_path.append(os.path.join(database_root, str(row.iloc[i * 3 + 1]))) self.labels_val_path.append(np.array(aux_labels_val_path)) for i in range(number_of_slices): aux_labels_liver_val_path.append(os.path.join(database_root, str(row.iloc[i * 3 + 2]))) self.labels_liver_val_path.append(np.array(aux_labels_liver_val_path)) self.images_val_path = np.array(self.images_val_path) self.labels_val_path = np.array(self.labels_val_path) self.labels_liver_val_path = np.array(self.labels_liver_val_path) print('Done initializing Dataset') # Init parameters self.train_ptr = 0 self.test_ptr = 0 self.val_ptr = 0 self.train_size = len(self.images_train_path) self.test_size = len(self.images_test_path) self.val_size = len(self.images_val_path) self.train_idx = np.arange(self.train_size) self.val_idx =
np.arange(self.val_size)
numpy.arange
# MIT License # # Copyright (c) 2018 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ This module contains an implementation of the the symmetry functions used in the Parkhill paper https://arxiv.org/pdf/1711.06385.pdf. This implementation is different. It works for both data sets where all the molecules are the same but in different configurations and for datasets with all different molecules. Note: it is all in single precision. """ import tensorflow as tf import numpy as np def acsf_rad(xyzs, Zs, radial_cutoff, radial_rs, eta): """ This does the radial part of the symmetry function (G2 function in Behler's papers). It works only for datasets where all samples are the same molecule but in different configurations. :param xyzs: tf tensor of shape (n_samples, n_atoms, 3) contaning the coordinates of each atom in each data sample :param Zs: tf tensor of shape (n_samples, n_atoms) containing the atomic number of each atom in each data sample :param radial_cutoff: scalar tensor :param radial_rs: tf tensor of shape (n_rs,) with the R_s values :param eta: tf scalar :return: tf tensor of shape (n_samples, n_atoms, n_atoms, n_rs) """ # Calculating the distance matrix between the atoms of each sample with tf.name_scope("Distances"): dxyzs = tf.expand_dims(xyzs, axis=2) - tf.expand_dims(xyzs, axis=1) dist_tensor = tf.cast(tf.norm(dxyzs, axis=3), dtype=tf.float32) # (n_samples, n_atoms, n_atoms) # Indices of terms that need to be zero (diagonal elements) mask_0 = tf.zeros(tf.shape(dist_tensor)) mask_1 = tf.ones(tf.shape(Zs)) where_eq_idx = tf.cast(tf.matrix_set_diag(mask_0, mask_1), dtype=tf.bool) # Calculating the exponential term with tf.name_scope("Exponential_term"): expanded_rs = tf.expand_dims(tf.expand_dims(tf.expand_dims(radial_rs, axis=0), axis=0), axis=0) # (1, 1, 1, n_rs) expanded_dist = tf.expand_dims(dist_tensor, axis=-1) # (n_samples, n_atoms, n_atoms, 1) exponent = - eta * tf.square(tf.subtract(expanded_dist, expanded_rs)) exp_term = tf.exp(exponent) # (n_samples, n_atoms, n_atoms, n_rs) # Calculating the fc terms with tf.name_scope("fc_term"): # Finding where the distances are less than the cutoff where_less_cutoff = tf.less(dist_tensor, radial_cutoff) # Calculating all of the fc function terms fc = 0.5 * (tf.cos(3.14159265359 * dist_tensor / radial_cutoff) + 1.0) # Setting to zero the terms where the distance is larger than the cutoff zeros = tf.zeros(tf.shape(dist_tensor), dtype=tf.float32) cut_off_fc = tf.where(where_less_cutoff, fc, zeros) # (n_samples, n_atoms, n_atoms) # Cleaning up diagonal terms clean_fc_term = tf.where(where_eq_idx, zeros, cut_off_fc) # Cleaning up dummy atoms terms dummy_atoms = tf.logical_not(tf.equal(Zs, tf.constant(0, dtype=tf.int32))) # False where there are dummy atoms dummy_mask = tf.logical_and(tf.expand_dims(dummy_atoms, axis=1), tf.expand_dims(dummy_atoms, axis=-1)) cleaner_fc_term = tf.where(dummy_mask, clean_fc_term, zeros) # Multiplying exponential and fc terms expanded_fc = tf.expand_dims(cleaner_fc_term, axis=-1) # (n_samples, n_atoms, n_atoms, 1) with tf.name_scope("Rad_term"): presum_term = tf.multiply(expanded_fc, exp_term) # (n_samples, n_atoms, n_atoms, n_rs) return presum_term def acsf_ang(xyzs, Zs, angular_cutoff, angular_rs, theta_s, zeta, eta): """ This does the angular part of the symmetry function as mentioned here: https://arxiv.org/pdf/1711.06385.pdf It only works for systems where all the samples are the same molecule but in different configurations. :param xyzs: tf tensor of shape (n_samples, n_atoms, 3) contaning the coordinates of each atom in each data sample :param Zs: tf tensor of shape (n_samples, n_atoms) containing the atomic number of each atom in each data sample :param angular_cutoff: scalar tensor :param angular_rs: tf tensor of shape (n_ang_rs,) with the equivalent of the R_s values from the G2 :param theta_s: tf tensor of shape (n_thetas,) :param zeta: tf tensor of shape (1,) :param eta: tf tensor of shape (1,) :return: tf tensor of shape (n_samples, n_atoms, n_atoms, n_atoms, n_ang_rs * n_thetas) """ # Finding the R_ij + R_ik term with tf.name_scope("Sum_distances"): dxyzs = tf.expand_dims(xyzs, axis=2) - tf.expand_dims(xyzs, axis=1) dist_tensor = tf.cast(tf.norm(dxyzs, axis=3), dtype=tf.float32) # (n_samples, n_atoms, n_atoms) # This is the tensor where element sum_dist_tensor[0,1,2,3] is the R_12 + R_13 in the 0th data sample sum_dist_tensor = tf.expand_dims(dist_tensor, axis=3) + tf.expand_dims(dist_tensor, axis=2) # (n_samples, n_atoms, n_atoms, n_atoms) # Problem with the above tensor: we still have the R_ii + R_ik distances which are non zero and could be summed # These need to be set to zero n_atoms = Zs.get_shape().as_list()[1] zarray = np.zeros((n_atoms, n_atoms, n_atoms)) for i in range(n_atoms): for j in range(n_atoms): for k in range(n_atoms): if i == j or i == k or j == k: zarray[i, j, k] = 1 # Make a bool tensor of the indices where_eq_idx = tf.tile(tf.expand_dims(tf.convert_to_tensor(zarray, dtype=tf.bool), axis=0), multiples=[tf.shape(sum_dist_tensor)[0], 1, 1, 1]) # For all the elements that are true in where_eq_idx, turn the elements of sum_dist_tensor to zero zeros_1 = tf.zeros(tf.shape(sum_dist_tensor), dtype=tf.float32) # Now finding the fc terms with tf.name_scope("Fc_term"): # 1. Find where Rij and Rik are < cutoff where_less_cutoff = tf.less(dist_tensor, angular_cutoff) # 2. Calculate the fc on the Rij and Rik tensors fc_1 = 0.5 * (tf.cos(3.14159265359 * dist_tensor / angular_cutoff) + 1.0) # 3. Apply the mask calculated in 1. to zero the values for where the distances are > than the cutoff zeros_2 = tf.zeros(tf.shape(dist_tensor), dtype=tf.float32) cut_off_fc = tf.where(where_less_cutoff, fc_1, zeros_2) # (n_samples, n_atoms, n_atoms) # 4. Multiply the two tensors elementwise fc_term = tf.multiply(tf.expand_dims(cut_off_fc, axis=3), tf.expand_dims(cut_off_fc, axis=2)) # (n_samples, n_atoms, n_atoms, n_atoms) # 5. Cleaning up the terms that should be zero because there are equal indices clean_fc_term = tf.where(where_eq_idx, zeros_1, fc_term) # 6. Cleaning up the terms due to the dummy atoms dummy_atoms = tf.logical_not(tf.equal(Zs, tf.constant(0, dtype=tf.int32))) # False where there are dummy atoms dummy_mask_2d = tf.logical_and(tf.expand_dims(dummy_atoms, axis=1), tf.expand_dims(dummy_atoms, axis=-1)) dummy_mask_3d = tf.logical_and(tf.expand_dims(dummy_mask_2d, axis=1), tf.expand_dims(tf.expand_dims(dummy_atoms, axis=-1), axis=-1)) cleaner_fc_term = tf.where(dummy_mask_3d, clean_fc_term, zeros_1) # Now finding the theta_ijk term with tf.name_scope("Theta"): # Doing the dot products of all the possible vectors dots_dxyzs = tf.cast(tf.reduce_sum(tf.multiply(tf.expand_dims(dxyzs, axis=3), tf.expand_dims(dxyzs, axis=2)), axis=4), dtype=tf.float32) # (n_samples, n_atoms, n_atoms, n_atoms) # Doing the products of the magnitudes dist_prod = tf.multiply(tf.expand_dims(dist_tensor, axis=3), tf.expand_dims(dist_tensor, axis=2)) # (n_samples, n_atoms, n_atoms, n_atoms) # Dividing the dot products by the magnitudes to obtain cos theta cos_theta = tf.divide(dots_dxyzs, dist_prod) # Taking care of the values that due numerical error are just above 1.0 or below -1.0 cut_cos_theta = tf.clip_by_value(cos_theta, tf.constant(-1.0), tf.constant(1.0)) # Applying arc cos to find the theta value theta = tf.acos(cut_cos_theta) # (n_samples, n_atoms, n_atoms, n_atoms) # Removing the NaNs created by dividing by zero clean_theta = tf.where(where_eq_idx, zeros_1, theta) # cleaning up NaNs due by dummy atoms dummy_atoms = tf.logical_not(tf.equal(Zs, tf.constant(0, dtype=tf.int32))) # False where there are dummy atoms dummy_mask_2d = tf.logical_and(tf.expand_dims(dummy_atoms, axis=1), tf.expand_dims(dummy_atoms, axis=-1)) dummy_mask_3d = tf.logical_and(tf.expand_dims(dummy_mask_2d, axis=1), tf.expand_dims(tf.expand_dims(dummy_atoms, axis=-1), axis=-1)) cleaner_theta = tf.where(dummy_mask_3d, clean_theta, zeros_1) # Finding the (0.5 * clean_sum_dist - R_s) term with tf.name_scope("Exp_term"): # Augmenting the dims of angular_rs expanded_rs = tf.expand_dims(tf.expand_dims(tf.expand_dims(tf.expand_dims(angular_rs, axis=0), axis=0), axis=0), axis=0) # (1, 1, 1, 1, n_rs) # Augmenting the dim of clean_sum_dist *0.5 # expanded_sum = tf.expand_dims(clean_sum_dist * 0.5, axis=-1) expanded_sum = tf.expand_dims(sum_dist_tensor * 0.5, axis=-1) # Combining them brac_term = tf.subtract(expanded_sum, expanded_rs) # Finally making the exponential term exponent = - eta * tf.square(brac_term) exp_term = tf.exp(exponent) # (n_samples, n_atoms, n_atoms, n_atoms, n_rs) # Finding the cos(theta - theta_s) term with tf.name_scope("Cos_term"): # Augmenting the dimensions of theta_s expanded_theta_s = tf.expand_dims(tf.expand_dims(tf.expand_dims(tf.expand_dims(theta_s, axis=0), axis=0), axis=0), axis=0) # Augmenting the dimensions of theta expanded_theta = tf.expand_dims(cleaner_theta, axis=-1) # Subtracting them and do the cos cos_theta_term = tf.cos( tf.subtract(expanded_theta, expanded_theta_s)) # (n_samples, n_atoms, n_atoms, n_atoms, n_theta_s) # Make the whole cos term of the sum cos_term = tf.pow(tf.add(tf.ones(tf.shape(cos_theta_term), dtype=tf.float32), cos_theta_term), zeta) # (n_samples, n_atoms, n_atoms, n_atoms, n_theta_s) # Final product of terms inside the sum time by 2^(1-zeta) expanded_fc = tf.expand_dims(tf.expand_dims(cleaner_fc_term, axis=-1), axis=-1, name="Expanded_fc") expanded_cos = tf.expand_dims(cos_term, axis=-2, name="Expanded_cos") expanded_exp = tf.expand_dims(exp_term, axis=-1, name="Expanded_exp") const = tf.pow(tf.constant(2.0, dtype=tf.float32), (1.0 - zeta)) with tf.name_scope("Ang_term"): prod_of_terms = const * tf.multiply(tf.multiply(expanded_cos, expanded_exp), expanded_fc) # (n_samples, n_atoms, n_atoms, n_atoms, n_rs, n_theta_s) # Reshaping to shape (n_samples, n_atoms, n_atoms, n_atoms, n_rs*n_theta_s) presum_term = tf.reshape(prod_of_terms, [tf.shape(prod_of_terms)[0], n_atoms, n_atoms, n_atoms, theta_s.shape[0] * angular_rs.shape[0]]) return presum_term def sum_rad(pre_sum, Zs, elements_list, radial_rs): """ Sum of the terms in the radial part of the symmetry function. The terms corresponding to the same neighbour identity are summed together. :param pre_sum: tf tensor of shape (n_samples, n_atoms, n_atoms, n_rs) :param Zs: tf tensor of shape (n_samples, n_atoms) :param elements_list: np.array of shape (n_elements,) :param radial_rs: tf tensor of shape (n_rad_rs,) :return: tf tensor of shape (n_samples, n_atoms, n_rad_rd * n_elements) """ n_atoms = Zs.get_shape().as_list()[1] n_elements = len(elements_list) n_rs = radial_rs.get_shape().as_list()[0] ## Making a matrix of all the possible neighbouring atoms # No need to clean up diagonal elements because they are already set to zero in the presum term neighb_atoms = tf.tile(tf.expand_dims(tf.expand_dims(Zs, axis=1), axis=-1), multiples=[1, n_atoms, 1, n_rs]) # (n_samples, n_atoms, n_atoms, n_rs) zeros = tf.zeros(tf.shape(pre_sum), dtype=tf.float32) # Looping over all the possible elements in the system and extracting the relevant terms from the pre_sum term pre_sum_terms = [] for i in range(n_elements): element = tf.constant(elements_list[i], dtype=tf.int32) equal_elements = tf.equal(neighb_atoms, element) slice_presum = tf.where(equal_elements, pre_sum, zeros) slice_sum = tf.reduce_sum(slice_presum, axis=[2]) pre_sum_terms.append(slice_sum) # Concatenating the extracted terms. final_term = tf.concat(pre_sum_terms, axis=-1, name="sum_rad") # Cleaning up the dummy atoms descriptors dummy_atoms = tf.logical_not(tf.equal(Zs, tf.constant(0, dtype=tf.int32))) # False where there are dummy atoms mask = tf.tile(tf.expand_dims(dummy_atoms, axis=-1), multiples=[1, 1, n_elements*n_rs]) # clean_final_term = tf.where(mask, final_term, tf.zeros(final_term.shape, dtype=tf.float32)) clean_final_term = tf.where(mask, final_term, tf.zeros(tf.shape(final_term), dtype=tf.float32)) return clean_final_term def sum_ang(pre_sumterm, Zs, element_pairs_list, angular_rs, theta_s): """ This function does the sum of the terms in the radial part of the symmetry function. Three body interactions where the two neighbours are the same elements are summed together. :param pre_sumterm: tf tensor of shape (n_samples, n_atoms, n_ang_rs * n_thetas) :param Zs: tf tensor of shape (n_samples, n_atoms) :param element_pairs_list: np array of shape (n_elementpairs, 2) :param angular_rs: tf tensor of shape (n_ang_rs,) :param theta_s: tf tensor of shape (n_thetas,) :return: tf tensor of shape (n_samples, n_atoms, n_ang_rs * n_thetas * n_elementpairs) """ n_atoms = Zs.get_shape().as_list()[1] n_pairs = len(element_pairs_list) n_rs = angular_rs.get_shape().as_list()[0] n_thetas = theta_s.get_shape().as_list()[0] # Making the pair matrix Zs_exp_1 = tf.expand_dims(tf.tile(tf.expand_dims(Zs, axis=1), multiples=[1, n_atoms, 1]), axis=-1) Zs_exp_2 = tf.expand_dims(tf.tile(tf.expand_dims(Zs, axis=-1), multiples=[1, 1, n_atoms]), axis=-1) neighb_pairs = tf.concat([Zs_exp_1, Zs_exp_2], axis=-1) # (n_samples, n_atoms, n_atoms, 2) # Cleaning up diagonal elements zarray =
np.zeros((n_atoms, n_atoms, 2))
numpy.zeros
# Calculate Pearson correlation among columns import os import pathlib import pickle import numpy as np import pandas as pd from scipy import stats from src import MetaData, QueryDatabase def get_table_values(override=False, sample_size=10000): """ Returns an array of column values of given sample size @type override: object @return: """ column_val_path = f'{os.environ["WORKING_DIRECTORY"]}/results/sampled_columns.obj' table_names_path = f'{os.environ["WORKING_DIRECTORY"]}/results/table_names.obj' if not override and os.path.isfile(column_val_path) and os.path.isfile(table_names_path): with open(column_val_path, 'rb') as file: columns = pickle.load(file) with open(table_names_path, 'rb') as file: table_names = pickle.load(file) return columns, table_names tables = MetaData.get_tables(f'{os.environ["WORKING_DIRECTORY"]}/data/datasets.txt') columns = [] table_names = [] count = 0 for table in tables: table_name = table.replace(":", ".") table_path = f'{os.environ["WORKING_DIRECTORY"]}/data/tables/{table_name}.npy' if not os.path.isfile(table_path): print(f'table {table_name} does not have numeric columns.') continue with open(table_path, 'rb') as file: table_data = np.load(file, allow_pickle=True) if table_data.shape[0] > sample_size: table_data = table_data[np.random.default_rng().choice(table_data.shape[0], sample_size, replace=False)] for col in np.transpose(table_data): columns.append(col.astype('float64')) table_names.append(table_name) count += 1 print(f'Loaded {count} tables.') with open(column_val_path, 'wb') as file: pickle.dump(columns, file) with open(table_names_path, 'wb') as file: pickle.dump(table_names, file) return columns, table_names def calculate_pearson_correlation(override=False, sample_size=10000, num_permutations=10): """ Calculate Pearson correlation for each column combination @param override: @param sample_size: @param num_permutations: """ columns, table_names = get_table_values(override=override, sample_size=sample_size) corr_matrix = np.zeros((len(columns), len(columns))) count = 0 for i in range(len(columns)): for j in range(i + 1, len(columns)): len_i = len(columns[i]) len_j = len(columns[j]) col_i = columns[i] col_j = columns[j] table_name_i = table_names[i] table_name_j = table_names[j] if table_name_i != table_name_j: correlation = 0 for _ in range(num_permutations): col_i = col_i[np.random.default_rng().choice(col_i.shape[0], min(len_i, len_j), replace=False)] col_j = col_j[np.random.default_rng().choice(col_j.shape[0], min(len_i, len_j), replace=False)] correlation = max(correlation, stats.pearsonr(col_i, col_j)[0]) else: correlation = stats.pearsonr(col_i, col_j)[0] corr_matrix[i][j] = correlation count += 1 if count % 10000 == 0: print(f'Completed {count} correlation calculations.') return corr_matrix def save_corr_matrix(override=False, sample_size=10000, num_permutations=10): """ Saves correlation matrix locally @param override: @param sample_size: @param num_permutations: @return: """ corr_matrix = calculate_pearson_correlation(override=override, sample_size=sample_size, num_permutations=num_permutations) np.savez(f'{os.environ["WORKING_DIRECTORY"]}/results/corr_matrix.npz', corr_matrix=corr_matrix) return corr_matrix def get_corr_matrix(override=False, sample_size=10000, num_permutations=10): """ Get correlation matrix from saved file if present else calculate @param override: @param sample_size: @param num_permutations: @return: """ file_path = f'{os.environ["WORKING_DIRECTORY"]}/results/corr_matrix.npz' if override or not os.path.isfile(file_path): corr_matrix = save_corr_matrix(override=override, sample_size=sample_size, num_permutations=num_permutations) else: corr_matrix =
np.load(file_path)
numpy.load
# -*- coding: utf-8 -*- """Contains the plotting-specific functions specific to the velocity width analysis.""" from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from fake_spectra import plot_spectra as ps from fake_spectra import haloassigned_spectra as hs import kstest as ks import vw_spectra as vw try: xrange(1) except NameError: xrange = range def _bootstrap_sample(vel_data, v_table, samples, error): """Generate a Monte Carlo error sample of the differential distribution.""" # Generate some Monte Carlo samples where each element is perturbed by # a Gaussian, sigma given by error. index = np.random.random_integers(0, np.size(vel_data)-1, samples) bootstrap = vel_data[index] if error > 0.: bootstrap += np.random.normal(0,error,size=samples) nn = np.histogram(bootstrap,v_table)[0] return nn class VWPlotSpectra(hs.HaloAssignedSpectra, ps.PlottingSpectra, vw.VWSpectra): """Extends PlottingSpectra with velocity width specific code.""" def plot_vel_width(self, elem, ion, dv=0.17, color="red", ls="-"): """Plot the velocity widths of this snapshot Parameters: elem - element to use ion - ionisation state: 1 is neutral. dv - bin spacing """ (vbin, vels) = self.vel_width_hist(elem, ion, dv) plt.semilogx(vbin, vels, color=color, lw=3, ls=ls,label=self.label) def plot_cum_vel_width(self, elem, ion, norm, dv=0.1, color="red", ls="-"): """Plot the velocity widths of this snapshot Parameters: elem - element to use ion - ionisation state: 1 is neutral. dv - bin spacing """ (vbin, vels) = self.vel_width_hist(elem, ion, dv) cvels = np.cumsum(vels) cvels = cvels*norm/cvels[-1] plt.semilogx(vbin, cvels, color=color, lw=3, ls=ls,label=self.label) def plot_cum_f_peak(self, elem, ion, norm, dv=0.01, color="red", ls="-"): """Plot the velocity widths of this snapshot Parameters: elem - element to use ion - ionisation state: 1 is neutral. dv - bin spacing """ (vbin, vels) = self.f_peak_hist(elem, ion, dv) cvels = np.cumsum(vels) cvels = cvels*norm/cvels[-1] plt.plot(vbin, cvels, color=color, lw=3, ls=ls,label=self.label) plt.xlabel(r"$f_\mathrm{edg}$") def plot_f_meanmedian_errors(self, elem, ion, samples, cumulative=False, nv_table = 11, color="red"): """Plot 68% contour for error on the fmm distribution""" f_peak = self.vel_mean_median(elem, ion) ind = self.get_filt(elem, ion) f_peak = f_peak[ind] v_table=np.linspace(0,1,nv_table) self._plot_errors(f_peak, v_table, samples, 0., cumulative, False, color) def plot_f_peak_errors(self, elem, ion, samples, cumulative=False, nv_table=11, color="red"): """Plot 68% contour for error on the fpeak distribution""" f_peak = self.vel_peak(elem, ion) ind = self.get_filt(elem, ion) f_peak = f_peak[ind] v_table=np.linspace(0,1,nv_table) self._plot_errors(f_peak, v_table, samples, 0., cumulative, False, color) def plot_eq_width_errors(self, elem, ion, line, samples, cumulative=False, min_width = -1.6, nv_table=11, color="red"): """Plot 68% contour for error on the fpeak distribution""" eq_width = self.equivalent_width(elem, ion, line) ind = self.get_filt(elem, ion) eq_width = eq_width[ind] v_table = np.logspace(min_width, np.log10(np.max(eq_width)), nv_table) self._plot_errors(np.log10(eq_width), np.log10(v_table), samples, 0.05, cumulative, False, color) def plot_vw_errors(self, elem, ion, samples, cumulative=False, nv_table=11, color="red"): """Plot 68% contour for error on the velocity width distribution""" vel_width = self.vel_width(elem, ion) ind = self.get_filt(elem, ion) vel_width = vel_width[ind] v_table=np.logspace(1,np.log10(np.max(vel_width)+10),nv_table) self._plot_errors(vel_width, v_table, samples, 5, cumulative, True, color) def _plot_errors(self, vel_data, v_table, samples, error, cumulative=False, lognorm=True, color="red"): """Find and plot a 68% contour for a subsample of size samples, by Monte Carlo.""" vbin = np.array([(v_table[i]+v_table[i+1])/2. for i in range(0,np.size(v_table)-1)]) #Get a subsample cdfs = np.array([_bootstrap_sample(vel_data, v_table, samples, error) for _ in xrange(10000)]) if cumulative: cdfs = np.cumsum(cdfs, axis=1) norm = 1 else: if lognorm: v_table = np.log10(v_table) norm = samples * np.array([(-v_table[i]+v_table[i+1]) for i in xrange(np.size(v_table)-1)]) lower = np.percentile(cdfs, 16, axis=0)/norm upper = np.percentile(cdfs, 84, axis=0)/norm plt.fill_between(vbin, lower, upper, color=color, alpha=0.3) def plot_f_meanmedian(self, elem, ion, dv=0.06, color="red", ls="-"): """ Plot an f_mean_median histogram For args see plot_vel_width """ (vbin, vels) = self.f_meanmedian_hist(elem, ion, dv) plt.plot(vbin, vels, color=color, lw=3, ls=ls,label=self.label) plt.xlabel(r"$f_\mathrm{mm}$") def plot_f_peak(self, elem, ion, dv=0.06, color="red", ls="-"): """ Plot an f_peak histogram For args see plot_vel_width """ (vbin, vels) = self.f_peak_hist(elem, ion, dv) plt.plot(vbin, vels, color=color, lw=3, ls=ls,label=self.label) plt.xlabel(r"$f_\mathrm{edg}$") def plot_sep_frac(self,elem = "Si", ion = 2, thresh = 1e-1, mindist = 15, dv = 0.2, color="blue", ls="-"): """ Plots the fraction of spectra in each velocity width bin which are separated. Threshold is as a percentage of the maximum value. mindist is in km/s """ sep = self.get_separated(elem, ion, thresh,mindist) vels = self.vel_width(elem, ion) ind = self.get_filt(elem, ion) v_table = 10**np.arange(1, 3, dv) vbin = np.array([(v_table[i]+v_table[i+1])/2. for i in range(0,np.size(v_table)-1)]) hist1 = np.histogram(vels[ind], v_table) hist2 = np.histogram(vels[ind][sep],v_table) hist1[0][np.where(hist1[0] == 0)] = 1 plt.semilogx(vbin, hist2[0]/(1.*hist1[0]), color=color, ls=ls, label=self.label) def plot_vel_width_breakdown(self, elem = "Si", ion = 2, dv = 0.1): """ Plots the fraction of the total velocity width histogram in a series of virial velocity bins """ #Find velocity width vels = self.vel_width(elem, ion) ii = self.get_filt(elem, ion) self._plot_breakdown(vels,ii,(0, 60, 120), (60, 120, 900), ("< 60", "60-120", "> 120"),dv) plt.xlabel(r"$v_\mathrm{90}$ (km s$^{-1}$)") plt.ylim(0,1) def plot_f_peak_breakdown(self, elem = "Si", ion = 2, dv = 0.05): """ Plots the fraction of the total fedge histogram in a series of virial velocity bins """ #Find velocity width vels = self.vel_peak(elem, ion) ii = self.get_filt(elem, ion) self._plot_breakdown(vels,ii,(0, 50), (50, 900), ("< 50", "> 50"),dv, False) plt.xlabel(r"$f_\mathrm{edg}$") plt.ylim(0,1) plt.xlim(0,1) plt.legend(loc=1,ncol=2) def plot_mult_halo_frac(self,elem = "Si", ion = 2, dv = 0.2, color="blue", ls="-"): """ Plots the fraction of spectra in each velocity width bin which are separated. Threshold is as a percentage of the maximum value. mindist is in km/s """ #Find velocity width (halos, subhalos) = self.find_nearby_halos() vels = self.vel_width(elem, ion) ii = self.get_filt(elem, ion) #Find virial velocity (halo, _) = self.find_nearest_halo() ind = np.where(halo[ii] > 0) # virial = np.ones_like(halo, dtype=np.double) # virial[ind] = self.virial_vel(halo[ind]) vwvir = vels[ii][ind] #/virial[ind] #Make bins v_table = 10**np.arange(np.min(np.log10(vwvir)),np.max(np.log10(vwvir)) , dv) vbin = np.array([(v_table[i]+v_table[i+1])/2. for i in range(0,np.size(v_table)-1)]) #Histogram of vel width / virial vel hist1 = np.histogram(vwvir, v_table) hist1[0][np.where(hist1[0] == 0)] = 1 #Find places with multiple halos subhalo_parent = [list(self.sub_sub_index[ss]) for ss in subhalos] allh = np.array([list(set(subhalo_parent[ii] + halos[ii])) for ii in xrange(self.NumLos)]) indmult = np.where([len(aa) > 1 for aa in allh[ind]]) histmult = np.histogram(vwvir[indmult],v_table) plt.semilogx(vbin, histmult[0]/(1.*hist1[0]), color=color, ls=ls, label=self.label) def plot_Z_vs_vel_width(self,elem="Si", ion=2, color="blue",color2="darkblue"): """Plot the correlation between metallicity and velocity width""" vel = self.vel_width(elem, ion) met = self.get_metallicity() #Ignore objects too faint to be seen ind2 = np.where(met > 1e-4) met = met[ind2] vel = vel[ind2] self._plot_2d_contour(vel, met, 10, "Z vel sim", color, color2, fit=True) plt.plot(vel, met, 'o', color=color) plt.xlim(10,2e3) plt.ylabel(r"$\mathrm{Z} / \mathrm{Z}_\odot$") plt.xlabel(r"$v_\mathrm{90}$ (km s$^{-1}$)") def plot_vel_vs_mass(self,elem, ion, color="blue",color2="darkblue"): """Plot the correlation between mass and metallicity, with a fit""" vel = self.vel_width(elem, ion) self._plot_xx_vs_mass(vel, "vel",color,color2) def kstest(self, Zdata, veldata, elem="Si", ion=2): """Find the 2D KS test value of the vel width and log metallicity with respect to an external dataset, veldata and Z data""" met = self.get_metallicity() ind = self.get_filt(elem, ion) met = np.log10(met[ind]) vel = np.log10(self.vel_width(elem, ion)[ind]) data2 = np.array([met,vel]).T data = np.array([np.log10(Zdata), np.log10(veldata)]).T return ks.ks_2d_2samp(data,data2) def plot_virial_vel_vs_vel_width(self,elem, ion,color="red", ls="-", label="", dm=0.1): """Plot a histogram of the velocity widths vs the halo virial velocity""" (halos, _) = self.find_nearest_halo() ind = self.get_filt(elem,ion) f_ind = np.where(halos[ind] != -1) vel = self.vel_width(elem, ion)[ind][f_ind] virial = self.virial_vel(halos[ind][f_ind])+0.1 vvvir = vel/virial m_table = 10**np.arange(np.log10(np.min(vvvir)), np.log10(np.max(vvvir)), dm) mbin = np.array([(m_table[i]+m_table[i+1])/2. for i in range(0,
np.size(m_table)
numpy.size
#Some tools for sound processing and visualization. import numpy as np import matplotlib.pyplot as plt import scipy import scipy.io.wavfile from scipy import fftpack from skimage import util from magenta.models.nsynth import utils from magenta.models.nsynth.wavenet import fastgen #Need to install this magenta model in directory in order to execute. audio_file_path = 'Sample_Audio.wav' #scipy function wavfile.read, just for sample rate in case of unknown. def getSampleRate(filename): fid = open(filename, 'rb') try: file_size, is_big_endian = scipy.io.wavfile._read_riff_chunk(fid) # find out how to read the file channels = 1 # assume 1 channel and 8 bit depth if there is no format chunk bit_depth = 8 while fid.tell() < file_size: #read the file a couple of bytes at a time # read the next chunk chunk_id = fid.read(4) if chunk_id == b'fmt ': # retrieve formatting information fmt_chunk = scipy.io.wavfile._read_fmt_chunk(fid, is_big_endian) format_tag, channels, fs = fmt_chunk[1:4] bit_depth = fmt_chunk[6] if bit_depth not in (8, 16, 32, 64, 96, 128): raise ValueError("Unsupported bit depth: the wav file " "has {}-bit data.".format(bit_depth)) finally: if not hasattr(filename, 'read'): fid.close() else: fid.seek(0) print(fs) #Magenta model to synthezise new sound. Uses librosa as one of the core modules. def Plot_SingleFile(file_name, sampleRate): audio = utils.load_audio(file_name, sample_length=70000) #sample_length for how long will it be. sample_length = audio.shape[0] print('{} samples, {} seconds'.format(sample_length, sample_length / float(sampleRate))) #Encoding for new sound part. encoding = fastgen.encode(audio, 'model.ckpt-200000', sample_length) print(encoding.shape) np.save(file_name + '.npy', encoding) fig, axs = plt.subplots(2, 1, figsize = (10,5)) axs[0].plot(audio) axs[0].set_title('Audio Signal') axs[1].plot(encoding[0]); axs[1].set_title('NSynth Encoding') #synthesis fastgen.synthesize(encoding, save_paths=['gen_' + file_name], samples_per_save=sample_length) #To combine sounds (Magenta takes in representation tumbre, tonality and change over time) def load_encoding(fname, sample_lenght = None, sr = 16000, ckpt = 'model.ckpt-200000'): audio = utils.load_audio(fname, sample_length = sample_lenght, sr = sr) encoding = fastgen.encode(audio, ckpt, sample_lenght) return audio, encoding def Combine_Plot(file1, file2): sample_length = 20000 #Duration aud1, enc1 = load_encoding(file1, sample_length) aud2, enc2 = load_encoding(file2 , sample_length) enc_mix = (enc1 + enc2)/ 2.0 fig, axs = plt.subplots(3, 1, figsize = (10, 7)) fig, axs = plt.subplots(3, 1, figsize=(10, 7)) axs[0].plot(enc1[0]); axs[0].set_title('Encoding 1') axs[1].plot(enc2[0]); axs[1].set_title('Encoding 2') axs[2].plot(enc_mix[0]); axs[2].set_title('Average') def fade(encoding, mode='in'): length = encoding.shape[1] fadein = (0.5 * (1.0 - np.cos(3.1415 * np.arange(length) / float(length)))).reshape(1, -1, 1) if mode == 'in': return fadein * encoding else: return (1.0 - fadein) * encoding def crossfade(encoding1, encoding2): return fade(encoding1, 'out') + fade(encoding2, 'in') def Combine_Synth(file1, file2): sample_length = 20000 #Duration aud1, enc1 = load_encoding(file1, sample_length) aud2, enc2 = load_encoding(file2, sample_length) fastgen.synthesize(crossfade(enc1, enc2), save_paths = ['crossfade.wav']) #Visualization! def fft_index(n): return np.append(np.arange(n//2,n), np.arange(0, n//2)) def fft_unpack(x): return [x[i] for i in fft_index(len(x))] def fft(x): X = fftpack.fft(x) return fft_unpack(X) def SinglePlot(sampleRate, dataR, freqDataR): plt.subplot(411) timeAxis = np.arange(0,len(dataR)/sampleRate,1/sampleRate) plt.plot(timeAxis[0:1000], dataR[0:1000]) plt.subplot(412) freqAxis = sampleRate*np.arange(-1/2,1/2,1/len(freqDataR)) plt.plot(freqAxis, freqDataR) plt.show() def waveFormPlot(file): rate, audio = scipy.io.wavfile.read(file) #audio = np.mean(audio, axis = 1) #converting file to mono by #average of left and right side. N = audio.shape[0] L = N/rate f, ax = plt.subplots() ax.plot(np.arange(N)/rate, audio) ax.set_xlabel('Time: Seconds') ax.set_ylabel('Amplitude') print('Audio lenght: {:.2f} seconds'.format(L)) def spectogramPlot(file): M = 1024 #sample number, around 0.2 seconds rate, data = scipy.io.wavfile.read(file) N = data.shape[0] L = N/rate slices = util.view_as_windows(data, window_shape = (M,), step = 1) print('Audio shape: {}, Sliced audio shape: {}'.format(data.shape, slices.shape)) win = np.hanning(M + 1)[:-1] slices = slices*win slices = slices.T print('Shape of slices:', slices.shape) spectrum = np.fft.fft(slices, axis = 0)[:M//2 + 1:-1] spectrum = np.abs(spectrum) f, ax = plt.subplots(figsize = (4.8, 2.4)) S =
np.abs(spectrum)
numpy.abs
from __future__ import print_function import itertools import math import os import random import shutil import tempfile import unittest import uuid import numpy as np import tensorflow as tf import coremltools import coremltools.models.datatypes as datatypes from coremltools.models import _MLMODEL_FULL_PRECISION, _MLMODEL_HALF_PRECISION from coremltools.models import neural_network as neural_network from coremltools.models.utils import macos_version from coremltools.models.neural_network import flexible_shape_utils np.random.seed(10) MIN_MACOS_VERSION_REQUIRED = (10, 13) LAYERS_10_15_MACOS_VERSION = (10, 15) def _get_unary_model_spec(x, mode, alpha=1.0): input_dim = x.shape input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_unary(name='unary', input_name='data', output_name='output', mode=mode, alpha=alpha) return builder.spec class CorrectnessTest(unittest.TestCase): def runTest(self): pass def _compare_shapes(self, np_preds, coreml_preds): return np.squeeze(np_preds).shape == np.squeeze(coreml_preds).shape def _compare_nd_shapes(self, np_preds, coreml_preds, shape=()): if shape: return coreml_preds.shape == shape else: return coreml_preds.shape == np_preds.shape def _compare_predictions(self, np_preds, coreml_preds, delta=.01): np_preds = np_preds.flatten() coreml_preds = coreml_preds.flatten() for i in range(len(np_preds)): max_den = max(1.0, np_preds[i], coreml_preds[i]) if np.abs( np_preds[i] / max_den - coreml_preds[i] / max_den) > delta: return False return True @staticmethod def _compare_moments(model, inputs, expected, use_cpu_only=True, num_moments=10): """ This utility function is used for validate random distributions layers. It validates the first 10 moments of prediction and expected values. """ def get_moment(data, k): return np.mean(np.power(data - np.mean(data), k)) if isinstance(model, str): model = coremltools.models.MLModel(model) model = coremltools.models.MLModel(model, useCPUOnly=use_cpu_only) prediction = model.predict(inputs, useCPUOnly=use_cpu_only) for output_name in expected: np_preds = expected[output_name] coreml_preds = prediction[output_name] np_moments = [get_moment(np_preds.flatten(), k) for k in range(num_moments)] coreml_moments = [get_moment(coreml_preds.flatten(), k) for k in range(num_moments)] np.testing.assert_almost_equal(np_moments, coreml_moments, decimal=2) # override expected values to allow element-wise compares for output_name in expected: expected[output_name] = prediction[output_name] def _test_model(self, model, input, expected, model_precision=_MLMODEL_FULL_PRECISION, useCPUOnly=False, output_name_shape_dict={}, validate_shapes_only=False): model_dir = None # if we're given a path to a model if isinstance(model, str): model = coremltools.models.MLModel(model) # If we're passed in a specification, save out the model # and then load it back up elif isinstance(model, coremltools.proto.Model_pb2.Model): model_dir = tempfile.mkdtemp() model_name = str(uuid.uuid4()) + '.mlmodel' model_path = os.path.join(model_dir, model_name) coremltools.utils.save_spec(model, model_path) model = coremltools.models.MLModel(model, useCPUOnly=useCPUOnly) # If we want to test the half precision case if model_precision == _MLMODEL_HALF_PRECISION: model = coremltools.utils.convert_neural_network_weights_to_fp16( model) prediction = model.predict(input, useCPUOnly=useCPUOnly) for output_name in expected: if self.__class__.__name__ == "SimpleTest": assert (self._compare_shapes(expected[output_name], prediction[output_name])) else: if output_name in output_name_shape_dict: output_shape = output_name_shape_dict[output_name] else: output_shape = [] if len(output_shape) == 0 and len(expected[output_name].shape) == 0: output_shape = (1,) assert (self._compare_nd_shapes(expected[output_name], prediction[output_name], output_shape)) if not validate_shapes_only: assert (self._compare_predictions(expected[output_name], prediction[output_name])) # Remove the temporary directory if we created one if model_dir and os.path.exists(model_dir): shutil.rmtree(model_dir) @unittest.skipIf(macos_version() < MIN_MACOS_VERSION_REQUIRED, 'macOS 10.13+ is required. Skipping tests.') class SimpleTest(CorrectnessTest): def test_tiny_upsample_linear_mode(self): input_dim = (1, 1, 3) # (C,H,W) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_upsample(name='upsample', scaling_factor_h=2, scaling_factor_w=3, input_name='data', output_name='output', mode='BILINEAR') input = { 'data': np.reshape(np.array([1.0, 2.0, 3.0]), (1, 1, 3)) } expected = { 'output': np.array( [[1, 1.333, 1.666, 2, 2.333, 2.666, 3, 3, 3], [1, 1.333, 1.6666, 2, 2.33333, 2.6666, 3, 3, 3] ]) } self._test_model(builder.spec, input, expected) def test_LRN(self): input_dim = (1, 3, 3) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_lrn(name='lrn', input_name='data', output_name='output', alpha=2, beta=3, local_size=1, k=8) input = { 'data': np.ones((1, 3, 3)) } expected = { 'output': 1e-3 * np.ones((1, 3, 3)) } self._test_model(builder.spec, input, expected) def test_MVN(self): input_dim = (2, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_mvn(name='mvn', input_name='data', output_name='output', across_channels=False, normalize_variance=False) input = { 'data': np.reshape(np.arange(8, dtype=np.float32), (2, 2, 2)) } expected = { 'output': np.reshape(np.arange(8) - np.array( [1.5, 1.5, 1.5, 1.5, 5.5, 5.5, 5.5, 5.5]), (2, 2, 2)) } self._test_model(builder.spec, input, expected) def test_L2_normalize(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_l2_normalize(name='mvn', input_name='data', output_name='output') input = { 'data': np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) } expected = { 'output': np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) / np.sqrt(14) } self._test_model(builder.spec, input, expected) def test_unary_sqrt(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.sqrt(x)} spec = _get_unary_model_spec(x, 'sqrt') self._test_model(spec, input, expected) def test_unary_rsqrt(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 1 / np.sqrt(x)} spec = _get_unary_model_spec(x, 'rsqrt') self._test_model(spec, input, expected) def test_unary_inverse(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 1 / x} spec = _get_unary_model_spec(x, 'inverse') self._test_model(spec, input, expected) def test_unary_power(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x ** 3} spec = _get_unary_model_spec(x, 'power', 3) self._test_model(spec, input, expected) def test_unary_exp(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.exp(x)} spec = _get_unary_model_spec(x, 'exp') self._test_model(spec, input, expected) def test_unary_log(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.log(x)} spec = _get_unary_model_spec(x, 'log') self._test_model(spec, input, expected) def test_unary_abs(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.abs(x)} spec = _get_unary_model_spec(x, 'abs') self._test_model(spec, input, expected) def test_unary_threshold(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.maximum(x, 2)} spec = _get_unary_model_spec(x, 'threshold', 2) self._test_model(spec, input, expected) def test_split(self): input_dim = (9, 2, 2) x = np.random.rand(*input_dim) input_features = [('data', datatypes.Array(*input_dim))] output_names = [] output_features = [] for i in range(3): out = 'out_' + str(i) output_names.append(out) output_features.append((out, None)) builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_split(name='split', input_name='data', output_names=output_names) input = {'data': x} expected = { 'out_0': x[0: 3, :, :], 'out_1': x[3: 6, :, :], 'out_2': x[6: 9, :, :] } self._test_model(builder.spec, input, expected) def test_scale_constant(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_scale(name='scale', W=5, b=45, has_bias=True, input_name='data', output_name='output') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 5 * x + 45} self._test_model(builder.spec, input, expected) def test_scale_matrix(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.reshape(
np.arange(5, 9)
numpy.arange
""" NASBench-201 search space, rollout, embedder """ import os import re import copy import random import pickle import itertools import collections from typing import List, Optional, NamedTuple from collections import defaultdict, OrderedDict import contextlib import six import yaml import numpy as np import torch from torch import nn import torch.nn.functional as F from nas_201_api import NASBench201API as API from aw_nas import utils, ops from aw_nas.common import SearchSpace from aw_nas.rollout.base import BaseRollout from aw_nas.evaluator.base import BaseEvaluator from aw_nas.controller.base import BaseController from aw_nas.controller import DiffController from aw_nas.evaluator.arch_network import ArchEmbedder from aw_nas.utils import ( DenseGraphSimpleOpEdgeFlow, DenseGraphConvolution, data_parallel, use_params, softmax, ) from aw_nas.utils.parallel_utils import _check_support_candidate_member_mask from aw_nas.weights_manager.base import BaseWeightsManager, CandidateNet from aw_nas.final.base import FinalModel VERTICES = 4 class NasBench201SearchSpace(SearchSpace): NAME = "nasbench-201" def __init__( self, num_layers=17, vertices=4, load_nasbench=True, ops_choices=( "none", "skip_connect", "nor_conv_1x1", "nor_conv_3x3", "avg_pool_3x3", ), ): super(NasBench201SearchSpace, self).__init__() self.ops_choices = ops_choices self.ops_choice_to_idx = { choice: i for i, choice in enumerate(self.ops_choices) } self.load_nasbench = load_nasbench self.num_vertices = vertices self.num_layers = num_layers self.none_op_ind = self.ops_choices.index("none") self.num_possible_edges = self.num_vertices * (self.num_vertices - 1) // 2 self.num_op_choices = len(self.ops_choices) # 5 self.num_ops = self.num_vertices * (self.num_vertices - 1) // 2 self.idx = np.tril_indices(self.num_vertices, k=-1) self.genotype_type = str if self.load_nasbench: self._init_nasbench() def canonicalize(self, rollout): # TODO arch = rollout.arch num_vertices = rollout.search_space.num_vertices op_choices = rollout.search_space.ops_choices S = [] S.append("0") res = "" for i in range(1, num_vertices): preS = [] s = "" for j in range(i): if ((int(arch[i][j]) == 0) or (S[j] == "#")): s = "#" elif (int(arch[i][j]) == 1): s = S[j] else: s = "(" + S[j] + ")" + "@" + op_choices[int(arch[i][j])] preS.append(s) preS.sort() s = "" for j in range(i): s = s + preS[j] S.append(s) res = s return res def __getstate__(self): state = super(NasBench201SearchSpace, self).__getstate__().copy() if "api" in state: del state["api"] return state def __setstate__(self, state): super(NasBench201SearchSpace, self).__setstate__(state) if self.load_nasbench: self._init_nasbench() # optional API def genotype_from_str(self, genotype_str): return genotype_str # ---- APIs ---- def random_sample(self): return NasBench201Rollout(self.random_sample_arch(), search_space=self) def genotype(self, arch): # return the corresponding ModelSpec # edges, ops = arch return self.matrix2str(arch) def rollout_from_genotype(self, genotype): return NasBench201Rollout(API.str2matrix(genotype), search_space=self) def plot_arch(self, genotypes, filename, label, plot_format="pdf", **kwargs): matrix = self.str2matrix(genotypes) from graphviz import Digraph graph = Digraph( format=plot_format, # https://stackoverflow.com/questions/4714262/graphviz-dot-captions body=['label="{l}"'.format(l=label), "labelloc=top", "labeljust=left"], edge_attr=dict(fontsize="20", fontname="times"), node_attr=dict( style="filled", shape="rect", align="center", fontsize="20", height="0.5", width="0.5", penwidth="2", fontname="times", ), engine="dot", ) graph.body.extend(["rankdir=LR"]) graph.node(str(0), fillcolor="darkseagreen2") graph.node(str(self.num_vertices - 1), fillcolor="palegoldenrod") [ graph.node(str(i), fillcolor="lightblue") for i in range(1, self.num_vertices - 1) ] for to_, from_ in zip(*self.idx): op_name = self.ops_choices[int(matrix[to_, from_])] if op_name == "none": continue graph.edge(str(from_), str(to_), label=op_name, fillcolor="gray") graph.render(filename, view=False) fnames = [] fnames.append(("cell", filename + ".{}".format(plot_format))) return fnames def distance(self, arch1, arch2): pass @classmethod def supported_rollout_types(cls): return ["nasbench-201", "nasbench-201-differentiable"] def mutate(self, rollout): # pylint: disable=arguments-differ rand_ind = np.random.randint(0, self.idx[0].shape[0]) neighbor_choice = np.random.randint(0, self.num_op_choices) arch_mat = rollout.arch while neighbor_choice == arch_mat[self.idx[0][rand_ind], self.idx[1][rand_ind]]: neighbor_choice = np.random.randint(0, self.num_op_choices) new_arch_mat = copy.deepcopy(arch_mat) new_arch_mat[self.idx[0][rand_ind], self.idx[1][rand_ind]] = neighbor_choice return NasBench201Rollout(new_arch_mat, self) # ---- helpers ---- def matrix2str(self, arch): node_strs = [] for i_node in range(1, self.num_vertices): node_strs.append( "|" + "|".join( [ "{}~{}".format( self.ops_choices[int(arch[i_node, i_input])], i_input ) for i_input in range(0, i_node) ] ) + "|" ) return "+".join(node_strs) def str2matrix(self, str_): arch = np.zeros((self.num_vertices, self.num_vertices)) split_str = str_.split("+") for ind, s in enumerate(split_str): geno = [name for name in s.split("|") if name != ""] for g in geno: name, conn = g.split("~") to_ = ind + 1 from_ = int(conn) arch[to_][from_] = self.ops_choices.index(name) return arch def _init_nasbench(self): # the arch -> performances dataset self.base_dir = os.path.join( utils.get_awnas_dir("AWNAS_DATA", "data"), "nasbench-201" ) self.api = API(os.path.join(self.base_dir, "NAS-Bench-201-v1_0-e61699.pth")) def op_to_idx(self, ops): return [self.ops_choice_to_idx[op] for op in ops] def random_sample_arch(self): arch = np.zeros((self.num_vertices, self.num_vertices)) arch[np.tril_indices(self.num_vertices, k=-1)] = np.random.randint( low=0, high=self.num_op_choices, size=self.num_ops ) return arch def batch_rollouts(self, batch_size, shuffle=True, max_num=None): len_ = ori_len_ = len(self.api) if max_num is not None: len_ = min(max_num, len_) indexes = np.arange(ori_len_) np.random.shuffle(indexes) ind = 0 while ind < len_: end_ind = min(len_, ind + batch_size) yield [ NasBench201Rollout( matrix=self.api.str2matrix(self.api.arch(r_ind)), search_space=self ) for r_ind in indexes[ind:end_ind] ] ind = end_ind class NasBench201Rollout(BaseRollout): NAME = "nasbench-201" supported_components = [("controller", "rl"), ("evaluator", "mepa")] def __init__(self, matrix, search_space): super(NasBench201Rollout, self).__init__() self.arch = matrix self.search_space = search_space self.perf = collections.OrderedDict() self._genotype = None def set_candidate_net(self, c_net): raise Exception("Should not be called") def plot_arch(self, filename, label="", edge_labels=None): return self.search_space.plot_arch( self.genotype, filename, label=label, edge_labels=edge_labels ) @property def genotype(self): if self._genotype is None: self._genotype = self.search_space.genotype(self.arch) return self._genotype def __repr__(self): return "NasBench201Rollout(matrix={arch}, perf={perf})".format( arch=self.arch, perf=self.perf ) try: # Python >= 3.6 class DiffArch(NamedTuple): op_weights: torch.Tensor edge_norms: Optional[torch.Tensor] = None except (SyntaxError, TypeError): DiffArch = NamedTuple( "DiffArch", [("op_weights", torch.Tensor), ("edge_norms", Optional[torch.Tensor])], ) class NasBench201DiffRollout(BaseRollout): NAME = "nasbench-201-differentiable" supported_components = [ ("controller", "nasbench-201-gcn-differentiable"), ("evaluator", "mepa"), ("trainer", "simple"), ] def __init__( self, arch: List[DiffArch], sampled, logits, search_space, candidate_net=None ): super(NasBench201DiffRollout, self).__init__() self.arch = arch self.sampled = sampled self.logits = logits self.search_space = search_space self.candidate_net = candidate_net self._genotype = None self._discretized_arch = None self._edge_probs = None def set_candidate_net(self, c_net): self.candidate_net = c_net def plot_arch(self, filename, label="", edge_labels=None): if edge_labels is None: edge_labels = self.discretized_arch_and_prob[1] return self.search_space.plot_arch( self.genotype, filename, label=label, edge_labels=edge_labels ) def genotype_list(self): return list(self.genotype._asdict().items()) def parse(self, weights): probs = softmax(self.logits) start = 0 n = 1 num_steps = self.search_space.num_vertices arch = [[], []] edge_prob = [] for _ in range(1, num_steps): end = start + n w = weights[start:end] prob = probs[start:end] edges = sorted(range(n), key=lambda x: -max(w[x])) arch[0] += edges op_lst = [np.argmax(w[edge]) for edge in edges] edge_prob += [ "{:.3f}".format(prob[edge][op_id]) for edge, op_id in zip(edges, op_lst) ] arch[1] += op_lst n += 1 start = end num = self.search_space.num_vertices archs = [[0 for i in range(num)] for i in range(num)] p = 0 for i in range(1, num): for j in range(i): archs[i][arch[0][p]] = arch[1][p] p += 1 return np.array(archs), edge_prob @property def discretized_arch_and_prob(self): if self._discretized_arch is None: if self.arch[0].edge_norms is None: weights = self.sampled else: edge_norms = utils.get_numpy(self.arch.edge_norms) weights = utils.get_numpy(self.sampled) * edge_norms self._discretized_arch, self._edge_probs = self.parse(weights) return self._discretized_arch, self._edge_probs @property def genotype(self): if self._genotype is None: self._genotype = self.search_space.genotype( self.discretized_arch_and_prob[0] ) return self._genotype def __repr__(self): return ( "NasBench201DiffRollout(search_space={sn}, arch={arch}, " "candidate_net={cn}, perf={perf})" ).format( sn=self.search_space.NAME, arch=self.arch, cn=self.candidate_net, perf=self.perf, ) class NasBench201RSController(BaseController): NAME = "nasbench-201-rs" def __init__( self, search_space, device, rollout_type="nasbench-201", mode="eval", check_valid=True, avoid_repeat=False, fair=False, deiso=False, op_type=0, pickle_file="", text_file="", shuffle_indices_avoid_repeat=True, schedule_cfg=None, ): super(NasBench201RSController, self).__init__( search_space, rollout_type, mode, schedule_cfg ) # get the infinite iterator of the model matrix and ops self.mode = mode self.num_vertices = self.search_space.num_vertices self.cur_solution = self.search_space.random_sample_arch() self.num_op_choices = self.search_space.num_op_choices self.num_ops = self.search_space.num_ops self.check_valid = check_valid self.avoid_repeat = avoid_repeat self.fair = fair self.deiso = deiso self.pickle_file = pickle_file self.text_file = text_file self.shuffle_indices_avoid_repeat = shuffle_indices_avoid_repeat self.lines = None if self.text_file: with open(self.text_file) as rf: self.lines = rf.readlines() elif self.pickle_file: with open(self.pickle_file, "rb") as rf: self.lines = pickle.load(rf) else: # if neither text_file nor pickle_file is speficied, # assume non-isom{num op choices}.txt is under the awnas data dir base_dir = os.path.join(utils.get_awnas_dir("AWNAS_DATA", "data"), "nasbench-201") isom_table_fname = os.path.join(base_dir, "non-isom{}.txt".format(self.num_op_choices)) if self.deiso: assert os.path.exists(isom_table_fname) with open(isom_table_fname) as rf: self.lines = rf.readlines() if self.lines is not None: self.arch_num = len(self.lines) else: self.arch_num = 15625 if self.deiso: print("Deiso arch num: ", self.arch_num) self.index = 0 self.indices = np.arange(self.arch_num) if self.shuffle_indices_avoid_repeat: np.random.shuffle(self.indices) def random_sample_nonisom(self): ind = np.random.randint(low=0, high=self.arch_num) arch = self.search_space.str2matrix(self.lines[ind].strip()) return NasBench201Rollout(arch, self.search_space) def check_valid_arch(self, arch): valid_arch = False valid_input = [0] for to_ in range(1, self.num_vertices): for input_ in valid_input: if arch[to_][input_] > 0: valid_input.append(to_) break valid_output = [self.search_space.num_vertices - 1] for from_ in range(self.search_space.num_vertices - 2, -1, -1): for output_ in valid_output: if arch[output_][from_] > 0: valid_output.append(from_) for input_ in valid_input: for output_ in valid_output: if ( self.search_space.ops_choices[int(arch[output_][input_])].find( "conv" ) != -1 ): valid_arch = True return valid_arch def sample(self, n=1, batch_size=None): rollouts = [] if self.avoid_repeat: if self.deiso or self.num_op_choices != 5: # assert n == self.arch_num for i in range(n): line = self.lines[i].strip() rollouts.append( NasBench201Rollout( self.search_space.str2matrix(line), self.search_space ) ) elif self.pickle_file: for line in self.lines: rollouts.append(NasBench201Rollout(line[0], self.search_space)) else: next_index = self.index + n # indexes = np.random.choice(np.arange(15625), size=n, replace=False) if self.text_file: rollouts = [NasBench201Rollout( self.search_space.str2matrix(self.lines[self.indices[i]].strip()), self.search_space) for i in range(self.index, min(next_index, 15625))] else: rollouts = [NasBench201Rollout( self.search_space.api.str2matrix( self.search_space.api.query_by_index(self.indices[i]).arch_str ), self.search_space, ) for i in range(self.index, min(next_index, 15625))] if next_index >= 15625: # reshuffle the indices if self.shuffle_indices_avoid_repeat: np.random.shuffle(self.indices) next_index = next_index - 15625 if self.text_file: rollouts += [NasBench201Rollout( self.search_space.str2matrix(self.lines[self.indices[i]].strip()), self.search_space) for i in range(0, next_index)] else: rollouts += [NasBench201Rollout( self.search_space.api.str2matrix( self.search_space.api.query_by_index(self.indices[i]).arch_str ), self.search_space) for i in range(0, next_index)] self.index = next_index return rollouts if self.fair: assert n == self.num_op_choices archs = np.zeros([self.num_op_choices, self.search_space.num_vertices, self.search_space.num_vertices]) ops = np.array([ np.random.permutation(np.arange(self.num_op_choices)) for _ in range(self.num_ops) ]).T for i in range(self.num_op_choices): archs[i][self.search_space.idx] = ops[i] rollouts = [NasBench201Rollout(arch, self.search_space) for arch in archs if self.check_valid_arch(arch) or not self.check_valid] return rollouts for i in range(n): while 1: if self.deiso: new_rollout = self.random_sample_nonisom() elif self.pickle_file: new_rollout = NasBench201Rollout( self.lines[np.random.randint(0, len(self.lines))][0], self.search_space, ) else: new_rollout = self.search_space.random_sample() if self.check_valid_arch(new_rollout.arch) or not self.check_valid: rollouts.append(new_rollout) break return rollouts @classmethod def supported_rollout_types(cls): return ["nasbench-201"] # ---- APIs that is not necessary ---- def set_mode(self, mode): self.mode = mode def step(self, rollouts, optimizer, perf_name): pass def set_device(self, device): pass def summary(self, rollouts, log=False, log_prefix="", step=None): pass def save(self, path): pass def load(self, path): self.logger.info("nasbench-201-rs controller would not be loaded from the disk") class GCN(nn.Module): def __init__(self, num_vertices, layers, size): super(GCN, self).__init__() self.gcns = [] for i in range(layers): self.gcns.append( DenseGraphConvolution( in_features=size, out_features=size, plus_I=False, normalize=False, bias=False, ) ) self.gcns = nn.ModuleList(self.gcns) self.layers = layers self.num_vertices = num_vertices def forward(self, x): adj = np.zeros((self.num_vertices, self.num_vertices), dtype=np.float32) for i in range(self.num_vertices): for j in range(i): adj[j][i] = 1.0 / (j + 1) adj = (torch.from_numpy(adj) + torch.eye(self.num_vertices, dtype=torch.float32)).cuda() out = x for i in range(self.layers): out = self.gcns[i](out, adj) if i != self.layers - 1: out = F.relu(out) return out class MLP(nn.Module): def __init__(self, num_vertices, layers, size): super(MLP, self).__init__() self.num_vertices = num_vertices self.net = [] for i in range(1, layers + 1): self.net.append(nn.Linear(size[i - 1], size[i])) self.net = nn.ModuleList(self.net) self.layers = layers def forward_single(self, x): out = x for i in range(self.layers): out = self.net[i](out) if i != self.layers - 1: out = F.relu(out) return out def forward(self, x): prob = [] for i in range(self.num_vertices): for j in range(i): out = self.forward_single(torch.cat([x[j], x[i]])) prob.append(out) return prob class NasBench201DiffController(DiffController, nn.Module): """ Differentiable controller for nasbench-201. """ NAME = "nasbench-201-differentiable" SCHEDULABLE_ATTRS = [ "gumbel_temperature", "entropy_coeff", "force_uniform" ] def __init__(self, search_space: SearchSpace, device: torch.device, rollout_type: str = "nasbench-201-differentiable", use_prob: bool = False, gumbel_hard: bool = False, gumbel_temperature: float = 1.0, entropy_coeff: float = 0.01, max_grad_norm: float = None, force_uniform: bool = False, inspect_hessian_every: int = -1, schedule_cfg = None): BaseController.__init__(self, search_space, rollout_type, schedule_cfg = schedule_cfg) nn.Module.__init__(self) self.device = device # sampling self.use_prob = use_prob self.gumbel_hard = gumbel_hard self.gumbel_temperature = gumbel_temperature # training self.entropy_coeff = entropy_coeff self.max_grad_norm = max_grad_norm self.force_uniform = force_uniform self.inspect_hessian_every = inspect_hessian_every self.inspect_hessian = False self.cg_alpha = nn.Parameter(1e-3 * torch.randn(self.search_space.num_possible_edges, self.search_space.num_op_choices) ) # meta learning related self.params_clone = None self.buffers_clone = None self.grad_clone = None self.grad_count = 0 self.to(self.device) def sample(self, n: int = 1, batch_size: int = None): assert batch_size is None or batch_size == 1, "Do not support sample batch size for now" rollouts = [] for _ in range(n): alpha = torch.zeros_like(self.cg_alpha) if self.force_uniform else self.cg_alpha if self.use_prob: sampled = F.softmax(alpha / self.gumbel_temperature, dim = -1) else: # gumbel sampling sampled, _ = utils.gumbel_softmax(alpha, self.gumbel_temperature, hard = False) op_weights_list = utils.straight_through(sampled) if self.gumbel_hard else sampled sampled_list = utils.get_numpy(sampled) logits_list = utils.get_numpy(alpha) arch_list = [ DiffArch(op_weights = op_weights, edge_norms = None) for op_weights in op_weights_list ] rollouts.append( NasBench201DiffRollout( arch_list, sampled_list, logits_list, self.search_space ) ) return rollouts def _entropy_loss(self): if self.entropy_coeff is not None: prob = F.softmax(self.cg_alpha, dim = -1) return - self.entropy_coeff * (torch.log(prob) * prob).sum() return 0. def summary(self, rollouts, log: bool = False, log_prefix: str = "", step: int = None): num = len(rollouts) logits_list = [[utils.get_numpy(logits) for logits in r.logits] for r in rollouts] if self.gumbel_hard: cg_logprob = 0. cg_entro = 0. for rollout, logits in zip(rollouts, logits_list): prob = utils.softmax(logits) logprob = np.log(prob) if self.gumbel_hard: op_weights = [arch.op_weights.tolist() for arch in rollout.arch] inds = np.argmax(utils.get_numpy(op_weights), axis=-1) cg_logprob += np.sum(logprob[range(len(inds)), inds]) cg_entro += -(prob * logprob).sum() # mean across rollouts if self.gumbel_hard: cg_logprob /= num cg_logprobs_str = "{:.2f}".format(cg_logprob) cg_entro /= num cg_entro_str = "{:.2f}".format(cg_entro) if log: # maybe log the summary self.logger.info("%s%d rollouts: %s ENTROPY: %2f (%s)", log_prefix, num, "-LOG_PROB: %.2f (%s) ;" % (-cg_logprob, cg_logprobs_str) \ if self.gumbel_hard else "", cg_entro, cg_entro_str) if step is not None and not self.writer.is_none(): if self.gumbel_hard: self.writer.add_scalar("log_prob", cg_logprob, step) self.writer.add_scalar("entropy", cg_entro, step) stats = [("ENTRO", cg_entro)] if self.gumbel_hard: stats += [("LOGPROB", cg_logprob)] return OrderedDict(stats) @classmethod def supported_rollout_types(cls): return ["nasbench-201-differentiable"] class NasBench201GcnController(BaseController, nn.Module): """ Implementation following Neural Graph Embedding for Neural Architecture Search, AAAI 2020 """ NAME = "nasbench-201-gcn-differentiable" def __init__( self, search_space, device="cuda", mode="val", rollout_type="nasbench-201-differentiable", embed_size=10, gcn_layers=5, mlp_layers=3, mlp_size=[15, 10], use_prob=False, gumbel_hard=False, gumbel_temp=1.0, use_edge_norm=False, entropy_coeff=0.01, max_grad_norm=None, force_uniform=False, inspect_hessian_every=-1, schedule_cfg=None, ): super(NasBench201GcnController, self).__init__( search_space, rollout_type, mode, schedule_cfg ) nn.Module.__init__(self) self.num_vertices = self.search_space.num_vertices self.embed_size = embed_size self.node_embed = nn.Parameter( 1e-3 * torch.randn(self.num_vertices, self.embed_size) ) self.gcn_layers = gcn_layers self.mlp_layers = mlp_layers self.mlp_size = ( [self.embed_size * 2] + mlp_size + [self.search_space.num_op_choices] ) self.gcn = GCN(self.num_vertices, self.gcn_layers, self.embed_size) self.mlp = MLP(self.num_vertices, self.mlp_layers, self.mlp_size) self.prob = None self.use_prob = use_prob self.gumbel_hard = gumbel_hard self.gumbel_temp = gumbel_temp self.use_edge_norm = use_edge_norm self.entropy_coeff = entropy_coeff self.max_grad_norm = max_grad_norm self.force_uniform = force_uniform self.inspect_hessian_every = inspect_hessian_every self.inspect_hessian = False self.device = device self.mode = mode self.set_device(device) self.set_mode(mode) def on_epoch_start(self, epoch): super(NasBench201GcnController, self).on_epoch_start(epoch) if self.inspect_hessian_every >= 0 and epoch % self.inspect_hessian_every == 0: self.inspect_hessian = True def set_mode(self, mode): self.mode = mode def set_device(self, device): self.device = device self.to(torch.device(device)) def get_prob(self): prob = self.gcn(self.node_embed) prob = self.mlp(prob) return prob def forward(self, n=1): return self.sample(n=n) def sample(self, n=1, batch_size=None): assert batch_size is None or batch_size == 1, "Do not support sample batch size for now" self.probs = self.get_prob() rollouts = [] for _ in range(n): op_weights_list = [] sampled_list = [] logits_list = [] for prob in self.probs: if self.force_uniform: prob = torch.zeros_like(prob) if self.use_prob: sampled = F.softmax(prob / self.gumbel_temp, dim=-1) else: sampled, _ = utils.gumbel_softmax( prob, self.gumbel_temp, hard=False ) if self.gumbel_hard: op_weights = utils.straight_through(sampled) else: op_weights = sampled op_weights_list.append(op_weights) sampled_list.append(utils.get_numpy(sampled)) logits_list.append(utils.get_numpy(prob)) arch_list = [ DiffArch(op_weights=op_weights, edge_norms=None) for op_weights in op_weights_list ] rollouts.append( NasBench201DiffRollout( arch_list, sampled_list, logits_list, self.search_space ) ) return rollouts def save(self, path): torch.save({"epoch": self.epoch, "state_dict": self.state_dict()}, path) self.logger.info("Saved controller network to %s", path) def load(self, path): checkpoint = torch.load(path, map_location=torch.device("cpu")) self.load_state_dict(checkpoint["state_dict"]) self.on_epoch_start(checkpoint["epoch"]) self.logger.info("Loaded controller network from %s", path) def _entropy_loss(self): if self.entropy_coeff is not None: probs = [F.softmax(prob, dim=-1) for prob in self.probs] return self.entropy_coeff * sum( -(torch.log(prob) * prob).sum() for prob in probs ) return 0 def gradient(self, loss, return_grads=True, zero_grads=True): if zero_grads: self.zero_grad() _loss = loss + self._entropy_loss() _loss.backward() if return_grads: return utils.get_numpy(_loss), [ (k, v.grad.clone()) for k, v in self.named_parameters() ] return utils.get_numpy(_loss) def step_current_gradient(self, optimizer): if self.max_grad_norm is not None: torch.nn.utils.clip_grad_norm_(self.parameters(), self.max_grad_norm) optimizer.step() def step_gradient(self, gradients, optimizer): self.zero_grad() named_params = dict(self.named_parameters()) for k, grad in gradients: named_params[k].grad = grad if self.max_grad_norm is not None: torch.nn.utls.clip_grad_norm_(self.parameters(), self.max_grad_norm) optimizer.step() def step(self, rollouts, optimizer=None, perf_name="reward"): self.zero_grad() losses = [r.get_perf(perf_name) for r in rollouts] [l.backward() for l in losses] optimizer.step() return np.mean([l.detach().cpu().numpy() for l in losses]) def summary(self, rollouts, log=False, log_prefix="", step=None): return None @classmethod def supported_rollout_types(cls): return ["nasbench-201-differentiable"] class NasBench201EvoController(BaseController): NAME = "nasbench-201-evo" def __init__( self, search_space, device, rollout_type="nasbench-201", mode="eval", population_nums=100, schedule_cfg=None, ): super(NasBench201EvoController, self).__init__( search_space, rollout_type, mode, schedule_cfg ) # get the infinite iterator of the model matrix and ops self.mode = mode self.num_vertices = self.search_space.num_vertices self.cur_solution = self.search_space.random_sample_arch() self.population_nums = population_nums self.population = collections.OrderedDict() self.num_arch = len(self.search_space.api) population_ind = np.random.choice( np.arange(self.num_arch), size=self.population_nums, replace=False ) for i in range(self.population_nums): arch_res = self.search_space.api.query_by_index(population_ind[i]) accs = ( np.mean( [ res.eval_acc1es["ori-test@199"] for res in arch_res.query("cifar10").values() ] ) / 100.0 ) self.population[arch_res.arch_str] = accs def reinit(self): population_ind = np.random.choice( np.arange(self.num_arch), size=self.population_nums, replace=False ) for i in range(self.population_nums): arch_res = self.search_space.api.query_by_index(population_ind[i]) accs = ( np.mean( [ res.eval_acc1es["ori-test@199"] for res in arch_res.query("cifar10").values() ] ) / 100.0 ) self.population[arch_res.arch_str] = accs def set_init_population(self, rollout_list, perf_name): # clear the current population self.population = collections.OrderedDict() for r in rollout_list: self.population[r.genotype] = r.get_perf(perf_name) def sample(self, n, batch_size=None): assert batch_size is None new_archs = sorted(self.population.items(), key=lambda x: x[1], reverse=True) if self.mode == "eval": best_sets = [] for n_r in range(n): best_sets.append( NasBench201Rollout( self.search_space.api.str2matrix(new_archs[n_r][0]), self.search_space, ) ) return best_sets rollouts = [] for n_r in range(n): try_times = 0 while True: rand_ind = np.random.randint(0, self.search_space.idx[0].shape[0]) neighbor_choice = np.random.randint(0, self.search_space.num_op_choices) arch_mat = self.search_space.api.str2matrix(new_archs[n_r][0]) while ( neighbor_choice == arch_mat[ self.search_space.idx[0][rand_ind], self.search_space.idx[1][rand_ind], ] ): neighbor_choice = np.random.randint( 0, self.search_space.num_op_choices ) new_choice = copy.deepcopy(arch_mat) new_choice[ self.search_space.idx[0][rand_ind], self.search_space.idx[1][rand_ind], ] = neighbor_choice try_times += 1 if self.search_space.genotype(new_choice) not in self.population.keys(): break rollouts.append(NasBench201Rollout(new_choice, self.search_space)) return rollouts @classmethod def supported_rollout_types(cls): return ["nasbench-201"] def step(self, rollouts, optimizer, perf_name): best_rollout = rollouts[0] for r in rollouts: if r.get_perf(perf_name) > best_rollout.get_perf(perf_name): best_rollout = r self.population.pop(list(self.population.keys())[0]) self.population[best_rollout.genotype] = best_rollout.get_perf(perf_name) return 0 # ---- APIs that is not necessary ---- def set_mode(self, mode): self.mode = mode def set_device(self, device): pass def summary(self, rollouts, log=False, log_prefix="", step=None): pass def save(self, path): pass def load(self, path): pass class NasBench201SAController(BaseController): NAME = "nasbench-201-sa" def __init__( self, search_space, device, rollout_type="nasbench-201", mode="eval", temperature=1000, anneal_coeff=0.98, schedule_cfg=None, ): super(NasBench201SAController, self).__init__( search_space, rollout_type, mode, schedule_cfg ) # get the infinite iterator of the model matrix and ops self.num_vertices = self.search_space.num_vertices self.temperature = temperature self.anneal_coeff = anneal_coeff # random sample as the init arch self.cur_solution = self.search_space.random_sample_arch() self.cur_perf = None def reinit(self): # random sample as the init arch self.cur_solution = self.search_space.random_sample_arch() self.cur_perf = None def set_init_population(self, rollout_list, perf_name): # set the initialization to the best rollout in the list perf_list = [r.get_perf(perf_name) for r in rollout_list] best_rollout = rollout_list[np.argmax(perf_list)] self.cur_solution = best_rollout.arch self.cur_perf = best_rollout.get_perf(perf_name) self.logger.info( "Set the initialization rollout: {}; perf: {}".format( best_rollout, self.cur_perf ) ) def sample(self, n, batch_size=None): assert batch_size is None if self.mode == "eval": return [NasBench201Rollout(self.cur_solution, self.search_space)] * n rollouts = [] for n_r in range(n): rand_ind =
np.random.randint(0, self.search_space.idx[0].shape[0])
numpy.random.randint
import pandas as pd import numpy as np from pria_lifechem.evaluation import precision_auc_single, roc_auc_single, bedroc_auc_single, \ enrichment_factor_single, normalized_enrichment_factor_single from pria_lifechem.function import reshape_data_into_2_dim from sklearn import metrics function_mapping = {'precision_auc_single': precision_auc_single, 'roc_auc_single': roc_auc_single, 'bedroc_auc_single': bedroc_auc_single} docking_methods = ['dockscore_ad4', 'dockscore_dock6', 'dockscore_fred', 'dockscore_hybrid', 'dockscore_plants', 'dockscore_rdockint', 'dockscore_rdocktot', 'dockscore_smina', 'dockscore_surflex', 'consensus_dockscore_mean', 'consensus_dockscore_STD', 'consensus_dockscore_median', 'consensus_dockscore_max', 'consensus_dockscore_min'] docking_methods = ['consensus_bcs_efr1_opt', 'consensus_bcs_rocauc_opt', 'consensus_dockscore_max', 'consensus_dockscore_mean', 'consensus_dockscore_median', 'dockscore_ad4', 'dockscore_dock6', 'dockscore_fred', 'dockscore_hybrid', 'dockscore_plants', 'dockscore_rdockint', 'dockscore_rdocktot', 'dockscore_smina', 'dockscore_surflex'] def get_auc_table(file_path, target_name, auc_list, auc_header, title): pria_pd = pd.read_csv(file_path) title = '## {}'.format(title) header = '| docking method |' for name in auc_header: header = '{} {} |'.format(header, name) splitter = '| --- |' for _ in auc_header: splitter = '{} {} |'.format(splitter, '---') content = '' if target_name == 'Keck_Pria_AS_Retest': ground = '../../output/docking/stage_1/lc123-pria-dockdata-qnorm.csv.gz' elif target_name == 'Keck_Pria_FP_data': ground = '../../output/docking/stage_1/lc123-pria-dockdata-qnorm.csv.gz' elif target_name == 'Keck_RMI_cdd': ground = '../../output/docking/stage_1/lc123-rmi-dockdata-qnorm.csv.gz' else: raise ValueError('Target name {} not found.'.format(target_name)) ground_pd = pd.read_csv(ground) ground_pd = ground_pd[['Unnamed: 0', target_name]] ground_pd.columns = ['molid', target_name] pria_pd = pd.merge(pria_pd, ground_pd, on='molid', how='outer') for docking_method in docking_methods: # temp_pd = pria_pd[['Unnamed: 0', target_name, docking_method]] temp_pd = pria_pd[['molid', target_name, docking_method]] filtered_pd = temp_pd.dropna() true_label_list = filtered_pd[target_name].tolist() docking_ranked_list = filtered_pd[docking_method].tolist() true_label_array = reshape_data_into_2_dim(np.array(true_label_list)) docking_ranked_array = reshape_data_into_2_dim(
np.array(docking_ranked_list)
numpy.array
#!/usr/bin/python # -*- coding: utf-8 -*- """ Modelagem em tempo real | COVID-19 no Brasil -------------------------------------------- Ideias e modelagens desenvolvidas pela trinca: . <NAME> . <NAME> . <NAME> Esta modelagem possui as seguintes características: a) NÃO seguimos modelos paramétricos => Não existem durante a epidemia dados suficientes ou confiáveis para alimentar modelos epidemiológicos como a excelente calaculadora http://gabgoh.github.io/COVID/index.html (ela serve para gerar cená- rios e para modelar a epidemia DEPOIS que ela passar). Além disso, a natureza exponencial das curvas as torna extremamente sensíveis aos parâmetros que a defi- nem. Isso faz com que a confiabilidade preditiva desses modelos seja ilusória. b) A evolução epidemia no Brasil começou depois da de outros países. Nossa mode- lagem se apoia nesse fato. Com os dados disponíveis, procuramos no instante pre- sente determinar quem estamos seguindo, ou seja, que países mais se pareceram conosco passado o mesmo período de disseminação. A partir do que aconteceu nesses países projetamos o que pode acontecer aqui. c) Esta conta é refeita dia a dia. Dependendo de nossa competência em conter ou não a disseminação do Covid-19 nos aproximaremos dos países que melhor ou pior lidaram com a epidemia e a projeção refletirá essa similaridade. d) As decisões de modelagem são indicadas no código com os zoinhos: # ◔◔ {...} São pontos de partida para discutir a modelagem e propor alternativas. """ import datetime import requests import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import seaborn as sns sns.set() # no ipython usar este comando antes de rodar => %matplotlib osx import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) __author__ = "<NAME>" # codigo __copyright__ = "Copyright 2020" __license__ = "New BSD License" __version__ = "1.5.2" __email__ = "<EMAIL>" __status__ = "Experimental" def preparar_dados(p1, uf="SP", cidade=u"São Paulo"): u"""Busca dados e organiza tabela "data" com os dados de referência para a modelagem. Fontes: . Mundo: https://covid.ourworldindata.org . Brasil: https://brasil.io Retorna: raw <DataFrame> | Série completa do número de mortes/dia por país, sem trans- posição temporal inicio <Series> | Referência dos indexes em raw para justapor o início das curvas dos diferentes países data <DataFrame> | Série de número de mortes/dia por país trazendo para o zero (index 0) o primeiro dia em que ocorrem pelo menos p1 mortes (ver macro parâmetros). Isto reduz a quantidade de países para o grupo que está à frente ou pareado ao Brazil. A partir do index 0 é possível comparar a evolução dos casos entre os países. nbr <int> | Número de dias da série de dados para o Brasil """ # ◔◔ {usamos as mortes diárias por parecer ser o dado mais confiável} raw = pd.read_csv("https://covid.ourworldindata.org/data/ecdc/new_deaths.csv").fillna(0.0) # ◔◔ {o link abaixo carrega o acumulado de mortes, não usamos pq a soma vai alisando a série} # raw_soma = pd.read_csv("https://covid.ourworldindata.org/data/ecdc/total_deaths.csv").fillna(0.0) # tempo = raw['date'] # ◔◔ {não usamos as datas} raw = raw.drop(columns='date') raw = raw.drop(columns='World') # para ver tbem os dados "oficias" para_oficial = raw['Brazil'] # correcao de subnotificacao Brasil: sub, hip = estimar_subnotificacao('Brasil') p4br = ((sub + raw['Brazil'].sum()) / raw['Brazil'].sum()) raw['Brasil'] = raw['Brazil'] * p4br # dict subs usa mesmas refs como chave => para reportar nos graficos subs = {"Brasil": str(round(p4br, 1)) + " (" + hip + ")"} # contruir base para a tabela "data" inicio = raw.ge(p1).idxmax() # ◔◔ {encontra os index de qdo cada pais alcança p1} data = pd.DataFrame({'Brasil':raw['Brasil'][inicio['Brasil']:]}).reset_index().drop(columns='index') nbr = data.shape[0] oficial = pd.DataFrame({'Brasil':para_oficial[inicio['Brasil']:]}).reset_index().drop(columns='index') # dados Brasil estados = [ 'AC', 'AL', 'AP', 'AM', 'BA', 'CE', 'DF', 'ES', 'GO', 'MA', 'MT', 'MS', 'MG', 'PA', 'PB', 'PR', 'PE', 'PI', 'RJ', 'RN', 'RS', 'RO', 'RR', 'SC', 'SP', 'SE', 'TO', ] if uf not in estados or type(uf) is not str: uf = "SP" print(uf, u": UF inválida, usando 'SP'") # ◔◔ {já baixamos filtrado para uf, mas pode se usar outros estados} uf_data = pd.read_csv("https://brasil.io/dataset/covid19/caso?state="+uf+"&format=csv") # adicionar dados da uf uf_select = uf_data.loc[lambda df: df['place_type'] == "state", :] uf_mortes = list(uf_select['deaths'].head(nbr + 1).fillna(0.0)) uf_mortes = [uf_mortes[i] - uf_mortes[i+1] for i in range(len(uf_mortes)-1)] uf_mortes += [0 for _ in range(nbr-len(uf_mortes))] # corrigir tamanho uf_mortes.reverse() oficial[uf] = pd.Series(uf_mortes).values sub_uf, hip_uf = estimar_subnotificacao(uf) p4uf = ((sub_uf + pd.Series(uf_mortes).values.sum())/pd.Series(uf_mortes).values.sum()) data[uf] = pd.Series(uf_mortes).values * p4uf subs[uf] = str(round(p4uf, 1)) + " (" + hip_uf + ")" # adicionar dados da cidade cidade_select = uf_data.loc[lambda df: df['city'] == cidade, :] if cidade_select.shape[0] > 0: cidade_mortes = list(cidade_select['deaths'].head(nbr + 1).fillna(0.0)) cidade_mortes = [cidade_mortes[i] - cidade_mortes[i+1] for i in range(len(cidade_mortes)-1)] cidade_mortes += [0 for _ in range(nbr-len(cidade_mortes))] # corrigir tamanho cidade_mortes.reverse() if sum(cidade_mortes): # subnotificacao para cidade => aprox pela do estado oficial[cidade] = pd.Series(cidade_mortes).values data[cidade] = pd.Series(cidade_mortes).values * p4uf subs[cidade] = str(round(p4uf, 1)) + " (" + hip_uf + ")" else: subs["n/d"] = "" print(u"AVISO: a cidade " + cidade + " não possui mortes confirmadas") else: subs["n/d"] = "" print(u"AVISO: a cidade " + cidade + " não consta nos dados para esta UF") print(u'Utilize uma das cidades disponíveis para o terceiro gráfico:') for d in set(uf_data['city']): print(d) refs = list(subs.keys()) # as referencias validas... # adicionar dados dos países à frente ou pareados ao Brasil for k in inicio.keys(): if k == "Brasil": continue if inicio[k] == 0 or inicio[k] > inicio["Brasil"]: continue C = raw[k][inicio[k]:inicio[k]+nbr] data[k] = C.values return raw, inicio, data, nbr, subs, refs, oficial def rodar_modelo(raw, inicio, data, nbr, p2, p3, ref, refs): """ Usa os dados preparados para gerar dados para visualização e a projeção da evoluação da epidemia. Retorna: correlacionados <list>: Países mais correlacionados, usados para a projeção calibrados <DataFrame>: Série alisada de mortes por dia com dados de ref e países correlacionados projetado <Array>: Série estimada para a evoluação da epidemia em ref infos <dict>: informações sobre o pico estimado da epidemia """ # ◔◔ {Optamos por não alisar dados antes de calcular a correlação. Sabemos # que a qualidade do report dos dados é variável, mas assumimos que o ruído # é aleatório e por isso não é preciso alisar para que a correlação seja # válida. Ao contrário, a correlação "bruta" seria a mais verossível} # ◔◔ {mas caso você ache que vale a pena alisar antes, use o codigo abaixo} # alisamento para os casos de morte reportados (média móvel) # data = data.rolling(5).mean() try: data = data.drop(columns='Brazil') except: pass # calcular a matriz de correlações: pearson = data.corr() # ◔◔ {o default do método usa a correlação de Pearson, cf. ref abaixo} # https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.corr.html # ◔◔ { não incluir os casos locais para evitar endogeneidade} out = refs # nao misturar com os demais cortes locais # selecionar os p2 países que melhor se correlacionam com a ref correlacionados = [_ for _ in pearson[ref].sort_values(ascending=False).keys() if _ not in out][:p2] # criar tabela, começa com dados da ref calibrados = pd.DataFrame({ref:data[ref]}) # preencher com os dados dos países correlacionados for k in correlacionados: # ◔◔ {pega os dados em raw pq agora usaremos todos os dados disponíveis para o país} C = raw[k][inicio[k]:] additional = pd.DataFrame({k: C.values}) # array calibrados = pd.concat([calibrados, additional], axis=1) # ◔◔ {aqui usamos um alisamento p3 de dias para deixar a visualização melhor} calibrados = calibrados.rolling(p3).mean() # ◔◔ {a projeção usa os dados alisados} # ◔◔ {como é feita a projeção: # 1. cada país correlacionado terá um peso, proporcianal a quanto se correlaciona # .. soma dos pesos = 1 # .. quanto mais correlacionado, maior o peso } pesos = [pearson[ref][c] for c in correlacionados] # melhor corr pesa mais pesos = [pesos[i]/sum(pesos) for i in range(len(pesos))] # pesos normalizados pesos = dict(zip(correlacionados, pesos)) # num dict para facilitar # proj <list>: vai ter ao final o tamanho da maior serie em calibrados proj = [np.nan for _ in range(nbr)] # começa com nan onde já temos os dados da ref proj[-1] = calibrados[ref][nbr - 1] # primeiro valor coincide com último de ref # será a partir daí que começa a projeção # ◔◔ {a projeção segue dia a dia as variações dos países correlacionado} for d in range(nbr, calibrados.shape[0]): x = 0 # incremento estimado para o dia for c in correlacionados: if not np.isnan(calibrados[c][d]): # adiciona o incremento % do país ponderado por seu peso x += (calibrados[c][d]/calibrados[c][d-1]) * pesos[c] else: # ◔◔ {qdo acabam os dados de um país ele pára de influenciar a taxa} x += 1 * pesos[c] # print(d, c, x) # a série da projeção é construída aplicando o incremento estimado ao dia anterior proj.append(proj[-1] * x) # projetado <Array> projetado =
np.array(proj)
numpy.array
# coding=utf-8 python3.6 # ================================================================ # Copyright (C) 2019 * Ltd. All rights reserved. # license : MIT License # Author : haibingshuai  # Created date: 2019/10/29 15:19 # Description : # ================================================================ import tensorflow as tf import numpy as np import cv2 import random import colorsys from core.model_config import config def bbox_iou(boxes1, boxes2): boxes1 = np.array(boxes1) boxes2 =
np.array(boxes2)
numpy.array
# coding=utf-8 # Copyright 2021 The SLOE Logistic Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Run experiment to understand coverage of CIs generated by SLOE. Tests the SLOE estimator empirically by computing confidence intervals (CIs) using it over a bunch of different seeds and aspect ratios, calculating properties such as coverage and size, and storing in csv files to be analyzed in a colab. """ from absl import app from absl import flags import apache_beam as beam from apache_beam.options import pipeline_options import numpy as np import sklearn.linear_model from sklearn.model_selection import LeaveOneOut from sloe_logistic import probe_frontier from sloe_logistic import unbiased_logistic_regression import sloe_logistic.sloe_experiments.experiment_helpers as exp_helper GAMMA_RANGE = [0.1, 1, 5] FLAGS = flags.FLAGS flags.DEFINE_integer('num_sims', 100, 'number of simulations to run') flags.DEFINE_string('output_path', '/tmp/counts', 'The output file path') flags.DEFINE_enum( 'coverage_target', 'true_preds', ['true_preds', 'calib_ests', 'reg_ests'], 'Which value to check coverage in prediction intervals?') flags.DEFINE_boolean('include_bootstrap', False, 'Include bootstrap CIs as well? These are slow.') flags.DEFINE_float( 'kappa_spacing', 0.05, 'Resolution of graph in terms of spacing between kappa evaluated.') flags.DEFINE_float( 'coverage_rate', 95, 'What level confidence intervals' 'should be tested (0-100)?') def run_sim(params): """Runs simulation and computes properties of the estimated CIs.""" kappa = params[0] gamma = params[1] seed = 201216 + params[2] sim_params = exp_helper.SimulationParams.create_from_flags() sim_params.seed = seed sim_params.gamma = np.sqrt(gamma) sim_params.p = int(sim_params.training_n * kappa) sim = exp_helper.create_sim(sim_params) x1, y1 = sim.sample() pfr = probe_frontier.ProbeFrontierLogisticRegression() if pfr.is_separable(x1, y1): return # Draw test data x2, _ = sim.sample(int(sim_params.training_n / 4)) true_logits = x2.dot(sim.beta) bias_selector = np.abs(true_logits) > 1e-2 # Calculate coverage if FLAGS.coverage_target == 'true_preds': target = 1.0 / (1.0 + np.exp(-true_logits)).reshape(-1) elif FLAGS.coverage_target == 'calib_ests': ps_logit_model = unbiased_logistic_regression.PlattScaledLogisticRegression( fit_intercept=sim_params.intercept or sim_params.uncentered) ps_logit_model.fit(x1, y1) target = ps_logit_model.predict_proba(x2)[:, 1] elif FLAGS.coverage_target == 'reg_ests': ps_logit_model = sklearn.linear_model.LogisticRegressionCV( cv=LeaveOneOut(), fit_intercept=False, Cs=20, penalty='l2', solver='newton-cg') ps_logit_model.fit(x1, y1) target = ps_logit_model.predict_proba(x2)[:, 1] else: raise ValueError("Invalid choice of coverage target '{}'.".format( FLAGS.coverage_target)) try: new_method_model = exp_helper.create_inference_model('newmethod') new_method_model.set_coverage(FLAGS.coverage_rate) _ = new_method_model.fit(x1, y1) new_pred_int = new_method_model.prediction_intervals(x2) new_logit_int = new_method_model.prediction_intervals(x2, logit=True) except ValueError as e: print(e) return std_method_model = exp_helper.create_inference_model('mle') std_method_model.set_coverage(FLAGS.coverage_rate) _ = std_method_model.fit(x1, y1) std_pred_int = std_method_model.prediction_intervals(x2) std_logit_int = std_method_model.prediction_intervals(x2, logit=True) new_coverage = np.logical_and( new_pred_int[:, 0].reshape(-1) <= target, target <= new_pred_int[:, 2].reshape(-1)).astype(float) std_coverage = np.logical_and( std_pred_int[:, 0].reshape(-1) <= target, target <= std_pred_int[:, 2].reshape(-1)).astype(float) new_width = np.abs(new_logit_int[:, 2] - new_logit_int[:, 0]) std_width = np.abs(std_logit_int[:, 2] - std_logit_int[:, 0]) new_bias = new_logit_int[bias_selector, 1] / true_logits[bias_selector] std_bias = std_logit_int[bias_selector, 1] / true_logits[bias_selector] results = [ gamma, kappa, seed,
np.mean(new_coverage)
numpy.mean
import re import pandas as pd import numpy as np import pathlib from collections import OrderedDict from pyutil import read_table, intersection BASE_PAIR = { 'A': 'T', 'T': 'A', 'G': 'C', 'C': 'G' } def check_flip(a1, a2, b1, b2): res = [] for _a1, _a2, _b1, _b2 in zip(a1, a2, b1, b2): res.append(_check_flip(_a1, _a2, _b1, _b2)) return np.array(res) def _check_flip(a0, a1, b0, b1): ''' check if (a0, a1) and (b0, b1) are of the same direction. If there is nan or they don't match at all or ambiguious return nan Else if they are in the same direction, return 1 Else return -1 ''' if a0 is np.nan or a1 is np.nan or b0 is np.nan or b1 is np.nan: return np.nan # remove ambiguious first. if a0 == BASE_PAIR[a1] or b0 == BASE_PAIR[b1]: return np.nan # exact match if a0 == b0 and a1 == b1: return 1 # flip if a0 == b1 and a1 == b0: return -1 # compliment match if a0 == BASE_PAIR[b0] and a1 == BASE_PAIR[b1]: return 1 # compliment flip if a0 == BASE_PAIR[b1] and a1 == BASE_PAIR[b0]: return -1 # if all above does not return, it has to be invalid. return np.nan def rearrage_df_by_target(df, target, df_value_cols): df_res = target[['snpid', 'chr', 'effect_allele', 'non_effect_allele']] df_res = pd.merge( df_res, df, on=['snpid', 'chr'], suffixes=['_res', '_df'], how='left' ) flip_factor = check_flip( a1=df_res.effect_allele_res, a2=df_res.non_effect_allele_res, b1=df_res.effect_allele_df, b2=df_res.non_effect_allele_df ) # we need to carry the missingness when we move on with np.errstate(invalid='ignore'): df_res[df_value_cols] = df_res[df_value_cols] * flip_factor[:, np.newaxis] df_res.drop( columns=['effect_allele_df', 'non_effect_allele_df'], inplace=True ) df_res.rename( columns={ 'effect_allele_res': 'effect_allele', 'non_effect_allele_res': 'non_effect_allele' }, inplace=True ) return df_res def harmonize_gwas_and_weight(gwas, weight): ''' Harmonize GWAS to weight SNP set. But only keep the ones that present in both. ''' df_common = pd.merge( gwas[['snpid', 'chr', 'effect_allele', 'non_effect_allele']], weight[['snpid', 'chr', 'effect_allele', 'non_effect_allele']], on=['snpid', 'chr'], suffixes=['_gwas', '_weight'] ) flip_factor = check_flip( a1=df_common.effect_allele_gwas, a2=df_common.non_effect_allele_gwas, b1=df_common.effect_allele_weight, b2=df_common.non_effect_allele_weight ) # need to remove the invalid variant before moving on to_keep_ind = np.logical_not(np.isnan(flip_factor)) df_common = df_common[ to_keep_ind ].reset_index(drop=True) flip_factor = flip_factor[ to_keep_ind ] df_common.drop(columns=['effect_allele_gwas', 'non_effect_allele_gwas'], inplace=True) df_common.rename(columns={'effect_allele_weight': 'effect_allele', 'non_effect_allele_weight': 'non_effect_allele'}, inplace=True) df_gwas = pd.merge( df_common[['snpid', 'chr', 'effect_allele', 'non_effect_allele']], gwas.drop(columns=['effect_allele', 'non_effect_allele']), on=['snpid', 'chr'] ) df_gwas.effect_size = df_gwas.effect_size * flip_factor df_weight = pd.merge( df_common[['snpid', 'chr', 'effect_allele', 'non_effect_allele']], weight.drop(columns=['effect_allele', 'non_effect_allele']), on=['snpid', 'chr'] ) return df_gwas, df_weight def _parse_args(args_list, desired_cols=None, no_raise=False): fn = args_list[0] if not pathlib.Path(fn).is_file(): raise ValueError('Filename is wrong. Cannot find the file.') dict = {} snpid_name = None desired_cols_tmp = [] for i in args_list[1:]: tmp = i.split(':') if len(tmp) != 2: raise ValueError('Wrong gwas args list. Need [col]:[name] pairs.') col, name = tmp if desired_cols is None: desired_cols_tmp.append(col) elif col not in desired_cols: if no_raise is True: continue else: raise ValueError(f'Wrong col = {col}.') dict[col] = name rename_dict = OrderedDict() if desired_cols is None: desired_cols = desired_cols_tmp for dd in desired_cols: if dd not in dict: if no_raise is True: continue else: raise ValueError(f'Need to have col = {dd}.') rename_dict[dict[dd]] = dd return fn, rename_dict def _parse_gwas_args(args_list, mode='effect_size'): if mode == 'effect_size': have_effect_size = True elif mode == 'zscore': have_effect_size = False else: raise ValueError(f'Wrong loading mode for GWAS file: mode = {mode}') # for kk in args_list: # if 'effect_size:' in kk: # have_effect_size = True if have_effect_size is True: desired_cols = [ 'snpid', 'non_effect_allele', 'effect_allele', 'effect_size', 'effect_size_se', 'chr' ] else: desired_cols = [ 'snpid', 'non_effect_allele', 'effect_allele', 'zscore', 'allele_frequency', 'sample_size', 'chr' ] fn, rename_dict = _parse_args(args_list, desired_cols, no_raise=True) for k, v in rename_dict.items(): if v == 'snpid': snpid_name = k break return fn, rename_dict, snpid_name def get_snpid_col(gwas_args_list): for i in gwas_args_list: if 'snpid:' in i: _, tmp = i.split(':') return tmp def impute_b_from_z(zscore, af, n): se = 1 / np.sqrt(2 * n * af * (1 - af)) bhat = zscore * se return bhat, se def clean_up_chr(ll): for i in range(len(ll)): ll[i] = re.sub('chr', '', ll[i]) return ll def get_key_by_val(val, dict_): for i in dict_.keys(): if dict_[i] == val: return i return None def load_gwas(gwas_args_list): snpid_col = get_snpid_col(gwas_args_list[1:]) # fn = gwas_args_list[0] fn, rename_dict = _parse_args(gwas_args_list, desired_cols=None) df = read_table(fn, indiv_col=snpid_col) k_effect_size = get_key_by_val('effect_size', rename_dict) k_zscore = get_key_by_val('zscore', rename_dict) if k_effect_size is not None and k_effect_size in df.columns: _, rename_dict, snpid_col = _parse_gwas_args(gwas_args_list, mode='effect_size') elif k_zscore is not None and k_zscore in df.columns: _, rename_dict, snpid_col = _parse_gwas_args(gwas_args_list, mode='zscore') else: raise ValueError('We need either effect_size or zscore in GWAS file.') df.rename(columns={'indiv': snpid_col}, inplace=True) df.rename(columns=rename_dict, inplace=True) df.drop_duplicates('snpid', inplace=True) df.chr = clean_up_chr(list(df.chr.astype(str))) if 'effect_size' not in rename_dict.values(): df['effect_size'], df['effect_size_se'] = impute_b_from_z(df.zscore, df.allele_frequency, df.sample_size) # some qc on gwas # remove se with 0 or inf # remove effect size with na df.effect_size_se.replace([0, np.inf, -np.inf], np.nan, inplace=True) df = df[ (~ df.effect_size.isna()) & (~ df.effect_size_se.isna()) ].reset_index(drop=True) desired_cols = [ 'snpid', 'non_effect_allele', 'effect_allele', 'effect_size', 'effect_size_se', 'chr' ] return df[desired_cols] def _parse_idp_args(args_list): desired_cols = [ 'snpid', 'non_effect_allele', 'effect_allele', 'chr' ] fn, rename_dict = _parse_args(args_list, desired_cols) return fn, rename_dict def load_idp(args_list): fn, rename_dict = _parse_idp_args(args_list) df = pd.read_parquet(fn) df.rename(columns=rename_dict, inplace=True) df.chr = df.chr.astype(str) return df def load_cov_meta(fn): fn = '.'.join(fn.split('.')[:-1]) fn = fn + '.snp_meta.parquet' return pd.read_parquet(fn) def _to_list(var): if not isinstance(var, list): return [ var ] else: return var def cleanup_idp_grp_dict(idp_grp_dict, idp_names): ''' Check if keys and values in idp_grp_dict appear in idp_names. If not, remove the key or value. Return the cleaned up idp_grp_dict. ''' to_drop = [] for k in idp_grp_dict.keys(): if 'covariates' not in idp_grp_dict[k] or 'x' not in idp_grp_dict[k]: raise ValueError('For each entry, we require covariates and x.') idp_grp_dict[k]['covariates'] = _to_list( idp_grp_dict[k]['covariates'] ) idp_grp_dict[k]['x'] = _to_list( idp_grp_dict[k]['x'] ) lc = intersection(idp_grp_dict[k]['covariates'], idp_names) lx = intersection(idp_grp_dict[k]['x'], idp_names) if len(lc) > 0 and len(lx) > 0: idp_grp_dict[k]['covariates'] = lc idp_grp_dict[k]['x'] = lx else: to_drop.append(k) for k in to_drop: del idp_grp_dict[k] return idp_grp_dict if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(prog='run_simagexcan.py', description=''' Run S-ImageXcan with pre-computed genotype covariance. Need to export PYTHONPATH=path-to/imagexcan:path-to/misc-tools/pyutil ''') parser.add_argument('--genotype_covariance', help=''' The genotype covariance computed in build_genotype_covariance.py Accept wildcard {chr_num}. Will automatically search for the corresponding meta SNP file. ''') parser.add_argument('--gwas', nargs='+', help=''' Need to have column names for: snpid, non_effect_allele, effect_allele, effect_size, effect_size_se, chr. If there is no effect_size avaliable, it could impute effect_size from zscore, allele_frequency, sample_size. The format is: snpid:rsid_col, ..., chr:chr ''') parser.add_argument('--idp_weight', nargs='+', help=''' The IDP weight table is in parquet format. It contains columns: snpid, effect_allele, non_effect_allele, chr. Along with all other columns for the IDPs. Specify the column names, e.g.: snpid:rsID, ..., chr:chr ''') parser.add_argument('--idp_yaml', default=None, help=''' A YAML file telling which PC is for which set of IDPs. Example: set1: covariates: - PC1 - PC2 x: - IDP1 - IDP2 set2: ... ''') parser.add_argument('--output', help=''' The output CSV filename. Will return both marginal test result and also the susieR result. ''') parser.add_argument('--z_ld_weight', type=float, default=1e-4, help=''' LD = (1 - z_ld_weight) * LD + z_ld_weight * (Z @ Z.T) to avoid mis-specified LD. ''') args = parser.parse_args() from tqdm import tqdm import logging, time, sys, os # configing util logging.basicConfig( level = logging.INFO, stream = sys.stderr, format = '%(asctime)s %(message)s', datefmt = '%Y-%m-%d %I:%M:%S %p' ) from CovConstructor import CovMatrix from susie_wrapper import run_susie_wrapper from pystat import z2p from pyutil import read_yaml logging.info('Loading GWAS.') df_gwas = load_gwas(args.gwas) # df_gwas columns: # snpid, non_effect_allele, effect_allele, # effect_size, effect_size_se, chr logging.info('GWAS SNP = {}'.format(df_gwas.shape[0])) logging.info('Loading IDP weights.') df_weight = load_idp(args.idp_weight) idp_names = list(df_weight.columns[4:]) nidp = len(idp_names) logging.info('IDP SNP = {} and number of IDPs = {}'.format(df_weight.shape[0], nidp)) logging.info('Harmonizing GWAS and IDP weights.') # harmonize GWAS and IDP weight table so that they have the same set of # SNPs (including direction). df_gwas, df_weight = harmonize_gwas_and_weight(df_gwas, df_weight) logging.info('{} SNPs left after harmonizing GWAS and IDP weights.'.format(df_gwas.shape[0])) if args.idp_yaml is not None: logging.info('Loading IDP YAML.') idp_grp_dict = read_yaml(args.idp_yaml) idp_grp_dict = cleanup_idp_grp_dict(idp_grp_dict, idp_names) logging.info('There are {} IDP sets'.format(len(idp_grp_dict.keys()))) else: idp_grp_dict = None # please refer to https://github.com/hakyimlab/yanyu-notebook/blob/master/notes/date_112420.Rmd # for the details of the S-ImageXcan formula # to take the following procedure. # 0. subset IDP and GWAS SNPs. # 1. Per chromosome # 1.1 obtain D(chr), S_R(chr), and var_R(chr). # 1.2 compute numer_b(chr) = Gamma(chr).T @ (var_R(chr) * b_gwas(chr)) # 1.3 compute numer_z(chr) = Gamma(chr).T @ (S_R(chr) * z_gwas(chr)) # 2. compute marginal test. # 2.1 D = sum_chr D(chr), var_D = diag(D), S_D = sqrt(var_D) # 2.2 beta_imagexcan = ( sum_chr numer_b(chr) ) / var_D # 2.3 z_imagexcan = ( sum_chr numer_z(chr) ) / S_D # 3. run susieR. # 3.1 Sigma = D / S_D[:, np.newaxis] / S_D[np.newaxis, :] # also, we do an extension of the marginal test where we account for PCs when testing one IDP at a time. # for the details of the formula see: # https://github.com/hakyimlab/yanyu-notebook/blob/master/notes/date_041421.Rmd D = np.zeros((nidp, nidp)) numer_b = np.zeros((nidp)) numer_z = np.zeros((nidp)) for i in range(1, 23): df_gwas_sub = df_gwas[ df_gwas.chr == str(i) ].reset_index(drop=True) df_weight_sub = df_weight[ df_weight.chr == str(i) ].reset_index(drop=True) if df_gwas_sub.shape[0] == 0: continue logging.info(f'Chromosome {i}: Loading genotype covariance meta information.') df_cov_meta = load_cov_meta(args.genotype_covariance.format(chr_num=i)) # step0 n0 = df_weight_sub.shape[0] # for book keeping # we enforce the GWAS table and the IDP weights to have # the same SNPs as genotype covariance # the weights of the missing ones are set to NaN. df_gwas_sub = rearrage_df_by_target( df=df_gwas_sub, target=df_cov_meta, df_value_cols=['effect_size'] ) df_weight_sub = rearrage_df_by_target( df=df_weight_sub, target=df_cov_meta, df_value_cols=list(df_weight.columns[4:]) ) n1 = df_gwas_sub.effect_size.notna().sum() logging.info('Step0 Chromosome {}: {} out of {} SNPs in IDP/GWAS are used.'.format(i, n1, n0)) logging.info(f'Step1 Chromosome {i}: Working with genotype covariance.') weight = df_weight_sub.iloc[:, 4 : ].to_numpy(copy=True) weight[np.isnan(weight)] = 0 b_gwas = df_gwas_sub.effect_size.to_numpy(copy=True) b_gwas[np.isnan(b_gwas)] = 0 se_gwas = df_gwas_sub.effect_size_se.to_numpy(copy=True) se_gwas[
np.isnan(se_gwas)
numpy.isnan
# -*- coding: utf-8 -*- """ Nutrislice Extractor Created on Mon Oct 28 08:32:54 2019 @author: carverjc This software is used to extract menu items from Nutrislice Menus. See README.md for details on usage. """ import cv2, sys import pytesseract import numpy as np import os import pandas as pd import skimage import time from skimage import io import copy from matplotlib import pyplot as plt from os.path import join from os import makedirs from glob import glob # MUST CHANGE THESE TWO os.environ["TESSDATA_PREFIX"] = "PATH_TO_TESSDATA" pytesseract.pytesseract.tesseract_cmd = "PATH_TO_tesseract.exe" def find_lines (img, length_of_run = 20, distance = 100): runs = [(-1)*(distance + 1)] for i in range(IMG_WIDTH): for j in range(IMG_HEIGHT): run_length = 0 if np.all(img[j,i] == 0.0) and i - runs[-1] > distance: for run in range(length_of_run): try: if np.all(img[j + run, i] == 0.0): run_length += 1 except IndexError: break if run_length == length_of_run: runs.append(i) break return runs[1:] #list(dict.fromkeys(runs)) def greatest_line (img): IMG_WIDTH = img.shape[:2][1] IMG_HEIGHT = img.shape[:2][0] max_list = [] for i in range(IMG_WIDTH): total_col_max = 0 for j in range(IMG_HEIGHT): max_run = 0 if np.all(img[j,i] == 0.0): new_index = j try: while np.all(img[new_index,i] == 0.0): max_run += 1 new_index += 1 except IndexError: continue if max_run > total_col_max: total_col_max = max_run max_list.append(total_col_max) return max_list def calculate_pixels (img, find_row = True, derivative = False): row_mean = [] if find_row == True: for i in range(IMG_HEIGHT): intermediate_sum = 0 for j in range(IMG_WIDTH): intermediate_sum = intermediate_sum + img[i,j][0] row_mean.append(intermediate_sum / IMG_WIDTH) else: for i in range(IMG_WIDTH): intermediate_sum = 0 for j in range(IMG_HEIGHT): intermediate_sum = intermediate_sum + img[j,i][0] row_mean.append(intermediate_sum / IMG_HEIGHT) if derivative == True: for i in range(len(row_mean) - 1): row_mean[i] = row_mean[i + 1] - row_mean[i] row_mean = row_mean[:-1] return row_mean def plot_df (df, title="", xlabel='Pixel Index', ylabel='Pixel Value', dpi=100): df = pd.DataFrame(df) df.index.name = xlabel df.reset_index(inplace=True) df.columns = [xlabel, ylabel] plt.figure(figsize=(16,5), dpi=dpi) plt.plot(df[xlabel], df[ylabel], color='tab:red') plt.gca().set(title=title, xlabel=xlabel, ylabel=ylabel) plt.title("Mean Horizontal Pixel Value From Top of Image") plt.show() def cut_finder (df, max_pixel, distance, find_black = True): cuts = [] cuts = [(-1)*distance] for i in range(len(df)): if find_black: if df[i] < max_pixel and (i - cuts[-1]) > distance: cuts.append(i) else: if df[i] < max_pixel and (i - cuts[-1]) > distance: if len(cuts) == 1: cuts.append(i - 20) elif len(cuts) > 1: if len(cuts) > 2: cuts.remove(cuts[-1]) intermediate_cut = [] cuts.append(i) intermediate_cut = copy.copy(df[cuts[-2]:cuts[-1]]) cuts[-1] = cuts[-2] + intermediate_cut.index(max(intermediate_cut)) cuts.append(i) else: continue return list(dict.fromkeys(cuts[1:])) def findnth (haystack, needle, n): parts= haystack.split(needle, n+1) if len(parts)<=n+1: return -1 return len(haystack)-len(parts[-1])-len(needle) def isNaN(num): return num != num def ocr (image_file): image_file0 = image_file[:-4] os.chdir(pathog) image = cv2.imread(image_file0 + '.jpg') os.chdir(pathnew) in_dir = (pathnew) config = '--oem 1 --psm 10 -c tessedit_char_whitelist=0123456789' configLetters = '--oem 1 --psm 3 tessedit_char_whitelist=abcdefghijklmnopqrstuvwxyz' OCR = pytesseract.image_to_string(image, lang='eng', config = configLetters) matchers_month = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'] matchers_year = ['2017', '2018', '2019'] OCR = OCR.replace('\n', ' ') OCR = OCR.replace('/', ' ') OCR1 = OCR.split(' ') try: matching_month = [s for s in OCR1 if any(xs in s for xs in matchers_month)][0] except IndexError: matching_month = ("October") try: matching_year = [s for s in OCR1 if any(xs in s for xs in matchers_year)][0] except IndexError: matching_year = ('2017') file_name_string = image_file0.split('_') state = pathog.split('/')[-1] if 'district' in image_file: index = file_name_string.index('district') county = ' '.join(file_name_string[:(index + 1)]) elif 'county' in image_file: index = file_name_string.index('county') county = ' '.join(file_name_string[:(index + 1)]) elif 'city' in image_file: index = file_name_string.index('city') county = ' '.join(file_name_string[:(index + 1)]) elif 'borough' in image_file: index = file_name_string.index('borough') county = ' '.join(file_name_string[:(index + 1)]) elif 'County' in image_file: index = file_name_string.index('County') county = ' '.join(file_name_string[:(index + 1)]) elif 'City' in image_file: index = file_name_string.index('City') county = ' '.join(file_name_string[:(index + 1)]) elif 'Borough' in image_file: index = file_name_string.index('Borough') county = ' '.join(file_name_string[:(index + 1)]) elif 'District' in image_file: index = file_name_string.index('District') county = ' '.join(file_name_string[:(index + 1)]) elif 'DISTRICT' in image_file: index = file_name_string.index('DISTRICT') county = ' '.join(file_name_string[:(index + 1)]) elif 'menu' in image_file: county = ' '.join(file_name_string[:2]) elif matching_year in image_file: index = file_name_string.index(matching_year) county = ' '.join(file_name_string[:index]) else: county = file_name_string[0] if 'lunch' in OCR: meal = 'lunch' elif 'breakfast' in OCR: meal = 'breakfast' else: meal = "lunch" preface = (state + ';' + county + ';' + matching_year + ';' + matching_month + ';') filename = (in_dir + image_file[:-13] + '.txt') headers = ('State;County;Year;Month;Date;Type;Item;Sodium\n') totalfile = open(filename, "w+") totalfile.write(headers) totalfile.close() number_crop = 40 for image_file2 in glob(f'*.jpg'): image = cv2.imread(image_file2) thresh, image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY) image2 = 255*(image < 128).astype(np.uint8) image2_final = image2[:number_crop,:] image_final = image[number_crop:,:] # See if there is anything OCR = pytesseract.image_to_string(image_final, lang='eng', config = configLetters) if len(OCR) < 10: print("No data: skipped") continue OCR = '' length_of_run = max(greatest_line(image)) - 5 image2_final = image2[:length_of_run,:] image_final = image[length_of_run:,:] OCR = pytesseract.image_to_string(image2_final, lang='eng', config = config) date = copy.copy(OCR) preface_interm = (preface + date + ';' + meal + ';') OCR = pytesseract.image_to_string(image_final, lang='eng', config = configLetters) if "Sodium" in OCR: OCR = OCR.replace('\n(', '(') OCR = OCR.replace('\n(', '(') OCR = OCR.split('\n') OCR_new = [] for i in range(len(OCR)): #if 'mg' in OCR[i] and len(OCR[i]) > 7: if len(OCR[i]) > 7: OCR_new.append(OCR[i]) for i in range(len(OCR_new)): if 'mg' in OCR_new[i]: OCR_new[i] = OCR_new[i].replace('(', ';') OCR_new[i] = OCR_new[i].replace('mg', '') else: OCR_new[i] = OCR_new[i] + ';' OCR_new = '\n'.join(OCR_new) OCR_new += '\n' OCR = OCR_new else: OCR = OCR.replace('\n\n','\n') OCR += '\n' OCR = OCR.replace('\n',';\n') OCR = OCR.replace('Sodium','') OCR = OCR.replace(')','') OCR = OCR.replace('}','') OCR = OCR.replace(']','') OCR = '\n' + OCR OCR = OCR.replace('\n', '\n' + preface_interm) OCR = OCR[:OCR.rfind(state)] OCR = OCR.replace('+ ','') OCR = OCR.replace('« ','') OCR = OCR.replace('* ','') OCR = OCR.replace('» ','') OCR = OCR.replace('+','') OCR = OCR.replace('«','') OCR = OCR.replace('*','') OCR = OCR.replace('»','') OCR = OCR.replace('é','') OCR = OCR.replace('©','') OCR = OCR[1:] test = OCR.split('\n') for line in range(len(test)): if test[line].count(';') > 7: cutindex = findnth(test[line], ';', 7) test.insert(line + 1, preface_interm + test[line][cutindex + 1:]) test[line] = test[line][:cutindex] OCR = '\n'.join(test) OCR = OCR.encode('utf-8').strip() OCR += (b'\n') myfile = open(in_dir + '{}.txt'.format(image_file2[:-4]), "w+") print(OCR, file=myfile) myfile.close() totalfile2 = open(filename, "ab+") totalfile2.write(OCR) totalfile2.close() txt_file = filename csv_file = (filename[:-4] + '.csv') dataframe = pd.read_csv(txt_file, delimiter=";") try: for rows in range(dataframe.shape[0]): if (not isNaN(dataframe['Item'][rows])) and dataframe['Item'][rows][0] == '-': dataframe['Item'][rows] = copy.copy(dataframe['Item'][rows][1:]) try: dataframe['Sodium'] = dataframe['Sodium'].replace({'o': '0'}, regex=True) dataframe['Sodium'] = dataframe['Sodium'].replace({'O': '0'}, regex=True) dataframe['Sodium'] = dataframe['Sodium'].replace({'S': ''}, regex=True) dataframe['Sodium'] = dataframe['Sodium'].replace({'f': '1'}, regex=True) dataframe['Sodium'] = dataframe['Sodium'].replace({'wi': ''}, regex=True) dataframe['Sodium'] = dataframe['Sodium'].replace({'%': '1'}, regex=True) except TypeError: print("Non Sodium File") #Creates the 'entree' variable using a ML method try: dataframe.to_csv(csv_file, encoding='utf-8', index=False) except UnicodeDecodeError: try: dataframe.to_csv(csv_file, index=False) except UnicodeDecodeError: print("Couldn't Create CSV") except UnicodeDecodeError: print("Couldn't Create CSV") abspath = os.path.abspath(__file__) dname = os.path.dirname(abspath) os.chdir(dname) real_og_path = os.getcwd() path = (os.getcwd()) os.chdir(os.getcwd() + '\\images\\') for state in glob(os.getcwd() + '\\**'): pathog = '/'.join(state.split('\\')) os.chdir(pathog) print(pathog) try: os.mkdir(path + '\\2017\\' + pathog.split('/')[-1]) except FileExistsError: print("State Folder Exists") for image_file in glob(f'*.jpg'): os.chdir(pathog) print(image_file) print("Splitting Rows") path = (path + '\\2017\\' + pathog.split('/')[-1] + '\\' + image_file[:-4] + '\\rows\\') MISSING_LAST_ROW = True gray = cv2.imread(image_file) gray2 = copy.copy(gray) IMG_WIDTH = gray.shape[:2][1] IMG_HEIGHT = gray.shape[:2][0] for i in range(IMG_WIDTH): for j in range(IMG_HEIGHT): if not(np.all(gray[j,i] < 1.0)): gray2[j,i] =
np.array([255,255,255])
numpy.array
from matplotlib import pyplot as plt import numpy as np import spikeforest class CrossCorrelogramsWidget: def __init__(self, max_samples=None, auto=True, *, sorting, samplerate, unit_ids=None, _figure=None, _axs=None): self._SX = sorting self._unit_ids = unit_ids self._figure = _figure self._axs = _axs if self._figure is not None: self._axs = self._figure.axes elif self._axs is not None: self._axs = self._axs self._samplerate = samplerate self.auto = auto self.max_samples = max_samples self.max_dt_msec = 50 self.bin_size_msec = 2 self.max_dt_tp = self.max_dt_msec * self._samplerate / 1000 self.bin_size_tp = self.bin_size_msec * self._samplerate / 1000 def plot(self): if self.auto: self._do_plot() else: self._do_plot_matrix() def figure(self): return self._figure def _do_plot_matrix(self): units = self._unit_ids if units is None: units = self._SX.get_unit_ids() nrows = ncols = len(units) f, axs = plt.subplots(nrows, ncols, figsize=(3 * ncols + 0.1, 3 * nrows + 0.1)) self._figure = f for i1, unit1 in enumerate(units): times1 = self._SX.get_unit_spike_train(unit_id=unit1) for i2, unit2 in enumerate(units): times2 = self._SX.get_unit_spike_train(unit_id=unit2) if i1 == i2: (bin_counts, bin_edges) = compute_crosscorrelogram(times1, max_dt_tp=self.max_dt_tp, bin_size_tp=self.bin_size_tp, max_samples=self.max_samples) else: (bin_counts, bin_edges) = compute_crosscorrelogram(times1, times2, max_dt_tp=self.max_dt_tp, bin_size_tp=self.bin_size_tp, max_samples=self.max_samples) item = dict( title="{} -> {}".format(unit1, unit2), bin_counts=bin_counts, bin_edges=bin_edges ) self._plot_correlogram(axs[i1, i2], **item) def _do_plot(self): units = self._unit_ids if units is None: units = self._SX.get_unit_ids() list = [] for unit in units: times = self._SX.get_unit_spike_train(unit_id=unit) (bin_counts, bin_edges) = compute_autocorrelogram(times, max_dt_tp=self.max_dt_tp, bin_size_tp=self.bin_size_tp) item = dict( title=str(unit), bin_counts=bin_counts, bin_edges=bin_edges ) list.append(item) with plt.rc_context({'axes.edgecolor': 'gray'}): self._plot_correlograms_multi(list) def _plot_correlogram(self, ax, *, bin_counts, bin_edges, title=''): wid = (bin_edges[1] - bin_edges[0]) * 1000 ax.bar(x=bin_edges[0:-1] * 1000, height=bin_counts, width=wid, color='gray', align='edge') ax.set_xlabel('dt (msec)') ax.set_xticks([]) ax.set_yticks([]) if title: ax.set_title(title, color='gray') def _plot_correlograms_multi(self, list, *, ncols=5, **kwargs): nrows = int(np.ceil(len(list) / ncols)) if (self._figure is None) & (self._axs is None): f, axs = plt.subplots(nrows, ncols, figsize=(3 * ncols + 0.1, 3 * nrows + 0.1)) self._figure = f for i, item in enumerate(list): ax = plt.subplot(nrows, ncols, i + 1) self._plot_correlogram(ax, **item, **kwargs) self._axs = axs def compute_crosscorrelogram(x, y=None, *, max_dt_tp, bin_size_tp, max_samples=None): if y is None: y = x auto = True else: auto = False if max_samples is not None: if max_samples < len(x): x = np.random.choice(x, size=max_samples, replace=False) if max_samples < len(y): y = np.random.choice(y, size=max_samples, replace=False) bin_start = -max_dt_tp bin_stop = max_dt_tp bin_edges = np.arange(start=bin_start, stop=bin_stop + bin_size_tp, step=bin_size_tp) counts = np.zeros(len(bin_edges) - 1) nbins = len(counts) x =
np.sort(x)
numpy.sort
# encoding: utf-8 # # @Author: <NAME>, <NAME> # @Date: Nov 15, 2021 # @Filename: ism.py # @License: BSD 3-Clause # @Copyright: <NAME>, <NAME> import os.path from astropy import units as u from astropy import constants as c import numpy as np from astropy.io import fits, ascii from astropy.table import Table from scipy.special import sph_harm from astropy.wcs import WCS from astropy.wcs.utils import proj_plane_pixel_scales from astropy.coordinates import SkyCoord from astropy.modeling.models import Sersic2D from dataclasses import dataclass import sys if (sys.version_info[0]+sys.version_info[1]/10.) < 3.8: from backports.cached_property import cached_property else: from functools import cached_property from scipy.ndimage.interpolation import map_coordinates from scipy.interpolate import interp1d, interp2d import lvmdatasimulator from lvmdatasimulator import log import progressbar from joblib import Parallel, delayed from astropy.convolution import convolve_fft, kernels from lvmdatasimulator.utils import calc_circular_mask, convolve_array, set_default_dict_values, \ ism_extinction, check_overlap, assign_units fluxunit = u.erg / (u.cm ** 2 * u.s * u.arcsec ** 2) velunit = u.km / u.s def brightness_inhomogeneities_sphere(harm_amplitudes, ll, phi_cur, theta_cur, rho, med, radius, thickness): """ Auxiliary function producing the inhomogeneities on the brightness distribution for the Cloud of Bubble objects using the spherical harmonics. """ brt = theta_cur * 0 for m in np.arange(-ll, ll + 1): brt += (harm_amplitudes[m + ll * (ll + 1) - 1] * sph_harm(m, ll, phi_cur, theta_cur).real * med * (1 - np.sqrt(abs(rho.value ** 2 / radius.value ** 2 - (1 - thickness / 2) ** 2)))) return brt def sphere_brt_in_line(brt_3d, rad_3d, rad_model, flux_model): """ Auxiliary function computing the brightness of the Cloud or Bubble at given radii and in given line according to the Cloudy models """ p = interp1d(rad_model, flux_model, fill_value='extrapolate', assume_sorted=True) return p(rad_3d) * brt_3d def interpolate_sphere_to_cartesian(spherical_array, x_grid=None, y_grid=None, z_grid=None, rad_grid=None, theta_grid=None, phi_grid=None, pxscale=1. * u.pc): """ Auxiliary function to project the brightness or velocities from the spherical to cartesian coordinates """ x, y, z = np.meshgrid(x_grid, y_grid, z_grid, indexing='ij') phi_c, theta_c, rad_c = xyz_to_sphere(x, y, z, pxscale=pxscale) ir = interp1d(rad_grid, np.arange(len(rad_grid)), bounds_error=False) ith = interp1d(theta_grid, np.arange(len(theta_grid))) iphi = interp1d(phi_grid, np.arange(len(phi_grid))) new_ir = ir(rad_c.ravel()) new_ith = ith(theta_c.ravel()) new_iphi = iphi(phi_c.ravel()) cart_data = map_coordinates(spherical_array, np.vstack([new_ir, new_ith, new_iphi]), order=1, mode='constant', cval=0) return cart_data.reshape([len(x_grid), len(y_grid), len(z_grid)]).T def limit_angle(value, bottom_limit=0, top_limit=np.pi): """ Auxiliary function to limit the angle values to the range of [0, pi] """ value[value < bottom_limit] += (top_limit - bottom_limit) value[value > top_limit] -= (top_limit - bottom_limit) return value def xyz_to_sphere(x, y, z, pxscale=1. * u.pc): """ Auxiliary function to map the coordinates from cartesian to spherical system """ phi_c = np.arctan2(y, x) rad_c = (np.sqrt(x ** 2 + y ** 2 + z ** 2)) rad_c[rad_c == 0 * u.pc] = 1e-3 * pxscale theta_c = (np.arccos(z / rad_c)) phi_c = limit_angle(phi_c, 0 * u.radian, 2 * np.pi * u.radian) theta_c = limit_angle(theta_c, 0 * u.radian, np.pi * u.radian) return phi_c, theta_c, rad_c def find_model_id(file=lvmdatasimulator.CLOUDY_MODELS, check_id=None, params=lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id']): """ Checks the input parameters of the pre-computed Cloudy model and return corresponding index in the grid """ with fits.open(file) as hdu: if check_id is None: if params is None: check_id = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'] log.warning(f'Default Cloudy model will be used (id = {check_id})') else: summary_table = Table(hdu['Summary'].data) indexes = np.arange(len(summary_table)).astype(int) rec_table = np.ones(shape=len(summary_table), dtype=bool) def closest(rec, prop, val): unique_col = np.unique(summary_table[prop][rec]) if isinstance(val, str): res = unique_col[unique_col == val] if len(res) == 0: return "" return res else: return unique_col[np.argsort(np.abs(unique_col - val))[0]] for p in params: if p not in summary_table.colnames or params[p] is None or \ ((isinstance(params[p], float) or isinstance(params[p], int)) and ~np.isfinite(params[p])): continue rec_table = rec_table & (summary_table[p] == closest(indexes, p, params[p])) indexes = np.flatnonzero(rec_table) if len(indexes) == 0: break if len(indexes) == 0 or len(indexes) == len(summary_table): check_id = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'] log.warning('Input parameters do not correspond to any pre-computed Cloudy model.' 'Default Cloudy model will be used (id = {0})'.format(check_id)) elif len(indexes) == 1: check_id = summary_table['Model_ID'][indexes[0]] for p in params: if p not in summary_table.colnames or params[p] is None or \ ((isinstance(params[p], float) or isinstance(params[p], int)) and ~np.isfinite(params[p])): continue if params[p] != summary_table[p][indexes[0]]: log.warning(f'Use the closest pre-computed Cloudy model with id = {check_id}') break else: check_id = summary_table['Model_ID'][indexes[0]] log.warning(f'Select one of the closest pre-computed Cloudy model with id = {check_id}') # # for cur_ext in range(len(hdu)): # if cur_ext == 0: # continue # found = False # for p in params: # if p == 'id': # continue # precision = 1 # if p == 'Z': # precision = 2 # if np.round(params[p], precision) != np.round(hdu[cur_ext].header[p], precision): # break # else: # found = True # if found: # return cur_ext, check_id # check_id = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'] # log.warning('Input parameters do not correspond to any pre-computed Cloudy model.' # 'Default Cloudy model will be used (id = {0})'.format(check_id)) extension_index = None while extension_index is None: extension_index = [cur_ext for cur_ext in range(len(hdu)) if ( check_id == hdu[cur_ext].header.get('MODEL_ID'))] if len(extension_index) == 0: if check_id == lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id']: log.warning('Model_ID = {0} is not found in the Cloudy models grid. ' 'Use the first one in the grid instead'.format(check_id)) extension_index = 1 else: log.warning('Model_ID = {0} is not found in the Cloudy models grid. ' 'Use default ({1}) instead'.format(check_id, lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'])) check_id = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'] extension_index = None else: extension_index = extension_index[0] return extension_index, check_id @dataclass class Nebula: """ Base class defining properties of every nebula type. By itself it describes the rectangular nebula (e.g. DIG) Constructed nebula has 4 dimensions, where 4th derive its appearance in different lines (if spectrum_id is None, or if it is dark nebula => only one line) """ xc: int = None # Center of the region in the field of view, pix yc: int = None # Center of the region in the field of view, pix x0: int = 0 # Coordinates of the bottom-left corner in the field of view, pix y0: int = 0 # Coordinates of the bottom-left corner in the field of view, pix pix_width: int = None # full width of cartesian grid, pix (should be odd) pix_height: int = None # full height of cartesian grid, pix (should be odd) width: u.pc = 0 * u.pc # width of the nebula in pc (not used if pix_width is set up) height: u.pc = 0 * u.pc # height of the nebula in pc (not used if pix_height is set up) pxscale: u.pc = 0.01 * u.pc # pixel size in pc spectrum_id: int = None # ID of a template Cloudy emission spectrum for this nebula n_brightest_lines: int = None # limit the number of the lines to the first N brightest sys_velocity: velunit = 0 * velunit # Systemic velocity turbulent_sigma: velunit = 10 * velunit # Velocity dispersion due to turbulence; included in calculations of LSF max_brightness: fluxunit = 1e-15 * fluxunit max_extinction: u.mag = 0 * u.mag perturb_scale: int = 0 * u.pc # Spatial scale of correlated perturbations perturb_amplitude: float = 0.1 # Maximal amplitude of perturbations _npix_los: int = 1 # full size along line of sight in pixels nchunks: int = -1 # number of chuncks to use for the convolution. If negative, select automatically vel_gradient: (velunit / u.pc) = 0 # velocity gradient along the nebula vel_pa: u.degree = 0 # Position angle of the kinematical axis (for the velocity gradient or rotation velocity) def __post_init__(self): self._assign_all_units() self._assign_position_params() self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula def _assign_all_units(self): whole_list_properties = ['pxscale', 'sys_velocity', 'turbulent_sigma', 'max_brightness', 'max_extinction', 'perturb_scale', 'radius', 'PA', 'length', 'width', 'vel_gradient', 'r_eff', 'vel_rot', 'expansion_velocity', 'spectral_axis', 'vel_pa'] whole_list_units = [u.pc, velunit, velunit, fluxunit, u.mag, u.pc, u.pc, u.degree, u.pc, u.pc, (velunit / u.pc), u.kpc, velunit, velunit, velunit, u.degree] cur_list_properties = [] cur_list_units = [] for prp, unit in zip(whole_list_properties, whole_list_units): if hasattr(self, prp): cur_list_properties.append(prp) cur_list_units.append(unit) assign_units(self, cur_list_properties, cur_list_units) def _assign_position_params(self, conversion_type='rect'): if conversion_type == 'rect': for v in ['height', 'width']: if self.__getattribute__(f'pix_{v}') is None: val = np.round((self.__getattribute__(v) / self.pxscale).value / 2.).astype(int) * 2 + 1 else: val = np.round(self.__getattribute__(f'pix_{v}') / 2.).astype(int) * 2 + 1 setattr(self, f'pix_{v}', val) elif conversion_type == 'ellipse': self.pix_width = (np.round(np.abs(self.radius / self.pxscale * np.sin(self.PA)) + np.abs(self.radius / self.pxscale * self.ax_ratio * np.cos(self.PA))).astype(int) * 2 + 1).value self.pix_height = (np.round(np.abs(self.radius / self.pxscale * np.cos(self.PA)) + np.abs(self.radius / self.pxscale * self.ax_ratio * np.sin(self.PA))).astype(int) * 2 + 1).value elif conversion_type == 'galaxy': self.pix_width = (np.round(np.abs(self.r_max * np.sin(self.PA)) + np.abs(self.r_max * self.ax_ratio * np.cos(self.PA))).astype(int) * 2 + 1).value self.pix_height = (np.round(np.abs(self.r_max * np.cos(self.PA)) + np.abs(self.r_max * self.ax_ratio * np.sin(self.PA))).astype(int) * 2 + 1).value elif conversion_type == 'cylinder': self.pix_width = (np.ceil((self.length * np.abs(np.sin(self.PA)) + self.width * np.abs(np.cos(self.PA))) / self.pxscale / 2. ).astype(int) * 2 + 1).value self.pix_height = (np.ceil((self.length * np.abs(np.cos(self.PA)) + self.width * np.abs(np.sin(self.PA))) / self.pxscale / 2. ).astype(int) * 2 + 1).value if (self.xc is not None) and (self.yc is not None): self.x0 = self.xc - np.round((self.pix_width - 1) / 2).astype(int) self.y0 = self.yc - np.round((self.pix_height - 1) / 2).astype(int) elif (self.x0 is not None) and (self.y0 is not None): self.xc = self.x0 + np.round((self.pix_width - 1) / 2).astype(int) self.yc = self.y0 + np.round((self.pix_height - 1) / 2).astype(int) @cached_property def _cartesian_x_grid(self): return np.arange(self.pix_width) * self.pxscale @cached_property def _cartesian_y_grid(self): return np.arange(self.pix_height) * self.pxscale @cached_property def _cartesian_z_grid(self): return np.arange(self._npix_los) * self.pxscale @cached_property def _max_density(self): return self.max_extinction * (1.8e21 / (u.cm ** 2 * u.mag)) @cached_property def _brightness_3d_cartesian(self): """ Method to obtain the brightness (or density) distribution of the nebula in cartesian coordinates """ brt = np.ones(shape=(self.pix_height, self.pix_width, self._npix_los), dtype=float) / self._npix_los if (self.perturb_scale > 0) and (self.perturb_amplitude > 0): pertscale = (self.perturb_scale / self.pxscale).value perturb = np.random.uniform(-1, 1, (self.pix_height, self.pix_width) ) * self.perturb_amplitude / self._npix_los xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) f = np.exp(-2 * (xx ** 2 + yy ** 2) / pertscale) perturb = 4 / np.sqrt(np.pi) / pertscale * np.fft.ifft2(np.fft.fft2(perturb) * np.fft.fft2(f)).real brt += (perturb[:, :, None] - np.median(perturb)) return brt @cached_property def _brightness_4d_cartesian(self): """ Derive the brightness (or density) distribution of the nebula for each emission line in cartesian coordinates """ if self.spectrum_id is None or self.linerat_constant: flux_ratios = np.array([1.]) else: with fits.open(lvmdatasimulator.CLOUDY_MODELS) as hdu: flux_ratios = hdu[self.spectrum_id].data[1:, 1] index_ha = np.flatnonzero(hdu[self.spectrum_id].data[1:, 0] == 6562.81) if self.n_brightest_lines is not None and \ (self.n_brightest_lines > 0) and (self.n_brightest_lines < len(flux_ratios)): indexes_sorted = np.argsort(flux_ratios)[::-1] flux_ratios = flux_ratios[indexes_sorted[: self.n_brightest_lines]] index_ha = np.flatnonzero(hdu[self.spectrum_id].data[1:, 0][indexes_sorted] == 6562.81) if len(index_ha) == 1: self._ref_line_id = index_ha[0] return self._brightness_3d_cartesian[None, :, :, :] * flux_ratios[:, None, None, None] @cached_property def brightness_skyplane(self): """ Project the 3D nebula onto sky plane (for emission or continuum sources) """ if self.max_brightness > 0: norm_max = self.max_brightness else: norm_max = 1 map2d = np.nansum(self._brightness_3d_cartesian, 2) return map2d / np.nanmax(map2d) * norm_max @cached_property def brightness_skyplane_lines(self): """ Project the 3D emission nebula line onto sky plane (return images in each emission line) """ if self.max_brightness > 0: map2d = np.nansum(self._brightness_4d_cartesian, 3) return map2d / np.nanmax(map2d[self._ref_line_id, :, :]) * self.max_brightness else: return None @cached_property def extinction_skyplane(self): """ Project the 3D nebula onto sky plane (for dark clouds) """ if self.max_extinction > 0: map2d = np.nansum(self._brightness_3d_cartesian, 2) return map2d / np.nanmax(map2d) * self._max_density / (1.8e21 / (u.cm ** 2 * u.mag)) else: return None @cached_property def vel_field(self): return self._get_2d_velocity() # if vel_field is None: # return np.atleast_1d(self.sys_velocity) # else: # return vel_field + self.sys_velocity def _get_2d_velocity(self): if hasattr(self, 'vel_gradient') and (self.vel_gradient is not None) and (self.vel_gradient != 0): xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) vel_field = (- (xx - (self.pix_width - 1) / 2) * np.sin(self.vel_pa) + (yy - (self.pix_height - 1) / 2) * np.cos(self.vel_pa)) * self.pxscale * self.vel_gradient return vel_field else: return None # @cached_property # def line_profile(self): # lprf = np.zeros(shape=len(self.los_velocity), dtype=float) # lprf[np.floor(len(lprf) / 2.).astype(int)] = 1. # return lprf @dataclass class Rectangle(Nebula): """ Class defining a simple rectangular component. This is equal to Nebula, but no perturbations and turbulence by default """ perturb_amplitude: float = 0.0 # Maximal amplitude of perturbations turbulent_sigma: velunit = 0 * velunit # Velocity dispersion due to turbulence; included in calculations of LSF def __post_init__(self): self._assign_all_units() self._assign_position_params() self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @dataclass class Ellipse(Nebula): """ Class defining a simple elliptical component. No perturbations and turbulence by default """ perturb_amplitude: float = 0.0 # Maximal amplitude of perturbations turbulent_sigma: velunit = 0 * velunit # Velocity dispersion due to turbulence; included in calculations of LSF radius: u.pc = 1.0 * u.pc # Radius along the major axis of the ellipse (or radius of the circle) PA: u.degree = 90 * u.degree # position angle of the major axis ax_ratio: float = 1. # ratio of minor/major axes def __post_init__(self): self._assign_all_units() self._npix_los = 1 self._assign_position_params(conversion_type='ellipse') self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @cached_property def _brightness_3d_cartesian(self): """ Method to obtain the brightness (or density) distribution of the nebula in cartesian coordinates """ xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) brt = np.ones(shape=(self.pix_height, self.pix_width), dtype=np.float32) angle = (self.PA + 90 * u.degree).to(u.radian).value xct = (xx - (self.pix_width - 1) / 2) * np.cos(angle) + \ (yy - (self.pix_height - 1) / 2) * np.sin(angle) yct = (xx - (self.pix_width - 1) / 2) * np.sin(angle) - \ (yy - (self.pix_height - 1) / 2) * np.cos(angle) rmaj = (self.radius.to(u.pc) / self.pxscale.to(u.pc)).value rmin = (self.radius.to(u.pc) / self.pxscale.to(u.pc)).value * self.ax_ratio rec = (xct ** 2 / rmaj ** 2) + (yct ** 2 / rmin ** 2) >= 1 brt[rec] = 0 brt = brt.reshape((self.pix_height, self.pix_width, 1)) return brt @dataclass class Circle(Ellipse): """ Class defining a simple circular component. """ def __post_init__(self): self._assign_all_units() self.ax_ratio = 1. self._npix_los = 1 self._assign_position_params(conversion_type='ellipse') self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @dataclass class Filament(Nebula): """ Class of an isotropic cylindrical shape filament. Defined by its position, length, PA, radius, maximal optical depth. If it is emission-type filament, then also maximal brightness is required. Velocity gradient also can be set up """ PA: u.degree = 90 * u.degree # position angle of the filament length: u.pc = 10 * u.pc # full length of the filament width: u.pc = 0.1 * u.pc # full width (diameter) of the filament def __post_init__(self): self._assign_all_units() self._assign_position_params(conversion_type='cylinder') self._npix_los = 1 self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @cached_property def _brightness_3d_cartesian(self): """ Method to obtain the brightness (or density) distribution of the nebula in cartesian coordinates """ xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) brt = np.zeros_like(xx, dtype=np.float32) xct = (xx - (self.pix_width - 1) / 2) * np.cos(self.PA + 90 * u.degree) + \ (yy - (self.pix_height - 1) / 2) * np.sin(self.PA + 90 * u.degree) yct = (xx - (self.pix_width - 1) / 2) * np.sin(self.PA + 90 * u.degree) - \ (yy - (self.pix_height - 1) / 2) * np.cos(self.PA + 90 * u.degree) rad = ((self.width / self.pxscale).value / 2.) len_px = ((self.length / self.pxscale).value / 2.) rec = (np.abs(yct) <= rad) & (np.abs(xct) <= len_px) brt[rec] = np.sqrt(1. - (yct[rec] / rad) ** 2) brt = brt.reshape((self.pix_height, self.pix_width, 1)) return brt @dataclass class _ObsoleteFilament(Nebula): """ Class of an isotropic cylindrical shape filament. Defined by its position, length, PA, radius, maximal optical depth if it is emission-type filament, then maximal brightness NB: this class is obsolete, but might be considered later in case of implementation of varying line ratios """ PA: u.degree = 90 * u.degree # position angle of the filament length: u.pc = 10 * u.pc # full length of the filament width: u.pc = 0.1 * u.pc # full width (diameter) of the filament vel_gradient: (velunit / u.pc) = 0 # velocity gradient along the filament (to be added) _theta_bins: int = 50 _rad_bins: int = 0 _h_bins: int = 2 _npix_los: int = 101 def __post_init__(self): self._assign_all_units() if self._rad_bins == 0: self._rad_bins = np.ceil(self.width.to(u.pc).value / self.pxscale.to(u.pc).value * 5).astype(int) if (self.xc is not None) and (self.yc is not None): self.x0 = self.xc - np.round((len(self._cartesian_y_grid) - 1) / 2).astype(int) self.y0 = self.yc - np.round((len(self._cartesian_z_grid) - 1) / 2).astype(int) elif (self.x0 is not None) and (self.y0 is not None): self.xc = self.x0 + np.round((len(self._cartesian_y_grid) - 1) / 2).astype(int) self.yc = self.y0 + np.round((len(self._cartesian_z_grid) - 1) / 2).astype(int) self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @cached_property def _theta_grid(self): return np.linspace(0, 2 * np.pi, self._theta_bins) @cached_property def _h_grid(self): return np.linspace(0, self.length, self._h_bins) @cached_property def _rad_grid(self): return np.linspace(0, self.width / 2, self._rad_bins) @cached_property def _cartesian_y_grid(self): npix = np.ceil(1.01 * (self.length * np.abs(np.sin(self.PA)) + self.width * np.abs(np.cos(self.PA))) / self.pxscale).astype(int) npix_l = npix / 2 - np.ceil(self.length / 2 * np.sin(-self.PA) / self.pxscale).astype(int) return (np.linspace(0, npix, npix + 1) - npix_l) * self.pxscale @cached_property def _cartesian_z_grid(self): npix = np.ceil(1.01 * (self.length * np.abs(np.cos(self.PA)) + self.width * np.abs(np.sin(self.PA))) / self.pxscale).astype(int) npix_l = npix / 2 - np.ceil(self.length / 2 * np.cos(-self.PA) / self.pxscale).astype(int) return (np.linspace(0, npix, npix + 1) - npix_l) * self.pxscale @cached_property def _cartesian_x_grid(self): return np.linspace(-1.01, 1.01, self._npix_los) * self.width / 2 @cached_property def _brightness_3d_cylindrical(self): """ Method to calculate brightness (or opacity) of the cloud at given theta, phi and radii theta: float -- azimuthal angle [0, 2 * np.pi] rad: float -- radius [0, self.width / 2] h: float -- height [0, self.length] Returns: 3D cube of normalized brightness in theta-rad-h grid; total brightness = 1 """ rho, theta, h = np.meshgrid(self._rad_grid, self._theta_grid, self._h_grid, indexing='ij') brt = np.ones_like(theta) brt[rho > (self.width / 2)] = 0 norm = np.sum(brt) if norm > 0: brt = brt / np.sum(brt) return brt @cached_property def _brightness_3d_cartesian(self): x, y, z = np.meshgrid(self._cartesian_x_grid, self._cartesian_y_grid, self._cartesian_z_grid, indexing='ij') h_c = -y * np.sin(self.PA) + z * np.cos(self.PA) theta_c = np.arctan2(y * np.cos(self.PA) + z * np.sin(self.PA), x) rad_c = np.sqrt(x ** 2 + (y * np.cos(self.PA) + z * np.sin(self.PA)) ** 2) rad_c[rad_c == 0 * u.pc] = 1e-3 * self.pxscale theta_c = limit_angle(theta_c, 0 * u.radian, 2 * np.pi * u.radian) ir = interp1d(self._rad_grid, np.arange(self._rad_bins), bounds_error=False) ith = interp1d(self._theta_grid, np.arange(self._theta_bins)) ih = interp1d(self._h_grid, np.arange(self._h_bins), bounds_error=False) new_ir = ir(rad_c.ravel()) new_ith = ith(theta_c.ravel()) new_ih = ih(h_c.ravel()) cart_data = map_coordinates(self._brightness_3d_cylindrical, np.vstack([new_ir, new_ith, new_ih]), order=1, mode='constant', cval=0) return cart_data.reshape([len(self._cartesian_x_grid), len(self._cartesian_y_grid), len(self._cartesian_z_grid)]).T @dataclass class Galaxy(Nebula): """ Class defining the galaxy object (set up it as Sersic2D profile assuming it has continuum and emission components) """ PA: u.degree = 90 * u.degree # position angle of the major axis ax_ratio: float = 0.7 # ratio of minor/major axes r_eff: u.kpc = 1 * u.kpc # Effective radius in kpc rad_lim: float = 3. # Maximum radius for calculations (in R_eff) n: float = 1. # Sersic index vel_rot: velunit = 0 * velunit # Rotational velocity (not implemented yet) def __post_init__(self): self._assign_all_units() self._npix_los = 1 self.r_max = self.r_eff.to(u.pc).value / self.pxscale.to(u.pc).value * self.rad_lim self._assign_position_params(conversion_type='galaxy') self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @cached_property def _brightness_3d_cartesian(self): """ Method to obtain the brightness (or density) distribution of the nebula in cartesian coordinates """ xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) angle = (self.PA + 90 * u.degree).to(u.radian).value mod = Sersic2D(amplitude=1, r_eff=(self.r_eff.to(u.pc) / self.pxscale.to(u.pc)).value, n=self.n, x_0=(self.pix_width - 1) / 2, y_0=(self.pix_height - 1) / 2, ellip=1 - self.ax_ratio, theta=angle) brt = mod(xx, yy) xct = (xx - (self.pix_width - 1) / 2) * np.cos(angle) + \ (yy - (self.pix_height - 1) / 2) * np.sin(angle) yct = (xx - (self.pix_width - 1) / 2) * np.sin(angle) - \ (yy - (self.pix_height - 1) / 2) * np.cos(angle) rmaj = self.rad_lim * (self.r_eff.to(u.pc) / self.pxscale.to(u.pc)).value rmin = self.rad_lim * (self.r_eff.to(u.pc) / self.pxscale.to(u.pc)).value * self.ax_ratio mask = np.ones_like(brt, dtype=np.float32) rec = (xct ** 2 / rmaj ** 2) + (yct ** 2 / rmin ** 2) >= 1 mask[rec] = 0 mask = convolve_fft(mask, kernels.Gaussian2DKernel(3.), fill_value=0, allow_huge=True) brt = brt * mask brt = brt.reshape(self.pix_height, self.pix_width, 1) return brt def _get_2d_velocity(self): if hasattr(self, 'vel_rot') and (self.vel_rot is not None) and (self.vel_rot != 0): xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) angle = (self.PA + 90 * u.degree).to(u.radian).value xct = (xx - (self.pix_width - 1) / 2) * np.cos(angle) + \ (yy - (self.pix_height - 1) / 2) * np.sin(angle) yct = (xx - (self.pix_width - 1) / 2) * np.sin(angle) - \ (yy - (self.pix_height - 1) / 2) * np.cos(angle) rad = np.sqrt(xct ** 2 + yct ** 2) vel_field = np.zeros_like(xx, dtype=np.float32) * velunit rec = rad > 0 vel_field[rec] = self.vel_rot * np.sqrt(1 - self.ax_ratio ** 2) * xct[rec] / rad[rec] return vel_field else: return None @dataclass class DIG(Nebula): """ Class defining the DIG component. For now it is defined just by its brightness (constant) """ max_brightness: fluxunit = 1e-17 * fluxunit vel_gradient: (velunit / u.pc) = 0 @dataclass class Cloud(Nebula): """Class of an isotropic spherical gas cloud without any ionization source. Defined by its position, radius, density, maximal optical depth""" radius: u.pc = 1.0 * u.pc max_brightness: fluxunit = 0 * fluxunit max_extinction: u.mag = 2.0 * u.mag thickness: float = 1.0 perturb_degree: int = 0 # Degree of perturbations (max. degree of spherical harmonics for cloud) linerat_constant: bool = False # True if the ratio of line fluxes shouldn't change across the nebula _phi_bins: int = 90 _theta_bins: int = 90 _rad_bins: int = 0 _npix_los: int = 100 def __post_init__(self): self._assign_all_units() if self._rad_bins == 0: self._rad_bins = np.ceil(self.radius.to(u.pc).value / self.pxscale.to(u.pc).value * 3).astype(int) delta = np.round((len(self._cartesian_y_grid) - 1) / 2).astype(int) if (self.xc is not None) and (self.yc is not None): self.x0 = self.xc - delta self.y0 = self.yc - delta elif (self.x0 is not None) and (self.y0 is not None): self.xc = self.x0 + delta self.yc = self.y0 + delta self._ref_line_id = 0 @cached_property def _theta_grid(self): return np.linspace(0, np.pi, self._theta_bins) @cached_property def _phi_grid(self): return np.linspace(0, 2 * np.pi, self._phi_bins) @cached_property def _rad_grid(self): return np.linspace(0, self.radius, self._rad_bins) @cached_property def _cartesian_z_grid(self): npix = np.ceil(1.02 * self.radius / self.pxscale).astype(int) return np.linspace(-npix, npix, 2 * npix + 1) * self.pxscale @cached_property def _cartesian_y_grid(self): return self._cartesian_z_grid.copy() @cached_property def _cartesian_x_grid(self): return np.linspace(-1.02, 1.02, self._npix_los) * self.radius @cached_property def _brightness_3d_spherical(self): """ Method to calculate brightness (or opacity) of the cloud at given theta, phi and radii theta: float -- polar angle [0, np.pi] phi: float -- azimuthal angle [0, 2 * np.pi] rad: float -- radius [0, self.radius] Returns: 3D cube of normalized brightness in theta-phi-rad grid; total brightness = 1 """ rho, theta, phi = np.meshgrid(self._rad_grid, self._theta_grid, self._phi_grid, indexing='ij') brt = np.ones_like(theta) brt[rho < (self.radius * (1 - self.thickness))] = 0 brt[rho > self.radius] = 0 med = np.median(brt[brt > 0]) if self.perturb_degree > 0: phi_cur = limit_angle(phi + np.random.uniform(0, 2 * np.pi, 1), 0, 2 * np.pi) theta_cur = limit_angle(theta + np.random.uniform(0, np.pi, 1), 0, np.pi) harm_amplitudes = self.perturb_amplitude * np.random.randn(self.perturb_degree * (self.perturb_degree + 2)) brt += np.nansum(Parallel(n_jobs=lvmdatasimulator.n_process)(delayed(brightness_inhomogeneities_sphere) (harm_amplitudes, ll, phi_cur, theta_cur, rho, med, self.radius, self.thickness) for ll in np.arange(1, self.perturb_degree + 1)), axis=0) brt[brt < 0] = 0 if med > 0: brt = brt / np.nansum(brt) return brt @cached_property def _brightness_4d_spherical(self): """ Method to calculate brightness of the cloud at given theta, phi and radii for each line theta: float -- polar angle [0, np.pi] phi: float -- azimuthal angle [0, 2 * np.pi] rad: float -- radius [0, self.radius] Returns: 4D cube of brightness in line-theta-phi-rad grid; normalized to the total brightness in Halpha """ s = self._brightness_3d_spherical.shape if self.spectrum_id is None or self.linerat_constant: return self._brightness_3d_spherical.reshape((1, s[0], s[1], s[2])) rho, _, _ = np.meshgrid(self._rad_grid, self._theta_grid, self._phi_grid, indexing='ij') with fits.open(lvmdatasimulator.CLOUDY_MODELS) as hdu: radius = hdu[self.spectrum_id].data[0, 2:] * (self.thickness * self.radius) + \ self.radius * (1 - self.thickness) fluxes = hdu[self.spectrum_id].data[1:, 2:] radius = np.insert(radius, 0, self.radius * (1 - self.thickness)) fluxes = np.insert(fluxes, 0, fluxes[:, 0], axis=1) index_ha = np.flatnonzero(hdu[self.spectrum_id].data[1:, 0] == 6562.81) if self.n_brightest_lines is not None and \ (self.n_brightest_lines > 0) and (self.n_brightest_lines < len(fluxes)): indexes_sorted = np.argsort(hdu[self.spectrum_id].data[1:, 1])[::-1] fluxes = fluxes[indexes_sorted[:self.n_brightest_lines], :] index_ha = np.flatnonzero(hdu[self.spectrum_id].data[1:, 0][indexes_sorted] == 6562.81) if len(index_ha) == 1: self._ref_line_id = index_ha[0] brt = np.array(Parallel(n_jobs=lvmdatasimulator.n_process)(delayed(sphere_brt_in_line) (self._brightness_3d_spherical, rho, radius, flux) for flux in fluxes)).reshape((fluxes.shape[0], s[0], s[1], s[2])) return brt / np.nansum(brt[self._ref_line_id]) @cached_property def _brightness_3d_cartesian(self): return interpolate_sphere_to_cartesian(self._brightness_3d_spherical, x_grid=self._cartesian_x_grid, y_grid=self._cartesian_y_grid, z_grid=self._cartesian_z_grid, rad_grid=self._rad_grid, theta_grid=self._theta_grid, phi_grid=self._phi_grid, pxscale=self.pxscale) @cached_property def _brightness_4d_cartesian(self): s = self._brightness_4d_spherical.shape return np.array(Parallel(n_jobs=lvmdatasimulator.n_process)(delayed(interpolate_sphere_to_cartesian) (cur_line_array, self._cartesian_x_grid, self._cartesian_y_grid, self._cartesian_z_grid, self._rad_grid, self._theta_grid, self._phi_grid, self.pxscale) for cur_line_array in self._brightness_4d_spherical) ).reshape((s[0], len(self._cartesian_z_grid), len(self._cartesian_y_grid), len(self._cartesian_x_grid))) @dataclass class Bubble(Cloud): """Class of an isotropic thin expanding bubble.""" spectral_axis: velunit =
np.arange(-20, 20, 10)
numpy.arange
# ----------------------------------------------------------------------------------------------------- # CONDOR # Simulator for diffractive single-particle imaging experiments with X-ray lasers # http://xfel.icm.uu.se/condor/ # ----------------------------------------------------------------------------------------------------- # Copyright 2016 <NAME>, <NAME>, <NAME> # Condor is distributed under the terms of the BSD 2-Clause License # ----------------------------------------------------------------------------------------------------- # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ----------------------------------------------------------------------------------------------------- # General note: # All variables are in SI units by default. Exceptions explicit by variable name. # ----------------------------------------------------------------------------------------------------- from __future__ import print_function, absolute_import # Compatibility with python 2 and 3 import numpy, sys, numpy, types, pickle, time, math import condor.utils.icosahedron as icosahedron import condor.utils.linalg as linalg import logging logger = logging.getLogger(__name__) from .log import log_and_raise_error,log_warning,log_info,log_debug def make_sphere_map(N,nR): """ Generate a 3D map of a sphere particle on a regular grid (values between 0 and 1) The result is quite rough (i.e. linear interpolation) Args: :N (int): Edge length of the grid in unit pixels :nR (float): Radius in unit pixels .. note:: This function was written for testing purposes and generates a map with rough edges. Use :class:`condor.particle.particle_sphere.ParticleSphere` for more accurate uniform sphere diffraction simulations. """ X,Y,Z = 1.0*numpy.mgrid[0:N,0:N,0:N] X = X-(N-1)/2. Y = Y-(N-1)/2. Z = Z-(N-1)/2. R = numpy.sqrt(X**2+Y**2+Z**2) spheremap = numpy.zeros(shape=R.shape,dtype="float64") spheremap[R<=nR] = 1 # Linear interpolation at the transition spheremap[abs(nR-R)<0.5] = 0.5+0.5*(nR-R[abs(nR-R)<0.5]) return spheremap def make_spheroid_map(N, nA, nC, rotation=None): """ Generate a 3D binary map of a spheroid particle on a regular grid The result is very rough (i.e. nearest-neighbor interpolation) Args: :N (int): Edge length of the grid in unit pixels :nA (float): Radius perpendicular to the rotation axis of the ellipsoid in unit pixels :nC (float): Radius along the rotation axis of the ellipsoid in unit pixels Kwargs: :rotation (:class:`condor.utils.rotation.Rotation`): Rotation instance for extrinsic rotation of the icosahedron. .. note:: This function was written for testing purposes and generates a map with rough edges. Use :class:`condor.particle.particle_spheroid.ParticleSpheroid` for more accurate uniform spheroid diffraction simulations. """ X,Y,Z = 1.0*numpy.mgrid[0:N,0:N,0:N] X = X-(N-1)/2. Y = Y-(N-1)/2. Z = Z-(N-1)/2. R_sq = X**2+Y**2+Z**2 e_c = numpy.array([0.0,1.0,0.0]) if rotation is not None: e_c = rotation.rotate_vector(e_c) d_sq_c = ((X*e_c[0])+(Y*e_c[1])+(Z*e_c[2]))**2 r_sq_c = abs( R_sq * (1 - (d_sq_c/(R_sq+numpy.finfo("float32").eps)))) spheroidmap = r_sq_c/float(nA)**2+d_sq_c/float(nC)**2 spheroidmap[spheroidmap<=1] = 1 spheroidmap[spheroidmap>1] = 0 return spheroidmap def make_icosahedron_map(N,nRmax,extrinsic_rotation=None): """ Generate map of a uniform icosahedron (density = 1) on a regular grid Orientation: The cartesian grid axis all lie parallel to 2-fold symmetry axes of the icosahedron. Args: :N (int): Edge length of the grid in unit pixels :nRmax (float): Outer radius of the icosahedron in unit pixels Kwargs: :rotation (:class:`condor.utils.rotation.Rotation`): Rotation instance for extrinsic rotation of the icosahedron. """ log_debug(logger, "Building icosahedral geometry") log_debug(logger, "Grid: %i x %i x %i (%i voxels)" % (N,N,N,N**3)) t0 = time.time() if extrinsic_rotation is not None: q = extrinsic_rotation.get_as_quaternion() icomap = icosahedron.icosahedron(N,nRmax,q) else: icomap = icosahedron.icosahedron(N,nRmax) t1 = time.time() log_debug(logger, "Built map within %f seconds." % (t1-t0)) return icomap def make_icosahedron_map_slow(N,nRmax,extrinsic_rotation=None): """ Generate map of a uniform icosahedron (density = 1) on a regular grid (*slow python implementation*) Orientation: The cartesian grid axis all lie parallel to 2-fold symmetry axes of the icosahedron. Args: :N (int): Edge length of the grid in unit pixels :nRmax (float): Outer radius of the icosahedron in unit pixels Kwargs: :rotation (:class:`condor.utils.rotation.Rotation`): Rotation instance for extrinsic rotation of the icosahedron. """ na = nRmax/numpy.sqrt(10.0+2*numpy.sqrt(5))*4. nRmin = numpy.sqrt(3)/12*(3.0+numpy.sqrt(5))*na # radius at faces log_debug(logger, "Building icosahedral geometry") n_list = get_icosahedron_normal_vectors() # Rotate if extrinsic_rotation is not None: n_list = extrinsic_rotation.rotate_vectors(numpy.array(n_list)) X,Y,Z = 1.0*numpy.mgrid[0:N,0:N,0:N] X = X - (N-1)/2. Y = Y - (N-1)/2. Z = Z - (N-1)/2. log_debug(logger, "Grid: %i x %i x %i (%i voxels)" % (N,N,N,N**3)) icomap = numpy.zeros((len(n_list),N,N,N)) # calculate distance of all voxels to all faces (negative inside, positive outside icosahedron) for i in range(len(n_list)): icomap[i,:,:,:] = (X*n_list[i][0]+Y*n_list[i][1]+Z*n_list[i][2])+nRmin s = 1. M = icomap.copy() temp = abs(M)<0.5*s icomap[temp] = 0.5+icomap[temp]/s icomap[M<(-0.5)*s] = 0 icomap[M>0.5*s] = 1 icomap = icomap.min(0) return icomap def get_icosahedron_vertices(): """ Return array of vertices vectors of a regular icosahedron """ # Weisstein, <NAME>. "Icosahedral Group." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/IcosahedralGroup.html phi = (1+numpy.sqrt(5))/2.0 x1 = numpy.array([0.0,1.0,phi]) x2 =
numpy.array([0.0,1.0,-phi])
numpy.array
import os import sys import scipy.io import scipy.misc from nst_utils import * import numpy as np import cv2 import random from tqdm import tqdm import tensorflow.compat.v1 as tf tf.disable_v2_behavior() model_global = None sess_global = None def set_config1(config): global min_box_w, max_box_w, min_offset, max_offset, max_iterations def compute_content_cost(a_C, a_G): # obtendo as dimensões do tensor a_G m, n_H, n_W, n_C = a_G.get_shape().as_list() # Reshape a_C and a_G a_C_unrolled = tf.reshape(a_C,[n_H*n_W,n_C]) a_G_unrolled = tf.reshape(a_G,[n_H*n_W,n_C]) # Calcule a função de custo J_content = (1/(4*n_H*n_W*n_C))*tf.reduce_sum(tf.square(tf.subtract(a_C_unrolled,a_G_unrolled))) return J_content def gram_matrix(A): GA = tf.matmul(A,A,transpose_b=True) return GA def compute_layer_style_cost(a_S, a_G): # Obtendo as dimensões de a_G (≈1 line) m, n_H, n_W, n_C = a_G.get_shape().as_list() # Resahepe dos tensores (n_C, n_H*n_W) (≈2 lines) a_S = tf.reshape(tf.transpose(a_S),[n_C, n_H*n_W]) a_G = tf.reshape(tf.transpose(a_G),[n_C, n_H*n_W]) # Calculando as matrizes Gram GS = gram_matrix(a_S) GG = gram_matrix(a_G) # Calculando a perda J_style_layer = tf.reduce_sum(tf.square(tf.subtract(GS,GG)))*(1/(4*(n_C**2)*( (n_H*n_W)**2 ))) return J_style_layer STYLE_LAYERS = [ ('conv1_1', 0.1), ('conv2_1', 0.1), ('conv3_1', 2.0), ('conv4_1', 1.0), ('conv5_1', 1.0)] def compute_style_cost(sess, model, STYLE_LAYERS): J_style = 0 for layer_name, coeff in STYLE_LAYERS: #Obtendo o tensor atual out = model[layer_name] #Obtendo a ativação do tensor a_S = sess.run(out) # Set a_G to be the hidden layer activation from same layer. Here, a_G references model[layer_name] # and isn't evaluated yet. Later in the code, we'll assign the image G as the model input, so that # when we run the session, this will be the activations drawn from the appropriate layer, with G as input. a_G = out # Calculando o custo J_style_layer = compute_layer_style_cost(a_S, a_G) # adicionando o coeficiente ao custo J_style += coeff * J_style_layer return J_style def total_cost(J_content, J_style, alpha = 10, beta = 80): J = alpha*J_content + beta*J_style return J def model_nn(sess, model, train_step, J, J_content, J_style, input_image, num_epochs = 100): # inicializando as variaveis sess.run(tf.global_variables_initializer()) # Run the noisy input image (initial generated image) through the model. Use assign(). sess.run(model['input'].assign(input_image)) for i in tqdm(range(num_epochs)): #Rode o "train_step" para minimizar o custo total sess.run(train_step) #Computar a imagem gerada rodando o model['input'] generated_image = sess.run(model['input']) #Printar informaç˜oes #if i%1000 == 0: # Jt, Jc, Js = sess.run([J, J_content, J_style]) # print("Iteration " + str(i) + " :") # print("total cost = " + str(Jt)) # print("content cost = " + str(Jc)) # print("style cost = " + str(Js)) # salvando a última imagem generated_image = restore_image(generated_image) return np.squeeze(generated_image) def print_feature_map(sess_global, model_global, layer_name, sufix): feature_maps = sess_global.run(model_global[layer_name]) print("Saída do tensor:",feature_maps.shape) folder_name = layer_name+sufix for c in range(feature_maps.shape[-1]): if not os.path.isdir(folder_name): os.mkdir(folder_name) file_name = folder_name+"/"+str(c)+".jpg" if os.path.exists(file_name): os.remove(file_name) cv2.imwrite(file_name, feature_maps[0, :, :, c]) plt.imshow(feature_maps[0, :, :,c], cmap="gray") plt.pause(0.1) def run_style_tranfer(STYLE_W, content_image, style_image, num_epochs=100, lr=2.0, output_gray=True): global model_global, sess_global print("Params:") if STYLE_W is not None: STYLE_LAYERS = STYLE_W print(STYLE_LAYERS) print("lr", lr) print("num_epochs", num_epochs) if model_global is None: # Reset the graph tf.reset_default_graph() #Intanciando a sessao sess_global = tf.InteractiveSession() model_global = load_vgg_model("pretrained-model/imagenet-vgg-verydeep-19.mat") #print("loading images ...") content_image = reshape_and_normalize_image(content_image) #print("content image loaded") style_image = reshape_and_normalize_image(style_image) #print("style image loaded") generated_image = generate_noise_image(content_image) # Assign da imagem de conteúdo na entrada da rede VGG-19. sess_global.run(model_global['input'].assign(content_image)) #----------------------------- #print_feature_map(sess_global, model_global, 'conv1_2', 'signal') #print_feature_map(sess_global, model_global, 'conv2_2', 'signal') #print_feature_map(sess_global, model_global, 'conv3_4', 'signal') #print_feature_map(sess_global, model_global, 'conv4_2', 'signal') #Obtendo o tensor te saida conv4_2 out = model_global['conv4_2'] #saída de ativação do tensor conv4_2 a_C = sess_global.run(out) # Set a_G to be the hidden layer activation from same layer. Here, a_G references model['conv4_2'] # and isn't evaluated yet. Later in the code, we'll assign the image G as the model input, so that # when we run the session, this will be the activations drawn from the appropriate layer, with G as input. a_G = out # Compute the content cost J_content = compute_content_cost(a_C, a_G) # Assign the input of the model to be the "style" image sess_global.run(model_global['input'].assign(style_image)) # Compute the style cost J_style = compute_style_cost(sess_global, model_global, STYLE_LAYERS) J = total_cost(J_content, J_style) # define optimizer (1 line) optimizer = tf.train.AdamOptimizer(lr) # define train_step (1 line) train_step = optimizer.minimize(J) # inicializando as variaveis sess_global.run(tf.global_variables_initializer()) # Run the noisy input image (initial generated image) through the model. Use assign(). sess_global.run(model_global['input'].assign(generated_image)) #print("initializing style tranfer process") final_img = model_nn(sess_global, model_global, train_step, J, J_content, J_style, generated_image, num_epochs = num_epochs) return final_img def gen_mask(shape, config=0): boxes_x_list = [] mask_image = np.ndarray(shape=shape, dtype=np.uint8) mask_image[:,:] = 0.7 cursor_1 = 5 cursor_2 = 5 min_box_w = 0 max_box_w = 0 min_offset = 0 max_offset = 0 max_iterations = 0 if config == 0: min_box_w = 5 max_box_w = 80 min_offset = 35 max_offset = 100 max_iterations=5 else: min_box_w = 5 max_box_w = 15 min_offset = 100 max_offset = 250 max_iterations = 3 iterations = random.randint(1, max_iterations) while(cursor_2 < shape[1] and iterations > 0): rand_offset = random.randint(min_offset, max_offset) rand_box_w = random.randint(min_box_w,max_box_w) cursor_1 = cursor_2 + rand_offset cursor_2 = cursor_1 + rand_box_w if cursor_1 > shape[1] or cursor_2 > shape[1]: break mask_image[:,cursor_1:cursor_2] = 1 boxes_x_list.append((cursor_1, cursor_2)) iterations = iterations -1 return mask_image, boxes_x_list def generate_ugly_sismo(good_img_path, ugly_img_path, mask_list): gen_image_list = [] for mask in mask_list: mask_image = mask[0] content_img = cv2.imread(good_img_path, 0) content_img = cv2.resize(content_img, (400,300), interpolation=cv2.INTER_AREA) content_img_masked = np.multiply(content_img, mask_image) #content_img_masked = cv2.cvtColor(content_img_masked, cv2.COLOR_GRAY2RGB) #imshow(content_img_masked, cmap="gray", vmin=0, vmax=255) style_img = cv2.imread(ugly_img_path, 0) #style_img = cv2.cvtColor(style_img, cv2.COLOR_BGR2RGB) style_img = cv2.resize(style_img, (400,300), interpolation=cv2.INTER_AREA) gen_image = run_style_tranfer(content_image=content_img, style_image=style_img) #gen_image = run_style_tranfer(content_image=content_img_masked, style_image=style_img) gen_image_list.append(gen_image) return gen_image_list def analyze_region(region): #print("shape:", region.shape) #min = np.amin(region) #print("min", min) #max = np.amax(region) #print("max", max) mean = np.mean(region) #print("mean", mean) return mean def center_image(image, boxes_x, margin=10): centered_img =
np.ndarray(shape=image.shape)
numpy.ndarray
import numpy as np import argparse, os, sys, h5py from hfd.variables import label_df parser = argparse.ArgumentParser(description='Add latent annotations to h5s.') parser.add_argument('folder', type=str, help='Folder to search for h5 files.') parser.add_argument('fontsize', type=int, help='Fontsize.') args = parser.parse_args() folder = args.folder fontsize =args.fontsize labels = ['initial_geometry', 'medial_geometry', 'final_geometry', 'all_geometry'] bof = ['atom_bof', 'atom_mod_rotations_bof'] files = [] for d, _, files in os.walk(folder): for fname in files: if '{}.h5'.format(fontsize) in fname: with h5py.File(os.path.join(d, fname), 'a') as f: for l in labels: try: del f[l] except KeyError: pass f.create_dataset(l, data=label_df[l].values) for l in bof: try: del f[l] except KeyError: pass f.create_dataset(l, data=
np.stack([*label_df[l].values])
numpy.stack
# Routines for general quantum chemistry (no particular software package) # Python3 and pandas # <NAME> # import re, sys #import string, copy import copy import numpy as np import pandas as pd import quaternion from scipy.spatial.distance import cdist from scipy import interpolate from scipy import optimize import matplotlib.pyplot as plt # # CODATA 2018 constants from physics.nist.gov, retrieved 7/13/2020 AVOGADRO = 6.02214076e23 # mol^-1 (exact, defined value) BOLTZMANN = 1.380649e-23 # J/K (exact, defined value) RGAS = AVOGADRO * BOLTZMANN # J/mol/K (exact) PLANCK = 6.62607015e-34 # J s (exact, defined value) CLIGHT = 299792458. # m/s (exact, defined value) CM2KJ = PLANCK * AVOGADRO * CLIGHT / 10 # convert from cm^-1 to kJ/mol CM2K = 100 * CLIGHT * PLANCK / BOLTZMANN # convert from cm^-1 to Kelvin AMU = 1.66053906660e-27 # kg/u HARTREE = 4.3597447222071e-18 # J; uncertainty is 85 in last two digits AU2CM = 2.1947463136320e05 # Hartree in cm^-1; unc. is 43 in last two digits AU2KJMOL = HARTREE * AVOGADRO / 1000. # Hartree in kJ/mol AU2EV = 27.211386245988 # Hartree in eV; unc. is 53 in last two digits CALORIE = 4.184 # multipy cal * CALORIE to get J ATM_KPA = 101.325 # convert pressure in atm to kPa EMASS = 9.1093837015e-31 # electron mass in kg; unc. is 28 in last two digits BOHR = 0.529177210903 # Bohr radius in Angstrom; unc. is 80 in last two digits AMU2AU = AMU / EMASS # amu expressed in a.u. (viz., electron masses) EV2CM = AU2CM / AU2EV # eV expressed in cm^-1 EPS0 = 8.8541878128e-12 # vacuum permittivity in F/m PI = np.pi # GOLD = (1 + np.sqrt(5))/2 # golden ratio def isotopic_mass(atlabel): # Given a label like '1-H' or 'pt195', return the atomic mass # Data from from https://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl rxn = re.compile('\d+') rxsym = re.compile('[a-zA-Z]+') n = int(rxn.search(atlabel).group(0)) sym = rxsym.search(atlabel).group(0) Z = elz(sym) # table of masses; major index = Z, minor = n mtable = {1: {1: 1.00782503223, 2: 2.01410177812, 3: 3.0160492779}, 2: {3: 3.0160293201, 4: 4.00260325413}, 3: {6: 6.0151228874, 7: 7.0160034366}, 4: {9: 9.012183065}, 5: {10: 10.01293695, 11: 11.00930536}, 6: {12: 12., 13: 13.00335483507, 14: 14.0032419884}, 7: {14: 14.00307400443, 15: 15.00010889888}, 8: {16: 15.99491461957, 17: 16.99913175650, 18: 17.99915961286}, 9: {19: 18.99840316273}, 16: {32: 31.9720711744, 33: 32.9714589098, 34: 33.967867004, 36: 35.96708071}, 17: {35: 34.968852682, 37: 36.965902602}, 35: {79: 78.9183376, 81: 80.9162897}, 53: {127: 126.9044719}, 78: {190: 189.9599297, 192: 191.9610387, 194: 193.9626809, 195: 194.9647917, 196: 195.96495209, 198: 197.9678949}, } try: m = mtable[Z][n] except KeyError: # invalid or just not typed here yet m = np.nan return m ## def dominant_isotope(el): # given element symbol or atomic number, # return the mass of the most abundant isotope # source: https://www.chem.ualberta.ca/~massspec/atomic_mass_abund.pdf, # which cites mass data from Audi & Wapstra, Nucl. Phys. A (1993 & 1995) # and abundance data from 1997 IUPAC report [Rosman & Taylor, # Pure Appl. Chem. (1999)] try: Z = int(el) except: Z = elz(el) mtable = [0, 1.007825, 4.002603, 7.016004, 9.012182, 11.009305, 12., # C 14.003074, 15.994915, 18.998403, 19.992440, 22.989770, # Na 23.985042, 26.981538, 27.976927, 30.973762, 31.972071, # S 34.968853, 39.962383, 38.963707, 39.962591, 44.955910, # Sc 47.947947, 50.943964, 51.940512, 54.938050, 55.934942, # Fe 58.933200, 57.935348, 62.929601, 63.929147, 68.925581, # Ga 73.921178, 74.921596, 79.916522, 78.918338, 83.911507, # Kr 84.911789, 87.905614, 88.905848, 89.904704, 92.906378, # Nb 97.905408, 97.907216, 101.904350, 102.905504, 105.903483, # Pd 106.905093, 113.903358, 114.903878, 119.902197, # Sn 120.903818, 129.906223, 126.904468, 131.904154, # Xe 132.905447, 137.905241, 138.906348, 139.905434, # Ce 140.907648, 141.907719, 144.912744, 151.919728, # Sm 152.921226, 157.924101, 158.925343, 163.929171, # Dy 164.930319, 165.930290, 168.934211, 173.938858, # Yb 174.940768, 179.946549, 180.947996, 183.950933, # W 186.955751, 191.961479, 192.962924, 194.964774, # Pt 196.966552, 201.970626, 204.974412, 207.976636, # Pb 208.980383, 208.982416, 209.987131, 222.017570, # Rn 223.019731, 226.025403, 227.027747, 232.038050, # Th 231.035879, 238.050783, 237.048167, 244.064198] # Pu return mtable[Z] ## def RRHO_symmtop(freqs, Emax, binwidth, ABC_GHz, Bunit='GHz'): # RRHO with symmetric-top approximation. # Use Stein-Rabinovitch counting method (less roundoff error than # with Beyer-Swinehart) # ** Does not account for any symmetry ** n = int(Emax/binwidth) # number of bins nos = np.zeros(n) # number of states in each bin nos[0] = 1 # the zero-point level for freq in freqs: Eladder = np.arange(freq, Emax+binwidth, freq) iladder = np.rint(Eladder / binwidth).astype(int) miyo = nos.copy() # temporary copy of 'nos' # add each value in ladder to existing count in 'nos' for irung in iladder: for ibin in range(irung, n): miyo[ibin] += nos[ibin - irung] nos = miyo.copy() # Do similar thing for the rotational levels. E_rot, g_rot = rotational_levels_symmtop(ABC_GHz, Emax, Bunit=Bunit) ilist = np.rint(E_rot / binwidth).astype(int).reshape(-1) miyo = nos.copy() for idx in range(1, len(ilist)): # Loop over this index, instead of the 'iladder' values, # to find the matching rotational degeneracies. # Start from 1 instead of 0 to skip the (non-degenerate) J=0 irung = ilist[idx] degen = g_rot[idx] # vectorized version binrange = np.arange(irung, n).astype(int) miyo[binrange] = miyo[binrange] + nos[binrange - irung] * degen nos = miyo.copy() # find centers of energy bins centers = binwidth * (0.5 + np.arange(n)) return nos, centers ## def rotational_levels_symmtop(ABC, Emax, Bunit='cm-1'): # Rigid-rotor levels for a symmetric top # Return two arrays: energies (in cm^-1) and degeneracies # 'ABC' are the three rotational constants, either in GHz or cm^-1 # 'Emax' is the upper bound on energy, in cm^-1 ABC = np.array(ABC) ABC[::-1].sort() # sort in descending order if Bunit.lower() == 'ghz': # convert ABC to cm^-1 ABC *= 1.0e7 / CLIGHT if (ABC[0]-ABC[1] > ABC[1]-ABC[2]): # call it prolate B = np.sqrt(ABC[1]*ABC[2]) # geometric mean; "perpendicular" A = ABC[0] Jmax = int(-0.5 + 0.5 * np.sqrt(1 + 4*Emax/B)) else: # call it oblate B = np.sqrt(ABC[1]*ABC[0]) # geometric mean; "perpendicular" A = ABC[2] Jmax = int( (-B + np.sqrt(B*B+4*A*Emax)) / (2*A) ) J = np.arange(Jmax+1) # all allowed values of J, including Jmax # K = 0 cases E = B * J * (J + 1) degen = 2*J + 1 # K != 0 cases C = A-B for J in range(1,Jmax+1): # now J is a scalar K = np.arange(1, J+1) Kstack = B*J*(J+1) + C * K * K g = 2 * (2*J+1) * np.ones_like(K) E = np.concatenate((E, Kstack)) degen = np.concatenate((degen, g)) # sort by increasing energy idx = np.argsort(E) E = E[idx] degen = degen[idx] # filter out energies that exceed Emax idx = np.argwhere(E <= Emax) return E[idx], degen[idx] ## def rotational_levels_spherical(B, Emax, Bunit='cm-1'): # Rigid-rotor levels for a spherical top # Return two arrays: energies (in cm^-1) and degeneracies # 'B' is the rotational constant, either in GHz or cm^-1 # 'Emax' is the upper bound on energy, in cm^-1 if Bunit.lower() == 'ghz': # convert B to cm^-1 B *= 1.0e7 / CLIGHT Jmax = int(-0.5 + 0.5 * np.sqrt(1 + 4*Emax/B)) J = np.arange(Jmax+1) # all allowed values of J, including Jmax E = B * J * (J+1) degen = 2*J + 1 degen *= degen # this line is the only difference from the linear case return E, degen ## def rotational_levels_linear(B, Emax, Bunit='cm-1'): # Rigid-rotor levels for a linear molecule # Return two arrays: energies (in cm^-1) and degeneracies # 'B' is the rotational constant, either in GHz or cm^-1 # 'Emax' is the upper bound on energy, in cm^-1 if Bunit.lower() == 'ghz': # convert B to cm^-1 B *= 1.0e7 / CLIGHT Jmax = int(-0.5 + 0.5 * np.sqrt(1 + 4*Emax/B)) J = np.arange(Jmax+1) # all allowed values of J, including Jmax E = B * J * (J+1) degen = 2*J + 1 return E, degen ## def Beyer_Swinehart(freqs, Emax, binwidth): # Return a harmonic vibrational density of states (numpy array) # whose index is the energy bin number. # Also return an array of the bin center energies. # Not vectorized n = int(Emax/binwidth) # number of bins nos = np.zeros(n) # number of states in each bin nos[0] = 1 # the zero-point level for freq in freqs: # outer loop in BS paper ifreq = np.rint(freq/binwidth).astype(int) for ibin in range(ifreq, n): # inner loop nos[ibin] += nos[ibin - ifreq] # find centers of energy bins centers = binwidth * (0.5 + np.arange(n)) return nos, centers ## def thermo_RRHO(T, freqs, symno, ABC_GHz, mass, pressure=1.0e5, deriv=0): # Return S, Cp, and [H(T)-H(0)] at the specified temperature lnQ = lnQvrt(T, freqs, symno, ABC_GHz, mass) d = lnQvrt(T, freqs, symno, ABC_GHz, mass, deriv=1) # derivative of lnQ deriv = T * d + lnQ # derivative of TlnQ S = RGAS * (deriv - np.log(AVOGADRO) + 1) d2 = lnQvrt(T, freqs, symno, ABC_GHz, mass, deriv=2) # 2nd derivative of lnQ deriv2 = 2 * d + T * d2 # 2nd derivative of TlnQ Cp = RGAS + RGAS * T * deriv2 ddH = RGAS * T * (1 + T * d) / 1000 return (S, Cp, ddH) ## def lnQvrt(T, freqs, symno, ABC_GHz, mass, pressure=1.0e5, deriv=0): # Return the total (vib + rot + transl) ln(Q) partition function # or a derivative. RRHO approximation lnQv = lnQvib(T, freqs, deriv=deriv) lnQr = lnQrot(T, symno, ABC_GHz, deriv=deriv) lnQt = lnQtrans(T, mass, pressure=pressure, deriv=deriv) lnQ = lnQv + lnQr + lnQt return lnQ ## def lnQtrans(T, mass, pressure=1.0e5, deriv=0): # Given a temperature (in K), a molecular mass (in amu), # and optionally a pressure (in Pa), return ln(Q), where # Q is the ideal-gas translational partition function. # If deriv > 0, return a (1st or 2nd) derivative of TlnQ # instead of lnQ. if deriv == 1: # return (d/dT)lnQ = (3/2T) return (1.5 / T) if deriv == 2: # return (d2/dT2)lnQ = -(3/2T**2) return (-1.5 / (T*T)) kT = BOLTZMANN * T # in J m = mass * AMU # in kg V = RGAS * T / pressure # in m**3 lnQ = 1.5 * np.log(2 * PI * m * kT) lnQ -= 3 * np.log(PLANCK) lnQ += np.log(V) return lnQ ## def lnQrot(T, symno, ABC_GHz, deriv=0): # Given a temperature (in K), symmetry number, and list of # rotational constants (in GHz), return ln(Q), where Q is # the rigid-rotor partition function. n = len(ABC_GHz) if n == 0: # atom; no rotations possible return 0. if deriv == 1: # first derivative of lnQ depends only on temperature if n < 3: # linear case return (1/T) else: # non-linear return (1.5/T) if deriv == 2: # second derivative of lnQ if n < 3: # linear case return (-1 / (T*T)) else: # non-linear return (-1.5 / (T*T)) ln_kTh = np.log(T) + np.log(BOLTZMANN) - np.log(PLANCK) # ln(kT/h) expressed in ln(Hz) if n < 3: # linear molecule B = ABC_GHz[0] * 1.0e9 # convert to Hz lnQ = ln_kTh - np.log(symno * B) else: # polyatomic molecule with 3 constants lnQ = 1.5 * ln_kTh + 0.5 * np.log(PI) - np.log(symno) for c in ABC_GHz: B = c * 1.0e9 # convert to Hz lnQ -= 0.5 * np.log(B) return lnQ ## def lnQvib(T, freqs, deriv=0): # Given a temperature (in K) and array of vibrational # frequencies (in cm^-1), return ln(Q) where Q is # the harmonic-oscillator partition function. kTh = T * BOLTZMANN / PLANCK # kT/h expressed in Hz lnQ = 0. nu = freqs * 100 # convert to m^-1 (as array) nu = nu * CLIGHT # convert to Hz fred = nu / kTh # reduced frequencies x = np.exp(-fred) # exponentiated, reduced frequencies xm1 = 1 - x if deriv == 1: # derivative of lnQ term = nu * x / xm1 d = term.sum() return (d / (kTh*T)) if deriv == 2: # 2nd derivative of lnQ t1 = nu * (1/xm1 - 1) sum1 = -2 * t1.sum() / (kTh * T * T) t2 = nu * nu * x / (xm1 * xm1) sum2 = t2.sum() / (kTh * kTh * T * T) return (sum1 + sum2) # return lnQ itself lnq = np.log(xm1) lnQ = -1 * lnq.sum() return lnQ ## def typeCoord(crds): # 'Geometry' (a Geometry object) # 'cartesian' (a list of elements and list/array of cartesians) # 'ZMatrix' (a ZMatrix object) if isinstance(crds, Geometry): intype = 'Geometry' elif isinstance(crds, ZMatrix): intype = 'ZMatrix' elif isinstance(crds, list) and (len(crds) == 2) and ( (len(crds[0]) == len(crds[1])) or (len(crds[0]) * 3 == len(crds[1])) ): # 'cartesian' is plausible intype = 'cartesian' else: print_err('autodetect') return intype ## def parse_ZMatrix(zlist, unitR='angstrom', unitA='degree'): # Given a list of all the lines of a z-matrix, # return a ZMatrix object el = [] refat = [] var = [] val = {} intop = True maxlen = 0 # keep track of max number of words in line, # because its decrease will signal the beginning of the # second section of the z-matrix (if any) regexSplit = re.compile('[\s,=]+') for line in zlist: words = regexSplit.split(line) # split on whitespace, comma, or equals nwords = len(words) if nwords < 1: continue # ignore blank line maxlen = max(maxlen, nwords) if nwords < maxlen: intop = False if intop: # list of atoms and variable names (or floats) # add element symbol el.append(words[0]) # add variable (str|float)'s var.append([]) for i in range(2, nwords, 2): try: var[-1].append(float(words[i])) except: # symbolic z-matrix variable (str type) var[-1].append(words[i]) # add list of atoms to which variables refer refat.append([]) for i in range(1, nwords, 2): refat[-1].append(int(words[i]) - 1) # subtract one from user-viewed index else: # values of any z-matrix variables val[words[0]] = float(words[1]) ZM = ZMatrix(el, refat, var, val, unitR=unitR, unitA=unitA) return ZM ## class ZMatrix(object): # symbolic or numerical z-matrix # initialize empty and then add to it # indices are zero-based but user will be one-based def __init__(self, el=[], refat=[], var=[], val={}, vtype={}, unitR='angstrom', unitA='radian'): # this structure corresponds with the usual way of writing # a z-matrix, with one atom defined per line self.el = el # element symbols; should be in correct order self.refat = refat # list of [list of ref. atoms that define position of this atom] self.var = var # list of [list of z-matrix vars/constants that define this atom pos.] self.val = val # dict of float values of any symbolic z-matrix variables self.vtype = vtype # dict of names of variable types ('distance', 'angle', 'dihedral') self.unitR = unitR # for distances self.unitA = unitA # for angles and dihedrals ('radian' or 'degree') self.coordtype = 'ZMatrix' self.charge = None # optional self.spinmult = None # optional if len(val) != len(vtype): # generate the vtype's automatically self.vtypeBuild() def vtypeBuild(self): # categorize the variables # this is important because they have different units category = ['distance', 'angle', 'dihedral'] for iat in range(self.natom()): # loop over atoms for ivar in range(len(self.var[iat])): # loop over names of z-matrix variables for this atom # it's left-to-right, so vars are in the order in 'category' v = self.var[iat][ivar] # name of a variable if ivar > 2: self.vtype[v] = 'unknown' else: self.vtype[v] = category[ivar] return def varMask(self, varlist): # given a list of z-matrix variable names, return a numpy array of Boolean # showing which indices [from ZMatrix.fromVector()] correspond blist = [] for var in sorted(self.val): blist.append(var in varlist) return np.array(blist) def canonical_angles(self): # shift all dihedral angles into the range (-pi, pi] for varname in self.val: if self.vtype[varname] == 'dihedral': self.val[varname] = angle_canon(self.val[varname], unit=self.unitA) return def cap_angles(self): # force all bond angles to be in the range (0, pi) for varname in self.val: if self.vtype[varname] == 'angle': if self.unitA == 'degree': if self.val[varname] >= 180.: self.val[varname] = 179.9 if self.val[varname] < 0.: self.val[varname] = 0.1 else: # radian if self.val[varname] >= PI: self.val[varname] = PI - 0.0002 if self.val[varname] < 0.: self.val[varname] = 0.0002 return def adjust_dTau(self, dX): # given a vector of coordinate differences, move # dihedral angle differences into the range (-pi, pi] i = 0 for k in sorted(self.val): if self.vtype[k] == 'dihedral': dX[i] = angle_canon(dX[i], unit=self.unitA) i += 1 return dX def toRadian(self): # make sure all angles/dihedrals are in radian if self.unitA == 'degree': for v in self.val: if self.vtype[v] in ['angle', 'dihedral']: self.val[v] = np.deg2rad(self.val[v]) self.unitA = 'radian' return def toDegree(self): # make sure all angles/dihedrals are in degree if self.unitA == 'radian': for v in self.val: if self.vtype[v] in ['angle', 'dihedral']: self.val[v] = np.rad2deg(self.val[v]) self.unitA = 'degree' return def toAngstrom(self): # make sure all distances are in angstrom if self.unitR == 'bohr': for v in self.val: if self.vtype[v] == 'distance': self.val[v] *= BOHR self.unitR = 'angstrom' return def toBohr(self): # make sure all distances are in bohr if self.unitR == 'angstrom': for v in self.val: if self.vtype[v] == 'distance': self.val[v] /= BOHR self.unitR = 'bohr' return def unitX(self): # return (tuple) of units return (self.unitR, self.unitA) def toUnits(self, unitS): # given (unitR, unitA), in either order, convert to those units if 'angstrom' in unitS: self.toAngstrom() if 'bohr' in unitS: self.toBohr() if 'degree' in unitS: self.toDegree() if 'radian' in unitS: self.toRadian() return def varlist(self): # return a list of the variable names in standard (sorted) order vlist = [k for k in sorted(self.val)] return vlist def toVector(self): # return a numpy array containing the values of the coordinates # they are sorted according to their names vec = [self.val[k] for k in sorted(self.val)] return np.array(vec) def dict2vector(self, dictin): # given a dict with keys that are the z-matrix variables, # return a numpy array of the values (after sorting by name) # there is no checking! vec = [dictin[k] for k in sorted(self.val)] return np.array(vec) def vector2dict(self, vecin): # given a vector, return a dict that has keys that # are the z-matrix variables (sorted by name) # No checking! i = 0 dictout = {} for k in sorted(self.val): dictout[k] = vecin[i] i += 1 return dictout def fromVector(self, vec, unitS, add=False): # replace current coordinates with those in 'vec' (list-like) # if 'add' is true, add to coordinates instead of replacing if unitS != self.unitX(): # convert ZMatrix units, then convert back old_units = self.unitX() self.toUnits(unitS) unitS = False # use as a flag i = 0 for k in sorted(self.val): if add: self.val[k] += vec[i] else: self.val[k] = vec[i] i += 1 if unitS == False: # convert units back self.toUnits(old_units) return def toGeometry(self): # generate Cartesian coordinates; return a Geometry object # assume that the z-matrix makes sense; no checking! newGeom = Geometry(units=self.unitR) # empty #newGeom.units = self.unitR # angstrom or bohr for i in range(self.natom()): elem = self.el[i] if i == 0: # place first atom at the origin newGeom.addatom(Atom(elem, [0.,0.,0.])) elif i == 1: # place second atom on the z-axis zvar = self.var[i][0] z = self.val[zvar] newGeom.addatom(Atom(elem, [0.,0.,z])) elif i == 2: # place third atom in XZ plane zvar = self.var[i][0] # distance r = self.val[zvar] rprev = [z, r] # for later use zvar = self.var[i][1] # angle theta = self.val[zvar] if self.unitA == 'degree': theta = np.deg2rad(theta) z += -r * np.cos(theta) # displace from second atom x = r * np.sin(theta) newGeom.addatom(Atom(elem, [x,0.,z])) else: zvar = self.var[i][0] # distance r = self.val[zvar] zvar = self.var[i][1] # angle theta = self.val[zvar] zvar = self.var[i][2] # dihedral phi = self.val[zvar] if self.unitA == 'degree': theta = np.deg2rad(theta) phi = np.deg2rad(phi) # find the three connected atoms (D-C-B-A) and get their coordinates C = self.refat[i][0] # index of bonded atom B = self.refat[i][1] A = self.refat[i][2] C = newGeom.atom[C].xyz B = newGeom.atom[B].xyz A = newGeom.atom[A].xyz BC = C - B # vector from B to C BA = A - B # vector from B to A N = np.cross(BC, BA) # normal to plane ABC # construct position for new atom xp = normalize(np.cross(N, BC)) # unit vector toward A perp. to BC yp = normalize(N) dp = xp * np.cos(phi) + yp * np.sin(phi) # within plane perp. to BC dp *= np.sin(theta) zp = normalize(BC) dp -= zp * np.cos(theta) D = normalize(dp, length=r) + C newGeom.addatom(Atom(elem, D)) return newGeom def copy(self): return copy.deepcopy(self) def natom(self): # number of atoms return len(self.el) def nDOF(self): # number of degrees of freedom return len(self.val) def checkVals(self, verbose=True): # check that all variables are defined # print error message(s) if 'verbose' is True errcount = 0 for v in [varname for varlist in self.var for varname in varlist]: # loop over all variable names if not v in self.val: # missing variable errcount += 1 if verbose: print('*** Missing value for variable {:s} in Z-matrix'.format(v)) return errcount def printstr(self, unitR='angstrom', unitA='degree'): # print to a string, in specified units pstr = '' # first the list of atoms and variable names for i in range(self.natom()): pstr += self.el[i] # element symbol for j in range(len(self.refat[i])): pstr += ' {:d}'.format(self.refat[i][j] + 1) # +1 index offset for user viewing try: pstr += ' {:f}'.format(self.var[i][j]).rstrip('0') # omit trailing zeros except: # not a float; should be str pstr += ' {:s}'.format(self.var[i][j]) pstr += '\n' # last the list of variable values in requested units pstr += '\n' # blank line # find longest variable name, just to make the output pretty wlong = max([len(varname) for varname in self.val]) for v in [varname for varlist in self.var for varname in varlist]: # loop over all variable names, in order by atom if v in self.val: value = self.val[v] if self.vtype[v] in ['angle', 'dihedral']: if self.unitA != unitA: # convert to requested unit for display if unitA == 'degree': value = np.rad2deg(value) else: value = np.deg2rad(value) else: # distance variable if self.unitR != unitR: # convert unit if unitR == 'angstrom': value *= BOHR else: value /= BOHR pstr += '{:{width}s} {:f}'.format(v, value, width=wlong).rstrip('0') + '\n' # keep the decimal point return pstr def print(self): # print to stdout print(self.printstr()) return def print_gradient(self, grad): # assuming alphabetical ordering of variable names, print gradient wlong = max([len(varname) for varname in self.val]) ivar = 0 for varname in sorted(self.val): print('{:{width}s} {:f}'.format(varname, grad[ivar], width=wlong)) ivar += 1 def connection_table(self, tol=1.3): # return a connection table return self.toGeometry().connection_table(tol=tol) def extended_connection_table(self, tol=1.3): # return an extended connection table return self.toGeometry().extended_connection_table(tol=tol) def Coulomb_mat(self, select=0, bondtol=1.3): # return a (possibly restricted) Coulomb matrix return self.toGeometry().Coulomb_mat(select=select, bondtol=bondtol) def separateNonbonded(self, tol=1.3): # return a list of Geometry objects that are completely connected return self.toGeometry().separateNonbonded(tol=tol) def printXYZ(self, fname='', comment=''): # write an Xmol XYZ file self.toGeometry().printXYZ(fname, comment=comment) return def XmolXYZ(self, comment=''): # return a string in Xmol's XYZ format return self.toGeometry().XmolXYZ(comment) ## def elz(ar, choice=''): # return atomic number given an elemental symbol, or # return elemental symbol given an atomic number # If 'choice' is specified as 'symbol' or 'Z', return that. # if 'ar' is a list, then return a corresponding list symb = ['n', 'H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne', 'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', 'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se', 'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn', 'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce', 'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 'Bi', 'Po', 'At', 'Rn', 'Fr', 'Ra', 'Ac', 'Th', 'Pa', 'U', 'Np', 'Pu', 'Am', 'Cm', 'Bk', 'Cf', 'Es', 'Fm', 'Md', 'No', 'Lr', 'Rf', 'Db', 'Sg', 'Bh', 'Hs', 'Mt', 'Ds', 'Rg', 'Cn', 'Nh', 'Fl', 'Mc', 'Lv', 'Ts', 'Og'] if type(ar) == str and not re.match(r'^\d+$', ar): # this looks like an element symbol ar = ar.title() # Title Case if choice == 'symbol': return ar else: if ar not in symb: print_err('', '{:s} is not an element symbol'.format(ar)) else: return symb.index(ar) if type(ar) == list: # process a list of atoms vals = [] for el in ar: vals.append(elz(el, choice)) return vals # if we got here, the argument is an atomic number try: Z = int(ar) except: print('Error taking int of ar = in elz()', ar, type(ar)) return None if choice == 'Z': return Z else: try: return symb[Z] except ValueError: print_err('', 'No element symbol for Z = {:d}'.format(Z)) ## def n_core(atno, code=''): # given Z value (or element symbol) return number of core electrons # if 'atno' is a stoichiometric dict of {'el' : number}, then return the sum for # the whole molecule # if the optional argument, 'code', is specified, the number will be the default # for that quantum chemistry code ncore = 0 if type(atno) == str: # convert symbol to Z value atno = elz(atno) if type(atno) == dict: # a molecular formula for el, natom in atno.items(): ncore += n_core(el) * natom return ncore if code == 'gaussian09': # default for Gaussian09 frozen-core calculations core = { # these are the minimum atomic numbers (Z) that have # the given number of core elecrons (Z : ncore) 3 : 2, 11 : 10, 19 : 18, 37 : 36, 55 : 54, # this is a guess 87 : 86 # this is a guess } else: core = { # these are the minimum atomic numbers (Z) that have # the given number of core elecrons (Z : ncore) 3 : 2, 11 : 10, 19 : 18, 31 : 28, 37 : 36, 49 : 46, 55 : 54, 81 : 78, 87 : 86 } for ki in sorted(core): if atno >= ki: ncore = core[ki] return ncore ## def read_regex(regex, fhandl, idx=1): # Return something from a line matchine a regular expression. # First arg is the regular expression; idx is the match-group # to return. Return a list of values from all matching lines. fhandl.seek(0) matches = [] regx = re.compile(regex) for line in fhandl: mch = regx.search(line) if mch: matches.append(mch.group(idx)) return matches ## def spinname(m): # given a spin multiplity (m = 2S+1), return the text name (or the reverse) name = [ 'spinless', 'singlet', 'doublet', 'triplet', 'quartet', 'quintet', 'sextet', 'septet', 'octet', 'nonet', 'decet', 'undecet', 'duodecet' ] try: m = int(m) if m in range(12): return name[m] else: return str(m) + '-tet' except: # convert a string into the corresponding multiplicity return name.index(m) ## def max_not_exceed(bigser, target): # args are: (1) a pandas Series # (2) a target value # return the largest value in 'bigser' that does not exceed 'target' # This is useful for matching up line numbers. smaller = bigser[bigser <= target] return smaller.max() ## def match_lineno(targno, numlist): # return the index of the largest value in 'numlist' that does not exceed 'targno' # This is for matching up line numbers. a = np.array(numlist) idx = np.argwhere(a <= targno) i = idx.max() return i ## def hartree_eV(energy, direction='to_eV', multiplier=1): # convert from hartree to eV or the reverse (if direction == 'from_eV') if direction == 'to_eV': return multiplier * energy * AU2EV elif direction == 'from_eV': return multiplier * energy / AU2EV else: # illegal direction return 'unrecognized direction = {:s} in routine hartree_eV'.format(direction) ## def starting_n(Ltype, nppe=0): # given an orbital-angular momentum type ('s', 'p', etc.), # return the lowest possible principal quantum number (1, 2, etc.) # The optional second argument is the number of electrons that have # been replaced by an ECP/pseudopotential # This routine only handles the common cases nmin = {'s': 1, 'p': 2, 'd': 3, 'f': 4, 'g': 5, 'h': 6} cases = [2, 10, 18, 28, 36, 46, 54, 60, 68, 78, 92] if nppe > 0: # Some electrons have been replaced by ECP; adjust the explicit # shell numbers accordingly if (not nppe in cases): print('*** Unhandled number of ECP-replaced electrons ***') print('\tnppe = {:d} in routine "starting_n"'.format(nppe)) # But go ahead and apply the algorithm, anyway! # determine number of shells replaced rcore = {'s': 0, 'p': 0, 'd': 0, 'f':0} resid = nppe nf = (resid - 28) // 32 # number of f shells replaced if nf > 0: rcore['f'] = nf resid -= nf * 14 nd = (resid - 10) // 18 # number of d shells replaced if nd > 0: rcore['d'] = nd resid -= nd * 10 np = (resid - 2) // 8 # number of p shells replaced if np > 0: rcore['p'] = np resid -= np * 6 ns = resid // 2 # number of s shells replaced rcore['s'] = ns resid -= ns * 2 if resid != 0: print('*** Unexpected residual electrons in routine "starting_n" ***') for L in rcore: nmin[L] += rcore[L] return nmin[Ltype.lower()] ## def L_degeneracy(Ltype): # given an orbital-angular momentum type ('s', 'p', etc.), # return the degeneracy (1, 3, etc.) degen = {'s': 1, 'p': 3, 'd': 5, 'f': 7, 'g': 9, 'h': 11, 'i': 13} return degen[Ltype.lower()] ## def combine_MOspin(df, col1='Orbital', col2='Spin', colnew='MO'): # Given a pandas DataFrame, combine a numeric 'Orbital' field with # a 'Spin' field ('alpha' or 'beta') to create a new 'MO' field # that is a combination like '1a' or '5b'. # Return that new DataFrame. abbrev = {'alpha': 'a', 'beta': 'b', 'both': ''} dfret = df.copy() dfret[colnew] = df.apply(lambda x: str(x[col1])+abbrev[x[col2]], axis=1) return dfret ## class Atom(object): # element symbol + cartesian coordinates + optional mass (default = 0) def __init__(self, el, xyz, mass=0): # 'el' : Element symbol or atomic number # 'xyz': cartesian coordinates as list or numpy array # 'mass': atomic mass in amu self.el = elz(el, choice='symbol') self.xyz = np.array(xyz, dtype=np.float64) self.mass = mass def Z(self): # atomic number return elz(self.el, 'Z') def copy( self ): if type(self).__name__ == 'LabeledAtom': newatom = LabeledAtom(self.el, self.xyz, self.mass, self.label) else: # regular Atom object newatom = Atom(self.el, self.xyz, self.mass) return newatom def newxyz(self, triple): # replace current coordinates self.xyz = np.array(triple) return def addxyz(self, triple): # add to current coordinates with list or array self.xyz = self.xyz + triple return def rotate(self, Rmat): # multipy the coordinates by the specified matrix self.xyz = Rmat.dot(self.xyz) return def rotate_quat(self, Rquat): # quaternion rotation using 'Rquat' p = quaternion.from_vector_part(self.xyz) pp = Rquat * p * Rquat.conjugate() self.xyz = quaternion.as_vector_part(pp) return def rotate_sphangle(self, sphangle): # spherical angle that defines a quaternion rotation Rquat = quaternion.from_spherical_coords(sphangle) self.rotate_quat(Rquat) return def printstr( self ): # print to a string (exclude mass) return '{:s}\t{:9.5f}\t{:9.5f}\t{:9.5f}'.format(self.el, self.xyz[0], self.xyz[1], self.xyz[2]) def set_mass(self, m): # set atom mass: either a number (in amu) or an option string try: m = float(m) self.mass = m except: if m == 'atomic_weight': self.mass = atomic_weight(self.el) elif m == 'dominant': self.mass = dominant_isotope(self.el) else: print_err('', 'Unrecognized option, m = {:s}'.format(str(m))) return def distance_to(self, point): # return the distance to the point d = distance(self.xyz, point) return d def print(self): # print to stdout (including mass) print(self.printstr()) return ## class LabeledAtom(Atom): # like an Atom, but carrying a label def __init__(self, el, xyz, mass=0, label='label'): Atom.__init__(self, el, xyz, mass) # label each atom simply with its ordinal number self.label = label def printstr(self): # print to a string (exclude mass) return '{:s}\t{:9.5f}\t{:9.5f}\t{:9.5f}\t{:s}'.format(self.el, self.xyz[0], self.xyz[1], self.xyz[2], str(self.label)) def print(self): # print to stdout (including mass) print(self.printstr()) return def fromAtom(atom, label='label'): # create from unlabeled Atom newLA = LabeledAtom(atom.el, atom.xyz, atom.mass, label) return newLA def setLabel(self, label=''): # change the label self.label = label return ## def distance(pos1, pos2): # return distance between two vectors (numpy) # return NaN if the vectors have different dimensionality if len(pos1) != len(pos2): print('Unequal vector dimensions in "distance": dim1 = {:d}, dim2 = {:d}'.format(len(pos1), len(pos2))) return np.nan v = pos2 - pos1 d = np.linalg.norm(v) return d ## def structure_distance(Struct1, Struct2, align=True): # Return "distance" between two structure objects # return Nan if they are incompatible # This is not RMSD, it is raw distance if Struct1.coordtype != Struct2.coordtype: # different types; distance does not make sense return np.nan if Struct1.natom() != Struct2.natom(): # different atom counts; distance does not make sense return np.nan v1 = Struct1.toVector() if align: v2 = RMSD_align(Struct2, Struct1).toVector() else: v2 = Struct2.toVector() d = distance(v1, v2) # cartesian distance return d ## def angleabc(a, b, c, unit='radian'): # return the angle a-b-c, where all are numpy arrays v1 = a - b v2 = c - b s = np.dot( v1, v2 ) s /= np.linalg.norm(v1) s /= np.linalg.norm(v2) theta = np.arccos(s) if unit == 'degree': # requested unit is degrees theta = np.rad2deg(theta) return theta ## class Geometry(object): # a list of Atoms # constructor does not accept masses def __init__(self, *args, intype='1list', units='angstrom'): # three input types are recognized: # '2lists' : a list of elements and a list of coordinate triples # '1list' : a list of [el, x, y, z] quadruples # 'atlist' : a list of Atoms # 'DataFrame' : a pandas DataFrame with four columns (Z, x, y, z) self.coordtype = 'Geometry' self.atom = [] self.units = units self.charge = None # optional self.spinmult = None # optional self.comment = '' # optional self.bondlist = None # filled by calls to self.bonded_list() if len(args) == 0: # return an empty Geometry return if intype == 'atlist': # argument is already a list of Atoms self.atom = list(args[0]) return if intype == '1list': # argument is a list of quadruples, [el, x, y, z] for quad in args[0]: at = Atom(quad[0], quad[1:4]) self.atom.append(at) return if intype == '2lists': # first argument is a list of elements # second argument is a list of triples nsymb = len(args[0]) nxyz = len(args[1]) if nsymb != nxyz: print('*** Inconsistent #symb = {:d} and #xyz = {:d} in Geometry initialization'.format(nsymb, nxyz)) return # empty for iat in range(nsymb): at = Atom(args[0][iat], args[1][iat]) self.atom.append(at) return if intype == 'DataFrame': # argument is a four-column pandas DataFrame (Z, x, y, z) for iat in range(len(args[0].index)): elxyz = args[0].iloc[iat] at = Atom(elxyz[0], elxyz[1:].tolist()) self.atom.append(at) def copy(self, elements=[], atoms=[]): # A restrictive list of elements XOR atom numbers may be provided newgeom = self.__class__() newgeom.units = self.units newgeom.coordtype = self.coordtype newgeom.charge = newgeom.spinmult = None newgeom.comment = '' if len(elements) > 0: # copy only specified elements for a in self.atom: if (a.el in elements): newgeom.addatom(a.copy()) elif len(atoms) > 0: # copy only specified atoms (by index) for i in atoms: newgeom.addatom(self.atom[i].copy()) else: # copy all atoms for a in self.atom: newgeom.addatom(a.copy()) # copy (charge, spin multiplicity, comment) only # when we keep all the atoms newgeom.charge = self.charge newgeom.spinmult = self.spinmult newgeom.comment = self.comment # debugging r = RMSD(self, newgeom) if r > 1e-6: print('RMSD with copy = ', r) return newgeom def addatom(self, atom): self.atom.append(atom) return def append(self, geom2): # given another Geometry object, append its atoms here for at in geom2.atom: self.addatom(at) return def delatom(self, iatom): del self.atom[iatom] return def natom(self): return len(self.atom) def nDOF(self): # number of degrees of freedom return 3 * self.natom() def set_masses(self, mlist): # given a list of atom masses, assign these to the constituent Atoms # If 'mlist' is a string, get masses elsewhere if isinstance(mlist, str): # mlist is a string for i in range(self.natom()): self.atom[i].set_mass(mlist) else: try: if len(mlist) == self.natom(): for i in range(self.natom()): self.atom[i].set_mass(mlist[i]) else: print('Expected {:d} atom masses but received only {:d} in Geometry.set_masses()'.format(self.natom(), len(mlist))) except: # 'mlist' is not a list; assume scalar for i in range(self.natom()): self.atom[i].set_mass(mlist) return def set_atomic_weights(self): # set each atom mass to its atomic weight for a in self.atom: a.set_mass('atomic_weight') return def mass(self): # sum of masses of constituent atoms m = 0 for a in self.atom: m += a.mass return m def translate(self, vector): # given a 3-vector, translate all atoms for i in range(self.natom()): self.atom[i].addxyz(vector) return def center(self, origin=np.zeros(3), use_masses=True): # translate molecule to set center of mass at 'origin' # if use_masses is False, the use geometric centroid instead of COM C = self.COM(use_masses=use_masses) vec = origin - C self.translate(vec) return def rotate(self, Rmat): # given a 3x3 rotation matrix, multiply all atomic coords for A in self.atom: A.rotate(Rmat) return def rotate_quat(self, Rquat): # given a rotational quaternion, rotate the molecule for A in self.atom: A.rotate_quat(Rquat) return def rotate_sphangle(self, sphangle): # spherical angle that defines a quaternion rotation Rquat = quaternion.from_spherical_coords(sphangle) self.rotate_quat(Rquat) return def invert(self): # invert all coordinates for A in self.atom: A.xyz *= -1 return def reflect(self, normal=[0,0,1.]): # reflect through plane specified by its normal vector # default is the XY plane nrm = np.array(normal) nrm /= np.linalg.norm(nrm) for A in self.atom: xnew = A.xyz - 2 * np.dot(A.xyz, nrm) * nrm A.newxyz(xnew) return def scale(self, scale): # scale (multiply) all coordinates by the specified factor for at in self.atom: at.xyz *= scale return def COM(self, use_masses=True): # center of mass com = np.zeros(3) if self.mass == 0: # cannot use masses use_masses = False if use_masses: # ordinary center of mass for a in self.atom: com += a.xyz * a.mass if a.mass == 0: print_err('', 'atom has zero mass', halt=False) com /= self.mass() else: # geometric center (no masses) for a in self.atom: com += a.xyz com /= self.natom() return com def copyxyz(self, Geom2): # copy the atomic coordinates from Geom2 for at, at2 in zip(self.atom, Geom2.atom): if at.el != at2.el: print_err('', f'Different atoms {at.el} != {at2.el}') at.newxyz(at2.xyz) return def element_indices(self, elem): # return list of indices of atoms that match 'elem' el = elz(elem, choice='symbol') idx = [] for i, at in enumerate(self.atom): if el == elz(at.el, choice='symbol'): idx.append(i) return idx def find_element(self, el): # old, redundant print('>>> this method is old and redundant') return self.element_indices(el) def randomize_atom_numbering(self): # re-number atoms randomly; may be useful for software testing idx = np.random.permutation(self.natom()) self.atom = [self.atom[i] for i in idx] return ''' def renumber_closest_to(self, Gref): # renumber atoms (by element) to be closest to a reference Geometry # no error-checking here! idx = np.arange(Gref.natom(), dtype=int) elems = Gref.stoichiometry(asdict=True).keys() for el in elems: # for each element, find closest atom id0 = Gref.element_indices(el) Gel0 = Gref.subMolecules([id0])[0] # sub-Geometry of element id = self.element_indices(el) Gel1 = self.subMolecules([id])[0] dmat = cdist(Gel0.separateXYZ()[1], Gel1.separateXYZ()[1]) imin = np.argmin(dmat, axis=0) idx[id0] = np.array(id)[imin] # do the renumbering self.renumber_atoms(idx) return def distance_fit_to(self, Gref, index=False): # find smallest RMS distance to atoms of same elements (duplicate # matches are not allowed)) # return the sum of the distances # if 'index', also return the matching atom numbers elems = self.stoichiometry(asdict=True).keys() iused = [] dsq = 0 for el in elems: # for each element, find closest atom that has not already matched id0 = Gref.element_indices(el) Gel0 = Gref.subMolecules([id0])[0] # sub-Geometry of element id = self.element_indices(el) Gel1 = self.subMolecules([id])[0] dmat = cdist(Gel0.separateXYZ()[1], Gel1.separateXYZ()[1]) for icol in range(len(id)): jsort = np.argsort(dmat[:, icol]) for j in jsort: if id[j] not in iused: # use this one dsq += dmat[j, icol] ** 2 iused.append(id[j]) # don't use it again break rms = np.sqrt(dsq / self.natom()) if index: return rms, iused return rms def minimize_RMSD_rotation(G, Gref): # Brute-force (Nelder-Mead) minimization of RMSD # return the minimized RMSD and the asociated # rotational quaternion # atom numbering must be consistent res = optimize.minimize(rotated_RMSD, [0, 0], args=(G, Gref), method='Nelder-Mead') rmsd = res.fun Rquat = quaternion.from_spherical_coords(res.x) return rmsd, Rquat ## def distance_closest_match0(self, Gref, index=False): # find RMS distance to atoms of same elements (duplicate # matches are not allowed)) # return the sum of the distances # if 'index', also return the matching atom numbers if self.stoichiometry() != Gref.stoichiometry(): print_err('', 'mismatching stoichiometries: self = {:s}, Gref = {:s}'.format(self.stoichiometry(), Gref.stoichiometry())) elems = self.stoichiometry(asdict=True).keys() elem_order = Gref.separateXYZ()[0] iused = {el: [] for el in elems} dsq = 0 for el in elems: # for each element, find closest atom that has not already matched id0 = Gref.element_indices(el) Gel0 = Gref.subMolecules([id0])[0] # sub-Geometry of element id = self.element_indices(el) Gel1 = self.subMolecules([id])[0] dmat = cdist(Gel0.separateXYZ()[1], Gel1.separateXYZ()[1]) for icol in range(len(id)): jsort = np.argsort(dmat[:, icol]) for j in jsort: if id[j] not in iused[el]: # use this one dsq += dmat[j, icol] ** 2 iused[el].append(id[j]) # don't use it again break rms = np.sqrt(dsq / self.natom()) # put the elements in the reference order idx = [] for el in elem_order: idx.append(iused[el].pop(0)) if index: return rms, idx return rms ''' def distance_closest_match(self, Gref, index=False): # find RMS distance to atoms of same element with the same # bonding environment (duplicate matches not allowed) # return the RMS of the distances # if 'index', also return the matching atom numbers # this version less efficient but maybe will work if self.stoichiometry() != Gref.stoichiometry(): print_err('', 'mismatching stoichiometries: self = {:s}, Gref = {:s}'.format(self.stoichiometry(), Gref.stoichiometry())) neighb = self.connected_elems()[0] # list of strings refneig = Gref.connected_elems()[0] if sorted(neighb) != sorted(refneig): print(self.comment) print(sorted(neighb)) self.printXYZ('bad.xyz') print(Gref.comment) print(sorted(refneig)) Gref.printXYZ('badref.xyz') print('units:', self.unitX(), Gref.unitX()) print_err('', 'mismatching bonding environments') idx = [] dsq = 0 dmat = cdist(self.separateXYZ()[1], Gref.separateXYZ()[1]) for icol, at in enumerate(Gref.atom): # find closest atom (of same element) that has not already matched jsort = np.argsort(dmat[:, icol]) for j in jsort: jatom = self.atom[j] if (at.el == jatom.el) and (refneig[icol] == neighb[j]) and (j not in idx): # use this one dsq += dmat[j, icol] ** 2 idx.append(j) # don't use it again break natom = self.natom() rms = np.sqrt(dsq / natom) if len(idx) != natom: # not all atoms were assigned (failure) rms = np.inf if index: return rms, idx return rms def renumber_atoms(self, newnums): # re-number the atoms according to list 'newnums' nlen = len(newnums) nunique = len(set(newnums)) if nlen != nunique: print_err('', 'Only {:d} unique atom numbers were requested'.format(nunique)) if nlen != self.natom(): print_err('', 'Only {:d} atom numbers were specified'.format(nlen)) neworder = [self.atom[i] for i in newnums] self.atom = neworder return def inertia_tensor(self): # return 3x3 inertia tensor mvec = self.massVector() elem, triples = self.separateXYZ() inertia = inertia_tensor(mvec, triples) return inertia def rotational(self, mass=True, posdet=True): # return rotational constants (GHz), moments of inertia (kg.m^2), # and principal axes (columns) # input units are assumed to be angstrom and amu ### around the center of mass ### # if mass == False, set all atomic masses equal before calculating # if posdet == True, require that the determinant of the eigenvector # matrix be positive centered = self.copy() if not mass: # set all masses = 1 centered.set_masses(1.) centered.center() imat = centered.inertia_tensor() moment, axes = np.linalg.eigh( imat ) # convert moment to kg.m^2, assuming distances in angstrom and masses in u moment /= 1.0e20 * AVOGADRO * 1000.0 rotconst = PLANCK / ( 8 * PI * PI * CLIGHT * moment ) # now in units (1/m) rotconst *= CLIGHT * 1.0e-9 # now in GHZ det = np.linalg.det(axes) if det < 0: # reverse the B axis axes[:,1] *= -1 return rotconst, moment, axes def align_principal_axes(self, Gref, mass=True, mindet=0.9, quiet=False): # rotate so that principal axes align with those of 'Gref' # include masses unless 'mass' == False # return the rotation matrix C = self.copy() Cref = Gref.copy() if not mass: # set all atom masses = 1 C.set_masses(1.) Cref.set_mass(1.) elif C.mass() * Cref.mass() == 0: # masses are needed but have not been set; assign atomic weights C.set_atomic_weights() Cref.set_atomic_weights() ctr = C.COM() # save the COM C.center() Cref.center() # inertial axes ABC0, I0, pax0 = Cref.rotational() ABC1, I1, pax1 = C.rotational() rmat = pax1 * np.linalg.inv(pax0) # check for singularity (or negative determinant) det = np.linalg.det(rmat) if det < mindet: if not quiet: print_err('', 'rotation aborted: rmat has bad det = {:.3f}'.format(det), halt=False) else: # pax1 = rmat * pax0 C.rotate(rmat) # rotate COM and add it back rctr = np.dot(ctr, rmat) C.translate(rctr) # transfer coordinates to self for atold, atnew in zip(self.atom, C.atom): atold.newxyz(atnew.xyz) return rmat def massVector(self, tripled=False): # return 1D vector of atomic masses # if 'tripled', repeat each mass three times (to match coordinates) n = 1 if tripled: n = 3 vmass = [[a.mass]*n for a in self.atom] vmass = np.array(vmass).flatten() return vmass def suppress_translation(self, direction): # given a displacement vector, remove net translation and return the adjusted vector # construct vector of masses vmass = self.massVector(tripled=True) if np.any(vmass <= 0.): print_err('', 'an atom has non-positive mass') transl = np.multiply(vmass, direction) / self.mass() transl = transl.reshape(-1, 3) center = transl.sum(axis=0) # subtract this 'center' from the input direction dnew = direction.reshape(-1,3) - center return dnew.flatten() def suppress_rotation(self, direction, thresh=0.001, maxiter=1000): # given a displacement vector, suppress net rotation and return the adjusted vector # crummy iterative method v = direction.reshape(-1,3) r = self.toVector().reshape(-1,3) # atomic positions m = self.massVector() # atomic masses I = ( (r*r).T * m ).T.sum() # total moment of inertia iter = 0 while True: L = angular_momentum(m, r, v) Lnorm = np.linalg.norm(L) #print('Lnorm = {:.4f} at iteration {:d}'.format(Lnorm, iter)) if Lnorm < thresh: return v.flatten() w = L/I # angular velocity u = np.cross(r, w) # velocity adjustment v += u iter += 1 if iter > maxiter: print('*** warning: maxiter = {:d} exceeded in calm_rotation()'.format(maxiter)) def toAngstrom(self): # ensure that units are angstrom if self.units == 'bohr': # multiply all coordinates by 'BOHR' constant for a in self.atom: a.xyz *= BOHR self.units = 'angstrom' return def toBohr(self): # ensure that units are bohr if self.units == 'angstrom': # divide all coordinates by 'BOHR' constant for a in self.atom: a.xyz /= BOHR self.units = 'bohr' return def toUnits(self, unitS): # given tuple of units, convert to those units if 'angstrom' in unitS: self.toAngstrom() if 'bohr' in unitS: self.toBohr() return def unitX(self): # return (tuple) of units return (self.units,) def print(self, numbering=None): # printing routine # to number the atoms from N, set numbering=N if type(self).__name__ == 'LabeledGeometry': header = 'el\t x\t\t y\t\t z\t\tlabel' else: # regular Geometry object header = 'el\t x\t\t y\t\t z' if numbering is not None: header += '\t\t#' if self.units == 'bohr': header += '\t(units=bohr)' print(header) if numbering is None: for atom in self.atom: atom.print() else: # print with numerical labels starting from 'numbering' for iat, atom in enumerate(self.atom): lbl = '{:d}'.format(numbering + iat) LabeledAtom.fromAtom(atom, label=lbl).print() # print any charge and spin multiplicity try: print('charge = {:.1f}'.format(self.charge)) except: # not a problem pass try: print('spinmult = {:.1f}'.format(self.spinmult)) except: # not a problem pass return def XmolXYZ(self, comment='', coord_only=False): # return a string in Xmol's XYZ format # if coord_only==True, omit the first two lines (so not Xmol format anymore) if comment == '': # supply a default comment line comment = 'molecular composition is {:s}'.format(self.stoichiometry()) if self.units == 'bohr': comment += '\t(units=bohr)' if not coord_only: xstr = '{:d}\n{:s}\n'.format(self.natom(), comment) else: xstr = '' for a in self.atom: xstr += '{:s}\t{:10.5f}\t{:10.5f}\t{:10.5f}\n'.format(a.el, a.xyz[0], a.xyz[1], a.xyz[2]) return xstr def printXYZ(self, fname='', comment='', handle=False): # print a string in Xmol's XYZ format, to file or stdout if comment == '': comment = self.comment if handle: # 'fname' is a file pointer fname.write(self.XmolXYZ(comment=comment)) else: # 'fname' is the name of a file or blank if len(fname) > 0: # print to specified file; over-write existing data with open(fname, 'w') as f: f.write(self.XmolXYZ(comment=comment)) else: # print to stdout print(self.XmolXYZ(comment=comment)) return def separateXYZ(self): # return a list with two elements: # [element symbols]; [array of cartesian triples] elem = [] triples = [] for a in self.atom: elem.append(a.el) triples.append(a.xyz) return [elem, np.array(triples)] def varlist(self): # return a list of (formal) variable names vlist = [] for i in range(self.natom()): n = str(i) vlist += ['x_'+n, 'y_'+n, 'z_'+n] return vlist def toVector(self): # return a numpy array with all coordinates elem, triples = self.separateXYZ() return triples.flatten() def fromVector(self, vec, unitS, add=False): # given a flat vector of coordinates, replace the current coordinates # unitS[0] is the distance unit of the vector # if 'add' is True, then add to the current coordinates instead # of replacing them if unitS[0] != self.units: # convert vector to Geometry units if self.units == 'angstrom': if unitS[0] == 'bohr': vec *= BOHR else: print('** unrecognized units: unitS[0] = {:s}'.format(unitS[0])) elif self.units == 'bohr': if unitS[0] == 'angstrom': vec /= BOHR else: print('** unrecognized units: unitS[0] = {:s}'.format(unitS[0])) else: print("** I don't recognize my own units! self.units = {:s}".format(self.units)) triples = np.array(vec).reshape((-1,3)) for i in range(self.natom()): if add: self.atom[i].addxyz(triples[i]) else: self.atom[i].newxyz(triples[i]) return def stoichiometry(self, asdict=False): # stoichiometry string (without charge or spin multiplicity) # build hash of elements and their atom counts acount = {} for a in self.atom: try: acount[a.el] += 1 except: acount[a.el] = 1 if asdict: return acount stoich = stoichiometry(acount) return stoich def distance(self, i, j, unit=''): # distance between atoms i and j # use unit if requested; default is not to change units try: d = distance(self.atom[i].xyz, self.atom[j].xyz) except IndexError: s = '*** Illegal atom number in Geometry.distance(): ' + \ 'i = {:d}, j = {:d}'.format(i, j) print(s) return np.nan if unit == 'angstrom' and self.units == 'bohr': d *= BOHR # convert bohr to angstrom if unit == 'bohr' and self.units == 'angstrom': d /= BOHR # convert angstrom to bohr return d def vec(self, i, j, norm=None): # return the vector pointing from atom i to atom j # is 'norm' is not None, then normalize the vector # length to 'norm' v = self.atom[j].xyz - self.atom[i].xyz if norm is None: return v else: # normalize to specified length return normalize(v, norm) def angle(self, i, j, k, unit='degree'): # bond (or other) angle defined by atoms i, j, k try: a = angleabc(self.atom[i].xyz, self.atom[j].xyz, self.atom[k].xyz, unit=unit) return a except IndexError: s = '*** Illegal atom number in Geometry.angle(): ' + \ 'i = {:d}, j = {:d}, k = {:d}'.format(i, j, k) print(s) return np.nan def dihedral(self, i, j, k, l, typ='linear', unit='radian'): # calculate dihedral angle in radians (optionally in 'degree') # typ='linear' : connectivity is i-j-k-l # dihedral is between planes ijk and jkl # typ='branched' : connectivity is i-j<kl (i, k and l all bonded to j) # dihedral is between planes ijk and jkl (conforming with Avogadro) a = self.vec(j, i) b = self.vec(j, k) c = self.vec(k, l) if typ == 'branched': c = self.vec(j, l) b = normalize(b) x = a - b * np.dot(a, b) # component of a normal to b z = c - b * np.dot(c, b) x = normalize(x) z = normalize(z) if ( np.linalg.norm(x) == 0.0) or ( np.linalg.norm(z) == 0.0): # something is linear; dihedral is undefined return np.nan phi = np.arccos( np.dot(x,z) ) # in range [0, pi] s = np.cross(x, z) # vector cross-product to get sign of dihedral s = np.sign( np.dot(s,b) ) # parallel or antiparallel to b phi *= s # include sign (right-handed definition) if s == 0: # x and z are parallel if np.dot(x, z) > 0: phi = 0 else: phi = PI if unit == 'degree': phi *= 180 / PI return phi def simple_dihedrals(self, bondtol=1.3, unit='radian'): # Return a list of all (redundant) linear dihedral angles. # Each list element is a tuple: # ( (i,j,k,l), angle_value ) xconn = self.extended_connection_table(bondtol) pairs14 = np.argwhere(xconn == 3) # pairs of atoms 3 bonds apart aldihe = [] for il in pairs14: [i, l] = il.tolist() if l < i: # list each dihedral only once continue j = np.intersect1d( (np.argwhere(xconn[i,:] == 1)), (np.argwhere(xconn[l,:] == 2)) ).min() k = np.intersect1d( (np.argwhere(xconn[i,:] == 2)), (np.argwhere(xconn[l,:] == 1)) ).tolist() blist = np.where(xconn[j,:] == 1)[0] k = np.intersect1d(k, blist).min() ang = self.dihedral(i, j, k, l, 'linear', unit) aldihe.append( ((i,j,k,l), ang) ) return aldihe def find_methyls(self, bondtol=1.3): # return list of tuples of atom numbers (C, H, H, H) mlist = [] conn = self.connection_table(bondtol) for i in range(self.natom()): if self.atom[i].Z() == 6: # a carbon atom h = np.argwhere(conn[i,:] == 1).flatten() if len(h) == 4: # tetravalent carbon hlist = [] for j in h: if self.atom[j].Z() == 1: # hydrogen atom hlist.append(j) if len(hlist) == 3: # a methyl group; add to list mlist.append( (i, *hlist) ) return mlist def bonded(self, i, j, tol=1.3): # return True if bonded, else False (based on distance only) (3/2/10) # 'tol' tolerated amount of bond stretching r0 = r0_ref(self.atom[i].el, self.atom[j].el) if self.distance(i, j, unit='angstrom') < r0 * tol: return True return False def bonded_list(self, tol=1.3): # return a list of arrays of bonded atoms (by index) # also store it as an attribute natom = self.natom() connex = self.connection_table(tol=tol) bonded = [ np.argwhere(connex[i,:]).flatten() for i in range(natom) ] # save to attribute variable self.bondlist = bonded return bonded def distmat(self, unit='', variant=''): # 2D array of interatomic distances (distance matrix ) # use unit if specified # if variant = 'interfragment', zero out all distances # within a bonded fragment xyz = [a.xyz for a in self.atom] dmat = cdist(xyz, xyz, metric='euclidean') if (unit == 'angstrom') and (self.units == 'bohr'): dmat *= BOHR # convert bohr to angstrom print('>>> dmat from bohr to angstrom') if (unit == 'bohr') and (self.units == 'angstrom'): dmat /= BOHR # convert angstrom to bohr print('>>> dmat from angstrom to bohr') if variant == 'interfragment': # intended only for nonbonded complexes frags = self.find_fragments() nfrag = len(frags) if nfrag < 2: # there is only one fragment! return np.zeros_like(dmat) for frag in frags: for i in frag: for j in frag: dmat[i, j] = 0. return dmat def distances_to(self, point): # return list of atom distances to specified point in space # also the distance from COM to the point dcom = distance(self.COM(), point) dist = [a.distance_to(point) for a in self.atom] return dist, dcom def connection_table(self, tol=1.3): # return a connection table: a 2D array indicating bonded distances (= 0 or 1) # 'tol' is bond-stretch tolerance dmat = self.distmat(unit='angstrom') / tol connex = np.zeros_like(dmat, dtype=int) for i in range(self.natom()): for j in range(i): # j < i if dmat[i][j] < r0_ref(self.atom[i].el, self.atom[j].el): connex[i][j] = 1 connex[j][i] = 1 return connex def connected_elems(self, tol=1.3): # return a list of connected atoms formatted as stoichiometric string # and a list of bonded atoms (by index) connex = self.connection_table(tol=tol) slist = [] ilist = [] for i in range(connex.shape[0]): adict = {} jlist = np.argwhere(connex[i,:]).flatten() for j in jlist: try: adict[self.atom[j].el] += 1 except: adict[self.atom[j].el] = 1 slist.append(stoichiometry(adict)) ilist.append(jlist) return slist, ilist def extended_connection_table(self, tol=1.3): # return a 2D array where A_ij is the number of bonded # links to get from atom i to atom j # Zeros on the diagonal and for unconnected atom pairs xconn = self.connection_table(tol) natom = xconn.shape[0] changed = True nbond = 1 while changed: changed = False for i in range(natom): for j in range(natom): if xconn[i][j] == nbond: # j is 'nbonds' from i # find atoms k that are bonded to j for k in range(natom): if (k != i) and (k != j) and (xconn[j][k] == 1) and (xconn[i][k] == 0): # record this distance xconn[i][k] = xconn[k][i] = nbond + 1 changed = True nbond += 1 return xconn def Coulomb_mat(self, select=0, bondtol=1.3): # return a Coulomb matrix (atomic units) # if 'select' != 0, then the matrix is zero # except for atom pairs separated by 'select' number of bonds # when 'select' == 0, 'bondtol' is irrelevant zvals = [a.Z() for a in self.atom] zmat = np.outer(zvals, zvals) xconn = self.extended_connection_table() nat = xconn.shape[0] if select >= nat: print('Warning: select = {:d} exceeds atom limit in Coulomb_mat(); setting to zero'.format(select)) select = 0 dmat = self.distmat('bohr') if select > 0: # destroy values at wrong bonded distances dmat[np.where(xconn != select)] = np.inf else: # set only diagonal to inf (so that reciprocal will be zero) np.fill_diagonal(dmat, np.inf) return zmat/dmat def subMolecules(self, lolist, ltype='index'): ''' return a list of sub-molecules arg 'lolist' is a list of lists 'ltype' indicates meaning of lolist: 'index' is a number 'label' only makes sense for LabeledGeometry ''' geomlist = [] for lol in lolist: # create an empty object for each list in lolist newG = self.__class__() newG.units = self.units if ltype == 'index': # sort indices to preserve atom ordering for i in sorted(lol): # 'i' is just the index in self.atom[] newG.addatom(self.atom[i]) elif (ltype == 'label') and (type(self).__name__ == 'LabeledGeometry'): for i in lol: # 'i' is the label; add all matching atoms m = False # flag for at in self.atom: if at.label == i: newG.addatom(at) m = True if not m: # no matching atom found print('Found no atoms with label {:s} in LabeledGeometry.subMolecules()'.format(str(i))) else: print('Unrecognized ltype =', ltype, 'in LabeledGeometry.subMolecules()') return None geomlist.append(newG) return geomlist def separateNonbonded(self, tol=1.3): # return a list of Geometry objects for all disconnected fragments fragments = self.find_fragments(tol=tol) # create the sub-molecules submols = self.subMolecules(fragments, ltype='index') return submols def paxes_dots(self, unsigned=True, tol=1.3): # dot products of first principal axes of nonbonded fragments # (first axis corresponds to the smallest moment/largest rot. constant) # if 'unsigned' == True, take absolute values # returns a list # may be useful in distinguishing cluster geometries Frags = self.separateNonbonded(tol=tol) pax = [Frag.rotational()[2] for Frag in Frags] dots = [] nfrag = len(Frags) for i in range(nfrag): for j in range(i+1, nfrag): # only consider the first axis a = np.dot(pax[i][:,0], pax[j][:,0]) if unsigned: a = abs(a) dots.append(a) return dots def fragment_distances(self, loc='nearest', tol=1.3): # Identify non-bonded fragments, then # return the matrix of inter-fragment distances and # another item (depending upon 'loc' value) # loc == 'nearest' : minimal interatomic distance # loc == 'center' : between geometric centers (no masses) fragments = self.find_fragments(tol=tol) nfrag = len(fragments) sep = np.zeros((nfrag, nfrag)) # matrix of inter-fragment distances if nfrag == 1: # there is nothing to do (still return two values) return sep, sep.tolist() if loc == 'nearest': # find the nearest atoms between all pairs of fragments ijDist = self.distmat() ijNearest = np.zeros((nfrag, nfrag)).tolist() # for storing the (i,j) atom numbers for ifrag in range(nfrag): mindist = np.inf minj = mini = -1 for jfrag in range(ifrag): for iat in fragments[ifrag]: for jat in fragments[jfrag]: if ijDist[iat][jat] < mindist: # new closest pair minj = jat mini = iat mindist = ijDist[iat][jat] # record the closest atom pair for these two fragments ijNearest[ifrag][jfrag] = (mini, minj) ijNearest[jfrag][ifrag] = (minj, mini) sep[ifrag][jfrag] = mindist sep[jfrag][ifrag] = mindist return sep, ijNearest elif loc == 'center': # find the distance between geometric centers # (without mass-weighting) cent = np.zeros((nfrag, 3)) # coordinates of fragment centers # compute fragment centers for ifrag in range(nfrag): for iat in fragments[ifrag]: cent[ifrag] += self.atom[iat].xyz cent[ifrag] /= len(fragments[ifrag]) # compute distances between centers for ifrag in range(nfrag): for jfrag in range(ifrag): sep[ifrag][jfrag] = np.linalg.norm(cent[jfrag] - cent[ifrag]) sep[jfrag][ifrag] = sep[ifrag][jfrag] return sep, cent else: print_err('option', 'loc = {:s}'.format(loc)) def spread_fragments(self, dist=5.0, tol=1.3): # displace fragments away from each other along # closest inter-atom vectors, to distance 'dist' # Return value is the number of fragments detected sep, ijNearest = self.fragment_distances(loc='nearest', tol=tol) nfrag = sep.shape[0] if nfrag < 2: # nothing to do return nfrag # compute the translation vectors # each row in 'transl' is the translation to apply to all # atoms in one fragment transl = np.zeros( (nfrag, 3) ) for ifrag in range(nfrag): for jfrag in range(ifrag): (iat, jat) = ijNearest[ifrag][jfrag] v12 = (self.atom[iat].xyz - self.atom[jat].xyz) # adjust length of translation vector curlen = np.linalg.norm(v12) v12 = normalize(v12, (dist-curlen)/2) transl[ifrag] += v12 # move fragment i away from fragment j transl[jfrag] -= v12 # move fragment j away from fragment i # apply the translations fragments = self.find_fragments(tol=tol) for ifrag in range(nfrag): for iat in fragments[ifrag]: self.atom[iat].addxyz(transl[ifrag]) return nfrag def find_fragments(self, tol=1.3): # return a list of [list of atom numbers] that are connected natom = self.natom() bonded = self.bonded_list(tol=tol) # bonded[i] is the list of atoms that are connected to atom i (indices, not labels) bunch = [] # list of lists; atom "bunches" that are intact molecules remaining = list(range(natom)) # the indices of the atoms not yet assigned to a bunch moved = False # a flag while(len(remaining)): if not moved: # no atoms were moved last round; start a new bunch seed = remaining.pop(0) bunch.append([seed]) moved = True for i in bunch[-1]: moved = False for j in bonded[i]: if not j in bunch[-1]: # move this atom into the current bunch bunch[-1].append(j) remaining.remove(j) moved = True return bunch def assignTerminality(self, tol=1.3): # assign a 'terminality' number to each atom; # it's the number of iterations that the atom survives, # where one iteration removes all terminal atoms # Return a list of terminality numbers # Atoms that can't be removed get terminality = -1 natom = self.natom() terminality = np.zeros(natom, dtype=int) remaining = np.arange(natom) # the indices of the atoms not yet removed round = 0 # counter while(len(remaining)): # find the terminal atoms buff = self.copy(atoms=remaining) # count bonds connex = buff.connection_table(tol=tol) numbond = connex.sum(axis=0) nonterminal = np.argwhere(numbond >= 2).flatten() # non-bonded is considered terminal remaining = remaining[nonterminal] terminality[remaining] += 1 round += 1 if len(remaining) == natom: # no atoms were eliminated; only rings and linkers remain terminality[remaining] = -1 break else: natom = len(remaining) return terminality def rings(self, minimal=False, tol=1.3): # return a list of lists # each sub-list is the indices of atoms in one ring # rings are unique but may include other rings termy = self.assignTerminality(tol=tol) # 'nonterm' are atoms that terminus-removal cannot render terminal # it includes all ring atoms and ring-ring linkages nonterm = np.where(termy == -1)[0].tolist() natom = len(nonterm) # number of atoms to consider if natom < 3: # no rings are possible return [] self.bonded_list(tol=tol) # prepare self.bondlist using specified 'tol' # follow paths until all atoms in 'nonterm' have been considered paths = self.follow_paths(start=nonterm[0:1], restrict=nonterm) # eliminate duplicates rings = [] ringsets = [] for path in paths['ring']: # is this path already in rings[] ? pset = set(path) if pset not in ringsets: # add this to the list rings.append(path) ringsets.append(pset) # if requested, eliminated redundant rings if minimal: # eliminate redundant large rings ringsize = [len(ring) for ring in rings] smallrings = [] ringatoms = set() for iring in np.argsort(ringsize): # loop over rings from smallest to largest rset = set(rings[iring]) if not rset.issubset(ringatoms): # some new atoms in this ring; add it smallrings.append(rings[iring]) ringatoms = ringatoms.union(rset) rings = smallrings return rings def follow_paths(self, start=[0], restrict=None): # Start from last atom in path 'start' and walk through the atoms # listed in 'restrict' until cycles or dead ends are reached. # Return lists of lists of atoms separated into three categories # (as dict): 'ring', 'straight' # Recursive if restrict is None: # default: consider all atoms in the Geometry() restrict = list(range(self.natom())) if self.bondlist is None: # use default tolerance to construct self.bondlist[] print_err('', 'Creating bonded list using defaults', halt=False) self.bonded_list() if start[-1] not in restrict: print_err('', 'starting atom {:d} is not in restrict list'.format(start[-1])) paths = {'ring': [], 'straight': []} # return value # find the next atoms to visit icurr = start[-1] # the current atom if len(start) > 1: iprev = start[-2] # the previous atom else: iprev = np.nan # create a new path for each following atom nextatoms = [iat for iat in self.bondlist[icurr] if (iat in restrict) and (iat != iprev)] if len(nextatoms) == 0: # current atom is a terminus; end of recursion paths['straight'].append(start) return paths # walk to following atom(s) for iat in nextatoms: # is this next atom already in the path? if iat in start: # yes; truncate the path to the ring and store it paths['ring'].append(start[start.index(iat):]) continue # not (yet) a ring; extend the path with this new atom pathext = start + [iat] # here is the recursive part: add the rest of the path tails = self.follow_paths(pathext, restrict=restrict) paths['ring'].extend(tails['ring']) paths['straight'].extend(tails['straight']) return paths def torsions(self, tol=1.3): # find all bonds with correct connectivity for proper dihedrals connex = self.connection_table(tol=tol) term = self.assignTerminality() # find all bonds between non-terminal atoms nonterm = np.where(term)[0] subconn = np.transpose(connex[nonterm])[nonterm] ntors = subconn.sum() // 2 # number of torsions print('Found {:d} torsions'.format(ntors)) # make list of central atom pairs pairs = [] (ilist, jlist) = np.where(subconn) for i, j in zip(ilist, jlist): # these indices show a bond if i < j: # don't include a bond twice pairs.append([nonterm[i], nonterm[j]]) print('pairs:', pairs) def bounding_sphere(self): # return the center and radius of a "smallest" sphere enclosing the nuclei xyz = self.separateXYZ()[1] return small_enclosing_sphere(xyz) ## class LabeledGeometry(Geometry): # like a Geometry, but composed of LabeledAtom instead of Atom def __init__(self, *args, intype='atlist', labels='', units='angstrom', istart=0): # specify labels = 'present' if the atoms are already labeled Geometry.__init__(self, *args, intype=intype, units=units) if labels == 'present': # atoms are already labeled pass else: natom = self.natom() for i in range(natom): # replace each Atom with a LabeledAtom if len(labels) >= natom: # user-supplied list of atom labels self.atom[i] = LabeledAtom.fromAtom(self.atom[i], labels[i]) else: # use the atom number (starting from 'istart') as the label self.atom[i] = LabeledAtom.fromAtom(self.atom[i], i+istart) def setLabels(self, labels): # change the labels on the LabeledAtoms natom = self.natom() if len(labels) != natom: # this is not allowed; make no changes print('Expected {:d} but received {:d} labels in LabeledGeometry.setLabels()'.format(natom, len(labels))) return else: # change the labels for i in range(natom): self.atom[i].setLabel(labels[i]) return def fromGeometry(geom, labels=''): # create from unlabeled Geometry Lmolec = LabeledGeometry(geom.atom, intype='atlist', labels=labels, units=geom.units) return Lmolec def getLabels(self): # return the atom labels as a list labels = [a.label for a in self.atom] return labels ## def atomic_weight(iz): # return atomic weight given Z (3/21/2012) or elemental symbol (9/16/2014) # values are from the NIST 2003 periodic table # units are u (amu) wt = [ 0, 1.00794, 4.002602, 6.941, 9.012182, 10.811, 12.0107, 14.0067, 15.9994, 18.9984032, 20.1797, 22.989770, 24.3050, 26.981538, 28.0855, 30.973761, 32.076, 35.453, 39.948, 39.0983, 40.078, 44.955910, 47.867, 50.9415, 51.9961, 54.938049, 55.845, 58.933200, 58.6934, 63.546, 65.409, 69.723, 72.64, 74.92160, 78.96, 79.904, 83.798, 85.4678, 87.62, 88.90585, 91.224, 92.90638, 95.94, 98, 101.07, 102.90550, 106.42, 107.8682, 112.411, 114.818, 118.710, 121.760, 127.60, 126.90447, 131.293, 132.90545, 137.327, 138.9055, 140.116, 140.90765, 144.24, 145, 150.36, 151.964, 157.25, 158.92534, 162.500, 164.93032, 167.259, 168.93421, 173.04, 174.967, 178.49, 180.9479, 183.84, 186.207, 190.23, 192.217, 195.078, 196.96655, 200.59, 204.3833, 207.2, 208.98038, 209, 210, 222, 223, 226, 227, 232.0381, 231.03588, 238.02891, 237, 244, 243, 247, 247, 251, 252, 257, 258, 259, 262, 261, 262, 266, 264, 277, 268 ] if type( iz ) == int: return wt[iz] else: # probably an elemental symbol z = elz(iz) return wt[z] ## def xyz2Atom(atno, xyz): # given Z value (or element symbol) and list [x, y, z], return an Atom if type(atno) == int: el = elz(atno) else: # we were probably given an element symbol, not an atomic number el = atno atno = elz(el) m = atomic_weight(atno) return Atom(el, xyz[0], xyz[1], xyz[2], m) ## def xyz2Geometry(atnos, xyzs, units='angstrom'): # args: list of atomic numbers; list of coordinates [x1, y1, z1, x2, y2, z2,...] # return a Geometry # 9/16/2014 # # check for compatible list lengths natom = len(atnos) nxyz = len(xyzs) if nxyz != 3 * natom: print('Incompatible numbers of atoms and of coordinates:') print('natom = {:d}, nxyz = {:d} in xyz2Geometry()'.format(natom, nxyz)) return None # build Geometry one Atom at a time molecule = Geometry(units=units) for i in range(natom): atno = atnos[i] xyz = xyzs[3*i:3*i+3] atom = xyz2Atom(atno, xyz) molecule.addatom(atom) return molecule ## def JSdm(P, Q, base=4): # Jensen-Shannon divergence metric; base=4 gives range = [0, 1] # P and Q are *discrete* PDFs (with same data type) # Allowed data types: tuple; list; dict; 1D numpy array # P and Q must be same length, except when dict # They will be L1-normalized here # Return: # (1) metric (float) # (2) messages (list of string) # message = [] if type(P) != type(Q): print('*** P and Q must be same data type in routine JSdm() ***') return (None, None) if (type(P) == list) or (type(P) == tuple) or (type(P) == np.ndarray): P = np.array(P).astype(float) Q = np.array(Q).astype(float) allkeys = [] # length will be tested later, to infer input type elif type(P) == dict: # make a sorted list of all the keys allkeys = sorted(set(list(P.keys()) + list(Q.keys()))) Plist = [] Qlist = [] for key in allkeys: try: Plist.append(P[key]) except: # probably key is not present in this dict Plist.append(0) try: Qlist.append(Q[key]) except: Qlist.append(0) if P.keys() != Q.keys(): message.append('Different key lists merged for P and Q') # convert list to numpy array P = np.array(Plist).astype(float) Q = np.array(Qlist).astype(float) else: print('*** Unhandled data type in routine JSdm():', type(P)) return (None, None) # No negative values are allowed if len(np.where(P < 0)[0]) or len(np.where(Q < 0)[0]): print('*** Negative values not allowed in routine JSdm() ***') return (None, None) # P and Q must have the same number of elements if len(P) != len(Q): print('*** P and Q must have same length in routine JSdm() ***') return (None, None) # Normalize both PDFs (L1-normalization) Plen = P.sum() Qlen = Q.sum() if (Plen == 0) or (Qlen == 0): print('*** P and Q may not be all zeros in routine JSdm() ***') return (None, None) P /= Plen Q /= Qlen pqsum = P + Q # find any zeros in (P+Q) and delete corresponding elements in P, Q, and P+Q nullidx = np.where(pqsum == 0)[0] if len(nullidx > 0): # delete the troublesome elements if len(allkeys) > 0: # input was dict message.append('Deleted null elements with indices ' + str([allkeys[i] for i in nullidx])) else: # input was list-like message.append('Deleted null elements with indices ' + str(nullidx)) P = np.delete(P, nullidx) Q = np.delete(Q, nullidx) pqsum = np.delete(pqsum, nullidx) # compute the JSDM # P or Q may still contain zeros, so don't take straight logarithm # instead, use x*ln(y) = ln(y**x) and convention 0**0 = 1 s1 = 2 * P / pqsum s2 = 2 * Q / pqsum s1 = s1 ** P s2 = s2 ** Q s1 = np.log(s1) / np.log(base) s2 = np.log(s2) / np.log(base) dsq = (s1 + s2).sum() return np.sqrt(dsq), message ## def AOpopdiffmats(df1, df2): # Compare two pandas DataFrames with Mulliken population data, # as returned by routine 'read_AOpop_in_MOs()' in 'g09_subs.py' # Return two numpy 2D-arrays: # (1) JSdm() differences in AO populations (Jensen-Shannon divergence metric) # (2) (E2-E1) orbital energy differences # Also return two lists of MO numbers: # (3) MO labels in df1 (rows of matrices) # (4) MO labels in df2 (columns of matrics) MOlist1 = sorted(set(df1.MO)) MOlist2 = sorted(set(df2.MO)) nmo1 = len(MOlist1) nmo2 = len(MOlist2) dPmat = np.zeros((nmo1, nmo2)) dEmat = np.zeros((nmo1, nmo2)) for imo in MOlist1: # looping over MOs in first set idx = MOlist1.index(imo) # row number in returned matrices orb1 = df1[df1.MO == imo] E1 = orb1.iloc[0]['Energy'] # convert AO populations into a dict mulpop1 = {} # create a label for each AO that looks like '#5-p' for a p-orbital on atom #5 for ao in orb1.index: s = '#{:d}-{:s}'.format(orb1.loc[ao]['Atom#'], orb1.loc[ao]['L']) c = orb1.loc[ao]['Contrib'] if c < 0: # treat negative AO pop as a new variable (by changing its label) s += '-neg' c = abs(c) mulpop1[s] = c # loop over orbitals in second set for jmo in MOlist2: jdx = MOlist2.index(jmo) # column number in returned matrices orb2 = df2[df2.MO == jmo] E2 = orb2.iloc[0]['Energy'] dEmat[idx, jdx] = E2 - E1 # signed difference # construct dict of AO populations as above mulpop2 = {} for ao in orb2.index: s = '#{:d}-{:s}'.format(orb2.loc[ao]['Atom#'], orb2.loc[ao]['L']) c = orb2.loc[ao]['Contrib'] if c < 0: # negative AO pop s += '-neg' c = abs(c) mulpop2[s] = c # get JSdm distance between the two AO population vectors dist = JSdm(mulpop1, mulpop2) dPmat[idx, jdx] = dist[0] return dPmat, dEmat, MOlist1, MOlist2 ## def orbitalPopMatch(df1, df2, Eweight=0.1, diagBias=0.001): # Find which MOs correspond between two calculations. # Note: Cannot distinguish degenerate orbitals! # Compare two pandas DataFrames with Mulliken population data, # as returned by routine 'read_AOpop_in_MOs()' in 'g09_subs.py' # Argument 'Eweight' is the weight to give to energy differences. # Argument 'diagBias' is the preference to give to the existing # orbital numbering. # Return a dict of MO number correspondences. The dict only includes # orbitals that appear to be mismatched. # Keys are MO labels in df2, values are MO labels in df1. # Do not mix alpha with beta orbitals. # momap = {} if (df1['Spin'] == 'alpha').any() & (df1['Spin'] == 'beta').any(): # this is a UHF case; keep alpha and beta orbitals separate for sp in ['alpha', 'beta']: set1 = df1[df1['Spin'] == sp] set2 = df2[df2['Spin'] == sp] momap.update(orbitalPopMatch(set1, set2, Eweight=Eweight, diagBias=diagBias)) return momap # simple, single-spin case dPmat, dEmat, MOs1, MOs2 = AOpopdiffmats(df1, df2) # count the MOs in each orbital set norb1 = len(MOs1) norb2 = len(MOs2) nmo = min(norb1, norb2) # use unsigned energy differences diffmat = dPmat + Eweight * np.fabs(dEmat) # install the bias toward perserving the existing numbering # Note: Gaussian prints the populations only to 0.01 precision for i in range(norb1): imo = MOs1[i] try: j = MOs2.index(imo) diffmat[i, j] -= diagBias except: # probably an orbital missing from set 2 pass # find closest distance for each row rowmin = diffmat.min(axis=1) # sort by increasing distance (i.e., best matches first) rowlist = rowmin.argsort() # truncate to smallest dimension rowlist = rowlist[0 : nmo] claimed = [] # list of orbitals in set2 as they are paired pairing = {} # mapping between orbital indices (not MO numbers/labels) for iorb in rowlist: # loop over matrix rows, starting with those with best available matches for jorb in diffmat[iorb, :].argsort(): # loop over columns, starting with best match if jorb in claimed: # this orbital already paired continue # this is a pairing claimed.append(jorb) pairing[iorb] = jorb break # done with this first-set MO # convert into a mapping of MO numbers for i in pairing.keys(): imo = MOs1[i] # MO number from first set j = pairing[i] jmo = MOs2[j] # MO number from second set if imo != jmo: # report only non-identity mappings momap[jmo] = imo # key is the MO number in the 2nd set return momap ## def relabelOrbitals(df, momap): # re-label MOs based upon a mapping provided by 'orbitalPopMatch()' # Return value: the DataFrame with orbitals re-labeled # # loop once through the rows, changing MO labels for idx in df.index: imo = df.loc[idx, 'MO'] if imo in momap.keys(): # change this MO label df.loc[idx, 'MO'] = momap[imo] return df ## def readXmol(fh, units='angstrom', handle=False): # Read an XYZ file (handle) and return (Geometry object, #atoms, comment) # if 'handle' is True, expect a file handle instead of a file name # Return a three-tuple if not handle: fh = open(fh, 'r') try: natom = int( fh.readline() ) comment = fh.readline().rstrip() df = pd.read_csv(fh, names=['El', 'X', 'Y', 'Z'], delim_whitespace=True) # check the number of atoms if natom != df.shape[0]: print('Expected {:d} atoms but found {:d}!'.format(natom, df.shape[0])) return None except: print('Unable to read XMol file') return None if not handle: fh.close() return Geometry(df, intype='DataFrame', units=units), natom, comment ## def r0_ref( elem1, elem2 ): # return single-bonded distances between elements (Angstrom) # from b3lyp/6-31g* calculations on molecules specified (3/2/10) # added covalent radii 3/21/2012 if ( elem1 > elem2 ): # put the elements in ascending lexical order t = elem1 elem1 = elem2 elem2 = t if elem1 == 'C': if elem2 == 'C': # C-C bond from C2H6 return 1.5306 if elem2 == 'H': # C-H bond from CH4 return 1.0936 if elem2 == 'N': # C-N bond from CH3NH2 return 1.4658 if elem2 == 'O': # C-O bond from CH3OH return 1.4192 if elem1 == 'H': if elem2 == 'H': # H-H bond from H2 return 0.743 if elem2 == 'N': # N-H bond from CH3NH2 return 1.0189 if elem2 == 'O': # O-H bond from CH3OH return 0.9691 if elem1 == 'N': if elem2 == 'N': # N-N bond from N2H4 return 1.4374 if elem2 == 'O': # N-O bond from NH2OH return 1.4481 if elem1 == 'O': if elem2 == 'O': # O-O bond from HOOH return 1.456 # unknown case; estimate from rough covalent radii z1 = elz( elem1 ) z2 = elz( elem2 ) r1 = atomic_radius( z1 ) r2 = atomic_radius( z2 ) rsum = r1 + r2 return rsum ## def atomic_radius( iz ): # return covalent atomic radius given Z (3/21/2012) (Angstrom) # values are from Wikipedia (attributed to Slater 1964); # I filled blanks with a guess (e.g., Z-1 value) r = [ 0, 0.25, 0.25, 1.45, 1.05, 0.85, 0.70, 0.65, 0.60, 0.50, 0.50, 1.80, 1.50, 1.25, 1.10, 1.00, 1.00, 1.00, 1.00, 2.20, 1.80, 1.60, 1.40, 1.35, 1.40, 1.40, 1.40, 1.35, 1.35, 1.35, 1.35, 1.30, 1.25, 1.15, 1.15, 1.15, 1.15, 2.35, 2.00, 1.80, 1.55, 1.45, 1.45, 1.35, 1.30, 1.35, 1.40, 1.60, 1.55, 1.55, 1.45, 1.45, 1.40, 1.40, 1.40, 2.60, 2.15, 1.95, 1.85, 1.85, 1.85, 1.85, 1.85, 1.85, 1.80, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.55, 1.45, 1.35, 1.35, 1.30, 1.35, 1.35, 1.35, 1.50, 1.90, 1.80, 1.60, 1.90, 1.90, 1.90, 2.80, 2.15, 1.95, 1.80, 1.80, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75 ] if type(iz) == int: return r[ iz ] else: # convert symbol to nuclear charge z = elz( iz ) return r[z] ## def vdW_radius(iz): # return van der Waals radius given Z (11/20/20) (Angstrom) # values are from Wikipedia; only up to Ra (Z=88) # missing values filled by linear interpolation # for Z>88 just use 1.86 (value given for uranium) r = [0, 1.10, 1.40, 1.82, 1.53, 1.92, 1.70, 1.55, 1.52, 1.47, 1.54, 2.27, 1.73, 1.84, 2.10, 1.80, 1.80, 1.75, 1.88, 2.75, 2.31, 0, 0, 0, 0, 0, 0, 0, 1.63, 1.40, 1.39, 1.87, 2.11, 1.85, 1.90, 1.85, 2.02, 3.03, 2.49, 0, 0, 0, 0, 0, 0, 0, 1.63, 1.72, 1.58, 1.93, 2.17, 2.06, 2.06, 1.98, 2.16, 3.43, 2.68] + [0] * 21 + [1.75, 1.66, 1.55, 1.96, 2.02, 2.07, 1.97, 2.02, 2.20, 3.48, 2.83] if type(iz) != int: # convert symbol to Z iz = elz(iz) if iz > 88: vdw = 1.86 # a guess else: vdw = r[iz] if vdw == 0: # interpolate prev = iz-1 post = iz+1 while r[prev] == 0: prev -= 1 while r[post] == 0: post += 1 dz = post - prev delta = (r[post] - r[prev]) / dz vdw = r[prev] + (iz - prev) * delta # round to nearest 0.1 pm return round(vdw, 3) def from_ltriangle(vec): # given a 1D numpy array that is a flattened lower-triangle, # return the corresponding symmetric, square numpy array n = len(vec) dim = int(round(0.5 * (-1 + np.sqrt(1+8*n)))) # dimension of the square matrix idx = np.tril_indices(dim) mat = np.zeros((dim, dim)) mat[idx] = vec # symmetrize mat = mat + np.triu(mat.T, 1) return mat ## def inertia_tensor(masses, xyz): # moment-of-inertia tensor of point-masses # m is a list of masses, xyz is a numpy array of Cartesian triples inertia = np.zeros((3,3)) n = len(masses) if n != len(xyz): print('Argument inconsistency in inertia_tensor(): {:d} masses but {:d} positions'.format(n, len(xyz))) return None for i in range(n): m = masses[i] (x, y, z) = tuple(xyz[i]) inertia[0][0] += m * (y*y + z*z) inertia[1][1] += m * (x*x + z*z) inertia[2][2] += m * (y*y + x*x) inertia[0][1] -= m * x * y inertia[0][2] -= m * x * z inertia[1][2] -= m * y * z inertia[1][0] = inertia[0][1] inertia[2][0] = inertia[0][2] inertia[2][1] = inertia[1][2] return inertia ## def orthogonalize_rows(M, norm=0): # orthogonalize rows of numpy 2D array M # normalize each row to length 'norm' if norm > 0 for i in range(M.shape[0]-1): # project row 'i' from all later rows v = M[i] / np.linalg.norm(M[i]) for j in range(i+1, M.shape[0]): p = np.dot(v, M[j]) M[j] -= p * v if norm > 0: # normalize each row to specified length nrm = np.linalg.norm(M, axis=1) M = np.divide(M.T, nrm).T return M ## def vib_harmonic(fc, mass, sayvetz=False, xyz=[]): # given numpy arrays of cartesian force constants and atomic masses, # return harmonic frequencies (cm^-1) and mode vectors # This function does not do Sayvetz projection unless requested # the projection requires atomic coordinates (as flattened list) # Following <NAME>'s description mwt = [] # mass-weighting vector for m in mass: mwt.extend( [1/np.sqrt(m)] * 3 ) # same mass for (x,y,z) of an atom wmat = np.outer(mwt, mwt) # mass-weighting matrix # apply the mass-weighting matrix to the force constants wfc = np.multiply(fc, wmat) wfc /= AMU2AU # mass-weighted force constant matrix in atomic units eigval, eigvec = np.linalg.eigh(wfc) esign = np.sign(eigval) # save the sign of each eigenvalue eigval = np.fabs(eigval) # all values are now positive eigval = np.sqrt(eigval) eigval = np.multiply(esign, eigval) # imaginary frequencies are "negative" eigval *= AU2CM if not sayvetz: # no projections; return eigenvectors as rows return eigval, eigvec.T else: # Use Sayvetz conditions to project out external coordinates print('WARNING: SAYVETZ PROJECTION IS NOT WORKING!') natom = len(mass) dimen = 3 * natom if len(xyz) != dimen: print('Unable to do Sayvetz projects: {:d} masses but {:d} coordinates'.format(natom, len(xyz))) return eigval, eigvec.T # project out the translations and rotations xyz = xyz.reshape(-1, 3) # each row of 'xyz' is now for one atom com = np.zeros(3) # center of mass mtot = 0 # total mass for i in range(natom): mtot += mass[i] com += mass[i] * xyz[i] com /= mtot print('total mass = {:.3f}'.format(mtot)) print('center of mass:', com) # translate COM to the origin for i in range(natom): xyz[i] -= com # get principal axes inert = inertia_tensor(mass, xyz) print('inertial tensor:\n', inert) inert_val, inert_vec = np.linalg.eigh(inert) print('inert_val:', inert_val) print('inert_vec:\n', inert_vec) # translation S vectors (called D1, D2, D3 by Ochterski) for i in range(natom): mat = np.eye(3) * np.sqrt(mass[i]) try: S = np.concatenate((S, mat), axis=1) except: # probably haven't created S yet S = mat.copy() # rotation S vectors (Ochterski's D4, D5, D6) if False: # following Ochterski print('*** Following Ochterski\'s white paper') for n in range(natom): mat = np.zeros((3,3)) for i in [0, 1, 2]: j = (i+1) % 3 k = (j+1) % 3 mat[i] = np.dot(xyz[n], inert_vec[j]) * inert_vec[k] mat[i] -= np.dot(xyz[n], inert_vec[k]) * inert_vec[j] mat[i] /= np.sqrt(mass[n]) try: Sr = np.concatenate((Sr, mat), axis=1) except: # probably haven't created Sr yet Sr = mat.copy() S = np.concatenate((S, Sr), axis=0) else: # following G03 source code: routine TRVect() in utilnz.F print('*** Following G03 source code') for n in range(natom): mat = np.zeros((3,3)) CP = np.dot(inert_vec, xyz[n]) mat[0,0] = CP[1]*inert_vec[2,0] - CP[2]*inert_vec[1,0] mat[0,1] = CP[1]*inert_vec[2,1] - CP[2]*inert_vec[1,1] mat[0,2] = CP[1]*inert_vec[2,2] - CP[2]*inert_vec[1,2] mat[1,0] = CP[2]*inert_vec[0,0] - CP[0]*inert_vec[2,0] mat[1,1] = CP[2]*inert_vec[0,1] - CP[0]*inert_vec[2,1] mat[1,2] = CP[2]*inert_vec[0,2] - CP[0]*inert_vec[2,2] mat[2,0] = CP[0]*inert_vec[1,0] - CP[1]*inert_vec[0,0] mat[2,1] = CP[0]*inert_vec[1,1] - CP[1]*inert_vec[0,1] mat[2,2] = CP[0]*inert_vec[1,2] - CP[1]*inert_vec[0,2] mat *= np.sqrt(mass[n]) try: Sr = np.concatenate((Sr, mat), axis=1) except: # probably haven't created Sr yet Sr = mat.copy() S = np.concatenate((S, Sr), axis=0) print('combined S:\n', S) # remove any zero-vector rows nrm = np.linalg.norm(S, axis=1) print('nrm(S) =', nrm) for i in range(5, -1, -1): # loop over rows of S if nrm[i] < 1.0e-03: # I picked this threshold arbitrarily! S = np.delete(S, (i), axis=0) print('*** deleting row {:d} of S ***'.format(i)) else: S[i] /= nrm[i] # normalize the row # orthogonalize rows and re-normalize (only needed when following Ochterski) S = orthogonalize_rows(S, norm=1) print('normalized S:\n', S) print('S dot S:\n', np.dot(S, S.T)) # Start from a mass-weighted unit matrix and project out the rows of S # also project out previous rows of growing D matrix D = np.eye(dimen, dimen) # initialize D to the identity matrix for n in range(natom): for i in range(3*n, 3*n+3): # apply mass-weighting D[i] *= np.sqrt(mass[n]) print('D before any projection:\n', D) for i in range(S.shape[0]): # project out each row of S from D p = np.dot(S[i], D.T) D -= np.outer(p, S[i]) nrm = np.linalg.norm(D, axis=1) print('D after projecting out S:\n', D) # now orthogonalize the remaining basis vectors D = orthogonalize_rows(D, norm=0) # do not renormalize after orthogonalization print('D after orthogonalization:\n', D) nrm = np.linalg.norm(D, axis=1) print('norm of D rows:\n', nrm) # Delete the zero rows zrow = np.where(nrm < 0.001)[0] # I picked this threshold arbitrarily! zrow = tuple(zrow) # convert to tuple print('zrow =', zrow) if len(zrow) != S.shape[0]: # something is wrong print('*** Error: There are {:d} external coordinates but {:d} have been eliminated ***'.format(S.shape[0], len(zrow))) print('...continuing anyway!...') D = np.delete(D, zrow, axis=0) # re-normalize the rows of D nrm = np.linalg.norm(D, axis=1) print('shape of D =', D.shape) print('norm of D rows:\n', nrm) D = np.divide(D.T, nrm).T print('D after normalization:\n', D) # adjoin S to D D = np.concatenate((D, S), axis=0) print('new shape of D =', D.shape) nrm = np.linalg.norm(D, axis=1) print('norm of D rows:\n', nrm) # change basis for force constants fcint = np.dot(D, np.dot(fc, D.T)) print('internal-coordinate force constants:\n', fcint) print('Frequencies before projection:\n', eigval) igval, igvec = np.linalg.eigh(fcint) esign = np.sign(igval) # save the sign of each eigenvalue igval = np.fabs(igval) # all values are now positive igval = np.sqrt(igval) igval = np.multiply(esign, igval) # imaginary frequencies are "negative" igval *= AU2CM print('Frequencies after projection:\n', igval) print('Ratios:\n', np.divide(igval, eigval)) return eigval, eigvec.T ## def filename_root(filename): # remove any file suffix m = re.match(r'(.+)\.\w+$', filename) if m: return m.group(1) else: # no suffix return filename ## def rotation_mat_angle(v, a, unit='radian'): # return a matrix that will rotation by angle a around axis v # method is from StackExchange.com if unit == 'degree': # convert to radians for trig functions a = np.deg2rad(a) # normalize vector u = v / np.linalg.norm(v) [x, y, z] = u.tolist() s = np.sin(a) s2 = np.sin(a/2) W = np.array([ [0.,-z,y], [z,0.,-x], [-y,x,0.] ]) R = np.identity(3) + s*W + 2*s2*s2*np.dot(W,W) return R ## def rotation_mat_align(A, B, scale=False): # given two numpy vectors (in R3), return the matrix that rotates A into B # method is from StackExchange.com # if scale is True, then also scale the magnitude to match if (len(A) != 3) or (len(B) != 3): print('**** must be vectors in R3! ****') return np.zeros((3,3)) # normalize a = A / np.linalg.norm(A) b = B / np.linalg.norm(B) c = np.dot(a, b) # angle cosine if np.isclose(c, 1.): # no rotation needed R = np.identity(3) elif np.isclose(c, -1.): # antiparallel; rotate by pi about a perpendicular axis p = np.cross(a, 1. - a) R = rotation_mat_angle(p, PI) else: # general case v = np.cross(a, b) [v1, v2, v3] = v.tolist() vx = np.array([ [0.,-v3,v2], [v3,0.,-v1], [-v2,v1,0] ]) R = np.identity(3) + vx + np.dot(vx,vx)/(1+c) if scale: s = np.linalg.norm(B) / np.linalg.norm(A) # scaling factor R *= s return R ## def normalize(v, length=1.0): # given a vector, return it scaled to desired length try: n = np.linalg.norm(v) if n == 0: return np.zeros_like(v) else: return np.array(v) * length / n except: print('*** failure computing length in normalize()') print('typeof(v) = ', type(v)) print('v = ', v) sys.exit(1) ## def to_radian(angle, reverse=False): # given an angle in degrees, convert it to radians (or the reverse) if reverse: # convert from radians to degrees return angle * 180. / PI else: # convert from degrees to radians return angle * PI / 180. ## def angular_momentum(m, r, v): # given atomic masses, positions, and velocities, # return the total angular momentum rxv = np.cross(r,v) L = (rxv.T * m).T.sum(axis=0) return L ## def angle_canon(a, unit='radian'): # given an angle (or numpy array of them), return the equivalent # value in the interval (-pi, pi] if unit == 'degree': c = (-a + 180.) % 360. - 180. else: c = (-a + PI) % (2 * PI) - PI return -c ## def in_bounds(x, target, tolerance): # is 'x' in the range 'target' +- 'tolerance' ? tolerance = np.abs(tolerance) return ( (x < target+tolerance) and (x > target-tolerance) ) ## def smoothing(x, y, x2, style='gau', width=-1, normalize=True): # return smoothed y values for (x,y) data series (numpy arrays) # ouput is over the smoothed range defined by x2 (a numpy array) # no sorting necessary # styles: 'exp' for exponential; 'gau' for gaussian # width parameter (sigma) defaults to 1% of x-range if len(x) != len(y): # bad input data return None xlo = min(x) xhi = max(x) if (width <= 0): width = (xhi - xlo) * 0.01 y2 = np.zeros_like(x2) for i in range(len(y)): dx = x2 - x[i] if style == 'gau': dx = (dx/width)**2 t = np.exp(-dx) if style == 'exp': dx = abs(dx/width) t = np.exp(-dx) if normalize: t = t / t.sum() y2 = y2 + t * y[i] return y2 ## def joinGeometries(Glist): # Given a list of Geometry objects, return a single Geometry # that includes all their atoms # if charges are specified, sum them atomlist = [] q = 0 for G in Glist: atomlist += G.atom try: q += G.charge except: q = None Gtot = Geometry(atomlist, intype='atlist') Gtot.charge = q return Gtot ## def same_connectivity(Struct1, Struct2, tol=1.3): # compare connectivity tables # return True if same, else False conn1 = Struct1.connection_table(tol) conn2 = Struct2.connection_table(tol) return np.array_equal(conn1, conn2) ## def min_RMSD(Geom, refGeom, use_masses=False, inplace=False): # align Geom to refGeom and return the final RMSD G = RMSD_align(Geom, refGeom, use_masses=use_masses) if inplace: Geom.copyxyz(G) return RMSD(G, refGeom) ## def RMSD_align(Geom, refGeom, use_masses=False): # translate and rotate Geometry object 'Geom' to minimize RMSD with 'refGeom' # return a new Geometry object G = Geom.copy() # avoid damaging the input geometries refG = refGeom.copy() if not use_masses: # Use unit mass for every atom mvec = np.ones(G.natom()) G.set_masses(mvec) refG.set_masses(mvec) transl = refG.COM() #print('::: initial RMSD = ', RMSD(G, refG), end='') G.center(use_masses=use_masses) refG.center(use_masses=use_masses) U = Kabsch(G, refG, use_masses=use_masses) G.rotate(U) #print(' after align = ', RMSD(G, refG)) G.translate(transl) return G ## '''def RMSD(Geom1, Geom2): # return the RMSD between two Geometry objects (no weights) v1 = Geom1.toVector() v2 = Geom2.toVector() if len(v1) != len(v2): print_err('', 'Inconsistent atom counts: {:d} for Geom1 and {:d} for Geom2'.format(Geom1.natom, Geom2.natom())) natom = len(v1) // 3 rmsd = distance(v1, v2) / np.sqrt(natom) return rmsd '''## def RMSD(Geom1, Geom2): # return the RMSD between two Geometry objects (no weights) v1 = Geom1.toVector().reshape((-1, 3)) v2 = Geom2.toVector().reshape((-1, 3)) if v1.shape != v2.shape: print_err('', 'Inconsistent atom counts: {:d} for Geom1 and {:d} for Geom2'.format(Geom1.natom, Geom2.natom())) d = np.array([distance(v1[i], v2[i]) for i in range(v1.shape[0])]) dsq = d**2 rmsd = np.sqrt(dsq.mean()) return rmsd ## def Kabsch(Geom1, Geom2, use_masses=False): # return the rotation matrix that mimizes the unweighted RMSD (Wikipedia: "Kabsch algorithm") # (tranform G1 toward G2) G1 = Geom1.copy() # avoid damaging the input Geometry objects G2 = Geom2.copy() natom = G1.natom() if natom != G2.natom(): print_err('', 'Inconsistent atom counts: {:d} for Geom1 and {:d} for Geom2'.format(natom, G2.natom())) # translate barycenters to origin if not use_masses: # Use unit mass for every atom mvec = np.ones(natom) G1.set_masses(mvec) G2.set_masses(mvec) G1.center(use_masses=use_masses) G2.center(use_masses=use_masses) elem, P = G2.separateXYZ() # the reference elem, Q = G1.separateXYZ() A = np.dot(P.T, Q) V, s, W = np.linalg.svd(A) d = np.sign(np.linalg.det(np.dot(V,W))) D = np.diag([1., 1., d]) U = np.dot(V, np.dot(D,W)) return U ## def average_structure(Struct1, Struct2, weight1=0.5, weight2=0.5): # given two compatible structures, return a similar structure # with coordinates that are the weighted average of the # input structures if (Struct1.coordtype != Struct2.coordtype) or (Struct1.natom() != Struct2.natom()): # structures are not compatible return None v1 = Struct1.toVector() v2 = Struct2.toVector() try: v3 = (weight1 * v1 + weight2 * v2) / (weight1 + weight2) except: # probably weights sum to zero return np.nan Result = Struct1.copy() unitS = Struct1.unitX() Result.fromVector(v3, unitS) return Result ## def FGHcheck(x, y, count, acc=1.0e-6, abort=True): # for Fourier Grid Hamiltonian calculations # return True if arrays are OK, else False npt = len(x) if len(y) != npt: if abort: print_err('', 'x and y have different lengths') else: return False if (count == 'odd'): if (npt % 2 == 0): if abort: print_err('', 'number of points is even but should be odd') else: return False elif (count == 'even'): if (npt % 2 == 1): if abort: print_err('', 'number of points is odd but should be even') else: return False else: print_err('', "number of points must be 'even' or 'odd', not '{:s}' ".format(str(count))) # check for uniform intervals dx = np.ediff1d(x) ddx = np.ediff1d(dx) / x.max() if not np.allclose(ddx,
np.zeros_like(ddx)
numpy.zeros_like
import argparse import colorsys import math import os import random import time import cv2 import matplotlib.pyplot as plt import numpy as np import pyglet import trimesh from PIL import Image, ImageEnhance from tqdm import tqdm from OpenGL.GL import GL_LINEAR_MIPMAP_LINEAR import pyrender from archiver import Archiver, SceneData from pyrender import (DirectionalLight, Mesh, Node, OffscreenRenderer, PerspectiveCamera, PointLight, RenderFlags, Scene, Primitive) texture_directory = os.path.join(os.path.dirname(__file__), "..", "textures") object_directory = os.path.join(os.path.dirname(__file__), "objects") floor_textures = [ "{}/lg_floor_d.tga".format(texture_directory), "{}/lg_style_01_floor_blue_d.tga".format(texture_directory), "{}/lg_style_01_floor_orange_bright_d.tga".format(texture_directory), ] wall_textures = [ "{}/lg_style_01_wall_cerise_d.tga".format(texture_directory), "{}/lg_style_01_wall_green_bright_d.tga".format(texture_directory), "{}/lg_style_01_wall_red_bright_d.tga".format(texture_directory), "{}/lg_style_02_wall_yellow_d.tga".format(texture_directory), "{}/lg_style_03_wall_orange_bright_d.tga".format(texture_directory), ] objects = [ pyrender.objects.Capsule, pyrender.objects.Cylinder, pyrender.objects.Icosahedron, pyrender.objects.Box, pyrender.objects.Sphere, ] def set_random_texture(node, path): texture_image = Image.open(path).convert("RGB") primitive = node.mesh.primitives[0] assert isinstance(primitive, Primitive) primitive.material.baseColorTexture.source = texture_image primitive.material.baseColorTexture.sampler.minFilter = GL_LINEAR_MIPMAP_LINEAR def build_scene(floor_textures, wall_textures, fix_light_position=False): scene = Scene( bg_color=
np.array([153 / 255, 226 / 255, 249 / 255])
numpy.array
import tensorflow as tf import numpy as np import functools as ft import env import reward import tensorflow_probability as tfp import random import agentsEnv as ag import itertools as it import pygame as pg class ApproximatePolicy(): def __init__(self, actionSpace): self.actionSpace = actionSpace self.numActionSpace = len(self.actionSpace) def __call__(self, stateBatch, model): graph = model.graph state_ = graph.get_tensor_by_name('inputs/state_:0') actionDistribution_ = graph.get_tensor_by_name('outputs/actionDistribution_:0') actionDistributionBatch = model.run(actionDistribution_, feed_dict = {state_ : stateBatch}) actionIndexBatch = [np.random.choice(range(self.numActionSpace), p = actionDistribution) for actionDistribution in actionDistributionBatch] actionBatch = np.array([self.actionSpace[actionIndex] for actionIndex in actionIndexBatch]) return actionBatch class SampleTrajectory(): def __init__(self, maxTimeStep, transitionFunction, isTerminal): self.maxTimeStep = maxTimeStep self.transitionFunction = transitionFunction self.isTerminal = isTerminal def __call__(self, actor): oldState , action = None, None oldState = self.transitionFunction(oldState, action) trajectory = [] for time in range(self.maxTimeStep): oldStateBatch = oldState.reshape(1, -1) actionBatch = actor(oldStateBatch) action = actionBatch[0] # actionBatch shape: batch * action Dimension; only keep action Dimention in shape newState = self.transitionFunction(oldState, action) trajectory.append((oldState, action)) terminal = self.isTerminal(oldState) if terminal: break oldState = newState return trajectory class AccumulateReward(): def __init__(self, decay, rewardFunction): self.decay = decay self.rewardFunction = rewardFunction def __call__(self, trajectory): rewards = [self.rewardFunction(state, action) for state, action in trajectory] accumulateReward = lambda accumulatedReward, reward: self.decay * accumulatedReward + reward accumulatedRewards = np.array([ft.reduce(accumulateReward, reversed(rewards[TimeT: ])) for TimeT in range(len(rewards))]) return accumulatedRewards class TrainCriticMonteCarloTensorflow(): def __init__(self, accumulateReward): self.accumulateReward = accumulateReward def __call__(self, episode, criticModel): mergedEpisode = np.concatenate(episode) numBatch = len(mergedEpisode) stateEpisode, actionEpisode = list(zip(*mergedEpisode)) stateBatch = np.array(stateEpisode).reshape(numBatch, -1) mergedAccumulatedRewardsEpisode = np.concatenate([self.accumulateReward(trajectory) for trajectory in episode]) valueTargetBatch = np.array(mergedAccumulatedRewardsEpisode).reshape(numBatch, -1) graph = criticModel.graph state_ = graph.get_tensor_by_name('inputs/state_:0') valueTarget_ = graph.get_tensor_by_name('inputs/valueTarget_:0') loss_ = graph.get_tensor_by_name('outputs/loss_:0') trainOpt_ = graph.get_operation_by_name('train/adamOpt_') loss, trainOpt = criticModel.run([loss_, trainOpt_], feed_dict = {state_ : stateBatch, valueTarget_ : valueTargetBatch }) return loss, criticModel def approximateValue(stateBatch, criticModel): graph = criticModel.graph state_ = graph.get_tensor_by_name('inputs/state_:0') value_ = graph.get_tensor_by_name('outputs/value_/BiasAdd:0') valueBatch = criticModel.run(value_, feed_dict = {state_ : stateBatch}) return valueBatch class EstimateAdvantageMonteCarlo(): def __init__(self, accumulateReward): self.accumulateReward = accumulateReward def __call__(self, episode, critic): mergedEpisode = np.concatenate(episode) numBatch = len(mergedEpisode) stateEpisode, actionEpisode = list(zip(*mergedEpisode)) stateBatch, actionBatch = np.array(stateEpisode).reshape(numBatch, -1), np.array(actionEpisode).reshape(numBatch, -1) mergedAccumulatedRewardsEpisode = np.concatenate([self.accumulateReward(trajectory) for trajectory in episode]) accumulatedRewardsBatch = np.array(mergedAccumulatedRewardsEpisode).reshape(numBatch, -1) advantageBatch = accumulatedRewardsBatch - critic(stateBatch) advantages = np.concatenate(advantageBatch) return advantages class TrainActorMonteCarloTensorflow(): def __init__(self, actionSpace): self.actionSpace = actionSpace self.numActionSpace = len(actionSpace) def __call__(self, episode, advantages, actorModel): mergedEpisode = np.concatenate(episode) numBatch = len(mergedEpisode) stateEpisode, actionEpisode = list(zip(*mergedEpisode)) actionIndexEpisode = np.array([list(self.actionSpace).index(list(action)) for action in actionEpisode]) actionLabelEpisode = np.zeros([numBatch, self.numActionSpace]) actionLabelEpisode[np.arange(numBatch), actionIndexEpisode] = 1 stateBatch, actionLabelBatch = np.array(stateEpisode).reshape(numBatch, -1), np.array(actionLabelEpisode).reshape(numBatch, -1) graph = actorModel.graph state_ = graph.get_tensor_by_name('inputs/state_:0') actionLabel_ = graph.get_tensor_by_name('inputs/actionLabel_:0') advantages_ = graph.get_tensor_by_name('inputs/advantages_:0') loss_ = graph.get_tensor_by_name('outputs/loss_:0') trainOpt_ = graph.get_operation_by_name('train/adamOpt_') loss, trainOpt = actorModel.run([loss_, trainOpt_], feed_dict = {state_ : stateBatch, actionLabel_ : actionLabelBatch, advantages_ : advantages }) return loss, actorModel class OfflineAdvantageActorCritic(): def __init__(self, numTrajectory, maxEpisode, render): self.numTrajectory = numTrajectory self.maxEpisode = maxEpisode self.render = render def __call__(self, actorModel, criticModel, approximatePolicy, sampleTrajectory, trainCritic, approximateValue, estimateAdvantage, trainActor): for episodeIndex in range(self.maxEpisode): actor = lambda state: approximatePolicy(state, actorModel) episode = [sampleTrajectory(actor) for trajectoryIndex in range(self.numTrajectory)] valueLoss, criticModels = trainCritic(episode, criticModel) critic = lambda state: approximateValue(state, criticModel) advantages = estimateAdvantage(episode, critic) policyLoss, actorModel = trainActor(episode, advantages, actorModel) print(np.mean([len(trajectory) for trajectory in episode])) if episodeIndex %1 == -1: for timeStep in episode[-1]: self.render(timeStep[0]) return actorModel, criticModel def main(): #tf.set_random_seed(123) #np.random.seed(123) actionSpace = [[10,0],[7,7],[0,10],[-7,7],[-10,0],[-7,-7],[0,-10],[7,-7]] numActionSpace = len(actionSpace) numStateSpace = 4 numActorFC1Unit = 50 numActorFC2Unit = 50 numActorFC3Unit = 50 numActorFC4Unit = 50 numCriticFC1Unit = 100 numCriticFC2Unit = 100 numCriticFC3Unit = 100 numCriticFC4Unit = 100 learningRateActor = 1e-4 learningRateCritic = 3e-4 actorGraph = tf.Graph() with actorGraph.as_default(): with tf.name_scope("inputs"): state_ = tf.placeholder(tf.float32, [None, numStateSpace], name="state_") actionLabel_ = tf.placeholder(tf.int32, [None, numActionSpace], name="actionLabel_") advantages_ = tf.placeholder(tf.float32, [None, ], name="advantages_") with tf.name_scope("hidden"): initWeight = tf.random_uniform_initializer(-0.03, 0.03) initBias = tf.constant_initializer(0.01) fullyConnected1_ = tf.layers.dense(inputs = state_, units = numActorFC1Unit, activation = tf.nn.relu, kernel_initializer = initWeight, bias_initializer = initBias ) fullyConnected2_ = tf.layers.dense(inputs = fullyConnected1_, units = numActorFC2Unit, activation = tf.nn.relu, kernel_initializer = initWeight, bias_initializer = initBias ) fullyConnected3_ = tf.layers.dense(inputs = fullyConnected2_, units = numActorFC2Unit, activation = tf.nn.relu, kernel_initializer = initWeight, bias_initializer = initBias ) allActionActivation_ = tf.layers.dense(inputs = fullyConnected3_, units = numActionSpace, activation = None, kernel_initializer = initWeight, bias_initializer = initBias ) with tf.name_scope("outputs"): actionDistribution_ = tf.nn.softmax(allActionActivation_, name = 'actionDistribution_') actionEntropy_ = tf.multiply(tfp.distributions.Categorical(probs = actionDistribution_).entropy(), 1, name = 'actionEntropy_') negLogProb_ = tf.nn.softmax_cross_entropy_with_logits_v2(logits = allActionActivation_, labels = actionLabel_, name = 'negLogProb_') loss_ = tf.reduce_mean(tf.multiply(negLogProb_, advantages_), name = 'loss_') actorLossSummary = tf.summary.scalar("ActorLoss", loss_) with tf.name_scope("train"): trainOpt_ = tf.train.AdamOptimizer(learningRateActor, name = 'adamOpt_').minimize(loss_) actorInit = tf.global_variables_initializer() actorModel = tf.Session(graph = actorGraph) actorModel.run(actorInit) criticGraph = tf.Graph() with criticGraph.as_default(): with tf.name_scope("inputs"): state_ = tf.placeholder(tf.float32, [None, numStateSpace], name="state_") valueTarget_ = tf.placeholder(tf.float32, [None, 1], name="valueTarget_") with tf.name_scope("hidden"): initWeight = tf.random_uniform_initializer(-0.03, 0.03) initBias = tf.constant_initializer(0.001) fullyConnected1_ = tf.layers.dense(inputs = state_, units = numActorFC1Unit, activation = tf.nn.relu, kernel_initializer = initWeight, bias_initializer = initBias ) fullyConnected2_ = tf.layers.dense(inputs = fullyConnected1_, units = numActorFC2Unit, activation = tf.nn.relu, kernel_initializer = initWeight, bias_initializer = initBias ) fullyConnected3_ = tf.layers.dense(inputs = fullyConnected2_, units = numActorFC3Unit, activation = tf.nn.relu, kernel_initializer = initWeight, bias_initializer = initBias ) fullyConnected4_ = tf.layers.dense(inputs = fullyConnected3_, units = numActorFC4Unit, activation = tf.nn.relu, kernel_initializer = initWeight, bias_initializer = initBias ) with tf.name_scope("outputs"): value_ = tf.layers.dense(inputs = fullyConnected4_, units = 1, activation = None, name = 'value_', kernel_initializer = initWeight, bias_initializer = initBias ) diff_ = tf.subtract(valueTarget_, value_, name = 'diff_') loss_ = tf.reduce_mean(tf.square(diff_), name = 'loss_') criticLossSummary = tf.summary.scalar("CriticLoss", loss_) with tf.name_scope("train"): trainOpt_ = tf.train.AdamOptimizer(learningRateCritic, name = 'adamOpt_').minimize(loss_) criticInit = tf.global_variables_initializer() criticModel = tf.Session(graph = criticGraph) criticModel.run(criticInit) xBoundary = [0, 360] yBoundary = [0, 360] checkBoundaryAndAdjust = ag.CheckBoundaryAndAdjust(xBoundary, yBoundary) initSheepPosition = np.array([180, 180]) initWolfPosition = np.array([180, 180]) initSheepVelocity = np.array([0, 0]) initWolfVelocity = np.array([0, 0]) initSheepPositionNoise =
np.array([120, 120])
numpy.array
# SPDX-License-Identifier: Apache-2.0 """Unit Tests for optimizers such as TransposeOptimizer.""" import unittest import numpy as np from onnx import helper, numpy_helper, TensorProto, OperatorSetIdProto from parameterized import parameterized from backend_test_base import Tf2OnnxBackendTestBase from common import unittest_main, group_nodes_by_type, check_opset_min_version, check_opset_max_version, get_test_config from tf2onnx import utils, constants from tf2onnx.graph import GraphUtil # pylint: disable=missing-docstring,invalid-name,unused-argument,using-constant-test class OptimizerTests(Tf2OnnxBackendTestBase): """Run original model proto and modified model proto with onnxruntime, compare the results.""" def run_and_compare(self, output_names_with_port, onnx_feed_dict, origin_proto, op_type, remaining_op_num, debug=False, rtol=1e-07): utils.make_sure(op_type is not None, "op_type should be specified") utils.make_sure(remaining_op_num is not None, "remaining_op_num should be specified") utils.make_sure(self.config.is_onnxruntime_backend, "only onnxruntime is supported to test transpose optimizer") origin_model_path = self.save_onnx_model(origin_proto, onnx_feed_dict, postfix="_origin") expected = self.run_onnxruntime(origin_model_path, onnx_feed_dict, output_names_with_port) new_proto, new_graph = GraphUtil.optimize_model_proto(origin_proto, catch_errors=False, return_graph=True) self.assertTrue(new_proto, msg="model proto after optimizer should not be None") new_model_path = self.save_onnx_model(new_proto, onnx_feed_dict, postfix="_opt") current = GraphUtil.get_node_count_from_onnx_graph(new_proto.graph) actual = self.run_onnxruntime(new_model_path, onnx_feed_dict, output_names_with_port) for expected_val, actual_val in zip(expected, actual): self.assertAllClose(expected_val, actual_val, rtol=rtol, atol=1e-5) self.assertEqual(expected_val.dtype, actual_val.dtype) self.assertEqual(expected_val.shape, actual_val.shape) self.assertTrue(current[op_type] == remaining_op_num, msg="Expect " + str(remaining_op_num) + " " + op_type + " ops left, but actually " + str( current[op_type]) + " left") self.assert_shapes_correct(new_graph, allow_missing=False, run_checker=True) return new_proto @staticmethod def _make_onnx_const(np_val, output_name): node = helper.make_node( 'Constant', inputs=[], outputs=[output_name], value=helper.make_tensor( name=output_name, data_type=utils.map_numpy_to_onnx_dtype(np_val.dtype), dims=np_val.shape, vals=np_val.flatten().astype(np_val.dtype).tolist(), ), ) return node def make_model(self, graph, producer_name="onnx-tests"): imp = OperatorSetIdProto() imp.version = self.config.opset model_proto = helper.make_model(graph, producer_name=producer_name, opset_imports=[imp]) try: model_proto.ir_version = constants.OPSET_TO_IR_VERSION.get(self.config.opset, model_proto.ir_version) except: # pylint: disable=bare-except pass return model_proto # Tranpose Optimizer Tests Start def run_transpose_compare(self, output_names_with_port, onnx_feed_dict, origin_proto, remaining_transpose_num=None, debug=False, rtol=1e-07): return self.run_and_compare(output_names_with_port, onnx_feed_dict, origin_proto, op_type="Transpose", remaining_op_num=remaining_transpose_num, debug=debug, rtol=rtol) def check_transpose_perm(self, model_proto, expected_perm): for node in model_proto.graph.node: if node.op_type == "Transpose": perm = list(node.attribute[0].ints) self.assertEqual(perm, expected_perm) @parameterized.expand([ ((2, 3, 4, 5), [0, 3, 1, 2], [0, 2, 3, 1]), ((2, 3, 4, 5, 6), [0, 4, 1, 2, 3], [0, 2, 3, 4, 1]), ]) def test_transpose_with_concat(self, input_shape, perm, inner_perm): input_shape_with_trans = [input_shape[i] for i in perm] for axis in range(len(input_shape)): output_before_trans = list(input_shape) output_before_trans[axis] *= 2 output_shape = [output_before_trans[i] for i in perm] node1 = helper.make_node("Transpose", ["input_data1"], ["Y"], perm=inner_perm, name="trans") node2 = helper.make_node("Concat", ["Y", "input_data2"], ["Z"], axis=axis, name="concat") node3 = helper.make_node("Transpose", ["Z"], ["res"], perm=perm, name="trans2") graph = helper.make_graph( [node1, node2, node3], "test_transpose_with_concat", [helper.make_tensor_value_info("input_data1", TensorProto.FLOAT, input_shape_with_trans), helper.make_tensor_value_info("input_data2", TensorProto.FLOAT, input_shape), ], [helper.make_tensor_value_info("res", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") feed_dict = {"input_data1": np.random.randn(*input_shape_with_trans).astype(np.float32), "input_data2": np.random.randn(*input_shape).astype(np.float32), } self.run_transpose_compare(["res"], feed_dict, model_proto, remaining_transpose_num=1) @parameterized.expand([ ((2, 3, 4), [2, 0, 1], [1, 2, 0]), ((2, 3, 4, 5), [0, 2, 3, 1], [0, 3, 1, 2]), ((2, 3, 4, 5, 6), [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) def test_transpose_with_add1(self, input_shape, perm_input, perm_output): # when transpose follows with a broadcasting op # reshape is needed when switching transpose with this op and op need broadcast its inputs node1 = helper.make_node("Transpose", ["input_data1"], ["Y"], perm=perm_input, name="trans") node2 = helper.make_node("Add", ["Y", "input_data2"], ["Z"], name="add") node3 = helper.make_node("Transpose", ["Z"], ["res"], perm=perm_output, name="trans2") graph = helper.make_graph( [node1, node2, node3], "transpose_with_shape", [helper.make_tensor_value_info("input_data1", TensorProto.FLOAT, input_shape), helper.make_tensor_value_info("input_data2", TensorProto.FLOAT, (input_shape[1],)), ], [helper.make_tensor_value_info("res", TensorProto.FLOAT, input_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") feed_dict = {"input_data1": np.random.randn(*input_shape).astype(np.float32), "input_data2": np.random.randn(input_shape[1]).astype(np.float32), } self.run_transpose_compare(["res"], feed_dict, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((2, 3, 4, 5), (2, 4, 5, 3), [0, 2, 3, 1], [0, 3, 1, 2]), ((2, 3, 4, 5, 6), (2, 4, 5, 6, 3), [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) def test_transpose_with_add2(self, input_shape1, input_shape2, perm_input, perm_output): node1 = helper.make_node("Transpose", ["input_data1"], ["Y"], perm=perm_input, name="trans") node2 = helper.make_node("Add", ["Y", "input_data2"], ["Z"], name="add") node3 = helper.make_node("Transpose", ["Z"], ["res"], perm=perm_output, name="trans2") output_shape = input_shape1 graph = helper.make_graph( [node1, node2, node3], "transpose_with_shape", [helper.make_tensor_value_info("input_data1", TensorProto.FLOAT, input_shape1), helper.make_tensor_value_info("input_data2", TensorProto.FLOAT, input_shape2), ], [helper.make_tensor_value_info("res", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") feed_dict = {"input_data1": np.random.randn(*input_shape1).astype(np.float32), "input_data2": np.random.randn(*input_shape2).astype(np.float32), } self.run_transpose_compare(["res"], feed_dict, model_proto, remaining_transpose_num=1) @parameterized.expand([ ((2, 3, 4), [2, 0, 1], [1, 2, 0]), ((2, 3, 4, 5), [0, 2, 3, 1], [0, 3, 1, 2]), ((2, 3, 4, 5, 6), [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) def test_transpose_relu(self, shape, perm_input, perm_output): node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_1") node2 = helper.make_node("Relu", ["Y"], ["Z"], name="relu") node3 = helper.make_node("Transpose", ["Z"], ["Z1"], perm=perm_output, name="trans_2") graph = helper.make_graph( [node1, node2, node3], "relu-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, shape)], [helper.make_tensor_value_info("Z1", TensorProto.FLOAT, shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["Z1"], {"X": np.random.randn(*shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((2, 3, 4), [2, 0, 1], [1, 2, 0]), ((2, 3, 4, 5), [0, 2, 3, 1], [0, 3, 1, 2]), ((2, 3, 4, 5, 6), [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) def test_transpose_leaky_relu(self, shape, perm_input, perm_output): node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_1") node2 = helper.make_node("LeakyRelu", ["Y"], ["Z"], alpha=0.02, name="relu") node3 = helper.make_node("Transpose", ["Z"], ["Z1"], perm=perm_output, name="trans_2") graph = helper.make_graph( [node1, node2, node3], "LeakyRelu-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, shape)], [helper.make_tensor_value_info("Z1", TensorProto.FLOAT, shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["Z1"], {"X": np.random.randn(*shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((2, 3, 4), [2, 0, 1], [1, 2, 0]), ((2, 3, 4, 5), [0, 2, 3, 1], [0, 3, 1, 2]), ((2, 3, 4, 5, 6), [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) @check_opset_min_version(10, "QuantizeLinear") def test_transpose_quantize(self, shape, perm_input, perm_output): scale = numpy_helper.from_array(np.array(0.75, dtype=np.float32), name='scale') zero_point = numpy_helper.from_array(np.array(3, dtype=np.uint8), name='zero_point') node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_1") node2 = helper.make_node("QuantizeLinear", ["Y", "scale", "zero_point"], ["Z"], name="quantize") node3 = helper.make_node("Transpose", ["Z"], ["Z1"], perm=perm_output, name="trans_2") graph = helper.make_graph( [node1, node2, node3], "quantize-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, shape)], [helper.make_tensor_value_info("Z1", TensorProto.UINT8, shape)], [scale, zero_point] ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["Z1"], {"X": np.random.randn(*shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((2, 3, 4), [0, 2, 1], [0, 2, 1]), ((2, 3, 4, 5), [0, 2, 3, 1], [0, 3, 1, 2]), ((2, 3, 4, 5, 6), [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) @check_opset_min_version(13, "QuantizeLinear with axis") def test_transpose_quantize_with_axis(self, shape, perm_input, perm_output): scale = numpy_helper.from_array(np.array([0.75, 0.1, 2.3, 0.3], dtype=np.float32), name='scale') zero_point = numpy_helper.from_array(np.array([2, 4, 6, 8], dtype=np.uint8), name='zero_point') node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_1") node2 = helper.make_node("QuantizeLinear", ["Y", "scale", "zero_point"], ["Z"], name="quantize", axis=1) node3 = helper.make_node("Transpose", ["Z"], ["Z1"], perm=perm_output, name="trans_2") graph = helper.make_graph( [node1, node2, node3], "quantize-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, shape)], [helper.make_tensor_value_info("Z1", TensorProto.UINT8, shape)], [scale, zero_point] ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["Z1"], {"X": np.random.randn(*shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((2, 3, 4), [2, 0, 1], [1, 2, 0]), ((2, 3, 4, 5), [0, 2, 3, 1], [0, 3, 1, 2]), ((2, 3, 4, 5, 6), [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) @check_opset_min_version(10, "DequantizeLinear") def test_transpose_dequantize(self, shape, perm_input, perm_output): scale = numpy_helper.from_array(np.array(0.75, dtype=np.float32), name='scale') zero_point = numpy_helper.from_array(np.array(3, dtype=np.uint8), name='zero_point') node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_1") node2 = helper.make_node("DequantizeLinear", ["Y", "scale", "zero_point"], ["Z"], name="dequantize") node3 = helper.make_node("Transpose", ["Z"], ["Z1"], perm=perm_output, name="trans_2") graph = helper.make_graph( [node1, node2, node3], "dequantize-test", [helper.make_tensor_value_info("X", TensorProto.UINT8, shape)], [helper.make_tensor_value_info("Z1", TensorProto.FLOAT, shape)], [scale, zero_point] ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["Z1"], {"X": np.random.randint(0, 100, shape, np.uint8)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((2, 3, 4), [0, 2, 1], [0, 2, 1]), ((2, 3, 4, 5), [0, 2, 3, 1], [0, 3, 1, 2]), ((2, 3, 4, 5, 6), [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) @check_opset_min_version(13, "DequantizeLinear with axis") def test_transpose_dequantize_with_axis(self, shape, perm_input, perm_output): scale = numpy_helper.from_array(np.array([0.75, 0.1, 2.3, 0.3], dtype=np.float32), name='scale') zero_point = numpy_helper.from_array(np.array([2, 4, 6, 8], dtype=np.uint8), name='zero_point') node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_1") node2 = helper.make_node("DequantizeLinear", ["Y", "scale", "zero_point"], ["Z"], name="dequantize", axis=1) node3 = helper.make_node("Transpose", ["Z"], ["Z1"], perm=perm_output, name="trans_2") graph = helper.make_graph( [node1, node2, node3], "dequantize-test", [helper.make_tensor_value_info("X", TensorProto.UINT8, shape)], [helper.make_tensor_value_info("Z1", TensorProto.FLOAT, shape)], [scale, zero_point] ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["Z1"], {"X": np.random.randint(0, 100, shape, np.uint8)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ([2, 3, 4], [1, 2, 1], [1], [0, 2, 1], [0, 2, 1]), ([2, 3, 4, 5], [1, 2, 1, 2], [1], [0, 2, 3, 1], [0, 3, 1, 2]), ([2, 3, 4, 5], [1, 2, 1, 2], [1, 2], [0, 2, 3, 1], [0, 3, 1, 2]), ([2, 3, 4, 5], [1, 2, 1, 2], [0, 1, 2, 3], [0, 2, 3, 1], [0, 3, 1, 2]), ([2, 3, 4, 5, 6], [1, 2, 1, 2, 1], [2], [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ([2, 3, 4, 5, 6], [1, 2, 1, 2, 1], [2, 3], [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ([2, 3, 4, 5, 6], [1, 2, 1, 2, 1], [0, 1, 2, 3, 4], [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) @check_opset_max_version(9, "Slice in opset 9 and takes 'axes, 'start' and 'ends' as attributes") def test_transpose_slice(self, input_shape, slice_size, axes, perm_input, perm_output): axes = np.array(axes, dtype=np.int64) starts = np.array([0] * axes.size, dtype=np.int64) ends = [] for i in range(axes.size): ends.append(slice_size[axes[i]]) ends = np.array(ends, dtype=np.int64) output_shape = input_shape.copy() for axis in axes: output_shape[perm_input[axis]] = slice_size[axis] node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_1") node2 = helper.make_node("Slice", ["Y"], ["Z"], starts=starts, ends=ends, axes=axes, name="slice") node3 = helper.make_node("Transpose", ["Z"], ["Z1"], perm=perm_output, name="trans_2") graph = helper.make_graph( [node1, node2, node3], "slice-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)], [helper.make_tensor_value_info("Z1", TensorProto.FLOAT, output_shape)], [ helper.make_tensor("starts", TensorProto.INT64, starts.shape, starts), helper.make_tensor("ends", TensorProto.INT64, ends.shape, ends), helper.make_tensor("axes", TensorProto.INT64, axes.shape, axes) ] ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["Z1"], {"X": np.random.randn(*input_shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ([2, 3, 4], [1, 2, 1], [1], [0, 2, 1], [0, 2, 1]), ([2, 3, 4, 5], [1, 2, 1, 2], [1], [0, 2, 3, 1], [0, 3, 1, 2]), ([2, 3, 4, 5], [1, 2, 1, 2], [1, 2], [0, 2, 3, 1], [0, 3, 1, 2]), ([2, 3, 4, 5], [1, 2, 1, 2], [0, 1, 2, 3], [0, 2, 3, 1], [0, 3, 1, 2]), ([2, 3, 4, 5, 6], [1, 2, 1, 2, 1], [2], [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ([2, 3, 4, 5, 6], [1, 2, 1, 2, 1], [2, 3], [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ([2, 3, 4, 5, 6], [1, 2, 1, 2, 1], [0, 1, 2, 3, 4], [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) @check_opset_min_version(10, "Slice in opset 10 can accept dynamic 'start' and 'ends'") def test_transpose_slice_opset_10(self, input_shape, slice_size, axes, perm_input, perm_output): axes = np.array(axes, dtype=np.int32) starts = np.array([0] * axes.size, dtype=np.int32) ends = [] for i in range(axes.size): ends.append(slice_size[axes[i]]) ends = np.array(ends, dtype=np.int32) output_shape = input_shape.copy() for axis in axes: output_shape[perm_input[axis]] = slice_size[axis] node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_1") node2 = helper.make_node("Slice", ["Y", "starts", "ends", "axes"], ["Z"], name="slice") node3 = helper.make_node("Transpose", ["Z"], ["Z1"], perm=perm_output, name="trans_2") graph = helper.make_graph( [node1, node2, node3], "slice-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)], [helper.make_tensor_value_info("Z1", TensorProto.FLOAT, output_shape)], [ helper.make_tensor("starts", TensorProto.INT32, starts.shape, starts), helper.make_tensor("ends", TensorProto.INT32, ends.shape, ends), helper.make_tensor("axes", TensorProto.INT32, axes.shape, axes) ] ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["Z1"], {"X": np.random.randn(*input_shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((2, 3, 4), (4, 2, 3), (2, 0, 1), (1, 2, 0)), ((2, 3, 4, 5), (2, 4, 5, 3), [0, 2, 3, 1], [0, 3, 1, 2]), ((2, 3, 4, 5, 6), (2, 4, 5, 6, 3), [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) @check_opset_min_version(8, "Max in opset 10 supports broadcasting") def test_transpose_max(self, input_shape1, input_shape2, perm_input, perm_output): const_1_val = [2.0] const_1 = helper.make_tensor("const_1", TensorProto.FLOAT, (1,), const_1_val) const_1_node = helper.make_node("Constant", [], ["const_1"], value=const_1, name="const_1") const_2_val = np.random.randn(*input_shape2).astype(np.float32) const_2 = helper.make_tensor("const_2", TensorProto.FLOAT, input_shape2, const_2_val.flatten()) const_2_node = helper.make_node("Constant", [], ["const_2"], value=const_2, name="const_2") const_3_val = np.random.randn(*input_shape2).astype(np.float32) const_3 = helper.make_tensor("const_3", TensorProto.FLOAT, input_shape2, const_3_val.flatten()) const_3_node = helper.make_node("Constant", [], ["const_3"], value=const_3, name="const_3") node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_1") node2 = helper.make_node("Max", ["Y", "const_3", "const_2", "const_1"], ["Z"], name="max") node3 = helper.make_node("Transpose", ["Z"], ["Z1"], perm=perm_output, name="trans_2") output_shape = input_shape1 graph = helper.make_graph( [const_1_node, const_2_node, const_3_node, node1, node2, node3], "Max-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape1)], [helper.make_tensor_value_info("Z1", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["Z1"], {"X": np.random.randn(*input_shape1).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((2, 3, 4, 5), (2, 4, 5, 3), [0, 2, 3, 1], [0, 3, 1, 2]), ((2, 3, 4, 5, 6), (2, 4, 5, 6, 3), [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) @check_opset_min_version(8, "Max in opset 10 supports broadcasting") def test_transpose_max_input_non_const(self, input_shape1, input_shape2, perm_input, perm_output): const_1_val = [2.0] const_1 = helper.make_tensor("const_1", TensorProto.FLOAT, (1,), const_1_val) const_1_node = helper.make_node("Constant", [], ["const_1"], value=const_1, name="const_1") const_2_val = np.random.randn(*input_shape2).astype(np.float32) const_2 = helper.make_tensor("const_2", TensorProto.FLOAT, input_shape2, const_2_val.flatten()) const_2_node = helper.make_node("Constant", [], ["const_2"], value=const_2, name="const_2") node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_1") node2 = helper.make_node("Max", ["Y", "non_const", "const_2", "const_1"], ["Z"], name="max") node3 = helper.make_node("Transpose", ["Z"], ["Z1"], perm=perm_output, name="trans_2") output_shape = input_shape1 graph = helper.make_graph( [const_1_node, const_2_node, node1, node2, node3], "Max-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape1), helper.make_tensor_value_info("non_const", TensorProto.FLOAT, input_shape2)], [helper.make_tensor_value_info("Z1", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["Z1"], {"X": np.random.randn(*input_shape1).astype(np.float32), "non_const": np.random.randn(*input_shape2).astype(np.float32)}, model_proto, remaining_transpose_num=1) @parameterized.expand([ ((2, 3, 4, 5), (2, 4, 5, 3), [0, 2, 3, 1], [0, 3, 1, 2]), ((2, 3, 4, 5, 6), (2, 4, 5, 6, 3), [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) @check_opset_min_version(8, "Max in opset 10 supports broadcasting") def test_transpose_max_no_cancel(self, input_shape1, input_shape2, perm_input, perm_output): const_1_val = [2.0] const_1 = helper.make_tensor("const_1", TensorProto.FLOAT, (1,), const_1_val) const_1_node = helper.make_node("Constant", [], ["const_1"], value=const_1, name="const_1") const_2_val = np.random.randn(*input_shape2).astype(np.float32) const_2 = helper.make_tensor("const_2", TensorProto.FLOAT, input_shape2, const_2_val.flatten()) const_2_node = helper.make_node("Constant", [], ["const_2"], value=const_2, name="const_2") node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_1") node2 = helper.make_node("Max", ["Y", "non_const", "const_2", "const_1"], ["Z"], name="max") output_shape = [None] * len(input_shape1) graph = helper.make_graph( [const_1_node, const_2_node, node1, node2], "Max-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape1), helper.make_tensor_value_info("non_const", TensorProto.FLOAT, input_shape2)], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["Z"], {"X": np.random.randn(*input_shape1).astype(np.float32), "non_const": np.random.randn(*input_shape2).astype(np.float32)}, model_proto, remaining_transpose_num=2) @parameterized.expand([ ((2, 3, 4, 5), (2, 4, 5, 3), [0, 2, 3, 1]), ((2, 3, 4, 5, 6), (2, 4, 5, 6, 3), [0, 2, 3, 4, 1]), ]) def test_transpose_merge(self, input_shape1, input_shape2, perm): node0 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm, name="trans") node1 = helper.make_node("Transpose", ["X"], ["Y_1"], perm=perm, name="trans_1") node2 = helper.make_node("Mul", ["Y", "Y_1"], ["OUT"], name="mul") output_shape = input_shape2 graph = helper.make_graph( [node0, node1, node2], "transpose-merge-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape1)], [helper.make_tensor_value_info("OUT", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["OUT"], {"X": np.random.randn(*input_shape1).astype(np.float32)}, model_proto, remaining_transpose_num=1) @parameterized.expand([ ((2, 3, 4), [2, 0, 1], [1, 2, 0]), ((2, 3, 4, 5), [0, 2, 3, 1], [0, 3, 1, 2]), ((2, 3, 4, 5, 6), [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) def test_transpose_mul_as_square(self, shape, perm_input, perm_output): node0 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans") node1 = helper.make_node("Mul", ["Y", "Y"], ["Z"], name="mul") node2 = helper.make_node("Transpose", ["Z"], ["OUT"], perm=perm_output, name="trans_1") graph = helper.make_graph( [node0, node1, node2], "transpose-mul-as-sqr-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, shape)], [helper.make_tensor_value_info("OUT", TensorProto.FLOAT, shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["OUT"], {"X": np.random.randn(*shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((2, 3, 4), [2, 0, 1], [1, 2, 0]), ((2, 3, 4, 5), [0, 2, 3, 1], [0, 3, 1, 2]), ((2, 3, 4, 5, 6), [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) def test_transpose_mul_broadcastable_const(self, shape, perm_input, perm_output): const = numpy_helper.from_array(np.random.random((1, shape[1])).astype(np.float32), name='const') node0 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans") node1 = helper.make_node("Mul", ["Y", "const"], ["Z"], name="mul") node2 = helper.make_node("Transpose", ["Z"], ["OUT"], perm=perm_output, name="trans_1") graph = helper.make_graph( [node0, node1, node2], "transpose-mul-const-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, shape)], [helper.make_tensor_value_info("OUT", TensorProto.FLOAT, shape)], [const], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["OUT"], {"X": np.random.randn(*shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((2, 3, 4), [2, 0, 1]), ((2, 3, 4, 5), [0, 2, 3, 1]), ((2, 3, 4, 5, 6), [0, 2, 3, 4, 1]), ]) def test_transpose_with_shape(self, shape, perm): node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm, name="trans") node2 = helper.make_node("Shape", ["Y"], ["Z"], name="shape") graph = helper.make_graph( [node1, node2], "transpose_with_shape", [helper.make_tensor_value_info("X", TensorProto.FLOAT, shape)], [helper.make_tensor_value_info("Z", TensorProto.INT64, [len(shape)])], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["Z"], {"X": np.random.randn(*shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((2, 3, 4), (4, 2, 3), [2, 0, 1]), ((2, 3, 4, 5), (2, 4, 5, 3), [0, 2, 3, 1]), ((2, 3, 4, 5, 6), (2, 4, 5, 6, 3), [0, 2, 3, 4, 1]), ]) def test_transpose_with_identity(self, input_shape, output_shape, perm): node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm, name="trans") node2 = helper.make_node("Identity", ["Y"], ["Z"], name="identity") graph = helper.make_graph( [node1, node2], "transpose_with_identity", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["Z"], {"X": np.random.randn(*input_shape).astype(np.float32)}, model_proto, remaining_transpose_num=1) @parameterized.expand([ ((2, 3, 4), [2, 0, 1], [1, 2, 0]), ((2, 3, 4, 5), [0, 2, 3, 1], [0, 3, 1, 2]), ((2, 3, 4, 5, 6), [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) def test_transpose_sqrt(self, shape, perm_input, perm_output): node0 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans1") node1 = helper.make_node("Sqrt", ["Y"], ["Z"], name="sqrt") node2 = helper.make_node("Transpose", ["Z"], ["OUT"], perm=perm_output, name="trans2") graph = helper.make_graph( [node0, node1, node2], "transpose-sqrt-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, shape)], [helper.make_tensor_value_info("OUT", TensorProto.FLOAT, shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["OUT"], {"X": np.random.randn(*shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((1, 3, 4), [4, 3], [0, 2, 1], [1, 0]), ((1, 3, 4, 5), (4, 5, 3), [0, 2, 3, 1], [1, 2, 0]), ((1, 3, 4, 5, 6), (4, 5, 6, 3), [0, 2, 3, 4, 1], [1, 2, 3, 0]), ]) @check_opset_max_version(12, "Squeeze/Unsqueeze changed in opset 13") def test_transpose_with_squeeze1(self, input_shape, output_shape, perm, expected_perm): # squeeze the first dim node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm, name="trans") node2 = helper.make_node("Squeeze", ["Y"], ["Z"], name="squeeze", axes=[0]) graph = helper.make_graph( [node1, node2], "transpose_with_squeeze", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") model_after_opt = self.run_transpose_compare(["Z"], {"X": np.random.randn(*input_shape).astype(np.float32)}, model_proto, remaining_transpose_num=1) self.check_transpose_perm(model_after_opt, expected_perm) @parameterized.expand([ ((1, 3, 4), (1, 4, 1, 3, 1, 1), [2, 0, 1], [0, 4, 5], [2, 3, 0, 1, 4, 5]), ((1, 3, 4, 5), (1, 1, 4, 5, 1, 3, 1), [0, 2, 3, 1], [0, 4, 6], [0, 1, 4, 5, 2, 3, 6]), ((1, 3, 4, 5, 6), (1, 1, 4, 5, 1, 6, 1, 3), [0, 2, 3, 4, 1], [0, 4, 6], [0, 1, 4, 5, 6, 7, 2, 3]), ]) def test_transpose_with_unsqueeze(self, input_shape, output_shape, perm, axes_val, expected_perm): # unsqueeze the first dim node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm, name="trans") if self.config.opset <= 12: node2 = helper.make_node("Unsqueeze", ["Y"], ["Z"], name="unsqueeze", axes=axes_val) nodes = [node1, node2] else: axes = self._make_onnx_const(np.array(axes_val, dtype=np.int64), "axes") node2 = helper.make_node("Unsqueeze", ["Y", "axes"], ["Z"], name="unsqueeze") nodes = [axes, node1, node2] graph = helper.make_graph( nodes, "transpose_with_unsqueeze", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") model_after_opt = self.run_transpose_compare(["Z"], {"X": np.random.randn(*input_shape).astype(np.float32)}, model_proto, remaining_transpose_num=1) self.check_transpose_perm(model_after_opt, expected_perm) @parameterized.expand([ ((1, 3, 4), [4, 3], [0, 2, 1], [1, 0]), ((1, 3, 4, 5), (4, 5, 3), [0, 2, 3, 1], [1, 2, 0]), ((1, 3, 4, 5, 6), (4, 5, 6, 3), [0, 2, 3, 4, 1], [1, 2, 3, 0]), ]) @check_opset_min_version(13, "Squeeze/Unsqueeze changed in opset 13") def test_transpose_with_squeeze1_13(self, input_shape, output_shape, perm, expected_perm): # squeeze the first dim node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm, name="trans") axes = self._make_onnx_const(np.array([0], dtype=np.int64), "axes") node2 = helper.make_node("Squeeze", ["Y", "axes"], ["Z"], name="squeeze") graph = helper.make_graph( [node1, node2, axes], "transpose_with_squeeze", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") model_after_opt = self.run_transpose_compare(["Z"], {"X": np.random.randn(*input_shape).astype(np.float32)}, model_proto, remaining_transpose_num=1) self.check_transpose_perm(model_after_opt, expected_perm) @parameterized.expand([ ((3, 4, 1, 5), (3, 5, 4), [0, 2, 3, 1], [0, 2, 1]), ((3, 4, 1, 5, 6), (3, 5, 6, 4), [0, 2, 3, 4, 1], [0, 2, 3, 1]), ]) @check_opset_max_version(12, "Squeeze/Unsqueeze changed in opset 13") def test_transpose_with_squeeze2(self, input_shape, output_shape, perm, expected_perm): # squeeze the second dim node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm, name="trans") node2 = helper.make_node("Squeeze", ["Y"], ["Z"], name="squeeze", axes=[1]) graph = helper.make_graph( [node1, node2], "transpose_with_squeeze", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") model_after_opt = self.run_transpose_compare(["Z"], {"X": np.random.randn(*input_shape).astype(np.float32)}, model_proto, remaining_transpose_num=1) self.check_transpose_perm(model_after_opt, expected_perm) @parameterized.expand([ ((3, 4, 1, 5), (3, 5, 4), [0, 2, 3, 1], [0, 2, 1]), ((3, 4, 1, 5, 6), (3, 5, 6, 4), [0, 2, 3, 4, 1], [0, 2, 3, 1]), ]) @check_opset_min_version(13, "Squeeze/Unsqueeze changed in opset 13") def test_transpose_with_squeeze2_13(self, input_shape, output_shape, perm, expected_perm): # squeeze the second dim node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm, name="trans") axes = self._make_onnx_const(np.array([1], dtype=np.int64), "axes") node2 = helper.make_node("Squeeze", ["Y", "axes"], ["Z"], name="squeeze") graph = helper.make_graph( [node1, node2, axes], "transpose_with_squeeze", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") model_after_opt = self.run_transpose_compare(["Z"], {"X": np.random.randn(*input_shape).astype(np.float32)}, model_proto, remaining_transpose_num=1) self.check_transpose_perm(model_after_opt, expected_perm) @parameterized.expand([ ((3, 1, 4, 5), (3, 4, 5), [0, 2, 3, 1]), ((3, 1, 4, 5, 6), (3, 4, 5, 6), [0, 2, 3, 4, 1]), ]) @check_opset_max_version(12, "Squeeze/Unsqueeze changed in opset 13") def test_transpose_with_squeeze3(self, input_shape, output_shape, perm): # squeeze the last dim node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm, name="trans") node2 = helper.make_node("Squeeze", ["Y"], ["Z"], name="squeeze", axes=[len(input_shape) - 1]) graph = helper.make_graph( [node1, node2], "transpose_with_squeeze", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["Z"], {"X": np.random.randn(*input_shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((3, 1, 4, 5), (3, 4, 5), [0, 2, 3, 1]), ((3, 1, 4, 5, 6), (3, 4, 5, 6), [0, 2, 3, 4, 1]), ]) @check_opset_min_version(13, "Squeeze/Unsqueeze changed in opset 13") def test_transpose_with_squeeze3_13(self, input_shape, output_shape, perm): # squeeze the last dim node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm, name="trans") axes = self._make_onnx_const(np.array([len(input_shape) - 1], dtype=np.int64), "axes") node2 = helper.make_node("Squeeze", ["Y", "axes"], ["Z"], name="squeeze") graph = helper.make_graph( [node1, node2, axes], "transpose_with_squeeze", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["Z"], {"X": np.random.randn(*input_shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((3, 1, 1, 5), (3, 5), [0, 2, 3, 1]), ((3, 1, 1, 5, 4), (3, 5, 4), [0, 2, 3, 4, 1]), ]) @check_opset_max_version(12, "Squeeze/Unsqueeze changed in opset 13") def test_transpose_with_squeeze4(self, input_shape, output_shape, perm): # squeeze the two dims node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm, name="trans") node2 = helper.make_node("Squeeze", ["Y"], ["Z"], name="squeeze", axes=[1, len(input_shape) - 1]) graph = helper.make_graph( [node1, node2], "transpose_with_squeeze", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["Z"], {"X": np.random.randn(*input_shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((3, 1, 1, 5), (3, 5), [0, 2, 3, 1]), ((3, 1, 1, 5, 4), (3, 5, 4), [0, 2, 3, 4, 1]), ]) @check_opset_min_version(13, "Squeeze/Unsqueeze changed in opset 13") def test_transpose_with_squeeze4_13(self, input_shape, output_shape, perm): # squeeze the two dims node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm, name="trans") axes = self._make_onnx_const(np.array([1, len(input_shape) - 1], dtype=np.int64), "axes") node2 = helper.make_node("Squeeze", ["Y", "axes"], ["Z"], name="squeeze") graph = helper.make_graph( [node1, node2, axes], "transpose_with_squeeze", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["Z"], {"X": np.random.randn(*input_shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((10, 3, 4), [0, 2, 1], [0, 2, 1]), ((10, 3, 4, 5), [0, 2, 3, 1], [0, 3, 1, 2]), ((10, 3, 4, 5, 6), [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) def test_transpose_with_loop(self, shape, perm_input, perm_output): def _define_loop_graph(external_inputs): # external_inputs: external node which will be used by this graph # graph without loop carried # computation # for(...){a = external_inputs[i]; b = trans(a), c = squeeze(b)}, c is scan output node1 = helper.make_node("Gather", [external_inputs[0], "loop_iter_num"], ["Y0"]) node2 = helper.make_node("Transpose", ["Y0"], ["Z0"], perm=perm_input) # graph output if get_test_config().opset <= 12: node3 = helper.make_node("Squeeze", ["Z0"], ["scan_output"], axes=[0]) const_node = None else: const_tensor = helper.make_tensor(name='const', data_type=TensorProto.INT64, dims=[1], vals=np.array([0], dtype=np.int64)) const_node = helper.make_node("Constant", [], ["axes_const"], value=const_tensor, name="const") node3 = helper.make_node("Squeeze", ["Z0", "axes_const"], ["scan_output"]) node4 = helper.make_node("Identity", ["loop_condition"], ["loop_cond_output"]) node5 = helper.make_node("Identity", ["loop_condition"], ["loop_carried_output"]) nodes = [node1, node2, node3, node4, node5] if const_node is not None: nodes.append(const_node) graph = helper.make_graph( nodes, "loop_subgraph", [helper.make_tensor_value_info("loop_iter_num", TensorProto.INT64, (1,)), # iteration_num helper.make_tensor_value_info("loop_condition", TensorProto.BOOL, ()), # condition helper.make_tensor_value_info("loop_carried", TensorProto.BOOL, ()) # loop_carried ], [helper.make_tensor_value_info("loop_cond_output", TensorProto.BOOL, ()), helper.make_tensor_value_info("loop_carried_output", TensorProto.BOOL, ()), helper.make_tensor_value_info("scan_output", TensorProto.FLOAT, ["unknown"] * (len(shape) - 1)) ], ) return graph def _make_loop(external_inputs, outputs): trip_cnt = self._make_onnx_const(np.array(10, dtype=np.int64), "trip_cnt") cond = self._make_onnx_const(np.array(True, dtype=np.bool), "cond") sub_graph = _define_loop_graph(external_inputs) loop_node = helper.make_node("Loop", ["trip_cnt", "cond", "cond"], outputs, name="loop", body=sub_graph) return trip_cnt, cond, loop_node nodes = _make_loop(["array"], ["loop_carried", "scan_out"]) res = helper.make_node("Transpose", ["scan_out"], ["Y"], perm=perm_output, name="trans") graph = helper.make_graph( [*nodes, res], "transpose_with_loop", [helper.make_tensor_value_info("array", TensorProto.FLOAT, ["unknow"] * len(shape))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, ["unknow"] * len(shape))], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["Y"], {"array": np.random.randn(*shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((2, 3, 4), [4, 2, 3], [2, 0, 1], [1, 2, 0]), ((2, 3, 4, 5), [2, 4, 5, 3], [0, 2, 3, 1], [0, 3, 1, 2]), ((2, 3, 4, 5, 6), [2, 4, 5, 6, 3], [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) def test_trans_with_sub(self, io_shape, const_shape_base, perm_input, perm_output): const_shapes = [] for i in range(len(const_shape_base)): const_shapes.append(const_shape_base[i:]) for trans_is_first_input in [True, False]: for const_shape in const_shapes: node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_a") const_tensor = helper.make_tensor(name='const', data_type=TensorProto.FLOAT, dims=const_shape, vals=np.random.randn(*const_shape).flatten().astype(np.float32)) node2 = helper.make_node("Constant", [], ["const"], value=const_tensor, name="const") if trans_is_first_input: node3 = helper.make_node("Sub", ["Y", "const"], ["Z"], name="sub") else: node3 = helper.make_node("Sub", ["const", "Y"], ["Z"], name="sub") node4 = helper.make_node("Transpose", ["Z"], ["res"], perm=perm_output, name="trans_b") graph = helper.make_graph( [node1, node2, node3, node4], "test_trans_with_sub", [helper.make_tensor_value_info("X", TensorProto.FLOAT, io_shape)], [helper.make_tensor_value_info("res", TensorProto.FLOAT, io_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["res"], {"X": np.random.randn(*io_shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((2, 3, 4, 5), [2, 4, 5, 3], [0, 2, 3, 1], [0, 3, 1, 2]), ((2, 3, 4, 5, 6), [2, 4, 5, 6, 3], [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) def test_trans_with_sub_input_non_const(self, io_shape, non_const_shape_base, perm_input, perm_output): non_const_shapes = [] for i in range(len(non_const_shape_base) - 1): non_const_shapes.append(non_const_shape_base[i:]) for trans_is_first_input in [True, False]: for non_const_shape in non_const_shapes: node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_a") if trans_is_first_input: node2 = helper.make_node("Sub", ["Y", "non_const"], ["Z"], name="sub") else: node2 = helper.make_node("Sub", ["non_const", "Y"], ["Z"], name="sub") node3 = helper.make_node("Transpose", ["Z"], ["res"], perm=perm_output, name="trans_b") graph = helper.make_graph( [node1, node2, node3], "test_trans_with_sub_input_non_const", [helper.make_tensor_value_info("X", TensorProto.FLOAT, io_shape), helper.make_tensor_value_info("non_const", TensorProto.FLOAT, non_const_shape)], [helper.make_tensor_value_info("res", TensorProto.FLOAT, io_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["res"], {"X": np.random.randn(*io_shape).astype(np.float32), "non_const": np.random.randn(*non_const_shape).astype(np.float32)}, model_proto, remaining_transpose_num=1) @parameterized.expand([ ((1, 1, 3, 3), (1, 3, 3, 1), [0, 2, 3, 1], [0, 3, 1, 2]), ((1, 1, 3, 3, 3), (1, 3, 3, 3, 1), [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) def test_transpose_add_with_input_non_const(self, input_shape1, input_shape2, perm_input, perm_output): node0 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_1") node1 = helper.make_node("Add", ["Y", "A"], ["Z"], name="add") node2 = helper.make_node("Transpose", ["Z"], ["res"], perm=perm_output, name="trans_2") output_shape = input_shape1 graph = helper.make_graph( [node0, node1, node2], "transpose-add-test-input-non-const", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape1), helper.make_tensor_value_info("A", TensorProto.FLOAT, input_shape2)], [helper.make_tensor_value_info("res", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["res"], {"X": np.random.randn(*input_shape1).astype(np.float32), "A": np.random.randn(*input_shape2).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((2, 3, 4), [4, 2, 3], [2, 0, 1], [1, 2, 0]), ((1, 1, 3, 3), (1, 3, 3, 1), [0, 2, 3, 1], [0, 3, 1, 2]), ((1, 1, 3, 3, 3), (1, 3, 3, 3, 1), [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) def test_transpose_add_with_input_const(self, input_shape1, input_shape2, perm_input, perm_output): const_1_val = np.random.randn(*input_shape2).astype(np.float32) const_1 = helper.make_tensor("const_1", TensorProto.FLOAT, input_shape2, const_1_val.flatten()) const_1_node = helper.make_node("Constant", [], ["const_1"], value=const_1, name="const_1") node0 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_1") node1 = helper.make_node("Add", ["Y", "const_1"], ["Z"], name="add") node2 = helper.make_node("Transpose", ["Z"], ["res"], perm=perm_output, name="trans_2") output_shape = input_shape1 graph = helper.make_graph( [const_1_node, node0, node1, node2], "transpose-add-test-input-const", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape1)], [helper.make_tensor_value_info("res", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["res"], {"X": np.random.randn(*input_shape1).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((1, 5, 3, 3), (16, 5, 3, 3), (1, 16, 1, 1), (1, 1, 1, 16), [0, 2, 3, 1], [0, 3, 1, 2]), ((1, 5, 3, 3, 3), (16, 5, 3, 3, 3), (1, 16, 1, 1, 1), (1, 1, 1, 1, 16), [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) def test_transpose_add_with_conv_1(self, input_shape, weights_shape, output_shape, const_shape, perm_input, perm_output): # case where bias's dim is 1D and can be merged into Conv const_b_val = np.random.randn(*const_shape).astype(np.float32) const_b = helper.make_tensor("const_b", TensorProto.FLOAT, const_shape, const_b_val.flatten()) const_b_node = helper.make_node("Constant", [], ["const_b"], value=const_b, name="const_b") node0 = helper.make_node("Conv", ["x", "W"], ["X"], name="conv", pads=[0] * 2 * (len(input_shape) - 2)) node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_1") node2 = helper.make_node("Add", ["Y", "const_b"], ["Z"], name="add") node3 = helper.make_node("Transpose", ["Z"], ["res"], perm=perm_output, name="trans_2") graph = helper.make_graph( [const_b_node, node0, node1, node2, node3], "transpose-add-test-with-conv-1", [helper.make_tensor_value_info("x", TensorProto.FLOAT, input_shape), helper.make_tensor_value_info("W", TensorProto.FLOAT, weights_shape)], [helper.make_tensor_value_info("res", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["res"], {"x": np.random.randn(*input_shape).astype(np.float32), "W": np.random.randn(*weights_shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((1, 1, 5, 5), (1, 1, 3, 3), (1, 1, 3, 3), (1, 3, 3, 1), [0, 2, 3, 1], [0, 3, 1, 2]), ((1, 1, 5, 5, 5), (1, 1, 3, 3, 3), (1, 1, 3, 3, 3), (1, 3, 3, 3, 1), [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) def test_transpose_add_with_conv_2(self, input_shape, weights_shape, output_shape, const_shape, perm_input, perm_output): # case where bias's dim is not 1D and can't be merged into Conv # add handler just remove the transpose around Add node const_b_val = np.random.randn(*const_shape).astype(np.float32) const_b = helper.make_tensor("const_b", TensorProto.FLOAT, const_shape, const_b_val.flatten()) const_b_node = helper.make_node("Constant", [], ["const_b"], value=const_b, name="const_b") node0 = helper.make_node("Conv", ["x", "W"], ["X"], name="conv", pads=[0] * 2 * (len(input_shape) - 2)) node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_1") node2 = helper.make_node("Add", ["Y", "const_b"], ["Z"], name="add") node3 = helper.make_node("Transpose", ["Z"], ["res"], perm=perm_output, name="trans_2") graph = helper.make_graph( [const_b_node, node0, node1, node2, node3], "transpose-add-test-with-conv-2", [helper.make_tensor_value_info("x", TensorProto.FLOAT, input_shape), helper.make_tensor_value_info("W", TensorProto.FLOAT, weights_shape)], [helper.make_tensor_value_info("res", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["res"], {"x": np.random.randn(*input_shape).astype(np.float32), "W": np.random.randn(*weights_shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((3, 4, 5), (8, 4, 6), [1, 3, 0, 0, 2, 0], [2, 0, 1], [1, 2, 0]), ((1, 3, 4, 5), (2, 6, 4, 8), [1, 0, 1, 3, 0, 0, 2, 0], [0, 2, 3, 1], [0, 3, 1, 2]), ((1, 3, 4, 5, 6), (2, 5, 6, 8, 10), [1, 0, 1, 3, 1, 0, 2, 2, 1, 1], [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) @check_opset_max_version(10, "pad") def test_transpose_pad(self, input_shape, output_shape, pads, perm_input, perm_output): node0 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_1") node1 = helper.make_node("Pad", ["Y"], ["Z"], pads=pads, name="pad") node2 = helper.make_node("Transpose", ["Z"], ["res"], perm=perm_output, name="trans_2") graph = helper.make_graph( [node0, node1, node2], "transpose-pad-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)], [helper.make_tensor_value_info("res", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["res"], {"X": np.random.randn(*input_shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((3, 4, 5), (8, 4, 6), [1, 3, 0, 0, 2, 0], [2, 0, 1], [1, 2, 0]), ((1, 3, 4, 5), (2, 6, 4, 8), [1, 0, 1, 3, 0, 0, 2, 0], [0, 2, 3, 1], [0, 3, 1, 2]), ((1, 3, 4, 5, 6), (2, 5, 6, 8, 10), [1, 0, 1, 3, 1, 0, 2, 2, 1, 1], [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) @check_opset_min_version(11, "pad") def test_transpose_pad11(self, input_shape, output_shape, pads, perm_input, perm_output): pads_val = np.array(pads, dtype=np.int64) pads_tensor = helper.make_tensor("Pads", TensorProto.INT64, [len(input_shape) * 2], pads_val) pads_const = helper.make_node("Constant", [], ["Pads"], value=pads_tensor, name="Pads") node0 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_1") node1 = helper.make_node("Pad", ["Y", "Pads"], ["Z"], name="pad") node2 = helper.make_node("Transpose", ["Z"], ["res"], perm=perm_output, name="trans_2") graph = helper.make_graph( [node0, node1, node2, pads_const], "transpose-pad-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)], [helper.make_tensor_value_info("res", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["res"], {"X": np.random.randn(*input_shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((3, 4, 5), (8, 4, 6), [1, 3, 0, 0, 2, 0], [2, 0, 1], [1, 2, 0]), ((1, 3, 4, 5), (2, 6, 4, 8), [1, 0, 1, 3, 0, 0, 2, 0], [0, 2, 3, 1], [0, 3, 1, 2]), ((1, 3, 4, 5, 6), (2, 5, 6, 8, 10), [1, 0, 1, 3, 1, 0, 2, 2, 1, 1], [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) @check_opset_min_version(11, "pad") def test_transpose_pad11_non_const_pads(self, input_shape, output_shape, pads, perm_input, perm_output): pads_val = np.array(pads, dtype=np.int64) node0 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_1") node1 = helper.make_node("Pad", ["Y", "Pads"], ["Z"], name="pad") node2 = helper.make_node("Transpose", ["Z"], ["res"], perm=perm_output, name="trans_2") graph = helper.make_graph( [node0, node1, node2], "transpose-pad-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape), helper.make_tensor_value_info("Pads", TensorProto.INT64, pads_val.shape)], [helper.make_tensor_value_info("res", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["res"], { "X": np.random.randn(*input_shape).astype(np.float32), "Pads": pads_val }, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((2, 3, 4), [2, 0, 1], [1, 2, 0]), ((2, 3, 4, 5), [0, 2, 3, 1], [0, 3, 1, 2]), ((2, 3, 4, 5, 6), [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) def test_transpose_reciprocal(self, shape, perm_input, perm_output): node0 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans1") node1 = helper.make_node("Reciprocal", ["Y"], ["Z"], name="reciprocal") node2 = helper.make_node("Transpose", ["Z"], ["OUT"], perm=perm_output, name="trans2") graph = helper.make_graph( [node0, node1, node2], "transpose-reciprocal-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, shape)], [helper.make_tensor_value_info("OUT", TensorProto.FLOAT, shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["OUT"], {"X": np.random.randn(*shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((3, 4, 5), (3, 4, 1), [0, 2, 1], [0, 2, 1]), ((1, 3, 4, 5), (1, 3, 1, 1), [0, 2, 3, 1], [0, 3, 1, 2]), ((1, 3, 4, 5, 6), (1, 3, 1, 1, 1), [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) def test_transpose_reducemean(self, input_shape, output_shape, perm_input, perm_output): node0 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_1") node1 = helper.make_node("ReduceMean", ["Y"], ["Z"], axes=list(range(1, len(input_shape) - 1)), keepdims=1, name="reducemean") node2 = helper.make_node("Transpose", ["Z"], ["res"], perm=perm_output, name="trans_2") graph = helper.make_graph( [node0, node1, node2], "transpose-reducemean-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)], [helper.make_tensor_value_info("res", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["res"], {"X": np.random.randn(*input_shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((3, 4, 5), (3, 4, 1), [1], [0, 2, 1], [0, 2, 1]), ((1, 3, 4, 5), (1, 3, 4, 1), [2], [0, 2, 3, 1], [0, 3, 1, 2]), ((1, 3, 4, 5), (1, 3, 1, 1), [1, 2], [0, 2, 3, 1], [0, 3, 1, 2]), ((1, 3, 4, 5), (1, 1, 1, 1), [0, 1, 2, 3], [0, 2, 3, 1], [0, 3, 1, 2]), ((1, 3, 4, 5, 6), (1, 3, 1, 5, 6), [1], [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ((1, 3, 4, 5, 6), (1, 3, 1, 1, 1), [1, 2, 3], [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ((1, 3, 4, 5, 6), (1, 1, 1, 1, 1), [0, 1, 2, 3, 4], [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) @check_opset_max_version(12, "ReduceSum from opset <= 12 has axes as an attribute") def test_transpose_reducesum(self, input_shape, output_shape, axes, perm_input, perm_output): node0 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_1") node1 = helper.make_node("ReduceSum", ["Y"], ["Z"], axes=axes, keepdims=1, name="reducesum") node2 = helper.make_node("Transpose", ["Z"], ["res"], perm=perm_output, name="trans_2") graph = helper.make_graph( [node0, node1, node2], "transpose-reducesum-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)], [helper.make_tensor_value_info("res", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["res"], {"X": np.random.randn(*input_shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((1, 3, 4, 5), (1, 3, 4), [2], [0, 2, 3, 1], [0, 2, 1]), ((1, 3, 4, 5), (1, 3), [1, 2], [0, 2, 3, 1], [0, 1]), ((1, 3, 4, 5), (), [0, 1, 2, 3], [0, 2, 3, 1], []), ((1, 3, 4, 5, 6), (1, 3, 5, 6), [1], [0, 2, 3, 4, 1], [0, 3, 1, 2]), ((1, 3, 4, 5, 6), (1, 3), [1, 2, 3], [0, 2, 3, 4, 1], [0, 1]), ((1, 3, 4, 5, 6), (), [0, 1, 2, 3, 4], [0, 2, 3, 4, 1], []), ]) def test_transpose_reducemax(self, input_shape, output_shape, axes, perm_input, perm_output): node0 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_1") node1 = helper.make_node("ReduceMax", ["Y"], ["Z"], axes=axes, keepdims=0, name="reducemax") if perm_output: node2 = helper.make_node("Transpose", ["Z"], ["res"], perm=perm_output, name="trans_2") else: node2 = helper.make_node("Identity", ["Z"], ["res"], name="trans_2") graph = helper.make_graph( [node0, node1, node2], "transpose-reducemax-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)], [helper.make_tensor_value_info("res", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["res"], {"X": np.random.randn(*input_shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) def test_transpose_argmax(self): input_shape = [1, 2, 3, 4] node0 = helper.make_node("Transpose", ["X"], ["Y"], perm=[0, 2, 3, 1], name="trans_1") node1 = helper.make_node("ArgMax", ["Y"], ["Z"], axis=3, keepdims=0, name="argmax") node2 = helper.make_node("Cast", ["Z"], ["res"], to=TensorProto.INT32, name="cast") graph = helper.make_graph( [node0, node1, node2], "transpose-argmax-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)], [helper.make_tensor_value_info("res", TensorProto.INT32, [1, 3, 4])], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["res"], {"X": np.random.randn(*input_shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) def test_transpose_tile(self): input_shape = [1, 2, 3, 4] repeats_value = [3, 6, 5, 11] repeats_tensor = helper.make_tensor("A", TensorProto.INT64, [len(input_shape)], repeats_value) repeats_const = helper.make_node("Constant", [], ["A"], value=repeats_tensor, name="repeats_const") node0 = helper.make_node("Transpose", ["X"], ["Y"], perm=[0, 2, 3, 1], name="trans_1") node1 = helper.make_node("Tile", ["Y", "A"], ["Z"], name="tile") node2 = helper.make_node("Transpose", ["Z"], ["res"], perm=[0, 3, 1, 2], name="trans_2") graph = helper.make_graph( [repeats_const, node0, node1, node2], "transpose-tile-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)], [helper.make_tensor_value_info("res", TensorProto.FLOAT, [3, 22, 18, 20])], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["res"], {"X": np.random.randn(*input_shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((3, 4, 5), (3, 4, 1), [1], [0, 2, 1], [0, 2, 1]), ((1, 3, 4, 5), (1, 3, 4, 1), [2], [0, 2, 3, 1], [0, 3, 1, 2]), ((1, 3, 4, 5), (1, 3, 1, 1), [1, 2], [0, 2, 3, 1], [0, 3, 1, 2]), ((1, 3, 4, 5), (1, 1, 1, 1), [0, 1, 2, 3], [0, 2, 3, 1], [0, 3, 1, 2]), ((1, 3, 4, 5, 6), (1, 3, 1, 5, 6), [1], [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ((1, 3, 4, 5, 6), (1, 3, 1, 1, 1), [1, 2, 3], [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ((1, 3, 4, 5, 6), (1, 1, 1, 1, 1), [0, 1, 2, 3, 4], [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) @check_opset_min_version(13, "ReduceSum from opset >= 13 has axes as an input") def test_transpose_reducesum_opset_13(self, input_shape, output_shape, axes, perm_input, perm_output): node0 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_1") node1 = helper.make_node("ReduceSum", ["Y", "axes"], ["Z"], keepdims=1, name="reducesum") node2 = helper.make_node("Transpose", ["Z"], ["res"], perm=perm_output, name="trans_2") axes = np.array(axes, dtype=np.int64) graph = helper.make_graph( [node0, node1, node2], "transpose-reducesum-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)], [helper.make_tensor_value_info("res", TensorProto.FLOAT, output_shape)], [helper.make_tensor("axes", TensorProto.INT64, axes.shape, axes)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["res"], {"X": np.random.randn(*input_shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((2, 3, 4), (4, 2, 3), [2, 0, 1]), ((2, 3, 4, 5), (2, 4, 5, 3), [0, 2, 3, 1]), ((2, 3, 4, 5, 6), (2, 4, 5, 6, 3), [0, 2, 3, 4, 1]), ]) def test_trans_output_as_graph_outputs(self, input_shape, output_shape, perm): """ If transpose's output is graph's output, don't optimize it. """ trans = helper.make_node("Transpose", ["X"], ["Y"], name="trans", perm=perm) graph_proto = helper.make_graph( [trans], "trans-to-graph-output", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, output_shape)], ) graph = GraphUtil.create_graph_from_onnx_graph(graph_proto) # remove identity to graph output identity_op = graph.get_node_by_output(graph.outputs[0]) graph.outputs = [identity_op.input[0]] graph.remove_node(identity_op.name) optimized_graph = GraphUtil.optimize_graph(graph) self.assertTrue(optimized_graph, msg="graph after optimizer should not be None") trans_cnt = len(group_nodes_by_type(optimized_graph)["Transpose"]) self.assertTrue(trans_cnt == 1, msg="Expect 1 Transpose ops left, but actually " + str(trans_cnt) + " left") @parameterized.expand([ ((2, 3, 4, 1), (2, 3, 4, 1), [0, 3, 1, 2]), ((2, 1, 1, 4), (2, 1, 1, 4), [0, 3, 1, 2]), ((2, 3, 4, 1), (2, -1, -1, 1), [0, 3, 1, 2]), ((2, 3, 4, 2, 1), (2, 3, 4, 2, 1), [0, 4, 1, 2, 3]), ((2, 1, 1, 1, 4), (2, 1, 1, 1, 4), [0, 4, 1, 2, 3]), ((2, 3, 4, 2, 1), (2, -1, -1, -1, 1), [0, 4, 1, 2, 3]), ]) def test_trans_can_be_replaced_with_reshape1(self, input_shape_np, input_shape, perm): # test trans-NHWC result_shape = [input_shape[i] for i in perm] node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm, name="trans") graph = helper.make_graph( [node1], "test_trans_can_be_replaced_with_reshape", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, result_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["Y"], {"X": np.random.randn(*input_shape_np).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((2, 1, 3, 4), (2, 1, 3, 4), [0, 2, 3, 1]), ((2, 4, 1, 1), (2, 4, 1, 1), [0, 2, 3, 1]), ((2, 1, 3, 4), (2, 1, -1, -1), [0, 2, 3, 1]), ((2, 1, 3, 4, 2), (2, 1, 3, 4, 2), [0, 2, 3, 4, 1]), ((2, 4, 1, 1, 1), (2, 4, 1, 1, 1), [0, 2, 3, 4, 1]), ((2, 1, 3, 4, 2), (2, 1, -1, -1, -1), [0, 2, 3, 4, 1]), ]) def test_trans_can_be_replaced_with_reshape2(self, input_shape_np, input_shape, perm): # test trans-NCHW result_shape = [input_shape[i] for i in perm] node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm, name="trans") graph = helper.make_graph( [node1], "test_trans_can_be_replaced_with_reshape", [helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, result_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["Y"], {"X": np.random.randn(*input_shape_np).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((1, 6, 8), [2, 0, 1], [1, 2, 0]), ((1, 6, 8, 9), [0, 2, 3, 1], [0, 3, 1, 2]), ((1, 6, 8, 9, 2), [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) def test_two_transposes_switch_with_mul(self, shape, perm_input, perm_output): const_node = self._make_onnx_const(np.array(np.random.random(6), dtype=np.float32), "const_10") node0 = helper.make_node("Transpose", ["u1"], ["v1"], perm=perm_input, name="trans_0") node1 = helper.make_node("Transpose", ["u2"], ["v2"], perm=perm_input, name="trans_1") node2 = helper.make_node("Mul", ["v1", "v2"], ["x"], name="mul_1") node3 = helper.make_node("Mul", ["x", const_node.output[0]], ["y"], name="mul_2") node4 = helper.make_node("Transpose", ["y"], ["res"], perm=perm_output, name="trans_3") graph = helper.make_graph( [const_node, node0, node1, node2, node3, node4], "test-transpose-mul", [helper.make_tensor_value_info("u1", TensorProto.FLOAT, shape), helper.make_tensor_value_info("u2", TensorProto.FLOAT, shape)], [helper.make_tensor_value_info("res", TensorProto.FLOAT, shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["res"], {"u1": np.random.randn(*shape).astype(np.float32), "u2": np.random.randn(*shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) @parameterized.expand([ ((1, 6, 8), (8, 1, 6), [2, 0, 1], [1, 2, 0]), ((1, 6, 8, 9), (1, 8, 9, 6), [0, 2, 3, 1], [0, 3, 1, 2]), ((1, 6, 8, 9, 2), (1, 8, 9, 2, 6), [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]), ]) def test_many_transposes_and_constant_switch_with_sum(self, input_shape1, input_shape2, perm_input, perm_output): constnode = self._make_onnx_const(np.array(np.random.random(input_shape2), dtype=np.float32), "v4") node0 = helper.make_node("Transpose", ["u1"], ["v1"], perm=perm_input, name="trans_0") node1 = helper.make_node("Transpose", ["u2"], ["v2"], perm=perm_input, name="trans_1") node11 = helper.make_node("Transpose", ["u3"], ["v3"], perm=perm_input, name="trans_2") node2 = helper.make_node("Sum", ["v1", "v2", "v3", "v4"], ["x"], name="sum_1") node3 = helper.make_node("Sum", ["x", "v1"], ["y"], name="sum_2") node4 = helper.make_node("Transpose", ["y"], ["res"], perm=perm_output, name="trans_4") output_shape = input_shape1 graph = helper.make_graph( [constnode, node0, node1, node11, node2, node3, node4], "test-transpose-mul", [helper.make_tensor_value_info("u1", TensorProto.FLOAT, input_shape1), helper.make_tensor_value_info("u2", TensorProto.FLOAT, input_shape1), helper.make_tensor_value_info("u3", TensorProto.FLOAT, input_shape1)], [helper.make_tensor_value_info("res", TensorProto.FLOAT, output_shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["res"], {"u1": np.random.randn(*input_shape1).astype(np.float32), "u2": np.random.randn(*input_shape1).astype(np.float32), "u3": np.random.randn(*input_shape1).astype(np.float32)}, model_proto, remaining_transpose_num=0) # Tranpose Optimizer Tests End # Identity Optimizer Tests Start def run_identity_compare(self, output_names_with_port, onnx_feed_dict, origin_proto, remaining_identity_num=None, debug=False, rtol=1e-07): self.run_and_compare(output_names_with_port, onnx_feed_dict, origin_proto, op_type="Identity", remaining_op_num=remaining_identity_num, debug=debug, rtol=rtol) def test_identity_non_graph_output(self): node1 = helper.make_node("Add", ["X", "X"], ["Y"], name="add") node2 = helper.make_node("Identity", ["Y"], ["Z"], name="identity") node3 = helper.make_node("Shape", ["Z"], ["Z1"], name="shape") graph = helper.make_graph( [node1, node2, node3], "identity-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3, 4, 5))], [helper.make_tensor_value_info("Z1", TensorProto.INT64, [4])], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_identity_compare(["Z1"], {"X": np.random.randn(2, 3, 4, 5).astype(np.float32)}, model_proto, remaining_identity_num=0) def test_identity_unremovable_identity(self): # should not remove!! node1 = helper.make_node("Identity", ["X"], ["Y"], name="identity") graph = helper.make_graph( [node1], "identity-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3, 4, 5))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 3, 4, 5))], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_identity_compare(["Y"], {"X": np.random.randn(2, 3, 4, 5).astype(np.float32)}, model_proto, remaining_identity_num=1) def test_identity_output_as_multiple_graph_outputs(self): # handle case like this, both Identity nodes are graph outputs, # Add # / \ # Identity Identity # We at most can remove one Identity for this case. node1 = helper.make_node("Add", ["X", "X"], ["Y"], name="identity") node2 = helper.make_node("Identity", ["Y"], ["Z1"], name="identity2") node3 = helper.make_node("Identity", ["Y"], ["Z2"], name="identity3") graph = helper.make_graph( [node1, node2, node3], "identity-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3, 4, 5))], [helper.make_tensor_value_info("Z1", TensorProto.FLOAT, (2, 3, 4, 5)), helper.make_tensor_value_info("Z2", TensorProto.FLOAT, (2, 3, 4, 5))], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_identity_compare(["Z1", "Z2"], {"X": np.random.randn(2, 3, 4, 5).astype(np.float32)}, model_proto, remaining_identity_num=1) def test_identity_in_subgraph_non_graph_output(self): node1 = helper.make_node("Add", ["X", "X"], ["Y"], name="add") iter_num_value = np.array(1, dtype=np.int64) node2 = helper.make_node( 'Constant', inputs=[], outputs=['iterate_num_value'], value=helper.make_tensor( name='iterate_num_value', data_type=TensorProto.INT64, dims=iter_num_value.shape, vals=iter_num_value.flatten().astype(np.int64).tolist(), ), ) cond_value = np.array(True, dtype=np.bool) node3 = helper.make_node( 'Constant', inputs=[], outputs=['cond_value'], value=helper.make_tensor( name='cond_value', data_type=TensorProto.BOOL, dims=iter_num_value.shape, vals=cond_value.flatten().astype(np.bool).tolist(), ), ) # sub graph sub_node1 = helper.make_node("Add", ["loop_var_1", "loop_var_1"], ["SubY"], name="sub_add") sub_node2 = helper.make_node("Identity", ["SubY"], ["SubIdentity1"], name="sub_identity_1") sub_node3 = helper.make_node("Identity", ["SubIdentity1"], ["loop_var_out_1"], name="sub_identity_2") sub_node4 = helper.make_node("Identity", ["loop_condition"], ["loop_cond_output"], name="sub_identity_3") sub_graph = helper.make_graph( [sub_node1, sub_node2, sub_node3, sub_node4], "identity_subgraph-test", [helper.make_tensor_value_info("loop_iter_num", TensorProto.INT64, (1,)), # iteration_num helper.make_tensor_value_info("loop_condition", TensorProto.BOOL, ()), # condition helper.make_tensor_value_info("loop_var_1", TensorProto.FLOAT, ()), # loop-carried dependency ], [helper.make_tensor_value_info("loop_cond_output", TensorProto.BOOL, ()), helper.make_tensor_value_info("loop_var_out_1", TensorProto.FLOAT, ()) ], ) # sub graph ends loop_node = helper.make_node("Loop", ["iterate_num_value", "cond_value", "Y"], ["loop_var_1_output"], name="loop", body=sub_graph) node4 = helper.make_node("Identity", ["loop_var_1_output"], ["Z"], name="identity") node5 = helper.make_node("Shape", ["Z"], ["Z1"], name="shape") graph = helper.make_graph( [node1, node2, node3, loop_node, node4, node5], "identity-test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3, 4, 5))], [helper.make_tensor_value_info("Z1", TensorProto.INT64, [4])], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_identity_compare(["Z1"], {"X": np.random.randn(2, 3, 4, 5).astype(np.float32)}, model_proto, remaining_identity_num=0) # Identity Optimizer Tests End # Merge Duplicated Nodes Optimizer Tests Start def run_merge_duplicated_nodes_compare(self, output_names_with_port, onnx_feed_dict, origin_proto, op_type=None, remaining_op_num=None, debug=False, rtol=1e-07, graph_validator=None): new_proto = self.run_and_compare(output_names_with_port, onnx_feed_dict, origin_proto, op_type=op_type, remaining_op_num=remaining_op_num, debug=debug, rtol=rtol) if graph_validator: self.assertTrue(graph_validator(new_proto.graph)) def test_duplicated_duplicated_input(self): # same input or not node0 = helper.make_node('Add', inputs=["X", "X"], outputs=["value0"]) node1 = helper.make_node('Add', inputs=["X", "X"], outputs=["value1"]) node2 = helper.make_node('Add', inputs=["value1", "X"], outputs=["value2"]) node3 = helper.make_node("Mul", ["value0", "value2"], ["value3"]) node4 = helper.make_node("Mul", ["value1", "value3"], ["OUT"]) graph = helper.make_graph( [node0, node1, node2, node3, node4], "test_duplicated_duplicated_input", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (5, 5))], [helper.make_tensor_value_info("OUT", TensorProto.FLOAT, (5, 5))], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_merge_duplicated_nodes_compare(["OUT"], {"X": np.random.randn(5, 5).astype(np.float32)}, model_proto, op_type="Add", remaining_op_num=2) def test_duplicated_duplicated_attributes(self): # same attr or not node0 = helper.make_node('ReduceMin', inputs=["X"], outputs=["value0"], axes=[0], keepdims=0) node1 = helper.make_node('ReduceMin', inputs=["X"], outputs=["value1"], axes=[0], keepdims=0) node2 = helper.make_node('ReduceMin', inputs=["X"], outputs=["value2"], axes=[1], keepdims=0) node3 = helper.make_node('Add', inputs=["value0", "value1"], outputs=["value3"]) node4 = helper.make_node("Mul", ["value2", "value3"], ["OUT"]) graph = helper.make_graph( [node0, node1, node2, node3, node4], "test_duplicated_duplicated_attributes", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (5, 5))], [helper.make_tensor_value_info("OUT", TensorProto.FLOAT, (5,))], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_merge_duplicated_nodes_compare(["OUT"], {"X": np.random.randn(5, 5).astype(np.float32)}, model_proto, op_type="ReduceMin", remaining_op_num=2) def _check_initializer_num(self, graph_proto, num): return num == len(graph_proto.initializer) def test_duplicated_duplicated_constant(self): const_val = np.array([1, 2, 3], dtype=np.float32) tensor_1 = helper.make_tensor("tensor_1", TensorProto.FLOAT, const_val.shape, const_val) tensor_2 = helper.make_tensor("tensor_2", TensorProto.FLOAT, const_val.shape, const_val) tensor_3 = helper.make_tensor("tensor_3", TensorProto.FLOAT, const_val.shape, const_val) tensor_4 = helper.make_tensor("tensor_4", TensorProto.FLOAT, const_val.shape, const_val) node0 = helper.make_node('Constant', inputs=[], outputs=["value0"], value=tensor_1) node1 = helper.make_node('Constant', inputs=[], outputs=["value1"], value=tensor_2) node2 = helper.make_node('Constant', inputs=[], outputs=["value2"], value=tensor_3) node3 = helper.make_node('Constant', inputs=[], outputs=["value3"], value=tensor_4) node4 = helper.make_node("Mul", ["value0", "value1"], ["output1"]) node5 = helper.make_node("Mul", ["value2", "output1"], ["output2"]) node6 = helper.make_node("Mul", ["value3", "output2"], ["OUT"]) graph = helper.make_graph( [node0, node1, node2, node3, node4, node5, node6], "test_duplicated_duplicated_constant", [], [helper.make_tensor_value_info("OUT", TensorProto.FLOAT, (3,))], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_merge_duplicated_nodes_compare(["OUT"], {}, model_proto, op_type="Constant", remaining_op_num=0, graph_validator=lambda g: self._check_initializer_num(g, 1)) def test_duplicated_duplicated_constant_and_initializer(self): const_val = np.array([1, 2, 3], dtype=np.float32) tensor_1 = helper.make_tensor("value0", TensorProto.FLOAT, const_val.shape, const_val.tobytes(), raw=True) tensor_2 = helper.make_tensor("value1", TensorProto.FLOAT, const_val.shape, const_val.tobytes(), raw=True) tensor_3 = helper.make_tensor("value2", TensorProto.FLOAT, const_val.shape, const_val.tobytes(), raw=True) tensor_4 = helper.make_tensor("value3", TensorProto.FLOAT, const_val.shape, const_val.tobytes(), raw=True) node0 = helper.make_node('Constant', inputs=[], outputs=["value0"], value=tensor_1) node1 = helper.make_node('Constant', inputs=[], outputs=["value1"], value=tensor_2) node4 = helper.make_node("Mul", ["value0", "value1"], ["output1"]) node5 = helper.make_node("Mul", ["value2", "output1"], ["output2"]) node6 = helper.make_node("Mul", ["value3", "output2"], ["OUT"]) graph = helper.make_graph( [node0, node1, node4, node5, node6], "test_duplicated_duplicated_constant", [helper.make_tensor_value_info("value2", TensorProto.FLOAT, (3,))], [helper.make_tensor_value_info("OUT", TensorProto.FLOAT, (3,))], [tensor_3, tensor_4] ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_merge_duplicated_nodes_compare(["OUT"], {}, model_proto, op_type="Constant", remaining_op_num=0, graph_validator=lambda g: self._check_initializer_num(g, 2)) def test_duplicated_node_is_graph_output(self): node0 = helper.make_node('Add', inputs=["X", "X"], outputs=["value0"]) node1 = helper.make_node('Add', inputs=["X", "X"], outputs=["value1"]) node2 = helper.make_node('Add', inputs=["value1", "X"], outputs=["value2"]) graph = helper.make_graph( [node0, node1, node2], "test_duplicated_node_is_graph_output", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (5, 5))], [helper.make_tensor_value_info("value1", TensorProto.FLOAT, (5, 5)), helper.make_tensor_value_info("value2", TensorProto.FLOAT, (5, 5))], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_merge_duplicated_nodes_compare(["value1", "value2"], {"X": np.random.randn(5, 5).astype(np.float32)}, model_proto, op_type="Add", remaining_op_num=2) @check_opset_min_version(10, "Dropout in opset 10 produces mask of 'bool' type") def test_duplicated_different_output_length(self): node0 = helper.make_node('Dropout', inputs=["X"], outputs=["value0"]) node1 = helper.make_node('Dropout', inputs=["X"], outputs=["value1", "mask"]) node2 = helper.make_node('Dropout', inputs=["value1"], outputs=["value2"]) graph = helper.make_graph( [node0, node1, node2], "test_duplicated_different_output_length", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (5,))], [helper.make_tensor_value_info("value1", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("mask", TensorProto.BOOL, (5,)), helper.make_tensor_value_info("value2", TensorProto.FLOAT, (5,))], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_merge_duplicated_nodes_compare(["value1", "mask", "value2"], {"X": np.random.randn(5).astype(np.float32)}, model_proto, op_type="Dropout", remaining_op_num=2) def test_duplicated_need_multiple_run(self): node00 = helper.make_node('Log', inputs=["X"], outputs=["value00"]) node01 = helper.make_node('Log', inputs=["value00"], outputs=["value01"]) node02 = helper.make_node('Log', inputs=["value01"], outputs=["value02"]) node10 = helper.make_node('Log', inputs=["X"], outputs=["value10"]) node11 = helper.make_node('Log', inputs=["value10"], outputs=["value11"]) node12 = helper.make_node('Log', inputs=["value11"], outputs=["value12"]) res = helper.make_node('Add', inputs=["value02", "value12"], outputs=["res"]) graph = helper.make_graph( [node00, node01, node02, node10, node11, node12, res], "test_duplicated_node_is_graph_output", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (5,))], [helper.make_tensor_value_info("res", TensorProto.FLOAT, (5,))], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_merge_duplicated_nodes_compare(["res"], {"X": np.random.randn(5).astype(np.float32)}, model_proto, op_type="Log", remaining_op_num=3) # Merge Duplicated Nodes Optimizer Tests End # Reshape Optimizer Tests Start @parameterized.expand([ (["dims12", "dim0_unsq"], 0, 1, 3), # Reshape [3, 7, 11] -> [7, 11, 3] (["dim0_unsq", "dims12"], 2, 0, 2), # Reshape [3, 7, 11] -> [11, 3, 7] ]) def test_reshape_opt(self, concat_order, gather_i, starts, ends): x_shape = [3, 7, 11] node0 = helper.make_node("Shape", ["X"], ["S"]) g_indices_tensor = helper.make_tensor(name='g_indices_tensor', data_type=TensorProto.INT64, dims=[], vals=np.array([gather_i], np.int64)) starts_tensor = helper.make_tensor(name='starts_tensor', data_type=TensorProto.INT64, dims=[1], vals=np.array([starts], np.int64)) ends_tensor = helper.make_tensor(name='ends_tensor', data_type=TensorProto.INT64, dims=[1], vals=np.array([ends], np.int64)) axes_tensor = helper.make_tensor(name='axes_tensor', data_type=TensorProto.INT64, dims=[1], vals=np.array([0], np.int64)) node1 = helper.make_node("Constant", [], ["g_indices"], value=g_indices_tensor) node2 = helper.make_node("Constant", [], ["starts"], value=starts_tensor) node3 = helper.make_node("Constant", [], ["ends"], value=ends_tensor) node4 = helper.make_node("Constant", [], ["axes"], value=axes_tensor) node5 = helper.make_node("Gather", ["S", "g_indices"], ["dim0"]) if self.config.opset >= 10: node6 = helper.make_node("Slice", ["S", "starts", "ends", "axes"], ["dims12"]) else: node6 = helper.make_node("Slice", ["S"], ["dims12"], starts=[starts], ends=[ends], axes=[0]) if self.config.opset >= 13: node7 = helper.make_node("Unsqueeze", ["dim0", "axes"], ["dim0_unsq"]) else: node7 = helper.make_node("Unsqueeze", ["dim0"], ["dim0_unsq"], axes=[0]) node8 = helper.make_node("Concat", concat_order, ["dims120"], axis=0) node9 = helper.make_node("Reshape", ["X", "dims120"], ["Y"]) graph = helper.make_graph( [node0, node1, node2, node3, node4, node5, node6, node7, node8, node9], "test_reshape_opt1", [helper.make_tensor_value_info("X", TensorProto.FLOAT, [None, None, None])], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, [None, None, None])], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_and_compare(["Y"], {"X": np.random.randn(*x_shape).astype(np.float32)}, model_proto, op_type="Shape", remaining_op_num=0) def test_reshape_opt_with_mul(self): x_shape = [7, 10, 20, 30] node0 = helper.make_node("Shape", ["X"], ["S"]) g_indices_tensor = helper.make_tensor(name='g_indices_tensor', data_type=TensorProto.INT64, dims=[2], vals=np.array([1, 2], np.int64)) starts_tensor = helper.make_tensor(name='starts_tensor', data_type=TensorProto.INT64, dims=[1], vals=np.array([0], np.int64)) ends_tensor = helper.make_tensor(name='ends_tensor', data_type=TensorProto.INT64, dims=[1], vals=np.array([1], np.int64)) axes_tensor = helper.make_tensor(name='axes_tensor', data_type=TensorProto.INT64, dims=[1], vals=np.array([0], np.int64)) five_tensor = helper.make_tensor(name='five_tensor', data_type=TensorProto.INT32, dims=[], vals=np.array([5], np.int32)) six_tensor = helper.make_tensor(name='six_tensor', data_type=TensorProto.INT64, dims=[1], vals=np.array([6], np.int64)) node1 = helper.make_node("Constant", [], ["g_indices"], value=g_indices_tensor) node2 = helper.make_node("Constant", [], ["starts"], value=starts_tensor) node3 = helper.make_node("Constant", [], ["ends"], value=ends_tensor) node4 = helper.make_node("Constant", [], ["axes"], value=axes_tensor) node5 = helper.make_node("Constant", [], ["five"], value=five_tensor) node55 = helper.make_node("Constant", [], ["six"], value=six_tensor) node6 = helper.make_node("Gather", ["S", "g_indices"], ["dims12"]) node7 = helper.make_node("ReduceProd", ["dims12"], ["dims12_prod"], axes=[0]) if self.config.opset >= 10: node8 = helper.make_node("Slice", ["S", "starts", "ends", ""], ["dim0"]) else: node8 = helper.make_node("Slice", ["S"], ["dim0"], starts=[0], ends=[1]) node9 = helper.make_node("Cast", ["dim0"], ["dim0_cast"], to=TensorProto.INT32) if self.config.opset >= 13: node10 = helper.make_node("Squeeze", ["dim0_cast", "axes"], ["dim0_sq"]) else: node10 = helper.make_node("Squeeze", ["dim0_cast"], ["dim0_sq"], axes=[0]) node11 = helper.make_node("Mul", ["dim0_sq", "five"], ["five_dim0"]) if self.config.opset >= 13: node12 = helper.make_node("Unsqueeze", ["five_dim0", "axes"], ["five_dim0_unsq"]) else: node12 = helper.make_node("Unsqueeze", ["five_dim0"], ["five_dim0_unsq"], axes=[0]) node13 = helper.make_node("Cast", ["five_dim0_unsq"], ["five_dim0_cast"], to=TensorProto.INT64) node14 = helper.make_node("Concat", ["five_dim0_cast", "dims12_prod", "six"], ["shape"], axis=0) node15 = helper.make_node("Reshape", ["X", "shape"], ["Y"]) graph = helper.make_graph( [node0, node1, node2, node3, node4, node5, node55, node6, node7, node8, node9, node10, node11, node12, node13, node14, node15], "test_reshape_opt1", [helper.make_tensor_value_info("X", TensorProto.FLOAT, [None, 10, 20, 30])], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, [None, None, None])], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_and_compare(["Y"], {"X": np.random.randn(*x_shape).astype(np.float32)}, model_proto, op_type="Shape", remaining_op_num=0) # Reshape Optimizer Tests End # Const Fold Optimizer Tests Start def test_const_fold_trans_with_const1(self): shape = (6, 6) const_tensor = helper.make_tensor(name='const_tensor', data_type=TensorProto.FLOAT, dims=shape, vals=np.random.randn(*shape).flatten().astype(np.float32)) node1 = helper.make_node("Constant", [], ["const"], value=const_tensor) node2 = helper.make_node("Transpose", ["const"], ["value1"]) node3 = helper.make_node("Add", ["value1", "X"], ["res"]) graph = helper.make_graph( [node1, node2, node3], "test_const_fold_trans_with_const1", [helper.make_tensor_value_info("X", TensorProto.FLOAT, shape)], [helper.make_tensor_value_info("res", TensorProto.FLOAT, shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["res"], {"X": np.random.randn(*shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) def test_const_fold_trans_with_const2(self): # need multiple optimization run shape = (6, 6) const_tensor = helper.make_tensor(name='const_tensor', data_type=TensorProto.FLOAT, dims=shape, vals=np.random.randn(*shape).flatten().astype(np.float32)) node1 = helper.make_node("Constant", [], ["const"], value=const_tensor) node2 = helper.make_node("Transpose", ["const"], ["value1"]) node3 = helper.make_node("Transpose", ["value1"], ["value2"]) node4 = helper.make_node("Add", ["value2", "X"], ["res"]) graph = helper.make_graph( [node1, node2, node3, node4], "test_const_fold_trans_with_const2", [helper.make_tensor_value_info("X", TensorProto.FLOAT, shape)], [helper.make_tensor_value_info("res", TensorProto.FLOAT, shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["res"], {"X": np.random.randn(*shape).astype(np.float32)}, model_proto, remaining_transpose_num=0) def test_const_fold_node_is_output(self): # need multiple optimization run shape = (6, 6) const_tensor = helper.make_tensor(name='const_tensor', data_type=TensorProto.FLOAT, dims=shape, vals=np.random.randn(*shape).flatten().astype(np.float32)) node1 = helper.make_node("Constant", [], ["const"], value=const_tensor) node2 = helper.make_node("Transpose", ["const"], ["value1"]) node3 = helper.make_node("Transpose", ["value1"], ["res"]) graph = helper.make_graph( [node1, node2, node3], "test_const_fold_node_is_output", [], [helper.make_tensor_value_info("res", TensorProto.FLOAT, shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_transpose_compare(["res"], {}, model_proto, remaining_transpose_num=0) def test_const_fold_concat(self): shape = (6, 4) const_tensor = helper.make_tensor(name='const_tensor', data_type=TensorProto.FLOAT, dims=shape, vals=np.random.randn(*shape).flatten().astype(np.float32)) const_tensor2 = helper.make_tensor(name='const_tensor2', data_type=TensorProto.FLOAT, dims=shape, vals=np.random.randn(*shape).flatten().astype(np.float32)) node1 = helper.make_node("Constant", [], ["const"], value=const_tensor) node2 = helper.make_node("Constant", [], ["const2"], value=const_tensor2) node3 = helper.make_node("Concat", ["const", "const2", "const"], ["value1"], axis=1) node4 = helper.make_node("Add", ["value1", "inp"], ["res"]) graph = helper.make_graph( [node1, node2, node3, node4], "test_const_fold_trans_with_const2", [helper.make_tensor_value_info("inp", TensorProto.FLOAT, [6, 12])], [helper.make_tensor_value_info("res", TensorProto.FLOAT, [6, 12])], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_and_compare(["res"], {"inp": np.random.randn(6, 12).astype(np.float32)}, model_proto, "Concat", 0) @check_opset_max_version(12, "Squeeze/Unsqueeze changed in opset 13") def test_const_fold_unsqueeze_with_const(self): shape = (6, 6) const_tensor = helper.make_tensor(name='const_tensor', data_type=TensorProto.FLOAT, dims=shape, vals=np.random.randn(*shape).flatten().astype(np.float32)) node1 = helper.make_node("Constant", [], ["const"], value=const_tensor) node2 = helper.make_node("Unsqueeze", ["const"], ["value1"], axes=[0, 2, 3]) node3 = helper.make_node("Add", ["value1", "X"], ["res"]) graph = helper.make_graph( [node1, node2, node3], "test_const_fold_unsqueeze_with_const", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1,))], [helper.make_tensor_value_info("res", TensorProto.FLOAT, (1, 6, 1, 1, 6))], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_and_compare(["res"], {"X": np.random.randn(1).astype(np.float32)}, model_proto, "Unsqueeze", 0) @check_opset_min_version(13, "Squeeze/Unsqueeze changed in opset 13") def test_const_fold_unsqueeze_with_const_13(self): shape = (6, 6) const_tensor = helper.make_tensor(name='const_tensor', data_type=TensorProto.FLOAT, dims=shape, vals=np.random.randn(*shape).flatten().astype(np.float32)) node1 = helper.make_node("Constant", [], ["const"], value=const_tensor) axes = self._make_onnx_const(np.array([0, 2, 3], dtype=np.int64), "axes") node2 = helper.make_node("Unsqueeze", ["const", "axes"], ["value1"]) node3 = helper.make_node("Add", ["value1", "X"], ["res"]) graph = helper.make_graph( [node1, node2, node3, axes], "test_const_fold_unsqueeze_with_const", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1,))], [helper.make_tensor_value_info("res", TensorProto.FLOAT, (1, 6, 1, 1, 6))], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_and_compare(["res"], {"X": np.random.randn(1).astype(np.float32)}, model_proto, "Unsqueeze", 0) def test_const_fold_cast_with_const(self): shape = (6, 6) const_tensor = helper.make_tensor(name='const_tensor', data_type=TensorProto.FLOAT, dims=shape, vals=np.random.randn(*shape).flatten().astype(np.float32)) node1 = helper.make_node("Constant", [], ["const"], value=const_tensor) node2 = helper.make_node("Cast", ["const"], ["value1"], to=TensorProto.INT64) node3 = helper.make_node("Add", ["value1", "X"], ["res"]) graph = helper.make_graph( [node1, node2, node3], "test_const_fold_cast_with_const", [helper.make_tensor_value_info("X", TensorProto.INT64, shape)], [helper.make_tensor_value_info("res", TensorProto.INT64, shape)], ) model_proto = self.make_model(graph, producer_name="onnx-tests") self.run_and_compare(["res"], {"X":
np.random.randn(*shape)
numpy.random.randn
""" This file is used to pre-process voxlization and aggregation weights, in order to save training time. Re-project simplified point clouds to multi-plane, 32 planes are used. """ from __future__ import division import numpy as np import os, cv2, time, math, scipy import scipy.io as io def loadfile(ply_path): st = time.time() position = [] color = [] file = open(ply_path) begin = False while 1: line = file.readline().strip('\n') if not line: break line = line.split(' ') if begin: position.append(np.array([float(line[0]), float(line[1]), float(line[2]), float(1.0)])) color.append(np.array([float(line[5]), float(line[4]), float(line[3])])) # rgb to bgr if line[0] == 'end_header': begin = True file.close() print('load ply time: %s' %(time.time() - st)) return np.transpose(position), np.transpose(color) def makedataset(dir2): image_names = [] depth_names = [] intrinsics = [] extrinsics = [] assert os.path.isdir(dir2) parameter_file = [] for root,_, fname in os.walk(dir2): parameter_file.append(os.path.join(dir2, fname[0])) file = open(parameter_file[0]) while True: line = file.readline() if not line: break temp = line.split() if len(temp) == 0: continue if temp[0] == 'intrinsics_matrix': intrinsic_temp = line if temp[0] == 'scan': extrinsics.append(line) intrinsics.append(intrinsic_temp) image_names.append(temp[2]) depth_names.append(temp[1]) positions_world = np.zeros([len(extrinsics), 3]) for i in range(len(extrinsics)): temp = extrinsics[i].split() positions_world[i, 0] = np.float32(temp[6]) positions_world[i, 1] = np.float32(temp[10]) positions_world[i, 2] = np.float32(temp[14]) return image_names, depth_names, intrinsics, extrinsics, positions_world def camera_parameter_read(intrinsic, extrinsic): # tmp = intrinsics_all[i].split() tmp = intrinsic.split() fx = float(tmp[1]) ux = float(tmp[3]) fy = float(tmp[5]) uy = float(tmp[6]) intrinsic_matrix = np.array([[fx, 0, ux, 0], [0, fy, 1024 - uy, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) tmp = extrinsic.split() tmp = list(map(float, tmp[3:])) extrinsic_matrix = np.reshape(np.array(tmp), [4, 4]) extrinsic_matrix[:, [1, 2]] = extrinsic_matrix[:, [1, 2]] * (-1.0) # Camera coordinate system transform. return intrinsic_matrix, extrinsic_matrix def Voxelization(w, h, intrinsic_matrix, extrinsic_matrix, point_clouds, valid_depth_near, valid_depth_far, num_planes): st = time.time() transform_matrix = intrinsic_matrix.dot(np.linalg.inv(extrinsic_matrix)) position_image = transform_matrix.dot(point_clouds) print('reproject_time: %s' %(time.time() - st)) depth_all = position_image[2, :] u_all =position_image[0, :] / (depth_all+1e-10) v_all =position_image[1, :] / (depth_all+1e-10) valid_u = np.where((u_all >= 0) & (u_all <= (w-1))) valid_v = np.where((v_all >= 0) & (v_all <= (h-1))) valid_d = np.where((depth_all > valid_depth_near) & (depth_all < valid_depth_far)) valid_position = np.intersect1d(valid_u, valid_v) valid_position = np.intersect1d(valid_position, valid_d) selected_depth = depth_all[valid_position] index = np.argsort(-selected_depth) # depth large to small index = index[100:-50] # in order to reduce outliers' influence during voxelization, we remove 100 furthest and 50 nearest points. valid_position_sorted = valid_position[index] valid_d_sorted = depth_all[valid_position_sorted] center_u_sorted = u_all[valid_position_sorted] center_v_soretd = v_all[valid_position_sorted] u_sorted = np.uint32(np.rint(center_u_sorted)) v_sorted = np.uint32(np.rint(center_v_soretd)) # calculate distance to grid center. Parallel distance. st = time.time() distance_sorted = np.sqrt(np.square(u_sorted - center_u_sorted) + np.square(v_sorted - center_v_soretd)) print("calculate_distance: %s" % (time.time() - st)) # 3D space voxelization num_valids = len(index) valid_d_min = valid_d_sorted[num_valids - 1] # near depth plane valid_d_max = valid_d_sorted[0] # far depth plane tmp = np.linspace(valid_d_max, valid_d_min, num_planes+1) up_boundary = tmp[1:] d_position = np.zeros([num_valids]) # points belong to which plane. st = time.time() cnt = 0 for i in range(num_valids): tmp_d = valid_d_sorted[i] if tmp_d >= up_boundary[cnt]: d_position[i] = num_planes - cnt - 1 else: for j in range(1, num_planes - cnt): cnt = cnt + 1 if tmp_d >= up_boundary[cnt]: d_position[i] = num_planes - cnt - 1 break print('split_time: %s' % (time.time() - st)) # grouping groups_original = u_sorted + v_sorted*w + d_position*w*h # groups groups_original_sort_index = np.argsort(groups_original) # small to large groups_original_sorted = groups_original[groups_original_sort_index] u_sorted_1 = u_sorted[groups_original_sort_index] v_sorted_1 = v_sorted[groups_original_sort_index] d_position_sorted_1 = d_position[groups_original_sort_index] valid_position_sorted_1 = valid_position_sorted[groups_original_sort_index] distance_sorted_1 = distance_sorted[groups_original_sort_index] array = np.uint16(np.linspace(0, 1000, 1000, endpoint=False)) # assign points within one voxel or group a sequence index. Begin from 0. The max num in each group less than 1000. groups_index = np.zeros_like(valid_position_sorted_1) # each group's start position. groups_each = np.zeros_like(valid_position_sorted_1) # each point belongs to which group or voxel. groups_each_index = np.zeros_like(valid_position_sorted_1, dtype=np.uint16) # each point's index/order in one group, a sequence. group_begin = 0 cnt = 0 for ii in range(num_valids): group_tmp = groups_original_sorted[ii] if (ii + 1) < num_valids: group_next = groups_original_sorted[ii+1] if not group_tmp == group_next: groups_each[group_begin:(ii+1)] = cnt groups_each_index[group_begin:(ii+1)] = array[0:(ii+1 - group_begin)] groups_index[cnt] = group_begin cnt = cnt + 1 group_begin = ii + 1 else: groups_each[group_begin:] = cnt groups_each_index[group_begin:] = array[0:(num_valids-group_begin)] groups_index[cnt] = group_begin groups_index = groups_index[0:(cnt+1)] print('group_time: %s' % (time.time() - st)) # calculate max num of points in one group/voxel in each plane. split_each_max = np.zeros(num_planes, dtype=np.uint16) split_position = np.where((d_position_sorted_1[groups_index] - np.concatenate((np.array([0]), d_position_sorted_1[groups_index][0:-1]))) > 0) # find split position of different planes. split_each_begin = np.concatenate((np.array([0]), groups_index[split_position])) # split position based on all points, and reserve the begin position. Begin from 0. split_each_begin_in_group = np.concatenate((np.array([0]), split_position[0])) # split position based on all groups, and reserve the begin position. Begin from 0. d_valid = d_position_sorted_1[groups_index[split_each_begin_in_group]] for j in range(len(split_each_begin)): begin = split_each_begin[j] if j < (len(split_each_begin_in_group) - 1): end = split_each_begin[j + 1] max_num = np.max(groups_each_index[begin:end]) + 1 split_each_max[int(d_valid[j])] = max_num else: max_num = np.max(groups_each_index[begin:]) + 1 split_each_max[int(d_valid[j])] = max_num # Be careful of data type, out of range. return np.uint16(u_sorted_1), np.uint16(v_sorted_1), np.uint8(d_position_sorted_1), np.uint32(valid_position_sorted_1), \ np.uint32(groups_each), np.uint32(groups_index), np.uint16(groups_each_index), \ np.uint32(split_each_begin), np.uint32(split_each_begin_in_group), np.uint16(split_each_max), \ np.float16(distance_sorted_1) def Aggregation(npzfile, intrinsic_matrix, extrinsic_matrix, point_clouds, a, b): select_index = npzfile['select_index'] # select_index begin with 0. index_in_each_group = npzfile['index_in_each_group'] distance = npzfile['distance'] st = time.time() transform_matrix = intrinsic_matrix.dot(np.linalg.inv(extrinsic_matrix)) position_image = transform_matrix.dot(point_clouds) depth_all = position_image[2, :] depth_selected = depth_all[select_index] * 100 # x 100, m to cm. # distance to grid center, parallel distance distance = distance # distance to depth_min, vertical distance distance_1 = np.zeros(distance.shape) each_group_begin = np.where(index_in_each_group == 0)[0] num_valids = len(select_index) num_groups = len(each_group_begin) for i in range(num_groups): begin = each_group_begin[i] if (i+1) < num_groups: end = each_group_begin[i+1] distance_1[begin:end] = np.min(depth_selected[begin:end]) else: end = num_valids distance_1[begin:end] = np.min(depth_selected[begin:end]) distance_1 = depth_selected - distance_1 # print(np.max(distance_1)) # print(np.min(distance_1)) # calculate_weight weight_1 = (1-distance)**a weight_2 = 1/(1+distance_1)**b weight_renew = weight_1*weight_2 weight_average =
np.float16(weight_renew)
numpy.float16
import numpy as np import matplotlib.pyplot as plt import pandas as pd x = np.genfromtxt('./logistic_x.txt') m, n = x.shape # add bias columns to x x = np.hstack([
np.ones((m, 1))
numpy.ones
import abc import typing import numpy as np import torch ENTRY_NOT_EXTRACTED_ERR_MSG = 'Transform can not be applied because entry "{}" was not extracted' # follows the principle of torchvision transform class Transform(metaclass=abc.ABCMeta): @abc.abstractmethod def __call__(self, sample: dict) -> dict: pass class ComposeTransform(Transform): def __init__(self, transforms: typing.Iterable[Transform]) -> None: self.transforms = transforms def __call__(self, sample: dict) -> dict: for t in self.transforms: sample = t(sample) return sample class IntensityRescale(Transform): def __init__(self, lower, upper, loop_axis=None, entries=('images',)) -> None: super().__init__() self.lower = lower self.upper = upper self.loop_axis = loop_axis self.entries = entries def __call__(self, sample: dict) -> dict: for entry in self.entries: if entry not in sample: raise ValueError(ENTRY_NOT_EXTRACTED_ERR_MSG.format(entry)) np_entry = check_and_return(sample[entry], np.ndarray) if self.loop_axis is None: np_entry = self._normalize(np_entry, self.lower, self.upper) else: slicing = [slice(None) for _ in range(np_entry.ndim)] for i in range(np_entry.shape[self.loop_axis]): slicing[self.loop_axis] = i np_entry[tuple(slicing)] = self._normalize(np_entry[tuple(slicing)], self.lower, self.upper) sample[entry] = np_entry return sample @staticmethod def _normalize(arr: np.ndarray, lower, upper): dtype = arr.dtype min_, max_ = arr.min(), arr.max() if min_ == max_: raise ValueError('cannot normalize when min == max') arr = (arr - min_) / (max_ - min_) * (upper - lower) + lower return arr.astype(dtype) class IntensityNormalization(Transform): def __init__(self, loop_axis=None, entries=('images',)) -> None: super().__init__() self.loop_axis = loop_axis self.entries = entries self.normalize_fn = self._normalize def __call__(self, sample: dict) -> dict: for entry in self.entries: if entry not in sample: raise ValueError(ENTRY_NOT_EXTRACTED_ERR_MSG.format(entry)) np_entry = check_and_return(sample[entry], np.ndarray) if not np.issubdtype(np_entry.dtype, np.floating): raise ValueError('Array must be floating type') if self.loop_axis is None: np_entry = self.normalize_fn(np_entry) else: slicing = [slice(None) for _ in range(np_entry.ndim)] for i in range(np_entry.shape[self.loop_axis]): slicing[self.loop_axis] = i np_entry[tuple(slicing)] = self.normalize_fn(np_entry[tuple(slicing)]) sample[entry] = np_entry return sample @staticmethod def _normalize(arr: np.ndarray): return (arr - arr.mean()) / arr.std() class LambdaTransform(Transform): def __init__(self, lambda_fn, loop_axis=None, entries=('images',)) -> None: super().__init__() self.lambda_fn = lambda_fn self.loop_axis = loop_axis self.entries = entries def __call__(self, sample: dict) -> dict: for entry in self.entries: if entry not in sample: raise ValueError(ENTRY_NOT_EXTRACTED_ERR_MSG.format(entry)) if self.loop_axis is None: np_entry = self.lambda_fn(sample[entry]) else: np_entry = check_and_return(sample[entry], np.ndarray) slicing = [slice(None) for _ in range(np_entry.ndim)] for i in range(np_entry.shape[self.loop_axis]): slicing[self.loop_axis] = i np_entry[tuple(slicing)] = self.lambda_fn(np_entry[tuple(slicing)]) sample[entry] = np_entry return sample class ClipPercentile(Transform): def __init__(self, upper_percentile: float, lower_percentile: float=None, loop_axis=None, entries=('images',)) -> None: super().__init__() self.upper_percentile = upper_percentile if lower_percentile is None: lower_percentile = 100 - upper_percentile self.lower_percentile = lower_percentile self.loop_axis = loop_axis self.entries = entries def __call__(self, sample: dict) -> dict: for entry in self.entries: if entry not in sample: raise ValueError(ENTRY_NOT_EXTRACTED_ERR_MSG.format(entry)) np_entry = check_and_return(sample[entry], np.ndarray) if self.loop_axis is None: np_entry = self._clip(np_entry) else: slicing = [slice(None) for _ in range(np_entry.ndim)] for i in range(np_entry.shape[self.loop_axis]): slicing[self.loop_axis] = i np_entry[tuple(slicing)] = self._clip(np_entry[tuple(slicing)]) sample[entry] = np_entry return sample def _clip(self, arr: np.ndarray): upper_max =
np.percentile(arr, self.upper_percentile)
numpy.percentile
import h5py import pickle import numpy as np def load_weights(): fff = h5py.File('Mybase/mask_rcnn_coco.h5','r') #打开h5文件 #print(list(f.keys())) mydict = {} mydict['global_step:0'] = 1000 ########res1######## dset = fff['conv1'] a = dset['conv1'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn_conv1'] a = dset['bn_conv1'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_0/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ########res2######## dset = fff['res2a_branch1'] a = dset['res2a_branch1'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2a_branch1'] a = dset['bn2a_branch1'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2a_branch2a'] a = dset['res2a_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2a_branch2a'] a = dset['bn2a_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2a_branch2b'] a = dset['res2a_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2a_branch2b'] a = dset['bn2a_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2a_branch2c'] a = dset['res2a_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2a_branch2c'] a = dset['bn2a_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ################################ dset = fff['res2b_branch2a'] a = dset['res2b_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2b_branch2a'] a = dset['bn2b_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2b_branch2b'] a = dset['res2b_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2b_branch2b'] a = dset['bn2b_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2b_branch2c'] a = dset['res2b_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2b_branch2c'] a = dset['bn2b_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res2c_branch2a'] a = dset['res2c_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2c_branch2a'] a = dset['bn2c_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2c_branch2b'] a = dset['res2c_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2c_branch2b'] a = dset['bn2c_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2c_branch2c'] a = dset['res2c_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2c_branch2c'] a = dset['bn2c_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ########res3######## dset = fff['res3a_branch1'] a = dset['res3a_branch1'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3a_branch1'] a = dset['bn3a_branch1'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3a_branch2a'] a = dset['res3a_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3a_branch2a'] a = dset['bn3a_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3a_branch2b'] a = dset['res3a_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3a_branch2b'] a = dset['bn3a_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3a_branch2c'] a = dset['res3a_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3a_branch2c'] a = dset['bn3a_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ################################ dset = fff['res3b_branch2a'] a = dset['res3b_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3b_branch2a'] a = dset['bn3b_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3b_branch2b'] a = dset['res3b_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3b_branch2b'] a = dset['bn3b_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3b_branch2c'] a = dset['res3b_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3b_branch2c'] a = dset['bn3b_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res3c_branch2a'] a = dset['res3c_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3c_branch2a'] a = dset['bn3c_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3c_branch2b'] a = dset['res3c_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3c_branch2b'] a = dset['bn3c_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3c_branch2c'] a = dset['res3c_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3c_branch2c'] a = dset['bn3c_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res3d_branch2a'] a = dset['res3d_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3d_branch2a'] a = dset['bn3d_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3d_branch2b'] a = dset['res3d_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3d_branch2b'] a = dset['bn3d_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3d_branch2c'] a = dset['res3d_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3d_branch2c'] a = dset['bn3d_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ########res4######## dset = fff['res4a_branch1'] a = dset['res4a_branch1'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4a_branch1'] a = dset['bn4a_branch1'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4a_branch2a'] a = dset['res4a_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4a_branch2a'] a = dset['bn4a_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4a_branch2b'] a = dset['res4a_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4a_branch2b'] a = dset['bn4a_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4a_branch2c'] a = dset['res4a_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4a_branch2c'] a = dset['bn4a_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ################################ dset = fff['res4b_branch2a'] a = dset['res4b_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4b_branch2a'] a = dset['bn4b_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4b_branch2b'] a = dset['res4b_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4b_branch2b'] a = dset['bn4b_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4b_branch2c'] a = dset['res4b_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4b_branch2c'] a = dset['bn4b_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4c_branch2a'] a = dset['res4c_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4c_branch2a'] a = dset['bn4c_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4c_branch2b'] a = dset['res4c_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4c_branch2b'] a = dset['bn4c_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4c_branch2c'] a = dset['res4c_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4c_branch2c'] a = dset['bn4c_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4d_branch2a'] a = dset['res4d_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4d_branch2a'] a = dset['bn4d_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4d_branch2b'] a = dset['res4d_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4d_branch2b'] a = dset['bn4d_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4d_branch2c'] a = dset['res4d_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4d_branch2c'] a = dset['bn4d_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4e_branch2a'] a = dset['res4e_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4e_branch2a'] a = dset['bn4e_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4e_branch2b'] a = dset['res4e_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4e_branch2b'] a = dset['bn4e_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4e_branch2c'] a = dset['res4e_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4e_branch2c'] a = dset['bn4e_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4f_branch2a'] a = dset['res4f_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4f_branch2a'] a = dset['bn4f_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4f_branch2b'] a = dset['res4f_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4f_branch2b'] a = dset['bn4f_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4f_branch2c'] a = dset['res4f_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4f_branch2c'] a = dset['bn4f_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4g_branch2a'] a = dset['res4g_branch2a'] b =
np.array(a['kernel:0'], dtype=np.float32)
numpy.array
from models import CNN2 from core.Optimizers import sgd, bgd from core.Functions import one_hot_f import numpy as np from tensorflow import keras from core.Dataloader import batch_iterator def test(model, test_inputs, test_labels): num_of_sample = test_inputs.shape[0] cnt_correct, cnt_tot = 0, 0 for i in range(num_of_sample): test_input = test_inputs[i:i + 1] test_label = test_labels[i] res = model.forward_prop(test_input) if np.argmax(res) == np.argmax(test_label): cnt_correct += 1 cnt_tot += 1 return cnt_correct / cnt_tot fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() train_images =
np.expand_dims(train_images / 255, axis=-1)
numpy.expand_dims
""" volreader.py Author: <NAME> Utilities for reading 3D volumetric data as a 3D OpenGL texture. """ import os import numpy as np from PIL import Image import OpenGL from OpenGL.GL import * from scipy import misc def loadVolume(dirName): """read volume from directory as a 3D texture""" # list images in directory files = sorted(os.listdir(dirName)) print('loading mages from: %s' % dirName) imgDataList = [] count = 0 width, height = 0, 0 for file in files: file_path = os.path.abspath(os.path.join(dirName, file)) try: # read image img = Image.open(file_path) imgData = np.array(img.getdata(), np.uint8) # check if all are of the same size if count is 0: width, height = img.size[0], img.size[1] imgDataList.append(imgData) else: if (width, height) == (img.size[0], img.size[1]): imgDataList.append(imgData) else: print('mismatch') raise RunTimeError("image size mismatch") count += 1 #print img.size except: # skip print('Invalid image: %s' % file_path) # load image data into single array depth = count data =
np.concatenate(imgDataList)
numpy.concatenate